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Abstract

Near Field Communication is a short-range wireless technology based on RFID stan-

dard ISO 18092, ISO 14443 and ISO 15693. This means, it provides compatibility with

the millions of contactless smartcards and RFID scanners that already exist worldwide.

NFC is now available on the phones and this integration has resulted in a sharp rise

in its utility. An NFC-enabled cell phone acts as an RFID reader to read compatible

RFID tags (NFC tags), such as smart posters. The same cell phone can also be used

as an NFC tag storing relevant data. In this case, a cell phone transforms into a digital

wallet storing bank cards (money), vouchers, loyalties card etc., at a secure place called

‘Secure Element’. Abuse of NFC technology is also on sharp rise because of large num-

ber of users and inadequate security standards. This thesis looks at security issues of

NFC and RFID and provides mechanisms to improve the security features. NFC Fo-

rum (an association for developing NFC standards) released the signature specification

in 2010 describing rules to digitally sign the NFC tag’s contents. A part of the thesis

covers the security related issues of the signature specification. Later in the thesis, a

new specification for authenticating an NFC tag is proposed, including a framework of

its implementation in a supply chain in order to detect counterfeit products. The thesis

also includes a framework for NFC mobile wallet, where the Secure Element in the cell

phone is only used for customer authentication and the banking credentials are stored

in a cloud. At the end of the thesis, security analysis of an authentication protocol

for low-cost RFID tags is described with multiple attacks resulting in full disclosure of

secret keys.
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Executive Summary

The thesis focuses on the security related issues of Near Field Communication (NFC)

and RFID. NFC is a short range wireless communication technology based on RFID

standard 18092, ISO 14443 and ISO 15693 and compatible with the existing contactless

smart cards. NFC tags are used in a variety of applications like product identification,

smart posters, access control etc. The integration of NFC with cell phone technology

has given a new dimension to the utility of NFC. Alongside a sharp increase in the

number of its users, the abuse of this technology also poses serious challenges.

In this thesis, we focused on authentication issues in NFC and RFID. We sub-

divided authentication issues in two different categories.

1. Tag Data Authentication. This category deals with the authentication of

the data stored on an NFC or RFID tag. In most of the scenarios, NFC and

RFID tags are deployed in public places accessible to every person. For instance,

a smart poster advertising an event is displayed in an open environment where

users can touch their cell phones to the poster to access its contents. In such

scenarios, alteration in the tag’s contents poses a serious threat whereas copying

the tag contents to another tag is beneficial. A part of the thesis deals with the

mechanisms authenticating the contents of a tag and not the tag itself.

2. Tag Authentication. There are occasions where copying the contents of an

NFC tag to another tag is undesirable. For instance, a signed NFC tag is at-

tached to a medicine packet storing its chemical composition and expiry date.

Any NFC reader can read its contents and verify it using the signature. How-

ever, a counterfeit medicine and counterfeit tag with the same data will also be

authenticated. A mechanism to authenticate a tag can thwart such attacks.

Contributions

1. Our first contribution is related to the Tag Data Authentication category. The

Near Field Communication Forum was formed in 2004 to advance the use of NFC

13



by developing specifications, ensuring interoperability among devices and services,

and educating the market about NFC technology1. The NFC Forum released

various technical specifications as a process of standardising NFC technology.

One of the specification, the Signature specification, is aimed at providing data

integrity and authenticity to contents of an NFC tag. However, soon after its

release, various vulnerabilities were discovered. We fixed several vulnerabilities

and suggested amendments in the signature specification. As the result, the NFC

Forum released a revised version of the signature specification in 2013. This work

was published in the 6th International Conference for Internet Technology and

Secured Transactions, 2011 [62] and in the International Journal for Information

Security Research (IJISR), 2012 [63]. The details are covered in Chapter 3.

2. Regarding the Tag Authentication category, the NFC Forum does not provide any

specification to authenticate an NFC tag. The lack of such a mechanism opens

the door to many security threats, particularly to counterfeit products when

NFC technology is used in product identification. We addressed this weakness

by proposing a specification, based on the data structure specified by the NFC

Forum, that authenticates a tag along with its data. We provided justifications

and role of the each field of the proposed specification. The main advantage

of our proposed specification is its compatibility with the existing NFC devices.

This work is published in the International Conference for Internet Technology

and Secured Transactions 2012 [64]. The details are covered in Chapter 4.

3. After proposing the specification, we designed a framework to demonstrate its

use in detecting counterfeits products in a supply chain. We proposed that if the

products are equipped with NFC tags, the counterfeit products can be identified

by authenticating the attached NFC tags. This is a customer-level framework so

a customer can identify a counterfeit product by reading the NFC tag attached to

the product with his cell phone. This work is published in the International con-

ference on Privacy, Security and Trust (PST 2013) [61]. The details are covered

in Chapter 5.

4. Tag authentication is of crucial importance when a tag is registered against a

specific user or product. In such cases, the tag authentication leads to a user

or product authentication. For instance, the access control tags serve as a tool

for user authentication. We proposed two payment solutions, based on NFC,

where a customer is identified and authenticated from his mobile device. After

1http://nfc-forum.org/

14



a successful customer authentication, the money is transferred from customer’s

to shopkeeper’s account. This work is published in the International Journal

of Advanced Computer Science and Applications (IJACSA), 2013 [56] and in

the Eighth International Conference on Mobile Ubiquitous Computing, Systems,

Services and Technologies, 2014 [60]. The details are covered in Chapter 6.

5. I also participated in cryptanalysis of an ultra-lightweight authentication protocol

used for authentication of RFID tags. My contribution in this work is the Full

Disclosure Active (FDA) Attack on the authentication protocol. This attack

reveals the secret key stored in the RFID tag. This work is published in the

Journal of Applied Mathematics and Information Sciences [17]. The details are

covered in Chapter 7.
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Chapter 1

Background to RFID and NFC

Technologies

This chapter provides an introduction to NFC and RFID systems. It also

provides an overview of how the NFC technology over cell phones can be

used in everyday life.

1.1 Introduction

Radio Frequency Identification (RFID) is a wireless technology that enables identifi-

cation of tags over a radio link. In recent years, RFID technology has moved from

obscurity into mainstream applications. RFID is used for identification in a wireless

manner and, unlike earlier bar-code technology, it does not require a line of sight. This

technology consists of an RFID tag attached to an object, and an RFID reader that

reads the RFID tags to identify it. Moreover, RFID tag can store additional data

(such as manufacturer details, expiry date etc.,) than the barcodes. These character-

istics make RFID a suitable technology for identification of products in supply chain,

identification of human for access control or in any other framework where identification

is of crucial importance.

RFID tags are of various types, but at the highest level, the tags are divided into

two main classes [69]:

• Active Tags

• Passive Tags

Active tags require a power source. They are either connected to a powered infras-

tructure or equipped with a battery. This not only increases their cost and size but

18
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also reduces their usability.

In contrast, Passive tags do not require a dedicated power source to operate. These

tags receive power from the reader in order to perform computations and transmit data.

Characteristics like low-cost, maintenance-free, small size with indefinite operational

life make them more practicable to be used for identification purpose.

Our focus is only on passive tags as the thesis covers authentication issues of such

tags. Since these tags lack an inbuilt battery, they utilize power received from the

reader.

1.2 Power for Passive RFID Tags

There are two main approaches exist to transfer power from a reader to a passive

tag [69]:

1. Electromagnetic (EM) wave capture

2. Magnetic induction

Both approaches can transfer enough power to a remote tag to compute and trans-

mit back the response. Depending upon the power up approach, the tag can be either

a Far-field or a Near-field tag.

1.2.1 Far-Field RFID Tags

The Far-field RFID tags receive power by capturing EM waves of the reader as shown

in Figure 1.1 [69]. A simple electronic circuit in the tag is used to accumulate the

energy in order to power up its electronics. The energy a tag captures is a small

fraction of the transmitted energy from the reader. The energy is so acute that the

tag is unable to transmit back the response with enough strength to reach it to the

reader; rather it back-scatters the reader’s transmission in a pattern that stores some

of its information like Tag ID etc. Generally, far-field tags operate in the ultra-high

frequency (UHF) band (such as 2.45 GHz). A typical far-field reader can successfully

interrogate tags 3m away, and some RFID companies claim their products have read

ranges of up to 6m [69].

The limited amount of power also restricts the computational capabilities of far-field

tags. These tags can only perform simple operations like XOR, bit rotations etc., but

are unable to perform heavy cryptographic computations. This results in many security

related issues in such tags. A special branch of cryptography, light-weight cryptography,

deals with the security issues of these tags but unlike conventional cryptography, this

19



1.2. Power for Passive RFID Tags 1. Background to RFID and NFC Technologies
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Data modulated
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Figure 1.1: Far Field RFID Technology

branch yet needs to mature. Various security algorithms and protocols for light-weight

cryptography are under development [48].

We also contributed in development of authentication protocols for these tags. This

contribution is in the form of a security analysis of earlier proposed authentication

protocols. The details are described in Chapter 7.

A well-known example of far-field RFID tag is Electronic Product Code (EPC) tags

used for for product identification in supply chains [65]. We will discuss these tags in

Chapter 5.

1.2.2 Near-Field RFID Tags

In Near-field RFID tags, the power is transferred from the reader through Faraday’s

principle of magnetic induction. A reader generates alternating magnetic field in its

locality by passing a large alternating current through its coil. A tag placed inside

the alternating magnetic field will develop a voltage across the tag’s coil as shown in

Figure 1.2 [69]. This voltage is used to power the tag chip.

Near-field coupling is the most straightforward approach for implementing a pas-

sive RFID system. This is why it was the first approach taken and has resulted in

20



1.3. Near Field Communication 1. Background to RFID and NFC Technologies

many subsequent standards, such as ISO 18092 and 14443, and a variety of proprietary

solutions.
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Figure 1.2: Near Field RFID Technology

1.3 Near Field Communication

The Near-Field RFID forms the basis of Near Field Communication (NFC). NFC is

often seen as an extension to the near-field RFID. Like an ordinary reader, the NFC

devices can read RFID tags based on specific standards; but unlike RFID technology,

two NFC devices can communicate to each other in a peer-to-peer mode, or one NFC

device can act as an RFID tag and other as a reader. NFC operates at 13.56MHz

frequency band with an operational distance of less than 10 cm. Possible supported

data transfer rates are 106, 212 and 424 kbps. NFC’s bidirectional communication

ability is ideal for establishing connections with other technologies by the simplicity of
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a touch1.

NFC was developed by Philips and Sony in 2002. Many existing standards from

RFID were adopted in the NFC. The NFC base standard for the physical layer,

NFCIP-1 (Near Field Communication Interface and Protocol 1), is standardized in

ISO 18092 [36] and ECMA 340 [26]. This standard specifies the basic characteristics,

such as transfer speeds, coding, modulation schemes, frame architecture, and RF inter-

face. It also provides initialization schemes and conditions that are required to prevent

collisions during initialization. The RF layer used in the NFCIP-1 is directly inherited

from the older ISO 14443 (Proximity Contactless Cards), more specifically the Type A

protocol defined in that standard, and on Japanese JIS 6319-4 (on which Sony FeliCa

is based). Consequently, NFC devices (reader/writer mode) are compatible with ISO

14443 smart cards.

The second major standard is NFCIP-2 (ISO 21481 [37] or ECMA 352 [27]), which

defines the selection mechanism between different contactless technologies that operate

on the same frequency 13.56MHz. It is intended to be used by mobile devices that

support communication according to ISO 18092, ISO 14443, but they must also be

compatible with other contactless standards like ISO 15693.

NFC devices have to provide ISO 14443 (proximity cards, e.g. Philips Mifare),

ISO 15693 (vicinity cards) and Sonys FeliCa contactless smart card system in order

to be compatible with the main international standards for smartcard interoperabil-

ity. Hence, as a combination of smartcard and contactless interconnection technolo-

gies, NFC is compatible with today’s field proven RFID-technology. That means, it is

providing compatibility with the millions of contactless smartcards and scanners that

already exist worldwide.

In 2004 Nokia, Philips and Sony established the Near Field Communication (NFC)

Forum2 to advance the use of NFC technology by developing specifications, ensuring

interoperability among devices and services, and educating the market about NFC

technology. Some of the standards developed by the NFC Forum, of concern to our

area of research, are described in Chapter 2.

1.3.1 NFC on Cell Phones

The integration of NFC with cellular technology resulted in a sharp rise in its utility.

The leading mobile phone manufacturers like Samsung, Nokia, HTC, Sony are inte-

grating NFC in most of their devices. Notably absent among them is Apple with its

iPhone. A frequently updated list of the cell phones equipped with NFC is available at

1http://nfc-forum.org/
2http://nfc-forum.org/
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Figure 1.3: “N-Mark” logo used to identify NFC tags and devices

the NFC World website3 and is also attached as Appendix A to the thesis.

There can be a variety of applications of NFC over cell phones. Imagine a busy

lady who leaves her house in the morning; she secures her apartment door by touching

her phone to the door knob. On her way to the train station, she purchases a coffee

by touching her phone to the payment terminal at the coffee shop. At the station, she

touches her phone to the turnstile to debit her fare from her transit account. After she

is seated on the train, she sees a poster for an upcoming concert she wants to attend.

She touches her phone to the poster to transfer the event details to her calendar and

purchase tickets. Arriving at work, she touches her phone to the door to enter the

building. On her coffee break, she buys a snack from the vending machine by touching

her phone to the payment panel. While meeting with a client, she exchanges contact

details by touching her phone to the client’s. After work, she meets a friend and shares

the details of the upcoming concert by touching her phone to her friend’s. All of these

things are possible because of the integration of NFC with cellular technology [34].

An NFC equipped cell phone can act as an RFID reader to read from or write to

a tag. Additionally, two cells phones can share data in a peer-to-peer mode or a cell

phone can act as a tag (card emulation mode) which is read by any compatible reader.

NFC architecture on a mobile phone consists of the following components [47]:

1. NFC Antenna. This is responsible for the physical connection of the cell phone

to another RF reader, NFC device or RF tag.

2. NFC Controller. This converts analog to digital or vice versa for transmission

and receiving through the NFC antenna. Additionally, it controls all processes

related to the NFC in a cell phone.

3. Secure Element. In card emulation mode, a Secure Element (SE) is used to

store sensitive data. The SE is a combination of hardware, software, interfaces

and protocols that enable secure data storage and application execution. The

3http://www.nfcworld.com/nfc-phones-list/
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cell phone equipped with SE can be used for services requiring a high level of

security such as payment application, ticketing, etc. The SE can be in a form of

removable (SIM, external memory card) or non-removable (embedded in hard-

ware) component within the cell phone, or it can be in a cloud providing all the

necessary services.

4. Host Controller. The Host Controller interacts with the NFC Controller and

in some cases, with the Secure Element as well (for instance, to top-up credit in

the Secure Element over the air).

Figure 1.4: Architecture of NFC integrated in a mobile device

A basic NFC architecture of NFC in a mobile device is illustrated in Figure 1.4 [47].

Managing the SE among various NFC stakeholders (Banks, cell phone manufactur-

ers, Mobile network operators, merchants etc.) is an arduous job because of lack of

trust and business limitations. This area of NFC is yet to mature as it lacks a standard

infrastructure to be followed by all stakeholders.

Although the primary uses of NFC are likely to be commercial, users can also pur-

chase their own tags and use them to automate certain tasks. For example, users could

mount a tag on their nightstand that sets their phone’s alarm function. Programming a

tag with your home wireless network details would allow guests to connect by touching
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their phones to the tag. Placing a tag in your car or on your keychain can switch on

the Bluetooth to pair your phone with your car’s stereo system. Tags can also be set

in a ‘toggle’ mode that will either set or revert to a group of settings on the cell phone

each time the tag is scanned.

1.3.2 Gartner Hype Cycle for NFC

Gartner Hype Cycles, a branded graphical tool developed and used by IT research and

advisory firm Gartner, provides a graphic representation of the maturity and adoption

of technologies and applications, and how they are potentially relevant to solving real

business problems and exploiting new opportunities4.

Each Hype Cycle drills down into the five key phases of a technology’s life cycle.

Figure 1.5: Gartner Hype Cycle 2013

1. Technology Trigger: A potential technology breakthrough kicks things off.

Early proof-of-concept stories and media interest trigger significant publicity. Of-

ten no usable products exist and commercial viability is unproven.

2. Peak of Inflated Expectations: Early publicity produces a number of success

stories often accompanied by scores of failures. Some companies take action;

many do not.

4http://www.gartner.com/technology/research/hype-cycles/
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3. Trough of Disillusionment: Interest wanes as experiments and implementa-

tions fail to deliver. Producers of the technology shake out or fail. Investments

continue only if the surviving providers improve their products to the satisfaction

of early adopters.

4. Slope of Enlightenment: More instances of how the technology can benefit the

enterprise start to crystallize and become more widely understood. Second- and

third-generation products appear from technology providers. More enterprises

fund pilots; conservative companies remain cautious.

5. Plateau of Productivity: Mainstream adoption starts to take off. Criteria

for assessing provider viability are more clearly defined. The technology’s broad

market applicability and relevance are clearly paying off.

The NFC is currently (2013) in the Trough of Disillusionment phase and needs 2

to 5 years to reach the Plateau of Productivity as shown in Figure 1.5.

This implies that after a couple of years, the NFC would become a widely imple-

mented main-stream technology provided that the NFC stake holders improve their

products and standards to pull the NFC out of the Trough of Disillusionment. Well-

defined standards and well-understood applications are the key factors for the success

of the NFC technology. Since NFC will be mostly used for m-commerce, the security

is the back-bone of the NFC. However, there are still many security related issues that

need to be addressed.

1.4 Security Concerns

Being a wireless technology, the NFC suffers not only from conventional security

threats, such as eavesdropping, data insertion, data modification, man-in-the-middle

attack, DoS attack etc. [33, 47]; but also faces a new threat from another dimension:

NFC-enabled cell phones. Conventional attacks in any RFID system generally require

an observable attacking platform, such as a laptop attached to a specific hardware, or

custom-built card emulators and off-the-shelf readers. This makes the attacker suspi-

cious in public thus making the attacks arduous. But things are not the same in NFC

technology. Here, the attacker just needs an NFC-enabled cell phone as an attacking

platform to launch an attack. Unlike a laptop or a card-emulator, holding a cell phone

near to any Point of Sale terminal would be accepted by merchants and arouse less

suspicion in public. Lishoy Francis et al. demonstrated that a cell phone can be used

as a pick-pocketing tool [30]. They performed two attacks, token cloning and contact-

less skimming, using an NFC-enabled cell phone. Same researchers also performed a
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peer-to-peer relay attack using NFC-enabled cell phones [31]. They demonstrated that

a contactless card in a pocket can be read without any intimation to the person by

holding an NFC-enabled cell phone near to pocket of the person. Similarly, e-Passports

can also be read with the cell phone without any consent of its owner. The data is not

only skimmed from the contactless card or from an e-Passport to the NFC-enabled cell

phone, but also relayed to any other machine in real time.

We, at this stage, contributed in the development of security related standards of

the NFC technology to help it reach at the Plateau of Productivity. For instance,

we highlighted some vulnerabilities in the Signature Specification, a guideline used

to digitally sign the contents of an NFC tag. We also suggested some improvements

in the Signature Specification and submitted our suggestions to the NFC Forum, an

organization responsible for the standardisation of the NFC technology. This resulted

in a revised signature specification (more details in Chapter 2 and 3).

We also realized that the NFC Forum does not provide any specification to auth-

enticate an NFC tag. We proposed a new specification for this purpose and provided

a framework to implement the proposed specification in a supply chain to detect coun-

terfeit products (Refer Chapters 4 and 5).

Keeping in view the likely use of NFC to be commercial, we also proposed a secure

mobile payment solution described in Chapter 6.

Authentication of lightweight RFID tags is a challenging task as the these tags are

unable to perform standard cryptographic functions. We analyzed a mutual authentic-

ation protocol in Chapter 7 and showed that the protocol is vulnerable to key recovery

attacks.
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Chapter 2

The NFC Forum

This chapter provides information about the NFC Forum and two of its

most important specifications: The NFC Data Exchange Format (NDEF)

and the Signature Record Type Definition.

2.1 Introduction

The Near Field Communication Forum was formed in 2004 to advance the use of Near

Field Communication technology by developing specifications, ensuring interoperability

among devices and services, and educating the market about NFC technology1. Man-

ufacturers, applications developers, financial services institutions, and more all work

together to promote the use of NFC technology in consumer electronics, mobile devices,

and PCs. The NFC Forum promotes sharing, pairing, and transactions between NFC

devices or tags. The goals of the NFC Forum are:

• Develop standards-based Near Field Communication specifications that define a

modular architecture and interoperability parameters for NFC devices and pro-

tocols.

• Encourage the development of products using NFC Forum specifications.

• Work to ensure that products claiming NFC capabilities comply with NFC Forum

specifications.

• Educate consumers and enterprises globally about NFC.

In June 2006, the Forum formally outlined the architecture for NFC technology. The

Forum has released 18 specifications to date2. The specifications provide a road

1http://nfc-forum.org/
2June, 2014
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map that enables all interested parties to create powerful new consumer-driven and

developer-driven products. These specifications can be viewed at the NFC Forum web-

site.

2.2 NFC Forum Tags

NFC Tags are integrated circuits storing data that can be read by NFC-enabled devices.

In order to maintain the interoperability of NFC devices and tags, the NFC Forum has

specified four different types of tag [51]:

• Types 1 & 2: These tags are read and re-write capable. Users can configure

the tag to become read-only. Memory availability is 48 or 96 bytes, expandable

to 2 KB.

• Type 3: These tags are based on the Japanese Industrial Standard (JIS) X

6319-4 known as FeliCa. They are pre-configured at manufacture to be either

read and rewritable, or read-only. Their memory has a theoretical limit of 1 MB

per service.

• Type 4: These tags are pre-configured at manufacture to be either read and re-

writable, or read-only. There is up to 32 KBytes of memory available per service.

The Application Protocol Data Unit (APDU) based on ISO/IEC 7816-4 is used

for communication between tag and reader.

2.3 NFC Forum Specifications

Considering the security aspect of NFC technology, we will discuss following two spec-

ifications, out of 16, in details in this chapter.

1. NFC Data Exchange Format (NDEF) Technical Specification. It speci-

fies a common data format for NFC Forum-compliant devices and NFC Forum-

compliant tags.

2. NFC Signature Record Type Definition (RTD) Technical Specification.

The signature record provides the integrity and authenticity to an NDEF message

by digitally signing its contents. The signature record specifies the format used

when signing single or multiple NDEF records. It defines the structure of the

signature record, provides a list of suitable signature and hashing algorithms,

and certificate types that can be used to create the signature.
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2.3.1 NFC Data Exchange Format

The NFC Data Exchange Format (NDEF) defines a common format and rules to ex-

change information in the NFC environment. The NFC Forum released NDEF Version

1.0 in July, 2006. It defines the NDEF data structure format as well as rules to con-

struct a valid NDEF message as an ordered and unbroken collection of NDEF records.

NDEF is a lightweight, binary message format that can be used to encapsulate one

or more application-defined payloads of arbitrary type and size into a single message

construct. Each payload is described by a type, its length, and an optional identifier.

A record is the unit for carrying the payload within an NDEF message. An NDEF

message contains one or more NDEF records as shown in Figure 2.1.

 NDEF Message 

R1, MB=1 … Rr … Rs … Rt, ME=1 

Figure 2.1: An NDEF message with a set of records R1 to Rt

The structure of an NDEF record is shown in Figure 2.2. Each row represents a

single byte.

7 6 5 4 3 2 1 0 

Type Length 

Payload Length 3 

Payload Length 2 

Payload Length 1 

Payload Length 0 

MB ME CF SR IL TNF 

ID Length 

Type 

ID 

Payload 

Figure 2.2: NDEF Record Layout

NDEF Header

NDEF Header is the first byte of an NDEF record. Message Begin (MB) and Message

End (ME) flags mark the first and the last record of an NDEF message respectively.

