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Abstract. User Centric Smart Card Ownership Model (UCOM) gives
the “freedom of choice” of respective applications to the smart card users.
The user-centric architecture requires a trusted entity to be present on
the smart card to provide security assurance and validation to the re-
questing application providers. In this paper, we propose the inclusion of
a trusted computing platform for smart cards that we refer as the Trusted
Environment & Execution Manager (TEM). This is followed by the ra-
tionale behind the changes to the traditional smart card architecture to
accommodate the remote security assurance and validation mechanism.
We propose an attestation protocol that provides an on-demand security
validation of a smart card by its respective manufacturer. Finally, the
attestation protocol is informally analysed, and its test implementation
and performance measurements are presented.

1 Introduction

The ecosystem of the User Centric Smart Card Ownership Model (UCOM) [1]
in centred around smart cards that have to implement adequate security and
operational functionality to support a) enforcement of security policies stipulated
by the card platform and individual Service Providers (SPs) for their respective
applications, and b) operational functionality that enables an SP to manage its
application(s), and a cardholder to manage her ownership privileges. The smart
card architecture has to represent this change in ownership architecture. For this
purpose, we require a trusted module as part of the smart card architecture. The
module would validate the current state of the platform to requesting entities in
order to establish the trustworthiness of a smart card in the UCOM ecosystern.

In the UCOM, the card manufacturers make sure that smart cards have
adequate security and operational functionality to support user ownership. In
addition, the cardholder manages her relationship with individual SPs. These
relationships enable her to request installation of their applications. Before leas-
ing an application, SPs will require an assurance of the smart card’s security and
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reliability. This assurance will be achieved through a third party security evalua-
tion of the smart cards before they are issued to individual users. Furthermore, to
provide a dynamic security validation [2], the evaluated smart cards implement
an attestation mechanism. The attestation mechanism should accommodate re-
mote validation, as in the UCOM an SP will not always have physical access
to the smart card. In addition, the attestation mechanism will certify that the
current state of the smart card is as evaluated by the independent third party.
Therefore, the trust architecture in the UCOM is based on the adequacy of the
third party evaluation, and the security and reliability of the remote attestation
mechanism.

1.1 Contributions

In this paper, we propose a smart card remote attestation mechanism based
on Pseudorandom Number Generators. The paper also proposes an attestation
protocol, both the protocol and attestation mechanism is implemented, and eval-
uated, along with presenting the underlying performance measurements.

1.2 Organisation

Section 2, discusses the major component that provides security and reliability
assurance to (remote) requesting entities: attestation handler and self-test man-
ager. Subsequently, we extend the discussion to the remote attestation mecha-
nism in section 3 and propose two attestation algorithms based on pseudorandom
number generators. In section 4 we propose an attestation protocol; in section 5
we detail an informal analysis and test implementation results of the attestation
protocol. Finally, concluding the paper in section 6.

2 Proposed Components to Support Attestation
Mechanism

The crucial components that support the attestation mechanism are discussed
below. Both of these are part of the TEM, and for an indepth discussion on TEM
and Security Assurance & Validation Mechanism for UCOM please consult [2,3].
The difference between these two modules (i.e. the attestation handler and the
self-test manager) of the TEM is that one focuses on the software and the other
on the hardware. However, in the proposed attestation mechanism (section 3)
they complement each other to provide proof that a smart card is secure, reliable
and trustworthy.

2.1 Attestation Handler

During the application installation process, the attestation handler will verify
the current state of the platform runtime environment (e.g. security and opera-
tionally sensitive parts of the Smart Card Operating System) and affirm to the



appropriate SP that the platform is as secure and reliable as it is claimed to be
by the (third party) evaluation certificate [2]. Once the application is installed
the relevant SP can ask the TEM to generate its state validation (e.g. signed
hash of the downloaded application), ensuring that the application is downloaded
without any errors onto the platform. This function of the TEM is similar to the
GlobalPlatform’s DAP mechanism [4,5].

