
Public-Key Cryptography with Joint and
Related-Key Security

Susan Thomson

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
School of Mathematics and Information Security

Royal Holloway, University of London

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28905869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

These doctoral studies were conducted under the supervision of Prof. Kenneth G.
Paterson.

The work presented in this thesis is the result of original research carried out by my-
self, in collaboration with others, whilst enrolled in the Department of Information
Security as a candidate for the degree of Doctor of Philosophy. This work has not
been submitted for any other degree or award in any other university or educational
establishment.

Susan Thomson
April, 2014

2

Abstract

The principle of key separation dictates using different keys for different crypto-
graphic operations. We investigate the topic of joint security, where a single keypair
is used in multiple primitives in a secure manner. We concentrate mainly on the case
of encryption and signature under a shared keypair, giving a generic construction
and a more efficient direct construction, both secure in the standard model, and
show how these results relate to signcryption.

We then turn our attention to security under related-key attacks (RKA), where an
adversary can modify a stored secret key and observe the outputs of the system as
it operates under this new key. We provide a framework enabling the construction
of RKA-secure identity-based encryption (IBE) schemes, and show how specific in-
stantiations of the framework yield IBE schemes secure against adversaries deriving
new keys through affine and polynomial transformations of the master secret key.
From this we obtain the first constructions of RKA-secure schemes for a variety of
primitives under the same non-linear key transformations.

Since achieving joint or RKA security often depends on the format of the stored keys,
we introduce key-versatile signatures, where the public key is an arbitrary one-way
function of the secret key, and show how these can be used to obtain further results
in joint and RKA security and beyond.

3

Contents

Publications 6

Acknowledgements 7

1 Introduction 8
1.1 Motivation . 8
1.2 Thesis Structure . 10

2 Preliminaries 12
2.1 Notation . 12
2.2 Cryptographic Primitives . 13
2.3 Constructions . 24
2.4 Bilinear Pairings . 26

3 Joint Encryption and Signature 29
3.1 Introduction . 29
3.2 Joint Encryption and Signature Schemes 32
3.3 A Cartesian Product Construction 34
3.4 An Insecure JES Scheme whose Components are Secure 34
3.5 A Generic Construction from IBE 35
3.6 A More Efficient Construction . 41
3.7 Comparison of Schemes . 54
3.8 Signcryption from Joint Encryption and Signature 56
3.9 Conclusion . 60

4 Related-Key Attack Security for IBE 62
4.1 Introduction . 62
4.2 Preliminaries . 64
4.3 Existing IBE Schemes Under Related-Key Attacks 67
4.4 Framework for Deriving RKA-Secure IBE Schemes 69
4.5 Applying the Framework . 76
4.6 Conclusion . 81

5 Further RKA-Secure Primitives 84
5.1 Introduction . 85
5.2 RKA-Secure PKE . 88

5.2.1 RKA Security of the Boneh-Katz Transform 89
5.2.2 RKA Security for the KEM-DEM Paradigm 99
5.2.3 An RKA-Secure KEM from the BMW Scheme 103

4

CONTENTS

5.3 Joint Security in the RKA Setting 109
5.4 RKA-Secure Symmetric Encryption 116

5.4.1 RKA-Secure Symmetric Encryption from PKE 117
5.4.2 Strong RKA-Secure PKE from IBE 120
5.4.3 Strong RKA-Secure IBE . 125

5.5 Conclusion . 133

6 Key-Versatile Signatures 135
6.1 Introduction . 135
6.2 Key-Versatile Signatures . 141

6.2.1 Security of F-Keyed Signature Schemes 143
6.2.2 Constructing F-Keyed Signature Schemes 147

6.3 Joining Signature to Encryption with No Public-Key Overhead . . . 150
6.4 RKA-Secure Signatures from RKA-Secure OWFs 157
6.5 KDM-Secure Storage . 163
6.6 Conclusion . 179

Bibliography 182

5

Publications

This thesis is based on the following three published papers.

1. Kenneth G. Paterson, Jacob C. N. Schuldt, Martijn Stam, and Susan Thom-

son. “On the Joint Security of Encryption and Signature, Revisited”. In:

ASIACRYPT 2011. Ed. by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073.

LNCS. Seoul, South Korea: Springer, Berlin, Germany, 2011, pp. 161–178

2. Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. “RKA Security be-

yond the Linear Barrier: IBE, Encryption and Signatures”. In: ASIACRYPT

2012. Ed. by Xiaoyun Wang and Kazue Sako. Vol. 7658. LNCS. Beijing,

China: Springer, Berlin, Germany, 2012, pp. 331–348

3. Mihir Bellare, Sarah Meiklejohn, and Susan Thomson. “Key-Versatile Signa-

tures and Applications: RKA, KDM and Joint Enc/Sig”. In: EUROCRYPT

2014. Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441. LNCS.

Copenhagen, Denmark: Springer, Berlin, Germany, 2014, pp. 496–513

6

Acknowledgements

I would like to thank my supervisor Kenny Paterson, who took four years of backchat

in good humour, and gave freely of his time and travel budget in return.

I would also like to thank my other excellent co-authors: Sarah Meiklejohn, Jacob

Schuldt, Martijn Stam, and in particular Mihir Bellare, whose work inspired my love

of provable security, and who was a welcoming host during my time at UCSD.

I am grateful for the financial support of the EPSRC.

Thanks go those who were there for lunches at the SCR and evenings in the Happy

Man. Thanks especially to James, who graciously tolerated unreasonable office

behaviour, from thinking aloud to improvised percussion, and to Shahram, for the

nachos. Good work, team.

Thanks also to Niall, a pal and a confidant, and to Gaven, who wants it in writing.

Unbelievable.

Finally I thank my family, whose love and support get me through.

7

Chapter 1

Introduction

Contents

1.1 Motivation . 8

1.2 Thesis Structure . 10

This chapter gives an overview of the thesis. We provide the motivation for our

research and present the overall structure of the thesis.

1.1 Motivation

We investigate the security of cryptographic schemes when additional information

about the underlying secret key is leaked through either using the same key in

multiple primitives, or through tampering with the key and observing the operation

of the scheme under the modified key.

The first case, using the same key in multiple primitives, may come about in an

attempt to reduce certificate overhead, public key size, or code footprint, or may

simply be a result of reckless implementation of cryptography. While the folklore

principle of key separation dictates fresh keys for every primitive, given the expense

of generating and certifying keys, key reuse between primitives is tempting, and is

even permitted by some standards [58, 42].

The second case, tampering with a stored key, can occur through physical inter-

ference with a device implementing cryptography. This may be through techniques

such as exposing a chip to unusual voltages or temperatures, inducing clock glitches,

or application of an intense light source [4, 97].

8

1.1 Motivation

Since securing devices against physical attacks and preventing those in charge of how

cryptography is implemented from making their own “optimisations” are challenging

tasks, rather than trying to prevent these key-information leaking scenarios, our aim

in this work is to build schemes secure in the face of them.

We approach this by looking at primitives under extensions of the usual notions of

security that model this additional leakage. For example, in the case of key reuse

between encryption and signature [72] this means allowing an adversary to obtain

signatures when trying to distinguish between encrypted messages, and allowing an

adversary to obtain decryptions while trying to forge a signature. Such additional

information can be very helpful to an adversary. Consider the case of textbook RSA,

where signing under a key is exactly the same operation as decryption under that key.

An adversary trying to determine the message encrypted in a ciphertext can simply

ask for a signature on that ciphertext, the response being the message in the clear.

Similarly an adversary trying to forge a signature on a message can obtain such a

forgery by submitting the message for decryption. Clearly key reuse here is fatal to

the security of both encryption and signature. We give constructions of encryption

and signature schemes that afford users the benefits of key reuse without degrading

security, by showing that the schemes remain secure even against adversaries who

can obtain both decryptions and signatures under the same key.

In modelling security against an adversary tampering with a stored key we consider

what is called a related key attack (RKA) [18], where an adversary’s tampering

transforms a key into one related to the original key through a related-key deriving

(RKD) function. The adversary then sees the result of operations under the modified

key. An adversary with this capability may be able to break a scheme with ease.

For example an adversary attacking a symmetric encryption scheme who is able to

transform the stored key into a known constant value can decrypt any ciphertexts

encrypted under that key. No symmetric scheme can be secure against an adversary

who can transform the key in this way, that is, an adversary who can apply a

constant RKD function to the stored key. For this reason, security against related-

key attacks is parameterised by a set Φ specifying the RKD functions an adversary

can apply. Our aim then is to construct schemes secure against RKAs for as large a

set Φ as possible. We focus on schemes where the stored secret key is an element of

a field where, prior to our work, RKA-secure constructions were known only for sets

Φ consisting of linear transformations [13, 14, 8, 99], or in weaker security models

than those we consider here [69]. We go beyond this “linear barrier”, achieving RKA

security for a range of primitives when the set Φ consists of affine and polynomial

transformations of the key.

9

1.2 Thesis Structure

Lastly, revisiting key reuse, we introduce a new primitive, a signature scheme where

the relationship between secret and public keys is an arbitrary one-way function

F . These “key-versatile” signatures allow us to sign with keys already in use for

another purpose, by setting this function F to be the one-way function defining the

relationship between the secret and public keys of an existing scheme. We define

strong security properties which we require of key-versatile signatures, and prove

that these properties ensure both that the signatures are secure and that they do

not impact on the security of the existing scheme, which might otherwise be affected

by the leakage of key-information in the form of the signatures computed under the

same key.

These results show that key-information leakage additional to that allowed for in

standard notions of security while potentially damaging is not always so, and that

carefully considered constructions can achieve security where such leakage causes

others to fail.

1.2 Thesis Structure

Chapter 2. This chapter defines all the necessary primitives and notions of security,

and some standard constructions that will be used later in the thesis.

Our contributions are then presented in the remaining chapters, each chapter be-

ginning with an introduction to the topic and concluding with a summary of the

results and some open problems in the area.

Chapter 3. In this chapter we revisit the topic of joint encryption and signature

schemes, where a single keypair is used for both encryption and signature in a secure

manner. We give a general construction for a joint encryption and signature scheme

that uses identity-based encryption (IBE) as a component, and that is secure in the

standard model. We then provide a more efficient direct construction, also secure

in the standard model. Finally, we show how these results relate to signcryption.

Chapter 4. This chapter concerns security under related-key attacks, where an

adversary can modify a stored secret key and observe the outputs of the system as

it operates under this new key. We provide a framework enabling the construction

of RKA-secure IBE schemes, and show how specific instantiations of the framework

10

1.2 Thesis Structure

yield IBE schemes secure against adversaries deriving new keys through affine and

polynomial transformations of the master secret key.

Chapter 5. In this chapter, we use the RKA-secure IBE schemes of the previous

chapter, and the techniques used in their construction, to build further RKA-secure

primitives. From RKA-secure IBE we immediately get RKA-secure PKE and sig-

nature schemes under the same assumptions. We construct RKA-secure PKE from

IBE through the Boneh-Katz transform, and through applying the techniques of the

previous chapter to build an RKA-secure KEM. We additionally build RKA-secure

joint encryption and signature from IBE. When the base IBE scheme has a further

malleability property, the PKE scheme obtained through the CHK transform can be

converted into an RKA-secure CCA-SE (CCA-secure symmetric encryption) scheme.

These results give the first RKA secure schemes for the primitives signature, PKE,

and CCA-SE for non-linear RKAs.

Chapter 6. This chapter introduces key-versatile signatures, which allow us to sign

with keys already in use for another purpose, without changing the keys and without

impacting the security of the original purpose. This allows us to obtain advances

across a collection of challenging domains including joint encryption and signature,

security against related-key attack and security for key-dependent messages (KDM).

Specifically we show how to (1) Add signing capability to existing encryption ca-

pability with zero overhead in the size of the public key (2) Obtain RKA-secure

signatures from any RKA-secure one-way function, yielding new RKA-secure signa-

ture schemes (3) Add integrity to encryption while maintaining KDM-security.

11

Chapter 2

Preliminaries

Contents

2.1 Notation . 12

2.2 Cryptographic Primitives 13

2.3 Constructions . 24

2.4 Bilinear Pairings . 26

This chapter defines all the necessary primitives and notions of security, and some

standard constructions that will be used in the thesis.

2.1 Notation

If x is a binary string then |x| is its bit length. If S is a finite set then |S| denotes

its size and s←$ S denotes picking an element uniformly at random from S and

assigning it to s. For sets X,Y let Fun(X,Y) be the set of all functions mapping X

to Y . We denote by λ ∈ N the security parameter and by 1λ its unary representation.

The operator ! denotes logical negation.

Algorithms are randomised unless otherwise indicated. For all algorithms, whether

randomised or deterministic, “PT” stands for “polynomial-time”. We denote by

y ← A(x1, . . . ;R) the operation of running algorithm A on inputs x1, . . . and coins

R and letting y denote the output. By y←$ A(x1, . . .), we denote the operation of

letting y ← A(x1, . . . ;R) for random R. We denote by [A(x1, . . .)] the set of values

that have positive probability of being output by A on inputs x1, Adversaries

are algorithms.

We use games in definitions of security and in proofs. A game G (e.g. Figure 2.1)

12

2.2 Cryptographic Primitives

has a main procedure whose output (what it returns) is the output of the game.

We let Pr[G] denote the probability that this output is the boolean true (with Pr[G]

denoting the probability that this output is false). A boolean flag (for example bad),

if used in a game, is assumed initialised to false. The running time of an adversary, by

convention, is the worst case time for the execution of the adversary with any of the

games defining its security, so that the time of the called game procedures is included.

When a proof involves multiple games, a comment beside each procedure shows

which games it belongs to. If the name of a game in this comment is surrounded by

a box, the procedure in this game includes the boxed code, otherwise it does not.

When there are sections of both dashed and solid-boxed code, the dashed-boxed

code belongs to the games whose names in the comment are enclosed in a dashed

box, and the solid-boxed code belongs to the games whose names are enclosed in a

solid box

Primitives may have a set of public parameters shared between all users. These

could include for example a hash key or a description of a group. When there are

multiple keys and parameters involved we will use a subscript to show which belong

to which scheme, for example ppS to denote public parameters for scheme S.

2.2 Cryptographic Primitives

Function families. A function family F specifies the following. Via pp←$ F.Pg(1λ)

one can in PT generate a description pp of a function F.Eval(pp, ·): F.Dom(pp) →
F.Rng(pp). We assume that membership of x in the non-empty domain F.Dom(pp)

can be tested in time polynomial in (pp, x) and one can in time polynomial in pp

sample a point x ←$ F.Dom(pp) from the domain F.Dom(pp). The deterministic eval-

uation algorithm F.Eval is PT. The range is defined by F.Rng(pp) = {F.Eval(pp, x) :

x ∈ F.Dom(pp)}. Testing membership in the range is not required to be PT. (But is

in many examples.) We say that F is one-way or F is a one-way function (OWF) if

Advow
F,I(·) is negligible for all PT I, where Advow

F,I(λ) = Pr[F.Eval(pp, x ′) = y] under

the experiment pp←$ F.Pg(1λ); x ←$ F.Dom(pp); y ← F.Eval(pp, x); x ′←$ I(pp, y).

We say that F is second-preimage resistant if Advsec
F,A(·) is negligible for all PT

A, where Advsec
F,A(λ) = Pr[(F.Eval(pp, x ′) = F.Eval(pp, x)) ∧ (x ′ 6= x)] under the

experiment pp←$ F.Pg(1λ) ; x ←$ F.Dom(pp) ; x ′←$ A(pp, x). We say that F is

collision resistant if Advcoll
F,A(·) is negligible for all PT A, where Advcoll

F,A(λ) =

Pr[(F.Eval(pp, x ′) = F.Eval(pp, x))∧(x ′ 6= x)] under the experiment pp←$ F.Pg(1λ);

(x , x ′)←$ A(pp).

13

2.2 Cryptographic Primitives

main IND-CCAA
PKE(λ)

b←$ {0, 1} ; c∗ ←⊥
pp←$ PKE.Pg(1λ) ; (sk , pk)←$ PKE.Kg(pp)

b′←$ADec,LR(pp, pk)

Return (b = b′)

proc Dec(c)

If (c = c∗) then Return ⊥
Return m ← PKE.Dec(pp, sk , c)

proc LR(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗←$ PKE.Enc(pp, pk ,mb)

Return c∗

Figure 2.1: Game IND-CCA defining indistinguishability of public key encryption
scheme PKE under chosen-ciphertext attack.

Public-Key Encryption Schemes. A public-key encryption scheme PKE speci-

fies the following PT algorithms: via pp←$ PKE.Pg(1λ) one generates public param-

eters pp common to all users; via (sk , pk)←$ PKE.Kg(pp) a user can generate a de-

cryption key sk and corresponding encryption key pk ; via c←$ PKE.Enc(pp, pk ,m)

anyone can generate a ciphertext c encrypting message m ∈ PKE.MSp(pp) under pk ;

via m ← PKE.Dec(pp, sk , c) a user can deterministically decrypt ciphertext c to get

a value m ∈ PKE.MSp∪{⊥}. Correctness requires that PKE.Dec(pp, sk ,PKE.Enc(pp,

pk ,m)) = m for all λ ∈ N, all pp ∈ [PKE.Pg(1λ)], all (sk , pk) ∈ [PKE.Kg(pp)], and

all m ∈ PKE.MSp(pp).

We say a public-key encryption scheme PKE is indistinguishable under chosen-

ciphertext attack or IND-CCA secure if Advind-cca
PKE,A (·) is negligible for all PT ad-

versaries A, where Advind-cca
PKE,A (λ) = 2 Pr[IND-CCAA

PKE(λ)]− 1 and game IND-CCA

is in Figure 2.1. The first “If” statement in the LR procedure ensures the adversary

obtains only one challenge ciphertext, while the second “If” statement captures that

encryption need not be length hiding, and requires a suitable length function | · | on

PKE.MSp(pp).

Signature schemes. A signature scheme DS specifies the following PT algorithms:

via pp←$ DS.Pg(1λ) one generates public parameters pp common to all users; via

(sk , pk)←$ DS.Kg(pp) a user can generate a signing key sk and corresponding pub-

lic verification key pk ; via σ←$ DS.Sign(pp, sk ,m) the signer can generate a signa-

14

2.2 Cryptographic Primitives

main SUF-CMAA
DS(λ) / OT-SUF-CMAA

DS(λ)

Q← ∅
pp←$ DS.Pg(1λ)

(sk , pk)←$ DS.Kg(pp)

(m, σ)←$ASign(pp, pk)

Return (DS.Verify(pp, pk ,m, σ) ∧ ((m, σ) /∈ Q))

Sign(m) // SUF-CMAA
DS(λ) / OT-SUF-CMAA

DS(λ)

If (Q 6= ∅) then Return ⊥
σ←$ DS.Sign(pp, sk ,m)

Q← Q ∪ {(m, σ)}
Return σ

Figure 2.2: Game SUF-CMA defining strong unforgeability of signature scheme
DS under chosen-message attack, and game OT-SUF-CMA defining one-time
strong unforgeability under chosen-message attack. The Sign procedure of game
OT-SUF-CMA includes the boxed code, while that of game SUF-CMA does not.

ture σ on a message m ∈ DS.MSp(pp); via d ← DS.Verify(pp, pk ,m, σ) a verifier

can deterministically produce a decision d ∈ {true, false} regarding whether σ is

a valid signature of message m under public key pk . Correctness requires that

DS.Verify(pp, pk ,m,DS.Sign(pp, sk ,m)) = true for all λ ∈ N, all pp ∈ [DS.Pg(1λ)],

all (sk , pk) ∈ [DS.Kg(pp)], and all m ∈ DS.MSp(pp).

We say a signature scheme DS is strongly unforgeable if Advsuf-cma
DS,A (·) is negli-

gible for all PT adversaries A, where Advsuf-cma
DS,A (λ) = Pr[SUF-CMAA

DS(λ)] and

game SUF-CMA is in Figure 2.2. We say a signature scheme DS is one-time

strongly unforgeable if Advot-suf-cma
DS,A (·) is negligible for all PT adversaries A, where

Advot-suf-cma
DS,A (λ) = Pr[OT-SUF-CMAA

DS(λ)] and game OT-SUF-CMA is in Fig-

ure 2.2. The boxed code ensures the adversary obtains only one signature in this

game. We say a signature scheme DS is unforgeable under weak chosen-message at-

tack if Adveuf-wma
DS,A (·) is negligible for all PT adversaries A, where Adveuf-wma

DS,A (λ) =

Pr[EUF-WMAA
DS(λ)] and game EUF-WMA is in Figure 2.3.

Identity-Based Encryption Schemes. An identity-based encryption scheme

IBE specifies the following PT algorithms: via pp←$ IBE.Pg(1λ) one generates pub-

lic parameters pp common to all authorities; via (msk ,mpk)←$ IBE.MKg(pp) an

authority can generate a master secret key msk and corresponding master public key

mpk ; via usk ←$ IBE.UKg(pp,msk , u) an authority can generate a decryption key usk

for user u ∈ IBE.USp(pp) under master secret key msk ; via c←$ IBE.Enc(pp,mpk , u,

15

2.2 Cryptographic Primitives

main EUF-WMAA
DS(λ)

Q← ∅
pp←$ DS.Pg(1λ)

(sk , pk)←$ DS.Kg(pp)

(m, σ)←$ASign(pp)

Return (DS.Verify(pp, pk ,m, σ) ∧ (m /∈ Q))

Sign(m1, . . . ,mq)

If (Q 6= ∅) then Return ⊥
For i = 1 to q

σi←$ DS.Sign(pp, sk ,mi)

Q← {m1, . . . ,mq}
Return (pk , σ1, . . . , σq)

Figure 2.3: Game EUF-WMA defining existential unforgeability of signature scheme
DS under weak chosen-message attack.

m) anyone can generate a ciphertext c encrypting message m ∈ IBE.MSp(pp) to user

u ∈ IBE.USp(pp) under mpk ; via m ← IBE.Dec(pp, usk , c) a user can determinis-

tically decrypt ciphertext c to get a value m ∈ IBE.MSp(pp) ∪ {⊥}. Correctness

requires that IBE.Dec(pp, IBE.UKg(pp,msk , u), IBE.Enc(pp,mpk , u,m)) = m for all

λ ∈ N, all pp ∈ [IBE.Pg(1λ)], all (msk ,mpk) ∈ [IBE.MKg(pp)], all m ∈ IBE.MSp(pp),

and all u ∈ IBE.USp(pp).

We say an identity-based encryption scheme IBE is adaptive-ID indistinguishable

under chosen plaintext attack or adaptively secure if Advind-aid
IBE,A (·) is negligible for

all PT adversaries A, where Advind-aid
PKE,A (λ) = 2 Pr[IND-aIDA

IBE(λ)] − 1 and game

IND-aID is on the top left-hand side of Figure 2.4. The set U is a list of users the

adversary has requested a key for, and the “If” statements involving U ensure the ad-

versary is not given a key for the user for whom the challenge ciphertext is encrypted.

We say an identity-based encryption scheme IBE is one-way under chosen plain-

text attack or one-way if Advow-aid
IBE,A (·) is negligible for all PT adversaries A, where

Advow-aid
PKE,A(λ) = Pr[OW-aIDA

IBE(λ)] and game OW-aID is on the top right-hand side

of Figure 2.4. We say an identity-based encryption scheme IBE is selective-ID in-

distinguishable under chosen plaintext attack or selectively secure if Advind-sid
IBE,A (·) is

negligible for all PT adversaries A, where Advind-sid
PKE,A(λ) = 2 Pr[IND-sIDA

IBE(λ)] − 1

and game IND-sID is on the bottom of Figure 2.4. In this game there is no user

list U as the challenge user u∗ must be selected up-front, before the adversary re-

ceives the master public key or any user-level keys. The first “If” statement in each

procedure ensures the first meaningful call is to sID to select u∗.

16

2.2 Cryptographic Primitives

main IND-aIDA
IBE(λ)

b←$ {0, 1} ; c∗ ←⊥ ; u∗ ←⊥ ; U ← ∅
pp←$ IBE.Pg(1λ)

(msk ,mpk)←$ IBE.MKg(pp)

b′←$AKD,LR(pp,mpk)

Return (b = b′)

proc KD(u)

U ← U ∪ {u}
If (u∗ ∈ U) then Return ⊥
Return IBE.UKg(pp,msk , u)

proc LR(u,m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
u∗ ← u

If (u∗ ∈ U) then Return ⊥
c∗←$ IBE.Enc(pp,mpk , u∗,mb)

Return c∗

main OW-aIDA
IBE(λ)

c∗ ←⊥ ; u∗ ←⊥ ; U ← ∅
pp←$ IBE.Pg(1λ)

m∗←$ IBE.MSp(pp)

(msk ,mpk)←$ IBE.MKg(pp)

m←$AKD,Chal(pp,mpk)

Return (m∗ = m)

proc KD(u)

U ← U ∪ {u}
If (u∗ ∈ U) then Return ⊥
Return IBE.UKg(pp,msk , u)

proc Chal(u)

If (c∗ 6=⊥) then Return ⊥
u∗ ← u

If (u∗ ∈ U) then Return ⊥
c∗←$ IBE.Enc(pp,mpk , u∗,m∗)

Return c∗

main IND-sIDA
IBE(λ)

b←$ {0, 1} ; c∗ ←⊥ ; u∗ ←⊥
pp←$ IBE.Pg(1λ)

(msk ,mpk)←$ IBE.MKg(pp)

b′←$AsID,KD,LR(pp)

Return (b = b′)

proc sID(u)

If (u∗ 6=⊥) then Return ⊥
u∗ ← u

Return mpk

proc KD(u)

If (u∗ =⊥) then Return ⊥
If (u = u∗) then Return ⊥
Return IBE.UKg(pp,msk , u)

proc LR(m0,m1)

If (u∗ =⊥) then Return ⊥
If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗←$ IBE.Enc(pp,mpk , u∗,mb)

Return c∗

Figure 2.4: Top left: Game IND-aID defining adaptive-ID indistinguishability of
identity-based encryption scheme IBE. Top right: Game OW-aID defining one-
wayness. Bottom: Game IND-sID defining selective-ID indistinguishability.

17

2.2 Cryptographic Primitives

main IND-CCAA
KEM(λ)

b←$ {0, 1} ; c∗ ←⊥
pp←$ KEM.Pg(1λ) ; (sk , pk)←$ KEM.Kg(pp)

(c∗,K ∗)←$ KEM.Enc(pp, pk)

If (b = 0) then K ∗←$ KSp(pp)

b′←$ADec(pp, c∗,K ∗)

Return (b = b′)

proc Dec(c)

If (c = c∗) then Return ⊥
Return K ← KEM.Dec(pp, sk , c)

Figure 2.5: Game IND-CCA defining indistinguishability of key encapsulation mech-
anism KEM under chosen-ciphertext attack.