The Chunk Flag (CF) bit specifies that the payload of that record is continued in the
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next record. Short Record (SR) is a 1-bit flag which, if set, indicates that the size

of the Payload-Length field is one byte. In this case, the payload size is restricted to

between 0 and 255 bytes. Otherwise, the Payload-Length field consists of 4 bytes (as

shown in Figure 2.2) and the Payload size ranges from 0 to 232−1 bytes. The flag IL

determines whether or not the optional ID field and corresponding ID-Length field are

present.

The Type Name Format (TNF) is a 3-bit field indicating the structure of the Type

field. Its value ranges between 0 and 7 as shown in Table 2.1.

TNF Description

0 The record is empty and there is no payload or type associated with this
record. The corresponding length fields are set to zero. This TNF value
can be used whenever an empty record is needed.

1 Indicates that the Type field contains a value that follows the RTD
type name format defined in the NFC Forum RTD specification, such
as Smart poster RTD, Signature RTD, URL RTD etc.

2 Type is a MIME media type identifier (RFC 2406).

3 Type is an absolute URI (RFC 3986).

4 Type is an NFC Forum external type.

5 Type is of unknown format. It is used when the type of the payload
is unknown. When used, the Type-Length field must be zero and thus
the Type field is omitted. In this case, the payload is stored but not
processed.

6 The record continues the payload of the preceding chunked record.
When used, the Type-Length field must be zero and thus the Type
field is omitted.

7 Reserved for future use.

Table 2.1: Type Name Format (TNF) Description

Type-Length and ID-Length are unsigned 8-bit integers that specify the length

in octets of the Type field and ID field respectively.

Payload-Length field is an unsigned integer that specifies the length in octets of

the Payload field. The size of the Payload-Length field is 4 bytes when the SR flag is

clear, and otherwise the size is 1 byte. By providing the payload length within the first

few bytes of a record, efficient record boundary detection is possible.

The Type field describes the type of the payload. NDEF supports URIs, MIME

media type constructs, and NFC-specific type formats as the type identifiers. By

indicating the type of a payload, it is possible to dispatch the payload to the appropriate

user application.

The ID field is an optional identifier in the form of an absolute or relative URI.

31



2.3. NFC Forum Specifications 2. The NFC Forum

The use of an identifier enables payloads that support URI linking technologies to

cross-reference other payloads.

Record Chunks

A record chunk carries a chunk of a payload. It can be used to partition dynamically

generated contents or very large entities into multiple subsequent record chunks within

an NDEF message. Every chunk payload in encoded as an initial record chunk followed

by zero or more middle record chunks and finally terminated by a terminating record

chunk [3].

The initial record chunk has its CF flag set. The Type field and the ID field (if

present) indicate the type and ID of the entire payload respectively. The payload-length

field indicates the size of payload of the initial record only.

The middle and terminating record chunks do not have Type and ID fields as these

are already indicated in the initial chunk. Their TNF field value is 6, indicating that

the Type and ID are the same as for the initial record chunk. Their Type-length

and ID-length fields are zero. The CF is set for middle chunks and is clear for the

terminating chunk.

A chunked payload is entirely encapsulated within a single NDEF message. As a

consequence, neither an initial nor a middle record chunk can have the ME flag set.

2.3.2 Signature Record Type Definition

With the increasing number of available applications of NFC technology, threats of

its abuse also emerged in parallel. Lack of any mechanism to provide data integrity

to NDEF messages paved the way to exploit NDEF messages. A soft target for such

attacks is the NFC tag, a chip storing data that can be read in a wireless manner by an

NFC reader. NFC tags are generally deployed in open environment, like smart posters,

where they are subject to physical attacks like data alteration or tag replacement.

Smart posters contain information such as Title, SMS, and a URL or electronic business

card. The user can access this information by simply touching the cell phone on such

tags. Apart from displaying the information to the user, the smart poster can also

trigger an action such as opening a specific website, calling the telephone number

stored in the poster etc [4]. An attacker may replace the URL address or the telephone

number in a smart poster with malicious content. Eventually, the reader is diverted to

malicious contents as the former has no mean to ascertain the integrity of the message.

To address such issues, the NFC Forum developed the Signature Record Type

Definition Version 1.0 in 2010 [7]. The main objective of the signature RTD is to
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digitally sign the data of an NDEF message thus providing integrity and authenticity.

The signature is applied to a selection of the data of an NDEF message, and not to the

whole NDEF message. Soon after its release, various attacks were launched because of

the ‘partially signed ’ NDEF messages. We provided countermeasures to those attacks

by adding more, but not all, fields to the signature (explained in Chapter 3) and

communicated our recommendations to the NFC Forum. Consequently, the signature

specification in under revision and the candidate specification of its upgraded version,

V2.0, has been released in April 2013 for feedback and comments [9]. The major

difference in the version 2.0 is that the signature is applied to all fields as compared to

a selection of fields in the previous version. Although inclusion of all fields makes the

signature specification more secure, it results in implementations issues. These issues

are discussed in Chapter 3, §3.5. Table 2.2 compares the fields that are included in

signature in the V1.0 and the V2.0. The version 2.0 is yet to be finalized.

Since the V1.0 is still valid and our work is related to the same version, we will

refer to the same version throughout our thesis unless mentioned otherwise.

Structure of the Signature Record

The Signature Record is structured according to the format of an NDEF record shown

in Figure 2.2. The MB, ME, CF, SR and IL flags of the Signature Record are set/unset

according to the requirements. The 3-bit TNF value is 001 indicating that the record

follows the RTD type name format defined in the NFC Forum RTD specification as

mentioned in Table 2.1. The value of the Type-Length field is 0x3 indicating the Type

field consists of three bytes (0x53, 0x69, 0x67) corresponding to the word “Sig”.

Payload of the signature record stores the signature and corresponding certificates.

The contents of the payload of a signature record consist of three parts: Version, Sig-

nature and Certificate chain as shown in Figure 2.3. The Version is a single byte field

indicating the version of the specification to which a signature is compliant. The Sig-

nature field contains either the actual signature or a URI reference to a signature. The

signature RTD supports RSA, DSA and ECDSA. The Certificate Chain contains the

certificate format, the total number of certificates, the list of certificates and an optional

URI reference. The Certificate Store sub-field of the Certificate Chain does not contain

the top-most certificate in the certificate hierarchy (e.g., the root Certificate Authority

(CA) certificate in an X.509 certificate chain). Since certificate validation requires that

the top-most certificate in the certificate hierarchy be distributed independently, this

specification omits the top-most certificate, under the assumption that the NFC Forum
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Device must already possess it in order to validate the chain.

NDEF Header 
MB=0, ME=1, TNF=001 

Type Length = 
0x03 

Payload 
Length 

“Sig” Payload 

Version Signature Certificate Chain 

URI Present 
Signature 

Type 
Signature/URI 
Length, Value 

URI Present 
Certificate 

Format 
Number of 
Certificates 

Certificate 
Store 

Certificate URI 
Length, Value 

Figure 2.3: Structure of NDEF Signature record

Use of the Signature Record

The Signature record is applied to all preceding records, starting either from the first

record of the NDEF message or from the first record following the preceding Signature

Record as shown in Figure 2.4. In that figure, Signature Record 1 signs Records 1

and 2. It also marks the start of the signature of Record 3. Signature Record 2 signs

Record 3 only whereas Record 4 is not signed. The signature is applied to the Type,

ID (if present) and Payload of these records. Table 2.2 describes the fields of a record

that are included or excluded from the signature. The Signature Record itself is not

signed.

Field Name V 1.0 V 2.0

Message Begin (MB) Not signed Signed

Message End (ME) Not signed Signed

Chunk Flag (CF) Not signed Signed

Short Record (SR) Flag Not signed Signed

ID-Length (IL) Present Flag Not signed Signed

Type Name Format (TNF) Not signed Signed

Type-Length Not signed Signed

Payload-Length Not signed Signed

ID-Length Not signed Signed

Type Signed Signed

ID Signed Signed

Payload Signed Signed

Table 2.2: Comparison of Signature Record V1.0 and 2.0

34



2.4. Summary 2. The NFC Forum

Record 2 Record 1 
Signature 
Record 1 

Record 3 
Signature 
Record 2 

Record 4 

Figure 2.4: An NDEF message consisting of multiple records.

MB flag is intentionally unsigned so that a group of signed NDEF records may be

moved to any position within an NDEF message [59]. This enables a variety of messages

to be constructed for different target viewers around an important core content which

is signed. However, it is unnecessary to sign the ME flag as the end of the section

of the message which needs to have its integrity secured is marked by the signature

record, so all the records preceding the signature record will have ME = 0.

A principle requirement of the signature definition is to be able to partition an

NDEF record into multiple record chunks or vice versa as shown in Figure 2.5 without

affecting the validity of the signature. This means, in particular, that only the Payload

is to be included in the signature for records after the first chunk. Since the signature

record is applied to Type, ID and Payload of a record, is provides a way to fulfill this

requirement as the non-initial chunks do not have Type and ID fields as described in

§ 2.3.1.

NDEF Record Signature Record 

Signature Record Chunk 1 Chunk 2 Chunk n … 

Figure 2.5: Record chunks with digital signature

Thus, the signature record does not provide integrity protection to all fields of a

record, but to a selection of fields. The ‘partially signed’ NDEF records were later

exploited and multiple attacks were launched on the signature record. The details of

such attacks will be discussed in the next chapter.

2.4 Summary

This chapter provides details about NFC Forum and two of its most important spec-

ifications; NFC Data Exchange Format (NDEF) specification and Signature Record
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specification. NDEF defines a common format to exchange information between NFC

Forum devices and NFC Forum tags. The signature record provides integrity and

authenticity to the data exchanged by NDEF messages. It achieves this by digitally

signing NDEF messages. It also provides rules to sign and store the signature in the

form of an NDEF record.

The signature is computed over Type, ID (if present) and Payload as described

in §2.3.2. The partially signed NDEF record can lead to various attacks. The next

chapter describes such attacks in detail followed by our proposed countermeasures.
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Chapter 3

Attacks on NDEF Specification

This chapter contains some attacks on the NDEF signature specification

and some countermeasures to such attacks.

3.1 Introduction

The Signature specification released by the NFC Forum is aimed at providing data

integrity and authenticity to NDEF messages. It achieves this goal by adding a digital

signature and corresponding certificates to the NDEF message. The signature spec-

ification, however, does not provide data integrity to all fields of an NDEF message

as discussed in the previous chapter. The ‘partially signed’ messages are vulnerable

to multiple attacks such as Record Composition Attack and Record Decomposition

Attack. These attacks were highlighted by M. Roland in 2011, soon after the release

of the signature specification [50].

The Record Composition Attack is aimed at composing different records in such a

way that the digital signature remains valid. There are two scenarios described by M.

Roland to accomplish this attack.

In the first scenario, two different NDEF messages are selected in which every record

has its own signature. A malicious NDEF message can be created by selecting only a

few of the records along with their signatures from the first NDEF message and other

records along with their signatures from the second NDEF message. Similarly, many

unrelated records along with their respective signatures can be combined together into

a single NDEF message. The combined NDEF message will consist of a sequence of

records that may be totally meaningless or convey misleading information, but still

have valid signatures covering the whole message.

In the second scenario, the Record Composition Attack is accomplished by combin-
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ing and hiding selected records from different NDEF messages. An adversary takes two

or more NDEF messages signed by the same or different parties. Each NDEF message

consists of records of various types like Text, URI etc. followed by the signature. The

attacker takes all records from the NDEF messages and combines them to form a new

NDEF message. The new NDEF message will have valid signature records correspond-

ing to data from each parent tag. The attacker then effectively removes the unwanted

records from the message by hiding them from the viewer, but keeps the signatures

valid.

As all the records are digitally signed, the actual removal of any record invalidates

the signature. Instead, the chosen records are retained but hidden from the user by

manipulating the unsigned TNF field. The TNF value is changed from 1 to 5, i.e.

from the NFC Forum well-known Type to an Unknown Type. The TNF value can be

changed as it is not signed. The NDEF parser receiving an NDEF record with a TNF

value of Unknown will store the payload of that record without processing it. In this

case the payload will not appear to the user. So, rather than removing a record, it has

been hidden simply by changing the TNF value.

In fact, Roland’s attack [50] described thus far does not necessarily work because

there are a few other changes that may have to be carried out in order to keep the

signature valid. These necessary modifications were overlooked in [50]. Later, we

highlighted those modifications in [62, 63]. We amended these attacks and described

in detail the modifications that need to be carried.

3.1.1 Our Contribution

We amended the Record Composition Attack by highlighting some necessary revi-

sions in the lengths fields that were initially overlooked in Roland’s attack [50]. These

amendments are described in §3.2. Our main contribution is the countermeasures we

proposed to avoid Record Composition / Decomposition attacks. These countermea-

sures are described in §3.4.1 and §3.4.2 of this chapter. We not only published this work

at international forums [63, 62], but also approached the NFC Forum to apprise them

about the vulnerabilities in the signature specification and its fixes. Consequently, the

NFC Forum amended the signature specification and released an updated version [9].

3.2 The Amended Record Composition Attack

For the new TNF=5 of the hidden records, the Type-Length field must be zero and

there can be no Type field (see Table 2.1). This is not the case for the original record

(TNF 6= 0, 6). As the Type-Length field is not signed it can indeed be changed to zero,
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but the Type and ID fields are digitally signed and omitting or altering these fields to

maintain a meaningful payload may invalidate the signature. Specifically, in order for

the signature to remain valid, the original signature on the string Type||ID||Payload

has to be the same as the signature on the new string ID′||Payload′. These strings must

therefore be identical, with its initial interpretation replaced by one with a different,

possibly invalid ID′ and a new, probably meaningless, message Payload′. Quite apart

from the semantic issues, the signature verification now fails unless the number of

signed bytes is the same:

(Type-Length)+(ID-Length)+(Payload-Length) = (ID-Length′)+(Payload-Length′)

Therefore, apart from changing the TNF value, some further manipulation of the

NDEF header may be required, together with adjustments to the Type-, Payload-

and ID- lengths and corresponding removal, addition or repartitioning of bytes in the

corresponding three fields.

When the IL bit is set, one easy solution is to increment the original value of the

ID-Length or Payload-Length field by Type-Length. This corresponds to a re-location

of some of the signed bytes to the ID and Payload fields. When the IL flag is zero

this still works providing it is the Payload-Length field which is incremented by Type-

Length as mentioned in [59] §V(L). It works well when the ID field is not present, as

shown in Figure 3.1, but in the presence of an ID field it results in a new and probably

invalid ID′ field that may be detected by a semantic check. No bytes need removing or

adding to the record in these cases.

MB ME CF SR IL=0 TNF=1 

Type Length=2 

Payload Length=7 

Type (2 Bytes) 

Payload (7 Bytes) 

Type Length=0 

Payload Length=9 

Payload (9 Bytes) 

MB ME CF SR IL=0 TNF=5 

Figure 3.1: Example changes in the NDEF header when the ID field is absent.

We propose another solution, which cannot be caught by a semantic check on either

the type field or the ID field. Since it has no type, the Payload cannot fail a semantic

40



3.3. Record Decomposition Attack 3. Attacks on NDEF Specification

check either. First set the IL flag to zero if it is not already zero, and remove the

bytes containing the ID-Length, as in Figure 3.2. Then increment Payload-Length by

(Type-Length)+(ID-Length), so that the new Payload consists of the concatenation

of all the bytes formerly in the Type, ID and Payload fields. In this case, Payload′

consists of all the signed bytes.

MB ME CF SR IL=1 TNF=1 

Type Length=2 

Payload Length=7 

Type (2 Bytes) 

Payload (7 Bytes) 

Type Length=0 

Payload Length=11 

Payload (11 Bytes) 

MB ME CF SR IL=0 TNF=5 

ID Length=2 

ID (2 Bytes) 

Figure 3.2: Example changes in the NDEF header when the ID field is present.

3.3 Record Decomposition Attack

In the second attack described by Roland et al. in [50], the payload is split (but not

chunked) in two parts and spread over two records. The second part is hidden by using

a record of Unknown type, i.e. TNF=5. Since Payload-Length is an unsigned field, it

can be changed in the first record without detection. The signature is computed over

the concatenated bytes from the Type, ID and Payload of all records being signed.

So, for the two new records to generate the same signature, it just requires the second

record to have no Type or ID fields. The unknown type does this job as a record with

an unknown type has no Type or ID fields. The only thing required to accomplish this

attack is the suitable completion of the NDEF header fields of the new unknown-type

record.

An example of such an attack is the text of a smart poster stating, “Do not board

the train until you have a valid ticket”. This text is digitally signed and the signature is

stored using the Signature RTD. An attacker may split this message into two separate

records as above. The first record stating “Do not board the train” will be visible to the
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user, whereas the second record stating “until you have a valid ticket” will not appear

to the user as it is sent with the NDEF header fields stating unknown type. However,

the digital signature will remain valid and so the user will consider it as a valid message.

This attack of Roland works in its original form without further modification of length

fields such as those described in the previous attack.

3.4 Countermeasures

Roland proposed that the receiver should only trust the payload bytes from a sequence

of records if they are signed and share a common signature record [50]. But this needs

very careful interpretation. As shown in the example of the Record Decomposition

Attack in §3.3, the records share a common signature but only part of the message

payload is displayed to the user. This partially displayed message with a valid signature

cannot be trusted. Hence, the user’s view of the message cannot be trusted even if all

its records share a common signature.

The easiest way to avoid these attacks would be to sign all the header fields so

that they may not be altered, but in practice this is out of the question. For example,

the MB flag is intentionally unsigned so that a group of signed NDEF records may be

moved to any position within an NDEF message [59]. This enables a variety of messages

to be constructed for different target viewers around an important core content which

is signed. However, it is unnecessary to sign the ME flag as the end of the section of the

message which needs to have its integrity secured is marked by the signature record,

so all the records preceding the signature record will have ME = 0.

A principle requirement of the signature definition is to be able to partition an

NDEF record into multiple record chunks or vice versa as shown in Figure 2.5 without

affecting the validity of the signature. This means, in particular, that only the Payload

can be included in the signature for records after the first chunk, and that the chunk

flag CF must be omitted from any header data that is included in the signature. The

inclusion of any other field from the non-initial chunks, such as length fields, TNF or

CF in the signature would also invalidate the signature. The fields from the initial

chunk which are independent of whether or not the record is chunked are the only ones

which could be included in the signature. They are the MB, IL and TNF fields in the

header byte, the Type-Length and Type fields, and the ID-Length and ID fields.

However, one could sum the payload lengths from each chunk to obtain the same

payload length as in the unchunked record, and include that in the signature because

it is unaffected by chunking. This needs to be done with care as it should be possible

to compute the signature using a block by block hash function without having to store
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every chunk payload. The message digest and total payload length must therefore be

computed in parallel and, once the last chunk has been read, the length appended as a

suffix to the string to being hashed. The resulting MAC is then signed and, if necessary,

validated.

Another principle which we may wish to respect in proposing any revision of spec-

ifications is to insist that the signature is computed on the same components of each

record irrespective of chunking. This would slightly simplify validation code, as would

omitting the payload length computation.

The last principle worth mentioning is the desire to compute signatures directly

from the concatenated record bytes in the order they appear and without alteration.

It is easy to observe that the attacks above would not work if, for example, an extra

byte B of fixed value were inserted between the Type, ID and Payload strings when

necessary to separate them before the signature is computed. Thus, when none of the

three components were the empty string, this would mean computing the signature of

the string Type‖B‖ID‖B‖Payload, but it would be computed on just Payload when

both Type and ID were of length 0. If this were done, the chunking process would

not disturb the calculation of a signature, but the re-partitioning of bytes required

in the Record Composition attack would not work. This particular solution becomes

unnecessary if the lengths of the various data components are also signed.

Based on these principles, we proposed two countermeasures [62, 63].

3.4.1 Countermeasure I

This countermeasure is based on some modifications to the signature specification1.

The signature is presently computed over Type, ID and Payload fields according to

the signature RTD V1.0, as recalled in § 2.3.2. Because of the Record Composition /

Decomposition attacks, the inclusion of additional fields is necessary. However, in order

to preserve the validity of signatures when a record is chunked, a different signature

process is required for non-initial chunks. The proposed modified signature is compared

to the existing specification in Table 3.1.

The first byte of the NDEF header containing MB, ME, CF, SR, IL, TNF cannot

be added in full to the signature as noted earlier. However, making the TNF value

immutable is wise. Its updating was the source of problems in the Record Composition

attack. So, part of the countermeasure is to sign this for all records except the non-

initial chunks. For TNF 6= 6, create a byte TNFB by masking the non-TNF bits from

the first byte of the record. This byte will be signed. TNFB will be the empty string

for TNF=6, and so not alter the signature when a record is chunked.

1Contributed by Colin Walter
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Field Name Existing Proposed

Message Begin (MB) Not signed Not signed

Message End (ME) Not signed Not signed

Chunk Flag (CF) Not signed Not signed

Short Record (SR) Flag Not signed Not signed

ID-Length (IL) Present Flag Not signed Not signed

Type Name Format (TNF) Not signed Signed (Unless TNF=6)

Type-Length Not signed Signed (Unless TNF=6)

Payload-Length Not signed Signed (Unless TNF=6)

ID-Length Not signed Signed (if present)

Type Signed Signed

ID Signed Signed

Payload Signed Signed

Table 3.1: Signing an NDEF Record

Next, we propose adding the Type-Length and ID-Length fields to the existing fields

for signing except in the case of non-initial chunks, i.e. records with TNF = 6, when

they are to be omitted. Addition of these two fields to the signature process does not

invalidate the signature under the chunking process.

As noted before, Payload-Length cannot be signed unless the length is accumulated

over all chunks. Let Total-Payload-Length denote the sum of Payload-Lengths over

all chunks of a chunked record, and the normal Payload-Length for an unchunked

record. For convenience, let us define Total-Payload similarly: it is the usual Payload

for an unchunked record and the concatenation of the Payloads from all chunks of a

chunked record. This means that Total-Payload-Length and Total-Payload are simply

the Payload-Length and Payload of the corresponding unchunked record.

In our revised signature specification, the contribution to the signature of all chunks

from a chunked record is the following string:

TNFB‖Type-Length‖ID-Length‖Type‖ID‖
Total-Payload‖Total-Payload-Length

The TNFB, Type and ID contributions and their lengths are, of course, those given

in the initial chunk. The contribution of an unchunked record is the same, but can be

written more simply as following because it is a single record.

TNFB‖Type-Length‖ID-Length‖Type‖ID‖
Payload‖Payload-Length
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Because of our definitions of Total-Payload and Total-Payload-Length, the contri-

butions to the signature are the same for an unchunked record and a chunked version of

the same record. This means that the new signature could be simply defined in terms

of the concatenated contributions from records in the equivalent unchunked message.

Note, finally, the ambiguity in the string used for Total-Payload-Length. This could

be up to four bytes, and we do not know if the original unchunked record used one or

four bytes if this length is under 28. A formal specification would have to determine

how it should be given, e.g. the endianness at bit and byte level using four bytes or

using the minimum number of bytes.

Suitability for the Record Chunking Process

The proposed signature scheme can be successfully used for validating messages with

many record chunks without the need to store payload data. The first half of the

contribution from a chunked record, namely

TNFB‖Type-Length‖ID-Length‖Type‖ID

is wholly derived from the initial chunk. Thereafter the string for hashing is given by

appending the chunk Payloads until Total-Payload has been appended. At the same

time, a record is kept of the sum of the Payload-Lengths of the chunks. When the last

chunk has been received, this sum equals the required Total-Payload-Length, and so

its value can be appended also.

Therefore, a record may be partitioned into multiple chunks or vice versa without

affecting the validity of the signature or the ease with which the signature is computed

Counter to the Record Composition Attack

The main reason for the success of the Record Composition Attack was the unsigned

NDEF header fields that could be manipulated in a specific way to accomplish this

attack (see Figures 3.1 and 3.2). In our proposed structure, the TNF, Type-Length,

Payload-Length and ID-Length fields are signed in addition to the already signed Type,

ID, and Payload fields. So these fields can no longer be manipulated in the required

way. This makes Record Composition Attack impossible.