2.2 Self-test Manager

The self-test mechanism checks whether the smart card is tamper-resistant as
certified by a trusted third party evaluation. The aim of the self-test mechanism
is to provide a remote hardware validation framework in a way that enables a
requesting entity (e.g. an SP) to independently verify it. As our focus is not
the hardware end of the smart card, we do not propose any (pure) hardware-
based mechanism in this paper, which is one of the possible directions for future
research.

A self-test mechanism in the UCSC should provide the properties that are
listed below:

1. Robustness: On input of certain data, it should always produce associated
output.

2. Independence: When the same data is input to a self-test mechanism im-
plemented on two different devices, they should output different (random)
values.

3. Pseudo-randomness: The generated output should be computationally diffi-
cult to distinguish from a pseudo-random function.

4. Tamper-evidence: Any attack aiming to access the function should cause
irreversible changes which render the device dead.

5. Unforgeable: It should be computationally difficult to simulate the self-test
mechanism and mimic the actual deployed function on a device.

6. Assurance: the function should provide assurance (either implicitly or explic-
itly) based on independent evaluation (e.g. Common Criteria) to requesting
entities. The mechanism should not (always) require an active connection
with the device manufacturer to provide the assurance.

There are several possibilities for a self-test mechanism in a UCSC including
using active (intelligent) shield/mesh [6], the Known Answer Test (KAT) [7],
and the Physical Unclonable Function (PUF) [8].

To provide protection against invasive attacks, smart card manufacturers
implement an active shield/mesh around the chip. If a malicious user removes
the active shield then the chip will be disabled. The self-test mechanism can be
associated with this shield to provide a limited assurance that the protective
measures of the chip are still in place and active.

Furthermore, Hash-based Message Authentication Code (HMAC) can be de-
ployed with a hard-wired key that would be used to generate a checksum of
randomly selected memory addresses that have non-mutable code related to the



Smart Card Operating System (SCOS). This mechanism requires the involve-
ment, of the device manufacturer, as the knowledge of the correct HMAC key
would be a secret known only to the card manufacturer and its smart cards.

Another potential protection strategy is to utilise Physical Unclonable Func-
tions (PUFs) [8] to provide hardware validation [9]. It is difficult to find a single
and consistent definition of PUF in the literature [10]. However, a property de-
scription definition of the PUF is provided by Gassend et al. in [8].

Based on the above listed features, table 1 shows the comparison between
different possible functions that can act as the self-test mechanism. Although the
debate regarding the viability, security, and reliability of the PUFs is still open
in both academic circles and industry [11]; for completeness, we consider them
as a possible self-test mechanism in table 1. Similar to the PUF, Psuedorandom
Number Generators (PRNG) [12] might also be used to implement the self-test
mechanism.

Table 1. Comparison of different proposals for self-test mechanism.

Features Active-Shield Keyed-HMAC|PRNG| PUF
Robustness Yes Yes Yes Yes
Independence No No Yes Yes
Pseudo-randomness No Yes Yes Yes
Tamper-evidence Yes - Yes* Yes
Unforgeable No Yes Yes* Yes
Assurance Yes No Yes Yes*

Note. “Yes” means that the mechanism supports the feature. “No” indicates that the
mechanism does not support the required feature. The entry “Yes*” means that it can
supports this feature if adequately catered for during the design.

If a manufacturer maintains separate keys for individual smart cards that
support the HMAC then it can provide the independence feature. However the
HMAC key is hard-wired and this makes it difficult for it to be different on
individual smart cards of the same batch. Furthermore, it requires other features
to provide tamper evidence, like active-shield. On the other hand, PUFs and
adequately designed PRNGs can provide assurance that the platform state and
the tamper-resistant protections of a UCSC are still active. In this paper, we
propose the PRNG based design for the self-test mechanism that is detailed in
section 3.1.