Key Encapsulation Mechanisms. A key encapsulation mechanism KEM spec-

ifies the following PT algorithms: via pp←$ KEM.Pg(1λ) one generates public pa-

rameters pp common to all users; via (sk , pk)←$ KEM.Kg(pp) a user can generate

a secret key sk and corresponding public key pk ; via (c,K) ← KEM.Enc(pp, pk)

anyone can encapsulate in a ciphertext c a random key K ∈ KSp(pp); via K ←
KEM.Dec(pp, sk , c) a user can deterministically decapsulate c to get a value K ∈
KEM.KSp(pp) ∪ {⊥}. Correctness requires that KEM.Dec(pp, sk , c) = K for all

λ ∈ N, all pp ∈ [KEM.Pg(1λ)], all (sk , pk) ∈ [KEM.Kg(pp)], and all (c,K) ∈
[KEM.Enc(pp, pk)].

We say a key encapsulation mechanism KEM is indistinguishable under chosen-

ciphertext attack or IND-CCA secure if Advind-cca
KEM,A(·) is negligible for all PT ad-

versaries A, where Advind-cca
KEM,A(λ) = 2 Pr[IND-CCAA

KEM(λ)]− 1 and game IND-CCA

is in Figure 2.5.

Data Encapsulation Mechanisms. A data encapsulation mechanism DEM spec-

ifies the following PT algorithms: via pp←$ DEM.Pg(1λ) one generates public pa-

rameters pp common to all users; via K ←$ DEM.Kg(pp) a user can generate a secret

key K ; via c ← DEM.Enc(pp,K ,m) a user can deterministically generate a cipher-

text c encrypting message m ∈ DEM.MSp(pp); via m ← DEM.Dec(pp,K , c) a user

can deterministically decrypt ciphertext c to get a value m ∈ DEM.MSp(pp)∪ {⊥}.
Correctness requires that DEM.Dec(pp,K ,DEM.Enc(pp,K ,m)) = m for all λ ∈ N,

all pp ∈ [DEM.Pg(1λ)], all K ∈ [DEM.Kg(pp)], and all m ∈ DEM.MSp(pp).

18

2.2 Cryptographic Primitives

main OT-IND-CCAA
DEM(λ)

b←$ {0, 1} ; c∗ ←⊥
pp←$ DEM.Pg(1λ) ; K ←$ DEM.Kg(pp)

b′←$ADec,LR(pp)

Return (b = b′)

proc Dec(c)

If (c = c∗) then Return ⊥
Return m ← DEM.Dec(pp,K , c)

proc LR(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗←$ DEM.Enc(pp,K ,mb)

Return c∗

Figure 2.6: Game OT-IND-CCA defining one-time indistinguishability of data en-
capsulation mechanism DEM under chosen-ciphertext attack.

We say a data encapsulation mechanism DEM is one-time indistinguishable under

chosen-ciphertext attack or OT-IND-CCA secure if Advot-ind-cca
DEM,A (·) is negligible for

all PT adversaries A, where Advot-ind-cca
DEM,A (λ) = 2 Pr[OT-IND-CCAA

DEM(λ)]− 1 and

game OT-IND-CCA is in Figure 2.6.

Symmetric Encryption Schemes. A symmetric encryption scheme SE specifies

the following PT algorithms: via pp←$ SE.Pg(1λ) one generates public parameters

pp common to all users; via K ←$ SE.Kg(pp) a user can generate a secret key K ;

via c←$ SE.Enc(pp,K ,m) a user can generate a randomised ciphertext c encrypting

message m ∈ SE.MSp(pp); via m ← SE.Dec(pp,K , c) a user can deterministically

decrypt ciphertext c to get a value m ∈ SE.MSp(pp) ∪ {⊥}. Correctness requires

that SE.Dec(pp,K , SE.Enc(pp,K ,m)) = m for all λ ∈ N, all pp ∈ [SE.Pg(1λ)], all

K ∈ [SE.Kg(pp)], and all m ∈ DEM.MSp(pp).

Encapsulation Schemes. An encapsulation scheme [37] can be thought of as

a commitment scheme that supports committing to a random rather than cho-

sen string. An encapsulation scheme EC specifies the following PT algorithms:

via pp←$ EC.Pg(1λ) one generates public parameters pp common to all users; via

(r , com, dec)←$ EC.Enc(pp) anyone can generate a commitment string com and cor-

responding decommitment string dec encapsulating a random string r ∈ {0, 1}`(λ);

via r ← EC.Dec(pp, com, dec) anyone can deterministically decapsulate a value

r ∈ {0, 1}`(λ) ∪ {⊥}. Correctness requires that EC.Dec(pp, com, dec) = r for all

19

2.2 Cryptographic Primitives

main HIDEAEC(λ)

b←$ {0, 1}
pp←$ EC.Pg(1λ)

r0←$ {0, 1}λ

(r1, com, dec)←$ EC.Enc(pp)

b′←$A(pp, com, rb)

Return (b = b′)

main BINDA
EC(λ)

pp←$ EC.Pg(1λ)

(r , com, dec)←$ EC.Enc(pp)

dec′←$A(pp, com, dec)

Return (EC.Dec(pp, com, dec′) /∈ {⊥, r})

Figure 2.7: Left: Game HIDE defining hiding property of encapsulation scheme EC.
Right: Game BIND defining binding property.

λ ∈ N, all pp ∈ [EC.Pg(1λ)], and all (r , com, dec) ∈ [EC.Enc(pp)].

We say an encapsulation scheme EC is hiding if Advhide
EC,A(·) is negligible for all

PT adversaries A, where Advhide
EC,A(λ) = 2 Pr[HIDEAEC(λ)] − 1 and game HIDE is

on the left-hand side of Figure 2.7, and binding if Advbind
EC,A(·) is negligible for all

PT adversaries A, where Advbind
EC,A(λ) = Pr[BINDA

EC(λ)] and game BIND is on the

right-hand side of Figure 2.7.

Message Authentication Codes. A message authentication code MAC specifies

the following PT algorithms: via pp←$ MAC.Pg(1λ) one generates public parame-

ters pp common to all users; via K ←$ MAC.Kg(pp) a user can generate a key K ;

via τ ← MAC.Gen(pp,K ,m) a user can generate a message authentication tag τ

for message m ∈ MAC.MSp(pp); via d ← MAC.Verify(pp,K ,m, τ) a user can de-

terministically produce a decision d ∈ {true, false} regarding whether τ is a valid

message authentication tag of m. Correctness requires that MAC.Verify(pp,K ,m,

MAC.Gen(pp,K ,m)) = true for all all λ ∈ N, all pp ∈ [MAC.Pg(1λ)], all K ∈
[MAC.Kg(pp)], and all m ∈ MAC.MSp(pp).

We say that a message authentication code MAC is one-time strongly unforge-

able if Advot-suf
MAC,A(·) is negligible for all PT adversaries A, where Advot-suf

MAC,A(λ) =

Pr[OT-SUFAMAC(λ)] and game OT-SUF is in Figure 2.8.

Signcryption Schemes. A signcryption scheme combines the functionality of sig-

nature and encryption schemes, allowing users to achieve message confidentiality

and origin authentication through one operation. Signcryption can be defined so

that each user has two keypairs, one for when the user plays the role of sender

and the other for for when he plays the role of receiver, however our work con-

20

2.2 Cryptographic Primitives

main OT-SUFAMAC(λ)

m∗ ←⊥ ; τ∗ ←⊥
pp←$ MAC.Pg(1λ)

K ←$ MAC.Kg(pp)

(m, τ)←$A(pp)

Return (MAC.Verify(pp,K ,m, τ) ∧ ((m, τ) 6= (m∗, τ∗)))

proc Gen(m)

If (τ∗ 6=⊥) then Return ⊥
m∗ ← m

τ∗ ← MAC.Gen(pp,K ,m∗)

Return τ∗

Figure 2.8: Game OT-SUF defining one-time strong unforgeability of message au-
thentication scheme MAC.

cerns the case where a user has a single keypair used for both sending and re-

ceiving messages, so we present here a single keypair definition. A signcryption

scheme SC specifies the following PT algorithms: via pp←$ SC.Pg(1λ) one gener-

ates public parameters pp common to all users; via (sk , pk)←$ SC.Kg(pp) a user

can generate a secret key sk and corresponding public key pk (to clarify which

role a keypair is used in, we attach the subscript r when used as a receiver key-

pair, i.e. (pk r, sk r), and attach the subscript s when used as a sender keypair, i.e.

(pks, sks)); via c←$ SC.Sc(pp, sks, pks, pk r,m) the sender can generate a cipher-

text c encrypting message m in the message space SC.MSp(pp) under the receiver’s

public key pk r; via m ← SC.Usc(pp, sk r, pk r, pks, c) the receiver can determinis-

tically decrypt ciphertext c to get a value m ∈ SC.MSp(pp) ∪ {⊥} Correctness

requires that SC.Usc(pp, sk r, pk r, pks,SC.Sc(pp, sks, pks, pk r,m)) = m for all λ ∈ N,

all pp ∈ [SC.Pg(1λ)], all (sks, pk s) ∈ [SC.Kg(pp)], all (sk r, pk r) ∈ [SC.Kg(pp)], and

all m ∈ SC.MSp(pp).

A number of security models capturing different levels of security have been proposed

for signcryption (e.g. see [89] for an overview). The main differences between these

models concern whether or not the adversary is considered to be an insider with the

knowledge of the secret key material of the challenge sender and challenge receiver in

the definition of confidentiality and unforgeability, respectively, and to what extent

the adversary is allowed to maliciously generate the keys of the users in the system.

We focus on the strongest security model of these, which captures the notions of

insider confidentiality and insider unforgeability in the multi-user setting.

Multi-user indistinguishability under insider chosen-ciphertext attack (MU-IND-

21

2.2 Cryptographic Primitives

main MU-IND-iCCAA
SC(λ)

b←$ {0, 1} ; c∗ ←⊥ ; pk∗s ←⊥
pp←$ SC.Pg(1λ) ; (sk , pk)←$ SC.Kg(pp)

b′←$ASc,Usc,LR(pp, pk)

Return (b = b′)

proc Sc(pkr,m)

Return m ← SC.Sc(pp, sk , pk , pkr,m)

proc Usc(pks, c)

If ((c = c∗) ∧ (pks = pk∗s)) then Return ⊥
Return SC.Usc(pp, sk , pk , pks, c)

proc LR(sks, pks,m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
pk∗s ← pks
c∗←$ SC.Sc(pp, sks, pks, pk ,mb)

Return c∗

Figure 2.9: Game MU-IND-iCCA defining multi-user indistinguishability of sign-
cryption scheme SC under insider chosen-ciphertext attack.

iCCA) captures the property that an adversary cannot distinguish between the

signcryption of two different messages for a challenge receiver, even though all other

keys in the system are maliciously generated, and the adversary is given access to

signcryption and unsigncryption oracles. We say that SC is MU-IND-iCCA-secure

if Advmu-ind-icca
SC,A (·) is negligible for all PT adversaries A, where Advmu-ind-icca

SC,A (λ) =

2 Pr[MU-IND-iCCAA
SC(λ)]− 1 and game MU-IND-iCCA is in Figure 2.9. Since this

is a CCA notion the adversary has access to a Usc oracle unsigncrypting ciphertexts

under the challenge keypair, i.e. having the challenge keypair in the receiver role.

Since the same keypair is used in both sender and receiver roles, the adversary here

also has access to a Sc oracle where the challenge keypair is used in the sender role.

Multi-user existential unforgeability under insider chosen-message attack (MU-EUF-

iCMA) captures the property that an adversary cannot create a valid ciphertext

from a challenge sender which contains a new message, even if all other keys in

the system are maliciously generated and the adversary is given access to sign-

cryption and unsigncryption oracles. We say that SC is MU-EUF-iCMA-secure if

Advmu-euf-icma
SC,A (·) is negligible for all PT adversaries A, where Advmu-euf-icma

SC,A (λ) =

Pr[MU-EUF-iCMAA
SC(λ)] and game MU-EUF-iCMA is in Figure 2.10. Since this is

a CMA notion the adversary has access to a Sc oracle encrypting messages under

the challenge keypair, i.e. having the challenge keypair in the sender role. Since the

22

2.2 Cryptographic Primitives

main MU-EUF-iCMAA
SC(λ)

Q← ∅
pp←$ SC.Pg(1λ) ; (sk , pk)←$ SC.Kg(pp)

(skr, pkr, c)←$ASc,Usc(pp, pk)

m ← SC.Usc(pp, skr, pkr, pk , c)

Return ((m ∈ SC.MSp(pp)) ∧ ((pkr,m) 6∈ Q))

proc Sc(pkr,m)

c ← SC.Sc(pp, sk , pk , pkr,m)

Q← Q ∪ {(pkr,m)}
Return c

proc Usc(pks, c)

Return SC.Usc(pp, sk , pk , pks, c)

Figure 2.10: Game MU-EUF-iCMA defining multi-user existential unforgeability of
signcryption scheme SC under insider chosen-message attack.

same keypair is used in both sender and receiver roles, the adversary here also has

access to a Usc oracle where the challenge keypair is used in the receiver role.

NIZK systems. Suppose R: {0, 1}∗ × {0, 1}∗ → {true, false}. For x ∈ {0, 1}∗ we

let R(x) = { w : R(x ,w) = true } be the witness set of x . We say that R is an

NP-relation if it is computable in time polynomial in the length of its first input

and there is a function ` such that R(x) ⊆ {0, 1}`(|x |) for all x ∈ {0, 1}∗. We let

L(R) = { x : R(x) 6= ∅ } be the language associated to R. The fact that R is an

NP-relation means that L(R) ∈ NP.

A non-interactive (NI) system NIZK for relation R specifies the following PT algo-

rithms: via crs ←$ NIZK.Pg(1λ) one generates a common reference string crs; via

π←$ NIZK.P(crs, x ,w) the prover given x and w ∈ R(x) generates a proof π that

x ∈ L(R); via d← NIZK.V(crs, x , π) a verifier can produce a decision d ∈ {true, false}
regarding whether π is a valid proof that x ∈ L(R). We require completeness, namely

NIZK.V(crs, x ,NIZK.P(crs, x ,w)) = true for all λ ∈ N, all crs ∈ [NIZK.Pg(1λ)], all

x ∈ {0, 1}∗ and all w ∈ R(x). We say that NIZK is zero-knowledge (ZK) if it specifies

additional PT algorithms NIZK.SimPg and NIZK.SimP such that Advzk
NIZK,R,A(·) is

negligible for every PT adversary A, where Advzk
NIZK,R,A(λ) = 2 Pr[ZKA

NIZK,R(λ)]− 1

and game ZK is specified on the left-hand side of Figure 2.11. This definition is

based on [28, 50]. We say that NIZK is simulation-extractable (SE) if it specifies an

additional PT algorithm NIZK.Ext such that Advse
NIZK,R,A(·) is negligible for every

PT adversary A, where Advse
NIZK,R,A(λ) = Pr[SEANIZK,R(λ)] and game SE is specified

23

2.3 Constructions

main ZKA
NIZK,R(λ)

b←$ {0, 1}
crs1←$ NIZK.Pg(1λ)

(crs0, std , xtd)←$ NIZK.SimPg(1λ)

b′←$AProve(crsb)

Return (b = b′)

Prove(x ,w)

If (!R(x ,w)) then Return ⊥
If (b = 1) then π←$ NIZK.P(crs1, x ,w)

Else π←$ NIZK.SimP(crs0, std , x)

Return π

main SEANIZK,R(λ)

Q← ∅
(crs, std , xtd)←$ NIZK.SimPg(1λ)

(x , π)←$AProve(crs)

If (x 6∈ L(R)) then Return false

If (!NIZK.V(crs, x , π)) then Return false

If ((x , π) ∈ Q) then Return false

w ←$ NIZK.Ext(crs, xtd , x , π)

Return !R(x ,w)

Prove(x ,w)

If (!R(x ,w)) then Return ⊥
π←$ NIZK.SimP(crs, std , x)

Q← Q ∪ {(x , π)}
Return π

Figure 2.11: Left: Game ZK defining zero knowledge property of NIZK system
NIZK. Right: Game SE defining simulation extractability.

on the right-hand side of Figure 2.11. This definition is based on [50, 70, 71, 56].

The first construction of SE NIZKs (using a stronger notion of simulation extractabil-

ity) was given in [70], but for a fairly restricted language related to sets of pairing

product equations in bilinear groups. In [56] (and further formalised in [73]), the

authors provide a generic construction of SE NIZKs from a (regular) NIZK, an IND-

CCA-secure encryption scheme, and a one-time signature, which establishes that SE

NIZKs exist for all NP.

2.3 Constructions

The CHK transform [32] constructs a PKE scheme from an IBE scheme IBE and

a signature scheme DS. Figure 2.12 shows the algorithms of the PKE scheme

CHK[IBE,DS]. The resulting PKE scheme is IND-CCA secure though the IBE

scheme need only be IND-CPA secure.

Theorem 2.3.1 ([32]) Let IBE be a selectively-secure IBE scheme and DS be a

one-time strongly unforgeable signature scheme. Then CHK[IBE,DS] is IND-CCA

secure.

24

2.3 Constructions

CHK[IBE,DS].Pg(1λ) :

ppIBE←$ IBE.Pg(1λ)

ppDS←$ DS.Pg(1λ)

Return (ppIBE, ppDS)

CHK[IBE,DS].Enc(pp, pk ,m) :

(ppIBE, ppDS)← pp ; mpk ← pk

(sk DS, pk DS)←$ DS.Kg(ppDS)

u ← pk DS

cIBE←$ IBE.Enc(ppIBE,mpk , u,m)

σDS←$ DS.Sign(ppDS, sk DS, cIBE)

Return (pk DS, cIBE, σDS)

CHK[IBE,DS].Kg(pp) :

(ppIBE, ppDS)← pp

(msk ,mpk)←$ IBE.MKg(ppIBE)

Return (msk ,mpk)

CHK[IBE,DS].Dec(pp, sk , c) :

(pk DS, cIBE, σDS)← c ; msk ← sk

If (!DS.Verify(ppDS, pk DS, cIBE, σDS))

then Return ⊥
u ← pk DS

usk ←$ IBE.UKg(ppIBE,msk , u)

Return IBE.Dec(ppIBE, usk , cIBE)

Figure 2.12: PKE scheme CHK[IBE,DS].

HPKE[KEM,DEM].Pg(1λ) :

ppKEM←$ KEM.Pg(1λ)

ppDEM←$ DEM.Pg(1λ)

Return (ppKEM, ppDEM)

HPKE[KEM,DEM].Kg(pp) :

(ppKEM, ppDEM)← pp

(sk , pk)←$ KEM.Kg(ppKEM)

Return (sk , pk)

HPKE[KEM,DEM].Enc(pp, pk ,m) :

(ppKEM, ppDEM)← pp

(c1,K)←$ KEM.Enc(ppKEM, pk)

c2 ← DEM.Enc(K ,m)

Return (c1, c2)

HPKE[KEM,DEM].Dec(pp, sk , c) :

(ppKEM, ppDEM)← pp ; (c1, c2)← c

K ← KEM.Dec(ppKEM, sk , c1)

Return DEM.Dec(ppDEM,K , c2)

Figure 2.13: Hybrid PKE scheme HPKE[KEM,DEM].

The KEM-DEM paradigm of [49] constructs a hybrid encryption scheme from a

KEM KEM and a DEM DEM. Figure 2.13 shows the algorithms of the PKE scheme

HPKE[KEM,DEM].

Theorem 2.3.2 ([49]) Let KEM be an IND-CCA-secure KEM and DEM be a OT-

IND-CCA-secure DEM. Then the hybrid encryption scheme HPKE[KEM,DEM] is

IND-CCA secure.

25

2.4 Bilinear Pairings

2.4 Bilinear Pairings

Let G1 = 〈g1〉, G2 = 〈g2〉, GT be groups of prime order p. A pairing is a map

e : G1 ×G2 → GT that satisfies the following properties:

(1) Bilinear: For all a, b ∈ Z, e(ga1 , gb2) = e(g1, g2)ab.

(2) Non-degenerate: e(g1, g2) 6= 1.

(3) Computable: There is an efficient algorithm to compute the map e.

We assume the existence of a group generator G with an efficient algorithm G.Pg(·)
that outputs (p,G1,G2,GT , e) as described above, appropriately for the security

parameter taken as input.

When G1 = G2 we write both groups as G; this is called a symmetric pairing. At

higher security levels (128 bits and above), asymmetric pairings are far more efficient

both in terms of computation and in terms of the size of group elements [61]. As a

concrete example, using BN curves [12] and sextic twists, we can attain the 128-bit

security level with elements of G1 being represented by 256 bits and elements of G2

needing 512 bits. By exploiting compression techniques [95], elements of GT in this

case can be represented using 1024 bits. For further details on parameter selection

for pairings, see [60].

We will make use of the following problems, presented here in either the symmetric

or asymmetric setting as needed.

Bilinear Diffie-Hellman problem. We say the BDH problem is hard for G if

Advbdh
G,A(·) is negligible for all PT adversaries A, where Advbdh

G,A(λ) = Pr[BDHA
G(λ)]

and game BDH is on the left-hand side of Figure 2.14.

Decisional Bilinear Diffie-Hellman problem. We say the DBDH problem is

hard for G if Advdbdh
G,A (·) is negligible for all PT adversaries A, where Advdbdh

G,A (λ) =

2 Pr[BDHA
G(λ)]− 1 and game DBDH is on the right-hand side of Figure 2.14.

Decisional Bilinear Diffie-Hellman Inversion problem. We say the DB-

DHI problem is hard for G if Advdbdhi
G,q(·),A(·) is negligible for all PT adversaries A

and every polynomially bounded function q : N 7→ N, where Advdbdhi
G,q(λ),A(λ) =

2 Pr[DBDHIAG,q(λ)(λ)]− 1 and game DBDHI is in Figure 2.15.

26

2.4 Bilinear Pairings

main BDHA
G (λ)

(p,G,GT , e)←$ G.Pg(1λ)

α, β, γ←$ Z∗p
g←$ G∗

T ←$A(p,G,GT , e, g, gα, gβ , gγ)

Return (T = e(g, g)αβγ)

main DBDHA
G (λ)

(p,G,GT , e)←$ G.Pg(1λ)

b←$ {0, 1}
α, β, γ←$ Z∗p
g←$ G∗

If (b = 1) then T ← e(g, g)αβγ

Else T ←$ GT
b′←$A(p,G,GT , e, g, gα, gβ , gγ , T)

Return (b = b′)

Figure 2.14: Left: Game BDH defining the Bilinear Diffie-Hellman problem for a
group generator G. Right: Game DBDH defining the Decisional Bilinear Diffie-
Hellman problem.

main DBDHIAG,q(λ)(λ)

q ← q(λ)

(p,G1,G2,GT , e)←$ G.Pg(1λ)

b←$ {0, 1}
α←$ Z∗p
g1←$ G∗1 ; g2←$ G∗2
If (b = 1) then T ← e(g1, g2)1/α

Else T ←$ GT
b′←$AChal(p,G1,G2,GT , e, g1, g

α
1 , g2, g

α
2 , g

α2

2 , . . . , gα
q

2 , T)

Return (b = b′)

Figure 2.15: Game DBDHI defining the Decisional Bilinear Diffie-Hellman Inversion
problem for a group generator G.

Strong Diffie-Hellman problem. We say the SDH problem is hard for G if

Advsdh
G,q(·),A(·) is negligible for all PT adversaries A and every polynomially bounded

function q : N 7→ N, where Advsdh
G,q(λ),A(λ) = Pr[SDHA

G,q(λ)(λ)] and game SDH is in

Figure 2.16.

27

2.4 Bilinear Pairings

main SDHA
G,q(λ)(λ)

q ← q(λ)

(p,G1,G2,GT , e)←$ G.Pg(1λ)

α←$ Z∗p
g1←$ G∗1 ; g2←$ G∗2
(c, g)←$AChal(p,G1,G2,GT , e, g1, g

α
1 , g2, g

α
2 , g

α2

2 , . . . , gα
q

2)

Return (g = g
1/α+c
2)

Figure 2.16: Game SDH defining the Strong Diffie-Hellman problem for a group
generator G.

28

Chapter 3

Joint Encryption and Signature

Contents

3.1 Introduction . 29

3.2 Joint Encryption and Signature Schemes 32

3.3 A Cartesian Product Construction 34

3.4 An Insecure JES Scheme whose Components are Secure 34

3.5 A Generic Construction from IBE 35

3.6 A More Efficient Construction 41

3.7 Comparison of Schemes . 54

3.8 Signcryption from Joint Encryption and Signature . . . 56

3.9 Conclusion . 60

In this chapter we revisit the topic of joint encryption and signature schemes, where a

single keypair is used for both encryption and signature in a secure manner. While

breaking the principle of key separation, such schemes have attractive properties

and are sometimes used in practice. We give a general construction for a joint

encryption and signature scheme that uses IBE as a component, and that is secure in

the standard model. We then provide a more efficient direct construction, also secure

in the standard model. Finally, we show how these results relate to signcryption.

3.1 Introduction

The folklore principle of key separation dictates using different keys for different

cryptographic operations. While this is well-motivated by real-world, security en-

gineering concerns, there are still situations where it is desirable to use the same

key for multiple operations [72]. In the context of public-key cryptography, using

the same keypair for both encryption and signature primitives can reduce storage

requirements (for certificates as well as keys), reduce the cost of key certification

29

3.1 Introduction

and the time taken to verify certificates, and reduce the footprint of cryptographic

code. These savings may be critical in embedded systems and low-end smart card

applications. As a prime example, the globally-deployed EMV standard for authen-

ticating credit and debit card transactions allows the same keypair to be reused for

encryption and signatures for precisely these reasons [58].

However, this approach of reusing keys is not without its problems. For example,

there is the issue that encryption and signature keypairs may have different life-

times, or that the private keys may require different levels of protection [72]. Most

importantly of all, there is the question of whether it is secure to use the same

keypair in two (or more) different primitives – perhaps the two uses will interact

with one another badly, in such a way as to undermine the security of one or both

of the primitives. In the case of textbook RSA, it is obvious that using the same

keypair for decryption and signing is dangerous, since the signing and decryption

functions are so closely related in this case. Security issues may still arise even if

some standardised padding is used prior to encryption and signing [79]. Later we

will provide another example in the context of encryption and signature primitives,

where the individual components are secure (according to the usual notions of secu-

rity for encryption and signature) but become completely insecure as soon as they

are used in combination with one another. At the protocol level, Kelsey, Schneier

and Wagner [77] gave examples of protocols that are individually secure, but that

interact badly when a keypair is shared between them.

The formal study of the security of key reuse was initiated by Haber and Pinkas [72].