Specifically, in the terminology of § 3.2, for the same attack to be successful under

the new signature scheme would require at least Type-Length = Type-Length’ = 0

and ID-Length = ID-Length’ as these both fields are signed and cannot be changed.

However, Type-Length = 0 cannot occur when TNF is other than 0, 5 or 6. Although

the original attack had an initial TNF=1 being changed to TNF=5, we should consider
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the possibility of attacks with these other initial values in order to justify (or not) the

inclusion of TNFB in the proposed signature. This is done next.

For TNF=0 the record should be empty. In this case the Payload is the empty

string and making it invisible will not make any difference to what the user reads.

For TNF=5, an update to TNF=5 also makes no difference to the message. Finally,

TNF=6 indicates that the record is a non-initial chunk. Changing the field to have

the value 5 would change it to a non-chunked record and result in the inclusion of

additional Type-Length and ID-Length fields. Although the ID-Length field is optional

in a record, the Type-Length field is not. It contributes 1 byte in the new signature

scheme, resulting in a different signature if TNF is changed from 6 to 5. We conclude

that, whatever the initial value of TNF, updating it to 5 invalidates the signature under

the proposed scheme just by virtue of including the Type-Length and ID-Length fields,

no matter how the other fields are changed.

Of course, the user needs to be aware of where signed messages start and finish

since any signed messages might be combined without change into a larger misleading

or wrong message. The signature specification clearly defines the starting and finishing

point of the data to be signed. It is up to the user’s browser and security policy to

make clear where signed messages begin and end. Ideally, it should show a single signed

message at a time and indicate that the visible message is signed with nothing hidden.

Counter to the Record Decomposition Attack

In this attack, a record payload is decomposed into multiple parts which are completed

to full (unchunked) records by the addition of relevant header fields. The TNF value

for some parts is set to 5, making them inactive records. The header fields also contain

a Type-Length field with value zero. As this one-byte field is digitally signed in the

proposed scheme, it will contribute to the string on which the signature is computed

and result in an invalid signature. The only way to avoid this byte being part of the

signature is to make the second record into a chunk. However, this requires TNF=6

and so prevents the value TNF=5 which is needed to hide the record’s payload in

the attack. Thus, the Record Decomposition Attack is successfully countered in the

proposed scheme.

The specification for the unknown type record with TNF=5 has some redundant

data. The Type-Length field is always zero and therefore redundant. This redundancy,

in contrast to the record chunking case, proves to be a mechanism preventing the

Record Decomposition Attack. If it were removed, the heading requirement for the

hidden parts of the payload in the Record Decomposition Attack would be the first

NDEF header byte and the Payload-Length field. If none of this information were
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included in the revised signature specification, data from the header fields would not

invalidate the signature. Therefore excluding this redundancy would make the Record

Decomposition Attack feasible for the revised signature specification if it excluded

TNFB and Total-Payload.

In conclusion, although the Type-Length field is redundant in an unknown type

record, it helps prevent the Record Decomposing Attack. Nevertheless, other fields

in the proposed signature specification ensure that this redundancy could be safely

removed.

Other Malicious Combinations of Records

This section discusses other potentially malicious combinations of records with respect

to the proposed signature specification. Previous analysis considered all possibilities for

hiding part of a signed payload. One can ask if there are other changes to a sequence

of records which would not affect the signature. The first such combination is to sign

the last of the middle and terminating chunks (and perhaps more subsequent records)

while omitting the initial and the first few middle chunks. Although the signature

specification only covers the complete sequence of chunks, it could be abused, with the

first chunk to be signed being treated as the initial chunk, contributing its values for

the ID and Type, among other things. This combination might have its Type and

ID properties changed since they are inherited from the initial chunk which may not

have been signed. However, such a change is not allowable according to the NDEF

specification [3]. This is because the first record in a sequence of signed records must

be the first record of the message or be preceded by a signature record. As a signature

record cannot be a chunk (it has TNF=1, not 6), the start of the signed sequence of

records must be before the initial chunk. Consequently, the Type and ID properties

and their lengths are always signed for the part of the payload which is signed.

Let us now consider manipulation of the unsigned bits in the first header byte. We

can ignore the MB and ME flags as they do not affect the semantic content of the

records.

Any alteration to the SR bit changes the location of the other signed bytes, such as

the Payload. This leads to an invalid signature unless there is a corresponding addition

or removal of three Payload-Length bytes. If this changes the value of Payload-Length

then the signature will be incorrect as that value is signed. If that value is unchanged

then the Payload is unchanged, so that the interpretation of the record is unchanged.

Hence if the SR bit can be changed without invalidating the signature then the message

content is unchanged.

Switching the IL bit without invalidating the signature is not possible except for
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non-initial chunks where the value is irrelevant. Moreover, the IL flag is always zero

for non-initial chunks as defined in the NDEF specification [3]. Changing IL introduces

a byte for ID-Length into the signature stream or removes it, thereby altering the

signature.

Finally, we briefly comment on the need to include the TNF value in the signature.

For example, without TNFB, any of the values 1, 2, 3, 4 might be inter-changed without

change to the sequence of bytes being signed. This would lead to a different interpreta-

tion of the Type value and hence a different interpretation of the Payload. We would

then have to rely on the parser flagging an inconsistency. It is quite possible, although

unlikely, for the differently interpreted payload to convey incorrect information to the

user. Thus it is still wise to include TNFB in the signature scheme.

Modifications in the Existing Specifications

The proposed signature scheme is different from the existing one because of the addition

of, inter alia, Type-Length and ID-Length fields. As such, it must be assigned a

different version number in order to maintain backward compatibility. Fortunately, in

this specification there is a version number which can be incremented.

The payload of the signature RTD consists of three fields as noted in § 2.3.2: Version,

Signature and Certificate Chain. These three fields are transmitted in the same order,

with Version in first place. An NDEF parser can determine the signature specification

by first analyzing the version number. This is a single byte field so it can handle up

to 256 versions of signature specification. As the existing signature specification is the

only version presently available, the only currently valid version number is 1. So our

proposed signature specification should be given version number 2.

The proposed specification is not compatible with version 1 because of the extra

signed fields. Hence signature validators will have to be upgraded to enable version 2

signatures to be checked.

Regarding NDEF specification, implementing changes in the NDEF specification is

tricky as there is no Version field available in the NDEF format. But, our proposed

scheme is designed in such a way that it does not require any alteration in the NDEF

specification.

A Few Comments about the User Interface

A digitally signed NDEF message should display some information for the user at the

application level. It may include the name of the signing authority (from an x.509

certificate) with some additional details for the assurance of the user.
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Our consideration of security issues showed that it is still important for users to

be informed whether or not messages have been signed and for their browsers to make

clear where individual signed messages begin and end. It should not be possible for

signed messages to be concatenated without the user being aware where one message

has finished and the next has started.

A signature can potentially be removed from a tag without any indication to the

user (such as in a duplicate tag). It is up to the user whether he trusts the contents of a

message without a signature or not. However, it is clear from the example attacks that

the browser should be pro-active in warning the user of potential dangers, including

the lack of any signature.

3.4.2 Countermeasure II

We proposed another countermeasure to counter Record Composition / Decomposition

Attack. The countermeasure highlights that there is some redundant data in NDEF

specification. The redundant data not only results in communicational overheads but

also paves the way to such attacks. We removed the data redundancy and as a result,

we were able to add a few more fields to the signature record. On the positive side,

this countermeasure serves two purposes; it removes the data redundancy and, in par-

allel, serves as a countermeasure tool against such attacks. On the negative side, this

countermeasure requires revisions in the NDEF specification (in order to remove the

data redundancy) and in the signature specification (as more fields are added in the

signature). Whereas, the earlier proposed Countermeasure I (§ 3.4.1) requires revision

only in the signature specification.

Data Redundancy in the NDEF Specification

We discovered that some of the data transmitted according to NDEF specification is

redundant. The redundancy lies in the middle and terminating chunk records. The

middle and terminating record chunks have TNF=6, indicating that the Type and ID

of these records are unchanged. Therefore, the Type-Length and ID-length fields are

set to zero and the Type and ID fields are omitted, as explained in §2.3.1.

The Type-Length field and ID-length fields are redundant in the middle and ter-

minating record chunks, as TNF=6 indicates the same. As a result, these two fields

can actually be omitted from the middle and terminating chunks in the revised NDEF

specification.

We first revised the NDEF specification for record chunking process by omitting

these two fields from the middle and terminating record chunks. The new proposed
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Field Name Initial
Chunk

Middle
Chunks

Terminating
Chunk

CF 1 1 0

TNF As required 6 6

Type-Length Present – –

Payload-Length Present Present Present

ID-Length Present – –

Type Present – –

ID Present – –

Payload Present Present Present

Table 3.2: Proposed construction of chunk records.

construction of a record chunk with IL flag set is presented in Table 3.2. The MB, ME

and SR flags are not shown as they are used as required.

After the modifications in the record chunk structure, we proposed a revision in

the signature specification. The signature in now computed over the Type-Length,

ID-Length, Type, ID and payload fields as compared to Type, ID and payload in the

original specification as shown in Table 3.3.

Field Name Existing Proposed

NDEF Header Not signed Not signed

Type-Length Not signed Signed

Payload-Length Not signed Not signed

ID-Length Not signed Signed (if present)

Type Signed Signed

ID Signed Signed

Payload Signed Signed

Table 3.3: Signing an NDEF Record: Countermeasure II

Counter to Record Composition / Decomposition Attacks

The Record Composition Attack (RCA) is successful because of the unsigned TNF

value. The TNF is still unsigned in this approach, yet it rules out the possibility of

RCA because of the inclusion of the associated fields in the signature.

The TNF is closely associated with the Type field and therefore the corresponding

Type-Length field. For example, an NDEF record with the TNF=5 has no Type field,

thus the Type-Length is zero. The Type-Length field is a single byte transmitted after

the NDEF header. It always stores a non-zero integer (unless TNF=5 or a chunk
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record). This field is digitally signed in our proposed scheme and thus cannot be

changed to zero. Changing the TNF value to 5 without changing the Type-Length

field results in an error. Hence, the RCA is not successful in this scheme.

In Record Decomposition Attack (RDA), the payload is split in two parts and spread

over two records. The second part is hidden by using a record of Unknown type, i.e.

TNF=5. Let the attacker split the original Payload P into two parts, a visible payload

(Pv) and a hidden payload (Ph). The Pv becomes the payload of the original record,

whereas the Ph is stored in a new hidden record with TNF=5. In this way, the hidden

payload will not appear to the user. However, in order to maintain the validity of the

signature, the attacker must look into the Type-Length and ID-Length fields of the

new hidden record, as both are now included in the signature. The attacker can omit

the ID-Length field in the hidden record as it is optional, but the attacker needs to

add a byte containing all zeros for the Type-Length field of the hidden record. Since

this field is included in the proposed signature scheme, the new string for signature

computation becomes Pv‖0x00‖Ph which is different from the original string Pv‖Ph.

Hence hiding records voids the signature and hence is unsuccessful.

The Record Decomposition Attack can be successful in the following, but very

unlikely, conditions.

• The original payload, P , contains eight consecutive zero bits somewhere in the

middle

• The string of zeros must be exactly at a location where the payload needs to split.

• Since the Payload-Length field represents the length of the payload in bytes, the

string of zeros must encompass an entire byte.

In such circumstances, the original payload P is split into three parts, Pv‖0x00‖Ph.

Pv is the payload of the visible record, 0x00 acts as the Type-Length field of the hidden

record and Ph is the payload of the hidden record. ID field, being optional, is omitted

in the hidden record. In this way, the string for signature computation remains the

same as it was in the original record.

3.5 Comments on the Candidate Signature Specification

V2.0

The attacks mentioned above along with the countermeasures were communicated to

the NFC Forum in 2012. As a consequence, the NFC Forum honoured our research

and revised the current signature RTD V1.0. The NFC Forum released the candidate
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specification of the updated signature RTD V2.0 for comments and feedback in April

2013 [9]. The updated version V2.0 is still open for comments and not yet finalsied.

The V2.0 is not backward compatible so once implemented, the older version V1.0

will be obsolete.

Apart from a few minor changes, the major change is about the use of the signature

RTD V2.0. According to the V2.0, the signature is computed over the entire NDEF

record, including the first byte of NDEF record, as compared to a selection of bytes

in V1.0. The first byte of NDEF record contains MB, MB, CF, SR, IL flags and a

3-bit TNF value. Although it looks more secure to include this byte in the signature,

it leads to various implementation issues. These issues were highlighted by M. Roland

and J. Langer prior to the release of the V1.0 [59]. We are also of the opinion that

the first byte of NDEF record should not be included as a whole in the signature

(Section §3.4). On the contrary, excluding this byte from signature results in various

attacks such as Record Composition / Decomposition Attack. Our both proposed

countermeasures handle this situation, but surprisingly, the V2.0 includes the header

field in the signature. We conveyed following two issues to the NFC Forum regarding

V2.0:

“The first problem is that the V2.0 undermines the flexibility to use

multiple NDEF records within a single message. Since MB flag is signed

in this approach, nothing can be added before a signed NDEF message.

This prevents a variety of messages to be constructed for different target

viewers around an important core content which is signed. Moreover, it is

unnecessary to sign the ME flag as the end of the section of the message

which needs to have its integrity secured is marked by the signature record,

so all the records preceding the signature record will have ME = 0.

The second problem with V2.0 is that the original signature gets invalid

if used with chunk records. There can be many occasions when a record is

required to be chunked. In such cases, the original signature gets invalid

as the chunked records require a new signature. The new signature will

invalidate the data origin authentication of the message unless the new

signature is computed by same entity. Similarly, a signature computed on

chunked records cannot be used with unchunked records. This result is loss

of data origin authentication.”
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3.6 Conclusion

The Record Composition and Decomposition Attacks exploit unsigned fields in the

NDEF header. Previously proposed attacks were not fully implementable without fur-

ther modifications to the NDEF header and lengths fields. We refined those attacks and

explained precisely what additional changes need to be made to exploit the unsigned

fields. Such attacks can be countered if the length fields of the NDEF header are also

signed, but in a specific way. We proposed two solutions that require modification to

the Signature RTD in which, amongst others, the TNF, Type-Length, Payload-Length

and ID-Length fields are included. We presented a security analysis of both of the

proposed schemes, and verified that it was no longer possible to exploit the NDEF

header in attacks of the type discussed, thus successfully countering Record Composi-

tion and Decomposition Attacks in particular. We communicated our work to the NFC

Forum and consequently, the NFC Forum released an updated version of the signature

specification [9].

The signature specification only authenticates the static data stored on the tag, so

it is vulnerable to tag cloning attacks. In the next chapter, we will design a framework

that can be used for tag authentication, thus providing a mechanism to counter tag

cloning.
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Chapter 4

Off-line NFC Tag Authentication

This chapter provides a framework, based on NFC Forum specifications,

to authenticate an NFC tag in an off-line environment. This framework

is published in the International Conference for Internet Technology and

Secured Transactions 2012 [64]. This chapter is almost verbatim of the

published work.

4.1 Introduction

Near Field Communication (NFC) tags are used to store data in the format speci-

fied by the NFC Data Exchange Format (NDEF) specification, published by the NFC

Forum [3]. Despite our investigations described in the previous chapter, here we will

assume that the authenticity of the stored data is guaranteed by a digital signature

which follows the Forum’s Signature Record Type Definition (Signature RTD) [7]. The

signature is computed over the tag’s contents and is stored in the signature record

on the tag along with the corresponding certificate for verification. This allows the

reader to check the authenticity of the data, but the signature specification does not

rule out tag cloning. The reason is that the signature specification deals only with the

static data, which can be replayed or cloned. Hence, there is a need of another layer

of protection for NFC tags that address cloning issues.

NFC tags are used in a variety of applications like product identification, smart

posters, access control etc. There are occasions where copying the contents of an NFC

tag to another tag is undesirable. An example of such a scenario is a signed NFC tag

attached to a medicine packet storing its chemical composition and expiry date. Any

NFC Forum device can read its contents and verify it using the signature. However, a

counterfeit medicine and counterfeit tag with the same data will also be authenticated.
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At present, the NFC Forum does not provide any specification to authenticate the tag.

The lack of such a mechanism opens the door to many security threats, and particularly

to counterfeit products when NFC technology is used in product identification.

We address this weakness by providing a mechanism based on the NDEF specifi-

cation to authenticate NFC tags. The main advantage of our proposed specification

is its compatibility with existing NFC Forum devices. This contribution to the NFC

framework enables the successful authentication of such tags along with their data. It

adds another layer of defence to the NFC security framework, making it more secure

for future applications.

Tag authentication also serves as a tool for data authentication at no extra cost for

a read-only tag, whereas its converse is not always true. Therefore we emphasize that

tag authentication is an important security measure as it provides both tag and data

authentication for read-only tags.

In an off-line environment, when there is no shared secret between the tag and

the reader, it is very challenging to differentiate between legitimate and counterfeit

tags (§ 4.2.2). Our framework for tag authentication is designed to work in an off-line

environment. The proposal is based on a challenge-response protocol using public key

cryptography and a PKI. In order to make the framework compatible with existing

NFC Forum devices, a new Tag Authentication Record, designed according to the NFC

Data Exchange Format (NDEF), is introduced.

After developing a counterfeit tag-detection framework, we also proposed its imple-

mentation architecture to detect counterfeit products in a supply chain. This will be

discussed in the next chapter.

In this chapter, we require to extend the NFC Forum well-known type records,

for which TNF=1, as our proposed Tag Authentication Record in § 4.4.2 falls into

this category. Each of the well-known types is identified by its name, identifier and a

character code as allocated by the NFC Forum. The current list of well-known types

is given in Table 4.1.

4.2 Tag Authentication Scenarios

Since NFC tags can be used in a variety of applications, the techniques for tag auth-

entication also vary a lot. Tag authentication can be categorized as follows into two

main categories depending upon the tag’s environment [45].
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Type Name Type ID Hexadecimal Encoding

Generic Control Gc 0x4763

Text T 0x54

URI U 0x55

Smart Poster Sp 0x5370

Signature Sig 0x536967

Tag Authentication
Ta 0x5461

(Proposed)

Table 4.1: NFC Forum Well-Known Types (i.e. TNF =1)

4.2.1 On-line Authentication

In the On-line category, there is secret information shared between a tag and the reader

as a result of the reader having access to a server containing a database of secrets. This

scenario is normally applicable in a closed environment like product identification in

supply chain management or access control. The reader accesses the database to obtain

the tag’s secret and then ascertains whether the tag knows that secret or not. Since

the secret is not accessible to an attacker, a duplicate tag lacks it and can be detected.

There are various methods developed to authenticate RFID tags using an on-line

authentication mechanism. Weis et al. proposed a mechanism to lock a tag without

storing the access key on the tag [70] . Instead, the hash of the key is stored on the

tag. The actual key is stored in a back end database where it can be found using the

tag’s ID. Unlocking a tag corresponds to tag authentication. Juels et al. proposed an

approach to authenticate an RFID tag embedded in a bank note [41]. They provided a

mechanism for law enforcement agencies to ascertain the validity of a bank note issued

by a central bank. Bank notes are equipped with RFID tags and have unique serial

numbers. The ciphertext on the serial number is printed on the note and stored in

the RFID tag as well. The law enforcement agencies can verify the ciphertext on the

serial number by communicating with the central bank. Juels [38] proposed a mutual

authentication protocol for EPC Class-1 Generation-2 tags. The tag ID is altered after

every authentication process to prevent traceability attacks. The cloning resistance is

provided by the ‘kill-password’, a secret in each tag. The kill-password is unique to

each EPC tag, known to tag itself and the legitimate reader. When an EPC tag receives

a legitimate ‘kill-password’ from a reader, it self-destructs. If the ‘kill-password’ is not

correct, the tag simply ignores the command. However, if the tag does to have sufficient

power to self-destruct, it sends a ‘fail’ message to the reader. Hence, receiving a ‘fail’

message in response to the ‘kill-password’ is an indication that the tag is not cloned
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(provided that the reader has some control over the transmitted power). Ranasinghe

et al. [57] proposed a Physical Unclonable Function (PUF) based challenge-response

protocol to authenticate a tag. The challenge-response pairs, generated by a trusted

party and stored on a back-end server, are used for tag authentication.

A review of existing tag authentication techniques is available in [45]. In gen-

eral, these techniques use on-line servers and execute a challenge-response protocol to

authenticate the tag. They cannot, in general, be adapted successfully to the off-line

environment.

4.2.2 Off-line Authentication

There are occasions when there is no shared secret between the tag and the reader.

Any reader can access the tag and read its contents. The process of authenticating the

tag or the reader or both in such scenarios is called Off-line authentication. Normally,

it is just the tag that needs to be authenticated. An NFC smart poster or an NFC tag

for product identification falls into such a category as its contents are accessible to any

reader without the need for a shared secret.

Off-line authentication becomes challenging in an RFID environment owing to the

low computational power of RFID tags. The typical low cost tag is currently unable

to perform any useful public key cryptography.

Pim Tuyls and Lejla Batina claim the first tag authentication model for RFIDs

in an off-line environment [68]. They used a Physical Unclonable Function (PUF)

integrated with the RFID chip (an Integrated PUF or IPUF ). In their model, several

fingerprints are derived from the PUF by sending it multiple challenges and recording

the responses. The challenges and corresponding fingerprints are digitally signed and

printed on the product (if used in the case of supply chain management). The verifier

reads a challenge/response pair from the data printed on the product or packaging

and sends the challenge to the tag to compute the response. On receipt, the verifier

compares the response with the expected fingerprint. A successful match authenticates

the tag.

The main drawback with this scheme is the limited number of challenges and cor-

responding fingerprints available in the tag’s memory or printed on the product. An

attacker can record all the challenge/response pairs and program another tag with the

same pairs resulting in a successfully cloned tag.

Another anti-cloning approach in the RFID framework, known as Active Authentic-

ation (AA), is used in ePassports where an RFID tag is used to add more security to

an ordinary passport [40]. This approach uses public key cryptography where the tag

digitally signs the challenge received from the reader.
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Anti-cloning feature of the EMV cards provides another approach to fight cloning

issues. Dynamic Data Authentication (DDA) verifies the legitimacy of the card by

digitally signing a random challenge generated by the terminal [58]. Detail of the EMV

model is described in § 4.5.3.

Alex Arbit et al. presented a public-key based anti-counterfeiting system for the

Electronic Product Code (EPC) standard [11]. They implemented a variant of the

well-known Rabin encryption scheme with a 1024-bit key [53].

4.3 NFC Tag Authentication

Tag authentication requires a framework that distinguishes a legitimate tag from a

counterfeit tag. The counterfeit may or may not store the same data as the original.

A duplicate with some alteration in the stored data is obviously a potential threat to

the system. However, there are occasions where a duplicate with the same data is not

desirable either. We describe such a tag as a cloned tag. Examples of such scenarios

are ePassports [35], product identification, access control etc.

Conversely, there are cases where a cloned tag may be considered desirable: for

example, an NFC tag used as a smart poster where the integrity of the tag contents

is protected by a Signature record. The more a smart poster is cloned, the more its

contents are advertised.

As observed in § 4.2.2, NFC tags may be used for product identification in an

off-line environment. The information stored in the NFC tag is product specific and

aimed to assist an off-line user to know about the specification and legitimacy of the

attached product. The data on the tag is protected by the signature record and a

valid signature is an indication of a genuine product. Unfortunately, the same data

can be stored on a duplicate NFC tag affixed to an inferior product. The signature

remains valid as it is the same data as in the original tag. Since the signature is valid,

the user is led to believe that the product is genuine, whereas it is not. This happens

because the signature specification authenticates only the stored data on NFC tag. An

easy way to avoid such attacks is to include the tag’s ID in the signature in order to

detect a cloned tag with a different tag ID. But an attacker can affix to the counterfeit

product a programmable tag which returns the same ID as the original. In this case,

the counterfeit is authenticated as a genuine product with very little investment by the

attacker.

This attack works because the tag is not authenticated along with its data and

a static identifier is used to authenticate the tag. Lack of any tag authenticating

mechanism opens doors to counterfeit products being accepted as genuine products.
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Tag Reader

Initial handshake

Signed NDEF Message

Challenge c

Signature on c

Figure 4.1: Proposed Tag Authentication Protocol

At present, the NFC Forum has not specified any mechanism to authenticate the tag.