Before we discuss how a self-test manager and an attestation handler can
be implemented based on PRNG, we first discuss the overall framework that is
responsible for providing security assurance and validation of a smart card.

3 Attestation Mechanisms

In this section, we discuss the attestation mechanism based on PRNGs that
combine the functionality of attestation handler and self-test manager discussed
in section 2.



3.1 Pseudorandom Number Generator

In this section, we propose the use of a Pseudorandom Number Generator
(PRNG) to provide the device authentication, validation, and implicit anti-
counterfeit functionality. Unlike (non-simulatable) PUFs, PRNGs are emulatable
and their security relies on the protection of their internal state (e.g. input seed
values, and/or secret keys, etc.).

The PRNGs implemented in one device will be the same as they are in
other devices of the same batch and given the same input, they will produce
the same output. Therefore, the manufacturer will populate the PRNG seed file
with unique values in each smart card (no two smart cards from the same batch
should have the same seed file).

Algorithm 1: Self-test algo for offline attestation based on a PRNG

Input :[; list of selected memory addresses.

Output: S; signature key of the smart card.

Data:

seed; temporary seed value for the PRNG set to zero.

n; number of memory addresses in the list [.

4; counter set to zero.

a; memory address.

k; secret key used to encrypt the signature key of the smart card.
Se; encrypted signature key using a symmetric algorithm with key k.

SelfTest0ffline (/) begin
while i < n do
a <— ReadAddressList (l,i)
seed «— Hash (ReadMemoryContents (a), seed)
1 — i+1
if seed # () then
L k <— GenPRNG (seed)

TUobh W N

else
L return testfailed

© ®w N o

10 S +— DecryptionFunction (k, Se)
11 return S

The seed file is a collection of inputs that is fed to the PRNG to produce a
random number, and it is updated constantly by the PRNG [12]. This will en-
able a card manufacturer to emulate the PRNG and generate valid Chanllenge-
Response Pairs (CRPs: discussed in section 3.2) for a particular device. The
PRNG mechanism is not tamper-evident and it relies on the tamper-resistant
mechanisms of the smart card to provide physical security. Based on the PRNG,
algorithms 1 and 2 show the offline and online attestation mechanism, respec-
tively.

The SelfTestOffline takes a list of selected memory addresses [ that is il-
lustrated in algorithm 1. The function iterates through the [ reading one memory



address at a time, and then generating a hash of the contents stored at the given
memory address. In the next step at line six, the function SelfTestOffline
checks the value of seed and if it is not zero it will proceed; otherwise, it will
throw a test fail exception. If the seed value is not zero then the seed is input
to the PRNG and a sequence k is generated. The k is used to encrypt the smart
card signature key, and if the input to the PRNG at line seven is as expected
the signature key will be correctly decrypted.

Algorithm 2: Self-test algo for online attestation based on a PRNG

Input : ¢; randomly generated challenge sent by the card
manufacturer.

Output: r; hash value generated on selected memory addresses.
Data:
seedfile; seed file that has a list of non-zero values.
seed; temporary seed value for the PRNG set to zero.
ns; number of entries in a seed file.
s; unique reference to an entry in the seedfile.
nc; number of bytes in the c.
¢; counter set to zero.
l; upper limit of memory address defined by the card manufacturer.
m; memory address.
mK; HMAC key shared between a smart card and respective card
manufacturer

1 SelfTestOnline (c) begin

2 while i < nc do

3 s «— ReadChallenge(c,i) % ns

4 seed <— ReadSeedFile(seedfile, s)

5 m <— GenPRNG(seed) % [

6 r «— r @ Hash(ReadMemoryContents(m), mK)
7 1+—i+1

8 return r

The algorithm returns the signature key, which is used by the attestation
handler to sign a message. The requesting entity will verify the signed message
and if the state of the platform is in conformance with the evaluated state then
the signature will be verified; otherwise, it will fail. The signature verification
will fail because the decrypted signature key will be different as the input to the
PRNG at line seven of the algorithm was different. Therefore, we can assume
that if the state is changed, the signature key will change, and the generated
signature will not verify.