They introduced the concept of a combined public key scheme. Here, an encryption

scheme and signature scheme are combined: the existing algorithms to encrypt,

decrypt, sign and verify are preserved, but the two key generation algorithms are

modified to produce a single algorithm. This algorithm outputs two keypairs, one for

the encryption scheme and one for the signature scheme, with the keypairs no longer

necessarily being independent. Indeed, under certain conditions, the two keypairs

may be identical, in which case the savings described above may be realised. In

other cases, the keypairs are not identical but can have some shared components,

leading to more modest savings. Haber and Pinkas also introduced the natural

security model for combined public key schemes, where the adversary against the

encryption part of the scheme is equipped with a signature oracle in addition to the

usual decryption oracle, and where the adversary against the signature part of the

scheme is given a decryption oracle in addition to the usual signature oracle. In this

setting, we talk about the joint security of the combined scheme.

30

3.1 Introduction

While Haber and Pinkas considered various well-known concrete schemes and con-

ditions under which their keys could be partially shared, none of their examples

having provable security in the standard model lead to identical keypairs for both

encryption and signature. Indeed, while the approach of Haber and Pinkas can be

made to work in the random oracle model by careful oracle programming and do-

main separation, their approach does not naturally extend to the standard model.

More specifically, in their approach, to be able to simulate the signing oracle in the

IND-CCA security game, the public key of the combined scheme cannot be exactly

the same as the public key of the underlying encryption scheme (otherwise, success-

ful simulation would lead to a signature forgery). This makes it hard to achieve

full effective overlap between the public keys for signing and encryption. For the

(standard model) schemes considered by Haber and Pinkas this results in the re-

quirements that part of the public key be specific to the encryption scheme and that

another part of it be specific to the signature scheme. Furthermore, at the time

of publication of [72] only a few secure (IND-CCA, resp. EUF-CMA) and efficient

standard-model schemes were known. Consequently, no “compatible” signature and

encryption schemes were identified in [72] for the standard model.

The special case of combined public key schemes built from trapdoor permutations

was considered in [47, 81]. Here, both sets of authors considered the use of various

message padding schemes in conjunction with an arbitrary trapdoor permutation to

build schemes having joint security. Specifically, Coron et al. [47] considered the case

of PSS-R encoding, while Komano and Ohta [81] considered the cases of OAEP+

and REACT encodings. All of the results in these two papers are in the random

oracle model.

In further related, but distinct, work, Dodis et al. [55] (see also [54]) considered the

use of message padding schemes and trapdoor permutations to build signcryption

schemes. These offer the combined security properties of encryption and signature

in a single cryptographic transform (as opposed to the notion of a combined public

key scheme which offers these security properties separately, but with a common

key generation algorithm). Dodis et al. showed, again in the random oracle model,

how to build efficient, secure signcryption schemes in which each user’s keypair,

specifying a permutation and its trapdoor, is used for both encryption and signing

purposes. They were careful to point out that the previous results of [47, 81] con-

cerning combined public key schemes do not immediately imply similar results in

the more complicated signcryption setting, nor can they be immediately applied to

construct secure signcryption schemes via the generic composition methods of Dodis

et al. [3].

31

3.2 Joint Encryption and Signature Schemes

Further work on combined public key schemes in the random oracle model, for both

the normal public-key setting and the identity-based setting can be found in [68].

In particular, it is proved that the identity-based encryption scheme of Boneh and

Franklin [35] and the identity-based signature scheme of Hess [74] can be used safely

together.

3.2 Joint Encryption and Signature Schemes

We consider the case of a combined public key scheme where the keypairs are identi-

cal, and call this a joint encryption and signature (JES) scheme. A JES scheme JES

specifies the following PT algorithms: via pp←$ JES.Pg(1λ) one generates public

parameters pp common to all users; via (sk , pk)←$ JES.Kg(pp) a user can gen-

erate a decryption and signing key sk and corresponding encryption and verifica-

tion key pk ; via c←$ JES.Enc(pp, pk ,m) anyone can generate a ciphertext c en-

crypting message m in the encryption message space JES.EMSp(pp) under pk ; via

m ← JES.Dec(pp, sk , c) the user can deterministically decrypt ciphertext c to get

a value m ∈ JES.EMSp(pp) ∪ {⊥}; via σ←$ JES.Sign(pp, sk ,m) the signer can gen-

erate a signature σ on a message m in the signature message space JES.SMSp(pp);

via d ← JES.Verify(pp, pk ,m, σ) a verifier can deterministically produce a decision

d ∈ {true, false} regarding whether σ is a valid signature of m under pk . Cor-

rectness requires that JES.Dec(pp, sk , JES.Enc(pp, pk ,m)) = m for all λ ∈ N, all

pp ∈ [JES.Pg(1λ)], all (sk , pk) ∈ [JES.Kg(pp)], and all m ∈ JES.EMSp(pp), and that

JES.Verify(pp, pk ,m, JES.Sign(pp, sk ,m)) = true for all λ ∈ N, all pp ∈ [JES.Pg(1λ)],

all (sk , pk) ∈ [JES.Kg(pp)], and all m ∈ JES.SMSp(pp).

Since the encryption and signature schemes share a keypair the standard notions

of IND-CCA and EUF-CMA security need to be extended to reflect an adversary’s

ability to request both decryptions and signatures under the challenge public key.

When defining a security game against a component of the scheme the nature of

any additional oracles depends on the required security of the other components.

For example, if EUF-CMA security of the signature component of a JES scheme is

required, then it is necessary to provide the adversary with unrestricted access to

a signature oracle when proving IND-CCA security of the encryption component of

the scheme. The security definitions given implicitly in [47], considering IND-CCMA

and EUF-CCMA security of a JES scheme, are stated formally here.

We say that JES is IND-CCMA secure if Advind-ccma
JES,A (·) is negligible for all PT adver-

32

3.2 Joint Encryption and Signature Schemes

main IND-CCMAA
JES(λ)

b←$ {0, 1} ; c∗ ←⊥
pp←$ JES.Pg(1λ)

(sk , pk)←$ JES.Kg(pp)

b′←$ADec,Sign,LR(pp, pk)

Return (b = b′)

proc Dec(c)

If (c = c∗) then Return ⊥
Return m ← JES.Dec(pp, sk , c)

proc Sign(m)

Return σ←$ JES.Sign(pp, sk ,m)

proc LR(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗←$ JES.Enc(pp, pk ,mb)

Return c∗

main EUF-CCMAA
JES(λ)

Q← ∅
pp←$ JES.Pg(1λ)

(sk , pk)←$ JES.Kg(pp)

(m, σ)←$ASign,Dec(pp, pk)

Return (JES.Verify(pp, pk ,m, σ) ∧m 6∈ Q)

proc Sign(m)

σ←$ JES.Sign(pp, sk ,m)

Q← Q ∪ {m}
Return σ

proc Dec(c)

Return m ← JES.Dec(pp, sk , c)

Figure 3.1: Left: Game IND-CCMA defining indistinguishability of joint encryption
and signature scheme JES under chosen-ciphertext attack in the presence of a signing
oracle. Right: Game EUF-CCMA defining existential unforgeability under chosen-
message attack in the presence of a decryption oracle.

saries A, where Advind-ccma
JES,A (λ) = 2 Pr[IND-CCMAA

JES(λ)]−1 and game IND-CCMA

is on the left-hand side of Figure 3.1. This represents indistinguishability under

chosen-ciphertext attack in the presence of a signing oracle.

We say that JES is EUF-CCMA secure if Adveuf-ccma
JES,A (·) is negligible for all PT ad-

versaries A, where Adveuf-ccma
JES,A (λ) = Pr[EUF-CCMAA

JES(λ)] and game EUF-CCMA

is on the right-hand side of Figure 3.1. This represents existential unforgeability

under chosen-message attack in the presence of a decryption oracle.

Informally, we say that a JES scheme is jointly secure if it is both IND-CCMA secure

and EUF-CCMA secure.

33

3.3 A Cartesian Product Construction

3.3 A Cartesian Product Construction

A trivial way of obtaining a system satisfying the above security properties is to

concatenate the keys of an encryption scheme and signature scheme, then use the

appropriate component of the compound key for each operation. This gives a JES

scheme where the encryption and signature operations are essentially independent.

Consequently their respective security properties are retained in the presence of the

additional oracle. This simple construction sets a benchmark in terms of key size

and other performance measures that any bespoke construction should best in one

or more metrics.

Formally, let PKE be an encryption scheme, and let DS be a signature scheme. Then

the Cartesian product JES scheme JEScart[PKE,DS] is constructed as follows:

• JEScart[PKE,DS].Pg(1λ): ppPKE←$ PKE.Pg(1λ) ; ppDS←$ DS.Pg(1λ) ;

Return (ppPKE, ppDS).

• JEScart[PKE,DS].Kg(1λ): (sk PKE, pk PKE)←$ PKE.Kg(ppPKE) ;

(sk DS, pk DS)←$ DS.Kg(ppDS) ; Return ((sk PKE, sk DS), (pk PKE, pk DS)).

• JEScart[PKE,DS].Enc(pp, pk ,m): Return PKE.Enc(ppPKE, pk PKE,m).

• JEScart[PKE,DS].Dec(pp, sk , c): Return PKE.Dec(ppPKE, sk PKE, c).

• JEScart[PKE,DS].Sign(pp, sk ,m): Return DS.Sign(ppDS, sk DS,m).

• JEScart[PKE,DS].Verify(pp, pk ,m, σ): Return DS.Verify(ppDS, pk DS,m, σ).

We omit the straightforward proof that this scheme is jointly secure if PKE is IND-

CCA secure and DS is EUF-CMA secure.

3.4 An Insecure JES Scheme whose Components are Secure

To show that the definitions are not trivially satisfied, we give a pathological ex-

ample demonstrating that an encryption scheme and a signature scheme that are

individually secure may not be secure when used in combination. Let PKE be an

IND-CCA-secure encryption scheme, and let DS be an EUF-CMA-secure signature

scheme. Then a JES scheme JESbad[PKE,DS] can be constructed as follows:

• JESbad[PKE,DS].Pg(1λ): ppPKE←$ PKE.Pg(1λ) ; ppDS←$ DS.Pg(1λ) ;

34

3.5 A Generic Construction from IBE

Return (ppPKE, ppDS).

• JESbad[PKE,DS].Kg(1λ): (sk PKE, pk PKE)←$ PKE.Kg(ppPKE) ;

(sk DS, pk DS)←$ DS.Kg(ppDS) ; Return ((sk PKE, sk DS), (pk PKE, pk DS)).

• JESbad[PKE,DS].Enc(pp, pk ,m): Return PKE.Enc(ppPKE, pk PKE,m).

• JESbad[PKE,DS].Dec(pp, sk , c): m ← PKE.Dec(ppPKE, sk PKE, c) ; If (m =⊥) then

Return sk DS Else Return m.

• JESbad[PKE,DS].Sign(pp, sk ,m): σDS←$ DS.Sign(ppDS, sk DS,m) ;

Return σDS||sk PKE.

• JESbad[PKE,DS].Verify(pp, pk ,m, σ): σDS||sk PKE ← σ ;

Return DS.Verify(ppDS, pk DS,m, σDS).

From the security of the base schemes it is easy to see that the encryption scheme

given by the algorithms Pg,Kg,Enc,Dec of JESbad[PKE,DS] is IND-CCA secure, and

the signature scheme with algorithms Pg,Kg, Sign,Verify of JESbad[PKE,DS] is EUF-

CMA secure. However when key generation is shared a single signature reveals the

encryption scheme’s private key, and the decryption of a badly formed ciphertext

reveals the private key of the signature scheme. Thus JESbad[PKE,DS] is totally

insecure, even though its component schemes are secure.

3.5 A Generic Construction from IBE

We show how to build a JES scheme from an IBE scheme IBE, making use of a

one-time strongly unforgeable signature scheme DS. The construction is particularly

simple: the encryption scheme component is constructed through a tag-based version

of the CHK transform [32], and the signature scheme component through the Naor

transform [34]. Since in the Naor construction signatures are just private keys from

the IBE scheme, and these private keys could be used to decrypt ciphertexts in

the encryption scheme resulting from the CHK transform, we use a bit prefix in the

identity space to provide domain separation between the private keys and signatures.

We assume IBE has identity space {0, 1}n+1, and that DS has public key space

{0, 1}n. The encryption component of JES[IBE,DS] has message space IBE.EMSp(pp).

The signature scheme component of JES[IBE,DS] has message space IBE.SMSp(pp) =

{0, 1}n but can be extended to messages of arbitrary length through the use of a

collision-resistant hash function H : {0, 1}∗ → {0, 1}n. The algorithms of the joint

encryption and signature scheme JES[IBE,DS] are given in Figure 3.2.

35

3.5 A Generic Construction from IBE

JES[IBE,DS].Pg(1λ) :

ppIBE←$ IBE.Pg(1λ)

ppDS←$ DS.Pg(1λ)

Return (ppIBE, ppDS)

JES[IBE,DS].Kg(pp) :

(ppIBE, ppDS)← pp

(msk ,mpk)←$ IBE.MKg(ppIBE)

Return (msk ,mpk)

JES[IBE,DS].Enc(pp, pk ,m) :

(ppIBE, ppDS)← pp ; mpk ← pk

(sk DS, pk DS)←$ DS.Kg(ppDS)

u ← 1||pk DS

cIBE←$ IBE.Enc(ppIBE,mpk , u,m)

σDS←$ DS.Sign(ppDS, sk DS, cIBE)

Return (pk DS, cIBE, σDS)

JES[IBE,DS].Dec(pp, sk , c) :

(pk DS, cIBE, σDS)← c ; msk ← sk

If (!DS.Verify(ppDS, pk DS, cIBE, σDS))

then Return ⊥
u ← 1||pk DS

usk ←$ IBE.UKg(ppIBE,msk , u)

Return IBE.Dec(ppIBE, usk , cIBE)

JES[IBE,DS].Sign(pp, sk ,m) :

(ppIBE, ppDS)← pp ; msk ← sk

u ← 0||m
Return IBE.UKg(ppIBE,msk , u)

JES[IBE,DS].Verify(pp, pk ,m, σ) :

(ppIBE, ppDS)← pp ; mpk ← pk ; usk ← σ

u ← 0||m
x←$ IBE.EMSp(ppIBE)

cIBE←$ IBE.Enc(ppIBE,mpk , u, x)

Return (IBE.Dec(ppIBE, usk , cIBE) = x)

Figure 3.2: JES scheme JES[IBE,DS].

Theorem 3.5.1 Let IBE be a selectively-secure IBE scheme and DS be a one-time

strongly unforgeable signature scheme. Then JES[IBE,DS] is IND-CCMA secure.

Proof: Let A be a PT adversary playing game IND-CCMA. We build PT adver-

saries A1, A2 such that

Advind-ccma
JES[IBE,DS],A(λ) ≤ 2Advot-suf-cma

DS,A1
(λ) + Advind-sid

IBE,A2
(λ)

for all λ ∈ N, from which the theorem follows.

The proof uses the games in Figure 3.3. Game G0 is as IND-CCMA but returns ⊥
in response to a decryption query for a ciphertext containing a valid signature under

the same pk DS as the challenge ciphertext. We will build A1, A2 so that for all λ ∈ N
we have

Pr[GA
0 (λ) sets bad] ≤ Advot-suf-cma

DS,A1
(λ) (3.1)

2 Pr[GA
0 (λ)]− 1 ≤ Advind-sid

IBE,A2
(λ) . (3.2)

Games IND-CCMAJES[IBE,DS] and G0 are identical until bad, so by the Fundamental

36

3.5 A Generic Construction from IBE

main IND-CCMAA
JES[IBE,DS](λ) / GA

0 (λ)

b←$ {0, 1} ; c∗ ←⊥ ; pk∗DS ←⊥
ppIBE←$ IBE.Pg(1λ) ; ppDS←$ DS.Pg(1λ)

(msk ,mpk)←$ IBE.MKg(ppIBE)

b′←$ADec,Sign,LR((ppIBE, ppDS),mpk)

Return (b = b′)

proc Dec(c) // IND-CCMAA
JES[IBE,DS](λ) / GA

0 (λ)

If (c = c∗) then Return ⊥
(pk DS, cIBE, σDS)← c

If (!DS.Verify(ppDS, pk DS, cIBE, σDS)) then Return ⊥
If (pk DS = pk∗DS) then bad← true ; Return ⊥
u ← 1||pk DS

usk ←$ IBE.UKg(ppIBE,msk , u)

Return IBE.Dec(ppIBE, usk , cIBE)

proc Sign(m) // IND-CCMAA
JES[IBE,DS](λ) / GA

0 (λ)

u ← 0||m
Return IBE.UKg(ppIBE,msk , u)

proc LR(m0,m1) // IND-CCMAA
JES[IBE,DS](λ) / GA

0 (λ)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
(sk∗DS, pk∗DS)←$ DS.Kg(ppDS)

u ← 1||pk∗DS

c∗IBE←$ IBE.Enc(ppIBE,mpk , u,m)

σ∗DS←$ DS.Sign(ppDS, sk∗DS, c
∗
IBE)

c∗ ← (pk∗DS, c
∗
IBE, σ

∗
DS)

Return c∗

Figure 3.3: Games used in the proof of Theorem 3.5.1.

37

3.5 A Generic Construction from IBE

Lemma of Game-Playing [23] and the above, for all λ ∈ N we have:

Advind-ccma
JES[IBE,DS],A(λ) = 2 Pr[IND-CCMAA

JES[IBE,DS](λ)]− 1

= 2(Pr[IND-CCMAA
JES[IBE,DS](λ)]− Pr[GA

0 (λ)])

+ 2 Pr[GA
0 (λ)]− 1

≤ 2 Pr[GA
0 (λ) sets bad] + 2 Pr[GA

0 (λ)]− 1

≤ 2Advot-suf-cma
DS,A1

(λ) + Advind-sid
IBE,A2

(λ)

as desired. We proceed to the constructions of A1, A2. Adversary A1 against the

strong unforgeability of DS behaves as follows:

ASign
1 (ppDS, pk∗DS)

(m∗, σ∗)←⊥
b←$ {0, 1} ; c∗ ←⊥
ppIBE←$ IBE.Pg(1λ)
(msk ,mpk)←$ IBE.MKg(ppIBE)
b′←$ ADec,SignSim,LR((ppIBE, ppDS),mpk)
Return (m∗, σ∗)

Dec(c)

If (c = c∗) then Return ⊥
(pk DS, cIBE, σDS)← c
If (!DS.Verify(ppDS, pk DS, cIBE, σDS))

then Return ⊥
If (pk DS = pk∗DS) then

(m∗, σ∗)← (cIBE, σDS) ; Return ⊥
u ← 1||pk DS

usk ←$ IBE.UKg(ppIBE,msk , u)
Return IBE.Dec(ppIBE, usk , cIBE)

SignSim(m)

u ← 0||m
Return IBE.UKg(ppIBE,msk , u)

LR(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
u ← 1||pk∗DS

c∗IBE←$ IBE.Enc(ppIBE,mpk , u,mb)
σ∗DS←$ Sign(c∗IBE)
c∗ ← (pk∗DS, c

∗
IBE, σ

∗
DS)

Return c∗

Adversary A1 simulates game G0 for A, using its challenge public key in creating

the challenge ciphertext for A. The Sign oracle called in the LR procedure is A1’s

own. Since Sign is only called when A calls LR and c∗ =⊥, and this situation can

occur only on A’s first call to LR, A1 makes at most one call to its Sign oracle.

The forgery that A1 outputs is valid exactly when the flag bad is set in game G0.

The three “If” statements before the forgery (m∗, σ∗) is set ensure this. The second

and third “If” statements ensure the signature is valid under challenge public key

pk∗DS, while the first and third ensure the pair (m∗, σ∗) differs from A1’s Sign oracle

response and query pair (c∗IBE, σ
∗
DS). This establishes Equation (3.1).

Adversary A2 against the selective security of IBE behaves as follows:

38

3.5 A Generic Construction from IBE

AsID,KD,LR
2 (ppIBE)

c∗ ←⊥
ppDS←$ DS.Pg(1λ)
(sk∗DS, pk∗DS)←$ DS.Kg(ppDS)
u∗ ← 1||pk∗DS

mpk ← sID(u∗)
b′←$ ADec,Sign,LRSim((ppIBE, ppDS),mpk)
Return b′

Dec(c)

If (c = c∗) then Return ⊥
(pk DS, cIBE, σDS)← c
If (!DS.Verify(ppDS, pk DS, cIBE, σDS))

then Return ⊥
If (pk DS = pk∗DS) then Return ⊥
u ← 1||pk DS

usk ←$ KD(u)
Return IBE.Dec(ppIBE, usk , cIBE)

Sign(m)

u ← 0||m
Return KD(u)

LRSim(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗IBE←$ LR(m0,m1)
σ∗DS←$ DS.Sign(ppDS, sk∗DS, c

∗
IBE)

c∗ ← (pk∗DS, c
∗
IBE, σ

∗
DS)

Return c∗

Adversary A2 simulates game G0 for A, choosing up-front the public verification key

that will determine the identity used in the challenge ciphertext. This identity will

never be queried to the KD oracle by Dec as the third “If” statement will cause ⊥
to be returned before the KD oracle is called on it, and will not be queried by Sign

as the challenge identity begins with 1 and all Sign’s KD queries are for identities

beginning with 0. Adversary A2 outputs A’s guess as its own, winning whenever A

does, establishing Equation (3.2)

Theorem 3.5.2 Let IBE be a one-way IBE scheme. Then JES[IBE,DS] is EUF-

CCMA secure.

Proof: Let A be a PT adversary playing game EUF-CCMA. We build a PT adver-

sary A1 such that

Adveuf-ccma
JES[IBE,DS],A(λ) ≤ Advow-aid

IBE,A1
(λ) (3.3)

for all λ ∈ N, from which the theorem follows. Adversary A1 behaves as follows:

39

3.5 A Generic Construction from IBE

AKD,Chal
1 (ppIBE)

ppDS←$ DS.Pg(1λ)
(m, σ)←$ ASign,Dec((ppIBE, ppDS),mpk)
usk ← σ
u ← 0||m
c∗IBE ← Chal(u)
Return IBE.Dec(ppIBE, usk , c∗IBE)

Sign(m)

u ← 0||m
Return KD(u)

Dec(c)

(pk DS, cIBE, σDS)← c
If (!DS.Verify(ppDS, pk DS, cIBE, σDS))

then Return ⊥
u ← 1||pk DS

usk ←$ KD(u)
Return IBE.Dec(ppIBE, usk , cIBE)

Adversary A1 simulates game EUF-CCMA for A, using its KD oracle to answer Dec

and Sign queries. When A halts outputting a message m and signature σ, A1 sub-

mits 0||m as its challenge identity. If A did not submit m to its Sign oracle then this

identity has not been queried to the KD oracle so the challenge oracle will respond

with a challenge ciphertext. If A output a valid signature on m then the challenge

ciphertext will decrypt successfully using the signature as a user-level key, giving

Pr[EUF-CCMAA
JES[IBE,DS](λ)] ≤ Pr[OW-aIDA1

IBE(λ)], establishing Equation (3.3).

IBE schemes meeting the standard model security requirements include those of

Gentry [65] and Waters [98]. The latter results in a large public key (n + 3 group

elements), though this could be reduced in practice by generating most of the ele-

ments from a seed in a pseudo-random manner. We focus on the instantiation of

our construction using Gentry’s scheme. This scheme was originally presented in

the setting of symmetric pairings. When we translate it to the asymmetric setting

and apply our construction at the 128-bit security level using BN curves with sextic

twists, we obtain a JES scheme in which the public key consists of two elements

of G1 and two elements of G2, giving a public key size of 1536 bits. Ciphertexts

encrypt elements of GT and consist of an element of G1, two elements of GT , and

a verification key and signature from DS, so are 2304 bits plus the bit length of a

verification key and signature in DS. Signatures consist of an element of Zp and an

element of G2, so are 768 bits in size. Here we assume that descriptions of groups

and pairings are domain parameters that are omitted from our key size calculations.

The security of this scheme depends on the hardness of a problem closely related

to the Decisional Augmented Bilinear Diffie-Hellman Exponent problem. The full

details are in [91].

40

3.6 A More Efficient Construction

3.6 A More Efficient Construction

The JES scheme JES1 in Figure 3.4 is based on the signature scheme by Boneh

and Boyen [30] and a KEM obtained by applying the techniques of Boyen, Mei and

Waters [39] to the second IBE scheme of Boneh and Boyen in [29]. The schemes

make use of a bilinear pairing, and the KEM furthermore makes use of a second-

preimage resistant hash function H : G1 → {0, 1}n−1 where 2n < p. To obtain

a full encryption scheme, the KEM is combined with a DEM, and we assume for

simplicity that the key space of the DEM is K = GT . Where a binary string is

treated as a member of Zp it is implicitly converted in the natural manner. The

signature scheme supports messages in {0, 1}n−1, but can be extended to support

messages in {0, 1}∗ by using a collision resistant hash function, while the encryption

scheme has the same message space as the DEM. Note that to minimise the public

key size and ciphertext overhead in the scheme, the elements of the public key are

placed in the group G1. However, this implies that signatures contain an element of

group G2, having larger bit representations of elements.

Theorem 3.6.1 Let H be a second-preimage resistant hash function, and DEM be a

OT-IND-CCA-secure DEM. Assume the DBDHI problem is hard for G. Then JES1

is IND-CCMA secure.

Proof: Let A be a PT adversary playing game IND-CCMA and q be a polynomially-

bounded function such that A makes q(λ) Sign queries for all λ ∈ N. We build PT

adversaries A1, A2, A3 and give a negligible function ν such that

Advind-ccma
JES1,A (λ) ≤ 2Advsec

H,A1
(λ) + 2ν(λ) + 2Advdbdhi

G,q(λ),A2
(λ) + Advot-ind-cca

DEM,A3
(λ)

for all λ ∈ N, from which the theorem follows.

The proof uses the games in Figure 3.5 and Figure 3.6. Game G0 is as IND-CCMA

but constructs the message-independent parts of the challenge ciphertext up-front,

a change invisible from the adversary’s point of view. Game G1 is as G0 but returns

⊥ in response to decryption queries where the first component is not equal to that of

the challenge ciphertext, but its hash is. Game G2 is as G1 but generates the value

x as a function of y, s and a randomly chosen value u, and chooses the randomness

in responses to Sign queries from a more restricted set to accommodate this change.