In the absence of such a mechanism, NFC tags based on the NFC Forum specification

cannot be used for secure product identification.

In this chapter, we propose a solution to detect cloned NFC tags used in an off-line

environment. Our solution is formulated within the NDEF specification and introduces

a new Tag Authentication Record containing parts of a digital certificate. The main

advantage of introducing such a new record is its compatibility with existing NFC Fo-

rum devices. The authentication is then performed using a challenge-response protocol

employing public key cryptography and a PKI.

4.4 Proposed Tag Authentication Scheme

As noted in § 4.2, NFC tags can be used in both on-line and off-line environments.

Our scheme for authenticating a tag in an off-line environment is based on the Active

Authentication scheme of the ePassport [35] but modified to fit the NFC architecture.

The scheme is applicable to at least NFC Type-4 tags as these tags are computationally

powerful enough. Such tags satisfy ISO 7816-4 and contain a cryptographic processor.

They can compute asymmetric or symmetric key encryption [2]. The scheme may

be applied to other tags in future as their computational power increases over time.

Moreover, light-weight versions of public key encryption schemes may also appear and

allow wider applicability. In the scheme, the tag signs a challenge and the reader verifies

the signed response as shown in Fig. 4.1.

The following assumptions are required for the scheme to work:

• Both the reader and the tag can perform public key encryption/decryption.

• The memory location where the secret key is stored inside the tag is not accessible

to any reader.

• The reader possesses the root CA certificate to validate the signature.
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Our scheme differs from the standard methods of authentication used in smart cards/SIM

cards because the latter requires an on-line environment. A SIM card stores a secret

key K at a secure location in the card. The same key is also stored with the mobile

network operator. During authentication, the network executes a challenge-response

protocol to verify knowledge of K by the SIM. A cloned SIM should lack the key and

so would be detected. A similar approach is used in smart cards issued by banks for

monetary transactions. However, in our context there is no opportunity to share a

secret. Although it is feasible with the right equipment to ‘hack’ the NFC tag and

recover the private key, we will assume that it is not cost-effective for an attacker to

do this and that therefore the private key is not present in the cloned tag,

4.4.1 The Tag Authentication Digital Certificate

Before describing the protocol, it is useful to define the public key certificate which

it uses and the structure of the proposed new Tag Authentication record which stores

part of its contents. The certificate requires at least the following six fields:

1. Protocol Version

2. Challenge Signature Scheme

3. Challenge Public Key

4. Supplementary Text

5. Certificate Signature Algorithm

6. Certificate Signature

The Protocol Version field determines which version of the Tag Authentication spec-

ification is being used. This allows for future expansion and developments. The Chal-

lenge Signature Scheme field specifies which digital signature algorithm, along with the

relevant parameters, is used by the tag to sign the challenge, and the Challenge Public

Key field stores the public key information associated with verifying this signature.

The Certificate Signature field is the signature on the records containing the first four

fields, computed using the algorithm defined by the Certificate Signature Algorithm

field. It follows the NFC Forum signature specification scheme [7]. The Supplementary

Text field has various uses which are described below.

The certificate might follow the X.509 specification [6], or a simplification with fewer

critical fields. Clearly, it may be necessary to add further fields in future, such as an

expiry date to deter the illegal re-use of tags. In the case of X.509, the Extensions field
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enables the inclusion of the Supplementary Text. That field also allows the certificate

to be restricted to this NFC application, which is useful because less computationally

extensive cryptography is expected than is normally acceptable in other situations. We

will not consider the encoding of the certificate any further beyond observing that space

is at a premium on a typical tag. Therefore one would want to reduce, for example,

the twenty or so bytes used for identification of the signature algorithm in an X.509

certificate to just one byte.

The stored data and data transmitted between tag and reader is in the format of

NDEF records. In order to store the public key information, we propose a new Tag

Authentication record. The first three certificate fields are to be stored in the payload

field of this record, the Supplementary Text is stored in normal NFC Forum text records

on the tag, and the last two fields are placed in an NFC signature record.

4.4.2 The Tag Authentication Record

The Tag Authentication Record serves two purposes: it stores the public key informa-

tion necessary to verify the signature on a challenge, and its presence is a claim that the

tag is equipped with anti-cloning features. Indeed, such records should not be allowed

in tags without the ability to enact the authentication protocol. The proposed record

follows the NDEF structure given in Fig. 2.2 with a TNF value of 1. Its Type should

therefore be added to the set of NFC Forum well-known types, and the type name of

‘Ta’ (for ‘Tag Authentication’), with hexadecimal encoding 0x5461, added to the list

in Table 4.1. Given the general nature of the construction, the record may have much

wider uses in future, authenticating other entities than tags. It may therefore make

more sense to call it a Certificate Record with a different type identifier.

4.4.3 The Supplementary Text Field

As space is limited on tags, it will often be useful to have a single signature covering

some or all of the message content in the tag, rather than having separate signatures

on the certificate and the message for users. The Supplementary Text field enables this

to be done by using it for message content. The signature then ties this content to the

particular tag. For convenience, it is assumed in the implementation details below that

one signature is indeed used to cover both the text message and the Ta record fields.

In future, the Supplementary Text may have to be structured into subfields if it is

used for several purposes.
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4.4.4 Protocol Execution Sequence

The scheme is executed in two phases:

1. Initialisation Phase. After selecting the version number and signature scheme,

a public-private key pair (Kpub,Kpr) is generated in a secure way by a trusted

party and the private key Kpr is stored inside the tag at a secure location only

accessible to the tag processor for prescribed operations. The public key Kpub

is stored in the Challenge Public Key field of the payload of the authentication

record. This Ta record, along with the other records stored on the tag, is then

digitally signed by the same trusted party and the signature is stored in the signa-

ture record on the tag according to the NFC Forum Signature Specification. This

turns the Tag Authentication record into a signed digital certificate applicable to

NFC tags.

2. Verification Phase. The verification phase is executed as follows (see Fig. 4.2):

• The reader requests and obtains all the data from the tag. This data is in

the form of NDEF records.

• The reader verifies the integrity of the tag’s contents by verifying the signa-

ture. A valid signature indicates that the tag contents are authentic.

• Next, the reader looks for a Tag Authentication record by searching for

record type ‘Ta’. Its absence indicates that the tag is not protected by

the anti-cloning feature and the Tag Authentication protocol terminates

unsuccessfully.

• Otherwise, the payload of the Tag Authentication record is extracted and,

assuming the reader can support the required signature scheme, an appro-

priate challenge c is generated and sent to the tag.

• The tag now uses its private key Kpr to compute the digital signature of c

with the specified padding, and sends the result back to the reader.

• The reader verifies the signature on c using the public key Kpub from the

certificate. Successful verification indicates knowledge of the secret key and

hence the legitimacy of the tag, whereas failure indicates a cloned or dam-

aged tag.

4.5 Analysis

This scheme successfully detects a cloned tag from an original tag because a cloned tag

lacks the private key Kpr corresponding to the public key Kpub available in the Tag
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Figure 4.2: Verification Process

63



4.5. Analysis 4. Off-line NFC Tag Authentication

Authentication record. However, there are several issues that need to be discussed in

detail.

4.5.1 Backward Compatibility

The backward compatibility of the tag authenticating protocol can be assessed by

following two scenarios. We use “plain” to describe a reader without authenticating

ability, and a tag without authentication response ability.

• An Authenticating reader and a plain tag. In this case, the reader starts

the verification process as shown in Fig. 4.2. The plain tag lacks this feature so

there should be no Ta record in its contents. In this case the verification process

stops with the conclusion that the tag cannot be authenticated. However, if there

is a Ta record, then the plain tag is unable to respond to the challenge. Again

the process terminates with the conclusion that the tag cannot be authenticated.

Since a plain tag should not contain a Ta record, the reader can reasonably

conclude that the tag is cloned. Notice that this requires that plain tags are not

loaded with a Ta record. As we noted earlier, existence of the Ta record should

be viewed as a claim that the tag does support the authentication protocol.

• A Plain reader and an authenticatable tag. In this case, the Ta record

is present in the tag but the reader does not support the tag authentication

protocol. Although the reader recognises the TNF field value 1, the record type

‘Ta’ is unknown to it. According to the NFC Forum specification [3] §3.2.10, an

NDEF parser receiving an NDEF record with a supported TNF value but an

unrecognised Type field must interpret that record as being of Unknown type,

i.e. TNF=5. So the Ta record is ignored. Thus the system remains backward

compatible in this scenario as well.

4.5.2 Implementation Issues

One of our concerns in our proposal is the implementation of public key cryptography

on NFC tags. We have not evaluated our protocol for any particular public key algo-

rithm, but the chip area, current consumption and clock cycles are important factors

to consider alongside the security of the algorithm. So the selection of the algorithm

that can be implemented on an NFC tag is of prime importance. Some lightweight

public key algorithms are being proposed, notable among them is the WIPR, proposed

by Yossef Oren and Martin Feldhofer [52]. WIPR offers 80 bits security and fits com-

pletely (including RAM) into 5705 Gate Equivalents (GE) and has a mean current
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consumption of 10.88 µA with 66048 clock cycles. WIPR is more efficient than ECC-

192 but it uses much more resources than AES (3400 GE with 3.4 µA and 1032 clock

cycles) as shown in Figure 4.31.

Figure 4.3: Comparison of WIPR with other Algorithms (Based on Table 4 in [53]).

4.5.3 EMV Card Authentication Model

The EMV standard defines three card authentication mechanisms [58, 25]:

1. Static Data Authentication (SDA): SDA is an off-line authentication method

where the card provides a digitally signed data (e.g. card number, expiry date) to

the terminal. the terminal knows the issuer’s public key, it can authenticate the

data stored on the tag. Due to the static nature of the authentication data, the

same set is used in all transactions throughout a card’s lifetime. Moreover, the

data is transmitted in clear to the terminal during authentication, hence easily

intercepted by adversaries while in transit. These weaknesses allow replay attacks

or card cloning attacks.

2. Dynamic Data Authentication (DDA): DDA is implemented on the cards

that support public key cryptography and have a public/private key pair. DDA

1The figure is presented by Martin Feldhofer and Yossef Oren on a talk at Second ACM conference
in Wireless Network Security (WiSec) [53]. http://www.docstoc.com/docs/170423767/WIPR-WiSec
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verifies that a card is genuine by verifying the existence of a valid card resident

cryptographic key. This is carried out by a challenge-response mechanism, where

the card proves its authenticity by signing a challenge chosen by the terminal

using a private asymmetric key. Unlike SDA, this does rule out cloning and

replay attacks.

After the authentication of the card, DDA does not tie the subsequent transaction

to the card.

3. Combined Data Authentication (CDA): CDA repairs this deficiency of

DDA. With CDA, the card digitally signs all important transaction data, not

only authenticating the card, but also authenticating the transaction.

Since all three authentication mechanisms require a Public Key Infrastructure to

function, the EMV has standardized it [24]. For SDA cards, the card issuer’s private

key is used to generate a digital signature on the card data. The issuer (e.g., bank) then

puts the digital signature and the corresponding CA-signed issuer’s certificate onto the

card. Each ATM/POS terminal has the actual CA public key available, and hence can

verify the legitimacy of the issuer’s certificate. The terminal then verifies the signature

on the card’s data.

For DDA and CDA, the card issuer generates a public/private key pair for each

card. The private key is stored inside the card at a location only accessible to card

processor. The corresponding public key is stored in a card certificate, and the card

issuer (e.g, bank) signs the card certificate with its private key. The card certificate

is stored on the card together with the issuer’s certificate. The issuer’s certificate is

signed by the CA and each ATM/POS terminal has the actual CA public key. Thus,

every certificate in the certificate chain is verified with the verification of the signature.

A closer look on these mechanisms reveals that the SDA is analogous to the NFC

Forum Signature specification (explained in Chapter 2, § 2.3.2), whereas the DDA is

analogous to our proposed Tag Authentication specification (described in this chapter).

The NFC Forum signature specification provides a guideline to digitally sign the tag’s

contents, but it does not prevent tag cloning. The proposed Tag Authentication Record

is based on a similar model to DDA and rules out the cloning attacks.

4.5.4 Tag Message as a Digital Certificate

It was noted above that the Ta record and the rest of the tag message can be signed

separately, giving two signature records, or can be signed as one, yielding a single sig-

nature record. The former provides a clean separation between the tag authentication
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processes and the message authentication processes at all levels from signing to verifi-

cation. However, the latter binds the message to the specific tag: the message cannot

be ported to another tag because that tag does not know Kpr, and will be detected as

noted above even on a tag which does not have authentication capability. This solution

also seems preferable because of restricted space. Respectively, these two alternatives

both have interpretations of the Ta record with its corresponding signature record and

optional message as a digital certificate.

4.5.5 Strengths and Weaknesses

The strength of our proposed scheme relies on the strength of the signature scheme,

secure location of the private key Kpr inside the tag’s memory and the integrity of the

public certificate verification key Kcert, say, in the reader. The first is a well matured

area of information security, and the emergence of elliptic curve cryptography means

that at least the certificate fields on the tag can be signed securely to yield a fairly

short signature. However, the cryptography used by the tag to sign the challenge will

often be fairly weak because of the low electrical or cryptographic power available to

the tag. One needs to recognise that an attacker can send numerous challenges to the

tag and record the replies and may therefore be able to break a weak system. The

second issue, the maintained secrecy of Kpr, depends very much on what the customer

is prepared to pay for the tag, and accessibility to the tag during its life. Unless the

attacker can recover Kpr, he is unable to use the tag’s digital certificate on a clone.

It is indeed easy for an attacker to extract the key from a cheap tag if it can be

taken to a laboratory for further study. Thirdly, if the integrity of the key Kcert can

be compromised, the attacker can make a successful clone of a tag even when it is

protected by a Ta record. The attacker stores his own private key K ′pr in the cloned

tag and the corresponding public key K ′pub is stored in its Ta record, which the attacker

signs. The public verification key K ′cert corresponding to this signature is then used

to replace the correct key in the reader. Consequently, the reader believes it has an

authentic tag when it verifies the clone. This results in a successful attack. This attack

can be avoided if the verification process also includes verification of the certificate

chain stored in the Signature record. The certificate chain does not store the top-most

certificate (e.g., the root Certificate Authority certificate in an X.509 certificate chain),

therefore the cell phone needs to access it online, or through any other mean, if the

root certificate is not already stored in its memory. Additionally, the cell phone also

needs to check the validity of all certificates in the certificate chain for any revocation

by visiting the Certificate Revocation List (CRL).

In our proposed scheme, the integrity of the Ta record is assured by digitally signing
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this record, and perhaps others, according to the signature specification (Version 1.0)

provided by the NFC Forum [7]. Recent attacks on signed NDEF records [63] put

a question mark on the integrity of the tag’s contents even if they are signed. The

Ta record can be made inactive in a cloned tag by changing its TNF value to 5 with

some compensating alteration in the length fields, as mentioned in [63], to preserve

the validity of the signature. Since the TNF and length fields are not included in the

signature, these alterations will not invalidate the signature. Now the verifier will not

execute the tag authentication protocol since it does not recognise the Ta record as

such. Nevertheless, if the reader is expecting an authenticatable tag, it should flag this

to the operator 2.

4.6 Conclusion

Application of NFC technology to monetary and similar transactions requires strict ad-

herence to appropriately sound measures to ensure the necessary high level of security

in the NFC framework. The recently published NFC Forum Signature Specification

provides assurance of data integrity in NFC tags through the digital signing of NDEF

messages. However, no mechanism is provided by the NFC Forum for detecting a coun-

terfeit or cloned tag. This results in various possibilities for malicious activities where

a legitimate tag is replaced by a counterfeit tag and the NFC tag reader is unable to

detect the counterfeit. We proposed a framework to counter such attacks by provid-

ing a tag authenticating mechanism, “analogous to the EMV’s DDA on bank cards”.

It introduces a new Tag Authentication Record that provides relevant information to

authenticate a tag in an off-line environment. It employs public key cryptography with

digital certificates and so can be used on NFC tags that have sufficient computational

power and resources to perform such operations. The Tag Authentication Record is

based on the NFC Data Exchange Format and is thus compatible with all NFC Forum

devices. The NFC tag simply signs a challenge c and returns the signature to the NFC

reader. The NFC reader verifies the signature according to the information available

in the previously communicated Tag Authentication record. A successful verification

confirms that the tag is not cloned. Of course, the certificate chain should also be

checked for any revocation.

In the next chapter, we will apply this framework in a supply chain to detect

counterfeit products. The legitimacy of products, equipped with NFC tags, will be

determined by authenticating the NFC tags; a cloned tag implies a counterfeit product.

2This referenced vulnerability of the signature specification is addressed by adding more fields to
the signature in the NFC Forum revised signature specification Version 2.0
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Chapter 5

Consumer-Level Counterfeit

Detection Framework

In this chapter we present a framework to detect counterfeit products in a

supply chain using NFC tags. This work is published in the International

conference on Privacy, Security and Trust (PST 2013) [61]. This chapter

is almost verbatim of the published work.

5.1 Introduction

Our tag authentication model, proposed in the previous chapter, can be used to detect

counterfeit products in a supply chain when products are equipped with clone-resistant

NFC tags. A cloned tag points to a counterfeit product. This chapter provides a

counterfeit detection model where consumers can detect a cloned tag (or in other words,

a counterfeit product) with their cell phones.

Counterfeit products are one of the major threats to modern commerce. Accord-

ing to estimates by the Counterfeiting Intelligence Bureau (CIB) of the International

Chamber of Commerce (ICC), counterfeit goods make up 5 to 7% of world trade [13].

Counterfeits are available in a wide range of products, typically starting from high

value small goods like watches, designer clothes, DVDs and electronic chips to high

cost items such as cars, motorcycles and bicycles.

Counterfeit products are classified into four categories [16].

1. The first category consists of those products that are inexpensive, lower quality

and may lack original packaging. This category is often called ‘knockoff’. These

products are being sold as counterfeits and the consumer is aware of it.
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2. In the second category of counterfeit, a genuine product is reverse engineered

and identical copies are sold as the genuine product. It is hard for a consumer

to differentiate between a genuine and a counterfeit product. This category is

meant to deceive the consumer.

3. These are the products that are produced by an outsourced manufacturer without

intimation to, and without permission from, the original owner. For example, an

outsourced manufacturer manufactures further product after termination of its

contract with the original owner without notifying the original owner.

4. These are genuine products that do not meet the manufacturer’s standards but

are not labelled as faulty.

One of the major outlets for counterfeit products is Internet e-commerce where the con-

sumer has no means of authenticating a product before delivery. Even after delivery,

the consumer has very limited resources to determine the legitimacy of a product. Auc-

tion websites, such as eBay, have further expanded the market of counterfeit products.

For example, test purchases from 300,000 Dior products and 150,000 Vuitton items

offered on eBay during 2006 found 90% counterfeits [49]. Tiffany & Co. purchased 186

random items from eBay and found only 5% to be genuine [20].

These circumstances call for mechanisms to fight counterfeiting. Analysis shows

that the money spent in this way prevented a much greater loss from counterfeit goods.

According to the U.S. Chamber of Commerce, $5 is gained for every $1 invested in this

battle [67].

Radio Frequency Identification (RFID) tags attached to various goods provide a

tool to remotely identify these goods. Among these, EPC tags are the most important.

The Electronic Product Code (EPC) network is used for supply chain management and

can be used as a tool for anti-counterfeiting [65]. Every item equipped with an EPC

tag carries a 96-bit code to uniquely identify and manage the item in a supply chain.

There are two main approaches to using the EPC as an anti-counterfeiting measure [44].

The first approach is tracking the physical location of a tag and updating the result

in an online database. The EPC of a counterfeit product will appear twice (at least)

in the database, assuming the counterfeit product is equipped with a cloned EPC tag

and the database is up to date. This is called the ‘Track and Trace’ approach. The

main disadvantage of this approach is its significant communication and computation

overheads. Every reader has to update records in the online server in real time. The

online server has to track and trace each code received from the online reader and

generate triggers in case of any abnormality. In addition to these overheads, there

are also some privacy concerns associated with this approach: for example, tracking
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of individuals from the products they carry, or tracking medicines etc [12]. Moreover,

there are some issues with updating the database. For example, suppose a retailer were

to clone the EPC and attach the cloned tag to a counterfeit product. Assume he does

not update the corresponding record in the database when it is sold. When he sells the

counterfeit product, the consumer buying the counterfeit can check and find a valid

record for the cloned EPC but will not be able to update its record to record its sale

due to limited access and privacy concerns.

Another anti-counterfeiting approach is based on cryptography. In this approach,

each tag contains a secret value, knowledge of which is established by the reader in an

authentication proof. Generally, this uses an encrypted challenge-response protocol as

it may be eavesdropped and the secret cloned if sent in the clear. This approach may

be based on symmetric key or asymmetric key cryptography.

Anti-counterfeiting based on cryptography can be categorized into two main cate-

gories as described in § 4.2: Off-line and On-line. In a supply chain, it is very unlikely

that the login credentials are provided to a consumer to access the database in order

to verify the authenticity a product. There could be a special login account just for

verification with restriction (no update or general read rights). But this may lead to

information leakage if not properly implemented or monitored. This makes the Off-line

approach more suitable for product authentication at the consumer level.

If symmetric key cryptography is used, the reader must already know the secret

value of the tag and match it against the secret value received from the tag. The

secret value of each tag is chosen uniquely so that if a tag is compromised, it should

not break the entire system. This results in a requirement for a secure and efficient

key distribution mechanism to distribute the tags’ secrets among the readers. One

way is to deliver the secret values of all appropriate tags to readers in advance but

this approach requires secure distribution of millions of such keys and is considered

infeasible. Another way is to store the key database in an online server. This server is

online at all times to provide the secret values of tags to readers. Assuming millions of

tags are deployed in the supply chain with hundreds of compatible RFID readers, this

approach incurs even higher communication and storage overheads than the track and

trace approach [44]. In addition, the reader must always be trusted by the supplier since

the reader stores the secret values of the tags in any framework employing symmetric

key cryptography.

As observed earlier, one of the major factors in the upsurge in counterfeit products

is online shopping. With the advancement in Internet technology, the volume of online

shopping is growing rapidly. It is not feasible at present to tailor any symmetric key

approach for product authentication to online shopping. The reason is obvious: a con-
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sumer receiving a product through online shopping does not possess an RFID reader to

communicate with the tag attached to the product. Even in the very unlikely scenario

where a consumer possesses an RFID compatible reader, the supplier will have to pro-

vide login credentials to access the database. This situation is far from practical. Thus,

product authentication at the consumer level remains an open challenge, especially for

the Internet shopping framework.

In contrast to the symmetric key approach, asymmetric key cryptography (or Public

Key Cryptography (PKC)) can also be used to authenticate a product. Considering

the limitations of the symmetric key approach described above, the case for PKC in

product authentication is thus very strong. The main restriction in using PKC on

RFID tags, such as EPC tags, is the limited computational and storage capabilities

of these tags. Recently, Alex Arbit et al. presented a working implementation of a

PKC-based anti-counterfeiting framework [12]. We revised this model and provided a

better approach to counterfeit detection.

5.1.1 Our Contribution

We focus our work on detecting counterfeits that fall into the categories 2 and 3 men-

tioned in § 5.1. Category 1 counterfeits are not a major concern as the consumers are

aware of the fact that the products they are buying are counterfeits. The loss in the

sales of the original product owner is also negligible as very few genuine goods pur-

chasers would purchase a knock off [16]. Category 4 counterfeits can be restricted by

the genuine product owner by enforcing efficient quality control measures. Categories

2 and 3 are most critical as not only is the consumer unaware of the illegitimacy of

the product, but also the genuine owner has no or minimal control over the produc-

tion, marketing and selling of such products. Our model helps in detecting counterfeits

products at consumer level pertaining to category 2 and 3 products, thus providing an

efficient tool to detect counterfeits.