The PRNG-based online attestation mechanism is illustrated in algorithm 2.
The function SelfTestOnline takes the challenge ¢ from the card manufacturer
as input. The received challenge is treated as an array of bytes and individual
bytes of the challenge c are used to generate indexes to the seedfile; values stored
on these indexes are used to generate memory addresses (within the range speci-
fied by the card manufacturer). The contents of the generated memory addresses



are then HMACed and the result is securely sent to the card manufacturer. The
SP can use the same process described in algorithm 2 to generate the HMAC
result and if the result matches with the one sent by the smart card, then the
card manufacturer can ascertain that the current state of the card is trustwor-
thy. At line six of the algorithm 2, we update the seedfile with the value stored
in ‘m’. This update is necessary to avoid generation of the same ‘r’ if the card
manufacturer sends the same challenge ‘c’.

In the implementation of the attestation protocol (section 4), we implement
the online online attestation based on a PRNG illustrated in the algorithm 2.

3.2 Challenge-Response Pair (CRP) Generation

In the case of the mechanism based exclusively on the PRNG as depicted in al-
gorithm 2, the card manufacturer will provide a set of seed values that is referred
to as the seed file. This file is internally updated by the PRNG; however, as the
card manufacturer knows the initial seed file it does not need to communicate
CRPs with the smart card as it can generate the correct response independently
(using the seed file and the PRNG associate with the respective smart card).

3.3 Keys Generation

Individual smart cards have a unique set of cryptographic keys that the card
uses for different protocols/mechanisms during its lifetime. Therefore, after the
hardware fabrication and masking of the SCOS is completed [13] the card man-
ufacturer initiates the key generation process.

Each smart card will generate a signature key pair that does not change for
the lifetime of the smart card. The smart card signature key pair is certified
by the card manufacturer, and it is used to provide offline attestation (section
3). Furthermore, in the certificate hierarchy shown in figure 1, the smart card
signature key pair is linked with the Platform Assurance Certificate (PAC) [2] via
the card manufacturer’s certificate. The reason for this is that a malicious user
might copy a PAC that belongs to a genuine device and put it on his tampered
device and when an SP requests security assurance from the tampered device, it
provides the (copied) PAC of a (trusted) genuine device. By ensuring the PAC
is tied to genuine devices by the certificate hierarchy shown in figure 1 we can
avert such scenarios.

The evaluation authority (e.g. Common Criteria evaluation laboratory) issues
a certificate (e.g. a PAC) [2], which certifies that the signature key of the card
manufacturer is valid only for the evaluated product. If an adversary can get hold
of the manufacturer’s signature key pairs then he can successfully masquerade
as the smart card; either as a dumb device or by simulating the smart card on
a powerful device like a computer.

The smart card will also generate a public encryption key pair that is certified
by the smart card signature key. The smart card user signature key pair is used
to identify the owner of the device and to provide “proof of ownership” that is
beyond the scope of this paper. This signature key is unique to the individual
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Fig. 1. Certificate hierarchy in the UCOM.

user and it is generated on the successful completion of ownership acquisition
process.

Finally, the smart card and card manufacturer share an encryption key for
symmetric algorithms (e.g. TDES, AES) and a MAC key. These keys will be
used to encrypt and MAC communication-messages between the smart card and
the card manufacturer.

4 Attestation Protocol

The attestation protocol, referred as Attestation Protocol (ATP), involves the
card manufacturer in the security assurance and validation framework by using
the online attestation mechanisms. The aim of the protocol is to provide an
assurance to a remote SP that the current state of the smart card is not only
secure but also (dynamically and on-demand) attested by the card manufacturer.
The card manufacturer generates a security validation message that testifies to
the requesting SP that its product is safe and still in compliance with the security
evaluation indicated by the associated PAC.