Game G3 is as G2 but generates the third component of the challenge ciphertext by

encrypting the message under a random DEM key K ∗, and responds to decryption

41

3.6 A More Efficient Construction

JES1.Pg(1λ) :

ppG←$ G.Pg(1λ)

ppDEM←$ DEM.Pg(1λ)

ppH←$ H.Pg(1λ)

Return (ppG, ppDEM, ppH)

JES1.Kg(pp) :

((p,G1,G2, e), ppDEM, ppH)← pp

g1←$ G1 ; g2←$ G2

x, y←$ Z∗p
X ← gx1 , Y ← gy1
sk ← (g1, g2, x, y)

pk ← (g1, g2, X, Y)

Return (sk , pk)

JES1.Enc(pp, pk ,m) :

((p,G1,G2, e), ppDEM, ppH)← pp

(g1, g2, X, Y)← pk

s←$ Z∗p
c1 ← Y s

h← H.Eval(ppH, c1)

h′ ← 1||h
c2 ← Xs · gs·h′1

K ← e(g1, g2)
s

c3 ← DEM.Enc(ppDEM,K ,m)

Return (c1, c2, c3)

JES1.Dec(pp, sk , c) :

((p,G1,G2, e), ppDEM, ppH)← pp

(g1, g2, x, y)← sk

h← H.Eval(ppH, c1)

h′ ← 1||h
If (c

(x+h′)/y
1 6= c2) then Return ⊥

K ← e(c1, g
1/y
2)

Return DEM.Dec(ppDEM,K , c3)

JES1.Sign(pp, sk ,m) :

((p,G1,G2, e), ppDEM, ppH)← pp

(g1, g2, x, y)← sk

m ′ ← 0||m
r←$ Zp \ {−x+m′

y }

σ′ ← g
1

x+ry+m′

2

Return (σ′, r)

JES1.Verify(pp, pk ,m, σ) :

((p,G1,G2, e), ppDEM, ppH)← pp

(g1, g2, X, Y)← pk ; (σ′, r)← σ

m ′←$ 0||m
Return (e(X · gm′1 · Y r, σ′) = e(g1, g2))

Figure 3.4: JES scheme JES1.

42

3.6 A More Efficient Construction

main IND-CCMAA
JES1(λ) / GA

0 (λ) / GA
1 (λ)

b←$ {0, 1} ; c∗ ←⊥ ; ppG←$ G.Pg(1λ) ; ppDEM←$ DEM.Pg(1λ) ; ppH←$ H.Pg(1λ)

g1←$ G1 ; g2←$ G2 ; x, y←$ Z∗p ; X ← gx1 , Y ← gy1 ; pk ← (g1, g2, X, Y)

s←$ Z∗p ; c∗1 ← Y s ; h∗ ← H.Eval(ppH, c
∗
1) ; h′ ← 1||h∗ ; c∗2 ← Xs · gs·h′1

K ∗ ← e(g1, g2)
s

b′←$ADec,Sign,LR((ppG, ppDEM, ppH), pk)

Return (b = b′)

proc Dec(c) // IND-CCMAA
JES1(λ) / GA

0 (λ) / GA
1 (λ) / GA

2 (λ) / GA
3 (λ)

If (c = c∗) then Return ⊥
h← H.Eval(ppH, c1)

If ((h = h∗) ∧ (c1 6= c∗1)) then bad← true ; Return ⊥
h′ ← 1||h
If (c

(x+h′)/y
1 6= c2) then Return ⊥

K ← e(c1, g
1/y
2)

Return DEM.Dec(ppDEM,K , c3)

proc Sign(m) // IND-CCMAA
JES1(λ) / GA

0 (λ) / GA
1 (λ) / GA

2 (λ) / GA
3 (λ)

m ′ ← 0||m ; r←$ Zp \ {−x+m′

y } ; r←$ Zp \ {−x+m′

y , u} ; σ′ ← g
1

x+ry+m′

2

Return (σ′, r)

proc LR(m0,m1) // IND-CCMAA
JES1(λ)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
s←$ Z∗p ; c∗1 ← Y s ; h∗ ← H.Eval(ppH, c

∗
1) ; h′ ← 1||h∗ ; c∗2 ← Xs · gs·h′1

K ∗ ← e(g1, g2)
s

; c∗3 ← DEM.Enc(ppDEM,K
∗,mb) ; c∗ ← (c∗1, c

∗
2, c
∗
3)

Return c∗

proc LR(m0,m1) // GA
0 (λ) / GA

1 (λ) / GA
2 (λ) / GA

3 (λ)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗3 ← DEM.Enc(ppDEM,K

∗,mb) ; c∗ ← (c∗1, c
∗
2, c
∗
3)

Return c∗

Figure 3.5: Games used in proof of Theorem 3.6.1.

43

3.6 A More Efficient Construction

main GA
2 (λ) / GA

3 (λ)

b←$ {0, 1} ; c∗ ←⊥ ; ppG←$ G.Pg(1λ) ; ppDEM←$ DEM.Pg(1λ) ; ppH←$ H.Pg(1λ)

g1←$ G1 ; g2←$ G2 ; y, u←$ Z∗p ; Y ← gy1
s←$ Z∗p ; c∗1 ← Y s ; h∗ ← H.Eval(ppH, c

∗
1) ; h′ ← 1||h∗

v ← h′/u ; x← −u(y + v) ; X ← gx1 ; pk ← (g1, g2, X, Y) ; c∗2 ← Xs · gs·h′1

K ∗ ← e(g1, g2)
s

; K ∗←$ GT
b′←$ADec,Sign,LR((ppG, ppDEM, ppH), pk)

Return (b = b′)

proc Dec(c) // GA
3 (λ)

If (c = c∗) then Return ⊥
h← H.Eval(ppH, c1)

If ((h = h∗) ∧ (c1 6= c∗1)) then bad← true ; Return ⊥
h′ ← 1||h
If (c

(x+h′)/y
1 6= c2) then Return ⊥

K ← e(c1, g
1/y
2)

If ((c1, c2) = (c∗1, c
∗
2)) then K ← K ∗

Return DEM.Dec(ppDEM,K , c3)

Figure 3.6: Games used in proof of Theorem 3.6.1, continued.

queries where the first two components of the ciphertext are equal to those of the

challenge ciphertext with the decryption of the third component under K ∗. We will

build A1, A2, A3 and give a negligible function ν(·) so that for all λ ∈ N we have

Pr[GA
1 (λ) sets bad] ≤ Advsec

H,A1
(λ) (3.4)

Pr[GA
1 (λ)]− Pr[GA

2 (λ)] ≤ ν(λ) (3.5)

Pr[GA
2 (λ)]− Pr[GA

3 (λ)] ≤ Advdbdhi
G,q(λ),A2

(λ) (3.6)

2 Pr[GA
3 (λ)]− 1 ≤ Advot-ind-cca

DEM,A3
(λ) . (3.7)

Games G0 and G1 are identical until bad, so by the Fundamental Lemma of Game-

Playing [23] and the above, for all λ ∈ N we have:

Advind-ccma
JES1,A (λ) = 2 Pr[IND-CCMAA

JES1(λ)]− 1

= 2(Pr[GA
0 (λ)] + (Pr[GA

1 (λ)]− Pr[GA
1 (λ)])

+ (Pr[GA
2 (λ)]− Pr[GA

2 (λ)]) + (Pr[GA
3 (λ)]− Pr[GA

3 (λ)]))− 1

= 2 Pr[GA
1 (λ) sets bad] + 2(Pr[GA

1 (λ)]− Pr[GA
2 (λ)])

+ 2(Pr[GA
2 (λ)]− Pr[GA

3 (λ)]) + 2 Pr[GA
3 (λ)]− 1

≤ 2Advsec
H,A1

(λ) + 2ν(λ) + 2Advdbdhi
G,q(λ),A2

(λ) + Advot-ind-cca
DEM,A3

(λ)

44

3.6 A More Efficient Construction

as desired. We proceed to the constructions of A1, A2, A3 and ν. Adversary A1

against the second-preimage resistance of H behaves as follows:

A1(ppH, z)

z′ ←⊥ ; b←$ {0, 1} ; c∗ ←⊥
ppG←$ G.Pg(1λ)
ppDEM←$ DEM.Pg(1λ)
((g1, g2, x, y), pk)←$ JES1.Kg(pp)
c∗1 ← z ; h∗ ← H.Eval(ppH, c

∗
1)

h′ ← 1||h∗ ; c∗2 ← z(x+h′)/y

K ∗ ← e(z1/y, g2)
b′←$ ADec,Sign,LR((ppG, ppDEM, ppH), pk)
Return z′

Dec(c)

If (c = c∗) then Return ⊥
h← H.Eval(ppH, c1)
If ((h = h∗) ∧ (c1 6= c∗1)) then
z′ ← c1 ; Return ⊥

h′ ← 1||h
If (c

(x+h′)/y
1 6= c2) then Return ⊥

K ← e(c1, g
1/y
2)

Return DEM.Dec(ppDEM,K , c3)

Sign(m)

m ′ ← 0||m ;

r←$ Zp \ {−x+m ′

y }

σ′ ← g
1

x+ry+m′
2

Return (σ′, r)

LR(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗3 ← DEM.Enc(ppDEM,K

∗,mb)
c∗ ← (c∗1, c

∗
2, c
∗
3)

Return c∗

Adversary A1 embeds the sec challenge z as the first component of the challenge

ciphertext and constructs c∗2 and K ∗ accordingly. Since z is a random element of G1,

these values are distributed as in game G1. It is clear that adversary A1 succeeds

whenever A sets bad. This establishes Equation (3.4).

The public key components X,Y computed in G2 are distributed as random elements

in G1. Hence, the only difference between G1 and G2 from the adversary’s point of

view is that the randomness used in the construction of signatures is picked from

Zp \ {−x+m ′

y , u} instead of Zp \ {−x+m ′

y }, where u is a random element of Z∗p. This

implies that a signature created in G2 is distributed with a statistical difference of

1/p from the distribution of signatures in G1. Since A asks for q signatures, the

signatures created in G2 will be jointly distributed with a statistical difference of at

most q/p from the signatures constructed in G1. This is a negligible quantity in λ,

so establishing Equation (3.5).

Adversary A2 against the DBDHI problem for G behaves as follows:

45

3.6 A More Efficient Construction

A2(p,G1,G2, e, g1, g
α
1 , g2, g

α
2 , g

α2

2 , . . . , gα
q

2 , T)

b←$ {0, 1} ; c∗ ←⊥ ; j ← 0
ppG ← (p,G1,G2, e)
ppDEM←$ DEM.Pg(1λ) ; ppH←$ H.Pg(1λ)
w1, . . . , wq, w←$ Z∗p
f ← w

∏q
i=1(z + wi)

d0, . . . , dq ← Coeffs(f, z)

g′2 ←
∏q
i=0(gα

i

2)di

If (g′2 = 1) then
For i = 1 to q

If (gwi2 gα2 = 1G2) then

If (e(g1, g2)−1/wi = T)
then Return 1

Else Return 0
u, l←$ Z∗p ; c∗1 ← gl1
h∗ ← H.Eval(ppH, c

∗
1) ; h′∗ ← 1||h∗

c∗2 ← g−ul1

v ← h′∗/u

K ∗ ← T ld0
∏q
i=1 e(g1, g

αi−1

2)
ldi

X ← (gα1)−ug−uv1 ; Y ← gα1
X ′ ← (gα2)−ug−uv2 ; Y ′ ← gα2
pk ← (g1, g

′
2, X, Y)

b′←$ ADec,Sign,LR((ppG, ppDEM, ppH), pk)
If (b′ = b) then Return 1
Return 0

Dec(c)

If (c = c∗) then Return ⊥
h← H.Eval(ppH, c1) ; h′ ← 1||h
If ((h = h∗) ∧ (c1 6= c∗1))

then Return ⊥
If (e(c1, X

′gh
′

2) 6= e(c2, Y
′))

then Return ⊥
If ((c1, c2) = (c∗1, c

∗
2))

then K ← K ∗

Else K ← e((c2cu1)1/(h′−h′∗), g′2)
Return DEM.Dec(ppDEM,K , c3)

Sign(m)

j ← j + 1

m ′ ← 0||m ; r ← u+ m′−uv
wj

fj(z)← f(z)/(z + wj)

d0, . . . , dq ← Coeffs(fj , z)

σj ←
∏q−1
i=0 (gα

i

2)di ; σ′ ← σj
1/(r−u)

Return (σ′, r)

LR(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗3 ← DEM.Enc(ppDEM,K

∗,mb)
c∗ ← (c∗1, c

∗
2, c
∗
3)

Return c∗

Adversary A2 constructs a generator g′2 of G2 for which it knows a set of q values of

the form (wi, (g
′
2)1/(wi+α)). This is done as follows: A2 picks random w1, . . . , wq, w ∈

Z∗p, defines the polynomial f(z) = w
∏q
i=1(z+wi). A2 then expands f(z) =

∑q
i=0 diz

i

to obtain the coefficients d0, . . . , dq ∈ Zp, an operation denoted above by Coeffs(f, z).

Then A2 computes the generator

g′2 =

q∏
i=0

(
gα

i

2

)di
= g

f(α)
2 ∈ G2.

A2 checks whether g′2 = 1G2 (the identity element in G2), and if this is the case, we

must have that wi = −α for some i, so A2 can solve the DBDHI problem without

interacting with A. Observe that A2 can compute (g′2)1/(wi+α) for any of the above

chosen wi by expanding the polynomial fi(z) = f(z)/(z + wi) =
∑q−1

i=0 diz
i and

computing g
fi(α)
2 =

∏q−1
i=0 (gα

i

2)di = (g′2)1/(wi+α).

46

3.6 A More Efficient Construction

A2 proceeds by picking random u, l ∈ Z∗p and computing challenge ciphertext com-

ponents c∗1 = gl1 and c∗2 = g−ul1 , as well as the value v = h′∗/u. Furthermore, A2

computes the challenge key K ∗ = T ld0
∏q
i=1 e(g1, g

αi−1

2)ldi .

Lastly, A2 computes the public key components X = (gα1)−ug−uv1 and Y = gα1 . This

will implicitly define the private key as (x, y) = (−u(α + v), α). Define s = l/α.

Observe that

c∗1 = gl1 = Y l/α = Y s

c∗2 = g−ul1 = g
−uα(l/α)
1 = g

(x+uv)(l/α)
1 = Xsgs·h

′∗
1 ,

so the ciphertext components are correctly formed for public key (g1, g
′
2, X, Y). Fur-

thermore, if T = e(g1, g2)1/α, then K ∗ = e(g1, g2)lf(α)/α = e(g1, g
′
2)l/α = e(g1, g

′
2)s,

so A2 simulates G2. On the other hand, if T is random in GT , then so is K ∗, and

A2 simulates G3.

In handling decryption queries, since A2 doesn’t know the values x, y to perform

the check c2 6= c
(x+h′)/y
1 , it instead checks the equivalent statement (e(c1, X

′gh
′

2) 6=
e(c2, Y

′)). If the “Else” branch of the final “If” statement is executed, we must have

that c1, c2 are of the form c1 = Y s, c2 = Xsgh
′·s

1 for some s ∈ Zp and that h′ 6= h′∗.

Note that c2cu1 = Xsgs·h
′

1 Y su = g
s(x+h′+uy)
1 = g

s(−u(α+v)+h′+uα)
1 = g

s(h′−h′∗)
1 . Hence,

A2 is able to compute the DEM key as

K = e((c2cu1)1/(h′−h′∗), g′2) = e(gs1, g
′
2) = e(g1, g

′
2)s .

In responding to signature queries, A2 makes use of its ability to compute q values

of the form (wj , (g
′
2)1/(wj+α)). It sets r ← u + m′−uv

wj
. Note that r 6= a since, due

to a different prefix, m′ 6= h′∗ = uv, and that r is uniform in Zp \ {−x+m ′

y , u} since

wj is uniform in Zp \ {0,−α}. Furthermore observe that (σ′, r) is a valid signature

since

σ
1/(r−u)
j = (g′2)1/(r−u)(α+wj) = (g′2)1/(rα+m′−uv−uα) = (g′2)1/(ry+m′+x) .

We have then that

Advdbdhi
A2

(λ) = 2 Pr[DBDHIA2
G (λ)]− 1

≥ 2(
1

2
Pr[GA

2 (λ)] +
1

2
(1− Pr[GA

3 (λ)]))− 1

≥ Pr[GA
2 (λ)]− Pr[GA

3 (λ)] ,

by a standard transformation, establishing Equation (3.6).

47

3.6 A More Efficient Construction

Adversary A3 against the OT-IND-CCA security of DEM behaves as follows:

ADec,LR
3 (ppDEM)

c∗ ←⊥
ppG←$ G.Pg(1λ)
ppH←$ H.Pg(1λ)
y, u←$ Z∗p ; Y ← gy1
s←$ Z∗p ; c∗1 ← Y s

h∗ ← H.Eval(ppH, c
∗
1) ; h′ ← 1||h∗

v ← h′/u ; x← −u(y + v)

X ← gx1 ; pk ← (g1, g2, X, Y) ; c∗2 ← Xs · gs·h′1

b′←$ ADecSim,Sign,LRSim((ppG, ppDEM, ppH), pk)
Return b′

DecSim(c)

If (c = c∗) then Return ⊥
h← H.Eval(ppH, c1)
If ((h = h∗) ∧ (c1 6= c∗1)) then Return ⊥
h′ ← 1||h
If (c

(x+h′)/y
1 6= c2) then Return ⊥

If ((c1, c2) = (c∗1, c
∗
2)) then Return Dec(c3)

K ← e(c1, g
1/y
2)

Return DEM.Dec(ppDEM,K , c3)

Sign(m)

m ′ ← 0||m ;

r←$ Zp \ {−x+m ′

y , u}

σ′ ← g
1

x+ry+m′
2

Return (σ′, r)

LRSim(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗3 ← LR(m0,m1)
c∗ ← (c∗1, c

∗
2, c
∗
3)

Return c∗

Adversary A3 constructs the public key and challenge ciphertext components c∗1, c
∗
2

according to game G3. It handles signature queries by using its knowledge of the

secret key to compute signatures following the randomness restriction. Decryption

queries are handled as outlined in game G3, with an additional test for equality

between (c1, c2) and (c∗1, c
∗
2), passing the third component to its own decryption

oracle in this case. When a LRSim query is made, adversary A3 forwards the

messages to its own LR oracle. It is clear that A3 wins whenever A wins, establishing

Equation (3.7).

Theorem 3.6.2 Assume SDH is hard for G. Then JES1 is EUF-CCMA secure.

The proof closely follows that of [30]. Rather than reduce directly to the SDH prob-

lem, we reduce to the weak chosen-message attack security of the related signature

scheme BB in Figure 3.7, which in turn reduces to the SDH problem. The following

lemma appears in [30].

48

3.6 A More Efficient Construction

BB.Pg(1λ) :

pp←$ G.Pg(1λ)

Return pp

BB.Kg(pp) :

(p,G1,G2, e)← pp

g1←$ G1 ; g2←$ G2

z←$ Z∗p
Z ← gz1
sk ← (g1, g2, z)

pk ← (g1, g2, Z)

Return (sk , pk)

BB.Sign(pp, sk ,m) :

(p,G1,G2, e)← pp

(g1, g2, z)← sk

If (z + m ≡ 0 mod p) then Return 1G2

σ ← g
1

z+m

2

Return σ

BB.Verify(pp, pk ,m, σ) :

(p,G1,G2, e)← pp

(g1, g2, Z)← pk

If ((σ = 1G2
) ∧ (Z · gm1 = 1G1

)) then

Return true

Return (e(Z · gm1 , σ) = e(g1, g2))

Figure 3.7: Signature scheme BB.

Lemma 3.6.3 Assume SDH is hard for G. Then BB is unforgeable under weak

chosen-message attack.

The following lemma combines with the preceding lemma to give Theorem 3.6.2.

Lemma 3.6.4 Let BB be unforgeable under weak chosen-message attack. Then

JES1 is EUF-CCMA secure.

We give some intuition for the proof. Let A be a PT adversary playing game

EUF-CCMA and q be a polynomially-bounded function such that A makes q(λ)

Sign queries for all λ ∈ N. Adversary A1 against the weak chosen-message security

of BB obtains q(λ) message signature pairs (wi, σi) on random messages wi ∈ Zp
and a public key containing Z = gz1 . We can embed the BB challenge element Z

as the X component in the public key we give to A, and choose random y ∈ Zp to

calculate the Y component. When A makes its ith signature query on a message m,

A1 chooses r ∈ Zp such that 0||m + yr = wi, and returns (σi, r) as valid signature

on m. Decryption queries can be handled without knowing z by using the pairing

and any BB message signature pair to check they are formed correctly. A halts and

outputs a forgery (m∗, σ∗, r∗), and if this verifies then (0||m∗ + yr∗, σ∗) verifies in

the BB scheme.

49

3.6 A More Efficient Construction

The problem here is that 0||m∗ + yr∗ might be in w1, . . . , wq, and so outputting

(0||m∗ + yr∗, σ∗) would not win the BB game. However should this happen, the

value y can be computed from A’s forgery, which would be helpful had we embedded

the challenge Z as the Y value instead.

We split the possible adversaries into two types. Let m1, . . . ,mq be the messages

A adaptively queries, and let (σi, ri) be the signature returned in response to the

ith query. Furthermore, let wi ← 0||mi + yri for each i, and let (m∗, σ∗, r∗) be the

forgery output by A.

A type 1 adversary

• makes a decryption query on a ciphertext c = (c1, c2, c3) such that 1||h = −x,

where h = H.Eval(ppH, c1), or

• makes a signature query on a message m such that 0||m = −x, or

• outputs a forgery on a message m∗ such that 0||m∗ + yr∗ 6∈ {w1, . . . , wq},

while a type 2 adversary

• never makes a decryption query on a ciphertext c = (c1, c2, c3) such that 1||h =

−x, where h = H.Eval(ppH, c1), and

• never makes a signature query on a message m such that 0||m = −x, and

• outputs a forgery on a message m∗ such that 0||m∗ + yr∗ ∈ {w1, . . . , wq}.

This partition covers all cases so a successful adversary must be either type 1 or

type 2. We build adversaries A1, A2 to handle each case.

Proof: Let A be a PT type 1 adversary playing game EUF-CCMA. We build a PT

adversary A1 such that

Adveuf-ccma
JES1,A (λ) ≤ Adveuf-wma

BB,A1
(λ) (3.8)

for all λ ∈ N.

Adversary A1 behaves as follows:

50

3.6 A More Efficient Construction

A1(pp)

w1, . . . , wq←$ Zp
(pk , σ1, . . . , σq)← Sign(w1, . . . , wq)
(g1, g2, Z)← pk
For i = 1 to q

If (σi = 1G2) then Return Forge(−wi)
l← 0
y←$ Z∗p ; , Y ← gy1
(m∗, σ∗, r∗)←$ ASignSim,Dec(pp, g1, g2, Z, Y)
Return (0||m∗ + yr∗, σ∗)

Forge(z)

m←$ Zp \ {−z, w1, . . . , wq}

σ ← g
1

z+m

2

Return (m, σ)

SignSim(m)

m ′←$ 0||m
If (g−m

′

1 = Z)
then Exit (Forge(−m ′))

l← l + 1
rl ← (wl −m ′)/y
Return (σl, rl)

Dec(c)

(c1, c2, c3)← c
h← H.Eval(ppH, c1)
h′ ← 1||h
If (g−h

′

1 = Z)
then Exit (Forge(−h′))

If (e(c2c
(w1−h′)/y
1 , σ1) 6= e(c1, g

1/y
2))

then Return ⊥
K ← e(c1, g

1/y
2)

Return DEM.Dec(ppDEM,K , c3)

A1 starts by requesting signatures on q random messages in Zp. Upon receiving the

corresponding signatures, A1 checks if any σi = 1G2 , revealing −wi as the secret key z

which the Forge procedure uses to generate a valid signature on a random message.

A similar check is performed during Sign and Dec queries. The call “Exit (·)” exits

the current procedure and halts execution of A1, outputting the result of evaluating

whatever is in the brackets. It is clear that if the Forge procedure is executed then

A1 wins the game. We now consider the execution of A1 if the Forge procedure is

not executed.

In response to the lth Sign query, A1 computes rl as (wl−m ′)/y and returns (σl, rl)

as the signature on the queried message m. This is a valid signature as

e(Z · gm ′1 · Y rl , σl) = e(Z · gm
′+rly

1 , σl) = e(Z · gwl1 , σl) = e(g1, g2),

by the validity of σl on wl in the BB scheme. The signatures are properly distributed

as wl is uniform in Zp \ {−z}, so rl is uniform in Zp \ {− z−m ′
y }.

When responding to decryption queries, A1 must perform the check (c
(z+h′)/y
1 6= c2)

without knowing z. A1 instead checks if the equation

e(c2c
(w1−h′)/y
1 , σ1) = e(c1, g

1/y
2)

51

3.6 A More Efficient Construction

holds. If this is the case, then, due to the properties of the pairing and that σ1 =

g
1/(z+w1)
2 , we must have that(

c2c
(w1−h′)/y
1

)1/(z+w1)
= c

1/y
1

which implies that c2 = c
(z+h′)/y
1 .

Since A is a type 1 adversary, its output is such that 0||m∗+ yr∗ 6∈ {w1, . . . , wq}, so

A1 wins whenever A does, or whenever the Forge procedure is called, establishing

Equation (3.8).

Let A be a PT type 2 adversary playing game EUF-CCMA. We build a PT adversary

A2 such that

Adveuf-ccma
JES1,A (λ) ≤ Adveuf-wma

BB,A2
(λ) + q(λ)/p (3.9)

for all λ ∈ N.

Adversary A2 behaves as follows:

A2(pp)

w1, . . . , wq←$ Z∗p
(pk , σ1, . . . , σq)← Sign(w1, . . . , wq)
(g1, g2, Z)← pk
For i = 1 to q

If (σi = 1G2) then Return Forge(−wi)
l← 0 ; L←⊥
x←$ Z∗p ; , X ← gx1
(m∗, σ∗, r∗)←$ ASign,Dec(pp, g1, g2, X, Z)

(m, r)← T [g
0||m∗
1 Zr

∗
]

z ← (0||m∗ − 0||m)/(r − r∗)
(m ′, σ′)← Forge(z)
Return (m ′, σ′)

Forge(z)

m←$ Zp \ {−z, w1, . . . , wq}

σ ← g
1

z+m

2

Return (m, σ)

Sign(m)

m ′←$ 0||m
l← l + 1
rl ← (x+ m ′)/wl
T [gm

′
1 Zrl]← (m, rl)

Return (σ
1/rl
l , rl)

Dec(c)

(c1, c2, c3)← c
h← H.Eval(ppH, c1)
h′ ← 1||h
If (e(c

(x+h′)
1 cw1

2 , σ1) 6= e(c2, g2))
then Return ⊥

K ← e(c2, g
1/(x+h′)
2)

Return DEM.Dec(ppDEM,K , c3)

A2 starts by requesting signatures on q(λ) random messages in Z∗p. Upon receiving

the corresponding signatures, A2 checks if any σi = 1G2 , revealing −wi as the secret

52

3.6 A More Efficient Construction

key z which the Forge procedure uses to generate a valid signature on a random

message. If this does not occur the execution of A2 continues.