In this chapter, we analyse the anti-counterfeiting model which Alex Arbit et al. pro-

posed in [12] and highlight a few of its short-comings. The framework is semi-offline,

where the verification and decryption keys are dispatched to the reader using a smart

card and the reader is considered as a secure module for storing these keys. Its semi-

offline structure renders it sometimes incapable of authenticating a product at consumer

level despite using public key cryptography.

We revise and extend their work in two main ways. Firstly, we restore the EPC tag

to the original standard rather than using the modified EPC tag in the Alex Arbit et

al. model. This resolves any modification-related problems in the existing EPC frame-

work. Secondly, we supplement the EPC tag with an NFC tag which can perform the
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necessary computations that were not within the capability of the EPC tag. The main

advantage of being offline is that a consumer can authenticate a product without any

online communication with the supplier’s database. Message integrity in our proposal

is provided by digital signatures so the consumer needs to verify the certificate chain

for the validity of the certificates. This can be done by connecting to the Internet and

checking the Certificate Revocation List (CRL). We believe that our offline product

authentication at consumer level can prove to be an efficient anti-counterfeiting tool.

Although our framework is applicable to all levels of supply chain management, the

main beneficiaries are customers using the Internet for online shopping. This frame-

work not only helps the customers to authenticate a product, but any verifier such as

a law enforcement agency can also use this model to detect counterfeit products.

We resolve the problem of provisioning of an RFID reader for product authentic-

ation to every consumer by also using a Near Field Communication (NFC) tag for the

EPC. NFC technology is now available on cell phones and so a consumer’s cell phone

can act like an RFID reader to read the EPC. Since our framework is totally offline,

the consumer is able to distinguish between a legitimate and a counterfeit product by

using his cell phone without accessing the supplier’s database.

We also resolve the issue of trust in the reader for an offline framework. In the

work of Alex Arbit et al, the reader is a secure module storing a verification key and

a decryption key, as noted earlier in this section. These keys cannot be stored on any

reader that is untrusted by the supplier. Although the consumer’s cell phone is not

trusted by the supplier, this issue can be addressed by using a Public Key Infrastructure

(PKI), thereby all but eliminating any key storage requirement on the reader side.

In many cases, the NFC tag can also be accessed and authenticated during product

distribution without having to resort to the greater reading range of the EPC tag.

5.2 EPC in the Supply Chain

The EPCglobal Class-1 Gen-2 (EPC C1G2) standard [5] specifies low-cost UHF tags

which operate in the frequency range of 860-960 MHz and have a read range of 2-10 me-

ters. This longer range makes UHF tags more easily read in containers and warehouses

than is the case with NFC tags. Electronic Product Code (EPC) tags are typically

deployed in supply chain management systems for automated inventory checks. The

EPC is a 96-bit identifier stored in the EPC tag which helps to identify each tagged

product uniquely. EPC has various advantages over existing product identification

techniques, e.g. barcodes, as the former does not require line of sight compared to the

latter. Moreover, the EPC tag may store additional information about the product
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which cannot be achieved using a barcode. Because of these advantages, barcodes are

often being replaced by EPC tags in the supply chain.

5.3 Related Work

The EPC network as an anti-counterfeiting tool was proposed by Staake et al. [65].

The proposal is based on a central database server and does not explicitly cover the

use of cryptography. The BRIDGE project [44] analysed various anti-counterfeiting

approaches based on RFID tags. This work analysed the secure distribution and man-

agement of secret keys in a symmetric key anti-counterfeiting framework, and showed

that it results in ten times more communication and computational overheads than in

a track-and-trace anti-counterfeiting system.

Work to reduce the computational overheads in public key cryptography is also

in progress and various lightweight public key cryptosystems are being designed. The

CRYPTOGPS is a light-weight public-key cryptosystem mainly suitable for UHF RFID

tags. It can be implemented in around 2800 GEs (Gate Equivalent) with a processing

time of around 720 cycles [55, 19]. The Rabin Cryptosystem was the first to be imple-

mented in a wireless sensor network in [53]. It took about 16,700 GEs to implement

512-bit encryption. This led the authors to declare that this cryptosystem was unsuit-

able for resource-constrained RFID tags. A lower version of this scheme, WIPR, was

developed by Oren and Feldhofer [11]. It is well suited to RFIDs because it has the

smallest hardware footprint and largest payload capacity of all published high-security

public key schemes. Recently, Alex Arbit et al. presented a working implementation of

a WIPR based anti-counterfeiting framework [12].

5.3.1 The Alex Arbit et al Anti-Counterfeiting Model

Alex Arbit et al proposed an anti-counterfeit model based on EPC tags and Public

Key Cryptography [12]. Their framework is illustrated in Figure 5.1.

The figure represents the various entities involved in the anti-counterfeiting frame-

work. The framework consists of the following sequence of operations.

• Step 1: The framework is initiated by the Tag Integrator, who wishes to deploy

anti-counterfeiting technology in EPC tags. He creates two public-private key

pairs: a Private Signing Key KS together with its Pubic Verification Key KV ,

and a Private Decryption Key KD with its Public Encryption Key KE . The

signing key KS is never disclosed to any entity of the framework. The Tag

Integrator generates a list of Tag Identifiers (TIDs) and signs each TID with the
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Figure 5.1: Alex et al anti-counterfeiting framework

key KS . He then sends the list of signed TIDs to the tag manufacturer along

with the encryption key KE . Since the tag manufacturer lacks KS , he is unable

to generate arbitrary signed TIDs, thus ensuring the integrity of the TIDs.

• Step 2: The tag manufacturer produces and deploys the tags, each with an

individually signed TID from the list along with the public key KE .

• Step 3: The reader receives KD and KV from the tag integrator. Once these

keys are delivered to the reader, the system can operate in an offline framework.

The reader then carries out a challenge-response protocol to determine that the

tag possesses a valid, signed TID.

This is a semi-offline model as it requires an initial key distribution mechanism to

distribute keys to readers through some secure channel. The authors suggest distribut-

ing keys through a secure module such as a smart card.

5.3.2 Weaknesses

There are several weaknesses1 in this model.

• The framework is semi-offline where the reader stores KV and KD. This puts a

limit on its utility for product authentication at consumer level, as KD cannot

be communicated to the consumer.

• KV and KD have to be delivered to a reader through some secure channel such as

a smart card. Since the same set of keys are distributed to each reader, this results

in a single point of failure where the loss of a single smart card will compromise

the entire system. Moreover, if a single retailer is dishonest, he can break the

entire system as all the readers use the same set of keys KV and KD.

1Contributed by Zeeshan Bilal, ISG, RHUL
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• The authors have not discussed the storage location and accessibility of KE inside

an EPC tag. If KE is stored at an accessible location, an attacker can make a

successful counterfeit tag by simply copying all the content of the EPC tag,

including KE , to a counterfeit tag. If KE is stored at some inaccessible location

inside the EPC tag, it can prevent tag cloning, but still the framework is prone

to single point of failure. Since KE is identical in each tag, it only needs an

adversary to attack a single tag to compromise the entire system.

• Bypass Attack. The framework is prone to a “Bypass” attack where the anti-

counterfeiting protocol is circumvented in a counterfeit tag in the following way.

The framework is designed to handle both WIPR-modified and standard EPC

tags. During the handshake protocol between a reader and an EPC tag, the tag

responds with an indication of being WIPR capable or not. This is achieved by

the modified tag sending a special WIPR EPC message to the reader instead

of the actual EPC value according to the standard (see Figure 4 in [12]). The

special WIPR message acts as a flag to the reader to execute the anti-counterfeit

protocol.

The framework does not provide integrity protection to the special WIPR EPC

message contents and so alterations to this message may not be detected. An

attacker just needs to replace this message with the actual EPC value in the

counterfeit tag, thereby making the tag claim to follow the standard EPC pro-

tocol. On receipt of the actual EPC value from a counterfeit tag, the reader

does not execute the anti-counterfeiting protocol, instead assuming the tag to be

unmodified as the flag (the special WIPR message) is not received from the tag.

Thus, the anti-counterfeit protocol is bypassed and the counterfeit tag remains

undetected. Of course, if the reader knows the TID belongs to a tag which follows

the WIPR modified protocol, then the counterfeit should be detected.

5.4 The Proposed Model

In this section, we propose a different anti-counterfeiting model that uses RFID tech-

nology to detect counterfeit products. This model is a modified version of the Alex

Arbit et al. model [12]. We add an NFC chip to the EPC tag, thereby providing a

product authentication mechanism to the consumer level.

NFC technology is used mainly for two reasons. Firstly, this technology can support

public key cryptography on tags and, secondly, it is available on cell phones enabling

them to act as RFID readers. The former supports our framework in an offline mode
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Figure 5.2: Initialisation phase of the proposed scheme.

where a connection to the supplier’s database is no longer required. The latter helps

extend the authentication model to the consumer level, where a consumer uses his cell

phone to authenticate a product.

5.4.1 Initialisation Phase

Our new anti-counterfeit model is executed in two phases, the first, namely initializa-

tion, being illustrated in Fig. 5.2. This phase is initiated from the production line where

a serial number and an EPC are allocated to the product. The serial number, EPC

and the product specification are communicated to Tag Initiator (TI). Meanwhile, the

product is dispatched to the Tag Embedding department.

On receipt of the information from the production line, the TI generates a pub-

lic/private key pair (Kpub,Kpr). This pair is unique for each tagged product item. The

TI must be a secure platform as it is responsible for the generation of anti-counterfeit

keys. It stores the EPC in an EPC tag and forms a string S1 defined by

S1=EPC‖Product S/N‖Product Specification‖Kpub

The TI digitally signs this string S1 with his signing key Ksign and stores the

string along with its signature on the NFC tag. The signature on the tag is stored as

a ‘Signature Record’ according to NFC Forum’s Signature Record Type Definition [7].
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According to this specification, the signature record consists of a digital signature

along with a digital certificate containing the corresponding verification key Kver with

a hierarchical certificate chain as described in Chapter 2 §2.3.2. S1 and its signature

are stored at a memory location accessible to any NFC reader. However, the TI also

stores the secret key Kpr inside the tag but at a secure location. This location of Kpr

is only accessible to the tag’s processor and therefore inaccessible to a reader. The

corresponding public key Kpub is a part of S1, and therefore accessible to any NFC

reader. After storing the relevant information on both tags, the TI configures both

tags as write protected and dispatches them to the Tag Embedding department.

On receipt of the tags from the TI, the Tag Embedding department embeds both

tags on the product. Since the tags are physically embedded we shall assume that any

attempt to remove the tags will destroy them. After embedding the tags, the products

are shipped to the supply line, from whence they may be delivered to a department

store or direct to a consumer through online shopping.

5.4.2 Verification Phase

This phase is executed by the verifier on receipt of the product. Since this is an off-

line framework, the verifier does not require any connection to the supplier’s database.

Therefore the verifier may be a consumer, a warehouse employee, a member of law en-

forcement or indeed, any individual wishing to authenticate the product. The verifica-

tion phase is executed in two phases. The first is visual and the second is cryptographic.

The visual verification process is executed as follows:

• The consumer checks the claimed identity of the product itself and the integrity of

the tag which should be bound to the product item in a tamper-evident manner.

• The verifier places his cell phone on the NFC tag to read its contents. The accessi-

ble data on the NFC tag (string S1 and corresponding signature) is communicated

to the cell phone.

• The cell phone verifies the signature. A successful verification is an indication

that the string S1 is legitimate.

• The cell phone displays the product specification and its serial number to the

consumer.

• The consumer checks the two product descriptions match each other.

In the case of a successful visual verification, the consumer should initiate the second

phase of product verification, which is a cryptographic challenge-response protocol:
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• The cell phone sends a random challenge r to the NFC tag.

• The tag signs r with the secret key Kpr and returns the result sign(r) to the cell

phone.

• The cell phone verifies the signature using the corresponding verification key Kpub

which it knows from S1.

A successful verification is a strong indication of a genuine product, as a counterfeit

tag lacks the signing key Kpr and so cannot compute a valid signature on r.

The verification process also includes verification of the certificate chain stored in

the Signature record. The certificate chain does not store the top-most certificate (e.g.,

the root Certificate Authority certificate in an X.509 certificate chain), therefore the

cell phone needs to access it online, or through any other mean, if the root certificate

is not already stored in its memory. Additionally, the cell phone also needs to check

the validity of all certificates in the certificate chain for any revocation by visiting the

Certificate Revocation List (CRL).

5.5 Analysis

In this section, we analyse the proposed framework from various angles. Our model

addresses category 2 and 3 of counterfeits as mentioned in § 5.1.1. Categories 1 and 4

are not a focus of our work since, in the former case, the products are being identified by

the consumers as counterfeits and, in the latter, can be countered with an appropriate

quality control. Categories 2 and 3 are critical as the consumer is not aware of the

illegitimacy of the product. Since our model is designed to detect counterfeits at

the consumer level, it provides a tool for consumers to determine the legitimacy of a

product.

In the case of category 2 counterfeits where the original product is reverse engi-

neered, the NFC tag attached to the original product cannot be reverse engineered –

the secret data on the NFC tag cannot be copied as explained in § 4.5.5 and § 5.5.2. A

consumer can therefore determine the illegitimacy of a reverse-engineered product by

the unsuccessful verification of the data on the NFC tag.

In our model, the Tag Initiator (TI ) is responsible for generating and storing the

secret keys on the NFC tags. The tags are then embedded on the product by another

department termed the ‘Tag Embedding Department’. In the case of out-sourced man-

ufacturers, the product manufacturing and tag embedding are done by the out-sourced

manufacturer. The TI remains a part of the genuine owner and is not out-sourced or, if

it is, it is to a trusted partner only. The genuine owner provides NFC and EPC tags to
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the out-sourced manufacturer only in same quantity as specified in the contract. If an

out-sourced manufacturer is dishonest and produces more than the quantity mentioned

in the contract (category 3 counterfeits), he will have to produce the product either

without the NFC tag or with a fake NFC tag. This counterfeit product is then detected

by the consumer because making a fake NFC tag is too difficult (explained in § 5.5.2).

Of course, the consumer needs to be aware that the product is equipped with an NFC

tag and reject the product if it is absent. Thus, our model helps in the detection of

category 3 counterfeits at consumer level.

5.5.1 Justification for Two RFID Tags

We use two types of tags in our framework, an EPC tag and an NFC tag. Although

both are RFID tags, they have very different characteristics. The main difference is

the operating frequency: EPC tags operate at 860-960 MHz whereas NFC tags operate

at the 13.56 MHz frequency band. The range is consequently different in the two

tags. EPC tags can be read from 2 to 8 meters whereas NFC tags have a very short

communication range of no more than about 4 cm. This property makes only the EPC

tag suitable for supply chain management in order to remotely identify the products.

Since EPC tags are already deployed in the market for supply chain management, we

use EPC tags in our framework in order to maintain the backward compatibility and

normal supply chain needs.

NFC tags are used because two main requirements cannot be fulfilled by EPC tags.

Firstly, EPC tags are very resource constrained when compared to NFC tags: EPC

tags have very limited computational power and much less memory, whereas NFC

tags, especially NFC Type-4 tags, are much more powerful. Since our framework is

based on PKC and PKI, where the tag has to perform PKC, we need a reasonably

well-resourced tag. Secondly, our framework needs to provide authentication down to

the consumer level. Without an NFC tag, this would require every consumer to be

equipped with an EPC tag reader, which is currently far from practical. The issue is

resolved with the inclusion of the NFC tag, as the consumer’s cell phone can act as a

reader for the tag.

5.5.2 Security Analysis

In this section, we analyse our framework from the security point of view. The goal

of an attacker is to develop a clone tag or a tag with a valid signature. To develop a

clone tag, the attacker must know the private key Kpr of the original tag. This key

is stored at an inaccessible location in the tag’s memory and so it is normally secure
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from the attacker. The alternative solution open to an attacker with a cloned tag is to

replace the legitimate public key Kpub with the attacker’s public key K ′pub in S1 and

store the corresponding private key K ′pr in the tag. However, this is not possible as the

legitimate Kpub is digitally signed (it is in a digital certificate) so that any alteration

will invalidate the signature. Of course, the verifier must have a trusted source for the

certificate’s verification key in order not to be duped. Since our framework is based on

Public Key Infrastructure (PKI), it inherits the complexity issues, such as certificate

management, certificate revocation etc of the PKI. For instance, the user needs to

access the Certificate Revocation List online whenever it needs to verify a certificate

chain.

In case an attacker spends time and money to reverse engineer or penetrate a single

tag and recover its private key Kpr, it will not affect the entire system as the pair

Kpr,Kpub is unique to each tag. The tags, being cheap, will have few counter-measures

to side channel analysis, which will be a sufficient threat in some markets. However,

this will avoid a single point of failure as experienced in Alex et al model.

Our framework is resistant to the bypass attack. The existence of Kpub in S1 is an

indication that the tag is equipped with the anti-cloning feature. This key can neither

be removed nor altered as it is digitally signed. The user’s application on the cell

phone, once it has detected Kpub, will execute the anti-counterfeiting protocol, thereby

resisting the bypass attack.

In addition to cryptographic authentication, our framework also provides visual

product authentication. After scanning the NFC tag, the product specification and

product serial number is visually displayed on the user’s cell phone display. The user

can visually check and verify the information from the product or product packaging.

Needless to say, there are many other sources of compromise. For example, the NFC

tag could just return a QR code which connects the consumer’s phone to the attacker’s

website and displays the expected protocol output and the verification data for the

counterfeit product. Alternatively, the merchant may direct customers who lack the

verification app to the attacker’s website to download a compromised app that confirms

the authenticity of any product.

The tags have to be tamper-evident. This is to ensure that they cannot be re-

used on counterfeit products. If the tag were to contain the URL for registering the

product under the manufacturer’s guarantee, customers could be encouraged by their

app to register, the manufacturer could check its database for duplicate registrations

that would flag a clone, and the manufacturer could advise the consumer if there were

such a problem.

One critical factor in securing the system is the physical location of the NFC tag in
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the product. This is an industry specific decision and requires careful consideration. It

is assumed that the tags are physically embedded on the main assembly of the product

and not on casing/packing or on any easily replaceable component of the product, very

much in the same way as a watermark or hologram is an integral part of the item it

is protecting. As in the latter case, an attacker just needs to place the tag embedded

component from a legitimate product into the counterfeit product.

5.5.3 Mobile Phone Security

Mobile phones are never considered as trusted platforms. They are vulnerable to various

types of viruses, worms, trojans, rootkits and botnets [42]. They are also used as

attacking platforms for data skimming, relays attacks and card emulators. This implies

that a compromised mobile device may not give the desired output in our scheme.

For instance, a malicious application running on a compromised mobile device in our

scheme may always display a genuine product of some specific brand, irrespective of

the legitimacy of the product. Additionally, the customer must download the product

verification application from a trustworthy source. Otherwise, there are chances that a

malware gets downloaded in the mobile device undermining the product authentication

mechanism. Needless to say that the genuine downloaded application must be protected

against known attacks.

5.5.4 Economic Analysis

This section analyses economic aspects of the proposed scheme at a broader level.

The inclusion of NFC tags in addition to EPC tags for product identification re-

quires some additional investment by the supplier. For simplicity, we assume the ad-

ditional costs associated with generating keys, signing certificates, writing to the tags,

embedding the tags, etc., is already included in the cost of the NFC tag. We also as-

sume that the cost of an item is independent of the number of such items made, which

is plainly rather näıve.

We only consider loss in the sales revenue because of counterfeit products. The true

loss is much higher and not just financial. There are various other important aspects

such as loss in distinctiveness of brand image, gradual decline in sales, unemployment

etc., but inclusion of these factors complicates the analysis too much – our goal is

merely to justify the cost of our anti-counterfeiting scheme.

Let x be the production cost/unit and y the selling price/unit, ∆ = y − x the

profit/unit, n the market demand over some fixed period and pi the initial percentage

of counterfeits in the market (i.e. prior to implementation of our framework).
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We assume that our scheme does not fully eliminate counterfeits from the market.

This assumption is based on two factors. Firstly, not all the consumers will touch their

mobile phones with NFC tags to determine the legitimacy of the product. Some may

not even know about it, and some may ignore this procedure. Secondly, a compromised

mobile device may not detect a counterfeit product as explained in §5.5.3. So, we expect

that after implementation of our scheme by a product manufacturer, some counterfeit

products will still be in the market. We denote the percentage of counterfeit product

after implementation of our scheme as final percentage, pf .

Similarly, we denote the initial financial gain Gi and final financial gain Gf for a

company before and after implementation of our framework respectively.

Suppose, by observing his sales, the original manufacturer is able to make exactly

the number of products he can sell, namely n(1− pi). The remaining market share of

npi consists of counterfeits from other suppliers. The Gi by the original manufacturer

is n ·∆ · (1− pi) compared with an ideal profit of n ·∆ if he were to supply the whole

market.

Let c be the unit cost of implementing RFID tags on a product. This cost includes

all associated costs regarding RFID implementation as mentioned earlier. If no price

increase is allowed, the final financial gain Gf generated under these conditions is:

Gf = n · (∆− c)(1− pf )

This represents an increase providing Gf > Gi, i.e.

n · (∆− c)(1− pf ) > n ·∆ · (1− pi) (5.1)

The initial percentage pi of counterfeit products depends on various factors like

brand, geographical location, in-store or on-line, product price etc. It is difficult for

any agency, other than the product manufacturer itself, to find an exact value of pi for a

specific brand as the counterfeit products of categories 2, 3 and 4 are indistinguishable.

This may be the reason behind the large variation in the estimate of counterfeit products

by the Counterfeiting Intelligence Bureau of the International Chamber of Commerce

(7% counterfeits), and the surveys carried out by some product manufacturers like

Dior, Vuitton, Tiffany & Co., on eBay (about 90% counterfeits) as described in § 5.1.

Assuming both these figures to be true, they illustrate that the percentage of the

counterfeits products pi varies from very low level to high level.

Similarly, the value of pf is hard to predict with a reasonable accuracy. We claim

that our scheme will decrease the percentage of counterfeits, but by how much? The

answer depends on various factors like pi, consumer awareness, availability of a smart
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phones and corresponding mobile phone application to the consumers, and most im-

portantly, the methodology of determining pf by a brand. For simplicity, we say that

the pf = m · pi, where 0 ≤ m ≤ 1. To get a rough estimate of the economic feasibility

of our model, we analyse it under following four values of m:

• m = 0.25 (counterfeits are decreased by 75%)

• m = 0.50 (counterfeits are decreased by 50%)

• m = 0.75 (counterfeits are decreased by 25%)

• m = 0.90 (counterfeits are decreased only by 10%)

Assuming the price of implementing RFID tags with the required infrastructure is

$5/unit, the Eq (5.1) can be written as:

∆ > 5

(
1− pf
pi − pf

)
(5.2)

The plot of Equation (5.2) is shown in figure 5.3 with above-mentioned four different

values of m. The shaded region in the figure represents the suitability of trying to

prevent counterfeits using our model.
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m = 0.90

Figure 5.3: Suitability of Economic Model (c = $5)

Table 5.1 describes the minimum profit/unit (rounded to nearest Dollar) for the

extreme values of pi (7% and 90%) against the four assumed values of m.

This analysis is based on very straightforward assumptions and may not represent

the reality. For instance, we assumed that the product cost is not related to the number
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m pi = 7% pi = 90%

0.25 $94 $6

0.50 $138 $6

0.75 $271 $7

0.90 $670 $11

Table 5.1: Minimum Profit/Unit, ∆, above which our model is likely to be feasible

of items being produced, which is far away from practicality. Similarly, loses apart from

sales revenue, for example, damaged brand value and firm reputation, health and safety

risks due to sub-standard products and its concerning financial effects, loses in Foreign

Direct Investment (FDI), cost of legal actions taken against counterfeiters and pirates,

cost on investigations to detect counterfeits in a market, etc., are also not considered

in our model. Moreover, there may not be a linear relationship between pf and pi

in a practical scenario. Addition of these factors in economic analysis makes it more

complicated, that we don’t want to – our goal is only to focus on the financial effects of

our model at a broader level. This simple analysis represents that our model becomes

more suitable for the markets facing high number of counterfeits. For a market with

low percentage of counterfeits, our model is suitable for only high cost items. On the

other hand, for a market with high percentage of counterfeits, our model is suitable

for even low cost products. Although product manufacturers are very much aware of

profit/unit of their products; they must have a reasonable data of counterfeit products

in the market in order to decide about implementation of our model.