4.1 Protocol Goals

The goals for the attestation protocol are listed as below:

PG-1 Secrecy: During the attestation protocol, the communication messages are
adequately protected.

PG-2 Privacy: In the attestation protocol, the identity smart card owner (user)
should not be revealed to any eavesdropper or the card manufacturer.

4.2 Intruder’s Capabilities

The aim of an adversary A could be to retrieve enough information to enable him
to successfully masquerade as a card manufacturer or as a smart card. There-
fore, we assume an adversary A is able to intercept all messages communicated
between a smart card and its manufacturer. In addition, A can modify, change,
replay, and delay the intercepted messages.



If A is able to masquerade as a card manufacturer then A can issue fake
attestation certificates to individual smart cards, which might compromise the
security and privacy of the user and related SPs. On the other hand, if A is
able to compromise the smart card then he can effectively simulate the smart
card environment. This will enable him to reverse engineer the downloaded ap-
plications and retrieve sensitive data related to the user and application (e.g.
intellectual property of the SP).

4.3 Protocol Notation and Terminology

Table 2 summarises the notation used in the proposed attestation protocol.

Table 2. Protocol notation and terminology

Notation |Description

SC Denotes a smart card.

SP Denotes a Service Provider.

CM Denotes the respective card manufacturer of the SC.

cc Denotes the respective Common Criteria evaluation laboratory that
evaluates the SC.

X; Indicates the identity of an entity X.

Nx Random number generated by entity X.

hZ) The result of applying a hash algorithm (e.g. SHA-256) on data Z.

Kx_v Long term encryption key shared between entities X and Y.

mKx_y |Long term MAC key shared between entities X and Y.

By Private decryption key associated with an entity X.

Vx Public encryption key associated with an entity X.

ek (2) Result of encipherment of data Z with symmetric key K.

fx(Z) Result of applying MAC algorithm on data 7 with key K.

VM The Validation Message (VM) issued by the respective CM to a SC
representing that the current state of the SC is as secure as at the
time of third party evaluation, which is evidenced by the PAC.

Signx(Z) |Is the signature on data Z with the signature key belonging to an
entity X using a signature algorithm like DSA or based on the RSA
function.

CertSx vy |Certificate of entity X’s signature key, issued by an entity Y.

CertEx .y |Certificate of entity X’s public encryption key, issued by an entity Y.

X — Y : C|Entity X sends a message to entity Y with contents C.

XY Represents the concatenation of data items X and Y.

SID Session identifier that is used as an authentication credential and to

avoid Denial of Service (DoS) attacks. The SID generated during the
protocol run ’'n’ is used in the subsequent protocol run (i.e. n+1).




4.4 Protocol Description

In this section, we describe the attestation protocol, and each message is repre-
sented by ATP-n, where n represents the message number.

ATP-1. SC:mE = epgi o (SCi|| N ||CM;||RegV al)
SC — CM : SCy||mE||fmkse—ca (ME)||SID

Before issuing the smart card to the user, the SC and CM will establish two
secret keys; encryption key Kgo_cpy and MAC key mKgo_cp- The SC and
CM can use these long-term shared keys to generate the session encryption key
ksc—cm and the MAC key mkgsc—cnr- The method deployed to generate session
keys is left to the sole discretion of the card manufacturer. Each SC has a unique
identifier SC; that is the identity of the smart card. To provide privacy to each
smart card (and its user) the identity of the SC is not communicated in plaintext.
Therefore, the psuedo-identifier SC;/ is used in the ATP-1, which is generated
by the SC and corresponding CM on the successful completion of the previous
run of the attestation protocol. We will discuss the generation of SC; and SID
in subsequent messages, as the generated SC;; and SID during this message
will be used in the next execution of the attestation protocol. A point to note
is that for the very first execution of the attestation protocol, the smart card
uses the pseudo-identifier (SCy) that was generated by the card manufacturer
and stored on the smart card before the card was issued to the user. The SID
is used for two purposes: firstly to authenticate the SC and secondly, to prevent
a Denial of Service (DoS) attack on the attestation server. The RegVal is the
request for attestation process.