In response to the lth Sign query, A2 computes rl as (x + m ′)/wl and returns

(σ
1/rl
l , rl) as the signature on the queried message m. This is a valid signature as

e(Xgm
′

1 Zrl , σ
1/rl
l) = e(gx+m ′

1 Zrl , σ
1/rl
l) = e(g

(x+m ′)/rl
1 Z, σl) = e(gwl1 Z, σl) = e(g1, g2)

by the validity of σl on wl in the BB scheme. A2 stores the value (m, rl) in a hash

table T under the key gm
′

1 Zrl . A2 will later use T in computing z from A’s forgery.

Note that rl 6= 0 since a type 2 adversary will only submit messages with m ′ 6= −x,

and that rl is uniform in Z∗p \ {−x+m ′

z } since wl is uniform in Z∗p \ {−z}. However,

since rl would be distributed uniformly in Zp \ {−x+m ′

z } in a real interaction, there

is a statistical distance of 1/p from the correct distribution. Hence, A2’s simulation

of all signature queries will at most have a statistical distance of q(λ)/p from the

correct distribution.

When responding to decryption queries, A2 must perform the check (c
(x+h′)/z
1 6= c2)

without knowing z. A2 instead checks if the equation

e(c
(x+h′)
1 cw1

2 , σ1) = e(c2, g2)

holds. If this is the case, then, due to the properties of the pairing and that σ1 =

g
1/(z+w1)
2 , we must have (

c
(x+h′)
1 cw1

2

)1/(z+w1)
= c2

which implies that c2 = c
(x+h′)/z
1 . From the same equality, A2 can compute the

DEM decryption key e(c1, g
1/z
2) as e(c2, g

1/(x+h′)
2). Note that a type 2 adversary will

never submit a ciphertext with h′ = −x.

Since A is a type 2 adversary we have that 0||m∗+yr∗ ∈ {w1, . . . , wq}. A2 computes

g
0||m∗
1 Zr

∗
and obtains the corresponding value (m, r) from the hash table T . We

then have that g
0||m∗
1 Zr

∗
= g

0||m
1 Zr. If A is successful then (m, r) 6= (m∗, r∗),

otherwise the forgery would be identical to a previously given signature on m. Since

g
0||m∗
1 Zr

∗
= g

0||m
1 Zr it follows that 0||m 6= 0||m∗ and r 6= r∗, therefore A2 can

compute z as (0||m∗ − 0||m)/(r − r∗) and forge a BB signature on a message of its

choosing. A2 succeeds when A does, establishing Equation (3.9).

Since we don’t know in advance whether A will be a type 1 or type 2 adversary, we

run either A1 or A2 with equal probability, resulting in an adversary that succeeds

53

3.7 Comparison of Schemes

in breaking BB with probability at least (Pr[EUF-CCMAA
JES1(λ)] − q(λ)/p)/2, and

the theorem holds.

The scheme JES1 provides public keys consisting of three group elements of G1 and

one group element of G2. If the scheme is instantiated using BN curves with sextic

twists, this translates into a public key size of 1280 bits for a 128 bit security level.

Furthermore, assuming that the DEM is redundancy-free (which can be achieved if

the DEM is a strong pseudorandom permutation [92]), the total ciphertext overhead

is just two group elements of G1 which translates into 512 bits. Signatures consist

of a single group element of G2 and an element of Zp, and will be 768 bits.

3.7 Comparison of Schemes

In this section, we provide a comparison of the schemes arising from our IBE-based

construction JES[IBE,DS], our more efficient construction JES1 and the Cartesian

product construction JEScart[PKE,DS]. In our comparison we will limit ourselves

to other discrete-log/pairing-based schemes since provably secure (standard model)

lattice-based schemes with short public keys are still unavailable and factoring-based

schemes do not scale very well (for 128-bit security, the modulus would need to be

> 3000 bits which is not competitive). We will include group generators in public key

size calculations as the required number depends on the scheme, but we allow sharing

of generators between signature and encryption component in Cartesian product

instantiations to improve these constructions. Note that it is possible to reduce the

private key of any scheme to a single short random seed by making the following

simple modification to the scheme: to generate a public/private keypair, pick a

random seed, generate the randomness required by the key generation algorithm by

applying a pseudorandom generator to the seed, and generate the public/private

keypair using this randomness, but store only the seed as the private key. Whenever

the original private key is needed, re-compute this by applying the pseudorandom

generator to the seed and re-run the key generation algorithm with the resulting

randomness. This observation essentially makes the difference in private key sizes

irrelevant, and we will not include this aspect in our comparison. We consider

several instantiations of the Cartesian product construction with standard model

secure encryption and signature schemes and give the results in Figure 3.8.

We will focus on Cartesian product instantiations using the scheme by Boneh and

Boyen [30] as a signature component. This scheme is among the most efficient

54

3.7 Comparison of Schemes

Signature PKE Public Key Signature Ciphertext
Scheme Scheme Size Size Overhead

BB[30] BB[29] + BMW[39] 1792 768 512
BB[30] KD[82] 2048 768 640
BB[30] Kiltz[78] 1792 768 512

JES[Gentry[65],DS] 1536 768 1280+|pkDS|+|σDS|
JES1 1280 768 512

Figure 3.8: Comparison of JES schemes at the 128-bit security level.

signature schemes and additionally has a short public key. To reduce the public key

size even further, we can remove the redundant element v = e(g1, g2) and place as

many elements as possible in the group G1 of the pairing. The latter implies that

signatures will be elements of G2×Zp which results in an increase in signature size.

However, since the Cartesian product constructions should compete with the JES

schemes in terms of public key size, this trade-off is desirable. While other signature

schemes could be considered, we were not able to find a scheme providing shorter

public keys without a significant disadvantage elsewhere. For instance, hash-based

signature schemes give extremely short public keys (the hash function description

plus the root digest), but result in signatures with length logarithmic in the number

of messages to be signed. The signature scheme of Hofheinz and Kiltz [76] has

shorter signatures than the Boneh-Boyen scheme and a public key consisting of a

few group elements plus a hash key, but here the hash key will be long to achieve

provable programmability.

For the encryption component, a relevant option is a DEM combined with the KEM

obtained by applying the techniques by Boyen, Mei and Waters [39] to the second

IBE scheme of Boneh and Boyen in [29], which also forms the basis of our concrete

scheme. Combined with the Boneh-Boyen signature scheme, and assuming the group

generators in the two schemes are shared, this yields a very efficient instantiation

of the Cartesian product construction in which public keys consist of five group

elements of G1, one group element of G2 (and a key defining a target collision

resistant hash function). This is larger by two elements of G1 than the public key

in our concrete construction JES1, which translates to a difference of 512 bits. Note

that signature size, ciphertext overhead and computation costs are the same for the

Cartesian product scheme and our construction.

Another encryption scheme to consider is that of Kurosawa and Desmedt [82]. In-

stantiating the Cartesian product construction with the Kurosawa-Desmedt scheme

55

3.8 Signcryption from Joint Encryption and Signature

and the Boneh-Boyen signature scheme yields a scheme with a public key consisting

of six elements of G1, one element of G2 (and a key defining a target collision re-

sistant hash), assuming that the Kurosawa-Desmedt scheme is implemented in G1.

Hence, the public key will be larger by three group elements of G1 compared to

our concrete construction, which equates to a difference of 768 bits at the 128-bit

security level. Signature size and signing and verification costs will be the same as

in our construction, while the ciphertext overhead will be slightly larger (an extra

128 bits) due to the requirement that the symmetric encryption scheme used in

the Kurosawa-Desmedt scheme is authenticated. However, decryption costs will be

lower since no pairing computations are required.

Lastly, the encryption scheme of Kiltz [78] might be considered. Again, combining

this with the Boneh-Boyen signature scheme, and assuming group generators are

shared, will yield a Cartesian product scheme with public keys consisting of five

elements of G1 and one element of G2. This is two group elements of G1 larger than

the public key of our concrete construction, which equates to an increase of 512 bits

at the 128-bit security level. Signature size and ciphertext overhead will be the same

while decryption in the Cartesian product scheme will be more efficient, since no

pairing computations are required.

In summary, our concrete construction JES1 of a JES scheme admits shorter public

keys than any instantiation of the Cartesian product construction JEScart[PKE,DS]

with known standard model secure encryption and signature schemes, and further-

more enjoys compact ciphertexts and signatures.

3.8 Signcryption from Joint Encryption and Signature

A signcryption scheme combines the functionality of signatures and encryption, al-

lowing users to achieve message confidentiality and origin authentication through

one operation. However, with the exception of a few random oracle model schemes

[85, 84, 88, 83], most signcryption schemes define separate key generation algorithms

for senders and receivers, or essentially define a public/private keypair to consist of

the concatenation of separate sender and receiver keypairs. Hence, a user playing

the role of both sender and receiver will have to generate the equivalent of two key-

pairs. Extending the ideas of a joint encryption and signature scheme, we show how

to construct a signcryption scheme which enables a user to use a single keypair for

both sender and receiver roles, and which furthermore allows efficient instantiations

56

3.8 Signcryption from Joint Encryption and Signature

with short public keys in the standard model.

Note that any signcryption scheme can be redefined to use a single key generation

algorithm. More specifically, a signcryption scheme using separate key generation

algorithms for senders and receivers, SC.SKg(pp) and SC.RKg(pp), can be redefined

to use a single key generation algorithm which simply runs (sks, pks)← SC.SKg(pp)

and (sk r, pk r)← SC.RKg(pp), and returns the private key sk = (sks, sk r) and public

key pk = (pk s, pk r). When using (sk , pk) as either a sender or receiver keypair, only

the relevant parts of the keys are used. This trivial construction can be used as

a benchmark when judging the public key size and other performance measures of

concrete signcryption schemes using a single keypair for both sender and receiver

roles.

Construction. We will now show how a joint encryption and signature scheme

can be used to construct a signcryption, scheme. Our construction is based on the

“sign then tag-based encrypt” (StTE) construction of [89]. In this construction,

signcryption involves generating a signature on the message and receiver public key,

then using the sender public key as a tag in encrypting the message and signature.

This binds the ciphertext to a specific sender/receiver keypair, which is required to

achieve security in the multi-user setting. We therefore need a joint tag-based en-

cryption and signature scheme, which we can construct from a joint encryption and

signature scheme through the standard technique of appending the tag to the mes-

sage before encryption, and then on decryption checking for equality between tags.

The signcryption scheme SC[JES] is shown in Figure 3.9. The next two theorems

establish the security of SC[JES].

Theorem 3.8.1 Let JES be an IND-CCMA-secure JES scheme. Then SC[JES] is

MU-IND-iCCA secure.

Proof: Let A be a PT adversary playing game MU-IND-iCCA. We build a PT

adversary A1 such that

Advmu-ind-icca
SC[JES],A (λ) ≤ Advind-ccma

JES,A1
(λ) (3.10)

for all λ ∈ N, from which the theorem follows. Adversary A1 behaves as follows:

57

3.8 Signcryption from Joint Encryption and Signature

SC[JES].Pg(1λ) :

pp←$ JES.Pg(1λ)

Return pp

SC[JES].Sc(pp, sks, pks, pkr,m) :

t ← pks
σ←$ JES.Sign(pp, sks, pkr||m)

c←$ JES.Enc(pp, pkr,m||t ||σ)

Return c

SC[JES].Kg(pp) :

(sk , pk)←$ JES.Kg(pp)

Return (sk , pk)

SC[JES].Usc(pp, skr, pkr, pks, c) :

t ← pks
m ′ ← JES.Dec(pp, skr, c)

If (m =⊥) then Return ⊥
m||t ′||σ ← m ′

If (t ′ 6= t) then Return ⊥
If (!JES.Verify(pp, pks, pkr||m, σ))

then Return ⊥
Return m

Figure 3.9: Signcryption scheme SC[JES].

ADec,Sign,LR
1 (pp)

c∗ ←⊥ ; pk∗s ←⊥
pp←$ JES.Pg(1λ)
(sk , pk)←$ JES.Kg(pp)
b′←$ ASc,Usc,LRSim(pp, pk)
Return b′

Sc(pk r,m)

t ← pk
σ←$ Sign(pk r||m)
Return JES.Enc(pp, pk r,m||t ||σ)

Usc(pks, c)

If ((c = c∗) ∧ (pks = pk∗s))
then Return ⊥

t ← pks
m ′ ← Dec(c)
If (m ′ =⊥) then Return ⊥
m||t ′||σ ← m ′

If (t 6= t ′) then Return ⊥
If (!JES.Verify(pp, pks, pk ||m, σ))

then Return ⊥
Return m

LRSim(sks, pk s,m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
pk∗s ← pks
t ← pks
σ0←$ Sign(pk ||m0)
σ1←$ Sign(pk ||m1)
c∗←$ LR(m0||t ||σ0,m1||t ||σ1)
Return c∗

It is possible that the call to A1’s Dec oracle in Usc will be for the challenge ci-

phertext c∗. This occurs if A submits to Usc the challenge ciphertext, but with

pks 6= pk∗s. In this case Dec (and hence Usc) will return ⊥, however this is the

appropriate response as the third “If” statement in Usc should cause ⊥ to be re-

58

3.8 Signcryption from Joint Encryption and Signature

turned since the value t encrypted in the challenge ciphertext is pk∗s which is not

equal to pks. Adversary A1 simulates game MU-IND-iCCA for A, establishing

Equation (3.10).

Theorem 3.8.2 Let JES be an EUF-CCMA-secure JES scheme. Then SC[JES] is

MU-EUF-iCMA secure.

Proof: Let A be a PT adversary playing game MU-EUF-iCMA. We build a PT

adversary A1 such that

Advmu-euf-icma
SC[JES],A (λ) ≤ Adveuf-ccma

JES,A1
(λ) (3.11)

for all λ ∈ N, from which the theorem follows. Adversary A1 behaves as follows:

ADec,Sign
1 (pp)

pp←$ JES.Pg(1λ)
(sk , pk)←$ JES.Kg(pp)
(sk r, pk r, c)←$ ASc,Usc(pp, pk)
t ← pk
m ′ ← JES.Dec(pp, sk r, c)
m||t ′||σ ← m ′

Return (pk r||m, σ)

Sc(pk r,m)

t ← pk
σ←$ Sign(pk r||m)
Return JES.Enc(pp, pk r,m||t ||σ)

Usc(pks, c)

t ← pks
m ′ ← Dec(c)
If (m ′ =⊥) then Return ⊥
m||t ′||σ ← m ′

If (t 6= t ′) then Return ⊥
If (!JES.Verify(pp, pks, pk ||m, σ))

then Return ⊥
Return m

If A outputs a winning tuple (sk r, pk r, c), then m||t ||σ ← JES.Dec(pp, sk r, c) is such

that JES.Verify(pp, pk , pk r||m, σ) returns true, and A never queried pk r,m to Sc, so

A1 never queried pk r||m to its Sign oracle. Adversary A1 wins whenever A does,

establishing Equation (3.11).

Joint Signcryption, Encryption, and Signature. While efficient signcryption

schemes using a single short keypair for both sender and receiver roles are interest-

ing in their own right, in [91] we consider an extended primitive which additionally

59

3.9 Conclusion

allows users to use their keypair as part of an ordinary encryption and signature

scheme, i.e. we consider a scheme implementing the functionality of signcryption,

encryption and signature using a single keypair. This type of scheme consists of al-

gorithms Pg,Kg, Sc,Usc,Enc,Dec, Sign,Verify such that Pg,Kg, Sc,Usc form a sign-

cryption scheme, Pg,Kg,Enc,Dec form an encryption scheme and Pg,Kg, Sign,Verify

form a signature scheme.

As in the case of joint encryption and signature, a joint signcryption, encryption,

and signature scheme which is jointly secure can trivially be constructed by con-

catenating the keys of independent signcryption, encryption and signature schemes.

However, as with JES, we are interested in schemes that are more efficient (in terms

of public key size and other measures) than this type of trivial construction. Note

also that while an encryption or signature scheme can be constructed from a sign-

cryption scheme by attaching an honestly generated “dummy” keypair to the public

parameters to be used in combination with the signcrypt and unsigncrypt algo-

rithms, this construction will not be jointly secure if a single keypair is used for the

signcryption, signature and encryption components.

Security of such a scheme is defined in the natural manner, by including additional

oracles to the signcryption and JES security games as necessary. In [91] we construct

a joint signcryption, encryption, and signature scheme from a JES scheme JES, using

the SC[JES] construction in parallel with JES, with a similar domain separation

trick to that in the JES scheme construction of Section 3.5 to ensure security. The

construction uses a tag-based JES scheme, the algorithms and security of which are

defined in [91], together with tag-based versions of the JES scheme constructions of

Section 3.5 and Section 3.6.

3.9 Conclusion

We revisited the topic of joint encryption and signature, focussing on the construc-

tion of schemes in the standard model, an issue not fully addressed in prior work.

We gave a general construction of a joint encryption and signature scheme from

IBE, as well as a more efficient concrete construction based on pairings. Using BN

curves, these can be efficiently instantiated at high security levels and have perfor-

mance that is competitive with the best schemes arising from the Cartesian product

construction. Our results fill the gap left open in the original work of Haber and

Pinkas [72], of constructing standard model secure joint encryption and signature

60

3.9 Conclusion

schemes in which the encryption and signature components share an identical key-

pair. An interesting open problem is to construct efficient joint encryption and

signature schemes in the standard model without using pairings. For example, is

it possible to obtain joint security in the discrete log or in the RSA setting, in the

standard model?

We also considered the construction of signcryption schemes from joint encryption

and signature schemes, giving a method to produce a triple of schemes (signcryption,

encryption, and signature) that are jointly secure in an appropriate and strong

security model, from any jointly secure tag-based JES scheme. This leads to efficient

standard model signcryption schemes in which a single short keypair can be used

for both sender and receiver functions.

Our work points the way to an interesting new research area in cryptography, which

closely relates to and generalises the topic of cryptographic agility [2]. The general

question can be posed as follows: under what conditions is it safe to use the same

key (or keypair) across multiple instantiations of the same or different cryptographic

primitives?

61

Chapter 4

Related-Key Attack Security for IBE

Contents

4.1 Introduction . 62

4.2 Preliminaries . 64

4.3 Existing IBE Schemes Under Related-Key Attacks . . . 67

4.4 Framework for Deriving RKA-Secure IBE Schemes . . . 69

4.5 Applying the Framework 76

4.6 Conclusion . 81

This chapter concerns security under related-key attacks (RKA), where an adversary

can modify a stored secret key and observe the outputs of the system as it operates

under this new key. We provide a framework enabling the construction of RKA-

secure identity-based encryption schemes, and show how specific instantiations of the

framework yield IBE schemes secure against adversaries deriving new keys through

affine and polynomial transformations of the master secret key.

4.1 Introduction

A related-key attack (RKA) allows an adversary to modify a stored secret key and

observe outputs of the system under the new key. RKAs were first conceived as

tools for the cryptanalysis of blockciphers [80, 24]. However, the ability of attackers

to modify keys stored in memory via tampering [33, 25] raises concerns that RKAs

can actually be mounted in practice. The key could be an IBE master key, a signing

key of a certificate authority, or a decryption key, making RKA security important

for a wide variety of primitives.

Furthermore, RKA security is finding applications beyond providing protection

62

4.1 Introduction

against tampering-based side-channel attacks [64], including instantiating random

oracles in higher-level protocols and improving efficiency [8, 5].

The theoretical foundations of RKA security were laid by Bellare and Kohno [18],

who treated the case of PRFs and PRPs. They model the transformations the

adversary can apply to the target key as functions φ, and parameterise the definition

by the class Φ of such functions. This parameterisation is necessary as without

restrictions on the functions an adversary can apply, security is unachievable. For

example for PRFs, a constant function φ(K) = c sets the key to a known value c

that the adversary can then use to compute the function himself, and compare the

output with that of his PRF oracle.

Provably achieving security against RKAs, however, has proven extremely challeng-

ing. We aim to advance the theory with new feasibility results showing achievability

of security under richer classes of attacks than previously known across a variety of

primitives.

The primitive we target in this chapter is IBE. RKA security for this primitive

was defined by Bellare, Cash, and Miller [14]. For future reference we define a

few relevant classes of functions over the space MSKSp of master keys. The set

Φc = {φc}c∈MSKSp with φc(msk) = c is the set of constant functions. If MSKSp is

a group under an operation ∗ then Φlin = {φa}a∈MSKSp with φa(msk) = a ∗msk is

the class of linear functions. (Here ∗ could be multiplication or addition.) If MSKSp

is a field we let Φaff = {φa,b}a,b∈MSKSp with φa,b(msk) = a ·msk + b be the class of

affine functions and Φpoly(d) = {φq}q∈MSKSpd[x] with φq(msk) = q(msk) the class of

polynomial functions, where q ranges over the set MSKSpd[x] of polynomials over

MSKSp of degree at most d. RKA security increases and is a more ambitious target

as we move from Φlin to Φaff to Φpoly(d).

We begin by presenting attacks showing that existing IBE schemes such as those of

Boneh-Franklin [34] and Waters [98] are not RKA secure, even for Φlin. This means

we must seek new designs.

We then present a framework for constructing RKA-secure IBE schemes. It is an

adaptation of the framework of Bellare and Cash [13] that builds RKA-secure PRFs

based on key-malleable PRFs and fingerprinting. Our framework has two corre-

sponding components. First, we require a starting IBE scheme that has a key-

malleability property relative to our target class Φ of related-key deriving functions.

Second, we require the IBE scheme to support what we call collision-resistant iden-

63

4.2 Preliminaries

tity renaming. We provide a simple and efficient way to transform any IBE scheme

with these properties into one that is Φ-RKA secure.

To exploit the framework, we must find key-malleable IBE schemes. Somewhat

paradoxically, we show that the very attack strategies that broke the RKA security

of existing IBE schemes can be used to show that these schemes are Φ-key-malleable,

not just for Φ = Φlin but even for Φ = Φaff . We additionally show that these

schemes support efficient collision-resistant identity renaming. As a consequence we

obtain Φaff -RKA-secure IBE schemes based on the same assumptions used to prove

standard IBE security of the base IBE schemes.

From a practical perspective, the attraction of these results is that our schemes

modify the known ones in a very small and local way limited only to the way iden-

tities are hashed. They thus not only preserve the efficiency of the base schemes,

but implementing them would require minimal and modular software changes, so

that non-trivial RKA security may be added without much increase in cost. From

a theoretical perspective, the step of importance here is to be able to achieve RKA

security for non-linear functions, and this without extra computational assumptions.

Achieving Φlin-RKA security has so far been a barrier for most primitives.

However, we can go further, providing a Φpoly(d)-RKA-secure IBE scheme. Our

scheme is an extension of Waters’ scheme [98]. The proof is under a q-type hardness

assumption that we show holds in the generic group model. The significance of this

result is to show that for IBE we can go well beyond linear RKAs, something not

known for PRFs.

4.2 Preliminaries

RKD functions and classes. We say that φ is a related-key deriving (RKD)

function over a set MSKSp if φ ∈ Fun(MSKSp,MSKSp). We say that Φ is a class

of RKD functions over MSKSp if Φ ⊆ Fun(MSKSp,MSKSp) and id ∈ Φ where id is

the identity function on MSKSp. In our constructs, MSKSp will have an algebraic

structure, such as being a group, ring or field. In the last case, for a, b ∈ MSKSp we

define φ+
b , φ

∗
a, φ

aff
a,b ∈ Fun(MSKSp,MSKSp) via φ+

b (msk) = msk+b, φ∗a(msk) = a·msk ,

and φaff
a,b(msk) = a · msk + b for all msk ∈ MSKSp. For a polynomial q over field

MSKSp, we define φpoly
q (msk) = q(msk) for all msk ∈ MSKSp. We let Φ+ = { φ+

b :

b ∈ MSKSp } be the class of additive RKD functions, Φ∗ = { φ∗a : a ∈ MSKSp } the

64

4.2 Preliminaries

class of multiplicative RKD functions, Φaff = {φaff
a,b : a, b ∈ MSKSp} the class of affine

RKD functions, and for any fixed positive integer d, Φpoly(d) = { φpoly
q : deg q ≤ d }

the set of polynomial RKD functions of bounded degree d.

If φ 6= φ′ are distinct functions in a class Φ there is of course by definition an msk

such that φ(msk) 6= φ′(msk), but there could also be keys msk on which φ(msk) =

φ′(msk). We say that a class Φ is claw-free if the latter does not happen, meaning for

all distinct φ 6= φ′ in Φ we have φ(msk) 6= φ′(msk) for all msk ∈ MSKSp. With the

exception of [69], all previous constructions of Φ-RKA-secure primitives with proofs

of security have been for claw-free classes [18, 86, 66, 13, 14, 99]. In particular,

key fingerprints are defined in [13] in such a way that their assumption of a Φ-key

fingerprint automatically implies that Φ is claw-free. We provide the first proofs of

achievability of RKA security for non-trivial classes with claws for a primitive other

than CPA-secure symmetric encryption.

IBE syntax. The usual IBE syntax specifies a single master key generation algo-

rithm that produces msk ,mpk together, and although there is of course a space from

which the master secret key is drawn, it is not explicitly named. But RKD functions

will have domain the space of master keys of the IBE scheme, which is why it is

convenient in our context to make it explicit in the syntax. Let us say that IBE is

canonical if the operation (msk ,mpk)←$ IBE.MKg(pp) picks msk at random from

a finite, non-empty set we denote IBE.MSKSp(pp), and then applies to (pp,msk) a

PT deterministic master public-key derivation function we denote IBE.MPK to get

mpk . Saying the master public key is a deterministic function of the master secret

key is not strictly necessary for us, but it helps make some things a little simpler

and is true in all known schemes, so we assume all IBE schemes are canonical.

We make an important distinction between parameters and the master public key,

namely that the former may not depend on msk while the latter might. Parameters

will be groups, group generators, pairings and the like. They will be fixed and

available to all algorithms. The RKD function set Φ will depend on these parameters,

as they define the master secret key space. For example if the master secret key space

is a group the parameters will define its order. The value pp is not explicitly input

to an RKD function φ but is available to it.