5.6 Conclusion

This paper presents an RFID based anti-counterfeiting framework at the consumer

level. There are two main constraints related to this authentication level. Firstly,

the typical individual consumer cannot afford to keep an RFID reader to authenticate

a product; and secondly, customers cannot be provided with access to the supplier’s

database because of privacy issues. We addressed both these constraints by using NFC

technology: an NFC tag is used along with an EPC tag for consumer level authentic-

ation on the reasonable assumption that most individuals will carry an NFC-enabled

mobile phone in the near future. We provided a dual layer verification mechanism to

a consumer. In the first phase of verification, the product specifications are displayed

to the consumer on his cell phone for visual verification against the actual product.

After successful verification, a cryptographic challenge-response protocol is executed
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to authenticate the product. Our proposal is based in PKC and PKI and successfully

detects the counterfeit products. Analysis shows that the proposed framework is likely

to be feasible for low-cost products with a profit/unit above about $6 for the markets

facing high volume of counterfeits, whereas, our model is suitable for only high cost

product (profit/unit above $94) for the markets with fewer counterfeits under some

straightforward assumptions. These values may not represent the reality, as many

other side-effects of counterfeits are not considered, just to keep our analysis simple.

Once a tag is registered against a specific user , then tag authentication leads to

user authentication. In the next chapter, we will describe a payment framework, where

the payer is authenticated from the SIM card followed by a monetary transaction using

the mobile device.
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Chapter 6

An NFC Payment Framework

This chapter provides a mobile transaction framework. The work is pub-

lished in the Eighth International Conference on Mobile Ubiquitous Comput-

ing, Systems, Services and Technologies (UBICOMM) [60]. §6.4 and §6.5

are almost verbatim of the published work. §6.2 is contributed by Pardis

Pourghomi and Gheorghita Ghinea (both from Brunel University, Uxbridge,

Middlesex).

6.1 Introduction

One of the main use of NFC technology in future is mobile payments. At a broader

level, the mobile payment comprises of two parts: user authentication and transaction

execution. NFC, being a relatively new technology, has yet to mature in this domain

as still there is no standardised framework for monetary transaction using NFC. In

this chapter, we propose an NFC based payment solution. The Mobile Network Op-

erator (MNO) of the user performs the transaction on behalf of the user. The MNO

first authenticates the user, and after successful authentication, the MNO performs

transaction. The authentication of the user is carried out through the mobile device,

which follows a different approach from the authentication frameworks described in

earlier chapters of the thesis. The reason is the existence of a shared secret key Ki be-

tween the mobile device and the MNO. This is an online tag authentication (described

in Chapter 4, §4.2.1) which complements our earlier proposed off-line authentication

framework in chapter 4. We used GSM authentication parameters in our approach not

only to authenticate the user, but also to encrypt the communication channel. Our

work in this chapter is a step towards making NFC a tool for mobile commerce in

future.
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6.2 Mobile Commerce Using NFC

Mobile Commerce, also known as m-commerce, is the ability to conduct commerce

using a mobile device, such as a mobile phone, a Personal Digital Assistant (PDA), a

smartphone, or other emerging mobile equipment such as dashtop mobile devices. The

use of m-commerce has seen rapid growth in recent years, with several different services

like Short Message Service (SMS), Wireless Application Protocol (WAP), Unstructured

Supplementary Service Data (USSD) and K-Java on the GSM network and NFC [21].

NFC technology over mobile devices has given a new direction to m-commerce.

With NFC technology, mobile phones can have additional functionality to act as a

contactless card to be used as an easy method of payment. However, there are con-

cerns such as personalization, data storage, management and ownership of the Secure

Element (SE) as it stores sensitive data such as banking credentials. The trust among

various key players, such as MNO, mobile device manufacturers, banks, SIM manu-

facturers etc, is the key for a successful mobile transaction framework. NFC, being a

relatively new technology, is yet to mature to be widely used in m-commerce.

Alpár et al. introduced Tap2 technology where the users need only their NFC-

enabled mobile devices and credentials implemented on their smart cards [10]. They

proposed the use of NFC technology in the on-line banking solution based on EMV Chip

Authentication Program (EMV-CAP). Gerald Madlmayr and Josef Langer presented

a purse-based micro-payment system [46]. They designed a pre-paid wallet where the

money is stored in the Secure Element in the mobile device. The user can top-up their

account Over-The-Air (OTA), anywhere and anytime.

W. Chen et al. proposed an authentication and transaction protocol that utilizes the

existing GSM network for customer authentication and monetary transaction [21]. The

protocol first authenticates a customer who wants to pay for some services. He uses his

mobile phone for payment and the respective MNO transfers funds from his account

to the shop account. The same researchers proposed another transaction protocol

that combines the existing 3G cryptographic primitives and algorithms, in addition

to the identification and authentication of the customer, with the NFC technology to

implement a mobile payment system [22].

Inspired by this approach, we proposed two separate solutions with a similar pat-

tern, i.e., the MNO is responsible for transferring funds from a customer to a shop. We

name these versions Protocol Version I and Version II.

We will describe some salient features of the Version I in § 6.3. This will be followed

by its improved version, Version II in § 6.4.

Before going into the details of our work, we would like to provide an overview of
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Figure 6.1: Generation of Kc and S from R.

the GSM authentication and advantages to a cloud-based SE.

6.2.1 GSM Authentication

When a mobile device signs into a network, the Mobile Network Operator (MNO) first

authenticates the device (specifically the SIM). The authentication stage verifies the

identity and validity of the SIM and ensures that the subscriber has authorized access

to the network. The Authentication Centre (AuC) of the MNO is responsible for

authenticating each SIM that attempts to connect to the GSM core network through a

Mobile Switching Centre (MSC). The AuC stores two encryption algorithms, A3 and

A8, as well as a list of all subscriber identities along with their corresponding secret

keys Ki. The key Ki is also stored in the SIM. The AuC first generates a random

number, denoted by R. This is used to generate two responses: a signed response S

and a key Kc as shown in Figure 6.1, where S = EA3,Ki(R) uses the A3 encryption

algorithm and Kc = EA8,Ki(R) uses the A8 encryption algorithm [1].

(R,S,Kc) is known as the Authentication triplet generated by the AuC. The AuC

sends this triplet to the MSC. On receiving a triplet, the MSC forwards its first element

R to the mobile device. The mobile device SIM computes the expected response S from

R, using A3 and the key Ki which is stored in the SIM. The mobile device transmits

S to the MSC. If this S matches the S in the triplet, then the mobile is authenticated.

Kc is then used for communication encryption between the mobile device and the Base

Station (BS).

6.2.2 Conventional Payment Structures

A conventional payment structure consist of following main entities (as shown in Fig-

ure 6.2). The role of each entity is described in [29].

• Card and Card Holder: It is the end product user; the one who possesses a

payment card and to whom the card is issued.
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• Merchant: It is the entity which accepts payments from a card holder in ex-

change for goods and/or services and connects to a payment network through an

acquirer.

• Acquirer: It is a third-party service provider that acquires and processes pay-

ment transactions for merchants, manages the relationship with the global and

regional payment networks on the merchants behalf and manages the transaction

database. The acquirer connects merchant transactions to payment networks by:

– Providing the POS device to the merchants

– Securely routing transaction from POS device to the payment network

– Managing transactions from authorization to clearing to settlement.

• Issuer: This is the financial institution which issues a card to a cardholder and

holds the account or credit line behind the card. It performs many activities that

could include:

– Cardholder customer service

– Data preparation

– Configuration set-up

– Fulfilment of personalized chip card, with all paper inserts; preparation for

mailing to customer

– Define card profile, including risk parameters

– Receive and manage card records and keys to form a personalization record

– Generate personalization script

– Key management activities for EMV, CVV/CVC, and PINs between card

manufacturer and personalization bureau and between issuer and personal-

ization bureau

6.2.3 Advantages of the Cloud-Based Approach

Our NFC cloud-based approach is based on managing and accessing sensitive trans-

action data by storing the data in a cloud rather than in the mobile phone. When

a transaction is carried out, the required data is retrieved from a remote virtual SE

which is stored within the cloud environment. The mobile phone SE provides temp-

orary storage and authentication assets for the transaction to take place.
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Figure 6.2: A conventional Payment Structure

An issue with SEs is that companies have to meet the requirements of organizations

such as EMVco to provide high level security in order to store personal data [54].

This makes the SE expensive for companies. However, a cloud-based approach would

transfer this cost. Then the SE in the NFC phone is only responsible for user/device

authentication and not for storing personal data. This improves the cost efficiency of the

SE compared with the present, enabling many more secure applications to be supported

because of the reduced pressure on space. Also, the NFC controller chips could be

smaller and cheaper as they no longer have to support all previous functionality.

The NFC cloud-based approach makes business simpler for companies in terms of

the integration of SE card provisioning. It would be much easier for businesses to

implement NFC services without having to perform card provisioning for every single

SE. The NFC phone user will be able to access many more applications as they are no

longer stored in a physical SE. In terms of flexibility, all users would be able to access

all their applications from all their devices (e.g. phones, tablets or laptops) since the

applications are stored in a cloud environment that provides a single, shared, secure,

storage space. Moreover, fraud detection would be instantaneous as the system runs

only in a fully online mode.
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6.3 The Protocol Version I

The Version uses a cloud architecture where the cloud is being managed by the MNO.

The MNO first authenticates a customer through an improved an improved GSM auth-

entication and after a successful authentication, transfers the required amount to the

shop. Its main features include:

• Mutual authentication of the mobile device and the MNO using existing GSM

primitives

• PIN verification

• Multiple accounts against a single customer

• Pay-as-you-go and pre-paid accounts for payments

• Non-repudiation of transaction messages by using digital signatures

This work is published in the International Journal of Advanced Computer Science

and Applications (IJACSA) [56].

6.4 The Protocol Version II

The major improvement in the Version II is the elimination of the shared secret be-

tween the shop PoS terminal and the customer MNO, a prerequisite in the Version I.

Therefore, the shop does not need to get itself registered with the customer MNO to

perform mobile transactions. This makes the Version II more flexible and it can even

be used for monetary transfer between two individuals provided that the payer has

registered an account with his MNO.

Additionally, we also eliminate the requirement of secure channels among various

entities of the MNO. We suggest a dedicated department, MNO Transaction Depart-

ment (MTD) to manage the monetary transactions. The user provides his bank card

details to the MTD for pay-as-you-go transactions, or top-up his account for pre-paid

transactions. The registered bank card is not required to be physically present during

transaction, so our model falls under Card Not Present (CNP) category. The MTD

in our model is analogous to acquirer in conventional payment structure. It acts as a

third party responsible for monetary transaction. The issuer is the financial entity (e.g.,

bank) that issues bank card to card holders for pay-as-you-go transactions, whereas,

for pre-paid transactions, it is subsumed by the MTD. The latter facilitates those in-

dividuals who do not have their bank accounts but they need to pay for services. A
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virtual secure tunnel is established between the mobile device and the MTD to ensure

the security of the messages. The virtual tunnel is of special significance when the Base

Station of some other network is used for the transaction; as in such scenario, the MNO

responsible for monetary transaction does not want to reveal any sensitive information

to the Base Station.

The Version II has many similarities with the Version I. The Secure Element (SE)

is partitioned into two sections; one stored in the SIM for customer authentication and

the other stored in a cloud, managed by the MTD, to hold customer’s account details.

A customer, who is a user of a cell phone, opens up a payment account with the

respective MNO prior to use the proposed payment feature. Each account is identified

by a unique identity, the Account ID or AccID. The account is either a pre-paid or a

pay-as-you-go account. A customer can have one or more accounts of either type and

has the option to select one account while payment.

In contrast to the Version I, the mobile device communicates with the MNO over

the standard GSM link. The shop communicates with the customer MNO through

the customer’s mobile device using NFC and the GSM link. Communication over the

GSM link between the mobile device and the Base Station is encrypted as specified in

the GSM standard. Otherwise, communication between different entities of the GSM

network is not considered to be secure and so encryption needs to be added where

appropriate. The MNO may be linked to the customer’s mobile device through its own

BS or through a BS of some other network. Especially in the latter case, the proposed

protocol should not disclose any sensitive information to the other network. The shop

PoS terminal does not require to be registered with the MNO. This makes monetary

transactions between two individuals possible (the payer and the payee are analogous

to the customer and the shop respectively).

The customer’s cell phone is equipped with an application installed in the SIM that

provides all required functionalities and a user interface for transactions. For simplicity,

we refer to the cell phone and the SIM as a single unit, the ‘Mobile Device’ (MD). The

authentication of the customer by the MNO is derived from the GSM authentication.

The shop PoS terminal and the customer’s MD, both need to obtain and store

trusted certificates for the keys of the MTDs they are willing to trust. Ksign,Kver are

the signing and verification keys respectively of the MTD, whereas Kpr,Kpub are the

private decryption and public encryption keys respectively of the MTD.

The protocol executes in three different phases: customer identification and credit

check, customer authentication, and transaction execution. Steps of the protocol are

illustrated in Fig. 6.3, with numbering as in the text.
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Figure 6.3: The Proposed Customer Authentication & Payment Protocol
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6.4.1 Phase I: Customer Identification and Credit Check

This phase is initiated when the store owner sends the payment request to his NFC

reader and the customer places his MD on the shop’s NFC enabled point.

Step 1: The MD and shop terminal establish an NFC connection.

Step 2: The shop terminal forms the Payment Information message PI containing

at least the Total Price TP , a temporary shop identity TSID, and the shop’s Time

Stamp TSs, and sends it to the MD:

PI = TP‖TSID‖TSs (6.1)

The TSID acts as one time identifier used by the shop to identify the transaction. It

is updated and fresh for each transaction. Optionally, PI may also contain a description

of the shop and the goods which would appear on the customer’s credit/debit card

account statement.

Steps 3-4: Once the payment information is received from the shop, the application

installed on the MD displays the transaction amount TP to the user and asks him to

select a payment account and provide PIN authentication. This is for assurance that

the customer is the legal owner of the mobile device, and therefore also the owner of

the account which will be used for payment. It also provides confirmation that the

amount and account details are accepted by the user.

After successful PIN verification, the MD needs to obtain a credit approval certifi-

cate for the shop from the respective MTD indicating that the customer has sufficient

funds in his account and has agreed to pay the required amount. The information in

this exchange should not be accessible to the BS or any other entity of GSM network

other than the MTD. To provide a secure connection for this exchange between the MD

and the MTD, the mobile device generates two keys K1,K2 for symmetric encryption

and MAC respectively. The actual encryption process used here is irrelevant, but will

most likely be specified by the card provider and EMV requirements. It should not

depend only on quantities known to either the BS or the MNO since only the MTD

should be able to perform the decryption. The mobile device forms a credit request

message Crreq for credit approval from the MTD, namely,

Crreq = PI‖IMSI‖AccID (6.2)

This is encrypted with K1 and a MAC is computed on the ciphertext using K2

to provide data integrity. Then the keys, K1 and K2, are encrypted with the MTD’s

public key Kpub. The entire message, consisting of the encrypted keys, the encrypted

credit request and the MAC value, is sent to the MTD as in message 4 of Figure 6.3.
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Step 5: Upon receipt of this message, the MTD starts by decrypting the first part

of the message with its private key Kpr to extract the encryption and MAC keys, K1

and K2. It then verifies the MAC and in case of successful verification, it decrypts the

second part of the message, containing Crreq, and checks the freshness of the shop’s

time stamp in PI. The MTD identifies the customer from the IMSI in Crreq and

performs a credit check against the named account AccID.

6.4.2 Phase II: Customer Authentication

Steps 6-11: Whether or not the credit and freshness checks are successful, the MTD

sends an authentication request message to the MSC/AuC to authenticate the MD.

The MD has already been identified by its IMSI. However, since the IMSI is not a

secret, it may be used by a malicious party. To counter such threat, the MD needs to

be authenticated under the IMSI claimed in Crreq prior to any monetary transaction.

With this IMSI, the MSC follows the usual procedure to authenticate an MD and it

does not required further user interaction. So, in the case of successful authentication,

the usual success message is sent from the BS to the MTD.

Step 12: If the credit check fails or the authentication success message is not

received, the protocol is terminated with the sending of a fail message from the MTD

to the MD. Termination does not occur before the authentication in order to hide the

result of the credit check from an unauthenticated attacker. Otherwise, when both the

credit check and the authentication are successful, a credit approval identifier AppID

is generated by the MTD. This acts as an index to a table in which the MTD stores

information about the debit account, the amount to be transferred, the destination shop

identity, a time stamp and the MD identity (IMSI). This identifier helps in resolving

any disputes in the future but the details of the transaction are not contained therein.

The MTD now forms a new string Crapp indicating credit approval for the Payment

Information PI, namely,

Crapp = PI‖TSa‖AppID (6.3)

where TSa is the MTD’s approval time stamp.

The MTD computes a signature with its signing key Ksign over the hashed plaintext

and encrypts the string Crapp with the key K1. The encrypted Crapp along with its

signature is transmitted to the mobile device. The former cannot be decrypted in

transit as the encryption key K1 is unavailable, nor is Crapp revealed by applying the

verification key to the signature because of the hashing. Moreover, because of TSs,

TSa or AppID, the message differs each time even if the user buys the same goods on

successive occasions.
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Steps 13-16: The mobile device decrypts the message with the encryption key K1

to obtain Crapp and forwards it to the shop along with the corresponding signature.

The shop verifies the signature using Kver and compares the PI content in the Crapp

message to the one it initially sent in message 2. In the case of an invalid signature or a

mis-match with PI, the shop discards the message, rejects the payment, and withholds

the goods or services from the customer. A successful verification indicates that the

customer is legitimate and that the MTD has obtained agreement from the customer

to pay. This is like a three party contract where a middle party (the MTD), trusted

by both other parties, provides assurance that the other party is willing to pay the

specified price.

The shop now needs to send its banking details to the MTD to complete the trans-

action. The banking details may include the account name and number, the bank and

branch codes, etc. This is sensitive information and should not be disclosed to any

entity other than the MTD, not even to the MD. The shop therefore generates encryp-

tion and MAC keys, K3 and K4 to secure its banking details. It encrypts the banking

details with the key K3, and computes a MAC over the ciphertext with the key K4. It

also forms a string, Kinfo, containing the information about the keys as follows:

Kinfo = K3‖K4‖AppID (6.4)

The role of the approval identifier AppID in this step is to enable the MTD to

connect the authentication phase to the transaction execution phase. The shop encrypts

the string Kinfo with the public key Kpub of the MTD and sends it to the MTD via

the MD. This forms a virtual tunnel between the shop and the MTD through the MD,

as the latter cannot decrypt the message content. Note, however, that the shop needs

to be certain it has Kpub correctly from the MTD, and not a key substituted by an

attacker.

6.4.3 Phase III: Transaction Execution

Step 17: The MTD associates the AppID received in the step 16 with the already

stored AppID (step 12). It decrypts the banking details of the shop with keys K3, K4

and transfers the approved amount, stored against corresponding AppID, to the shop

account. The MTD flags the AppID indicating that the transaction has been executed

to ensure that the same AppID could not be used again.

Step 18-21 After a successful transaction, the MTD generates a Transaction Serial

Number (TSN) and forms Transaction Execution Messages, TEMu and TEMs for the

MD and the shop respectively.
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TEMu = PI‖TSN‖TStr‖AccID
TEMs = PI‖TSN‖TStr‖SBAD

(6.5)

where,

TSN = Transaction serial Number

TStr = Time Stamp (transaction)

SBAD = Shop Bank Account Details

The MTD computes a signature on the hashed plaintext, encrypts TEMu with

the key K1, and sends it to the MD. The MD decrypts the message and verifies the

signature. An invalid signature indicates that the transaction confirmation has been

accidentally or deliberately corrupted en route. In such a case, the MD enquires about

the transaction from the MTD. If the transaction has already been executed, the MD

asks for a fresh confirmation message. Otherwise, it is obvious that message 16 has

not been delivered to the MTD. This may happen if a malicious party has blocked

the message from reaching the MTD and has instead transmitted a fake transaction

confirmation message. Of course, such a fabricated message cannot go undetected as

it is signed by the MTD. In such scenario, the MD asks the shop to resend message 16.

The MTD also forms a Transaction Execution Message, TEMs, for the shop by

appending the Shop’s Banking Details as shown in Eq (6.5). The MTD computes a

signature over the hashed plaintext and encrypts TEMs with the key K3. The MTD

sends this encrypted message along with its signature to the customer MD which relays

it to the shop. The customer’s MD can neither decrypt this message as it does not

possess K3, nor alter any contents as they are protected by the signature. The shop

decrypts the message, verify its contents and the signature, thereby confirming that his

account (rather than an attacker’s) has been credited correctly. The contents consist

of important transaction information exchanged during the transaction. Hence, if the

shop wants any subsequent clarification, it can approach the MNO quoting the TSN

and the AppID received in step 14. Finally, if the shop is satisfied, it produces a receipt

together with the goods or services for the customer.

6.5 Analysis

In this section, we analyse the protocol from multiple perspectives to ascertain the

strength of our protocol. This analysis encompasses the authentication and security of

the messages. We assume that the MNO is trustworthy, whereas the customer or the

shop can be dishonest, and there may be an active attacker listening to any of the NFC

or other messages.
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6.5.1 Dishonest Customer

Scenario 1. A dishonest customer plans to buy some products, making the payment

from someone else’s account. The PIN requirement in step 3 should force the customer

to use his own mobile device to enact the protocol. Indeed the protocol depends on the

strength of this PIN, just as is the case with credit card withdrawals. However, rogue

applications on the MD could have already sniffed the PIN.

Assume that the attacker uses his own mobile and knows the IMSI and account

numbers (IMSI ′, Acc′ID) of the target victim. He must fabricate Eq (6.2) as:

Cr′req = PI‖IMSI ′‖Acc′ID (6.6)

As this message can be decrypted only by the MTD, the malicious contents remain

undetected by all other entities. The MTD decrypts the message and identifies the

customer from IMSI ′. Assuming the protocol does not fail here because the target

victim is not a legitimate customer or the account has insufficient funds, the MTD

proceeds to the fresh authentication of IMSI ′. So the MSC/AuC provides the auth-

entication triplet in step 7 corresponding to IMSI ′. However, the attacker cannot

compute the valid response S′ as his mobile device lacks the necessary key K ′i. So,

the authentication check fails and the protocol terminates. Thus, an incorrect identity

cannot be successfully used in the protocol.

Scenario 2. Suppose a dishonest customer plans to buy goods without payment.

He could accomplish this by providing his own banking details, instead of the shop’s,

to the MTD for the payment recipient. He then blocks the legitimate message 16,

and replaces it as follows. Using his own keys K ′3 and K ′4, he fabricates message 16

with own banking details and sends it to the MTD. The MTD performs the transaction

against this information, deducting the amount from the customer’s account but paying

it back into the same or another account of the customer. (These may be distinct in an

attempt to avoid detection). After executing the transaction, the MTD sends ‘receipts’

in messages 18 and 19. The MD must block message 19 as this message contains the

substituted bank details which the shop checks. So the dishonest customer needs to

replace the banking details in this message with the shop’s banking details. He can

decrypt message 19 as it is encrypted with his own malicious key K ′3. However, he

must now change the banking details and encrypt them with the shop’s key K3. As he

lacks this key, he cannot generate a valid ciphertext. Moreover, the original message is

protected by the digital signature. If the customer were to make any alteration to the

banking details, it would void the signature which the shop verifies next. In neither

case is the shop able to verify the transaction, and a failure message is reported to the
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shopkeeper. Hence, the dishonest customer is again unsuccessful.

There may be another approach to accomplish the above attack where the dishonest

customer plans to buy some goods without payment. The dishonest customer does

not communicate with the MTD since he could not succeed in the way described

above; rather, he masquerades as the MTD to the shop. The target of the customer

is to send fake but acceptable receipts to the shop at the end of the protocol by

replaying old legitimate, messages or fabricating new messages. Since the customer

is not communicating with the MTD, his account will not be debited. In the original

protocol, the shop receives three messages from the MD: messages 1, 14 and 19. Message

1 originates from the MD, whereas messages 14 and 19 actually originate from the MTD

but are relayed by the MD to the shop. The dishonest customer needs to construct

or replay the latter two messages in such a way that they are acceptable to the shop.