On receipt of the first message, the CM will check whether it has the correct
values of SC; and SID. If these values are correct, it will then proceed with
verifying the MAC. If satisfied, it will then decrypt the encrypted part of the
message.

ATP-2.CM tmE = €ggo oy (CMi||NéC’HNCMHChallenge)
CM — SC : mE|| fmkse—_cn (ME)||SID

The CM generates a random number Ngjps and a Challenge. In case of the
PRNG-based attestation mechanism, the Challenge would also be a random
number.

ATP-3. 5C tME = €hso_on (N.,S‘C”NCMHNS’PHNSC'|R65p||0pt)
SC = CM : mE|| fmkse—_cn (ME)||SID

After generating the Resp using the PRNG-based algorithm discussed in
section 2, the SC will proceed with message three. It will concatenate the random
numbers generated by the SC, CM, and SP, with the Resp. The rationale for
including the random number from the SP in message three is to request CM to
generate a validation message that can be independently checked by the SP to
ensure it is fresh and valid. The function of the Opt element is to accommodate
the CRP updates if other algorithms are used (e.g. PUF-based attestation).

While the SC was generating the Resp based on the Challenge, the CM
also calculates the correct attestation response. When the C M receives message



three, it will check the values and if they match then it will issue the validation
message. Otherwise the attestation process has failed and CM does not issue
any validation message (VM).

ATP-4. CM : VM = Signen (CM;||SC;||Nsp||Nsc||[PAC)
CM :mE = ekgp on (N5c||[VM||SCH||SIDT||CertScnr)
CM — SC : mE||fmkse_cn (ME)||SID

If the attestation response is successful then the CM will take the random
numbers generated by the SP and the SC and include the identities of the SC and
CM. All of these items are then concatenated with the SC’s evaluation certificate
PAC and then signed by the CM. The signed message is then communicated to
the SC.

In the ATP-4, the CM will also generate a SID and SC;/ that will be used
in the subsequent execution of the attestation protocol between the SC and
CM. The SID and SC; for the subsequent run of the attestation protocol is
represented as SID*V and SC;f. The SID™ is basically a (new) random number
that is associated with the pseudo-identifier of the smart card that it will use
to authenticate in the subsequent attestation protocol. Furthermore, the SC;
is generated as SC; = fikon (CM;||Nsc||Nom||SID), where mKcyy is the
MAC key that the CM does not share.

5 Protocol Analysis

In this section, we analyse the proposed attestation protocol for given goals and
provide details of the test performance results.

5.1 Informal Analysis

In order to meet the goals PG-1 and PG-2, all messages communicated between
the SC and CM are encrypted and MACed using long term secret encryption and
MAC keys; ksc—_cm and mKsc_cwn, respectively. The A has to compromise
these keys in order to violate the PG-1. If we consider that the symmetric algo-
rithm used (e.g. AES) is sufficiently strong to avert any exhaustive key search
and robust enough to thwart any cryptanalysis then it is difficult for the A to
break the protocol by attacking the used symmetric algorithms. A possibility
can be to perform side-channel analysis of the smart card and attempt to re-
trieve the cryptographic keys; however, most modern smart cards have adequate
security to prevent this attack, which are evaluated and certified by the third
party evaluation (e.g. Common Criteria evaluation). Nevertheless, these assur-
ances can only be against the state-of-the-art attack methodologies at the time
of manufacturing/evaluation. Any attacks which surface after manufacture and
evaluation may render both the assurance and validation mechanisms useless.
The smart card identity is not used as plaintext during the communication
between the SC and the CM. Instead of using the SC;, the SC uses a psuedo-
identity SC;» which changes on every successful completion of communication



with the respective CM. Therefore, a particular SC will only use SC;; once
during its lifetime.