In order to define a satisfiable notion of security, it is necessary to limit the material

an adversary can modify. The adversary can modify only user-specific inputs to

algorithms, that is key material and values derived from it. One can imagine a

scenario where shared parameters are hard-coded into a device and therefore cannot

65

4.2 Preliminaries

main IND-RKAA
IBE,Φ(λ)

b←$ {0, 1} ; c∗ ←⊥ ; u∗ ←⊥ ; U ← ∅
pp←$ IBE.Pg(1λ)

msk ←$ IBE.MSKSp(pp)

mpk ← IBE.MPK(pp,msk)

b′←$AKD,LR(pp,mpk)

Return (b = b′)

proc KD(φ, u)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

If (msk ′ = msk) then U ← U ∪ {u}
If (u∗ ∈ U) then Return ⊥
Return IBE.UKg(pp,msk ′, u)

proc LR(u,m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
u∗ ← u

If (u∗ ∈ U) then Return ⊥
c∗←$ IBE.Enc(pp,mpk , u∗,mb)

Return c∗

Figure 4.1: Game IND-RKA defining Φ-RKA security of identity-based encryption
scheme IBE.

be modified, with only user-specific values in modifiable memory. In the case of

IBE, the adversary can then modify through the RKD functions the master secret

key used in the key derivation algorithm. Note that this algorithm is not given

the master public key, since as a user-specific value it would also be subject to

modification by the adversary. Canonicity of the IBE scheme means an algorithm

given the master secret key is able to derive from it the master public key should it

need to.

RKA-secure IBE. We define RKA security of IBE schemes for a class Φ of RKD

functions over IBE.MSKSp(pp) following [14]. We say that IBE is Φ-RKA secure if

Advind-rka
IBE,Φ,A,(·) is negligible for all PT adversaries A, where

Advind-rka
IBE,Φ,A(λ) = 2 Pr[IND-RKAA

IBE,Φ(λ)]− 1

and game IND-RKA is in Figure 4.1. A feature of the definition we draw attention to

is that the key derivation oracle KD refuses to act only when the identity it is given

matches the challenge one and the derived key equals the real one. This not only

creates a strong security requirement but one that is challenging to achieve because

66

4.3 Existing IBE Schemes Under Related-Key Attacks

a simulator, not knowing msk , cannot check whether or not the IBE adversary

succeeded. This difficulty is easily resolved if Φ is claw-free but not otherwise. We

consider this particular RKA security definition as, in addition to its strength, it is

the level of RKA security required of an IBE scheme so that application of the CHK

and Naor transforms results in RKA-secure PKE and signature schemes.

Notice that in this game, the RKD functions are applied only to the master secret

key msk . One could consider definitions in which the RKD functions are instead

applied to user secret keys usk . This may be more realistic in applications, where

one might expect msk to be better protected against RKAs than the usk . One could

also consider a mixed model where RKD functions are applied to both msk and usk .

Since we are ultimately interested in the application of our results for IBE to the

construction of PKE and signature schemes using the results of [14], we follow their

original formulation of Φ-RKA security of IBE.

4.3 Existing IBE Schemes Under Related-Key Attacks

The algorithms of the Boneh-Franklin BasicIdent IBE scheme [34] are given in Figure

4.2. The parameters pp of the scheme are groups G,GT of prime order p, a symmetric

pairing e : G × G → GT , a generator g of G and hash functions H1 : {0, 1}∗ → G,

H2 : GT → {0, 1}n which are modelled as random oracles in the security analysis.

The identity space USp(pp) is {0, 1}∗, the master secret key space MSKSp(pp) is Z∗p,
and the message space MSp(pp) is {0, 1}n. This scheme is adaptively secure in the

usual model for IBE security, under the Bilinear Diffie-Hellman (BDH) assumption.

Theorem 4.3.1 ([34], Theorem 4.1) Let A be an adversary against the adaptive

security of BF making qk key derivation queries and qH2 queries to random oracle

H2. Then there is an algorithm A1 solving the Bilinear Diffie-Hellman problem such

that

Advind-aid
BF,A (λ) ≤ e(1 + qk)qH2

2
·Advbdh

G,A1
(λ) .

The algorithms of the Waters IBE scheme [98] are also given in Figure 4.2. The

parameters pp of the scheme are groups G,GT of prime order p, a symmetric pairing

e : G×G→ GT , generators g, g1 of G and group elements h0, . . . , hn ∈ G specifying

the hash function H(u) = h0
∏
i∈u hi, where i ∈ u denotes the ith bit of the bitstring

u is set to 1. The identity space USp(pp) is {0, 1}n, the master secret key space

67

4.3 Existing IBE Schemes Under Related-Key Attacks

BF.Pg(1λ):

(p,G, e)←$ G.Pg(1λ)

g←$ G∗

Return (p,G, e, g,H1,H2)

BF.MPK(pp,msk):

(p,G, e, g,H1,H2)← pp

mpk ← gmsk

Return mpk

BF.UKg(pp,msk , u):

(p,G, e, g,H1,H2)← pp

usk ← H1(u)msk

Return usk

BF.Enc(pp,mpk , u,m):

(p,G, e, g,H1,H2)← pp

t←$ Zp
c1 ← gt

c2 ← H2(e(mpk ,H1(u))
t
)⊕m

Return (c1, c2)

BF.Dec(pp, usk , c):

(p,G, e, g,H1,H2)← pp

(c1, c2)← c

m ← c2 ⊕ H2(e(usk , c1))

Return m

Wat.Pg(1λ):

(p,G, e)←$ G.Pg(1λ)

g, g1, h0, . . . , hn←$ G∗

Return (p,G, e, g, g1, h0, . . . , hn)

Wat.MPK(pp,msk):

(p,G, e, g, g1, h0, . . . , hn)← pp

mpk ← gmsk

Return mpk

Wat.UKg(pp,msk , u):

(p,G, e, g, g1, h0, . . . , hn)← pp

r←$ Zp
usk1 ← gmsk

1 · H(u)
r

; usk2 ← gr

Return (usk1, usk2)

Wat.Enc(pp,mpk , u,m):

(p,G, e, g, g1, h0, . . . , hn)← pp

t←$ Zp
c1 ← gt

c2 ← H(u)
t

c3 ← e(mpk , g1)
t ·m

Return (c1, c2, c3)

Wat.Dec(usk , c):

(p,G, e, g, g1, h0, . . . , hn)← pp

(c1, c2, c3)← c

m ← c3 · e(usk2,c2)
e(usk1,c1)

Return m

Figure 4.2: Left: Boneh-Franklin IBE scheme BF. Right: Waters IBE scheme Wat.

68

4.4 Framework for Deriving RKA-Secure IBE Schemes

MSKSp(pp) is Z∗p, and the message space MSp(pp) is GT . The Waters IBE scheme

is also adaptively secure in the usual model for IBE security, under the Decisional

Bilinear Diffie-Hellman (DBDH) assumption.

Theorem 4.3.2 ([98], Theorem 1) Let A be an adversary against the adaptive

security of Wat making qk key derivation queries. Then there is an algorithm A1

solving the Decision Bilinear Diffie-Hellman problem such that

Advind-aid
Wat,A (λ) ≤ 32(n+ 1) · qk ·Advdbdh

G,A1
(λ) .

The Waters IBE scheme is not RKA secure if Φ includes a function φ∗a(msk) =

a ·msk . A call to the key derivation oracle with any such φ yields a user secret key

(usk1, usk2) = (ga·msk
1 · H(u)r, gr). Raising this to a−1 mod p gives (usk ′1, usk ′2) =

(gmsk
1 ·H(u)ra

−1

, gra
−1

), so that (usk ′1, usk ′2) is a user secret key for identity u under

the original master secret key with randomness r′ = ra−1. An RKA adversary can

thus obtain the user secret key for any identity of his choosing and hence break the

RKA security of the Waters scheme. A similar attack applies to the Boneh-Franklin

scheme.

4.4 Framework for Deriving RKA-Secure IBE Schemes

In the previous section we saw that the Boneh-Franklin and Waters IBE schemes

are not RKA secure. Here we will show how to modify these and other schemes to

be RKA secure by taking advantage, in part, of the very algebra that leads to the

attacks. We describe a general framework for creating RKA-secure IBE schemes

and then apply it obtain several such schemes.

We target a very particular type of framework, one that allows us to reduce RKA

security of a modified IBE scheme directly to the normal IBE security of a base IBE

scheme. This will allow us to exploit known results on IBE in a blackbox way and

avoid re-entering the often complex security proofs of the base IBE schemes.

Key-malleability. We say that an IBE scheme IBE is Φ-key-malleable if there

is an algorithm T , called the key simulator, which, given pp, mpk , an identity u, a

decryption key usk ′←$ IBE.UKg(pp,msk , u) for u under msk , and an RKD function

φ ∈ Φ, outputs a decryption key usk for u under master secret key φ(msk) that is

69

4.4 Framework for Deriving RKA-Secure IBE Schemes

main KMRealMIBE,Φ(λ)

pp←$ IBE.Pg(1λ)

msk ←$ IBE.MSKSp(pp)

mpk ←$ IBE.MPK(pp,msk)

b′←$AKD(pp,mpk)

Return (b′ = 1)

proc KD(φ, u)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

Return IBE.UKg(pp,msk ′, u)

main KMSimM
IBE,Φ,T (λ)

pp←$ IBE.Pg(1λ)

msk ←$ IBE.MSKSp(pp)

mpk ←$ IBE.MPK(pp,msk)

b′←$AKD(pp,mpk)

Return (b′ = 1)

proc KD(φ, u)

If (φ /∈ Φ) then Return ⊥
usk ′ ← IBE.UKg(pp,msk , u)

Return T (pp,mpk , u, usk ′, φ)

Figure 4.3: Games KMReal and KMSim defining key-malleability of IBE scheme
IBE.

distributed identically to the output of IBE.UKg(pp, φ(msk), u). The formalisation

takes a little more care, for in talking about two objects being identically distributed

one needs to be precise about relative to what other known information this is true.

A simple and rigorous definition here can be made using games. We ask that

Pr[KMRealMIBE,Φ(λ)] = Pr[KMSimM
IBE,Φ,T (λ)]

for all (not necessarily computationally bounded) adversaries M , where the games

are as in Figure 4.3.

Using key-malleability. Intuitively, key-malleability allows us to simulate a Φ-

RKA adversary via a normal adversary and would thus seem to be enough to prove

Φ-RKA security of IBE based on its normal security. Let us see how this argument

goes and then see the catch that motivates a transformation of the scheme via

collision-resistant identity renaming. Letting A be an adversary attacking the Φ-

RKA security of IBE, we aim to build an adversary A such that

Advind-rka
IBE,Φ,A

(λ) ≤ Advind-aid
IBE,A (λ) . (4.1)

On input pp,mpk , adversary A runs A(pp,mpk). When the latter makes a KD(φ, u)

query, A lets usk ← KD(u), where KD is A’s own key derivation oracle. It then lets

usk ← T (pp,mpk , u, usk , φ) and returns usk to A. Key-malleability tells us that usk

is distributed identically to an output of KD(φ, u), so the response provided by A is

perfectly correct. When A makes a LR(u,m0,m1) query, A lets c ← LR(u,m0,m1)

and returns c to A. Finally when A halts with output b′, adversary A does the same.

70

4.4 Framework for Deriving RKA-Secure IBE Schemes

The simulation seems perfect, so we appear to have established Equation (4.1).

What’s the catch? The problem is avoiding challenge key derivation. Suppose A

made a KD(φ, u) query for a φ such that φ(msk) 6= msk ; then made a LR(u,m0,m1)

query; and finally, given c, correctly computed b. It would win its game, because the

condition φ(msk) 6= msk means that identity u may legitimately be used both in a

key derivation query and in the challenge LR query. But our constructed adversary

A, in the simulation, would make query KD(u) to answer A’s KD(φ, u) query, and

then make query LR(u,m0,m1). A would thus have queried the challenge identity

u to the key-derivation oracle and would not win.

This issue is dealt with by transforming the base scheme via what we call identity

renaming, so that Φ-RKA security of the transformed scheme can be proved based

on the Φ-key-malleability of the base scheme.

Identity renaming. Renaming is a way to map identities in the new scheme back

to identities of the given, base scheme. Let us now say how renaming works more

precisely and then define the modified scheme.

Let IBE = (Pg,MKg,UKg,Enc,Dec) denote the given, base IBE scheme, with pa-

rameters pp and identity space USp(pp). A renaming scheme is a pair (SI,PI)

of functions where SI: {pp} ×MSKSp(pp) × USp(pp) → USp(pp) and PI: {pp} ×
[MPK(pp,MSKSp(pp))]× USp(pp)× Φ → USp(pp) where USp(pp), implicitly spec-

ified by the renaming scheme, will be the identity space of the new scheme we

will soon define. The first function SI, called the secret renaming function, uses

the master secret key, while its counterpart public renaming function PI uses the

master public key. We require that SI(pp, φ(msk), u) = PI(pp,mpk , u, φ) for all

msk ∈ MSKSp(pp), all mpk ∈ [MPK(pp,msk)], all u ∈ USp, and all φ ∈ Φ. This

compatibility condition says that the two functions arrive, in different ways, at the

same outcome.

The transform. The above is all we need to specify our Identity Renaming

Transform IRT that maps a base IBE scheme IBE = (Pg,MKg,UKg,Enc,Dec) to

a new IBE scheme IBE = (Pg,MKg,UKg,Enc,Dec). As the notation indicates,

the parameter generation algorithm, master public key generation algorithm and

decryption algorithm are unchanged. The other algorithms are defined by

UKg(pp,msk , u) = UKg(pp,msk ,SI(pp,msk , u))

71

4.4 Framework for Deriving RKA-Secure IBE Schemes

and

Enc(pp,mpk , u,m) = Enc(pp,mpk ,PI(pp,mpk , u, id),m) .

We clarify that algorithms of the new IBE scheme do not, and cannot, have as input

the RKD functions φ used by an attacker. We are defining an IBE scheme, and

algorithm inputs must follow the syntax of IBE schemes. When the new encryption

algorithm invokes PI, it sets φ to the identity function id. (Looking ahead, the

simulation will call the renaming functions with φ emanating from the adversary

attacking the new IBE scheme.) The key derivation algorithm has msk but not mpk

(recall we cannot give it mpk because otherwise it becomes subject to the RKA) and

thus uses the secret renaming function. On the other hand the encryption algorithm

has mpk but obviously not msk and thus uses the public renaming function. This

explains why we need two, compatible renaming functions. The new scheme has

the same message space as the old one. Its identity space is inherited from the

renaming scheme, being the space USp(pp) from which the renaming functions draw

their identity inputs.

The above compatibility requirement implies that

SI(pp,msk , u) = PI(pp,mpk , u, id) .

From this it follows that IBE preserves the correctness of IBE. We now go on to

specifying properties of the base IBE scheme and the renaming functions that suffice

to prove Φ-RKA security of the new scheme.

A trivial renaming scheme is obtained by setting

SI(pp,msk , u) = u = PI(pp,mpk , u, φ) .

This satisfies the compatibility condition. However, the transformed IBE scheme IBE

ends up identical to the base scheme IBE and thus this trivial renaming cannot aid

in getting security. We now turn to putting a non-trivial condition on the renaming

scheme that we will show suffices.

Collision-resistance. The renaming scheme (SI,PI) will be required to have a

collision-resistance property. In its simplest and strongest form the requirement is

that

(φ(msk), u1) 6= (msk , u2) ⇒ SI(pp, φ(msk), u1) 6= SI(pp,msk , u2)

for all pp ∈ PSp, all msk ∈ MSKSp(pp), all u1, u2 ∈ USp(pp), and all φ ∈ Φ. This

statistical collision-resistance is enough to prove that IBE is Φ-RKA secure if IBE is

Φ-key-malleable. Theorem 4.4.1, the main result of this chapter, states this formally.

72

4.4 Framework for Deriving RKA-Secure IBE Schemes

main IND-RKAA
IBE

(λ) / GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

b←$ {0, 1} ; c∗ ←⊥ ; u∗ ←⊥ ; U ← ∅ u∗ ←⊥ ; U ← ∅
pp←$ IBE.Pg(1λ)

msk ←$ IBE.MSKSp(pp)

mpk ← IBE.MPK(pp,msk)

b′←$A
KD,LR

(pp,mpk)

Return (b = b′)

proc KD(φ, u) // IND-RKAA
IBE

(λ) / GA
0 (λ)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

If (msk ′ = msk) then U ← U ∪ {u}
If (u∗ ∈ U) then Return ⊥

u ← SI(pp,msk ′, u)

U ← U ∪ {u}
If (u∗ ∈ U) then Return ⊥

Return IBE.UKg(pp,msk ′, u)

proc KD(φ, u) // GA
1 (λ) / GA

2 (λ)

If (φ /∈ Φ) then Return ⊥
u ← PI(pp,mpk , u, φ) ; U ← U ∪ {u} ; If (u∗ ∈ U) then Return ⊥
Return IBE.UKg(pp, φ(msk), u)

usk ← IBE.UKg(pp,msk , u)

Return T (pp,mpk , u, usk , φ)

proc LR(u,m0,m1) // IND-RKAA
IBE

(λ) / GA
0 (λ)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
u∗ ← u

If (u∗ ∈ U) then Return ⊥
u∗ ← PI(pp,mpk , u, id)

u∗ ← SI(pp,msk , u) ; If (u∗ ∈ U) then Return ⊥
c∗←$ IBE.Enc(pp,mpk , u∗,mb)

Return c∗

proc LR(u,m0,m1) // GA
1 (λ) / GA

2 (λ)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
u∗ ← PI(pp,mpk , u, id)

If (u∗ ∈ U) then Return ⊥
c∗←$ IBE.Enc(pp,mpk , u∗,mb)

Return c∗

Figure 4.4: Games used in the proof of Theorem 4.4.1.

73

4.4 Framework for Deriving RKA-Secure IBE Schemes

Theorem 4.4.1 Let IBE = (Pg,MKg,UKg,Enc,Dec) be an adaptively-secure Φ-key-

malleable IBE scheme with key simulator T . Let (SI,PI) be a statistically collision-

resistant renaming scheme. Let IBE = (Pg,MKg,UKg,Enc,Dec) be obtained from

IBE and renaming scheme (SI,PI) via the transform IRT described above. Then

IBE is Φ-RKA secure.

Proof of Theorem 4.4.1: Let A be a Φ-RKA adversary against IBE. We construct

an adversary A such that

Advind-rka
IBE,Φ,A

(λ) ≤ Advind-aid
IBE,A (λ) .

The proof uses the games in Figure 4.4.

In answering a KD(φ, u) query, game IND-RKAIBE,Φ must use the key-generation

algorithm UKg of the new scheme IBE but with master secret key msk ′ = φ(msk).

From the definition of UKg, it follows that not only is the key-generation done under

msk ′, but also the identity renaming. LR, correspondingly, uses Enc, and thus the

public renaming function PI.

The adversary A we aim to construct will not know msk . A central difficulty in the

simulation is thus the dashed-boxed code of the KD procedure of IND-RKAIBE,Φ

where the response provided to A depends on the result of a test involving msk , a

test that A cannot perform. Before we can design A we must get rid of this test.

Statistical collision-resistance is what will allow us to do so.

KD of game G0 moves the identity renaming up before the list of queried identi-

ties is updated and then adds the transformed identity to the list. LR is likewise

modified so its test now involves the transformed (rather than original) identities.

Additionally, the secret renaming function SI is used instead of PI, a modification

allowed by the compatibility property of the renaming scheme. We claim this makes

no difference, meaning

Pr[IND-RKAA
IBE,Φ

(λ)] = Pr[GA
0 (λ)] .

Indeed, statistical collision-resistance tell us that (msk ′, u) = (msk , u∗) iff SI(pp,

msk ′, u) = SI(pp,msk , u∗). This means the dashed-boxed code of IND-RKAIBE,Φ

and the boxed code of G0 are equivalent.

Compatibility is invoked to use PI in place of SI in both KD and in LR in G1, so

74

4.4 Framework for Deriving RKA-Secure IBE Schemes

that

Pr[GA
0 (λ)] = Pr[GA

1 (λ)] .

Rather than use φ(msk) for key generation as in the boxed code of G1, G2 uses msk

and then applies the key simulator T . We claim that key-malleability implies

Pr[GA
1 (λ)] = Pr[GA

2 (λ)] . (4.2)

To justify this we show that there is an adversary M such that

Pr[KMRealMIBE,Φ(λ)] = Pr[GA
1 (λ)] and Pr[KMSimM

IBE,Φ,T (λ)] = Pr[GA
2 (λ)] .

Adversary M behaves as follows:

MKD(pp,mpk)

b←$ {0, 1} ; c∗ ←⊥ u∗ ← ⊥ ; U ← ∅
b′←$ A

KDSim,LR
(pp,mpk)

Return (b = b′)

KDSim(φ, u)

u ← PI(pp,mpk , u, φ)
U ← U ∪ {u}
If (u∗ ∈ U) then Return ⊥
Return KD(φ, u)

LR(u,m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
u∗ ← PI(pp,mpk , u, id)
If (u∗ ∈ U) then Return ⊥
c∗←$ IBE.Enc(pp,mpk , u∗,mb)
Return c∗

If M is playing game KMReal then its KD oracle will behave as the boxed code in

game G1, while ifM is playing game KMSim its KD oracle will behave as the dashed-

boxed code in game G2. If M is playing game KMReal then game G1 is perfectly

simulated, while if M is playing KMSim then game G2 is perfectly simulated, so

M returns 1 with the same probability that A wins in each case and by the key-

malleability of IBE Equation (4.2) holds.

Finally, we design A so that

Advind-aid
IBE,A (λ) = 2 Pr[GA

2 (λ)]− 1 .

Adversary A behaves as follows:

75

4.5 Applying the Framework

AKD,LR(pp,mpk)

b′←$ A
KDSim,LRSim

(pp,mpk)
Return b′

KDSim(φ, u)

If (φ /∈ Φ) then Return ⊥
u ← PI(pp,mpk , u, φ)
usk ← KD(u)

usk ← T (pp,mpk , u, usk , φ)

Return usk

LR(u,m0,m1)

u∗ ← PI(pp,mpk , u, φ)
Return LR(u∗,m0,m1)

A’s own KD oracle will keep track of the queried identities u, so A provides a perfect

simulation of G2 for A.

4.5 Applying the Framework

Affine RKA-security for Boneh-Franklin and Waters. We show how the

framework can be instantiated with the IBE schemes of Boneh-Franklin and Waters

to achieve IBE schemes secure against affine related-key attacks. First we look at

key-malleability. Keys in the Boneh-Franklin IBE scheme are of the form usk ′ =

H1(u)msk , so we can specify an algorithm T as follows:

T (pp,mpk , u, usk ′, φa,b) : usk ← usk ′
a · H1(u)b ; Return usk .

The output of T is a valid key for user u under master secret key φa,b(msk), since:

usk ′a · H1(u)b = (H1(u)msk)
a · H1(u)b = H1(u)a·msk+b .

Since the key derivation algorithm is deterministic, the keys output by T are dis-

tributed identically to the keys output by IBE.UKg(pp, φ(msk), u), and so the Boneh-

Franklin IBE scheme is key-malleable.

Keys in the Waters IBE scheme are of the form (usk ′1, usk ′2) = (gmsk
1 ·H(u)r, gr) for

some r in Zp, so we can specify an algorithm T as follows:

T (pp,mpk , u, usk ′, φa,b):

If (a = 0) then r←$ Zp ; usk1 ← gb1 · H(u)r ; usk2 ← gr

Else usk1 ← usk ′a1 · gb1 ; usk2 ← usk ′a2
Return (usk1, usk2)

76

4.5 Applying the Framework

When the RKD function is a constant function, T behaves exactly as the key deriva-

tion algorithm under master secret key b, so its output is valid and correctly dis-

tributed. Otherwise, the output of T is still a valid key for user u under master

secret key φa,b(msk), now under randomness ra, since:

usk ′a1 · gb1 = (gmsk
1 · H(u)r)

a · gb1 = ga·msk+b
1 H(u)ra usk ′a2 = gra .

Since r is uniformly distributed in Zp, ra is also uniformly distributed in Zp and

so the keys output by T are distributed identically to those output by IBE.UKg(pp,

φ(msk), u). Hence the Waters IBE scheme is key-malleable.

The same identity renaming scheme can be used for both IBE schemes. Namely,

SI(pp,msk , u) returns u||gmsk and PI(pp,mpk , u, φa,b) returns u||mpka · gb. The

compatibility requirement is satisfied and the renaming scheme is clearly collision-

resistant since (u1||gφ(msk) = u2||gmsk) ⇒ (u1 = u2) ∧ (φ(msk) = msk). Thus the

IBE schemes of Boneh-Franklin and Waters are key-malleable and admit a suitable

identity renaming scheme, and so satisfy the requirements of Theorem 4.4.1. Notice

that in the Waters case, we must increase the parameter n by the bit length of ele-

ments of G1 (and hence increase the size of the description of the scheme parameters)

to allow identities of the form u||gmsk to be used in the renaming scheme.

For concreteness Figure 4.5 shows the algorithms of aff-BF and aff-Wat, the trans-

formed versions of the Boneh-Franklin and Waters IBE schemes secure against affine

related-key attacks. The following theorem is obtained by combining Theorem 4.4.1

with Theorem 4.3.1.

Theorem 4.5.1 Assume the BDH problem is hard for G. Then aff-BF is Φaff-RKA

secure. More concretely, let A be a Φaff-RKA adversary against aff-BF making qk(λ)

key derivation queries and qH2(λ) queries to random oracle H2. Then there is an

algorithm A solving the Bilinear Diffie-Hellman problem such that

Advind-rka
aff-BF,Φaff ,A

(λ) ≤ e(1 + qk(λ))qH2(λ)

2
·Advbdh

G,A(λ) .

The following theorem is obtained by combining Theorem 4.4.1 with Theorem 4.3.2,

and the running time of A below may be obtained in the same way. Concrete-

security improvements would be obtained by using instead the analysis of Waters’

scheme from [22].

Theorem 4.5.2 Assume the DBDH problem is hard for G. Then aff-Wat is Φaff-

RKA secure. More concretely, let A be a Φaff-RKA adversary against aff-Wat mak-

77

4.5 Applying the Framework

aff-BF.Pg(1λ):

(p,G, e)←$ G.Pg(1λ)

g←$ G∗

Return (p,G, e, g,H1,H2)

aff-BF.MPK(pp,msk):

(p,G, e, g,H1,H2)← pp

mpk ← gmsk

Return mpk

aff-BF.UKg(pp,msk , u):

(p,G, e, g,H1,H2)← pp

usk ← H1(u||gmsk)msk

Return usk

aff-BF.Enc(pp,mpk , u,m):

(p,G, e, g,H1,H2)← pp

t←$ Zp
c1 ← gt

c2 ← H2(e(mpk ,H1(u||mpk))
t
)⊕m

Return (c1, c2)

aff-BF.Dec(pp, usk , c):

(p,G, e, g,H1,H2)← pp

(c1, c2)← c

m ← c2 ⊕ H2(e(usk , c1))

Return m

aff-Wat.Pg(1λ):

(p,G, e)←$ G.Pg(1λ)

g, g1, h0, . . . , hn←$ G∗

Return (p,G, e, g, g1, h0, . . . , hn)

aff-Wat.MPK(pp,msk):

(p,G, e, g, g1, h0, . . . , hn)← pp

mpk ← gmsk

Return mpk

aff-Wat.UKg(pp,msk , u):

(p,G, e, g, g1, h0, . . . , hn)← pp

r←$ Zp
usk1 ← gmsk

1 · H(u||gmsk)
r

usk2 ← gr

Return (usk1, usk2)

aff-Wat.Enc(pp,mpk , u,m):

(p,G, e, g, g1, h0, . . . , hn)← pp

t←$ Zp
c1 ← gt

c2 ← H(u||mpk)
t

c3 ← e(mpk , g1)
t ·m

Return (c1, c2, c3)

aff-Wat.Dec(pp, usk , c):

(p,G, e, g, g1, h0, . . . , hn)← pp

(c1, c2, c3)← c

m ← c3 · e(usk2,c2)
e(usk1,c1)

Return m

Figure 4.5: Left: Φaff -RKA-secure Boneh-Franklin IBE scheme aff-BF. Right: Φaff -
RKA-secure Waters IBE scheme aff-Wat.