Both messages are digitally signed by the MTD. They contain the Shop Identifier TSID

and Time Stamp TSs. TSID is a random value generated by the shop every time at

the start of the protocol. This value not only serves as a shop identifier during the

protocol, but it also adds freshness to the protocol messages. TSs is updated too in

every protocol round, but it may be predictable to some extent. A combination of

these two values, along with the digital signatures of the MTD, does not allow either

replay or alteration of the messages to succeed. Hence, the dishonest customer is again

unsuccessful. Of course, as usual in PKI, the shop should check the digital certificates

of the MTD keys to justify its trust in them.

Scenario 3. Assume now that the dishonest customer plans to pay less than

the required amount but claim payment of the full amount. To accomplish this, the

MD sends TP ′ in the Credit Request message Crreq of step 4 to the MTD, where

TP ′<TP . The MD receives the Credit Approval message, Crapp, in step 12 from

the MTD confirming that the initially requested amount TP ′ has been approved for

transaction. But the MD needs to confirm to the shop in step 14 that the original

amount, TP , is approved for transaction. Since the approved price is digitally signed

by the MTD, it cannot be amended by the MD. So the actual price that is approved

by the MTD is transmitted to the shop. As the shop application checks the approved

amount against that requested, this attack also fails.

Scenario 4. Here, a dishonest customer wants to pay through a mobile device

which he does not own. He might have stolen that device or found it as lost property.

If the SIM is still valid and the credit/debit cards have not been cancelled, it can

still be used for transactions. After the device receives the payment information PI

from the shop in step 2, the application installed on the mobile device requires PIN

verification from the customer. Since the customer does not own the mobile device,
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he should not have knowledge of the PIN. So the protocol does not proceed further.

Additionally, the application can be designed to be blocked in the MD and by the

MTD after a limited number of failed attempts at PIN verification. This provides an

assurance to the customers that their lost mobile device could not be used for any

monetary transactions even while the SIM remains active.

6.5.2 A Dishonest Shop

Scenario 5. The shop is dishonest and plans to draw more than the required amount

without intimation to the customer. The information about the amount to be trans-

ferred is sent to the MTD by the MD in the Credit Request message, Crreq, in step 4.

A mobile device cannot send more than the price contained in PI and approved by the

user in step 3 unless the device itself is compromised. Therefore, a shop cannot obtain

more than the agreed amount if, as requested, the customer checks the amount before

entering his PIN.

Scenario 6. The shop is dishonest and denies receipt of the transaction execution

message in step 19. In this way, the shop decides not to deliver the goods or services

despite receiving the required amount. However, the MD has the signed receipt from

the MTD with the TSN from Eq (6.5). This is linked to the approval AppID generated

in step 12. As both are digitally signed by the MTD, the customer can approach

the MTD regarding any dispute. With knowledge of the account credited during the

transaction and the shop receipt from the customer, the MTD can take action to

identify the criminal and refund the customer.

6.5.3 Message Security

Apart from the above-mentioned scenarios, we also analysed our protocols from various

other angles. The data over the GSM link (between the MD and the BS) is encrypted

according to the GSM specification. The data sent over the NFC link in steps 1, 2

and 14 are sent in the clear. This data does not contain any particularly sensitive

information except perhaps for the TP. However, the range within which this data can

be captured is very limited, and it is occupied by the shop keeper and the customer, at

least one of whom should notice unwelcome devices (such as other NFC capable mobile

phones) in the vicinity. The read range of the price displayed on both the shop till and

the user’s MD is much more than the range of the NFC link. Therefore, we considered

PI as not sufficiently sensitive to need protection over the NFC link. Nevertheless, we

should consider this in a little more detail.

Other information that is sent in clear over the NFC link includes the AppID in
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the Crapp message. At this point the attacker can hi-jack the protocol by blocking

the communication of message 16, replacing it with his own forged message which

contains his own bank details. There is no relevant data which is not known to the

attacker. This results in a successful transfer of funds to the criminal and also a

successful acknowledgment in step 18 to the legitimate customer. However, the shop

owner will either not receive the transfer message in step 20, or will receive one which

fails his verification. Thus, although the shop keeper will not then release the goods,

the attacker will have obtained the funds. The solution is to include a means for the

MTD to verify that message 18 comes from the same source as message 2.

We therefore propose the inclusion of a Diffie-Hellman key agreement (DH) between

the MD and Shop during messages 1 & 2 in situations where the NFC link may be

compromised. Then step 18 can include a proof of origin. Step 1 would include the

public parameters for DH, and the MD’s exponentiated value, while step 2 would

include the shop’s response of the other DH exponentiated value. As message 16

contains a MAC of the other components of message 16 using the DH shared key,

the MD can check the authenticity of message 16, ensuring that the protocol has not

been hi-jacked. However, an attacker who can hi-jack the protocol at step 18 could

equally easily hi-jack it at step 1. This requires blocking the legitimate message PI

and replacing it as necessary with PI ′ so that the MD agrees a shared key with the

attacker instead of the shop and, later, the forged message 16 is authenticated by the

MD. Since TP is not known to the attacker until PI is transmitted, the attacker needs

to collect the legitimate PI first in order to include TP in PI ′, this being necessary

to obtain the customer’s agreement over the price. However, for this to succeed, the

attacker must prevent the correct PI from reaching the MD. Consequently, the success

of Diffie-Hellman key exchange between shop and MD cannot be prevented unless the

attacker can guess TP correctly or the customer fails to check the amount carefully.

An attacker may use a hidden camera which can read the shop’s till display, then his

NFC hi-jack device can know TP in advance and so determine a value for PI which

the customer will accept. He can therefore block the legitimate message 2 and replace

it with his own. The threat from this is similar to that of a camera capturing PIN

values. Payment Card Industry Security Standard Council (PCI SSC) prohibits use of

cameras near a PIN entering device to avoid monitoring of displays, PIN pads, etc., [8].

Moreover, there are two methods to block RF communication on the NFC link and

neither of the methods can easily be adopted in our scenario. The first is to cover the

transmitter or receiver with some shielding material. The other method is to produce

a high noise on the same operating frequency resulting in a significant decrease in the

signal-to-noise ratio. For the former the attacker must shield the MD or the shop
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terminal. The latter requires noise generating hardware in close proximity to the MD

and the shop sales terminal. Both approaches are visibly detectable. This means there

is little scope for a successful attack when the MD also verifies the authenticity of

message 16. It should therefore be an acceptably small risk.

AppID, which is sent in the clear over the NFC link, is a random string generated

by the credit approval authority. From an attacker’s perspective, its only significance

is its assurance that the customer had, at least before the transaction, the amount TP

in his account. This assurance can also be achieved if a customer successfully pays for

some goods. Therefore, AppID is not sensitive information in this scenario.

The Role of the Approval Identifier in message 16. AppID acts as a bridge

between phase II and III. It also adds freshness to message 16, so it cannot be replayed

in future. Any alteration in the Kinfo results in invalid keys and an invalid AppID.

Hence it is detectable.

Non-repudiation of Transaction Execution Messages. TEMu and TEMs are

digitally signed by the MTD. In case of any dispute over payment, the MTD has to

honour both messages. So, both the customer and the shop are completely assured of

the transaction payment taking place.

Disclosure of Relevant Information. The Crreq containing price information is

not disclosed to the base station or any other GSM entity apart from the MTD. The

SBAD is sensitive information. It is encrypted not only over the GSM links but also

over the NFC link. It is transmitted through the mobile device to the MTD, yet the

former cannot decrypt this information. The AccID of the customer is not disclosed

to the shop. The MNO does not need to know the shopping details of the customer.

Therefore, only the total amount is communicated to the MNO for transaction.

New Keys for every Transaction. The encryption and MAC keys for the message

Crreq, namely K1 and K2, are freshly generated by the mobile device in each round.

Similarly, the keys K3 and K4, generated by the shop, are fresh for each transaction.

Of course, these should not be predictable, especially if previous such keys become

known.

Encryption and MAC Keys. Separate keys are used for encryption and MAC

calculation making the protocol more secure. Encrypt-then-MAC is an approach where

the ciphertext is generated by encrypting the plaintext and then appending a MAC of

the encrypted plaintext. This approach is cryptographically more secure than other

approaches [15]. Apart from its cryptographic value, the MAC can be verified without

performing decryption. So, if the MAC is invalid for a message, the message is discarded
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without decryption. This results in computational efficiency.

6.5.4 Monetary Transaction Between Two Individuals

The proposed protocol can be used for monetary transactions between two individuals.

The payee acts as a shop PoS terminal, and can use his own mobile phone for this. The

added advantage in our proposal is that the payee does not need to register himself with

the payer’s (= customer’s) MNO to receive a payment. This eliminates dependency of

both parties to be on the same mobile network for monetary transactions. The payee

needs only to provide his banking details in step 16 of the protocol.

6.5.5 Comparison of Proposed and Conventional Framework

Our proposed model is a Card not Present (CNP) model. If we compare our model with

a conventional payment system described in 6.2.2, it is obvious that the MTD plays the

role of an acquirer in our framework. The main difference is in the authentication of

the user, which in our case is carried out through GSM network. In conventional CNP

models, only the visible card data such as card number, cardholder’s name, expiry date

are used to authenticate the user. CNP transactions are vulnerable to fraud as the

chip data cannot be verified [18]. In our model, we virtually linked a registered bank

card to a SIM card against a specific user. Now, the SIM card is also authenticated

along with the CNP verification. Like an acquirer, the MTD acts a third party between

the merchant and the card holder for monetary transfer. It also keeps a record of all

transactions for any future disputes.

The issuer in our model, for pay-as-you-go transactions, is the same as the issuer

in the conventional payment system, i.e., the financial entity that issues card to a card

holder. The MTD communicates with the issuer to debit the account of the card holder

and then credit the account of the shop. On the other hand, for pre-paid, the issuer is

subsumed by the MTD.

6.6 Conclusion

In this chapter, we have proposed another transaction protocol for providing a secure

and trusted communication channel for payment of goods using mobile devices. We

used a different approach from the earlier versions of this protocol. The main advantage

of this protocol over its earlier version is the elimination of a shared secret between

the shop and the MNO. This makes this protocol more flexible and can also be used

for monetary transactions between two individuals even though both use different mo-
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bile networks. We proposed a dedicated department, MNO Transaction Department

(MTD), responsible for all the transactions. The security features of our protocol pro-

vide virtual tunnels among the mobile device, shop PoS terminal and the MTD. This

caters for unsecured channels within various entities of the GSM network. The anal-

ysis shows the protocol is secure against various attacks by a dishonest customer or a

dishonest shop.

In the next chapter, we will shift our focus to light-weight (e.g., NFC Type-1 and

Type-2 tags) RFID tags. We will describe a mutual authentication protocol for light-

weight RFID tags with some attacks to recover the secret keys.
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Chapter 7

Attacks on Authentication

Protocols

This is a joint work with Zeeshan Bilal and Keith Martin (ISG, RHUL).

My contribution in this work is the Full Disclosure Active(FDA) Attack on

SIDRFID (§ 7.4.2). Moreover, I also contributed in many fruitful discus-

sions that resulted in various other attacks mentioned in the chapter. This

work is published in the Journal of Applied Mathematics and Information

Sciences [17]. This chapter is almost verbatim of the published paper.

7.1 Introduction

We have, till now, covered the authentication issues related to NFC technology. Our

proposals for tag authentications (described in Chapter 4) deals with only high-cost

NFC tags that are able to perform public key cryptography. The light-weight NFC

tags, such as Type-1 or Type-2 tags described in §2.2 are unable to perform public

key cryptography. These tags require light-weight easily implementable authentication

mechanisms. NFC, being an extension to RFID technology, can incorporate RFID

authentication protocols. We selected an ultra-lightweight mutual authentication pro-

tocol for RFIDs proposed by Yung-Cheng Lee [43] that can also be used in NFC tags

and performed its security analysis. We discovered that the Lee’s protocol is vulnerable

to multiple attacks described §7.4 and §7.5 of this chapter.
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7.2 Authentication in RFIDs

Radio Frequency Identification (RFID) systems are becoming pervasive in large scale

identification applications [39]. The most widely deployed are low-cost RFID sys-

tems [23], where tags normally cost a few cents. These tags are likely to replace

bar-codes as the line of sight is not required making it more user-friendly. However,

there are many privacy and security concerns with low-cost RFID systems [39]. The

main limiting factor in low-cost RFID tags relates to lack of resources, such as memory,

computational power etc. RFID tags can be roughly classified into four classes based

on the available resources [23].

1. The full-fledged class refers to those RFID tags that have enough resources to

support conventional cryptographic functions like symmetric encryption, crypto-

graphic one-way function, or even the public key algorithms. NFC Forum Type

4 tags or the tags used in ePassport fall in this category.

2. The simple tags refers to those tags that have sufficient power to support simple

functions such as random number generator or one-way hashing function.

3. The third class called lightweight refers to those tags that can support simple

functions like Cyclic Redundancy Code (CRC) checksum, or a random number

generator but not a hash function.

4. The fourth class is ultralightweight referring to the tags that only support simple

bitwise operations (like XOR, AND, OR, etc).

Consequently, authentication schemes used in RFID tags also follow similar cate-

gorization. We focus on Low-cost RFID systems that fall in the ultra-lightweight class

of RFID tags. Yung-Cheng Lee proposed two ultra-lightweight authentication proto-

cols, SIDRFID and DIDRFID, for RFID tags [43]. In the SIDRFID, the tags and the

reader do not share any secrets, but rather use their respective identities as shared

secrets. These identities are, therefore, sensitive information so they are not transmit-

ted in clear. These identities are not updated and are static. Hence the protocol is

termed as “Ultra-lightweight RFID Protocol with Static Identity (SIDRFID)”. In the

DIDRFID, the tag and the reader share a secret key K. The K and the tag iden-

tity, IDT are updated in each authentication session. Therefore this protocol is called

“Ultra-lightweight RFID Protocol with Dynamic Identity (DIDRFID)”. Both proto-

cols claim to provide mutual authentication and implement very efficient and extremely

lightweight functions. We discuss these protocols in greater depth in Section 7.3.
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Avoine et al. have carried out a security analysis of both protocols [14]. They

observe that using a single master key in SIDRFID is a single point of failure if com-

promised. However, they do not elaborate on any specific technique to recover the

master key. We show in this paper how to recover this single master key and break the

entire SIDRFID system. Further, Avoine et al. highlight an attack on the secret key

used in DIDRFID. This attack involves eavesdropping two rounds of the authentication

session and L2 possible guesses (where L is the length of secret key K). We improve

this attack and demonstrate a passive full disclosure attack on the DIDRFID. Our at-

tack determines the correct key after eavesdropping approximately
√
πL authentication

sessions.

Our analysis is explained in detail in Section 7.4 and Section 7.5. We also describe

further attacks on these protocols including one where an attacker successfully traces

a tag.

7.3 Two Ultra-lightweight Authentication Protocols

In this section, we summarize the two authentication protocols proposed by Yung-

Cheng Lee for low-cost RFID systems [43]. These protocols belong to the ultra-

lightweight class and claim to provide mutual authentication. Additionally, these proto-

cols claim to resist attacks including traceability, replay, de-synchronization and imper-

sonation. Importantly, the computation cost is kept low by incorporating lightweight

functions. In the proposed protocols, the pseudo-random number generator is installed

only in the reader. The low-cost tag only performs simple bit-wise operations (XOR,

AND, OR) and bits rotation Rot(A,B), where Rot(A,B) represents left rotation of

string A by HW (B) bits.

7.3.1 Static Identity Protocol for RFID (SIDRFID)

The protocol assumes that tag and reader each have static identities IDT and IDR,

respectively, which are secret values shared by each entity (it is assumed that tag and

reader have these pre-installed prior to activation of the scheme). The IDR is also

stored in the tag which implies that this protocol can only be implemented in scenarios

where there is one particular reader or many readers with the same IDR. The protocol

executes as follows:

• Step 1.

– Reader generates R

108



7.3. Two Ultra-lightweight Authentication Protocols 7. Attacks on Authentication Protocols

– Reader computes:

Si = R⊕ IDR

– Reader → Tag : S

• Step 2.

– Tag computes:

R = S ⊕ IDR

P = IDT ⊕Rot(R, IDR)

Q = Rot(IDT, IDT )⊕Rot(R,R)

– Tag → Reader : (P,Q)

• Step 3.

– Reader computes:

IDT = P ⊕Rot(R, IDR)

Q
′

= Rot(IDT, IDT )⊕Rot(R,R))

– Reader authenticates tag as follows:

if Q
′

= Q then

Tag is authenticated

else

Protocol is abandoned

end if

• Step 4.

– In case of successful tag authentication, the reader computes:

Z = Rot(IDT, IDR⊕R)⊕Rot(IDR, IDT ⊕R)

– Reader → Tag : Z

• Step 5.
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– Tag computes:

Z
′

= Rot(IDT, IDR⊕R)⊕Rot(IDR, IDT ⊕R)

– Tag authenticates reader as follows:

if Z
′

= Z then

Reader is authenticated

else

Protocol is abandoned

end if

7.3.2 Dynamic Identity Protocol for RFID (DIDRFID)

The protocol assumes that tag and reader share a secret key K . This may be pre-

installed in the reader and in the tag prior to activation of the scheme. The dynamic ID

of the tag, DIDT , and the secret key K are updated after every authentication session.

We use DIDTi and Ki as the dynamic ID of the tag and the secret key respectively in

the ith authentication session. The protocol, in the ith session, executes as follows:

• Step 1.

– Tag → Reader : DIDTi

• Step 2.

– Reader uses DIDTi as index to extract the corresponding secret key Ki from

the database.

– Reader generates a random number Ri.

– Reader computes:

Ai = Ki ⊕Ri

Bi = Rot(Ki,Ki)⊕Rot(Ri, Ri)

– Reader → Tag : (Ai, Bi)

• Step 3.
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– Tag computes:

Ri = Ai ⊕Ki

B
′
i = Rot(Ki,Ki)⊕Rot(Ri, Ri)

– Tag authenticates reader as follows:

if B
′
i = Bi then

Reader is authenticated

else

Protocol is abandoned

end if

• Step 4.

– In case of successful reader authentication, the tag computes:

Ci = Rot(Ki, Ri)⊕Rot(Ri,Ki)

– Tag → Reader : Ci

• Step 5.

– Reader computes:

C
′
i = Rot(Ki, Ri)⊕Rot(Ri,Ki)

– Reader authenticates tag as follows:

if C
′
i = Ci then

Tag is authenticated

else

Protocol is abandoned

end if

• Key Updating Step. After successful mutual authentication, tag and reader

update their values:

– Tag and Reader compute:

DIDTi+1 = Rot(Ri, Ri ∨Ki)⊕Rot(Ki, Ri ∧Ki)

Ki+1 = Rot(Ri, Ri ∧Ki)⊕Rot(Ki, Ri ∨Ki)
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– Tag and Reader both keep (DIDTi,Ki) and (DIDTi+1,Ki+1) in their mem-

ory.

7.4 Security Analysis of SIDRFID

In this section, we carry out a security analysis of SIDRFID [43]. Avoine et al. have

suggested that SIDRFID is a weak protocol because it uses a single master key which

in many situations is considered unacceptable [14]. However, there may be applica-

tions, such as issuing temporary RFID tags for access control to a team visiting an

organization, where use of a single master key may be justified. In such scenarios, we

do not need to generate new keys on every access attempt and thus avoid the need

for secure distribution of these secret keys to each tag. Nonetheless we show that,

even in situations where a fixed master key is justified, the secret entities can be easily

recovered thus demonstrating that SIDRFID is a very weak protocol.

7.4.1 Passive Hamming Weight Disclosure (PHWD) Attack

We first present a passive attack which reveals HW(IDR). We make the realistic

assumption that the channel between the tag and the reader is wireless and insecure.

The attacker simply needs to eavesdrop any two authentication sessions. Moreover,

the resources available to the attacker are also limited so it cannot perform heavy

computations (a realistic assumption in lightweight cryptography). The attack executes

as follows:

• Step 1. Attacker eavesdrops two legitimate authentication sessions to obtain

S1, P1 and S2, P2.

• Step 2. The attacker computes A and B as follows:

A = S1 ⊕ S2
= (R1 ⊕ IDR)⊕ (R2 ⊕ IDR)

= R1 ⊕R2

(7.1)

B = P1 ⊕ P2

= (IDT ⊕Rot(R1, IDR))⊕ (IDT ⊕Rot(R2, IDR))

= Rot(R1, IDR)⊕Rot(R2, IDR)

= Rot(R1 ⊕R2, IDR)

(7.2)
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From (7.1) and (7.2), we get:

B = Rot(A, IDR) (7.3)

Since A and B are known from (7.1) and (7.2), HW (IDR) can easily be obtained

from (7.3).

After disclosing HW (IDR), an attacker can carry out a selective brute force attack

to find the exact value, where each value has correctness probability (considering L as

the length of bit string IDR):

p =
1(
L

HW (IDR)

)
This value is much higher than 2−L, which is the probability of brute force attack

success against an L-bit value. If we assume IDR to be similar to those assigned

as EPC values (96-bits [5]), then the IDR consists of only 36 unknown bits (which

we denote IDR∗) and the remaining 60 bits are publicly known (these determine the

header, manufacturer and type of item details). This further raises the correctness

probability p′ of a guess to:

p′ =
1(
36

HW (IDR∗)

)
The denominator’s maximum value reaches to 233 corresponding to HW (IDR∗) = 18.

As HW (IDR∗) is already obtained from Eq (7.3), an attacker needs 233 attempts, at

maximum, to recover the key which is substantially fewer trials to conduct.

7.4.2 Full Disclosure Active (FDA) Attack

We now present a Full Disclosure Active (FDA) attack against SIDRFID. We assume

that either the attacker is in possession of the tag or there is no restriction on accessing

the tag. This attack involves eavesdropping one authentication session and sending

L− 1 chosen public messages to the tag, where L is the length of bit string IDR. The

FDA attack is explained as follows:

• Step 1. The attacker eavesdrops a legitimate authentication session and records

S1, P1, Q1 and Z1 (described in Section 7.3.1), where the labels of individual bits

in each of these strings is as for the string X in the List of Notation.
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• Step 2. The attacker impersonates a legitimate reader and sends S2, a manip-

ulated version of S1 with the two least significant bits flipped as s
′
0 and s

′
1 (the

subscript of S represents the authentication session and subscript of s represents

the bit position).

• Step 3. Tag computes R2 as follows:

R2 = S2 ⊕ IDR (7.4)

Since IDR is fixed, R2 is the same as R1 except that the least significant two

bits are flipped as r
′
0 and r

′
1 as follows:

R1 = rL−1 · · · r2r1r0
R2 = rL−1 · · · r2r

′
1r
′
0

Let M = R1 ⊕R2

= 00 · · · 011

(7.5)

Tag now computes P2 and Q2 where,

P2 = IDT ⊕Rot(R2, IDR)

Q2 = Rot(IDT, IDT )⊕Rot(R2, R2)

and sends them to the attacker.

• Step 4. After receiving P2 and Q2, the attacker computes N as:

N = P1 ⊕ P2

= (IDT ⊕Rot(R1, IDR))⊕ (IDT ⊕Rot(R2, IDR))

= Rot(R1, IDR)⊕Rot(R2, IDR)

= Rot(R1 ⊕R2, IDR)

N = Rot(M, IDR)

(7.6)

Since N and M are known in (7.6), HW(IDR) can be calculated.