5.2 Protocol Verification by CasperFDR

The CasperFDR approach is adopted to test the soundness of the proposed
protocol under the defined security properties. In this approach, the Casper
compiler [14] takes a high-level description of the protocol, together with its
security requirements. It then translates the description into the process alge-
bra of Communicating Sequential Processes (CSP) [15]. The CSP description of
the protocol can be machine verified using the Failures-Divergence Refinement
(FDR) model checker [16]. A short introduction to the CasperFDR approach
to mechanical formal analysis is provided in appendix A. The intruder’s capa-
bility modelled in the Casper script (appendix A) for the proposed protocol is
as: 1) An intruder can masquerade as any entity in the network. 2) It can read
the messages transmitted by each entity in the network. 3) An intruder cannot
influence the internal process of an agent in the network.

The security specifications for which the CasperFDR evaluates the network
are as shown below. The listed specifications are defined in the # Specification
section of appendix A: 1) The protocol run is fresh and both applications are
alive. 2) The key generated by a smart card is known only to the card man-
ufacturer. 3) Entities mutually authenticate each other and have mutual key
assurance at the conclusion of the protocol. 4) Long term keys of communicat-
ing entities are not compromised.

The CasperFDR tool evaluated the protocol and did not find any attack(s).
A point to note is that in this paper, we provide mechanical formal analysis
using CasperFDR for the sake of completeness and we do not claim expertise in
the mathematical base of the formal analysis.

5.3 Implementation Results & Performance Measurements

The test protocol implementation and performance measurement environment
in this paper consists of a laptop with a 1.83 GHz processor, 2 GB of RAM
running on Windows XP. The off-card entities execute on the laptop and for
on-card entities, we have selected two distinct 16bit Java Cards referred as C1
and C2. Each implemented protocol is executed for 1000 iterations to adequately
take into account the standard deviation between different protocol runs, and
the time taken to complete an iteration of protocol was recorded. The test Java
Cards (e.g. C1 and C2) were tested with different numbers of iterations to find
out a range, which we could use as a common denominator for performance
measurements in this paper. As a result, the figure of 1000 iterations was used
because after 1000 iterations, the standard deviation becomes approximately
uniform.

Regarding the choice of cryptographic algorithms we have selected Advance
Encryption Standard (AES) [17] 128-bit key symmetric encryption with Cipher



Block Chaining (CBC) [18] without padding for both encryption and MAC oper-
ations. The signature algorithm is based on the Rivest-Shamir-Aldeman (RSA)
[18] 512-bit key. We use SHA-256 [19] for hash generation. For Diffie-Hellman
key generation we used a 2058-bit group with a 256-bit prime order subgroup
specified in the RFC-5114 [20]. The average performance measurements in this
paper is rounded up to the nearest natural number.

The attestation mechanism implemented for emulating the practical perfor-
mance is based on the PRNG design. The PRNG for our experiments was based
on the AES [12] and it has been implemented such that it allows us to input the
seed file. The performance measures taken from two different 16-bit Java Cards
are listed in table 3. The offline attestation mechanism based on PRNG take
in total (excluding PRNG seed file) 2084 bytes. Similarly, the online attestation
mechanism and associated attestation protocol based on PRNG take in total
(excluding PRNG seed file) 5922 bytes.

Table 3. Test performance measurement (milliseconds) for the attestation protocol.

Measures Offline Attestation|Online Attestation
Card Specification C1 C2 C1 C2
Average 408.63 484.55 1008 1284

Best time 367 395 930 1075
Worse time 532 638 1493 1638
Standard Deviation| 41.82 59.43 87.68 92.29

5.4 Related Work

The basic concept of remote attestation and ownership acquisition came from
the TCG’s specifications [21]. The user takes the ownership of the Trusted Plat-
form Module (TPM) and in return, the TPM generates a unique set of keys
that are associated with the respective user. The remote attestation mechanism
described in the TPM specification [22] provides a remote system attestation
(only software). The attestation mechanism is designed so that if the software
state is modified, the TPM cannot generate a valid report.