78

4.5 Applying the Framework

ing qk(λ) key derivation queries. Then there is an algorithm A solving the Decision

Bilinear Diffie-Hellman problem such that

Advind-rka
aff-Wat,Φaff ,A

(λ) ≤ 32(n+ 1) · qk(λ) ·Advdbdh
G,A (λ) .

An IBE scheme handling RKAs for bounded degree polynomials. We

show how to construct an IBE scheme that is RKA secure when the RKD function

set equals Φpoly(d), the set of all polynomials of degree at most d, for an arbitrary

d chosen at the time of master key generation. The scheme is obtained through a

simple extension of the IBE scheme of Waters combined with the identity renaming

transform used above. The only change we make to the Waters scheme is in the mas-

ter public key, where we add the extra elements gmsk2
, . . . , gmskd , g1

msk2
, . . . , g1

mskd

alongside gmsk . These elements assist in achieving key-malleability for the set

Φpoly(d).

The master public-key generation algorithm of the extended Waters scheme is then

MPK(pp,msk):

mpk ←
(
gmsk , gmsk2

, . . . , gmskd , (g1)msk2

, . . . , (g1)mskd
)

Return mpk

The other algorithms and keys remain unchanged; in particular, key derivation does

not make use of these new elements. This extended Waters IBE scheme is secure (in

the usual IND-aID sense for IBE) under a q-type extension of the standard DBDH

assumption that we call the Extended Decisional Bilinear Diffie-Hellman (EDBDH)

problem. Specifically, we say the EDBDH problem is hard for G if Advedbdh
G,q(·),A(·)

is negligible for all PT adversaries A and every polynomially bounded function

q : N→ N, where Advedbdh
G,q(λ),A(λ) = 2 Pr[EDBDHA

G,q(λ)(λ)]− 1 and game EDBDH is

in Figure 4.6.

Theorem 4.5.3 Let IBE = (Pg,MKg,UKg,Enc,Dec) be the extended Waters IBE

scheme. Assume the EDBDH problem is hard for G. Then IBE is adaptively secure.

More concretely, let A be an adversary against IBE making qk(λ) key derivation

queries. Then there is an algorithm A1 solving the Extended Decision Bilinear Diffie-

Hellman problem such that

Advind-aid
IBE,A (λ) ≤ 32(n+ 1) · qk(λ) ·Advedbdh

G,q(λ),A1
(λ) .

79

4.5 Applying the Framework

main EDBDHA
G,q(λ)(λ)

q ← q(λ)

(p,G,GT , e)←$ G.Pg(1λ)

b←$ {0, 1}
α, β, γ←$ Z∗p
g←$ G∗

If (b = 1) then T ← e(g, g)αβγ

Else T ←$ GT
b′←$AChal(p,G,GT , e, g, gα, gα

2

, . . . , gα
q

, gβ , g(α2)β , g(α3)β , . . . , g(αq)β , gγ , T)

Return (b = b′)

Figure 4.6: Game EDBDH defining the Extended Decisional Bilinear Diffie-Hellman
problem for a group generator G.

To see this, observe that the original proof of security for Waters’ scheme [98, 22]

also goes through for the extended scheme, using the elements g, gα, gβ, T from

the EDBDH problem to run the simulation as in the original proof and using the

additional elements from the EDBDH problem to set up the master public key in

the extended scheme.

We give evidence for the validity of the EDBDH assumption by examining the

difficulty of the problem in the generic group model. The problem falls within the

framework of the generic group model “master theorem” of Boneh, Boyen and Goh

[31]. In their notation, we have P = {1, α, α2, . . . , αq, β, α2β, . . . , αqβ, γ}, Q = 1,

and f = αβγ. It is clear by inspection that P,Q and f meet the independence

requirement of the master theorem, and it then gives a lower bound on an adversary’s

advantage of solving the EDBDH problem in a generic group of the form (q+1)(qξ+

4q + 6)2/p where qξ is a bound on the number of queries made by the adversary

to the oracles computing the group operations in G,GT . While a lower bound in

the generic group model does not rule out an efficient algorithm when the group is

instantiated, it lends heuristic support to our assumption.

The extended Waters IBE scheme is Φpoly(d)-key malleable with algorithm T as

follows:

T (pp,mpk , u, usk ′, φa0,a1,...,ad):

If (a1 = 0) then r←$ Zp ; usk1 ← ga0
1 · H(u)r · (g1

msk2
)
a2 · · · (g1

mskd)
ad

; usk2 ← gr

Else usk1 ← ga0
1 · usk ′a1

1 · (g1
msk2

)
a2 · · · (g1

mskd)
ad

; usk2 ← usk ′a1
2

Return (usk1, usk2)

80

4.6 Conclusion

The identity renaming scheme is then defined via

SI(msk , u) = u||gmsk

and

PI(mpk , u, φa0,a1,...,ad) = u||ga0 ·mpka1 · (gmsk2

)
a2 · · · (gmskd)

ad

which clearly meets the compatibility and collision-resistance requirements.

Figure 4.7 shows IBE scheme poly-Wat, the extended Waters IBE scheme trans-

formed to be secure against polynomial related-key attacks for polynomials of degree

d. Combining Theorem 4.4.1 with Theorem 4.5.3 gives the following theorem.

Theorem 4.5.4 Assume the EDBDH problem is hard for G. Then poly-Wat is

Φpoly(q(λ))-RKA secure. More concretely, let A be a Φpoly(q(λ))-RKA adversary

against poly-Wat making qk(λ) key derivation queries. Then there is an algorithm

A solving the Extended Decision Bilinear Diffie-Hellman problem such that

Advind-rka
poly-Wat,Φpoly(q(λ)),A

(λ) ≤ 32(n+ 1) · qk(λ) ·Advedbdh
G,q(λ),A(λ) .

4.6 Conclusion

We provided a framework enabling the construction of RKA-secure IBE schemes,

and showed how specific instantiations of the framework yield the first IBE schemes

secure against adversaries deriving new keys through affine and polynomial transfor-

mations of the master secret key. Our schemes are secure under the same assump-

tions as the underlying IBE schemes, and modify them in a very small and local

way limited only to the way identities are hashed.

The choice of IBE as a primitive is not arbitrary. First, IBE is seeing a lot of deploy-

ment, and compromise of the master secret key would cause widespread damage, so

we are well motivated to protect it against side-channel attacks. Second, IBE was

shown in [14] to be an enabling primitive in the RKA domain: achieving RKA-secure

IBE for any class Φ immediately yields Φ-RKA-secure PKE (CCA-secure public-key

encryption) and signature schemes. These results were obtained by noting that the

CHK [32] IBE-to-PKE transform and the Naor IBE-to-signatures transform both

preserve RKA security. Thus, results for IBE immediately have wider impact.

An open problem here is to extend the framework to apply to the IBE scheme

81

4.6 Conclusion

poly-Wat.Pg(1λ):

(p,G, e)←$ G.Pg(1λ)

g, g1, h0, . . . , hn←$ G∗

Return (p,G, e, g, g1, h0, . . . , hn)

poly-Wat.MSKSp(pp):

(p,G, e, g, g1, h0, . . . , hn)← pp

Return Z∗p
poly-Wat.MPK(pp,msk):

(p,G, e, g, g1, h0, . . . , hn)← pp

mpk0 ← gmsk

mpk ← (mpk0, g
msk2

, . . . , gmskd

, gmsk2

1 , . . . , gmskd

1)

Return mpk

poly-Wat.UKg(pp,msk , u):

(p,G, e, g, g1, h0, . . . , hn)← pp

r←$ Zp
usk1 ← gmsk

1 · H(u||gmsk)
r

usk2 ← gr

Return (usk1, usk2)

poly-Wat.Enc(pp,mpk , u,m):

(p,G, e, g, g1, h0, . . . , hn)← pp

(mpk0, g
msk2

, . . . , gmskd

, gmsk2

1 , . . . , gmskd

1)← mpk

t←$ Zp
c1 ← gt

c2 ← H(u||mpk0)
t

c3 ← e(mpk0, g1)
t ·m

Return (c1, c2, c3)

poly-Wat.Dec(pp, usk , c):

(p,G, e, g, g1, h0, . . . , hn)← pp

(c1, c2, c3)← c

m ← c3 · e(usk2,c2)
e(usk1,c1)

Return m

Figure 4.7: Φpoly(d)-RKA-secure Waters IBE scheme poly-Wat.

82

4.6 Conclusion

of Gentry [65], which fails to meet our notion of key-malleability, where a user-

level key for user u derived from master secret key msk can be transformed into

one derived from φ(msk). In the affine case, Gentry’s IBE scheme does however

have the property that a user-level key for user u derived from φ(msk) can be

computed from a user-level key derived from master secret key msk for a related

user u ′ ← φ−1(u). This transformation is possible because the user space and

identity space are the same, yet this same property causes issues in defining a suitable

identity renaming transform, as we can no longer simply extend the message space

and must instead hash into it. To achieve security, the identity renaming scheme

must now have a computational rather than statistical collision-resistance property,

where additionally the adversary has access to a key derivation oracle. Constructing

a suitable hash function to satisfy this unnatural notion is a difficult task.

Another open problem is constructing a similar framework for constructing RKA-

secure versions of selectively-secure IBE schemes such as those of Boneh and Boyen

[29]. This is an interesting problem as selective security is sufficient to obtain CCA-

secure PKE through the CHK transform [32], which preserves RKA security [14],

and it may be possible to build schemes meeting this notion that are more efficient

than ours, which meet the stronger notion of adaptive security. Since our identity

renaming technique involves embedding the public key into the identity space, we

cannot choose the challenge identity up front as is required in the selective security

game, as we do not know at that point the public key to embed into it.

In the next chapter, we will use the RKA-secure IBE schemes of this chapter, and

the techniques used in their construction, to build more RKA-secure primitives.

83

Chapter 5

Further RKA-Secure Primitives

Contents

5.1 Introduction . 85

5.2 RKA-Secure PKE . 88

5.2.1 RKA Security of the Boneh-Katz Transform 89

5.2.2 RKA Security for the KEM-DEM Paradigm 99

5.2.3 An RKA-Secure KEM from the BMW Scheme 103

5.3 Joint Security in the RKA Setting 109

5.4 RKA-Secure Symmetric Encryption 116

5.4.1 RKA-Secure Symmetric Encryption from PKE 117

5.4.2 Strong RKA-Secure PKE from IBE 120

5.4.3 Strong RKA-Secure IBE . 125

5.5 Conclusion . 133

In this chapter, we use the RKA-secure IBE schemes of the previous chapter, and

the techniques used in their construction, to build further RKA-secure primitives.

We construct RKA-secure PKE from IBE through the Boneh-Katz transform, and

through applying the techniques of the previous chapter to build an RKA-secure

KEM. We additionally build RKA-secure joint encryption and signature from IBE.

When the base IBE scheme has a further malleability property, the PKE scheme

obtained through the CHK transform can be converted into an RKA-secure CCA-SE

(CCA-secure symmetric encryption) scheme. The results of this chapter combined

with those of the previous chapter yield the first RKA-secure schemes for the prim-

itives signature, PKE, and CCA-SE for non-linear RKAs, meaning beyond Φlin.

84

5.1 Introduction

Primitive Linear Affine Polynomial

IBE [14]+[13] X X

Signatures [14]+[13] X X

PKE [99], [14]+[13] X X

CPA-SE [8], [14]+[13] [69] [69]

CCA-SE [14]+[13] X X∗

PRF [13] – –

Figure 5.1: Rows are indexed by primitives. Columns are indexed by the class Φ of

related-key derivation functions, Φlin,Φaff and Φpoly(d) respectively. Entries indicate work

achieving Φ-RKA security for the primitive in question. Checkmarks indicate results from

this and the previous chapter that bring many primitives all the way to security under

polynomial RKAs in one step. The table only considers achieving the strong, adaptive

notions of security from [14]; non-adaptively secure signature schemes for non-linear RKAs

were provided in [69]. Note that symmetric key primitives cannot be RKA secure against

constant RKD functions, so affine and polynomial RKA security for the last three rows is

with respect to the RKD sets Φaff \ Φc and Φpoly(d) \ Φc. The “∗” in the CCA-SE row

is because our CCA-SE construction is insecure against RKD functions where the linear

coefficient is zero, so does not achieve RKA security against the full set Φpoly(d) \ Φc.

5.1 Introduction

The theoretical foundations of RKA security were laid by Bellare and Kohno [18],

who treated the case of PRFs and PRPs. Research then expanded to consider other

primitives [66, 8, 69, 14]. In particular, Bellare, Cash and Miller [14] provide a

comprehensive treatment including strong definitions for many primitives and ways

to transfer Φ-RKA security from one primitive to another.

Early efforts were able to find PRFs with proven RKA security only for limited

Φ or under very strong assumptions. Eventually, using new techniques, Bellare

and Cash [13] were able to present DDH-based PRFs secure against linear RKAs

(Φ = Φlin). However, it is not clear how to take their techniques further to handle

larger RKA sets Φ.

Figure 5.1 summarises the broad position. Primitives for which efforts have now

been made to achieve RKA security include CPA-SE (CPA-secure symmetric encryp-

tion), CCA-SE (CCA-secure symmetric encryption), PKE (CCA secure public-key

85

5.1 Introduction

encryption1) , signatures, and IBE (CPA secure identity-based encryption). Schemes

proven secure under a variety of assumptions have been provided. But the salient

fact that stands out is that prior to our work in this and the previous chapter, results

were all for linear RKAs with the one exception of CPA-SE where a scheme secure

against polynomial (and thus affine) RKAs was provided by [69].

In more detail, Bellare, Cash and Miller [14] show how to transfer RKA security from

PRF to any other primitive, assuming an existing standard-secure instance of the

primitive. Combining this with [13] yields DDH-based schemes secure against linear

RKAs for all the primitives, indicated by a “[14]+[13]” table entry. Applebaum,

Harnik and Ishai [8] present LPN and LWE-based CPA-SE schemes secure against

linear RKAs. Wee [99] presents PKE schemes secure against linear RKAs. Goyal,

O’Neill and Rao [69] gave a CPA-SE scheme secure against polynomial RKAs. (We

note that their result statement should be amended to exclude constant RKD func-

tions, for no symmetric primitive can be secure under these.) Wee [99] (based on a

communication of Wichs) remarks that AMD codes [48] may be used to achieve RKA

security for PKE, a method that extends to other primitives including IBE (but not

PRFs), but with current constructions of these codes [48], the results continue to be

restricted to linear RKAs. We note that we are interested in the stronger, adaptive

definitions of RKA security as given in [14], but non-adaptively secure signature

schemes for non-linear RKAs were provided in [69].

In summary, a basic theoretical question that emerges is how to go beyond linear

RKAs. A concrete target here is to bring other primitives to parity with CPA-SE by

achieving security for affine and polynomial RKAs. Ideally, we would like approaches

that are general, meaning each primitive does not have to be treated separately. As

discussed above we reach these goals with IBE as a starting point.

RKA-secure PKE and Signatures. Applying the results of [14] to the IBE

schemes of the previous chapter, we obtain the first constructions of RKA-secure

PKE and signature schemes for Φaff and Φpoly(d). Again, our schemes are efficient

and our results hold in the standard model under reasonable hardness assumptions.

The PKE schemes, being derived via the CHK transform [32], just involve the addi-

tion of a one-time signature and verification key to the IBE ciphertexts and so incur

little additional overhead for RKA security. As an auxiliary result that improves on

the corresponding result of [14], we show that the more efficient MAC-based Boneh-

1 RKAs are interesting for symmetric encryption already in the CPA case because encryption
depends on the secret key, but for public-key encryption they are only interesting for the CCA case
because encryption does not depend on the secret key.

86

5.1 Introduction

Katz transform of [37, 32] can be used in place of the CHK transform. The signature

schemes arise from the Naor trick, wherein identities are mapped to messages, IBE

user private keys are used as signatures, and a trial encryption and decryption on

a random plaintext are used to verify the correctness of a signature. This generic

construction can often be improved by tweaking the verification procedure, and the

same is true here: for example, for the Waters-based signature scheme, we can base

security on the CDH assumption instead of the DBDH assumption, and can achieve

more efficient verification. We stress that our signature schemes are provably un-

forgeable in a fully adaptive related-key setting, in contrast to the recently proposed

signatures in [69].

We also show how to adapt the KEM-DEM (or hybrid encryption) paradigm to the

RKA setting, and describe a highly efficient, Φaff -RKA-secure KEM that is inspired

by our IBE framework and is based on the scheme of Boyen, Mei and Waters [39].

Our KEM’s security rests on the hardness of the DBDH problem for asymmetric

pairings e : G1×G2 → GT ; its ciphertexts consist of 2 group elements (one in G1 and

one in G2), public keys are 3 group elements (two in G2 and one in GT), encryption

is pairing-free, and the decryption cost is dominated by 3 pairing operations.

Note that RKA-secure PRFs for sets Φaff and Φpoly(d) cannot exist, since these sets

contain constant functions, and we know that no PRF can be RKA-secure in this

case [18]. Thus we are able to show stronger results for IBE, PKE and signatures

than are possible for PRF. Also, although Bellare, Cash and Miller [14] showed

that Φ-RKA security for PRF implies Φ-RKA security for signatures and PKE,

the observation just made means we cannot use this result to get Φaff or Φpoly(d)

RKA-secure IBE, PKE or signature schemes. This provides further motivation for

starting from RKA-secure IBE as we do, rather than from RKA-secure PRF.

Finally we note that even for linear RKAs where IBE schemes were known via a

combination of results from [14] and [13], our schemes are significantly more efficient.

Joint RKA Security. As a combination of the results of [14] and Chapter 3, we

provide definitions for RKA security in the joint security setting, where the same

keypair is used for both encryption and signature functions, and show that a Φ-

RKA-secure IBE scheme can be used to build a Φ-RKA-secure joint encryption and

signature scheme. This construction can be instantiated using any of our specific

IBE schemes, by which we obtain the first concrete joint encryption and secure

schemes for the RKA setting.

87

5.2 RKA-Secure PKE

main IND-RKAA
PKE,Φ(λ)

b←$ {0, 1} ; c∗ ←⊥
pp←$ PKE.Pg(1λ) ; (sk , pk)←$ PKE.Kg(pp)

b′←$ADec,LR(pp, pk)

Return (b = b′)

proc Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(sk)

If ((sk ′ = sk) ∧ (c = c∗)) then Return ⊥
Return m ← PKE.Dec(pp, sk ′, c)

proc LR(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗←$ PKE.Enc(pp, pk ,mb)

Return c∗

Figure 5.2: Game IND-RKA defining Φ-RKA security of public key encryption
scheme PKE under chosen-ciphertext attack.

RKA-Secure Symmetric Encryption. The final contribution of this chapter is

an extension of our framework that lets us build an RKA-secure CCA-SE scheme

from any IBE scheme satisfying an additional master public key malleability prop-

erty. Such an IBE scheme, when subjected to our transformation, meets a notion of

strong Φ-RKA security [14] where the challenge encryption is also subject to RKA.

Applying the CHK transform gives a strong Φ-RKA-secure PKE scheme which can

be converted into a Φ-RKA-secure CCA-SE scheme in the natural way.

5.2 RKA-Secure PKE

We recall the definition of Φ-RKA-security for PKE from [14]. We say a public-key

encryption scheme PKE is Φ-RKA indistinguishable under chosen ciphertext attack

or Φ-RKA secure if Advind-rka
PKE,Φ,A(·) is negligible for all PT adversaries A, where

Advind-rka
PKE,Φ,A(λ) = 2 Pr[IND-RKAA

PKE,Φ(λ)]− 1 and game IND-RKA is in Figure 5.2.

88

5.2 RKA-Secure PKE

BK[IBE,EC,MAC].Pg(1λ) :

ppIBE←$ IBE.Pg(1λ)

ppEC←$ EC.Pg(1λ)

ppMAC←$ MAC.Pg(1λ)

Return (ppIBE, ppEC, ppMAC)

BK[IBE,EC,MAC].Kg(pp) :

(ppIBE, ppEC, ppMAC)← pp

(msk ,mpk)←$ IBE.MKg(ppIBE)

Return (msk ,mpk)

BK[IBE,EC,MAC].Enc(pp, pk ,m) :

(ppIBE, ppEC, ppMAC)← pp ; mpk ← pk

(K , com, dec)←$ EC.Enc(ppEC)

u ← com

cIBE←$ IBE.Enc(ppIBE,mpk , u,m||dec)

τ ← MAC.Gen(ppMAC,K , cIBE)

Return (com, cIBE, τ)

BK[IBE,EC,MAC].Dec(pp, sk , c) :

(ppIBE, ppEC, ppMAC)← pp ; msk ← sk

(com, cIBE, τ)← c

u ← com

usk ←$ IBE.UKg(ppIBE,msk , u)

m ′ ← IBE.Dec(ppIBE, usk , cIBE)

m||dec ← m ′

K ← EC.Dec(ppEC, com, dec)

If (K =⊥)

then Return ⊥
If (!MAC.Verify(ppMAC,K , cIBE, τ))

then Return ⊥
Return m

Figure 5.3: PKE scheme BK[IBE,EC,MAC].

5.2.1 RKA Security of the Boneh-Katz Transform

The Boneh-Katz transform [32] constructs a PKE scheme BK[IBE,EC,MAC] from a

selectively secure IBE scheme, making use of an encapsulation scheme and a message

authentication code.

The transform uses an encapsulation scheme encapsulating keys of the massage

authentication code, having commitment and decommitment strings com and dec

of length n, where n is the bit length of identities in IBE. The algorithms of the

transform are given in Figure 5.3.

We show that the Boneh-Katz transform preserves RKA security, that is that the

transform can be applied to a Φ-RKA-secure IBE scheme to obtain a Φ-RKA-secure

PKE scheme. The encapsulation scheme and message authentication scheme do not

need to be RKA-secure. Instead they need only meet regular hiding and binding,

and one-time strong unforgeability notions, respectively. The proof follows closely

that of the journal version [32], itself an improvement on the proof in the original

paper [37].

89

5.2 RKA-Secure PKE

main IND-sID-RKAA
IBE,Φ(λ)

b←$ {0, 1} ; c∗ ←⊥ ; u∗ ←⊥
pp←$ IBE.Pg(1λ)

(msk ,mpk)←$ IBE.MKg(pp)

b′←$AsID,KD,LR(pp)

Return (b = b′)

proc sID(u)

If (u∗ 6=⊥) then Return ⊥
u∗ ← u

Return mpk

proc KD(φ, u)

If (u∗ =⊥) then Return ⊥
If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

If ((msk ′ = msk) ∧ (u = u∗)) then Return ⊥
Return IBE.UKg(pp,msk ′, u)

proc LR(m0,m1)

If (u∗ =⊥) then Return ⊥
If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗←$ IBE.Enc(pp,mpk , u∗,mb)

Return c∗

Figure 5.4: Game IND-sID-RKA defining selective-ID Φ-RKA indistinguishability
of identity-based encryption scheme IBE.

90

5.2 RKA-Secure PKE

First we extend the definition of selective-ID security of an IBE scheme to the

RKA setting. We say an identity-based encryption scheme IBE is selective-ID Φ-

RKA indistinguishable under chosen plaintext attack or selectively Φ-RKA secure

if Advind-sid-rka
IBE,Φ,A (·) is negligible for all PT adversaries A, where Advind-sid-rka

PKE,A,Φ (λ) =

2 Pr[IND-sID-RKAA
IBE,Φ(λ)]− 1 and game IND-sID-RKA is given in Figure 5.4.

Theorem 5.2.1 Let IBE be a selectively Φ-RKA secure IBE scheme, EC be a hiding

and binding encapsulation scheme, and MAC be a one-time strongly unforgeable mes-

sage authentication code. Then BK[IBE,EC,MAC] is a Φ-RKA-secure PKE scheme.

Proof: Let A be an adversary against the Φ-RKA-security of BK[IBE,EC,MAC].

making q(λ) decryption queries. We build PT adversaries A1, A2, A3, A4, A5 such

that

Advind-rka
BK[IBE,EC,MAC],Φ,A(λ) ≤ 2Advbind

EC,A1
(λ) + 2Advind-sid-rka

IBE,Φ,A2
(λ)

+ 2Advind-sid-rka
IBE,Φ,A3

(λ) + 2Advhide
EC,A4

(λ)

+ 2q(λ)Advot-suf
MAC,A5

(λ) ,

for all λ ∈ N, from which the theorem follows.

The proof uses the sequence of games in Figure 5.5. Game G0 is as IND-RKA except

that the values (K ∗, com∗, dec∗) are generated in advance rather than when A makes

its call to LR. This makes no difference since A’s actions have no effect on their gen-

eration. Game G1 is as G0 except that the decryption oracle outputs ⊥ on input an

RKD function φ and a ciphertext of the form (com∗, cIBE, τ). Game G2 is as G1 with a

modification to the way the IBE ciphertext component of the challenge ciphertext is

generated. In game G2 it is computed as c∗IBE←$ IBE.Enc(ppIBE,mpk , com∗, 0|m0|||0n),

where n is the length of a decommitment string in EC. Game G3 is as game G2,

but the tag component of the challenge ciphertext is generated under a randomly

chosen key K ′.

We say that a decryption query (φ, (com, cIBE, τ)) is valid if the ciphertext’s decryp-

tion under φ(msk) does not return ⊥. We now define a set of events that will help

us bound A’s probability of success.

• Let validi be the event that A playing game Gi makes a valid decryption query

of the form (φ, (com∗, cIBE, τ)) with (com∗, cIBE, τ) 6= c∗.