• Step 5. The attacker now computes T as:
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T = Q1 ⊕Q2

= (Rot(IDT, IDT )⊕Rot(R1, R1))⊕ (Rot(IDT, IDT )⊕Rot(R2, R2))

= Rot(R1, R1)⊕Rot(R2, R2)

(7.7)

• Step 6. R2 is same as R1 except that the least two bits are flipped as r
′
0 and

r
′
1, as explained before for deriving (7.5). The two least significant bits of R1,

will either be the same or different with probability one half. The attacker thus

analyses (7.7) according to two conditions as follows:

1. Case 1. The two flipped bits of R1 are different, which results in:

HW (R1) = HW (R2)

This simplifies (7.7) as follows:

T = Rot(R1 ⊕R2, R1)

= Rot(M,R1)
(7.8)

Since M is a string of all 0’s except for two consecutive 1’s in the least sig-

nificant positions (as described for (7.5)), T will also consist of all 0’s except

for two consecutive 1’s in the string. The position of the first 1 starting with

the least significant bit as zero determines HW(R1). The attacker marks the

least significant bit of R1 as x and the next bit as x
′

(in this case the first

two LSBs are inverses of each other).

2. Case 2. The two flipped bits of R1 are the same which results in either:

HW (R1) = HW (R2) + 2

or

HW (R1) = HW (R2)− 2

Since HW(R1) 6= HW(R2), this does not simplify (7.7). In this case the

string T will be a random string of 0’s and 1’s without any pattern. The

attacker marks the least significant bit of R1 as x and the next bit as x,

since both bits are either 0 or 1.

115



7.4. Security Analysis of SIDRFID 7. Attacks on Authentication Protocols

• Step 7. The attacker continues sending the next chosen plaintext S3 by flipping

(s0, s2). The resultant string T in this case will reveal whether r2 is the same as

r0.

if r2 = r0 then

r2 = x

else

r2 = x
′

end if

In general, the attacker continues sending chosen plaintexts by flipping two bits

(s0, sk) where k = 1 · · · (L − 1) as shown in Figure 7.1. For every kth authentic-

ation session, the string T in (7.7) reveals two bits of R1, (r0, rk), to be either

the same or otherwise.

• Step 8. At the end of this attack, R1 is represented as a string of x and x
′

with

known HW(R1) from (7.8). The attacker now replaces x’s with 1’s and x
′
’s with

0’s, or vice versa according to HW(R1).

• Step 9. The only non-trivial value will be when HW(R1) = L/2. In this case,

x can either be 1 or 0. Thus, R1 has two possible values. The attacker uses the

eavesdropped legitimate round of Step 1 and checks which of the two possible

values of R1 satisfies the values of the public messages S1, P1 and Q1.

• Step 10. Once we get the value of R1, we can easily determine IDR and IDT

from any of the public messages. It now becomes very easy to launch multiple

attacks on a tag including tag cloning, tag tracking and inventorying [39].

7.4.3 Other Attacks

We have just shown a full disclosure attack which completely disrupts the authentic-

ation process in SIDRFID. We now highlight further weaknesses in the design of this

protocol which can be exploited to launch multiple attacks.

Traceability Attack

We assume that a low-cost RFID tag is unable to keep track of the current status in

an authentication round. It thus replies to every query sent by a compatible reader.
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Figure 7.1: Full Disclosure Active (FDA) Attack in SIDRFID (for L=96).

In SIDRFID, the public messages P and Q are different in every authentication ses-

sion because of the different random R’s generated by the reader. The attacker thus

eavesdrops one round of authentication and keeps on sending the same S, thus forcing

the tag to calculate similar public messages. This will facilitate tracking of a particular

tag.

Reader Impersonation

The order of authentication is important in RFID authentication protocols and can

counter several active attacks. The reader should be authenticated first so the tag

may transmit its secret information only to a legitimate reader. The wrong order

of authentication leads to a reader impersonation attack. An attacker can eavesdrop

a legitimate authentication round. The attacker can then impersonate a legitimate

reader and replay the eavesdropped response as legitimate and get itself authenticated.

This attack is possible because secret values are not updated in each fresh round of
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authentication.

Identification of Reader

SIDRFID does not specify how the tag determines which IDR is to be used to generate

the public values. Therefore, a further limitation of this protocol is that it can only

be implemented in scenarios where there is only one particular reader or many readers

with the same IDR.

7.5 Security Analysis of DIDRFID

In this section, we carry out a security analysis of DIDRFID [43]. Avoine et al. pre-

sented a key guessing attack against DIDRFID [14]. This attack requires eavesdropping

two authentication session and a total of L2 possible guesses, where L is the length

of the secret key. Whilst this is a serious attack, we present another variant of full

disclosure attack which uniquely determines the key in many fewer attempts. This

further demonstrates that DIDRFID is a very weak protocol.

7.5.1 Passive Weight Disclosure (PWD) Attack

We assume that the channel between the tag and reader is wireless and insecure. The

PWD attack first obtains HW(K) which then allows us to uniquely determine the

correct secret K.

The details of this protocol are given in § 7.3.2 and our attack, which extracts the

secret key K, is as follows:

• Step 1. Attacker scans the communication channel until he observes that the

message Bi in (7.9) sent by reader to tag (forward channel) is same as the message

Ci in (7.10) sent by tag to reader (backward channel).

Bi = Rot(Ki,Ki)⊕Rot(Ri, Ri) (7.9)

Ci = Rot(Ki, Ri)⊕Rot(Ri,Ki) (7.10)

It is evident from (7.9) and (7.10) that Bi = Ci when:

HW (Ki) = HW (Ri) (7.11)

The probability P of meeting this condition for two random L bits values is:
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P =
1

(2L)2

L∑
i=0

(
L

i

)2

(7.12)

We use an approximation of Eq 7.12 using Vandermonde convolution formula

(also called ChuVandermonde formula) [32, 66] and Stirling’s approximation [28].

Using Vandermonde convolution formula, we get:

L∑
i=0

(
L

i

)2

≈
(

2L

L

)
(7.13)

and the Stirling’s approximation provides:

(
2L

L

)
≈ 4L√

πL
(7.14)

Hence it follows that:

P ≈ 1√
πL

(7.15)

So, we say that the attacker needs to observe
√
πL authentication sessions (on

average) to find the message B sent by the reader equal to the message C sent

by the tag. For L = 96 (assuming that the scheme is following EPC standard),

the attacker eavesdrops only 18 sessions of authentication, on average, to get the

required outcome.

• Step 3. Once the condition in Eq (7.11) is satisfied, attacker re-writes (7.9)

and (7.10) as follows:

Bi = Rot(Ki ⊕Ri,Ki), (7.16)

Ci = Rot(Ki ⊕Ri,Ki) (7.17)

• Step 4. Since message A is:

Ai = Ki ⊕Ri. (7.18)

as described in Section 7.3.2, (7.16) and (7.17) can be written as:
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Bi = Ci = Rot(Ai,Ki). (7.19)

Since Ai, Bi and Ci are known, HW(Ki) can be computed from (7.19) which will

be the same as HW(Ri) according to (7.11).

• Step 5. Since Ai, HW(Ki) and HW(Ri) are known, the attacker uses (7.18)

to determine j (the number of 1’s in Ki overlapping with Ri at the same bit

positions). The value of j is computed as follows:

j = HW (Ki)−
1

2
HW (Ai) (7.20)

• Step 6. The value of j from (7.20) is used to determine HW (Ri ∨ Ki) and

HW (Ri ∧Ki) as follows:

HW (Ri ∨Ki) = HW (Ai) + j (7.21)

HW (Ri ∧Ki) = j (7.22)

• Step 7. The attacker now XORs the update equations given in Section 7.3.2 as

follows:

DIDTi+1 ⊕Ki+1 = Rot(Ri ⊕Ki, Ri ∨Ki)⊕Rot(Ri ⊕Ki, Ri ∧Ki)

= Rot(Ai, Ri ∧Ki)⊕Rot(Ai, Ri ∨Ki)
(7.23)

DIDi+1 is transmitted in the next authentication session, where Ai, HW(Ri ∨
Ki) and HW (Ri ∧Ki) are already known. So Ki+1 can be easily and uniquely

calculated from the above equation.

7.5.2 Comparison between Our Attack and Avoine’s Attack

The complexity of revealing the secret K for both attacks depends on the number

of bits of secret K. The number of operations in Avoine’s attack corresponds to the

number of guesses before revealing the correct K. Avoine’s attack thus requires a total

of L2 guesses and eavesdropping of two sessions of the DIDRFID protocol.
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Our attack requires a small number of authentication sessions (
√
πL) as mentioned

in Eq 7.15 to be eavesdropped, but once this is done there is no further “guesswork”

required since the key K is uniquely revealed.

We note that for the case of EPCglobal tag, L = 96 and hence the attacker needs to

eavesdrop 18 authentication sessions, on average. Since eavesdropping the tag-reader

channel is easy, our attack can be very effective in dense reader environments where

tags can be read multiple times. The relationship between our attack and Avoine attack

is summarized in Table 7.1.

Type No of rounds No of guesses
of to be before

Attack eavesdropped revealing secret key

Avoine Attack 2 L2

Our Attack
√
πL (on average) 1

Table 7.1: Comparison between our attack and Avoine attack.

7.5.3 Traceability Attack

We note an additional weakness of the DIDRFID protocol. If the final message Ci

sent by the tag does not reach the reader due to a transmission error, or the attacker

disrupts it, the reader does not recognize the updated value DIDTi+1. The reader

in this case asks for older values of DIDTi (this is not mentioned in [43]). In such

a scenario, the attacker can track the tag by eavesdropping DIDTi, Ai, Bi and then

disrupting message Ci. The attacker can then repeatedly ask for an older value DIDTi

and send Ai, Bi in response, thus tracking the tag.

7.6 Conclusion

We have carried out security analysis of the two ultra-lightweight RFID authentication

protocols, SIDRFID and DIDRFID, proposed by Yung-Cheng Lee [43]. Earlier analysis

carried out by Avoine et al. [14] on SIDRFID mentions that the use of single master

key is a potential weakness but does not describe the method to recover the master

key. We have shown how to recover this single master key, thus allowing this weakness

to be fully exploited. The attack on DIDRFID presented by Avoine et al. determines

the correct key in L2 attempts (where L is the length of key). We presented a full
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disclosure attack by reducing the number of attempts to
√
πL. We conclude that both

SIDRFID and DIDRFID are extremely weak protocols.
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Chapter 8

Conclusion

The integration of NFC with cellular technology has given a new dimension to the usage

of NFC. It has a vast applications ranging from simple contents sharing to complex

processes like m-commerce. NFC will be, most likely, the key technology that will be

used in the mobile transaction in the coming years. In this context, the security of

NFC is of crucial importance in success of NFC.

We focused on the security issues of NFC and RFID, mainly authentication. NFC

and RFID tags are generally displayed in public with open access to any reader. For

instance, smart posters that are used for advertisement purpose contain data that is

accessible to any reader. The authentication of tag’s contents is then becomes crucially

important.

Similarly, there are occasions where copying the contents of an NFC tag to another

tag is undesirable. For instance, an NFC tag used for access control, or an NFC tag

registered against a specific product. In such cases, the authentication of the tag itself

is very important.

Following the same approach, our contribution is subdivided into two main cate-

gories; Tag Data Authentication and Tag Authentication. The contributions are as

follows:

1. NFC Forum released the Signature Specification in 2010 to digitally sign the

tag’s contents. The signature is computed over the Type, ID and Payload fields

of an NDEF record, whereas the lengths fields and the NDEF header byte remain

unsigned. The partial signing of NDEF message leads to multiple attacks such

as Record Composition / Decomposition attack. These attacks exploit unsigned

fields in the NDEF header. The earlier published attacks were not fully imple-

mentable as the required changes in the lengths fields were not taken into account.

We refined these attacks and explained precisely what additional changes need
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to be done. After refining the attacks, we provided two countermeasures to avoid

such attacks.

The first countermeasure suggests for the inclusion of TNF, Type-Length, Payload-

Length and ID-Length in the signature in such a way that the properties of an

NDEF message, e.g., record chunking, remain intact. This requires a revision in

the signature RTD only, without any alteration in the NDEF specification [63].

The second countermeasure is based on the removal of the data redundancy in

the NDEF specification. Two bytes consisting of the Type-length and ID-Length

fields are alway zero for the middle and terminating chunk records (TNF=6).

Hence, this is a redundant data as the TNF value in the header byte indicates

the same. We suggested that removal of the lengths fields from the middle and

terminating chunks (as these fields are always zero for chunk records) can fix

some of the issues regarding signature specification [62].

We drew attention to our work by writing to the NFC Forum regarding the attacks

and the proposed countermeasures. Consequently, the NFC Forum released a

candidate specification for the updated Signature RTD Version 2.0 in 2013.

2. Presently, there is no mechanism provided by the NFC Forum to detect a coun-

terfeit or cloned tag. This results in various possibilities for malicious activities

where a legitimate tag is replaced by a counterfeit tag and the NFC tag reader

is unable to detect the counterfeit. We proposed a framework to counter such

attacks by providing a tag authenticating mechanism [64]. We introduced a new

Tag Authentication Record that provides relevant information to authenticate a

tag in an off-line environment. It employs public key cryptography with digital

certificates and so can be used on NFC tags that have sufficient computational

power and resources to perform such operations. The Tag Authentication Record

is based on the NFC Data Exchange Format and is thus compatible with all

NFC Forum devices. The NFC tag simply signs a challenge c and returns the

signature to the NFC reader. The NFC reader verifies the signature according

to the information available in the previously communicated Tag Authentication

record. A successful verification confirms that the tag is not cloned. Of course,

the certificate chain should also be checked for any revocation.

Since the proposed specification requires public key encryption to be performed

by the tag, the specification may be implementable to a small number of tags, at

present, that have sufficient resources and power to perform public key crypto-

graphy. The scheme may be applied to more number of tags in future as their
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computational power increases over time. Moreover, light-weight versions of pub-

lic key encryption schemes may also appear and allow wider applicability.

3. After proposing a mechanism to authenticate a tag, we proposed a framework to

demonstrate its use in a supply chain to detect counterfeit tags [61]. We proposed

that if the products are equipped with NFC tags, the counterfeit products can

be identified by authenticating the attached NFC tags. During the initialisation

phase, the product specifications like serial number, model, manufacturer, expiry

date etc., are stored in the NFC tag along with the public key Kpub in the earlier

proposed Tag Authentication Record. The data is signed according to the NFC

Forum signature specification. An application in the user’s cell phone reads the

NFC tag’s contents and detects the Tag Authentication record in the NDEF mes-

sage stored in the tag. The user’s phone executes a challenge response protocol

to ascertain whether the tag has a correct private key Kpr (corresponding to the

Kpub). A counterfeit product can be detected as it lacks the correct private key.

We analyzed the economic aspects of the proposed scheme at a broader level as

the inclusion of NFC tags require some additional investment by the supplier.

Our analysis shows that the scheme is suitable for products with $30 or more

profit margin (assuming 7% counterfeits in the market and $2/unit is the cost

implementing NFC tag in a product).

4. Keeping in view that the main use of NFC in future will be commercial, we pro-

posed a mobile payment solution [60]. The proposal is based on a cloud wallet

model, where only the authentication credentials are stored in the mobile device

and all sensitive information is stores in a cloud. Our protocol can be sued for the

monetary transfer between two individuals who may not share the same mobile

network. A customer, who wants to pay for some goods or services, is first authen-

ticated by his MNO and after successful authentication, the amount is transferred

to the shop account. We proposed a dedicated department, MNO Transaction

Department (MTD), responsible for all the transactions. The security features of

our protocol provide virtual tunnels among the mobile device, shop PoS terminal

and the MTD. This caters for unsecured channels within various entities of the

GSM network. The analysis shows the protocol is secure against various attacks

by a dishonest customer or a dishonest shop.

5. I participated in the security analysis of two ultra-lightweight mutual authentic-

ation protocols, SIDRFID and DIDRFID [17]. The former is based on a static

identity of RFID whereas the latter is based on dynamic identity of RFID. I con-

tributed in a Full Disclosure Active (FDA) attack against SIDRFID. This is a
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chosen plaintext attack where the attacker sends L−1 chosen public messages to

the tag (L represents the length of the secret static tag ID). the chosen messages

are designed in such a way that results in full disclosure of the secret.

8.1 Future of NFC

NFC can be used in variety of applications like identification, automation, ticketing,

content sharing, payment, advertisement etc. In spite of its potential, standardised

architectures are yet to develop to cater for its vast area of applications. Since NFC

will be, most likely, used for m-commerce, the security is the back-bone of the NFC.

Security issues emerging as a result of a sharp increase in its utility are a constant

threat to the stability of an NFC ecosystem.

In addition to technical matters, there are concerns such as personalization, data

storage, management and ownership of the Secure Element (SE) as it stores sensitive

data such as banking credentials. Various key players in an NFC ecosystem, like mobile

phone developers, financial institutions, smart card manufacturers, MNOs, operating

system developers etc., are required to develop a widely acceptable NFC ecosystem.

They need to improve their products in terms of compatibility and security. NFC,

being a relatively new technology, is yet to mature to be widely used in m-commerce.

In a nutshell, the NFC would become a widely implemented main-stream technology

provided that the NFC stake holders improve their products and standards to pull the

NFC out of its current state of the Trough of Disillusionment. According to technical

experts, this may take a time period of about two to five years.
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Appendix A

NFC-Enabled Mobile Phones

Acer Cloud Mobile Acer E320 Liquid Express

Acer Liquid Glow Acer Liquid S2

Adlink IMX-2000 Alcatel One Touch 922

Alcatel One Touch 996 Alcatel Onetouch Idol 2

Alcatel Onetouch Idol 2 Mini S Alcatel Onetouch Idol 2S

Alcatel Onetouch Pop Fit Asmaitha Sruta 7 Tablet

Asus Padfone 2 Asus Padfone Infinity

Asus Vivo Tab Asus Vivo Tab RT

Asus VivoTab Smart BBK Vivo Xplay

Benq T80 BlackBerry Bold 9790

BlackBerry Bold 9900/9930 BlackBerry Curve 9350/9360/9370

BlackBerry Curve 9380 BlackBerry PlayBook

BlackBerry Q10 BlackBerry Q5

BlackBerry Z10 BlackBerry Z30

BWC ToughSlate 7 C-Mii 1

C-Mii 3 Casio DT-X8

Casio GzOne CA-201L Casio IT-800

Cetrix CB250 Cetrix CD661

Cetrix CT973G Cetrix CV300

Dell Venue 11 Pro DLI 9000

Faea F1 Faea F2

Faea F2S Firefox OS Flame

Fujitsu Arrows A Fujitsu Arrows F-07D

Fujitsu Arrows Kiss Fujitsu Arrows Tab

Fujitsu Arrows V G.To N800
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Gentag GT-601v2 Gionee Elife E7

Google Nexus 107 Google Nexus 5

Google Nexus 7 (2013) Hike X1

Hike X1D Hisense Sero 7 Pro

HP Elitebook Revolve HP Elitepad 900

HTC Desire 500 HTC Desire 610

HTC Desire 816 HTC Desire C

HTC Droid DNA/HTC J Butterfly HTC Droid Incredible 4G LTE

HTC Evo 4G LTE HTC First

HTC Incredible HTC Mini

HTC One HTC One M8

HTC One Max HTC One SV

HTC One VX HTC One X/XL

HTC Ruby/Amaze 4G HTC Windows Phone 8X

Huawei Ascend G300 Huawei Ascend G6 4G

Huawei Ascend G600 Huawei Ascend P2

Huawei Ascend Y201 Huawei Sonic/Turkcell T20

Huawei TalkBand B1 iBerry Auxus Nuclea N2

Jolla by Jolla Kuoziro FT701W NFC Tablet

Kyocera Hydro Elite Kyocera Torque

Lenovo K800 Lenovo ThinkPad Tablet 2

LG G Flex LG G Pro 2

LG G2 LG G3

LG KU380-NFC LG Mach

LG Optimus 3D Max LG Optimus 4X HD

LG Optimus Elite LG Optimus G

LG Optimus L5 LG Optimus L7

LG Optimus LTE LG Optimus LTE Tag

LG Optimus Net LG Optimus Vu

LG T530 Ego LG Viper

Lumigon T2 Lumigon T2 HD

M3 Android NFC Communicator Megafon Mint

Meizu MX3 Motorola Droid Maxx

Motorola Droid Mini Motorola Droid Razr

Motorola Droid Razr HD Motorola Droid Razr M

Motorola Droid Razr M 4G LTE7 Motorola Droid Razr Maxx HD

Motorola Droid Ultra Motorola MC75A HF
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Motorola Moto X Motorola Photon Q 4G LTE

Motorola Razr D3 Motorola Razr i/MT788

MTS 975 Nokia 603

Nokia 700 Nokia 701

Nokia 801T Nokia 808 PureView

Nokia C7/Astound Nokia Lumia 1020

Nokia Lumia 1520 Nokia Lumia 2520

Nokia Lumia 610 NFC Nokia Lumia 620

Nokia Lumia 720 Nokia Lumia 820

Nokia Lumia 920 Nokia Lumia 925

Nokia Lumia 928 Nokia Lumia 930

Nokia Lumia Icon Nokia N9

Nokia Oro OnePlus One

Oppo Find 5 Oppo Find 7

Oppo N1 Orange Infinity 996

Orange San Diego OrientPhone P6 Plus

Panasonic BizPad Panasonic Eluga

Panasonic Eluga Power7 Pantech Discover

Pantech Sky Vega LTE Pantech Sky Vega Racer

Philips Xenium W336 Porsche Design P9981

Porsche Design P9982 Prada phone by LG 3.0

Samsung Ativ Odyssey Samsung Ativ S Neo

Samsung Ativ SE Samsung Galaxy Ace 2

Samsung Galaxy Ace Style7 Samsung Galaxy Axiom

Samsung Galaxy Core Advance Samsung Galaxy Core LTE

Samsung Galaxy Express Samsung Galaxy Express 2

Samsung Galaxy Light Samsung Galaxy Mega

Samsung Galaxy Mini 2 Samsung Galaxy Note

Samsung Galaxy Note 3 Samsung Galaxy Note II

Samsung Galaxy Premier Samsung Galaxy Round

Samsung Galaxy Rugby LTE/Pro Samsung Galaxy S Advance

Samsung Galaxy S Blaze 4G Samsung Galaxy S II

Samsung Galaxy S II Plus Samsung Galaxy S III

Samsung Galaxy S III Mini Samsung Galaxy S4

Samsung Galaxy S4 Active Samsung Galaxy S4 Mini

Samsung Galaxy S5 Samsung Galaxy Stratosphere II

Samsung Galaxy Victory 4G LTE Samsung Galaxy Young
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Samsung S5230 NFC7 Samsung S5260 NFC

Samsung SHW-A170K Samsung Wave 578

Samsung Wave M7 Samsung Wave Y

Samsung Windows RT Ativ Tablet Samsung WP8 Ativ S

Samsung Z Sharp Aquos Phone Serie

Sharp Aquos Phone Zeta Sharp RW-T107 NFC Tablet

Sharp RW-T110 NFC Tablet Sonim XP1301 Core NFC

Sonim XPand NFC Sony SWR10 SmartBand

Sony Vaio Fit Sony Xperia Acro S

Sony Xperia AX Sony Xperia Ion

Sony Xperia L Sony Xperia M

Sony Xperia M2 Sony Xperia P

Sony Xperia S Sony Xperia Sola

Sony Xperia SP Sony Xperia T

Sony Xperia T2 Ultra Sony Xperia Tablet Z

Sony Xperia V Sony Xperia VL

Sony Xperia Z Sony Xperia Z1

Sony Xperia Z1 Compact Sony Xperia Z2

Sony Xperia Z2 Tablet7 Sony Xperia ZL

Sony Xperia ZR TazTag TazPad7

TazTag TPH-One7 The Toughphone Defender

Toughshield R-500 Toughshield T700

Turkcell MaxiPRO5 Turkcell T11/ZTE Racer II

Turkcell T40 Umi Cross

Umi X2S Vertu Constellation

Vertu Ti Vodafone Smart III

Xiaomi Mi 2A7 Xiaomi Mi3

Xolo X900 Yota Devices YotaPhone (2014)7

Yulong Coolpad 8870 NFC7 Zopo ZP998

ZTE Blade II ZTE GoTa GH800

ZTE Grand X IN ZTE Kis

ZTE Nubia Z5 ZTE Orbit

ZTE PF200 ZTE R233

ZTE Turkcell MaxiPLUS5
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