The TPM does not provide an attestation that includes the hardware state.
Furthermore, the attestation defined in the TPM specification is more like the
offline attestation. However, the offline attestation mechanism (algorithm 1) is
different to the one used by TPM, whereas the online attestation is not part of
the TPM specifications.

Similarly, other proposals concentrate on the software attestation without
binding it to a particular hardware. Such proposals include SCUBA [23], SBAP
[24], and SWATT [25]. These protocols utilise execution time as a parameter
in the attestation process. This is difficult to guarantee remotely, even with the
delegation of time measurement to neighbouring trustworthy nodes [23]. Other



mechanisms that use trusted hardware are proposed by Schellekens et al. [26]
and PUF-based protocols [27].

There is no such proposal for remote attestation in smart card frameworks
like Java Card, Multos, or GlobalPlatform. The nearest thing is the DAP in the
GlobalPlatform card specification that checks the signature on the downloaded
application (if the application provider chooses this option). Furthermore, we
have opted out of having execution measurement as part of the attestation pro-
cess as it is difficult to ascertain the trustworthiness of the remote device that
measures it. However, unlike other proposed protocols we have an explicit re-
quirement that third party evaluation is used to provide an implicit trust in
the attestation process. Furthermore, our proposal binds the software attesta-
tion with the hardware protection (tamper-evident) mechanism to provide added
assurance.

6 Conclusion

In this paper, we briefly discussed the generic architecture of the UCSC and its
components. Later, we extended the discussion to the security assurance and
validation framework that requires a third party evaluation and an attestation
process. The attestation process includes hardware validation with the tradi-
tional software attestation. We proposed two modes for the attestation process:
offline and online attestation. In designing the attestation processes, we based
our proposal on the PRNG algorithms. To have an online attestation, we pro-
posed the attestation protocol that communicates with the card manufacturer
to get a dynamic certificate of assurance (a signed message from the card manu-
facturer) that the smart card is still secure and reliable. We implemented offline
and online attestation mechanisms, along with an attestation protocol on 16-bit
Java Cards. We also detailed the performance measurements of the implemented
mechanisms and protocols.
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A Attestation Protocol

The Casper script in this section corresponds to the attestation protocol de-

scribed in section 4.

#Free variables

SC, CM : Agent
ns, nsp, nt, c, r : Nonce
S1, S2 : Num

VKey: Agent -> PublicKey
SKey: Agent -> SecretKey

InverseKeys = (sKey, sKey), (VKey,
SKey)

#Protocol description

0. ->8SC : CM

1. SC -> CM : S81,{SC, ns, CM,}{sKey}
2. CM -> sC : {CM, ns, nm, c,
S2}{sKey?}

3. SC -> CM : {ns,nm,nsp,r}{sKey}

4. CM -> SC : {ns,{CM,SC,ns,nsp}

{Skey{CM}}}{sKey}

#Actual variables
SmartCard, CardManufacturer, MAppl

: Agent
Ns, Nsp, Nt, Nm, Challenge, Response

: Nonce

SOne, STwo : Num

#Processes

INITIATOR(SC, CM, ns, nsp, r) knows
sKey, VKey

RESPONDER(CM, SC, nm, c) knows
sKey, SKey(CM), VKey

#System

INITIATOR(SmartCard, CardManufacturer,
Ns, Nsp, Response)

RESPONDER (CardManufacturer, SmartCard,
Nm, Challenge)

#Functions
symbolic VKey, SKey

#Intruder Information
Intruder = MAppl

IntruderKnowledge = {SmartCard,
CardManufacturer, MAppl, MAppl, Nm,
Nsp, SKey(MAppl), VKey}

#Specification
StrongSecret (SC, sKey, [CM])
StrongSecret (SC, r, [CM])
Aliveness(SC, CM)
Aliveness(CM, SC)