91

5.2 RKA-Secure PKE

main IND-RKAA
BK[IBE,EC,MAC],Φ(λ) / GA

0 (λ) / GA
1 (λ) / GA

2 (λ) / GA
3 (λ)

b←$ {0, 1} ; c∗ ←⊥
ppIBE←$ IBE.Pg(1λ) ; ppEC←$ EC.Pg(1λ) ; ppMAC←$ MAC.Pg(1λ)

(msk ,mpk)←$ IBE.MKg(ppIBE)

(K ∗, com∗, dec∗)←$ EC.Enc(ppEC)

b′←$ADec,LR((ppIBE, ppEC, ppMAC),mpk)

Return (b = b′)

proc Dec(φ, c) // IND-RKAA
BK[IBE,EC,MAC],Φ(λ) / GA

0 (λ) / GA
1 (λ) / GA

2 (λ) / GA
3 (λ)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

If ((msk ′ = msk) ∧ (c = c∗)) then Return ⊥
(com, cIBE, τ)← c

If (com = com∗) then Return ⊥
u ← com

usk ←$ IBE.UKg(ppIBE,msk ′, u)

m ′ ← IBE.Dec(ppIBE, usk , cIBE)

m||dec ← m ′

K ← EC.Dec(ppEC, com, dec)

If (K =⊥) then Return ⊥
If (!MAC.Verify(ppMAC,K , cIBE, τ)) then Return ⊥
Return m

proc LR(m0,m1) // IND-RKAA
BK[IBE,EC,MAC],Φ(λ) / GA

0 (λ) / GA
1 (λ) / GA

2 (λ)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
(K ∗, com∗, dec∗)←$ EC.Enc(ppEC)

u ← com∗

c∗IBE←$ IBE.Enc(ppIBE,mpk , u,mb||dec)

c∗IBE←$ IBE.Enc(ppIBE,mpk , u, 0|m0|||0n)

τ∗ ← MAC.Gen(ppMAC,K
∗, c∗IBE)

c∗ ← (com∗, c∗IBE, τ
∗)

Return c∗

proc LR(m0,m1) // GA
3 (λ)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
u ← com∗

c∗IBE←$ IBE.Enc(ppIBE,mpk , u, 0|m0|||0n)

K ′←$ MAC.KSp(ppMAC)

τ∗ ← MAC.Gen(ppMAC,K
′, c∗IBE)

c∗ ← (com∗, c∗IBE, τ
∗)

Return c∗

Figure 5.5: Games used in the proof of Theorem 5.2.1.

92

5.2 RKA-Secure PKE

• Let nobindi be the event that A playing Gi makes a valid decryption query of

the form (φ, (com∗, cIBE, τ)) with (com∗, cIBE, τ) 6= c∗, such that cIBE decrypts un-

der usk ←$ UKg(ppIBE, φ(msk), com∗) to m||dec, and EC.Dec(ppEC, com∗, dec) =

K with K /∈ {K ∗,⊥}.

• Let forgei, for i ∈ {0, 1, 2}, be the event that A playing game Gi makes a valid

decryption query of the form (φ, (com∗, cIBE, τ)) with (com∗, cIBE, τ) 6= c∗ such

that MAC.Verify(K ∗, cIBE, τ) = 1.

• Let forge3 denote the event that A playing game G3 makes a valid decryp-

tion query of the form (φ, (com∗, cIBE, τ)) with (com∗, cIBE, τ) 6= c∗ such that

MAC.Verify(ppMAC,K
′, cIBE, τ) = 1.

We will build A1, A2, A3, A4, A5 so that for all λ ∈ N we have

Pr[nobind1] = Advbind
EC,A1

(λ) (5.1)

Pr[GA
1 (λ)]− Pr[GA

2 (λ)] = Advind-sid-rka
IBE,Φ,A2

(λ) (5.2)

Pr[forge1]− Pr[forge2] = Advind-sid-rka
IBE,Φ,A3

(λ) (5.3)

Pr[forge2]− Pr[forge3] = Advhide
EC,A4

(λ) (5.4)

Pr[forge3]/q(λ) = Advot-suf
MAC,A5

(λ) . (5.5)

Since IND-RKABK[IBE,EC,MAC],Φ and G0 are identical from A’s point of view we have

that

Pr[IND-RKAA
BK[IBE,EC,MAC],Φ(λ)] = Pr[GA

0 (λ)] . (5.6)

Games G0 and G1 are identical unless A makes a decryption query for which the

response is ⊥ in G1 but not in G0. This is exactly the event valid0 (or valid1) so the

Fundamental Lemma of Game-Playing [23] we have that

Pr[GA
0 (λ)]− Pr[GA

1 (λ)] ≤ Pr[valid0] = Pr[valid1] . (5.7)

When valid1 occurs, a ciphertext (com∗, cIBE, τ) was submitted such that the de-

capsulated key K 6=⊥, and the message authentication tag verifies. So either the

decapsulated key K = K ∗ and the event forge1 occurred, or the decapsulated key

K 6= {K ∗,⊥}, in which case the event nobind1 occurred. So we can bound valid1 as

Pr[valid1] ≤ Pr[nobind1] + Pr[forge1] . (5.8)

93

5.2 RKA-Secure PKE

Since in game G2 the challenge ciphertext is independent of b, we have that

Pr[GA
2 (λ)] =

1

2
. (5.9)

By Equations (5.1)-(5.9), for all λ ∈ N we have

Advind-rka
BK[IBE,EC,MAC],Φ,A(λ) = 2 Pr[IND-RKAA

BK[IBE,EC,MAC],Φ(λ)]− 1

= 2(Pr[GA
0 (λ)]− Pr[GA

1 (λ)]) + 2(Pr[GA
1 (λ)]− Pr[GA

2 (λ)])

+ 2 Pr[GA
2 (λ)]− 1

≤ 2 Pr[valid1] + 2Advind-sid-rka
IBE,Φ,A2

(λ) + 2(
1

2
)− 1

≤ 2(Pr[nobind1] + Pr[forge1]) + 2Advind-sid-rka
IBE,Φ,A2

(λ)

≤ 2 Pr[nobind1] + 2(Pr[forge1]− Pr[forge2])

+ 2(Pr[forge2]− Pr[forge3]) + 2 Pr[forge3]

+ 2Advind-sid-rka
IBE,Φ,A2

(λ)

≤ 2Advbind
EC,A1

(λ) + 2Advind-sid-rka
IBE,Φ,A3

(λ) + 2Advhide
EC,A4

(λ)

+ 2q(λ)Advot-suf
MAC,A5

(λ) + 2Advind-sid-rka
IBE,Φ,A2

(λ)

as desired. We proceed to the constructions of A1, A2, A3, A4, A5. Adversary A1

against the binding property of EC behaves as follows:

A1(ppEC, com∗, dec∗)

K ∗ ← EC.Dec(ppEC, com∗, dec∗)
dec′ ←⊥
ppIBE←$ IBE.Pg(1λ)
ppMAC←$ MAC.Pg(1λ)
(msk ,mpk)←$ IBE.MKg(ppIBE)
b←$ {0, 1} ; c∗ ←⊥
b′←$ ADec,LR((ppIBE, ppEC, ppMAC),mpk)
Return (dec′)

LR(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
u←$ com∗

c∗IBE←$ IBE.Enc(ppIBE,mpk , u,mb||dec)
τ∗ ← MAC.Gen(ppMAC,K

∗, c∗IBE)
c∗ ← (com∗, c∗IBE, τ

∗)
Return c∗

Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)
If ((msk ′ = msk) ∧ (c = c∗))

then Return ⊥
(com, cIBE, τ)← c
u ← com
usk ←$ IBE.UKg(ppIBE,msk ′, u)
m ′ ← IBE.Dec(ppIBE, usk , cIBE)
m||dec ← m ′

K ← EC.Dec(ppEC, com, dec)
If (K =⊥) then Return ⊥
If ((com = com∗) ∧ (K 6= K ∗))

then dec′ ← dec
If (com = com∗) then Return ⊥
If (!MAC.Verify(ppMAC,K , cIBE, τ))

then Return ⊥
Return m

94

5.2 RKA-Secure PKE

A1 uses its knowledge of msk to respond to A’s decryption queries as specified

by game G1, checking for the event nobind1 and, should it occur, recording the

decommitment string dec′. Adversary A1 is successful exactly when nobind1 occurs,

establishing Equation (5.1).

Adversary A2 against the selective-ID Φ-RKA security of IBE behaves as follows:

AsID,Dec,LR
2 (ppIBE)

b←$ {0, 1}, c∗ ←⊥
ppEC←$ EC.Pg(1λ)
ppMAC←$ MAC.Pg(1λ)
(K ∗, com∗, dec∗)←$ EC.Enc(ppEC)
mpk ← sID(com∗)
b′←$ ADecSim,LRSim((ppIBE, ppEC, ppMAC),mpk)
If (b′ = b) then Return 1
Return 0

LRSim(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗IBE ← LR(0|m0|||0n,mb ||dec∗)
τ∗ ← MAC.Gen(ppMAC,K

∗, c∗IBE)
c∗ ← (com∗, c∗IBE, τ

∗)
Return c∗

DecSim(φ, c)

If (φ /∈ Φ) then Return ⊥
(com, cIBE, τ)← c
If (com = com∗) then Return ⊥
u ← com
usk ← KD(φ, u)
m ′ ← IBE.Dec(ppIBE, usk , cIBE)
m||dec ← m ′

K ← EC.Dec(ppEC, com, dec)
If (K =⊥) then Return ⊥
If (!MAC.Verify(ppMAC,K , cIBE, τ))

then Return ⊥
Return m

When the hidden bit in A2’s game is 0 then c∗IBE is an encryption of 0m0 ||0n, so A’s

view is that of game G2, while when the hidden bit in A2’s game is 1 then c∗IBE is

an encryption of mb ||dec∗, so A’s view is that of game G1. Since DecSim returns

⊥ on queries where com = com∗, the A2 never calls its KD oracle on the challenge

identity. We then have that

Advind-sid-rka
IBE,Φ,A2

(λ) = 2 · Pr[IND-sID-RKAA2
IBE,Φ(λ)]− 1

= 2 ·
(

1
2 Pr[GA

2 (λ)] + 1
2 Pr[GA

1 (λ)]
)
− 1

= Pr[GA
1 (λ)]− Pr[GA

2 (λ)] ,

as required.

Adversary A3 against the selective-ID Φ-RKA security of IBE behaves as follows:

95

5.2 RKA-Secure PKE

AsID,Dec,LR
3 (ppIBE)

b←$ {0, 1} ; c∗ ←⊥ ; forge← false
ppEC←$ EC.Pg(1λ)
ppMAC←$ MAC.Pg(1λ)
pp ← (ppIBE, ppEC, ppMAC)
(K ∗, com∗, dec∗)←$ EC.Enc(ppEC)
mpk ← sID(com∗)
b′←$ ADecSim,LRSim(pp,mpk)
If (forge) then Return 1
Return 0

LRSim(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗IBE ← LR(0|m0|||0n,mb ||dec∗)
τ∗ ← MAC.Gen(ppMAC,K

∗, c∗IBE)
c∗ ← (com∗, c∗IBE, τ

∗)
Return c∗

DecSim(φ, c)

If (φ /∈ Φ) then Return ⊥
(com, cIBE, τ)← c
If (c = c∗) then Return ⊥
If ((com = com∗)∧

(MAC.Verify(ppMAC,K
∗, cIBE, τ))

then forge← true
If (com = com∗) then Return ⊥
u ← com
usk ← KD(φ, u)
m ′ ← IBE.Dec(ppIBE, usk , cIBE)
m||dec ← m ′

K ← EC.Dec(ppEC, com, dec)
If (K =⊥) then Return ⊥
If (!MAC.Verify(ppMAC,K , cIBE, τ))

then Return ⊥
Return m

Adversary A3 behaves much as A2, except it checks for the event forge and sets a

flag if it occurs, returning 1 is the flag is set, and 0 otherwise. We then have that

Advind-sid-rka
IBE,Φ,A3

(λ) = 2 · Pr[IND-sID-RKAA3
IBE,Φ(λ)]− 1

= 2 ·
(

1
2 Pr[forge2] + 1

2 Pr[forge1]
)
− 1

= Pr[forge1]− Pr[forge2] ,

as required.

Adversary A4 against the hiding property of EC behaves as follows:

96

5.2 RKA-Secure PKE

A4(ppEC, com∗, K̃)

c∗ ←⊥ ; forge← false
ppIBE←$ IBE.Pg(1λ)
ppMAC←$ MAC.Pg(1λ)
pp ← (ppIBE, ppEC, ppMAC)
(msk ,mpk)←$ IBE.MKg(ppIBE)
b′←$ ADecSim,LRSim(pp,mpk)
If (forge) then Return 1
Return 0

LRSim(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗IBE←$ IBE.Enc(ppIBE,mpk , com∗, 0|m0|||0n)

τ∗ ← MAC.Gen(ppMAC, K̃ , c∗IBE)
c∗ ← (com∗, c∗IBE, τ

∗)
Return c∗

DecSim(φ, c)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)
(com, cIBE, τ)← c
If (c = c∗) then Return ⊥
If ((com = com∗)∧

(MAC.Verify(ppMAC, K̃ , cIBE, τ))
then forge← true

If (com = com∗) then Return ⊥
u ← com
usk ←$ IBE.UKg(ppIBE,msk ′, u)
m ′ ← IBE.Dec(ppIBE, usk , cIBE)
m||dec ← m ′

K ← EC.Dec(ppEC, com, dec)
If (K =⊥) then Return ⊥
If (!MAC.Verify(ppMAC,K , cIBE, τ))

then Return ⊥
Return m

If the hidden bit is 1 in the hiding game then K̃ is the value encapsulated by com∗

and A’s view is that of game G2, so A4 outputs 1 with probability forge2, while if

the hidden bit is 0 in the hiding game then K̃ is independent of com∗ and A’s view

is that of game G3, so A4 outputs 1 with probability forge3. Then we have that

Advhide
EC,A4

(λ) = 2 · Pr[HIDEA4
EC(λ)]− 1

= 2 ·
(

1
2 Pr[forge3] + 1

2 Pr[forge2]
)
− 1

= Pr[forge2]− Pr[forge3] .

Adversary A5 against the strong one-time unforgeability of MAC behaves as follows:

97

5.2 RKA-Secure PKE

AGen
5 (ppMAC)

c∗ ←⊥ ; j←$ {1 . . . , q(λ)} ; i← 0
(mj , τj)←⊥
ppIBE←$ IBE.Pg(1λ)
ppEC←$ EC.Pg(1λ)
(msk ,mpk)←$ IBE.MKg(ppIBE)
(K ∗, com∗, dec∗)←$ EC.Enc(ppEC)
b′←$ ADecSim,LRSim((ppIBE, ppEC, ppMAC),mpk)
Return (mj , τj)

LRSim(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗IBE←$ IBE.Enc(ppIBE,mpk , com∗, 0|m0|||0n)
τ∗ ← Gen(c∗IBE)
c∗ ← (com∗, c∗IBE, τ

∗)
Return c∗

DecSim(φ, c)

i← i+ 1
If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)
(com, cIBE, τ)← c
If (i = j) then (mj , τj)← (cIBE, τ)
If (com = com∗) then Return ⊥
u ← com
usk ←$ IBE.UKg(ppIBE,msk ′, u)
m ′ ← IBE.Dec(ppIBE, usk , cIBE)
m||dec ← m ′

K ← EC.Dec(ppEC, com, dec)
If (K =⊥) then Return ⊥
If (!MAC.Verify(ppMAC,K , cIBE, τ))

then Return ⊥
Return m

Since A5 doesn’t know the key K ′ in the MAC forgery game, it can’t detect forge3

occurring. It instead makes a guess that event will occur on A’s jth decryption query

for a randomly chosen j. If the event forge3 does occur, that is if A made a decryption

query of the form (φ, (com∗, cIBE, τ)) with MAC.Verify(ppMAC,K
′, cIBE, τ) = 1, then

with probability 1/q(λ) it was on A’s jth query, so the probability that A5 makes a

successful forgery is Pr[forge3]/q(λ), as required.

We recall from [14] that, given a selectively Φ-RKA-secure IBE scheme, the CHK

transform [32] yields a Φ-RKA-secure PKE scheme at the cost of adding a strongly

unforgeable one-time secure signature and its verification key to the IBE ciphertexts.

Above we showed that the more efficient Boneh-Katz transform [32] can also be used

to the same effect. We omit the details of the Φaff -RKA-secure PKE schemes that

result from applying these transforms to the aff-BF and aff-Wat IBE schemes. We

simply note that the resulting PKE schemes are as efficient as the pairing-based

schemes of Wee [99], which are only Φlin-RKA-secure. Similarly, using a result of

[14], we may apply the Naor transform to these IBE schemes to obtain Φaff -RKA-

secure signature schemes that are closely related to (and as efficient as) the Boneh-

Lynn-Shacham [38] and Waters [98] signature schemes. The verification algorithms

of these signature schemes can be improved by replacing Naor’s trial encryption and

decryption procedure by bespoke algorithms, exactly as in [38, 98].

As in the affine case, we may apply results of [14] or Theorem 5.2.1 to the poly-Wat

98

5.2 RKA-Secure PKE

main IND-RKAA
KEM,Φ(λ)

b←$ {0, 1} ; c∗ ←⊥
pp←$ KEM.Pg(1λ) ; (sk , pk)←$ KEM.Kg(pp)

(c∗,K ∗)←$ KEM.Enc(pp, pk)

If (b = 0) then K ∗←$ KSp(pp)

b′←$ADec,LR(pp, c∗,K ∗)

Return (b = b′)

proc Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(sk)

If ((sk ′ = sk) ∧ (c = c∗)) then Return ⊥
Return K ← KEM.Dec(pp, sk ′, c)

Figure 5.6: Game IND-RKA defining Φ-RKA indistinguishability of key encapsula-
tion mechanism KEM under chosen-ciphertext attack.

scheme to obtain a Φpoly(d)-RKA-secure PKE scheme and a Φpoly(d)-RKA-secure

signature scheme. We omit the detailed but obvious description of these schemes,

noting merely that they are efficient and secure in the standard model under the

EDBDH assumption.

5.2.2 RKA Security for the KEM-DEM Paradigm

As noted in the previous section, the framework for constructing Φ-RKA-secure

IBE schemes developed in the previous chapter can be combined with results from

[14] to build Φ-RKA-secure PKE schemes. In this section, we give a more efficient,

direct construction for a Φ-RKA-secure PKE scheme based on the KEM of Boyen,

Mei and Waters [39]. Compared to the schemes of the previous section, our scheme

enjoys shorter ciphertexts and smaller public parameters. We begin by providing an

appropriate definition of RKA security for a KEM and show that the KEM-DEM

paradigm of [49] extends to the RKA setting in a natural way. We then show how

to modify the BMW scheme to build an efficient KEM that is Φaff -RKA-secure

under the Decision Bilinear Diffie-Hellman assumption for asymmetric pairings. We

conclude with a comparison of our scheme to the results of [99].

We define Φ-RKA-security for a KEM through the game in Figure 5.6, which is the

natural extension of IND-CCA security for a KEM to the RKA setting.

99

5.2 RKA-Secure PKE

We say a key encapsulation mechanism KEM is Φ-RKA indistinguishable under

chosen ciphertext attack or Φ-RKA secure if Advind-rka
KEM,Φ,A(·) is negligible for all

PT adversaries A, where Advind-rka
KEM,Φ,A(λ) = 2 Pr[IND-RKAA

KEM,Φ(λ)] − 1 and game

IND-RKA is in Figure 5.6.

We now show that the KEM-DEM composition theorem of [49] also holds in the

RKA setting. Note that while the KEM must be RKA-secure, the DEM need only

meet the standard one-time CCA security notion.

Theorem 5.2.2 Let KEM be a Φ-RKA-secure KEM, and DEM be a OT-CCA-secure

DEM. Then the hybrid encryption scheme HPKE[KEM,DEM] in Figure 2.13 is Φ-

RKA-secure.

Proof: Let A be an adversary against the Φ-RKA-security of the PKE scheme

HPKE[KEM,DEM]. We build PT adversaries A1, A2 such that

Advind-rka
HPKE[KEM,DEM],Φ,A(λ) ≤ 2Advind-rka

KEM,Φ,A1
(λ) + Advot-ind-cca

DEM,A2
(λ) ,

for all λ ∈ N, from which the theorem follows.

The proof uses the sequence of games in Figure 5.7. Game G0 is as game

IND-RKAHPKE[KEM,DEM],Φ, except that in game G0 the key K ∗ is encapsulated in

advance, and if the adversary submits for decryption a ciphertext whose first com-

ponent is c∗1 and a φ such that φ(sk) = sk , the key K ∗ is used directly rather than

obtaining this key through decapsulating c∗1 under key K . The behaviour of the

games is identical, so we have that

Pr[IND-RKAA
HPKE[KEM,DEM],Φ(λ)] = Pr[GA

0 (λ)] .

Game G1 is as game G0 except that the key K ∗ encapsulated by the first component

of the challenge ciphertext is replaced by a random key K ′.

We will build A1, A2 so that for all λ ∈ N we have

Pr[GA
0 (λ)]− Pr[GA

1 (λ)] ≤ Advind-rka
KEM,Φ,A1

(λ) (5.10)

2 Pr[GA
1]− 1 = Advot-ind-cca

DEM,A2
(λ) (5.11)

100

5.2 RKA-Secure PKE

main IND-RKAA
HPKE[KEM,DEM],Φ(λ) / GA

0 (λ) / GA
1 (λ)

b←$ {0, 1} ; c∗ ←⊥
ppKEM←$ KEM.Pg(1λ)

ppDEM←$ DEM.Pg(1λ)

(sk , pk)←$ KEM.Kg(ppKEM)

(c∗1 ,K
∗)←$ KEM.Enc(ppKEM, pk)

(c∗1 ,K
∗)←$ KEM.Enc(ppKEM, pk) ; K ′←$ KEM.KSp(ppKEM)

b′←$ADec,LR((ppKEM, ppDEM), pk)

Return (b = b′)

proc Dec(φ, c) // GA
0 (λ) / GA

1 (λ)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(sk)

If ((sk ′ = sk) ∧ (c = c∗)) then Return ⊥
If ((sk ′ = sk) ∧ (c1 = c∗1)) then Return DEM.Dec(ppDEM,K

∗, c2)

If ((sk ′ = sk) ∧ (c1 = c∗1)) then Return DEM.Dec(ppDEM,K
′, c2)

K ←$ KEM.Dec(ppKEM, sk ′, c1)

Return DEM.Dec(ppDEM,K , c2)

proc LR(m0,m1) // IND-RKAA
HPKE[KEM,DEM],Φ(λ)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
(c∗1 ,K

∗)←$ KEM.Enc(ppKEM, pk)

c∗2 ←$ DEM.Enc(K ∗,mb)

c∗ ← (c∗1 , c
∗
2)

Return c∗

proc LR(m0,m1) // GA
0 (λ) / GA

1 (λ)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗2 ←$ DEM.Enc(K ∗,mb)

c∗2 ←$ DEM.Enc(K ′,mb)

c∗ ← (c∗1 , c
∗
2)

Return c∗

Figure 5.7: Games used in the proof of Theorem 5.2.2.

101

5.2 RKA-Secure PKE

By the above equations, for all λ ∈ N we have

Advind-rka
HPKE[KEM,DEM],Φ,A(λ) = 2 Pr[IND-RKAA

HPKE[KEM,DEM],Φ(λ)]− 1

= 2 Pr[GA
0 (λ)]− 1

= 2(Pr[GA
0 (λ)]− Pr[GA

1 (λ)]) + 2 Pr[GA
1 (λ)]− 1

≤ 2Advind-rka
KEM,Φ,A1

(λ) + Advot-ind-cca
DEM,A2

(λ)

as desired. We proceed to the constructions of A1, A2. Adversary A1 against the

Φ-RKA security of KEM behaves as follows:

ADec
1 (ppKEM, pk , c∗1,K

∗)

b←$ {0, 1} ; c∗ ←⊥
ppDEM←$ DEM.Pg(1λ)
pp ← (ppKEM, ppDEM)
b′←$ ADecSim,LR(pp, pk)
If (b = b′) then Return 0
Else Return 1

LR(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗2 ←$ DEM.Enc(K ∗,mb)
c∗ ← (c∗1 , c

∗
2)

Return c∗

DecSim(φ, c)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(sk)
If (c1 = c∗1)

then K ← Dec(φ, c∗1)
If ((K =⊥) ∧ (c2 = c∗2))

then Return ⊥
If ((K =⊥) ∧ (c2 6= c∗2))

then Return DEM.Dec(ppDEM,K
∗, c2)

If (K 6=⊥)
then Return DEM.Dec(ppDEM,K , c2)

K ← Dec(φ, c1)
Return DEM.Dec(ppDEM,K , c2)

Adversary A1 must detect when a ciphertext (c∗1, c2) is submitted for decryption

under a φ such that φ(sk) = sk . It does this by submitting to its own decryption

oracle (φ, c∗1), and if the result is ⊥ then φ(sk) = sk . When the hidden bit in A1’s

game is 1, the key K ∗ is the real key, so A is provided with a perfect simulation of

game G0, while when A1’s challenge bit is 0, K ∗ is a random key so A is playing

game G1 where K ′ is used in place of K ∗. This gives us that

Advind-rka
KEM,Φ,A1

(λ) = 2 Pr[IND-RKAA1
KEM,Φ(λ)]− 1

= 2 ·
(

1
2 Pr[GA

0 (λ)] + 1
2 Pr[GA

1 (λ)]
)
− 1

= Pr[GA
1 (λ)]− Pr[GA

0 (λ)] ,

as required.

Adversary A2 against the OT-CCA security of DEM behaves as follows:

102

5.2 RKA-Secure PKE

ADec,LR
2 (ppDEM)

c∗ ←⊥
ppKEM←$ KEM.Pg(1λ)
(sk , pk)←$ KEM.Kg(ppKEM)
(c∗1 ,K

∗)←$ KEM.Enc(ppKEM, pk)
b′←$ ADecSim,LRSim((ppKEM, ppDEM), pk)
Return b′

LRSim(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗2 ← LR(m0,m1)
c∗ ← (c∗1 , c

∗
2)

Return c∗

DecSim(φ, c)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(sk)
If ((sk ′ = sk) ∧ (c = c∗))

then Return ⊥
If ((sk ′ = sk) ∧ (c1 = c∗1))

then Return Dec(c2)
K ← KEM.Dec(ppKEM, sk ′, c1)
Return DEM.Dec(ppDEM,K , c2)

A2 provides a perfect simulation of G1 for A and correctly determines the challenge

bit with the same probability as A, so Equation (5.11) holds.

5.2.3 An RKA-Secure KEM from the BMW Scheme

Boyen, Mei and Waters [39] build a very efficient KEM based on the first IBE scheme

of Boneh and Boyen [30] and show the KEM is secure under the DBDH assumption

in the setting of asymmetric pairings. The algorithms of their KEM BMW are shown

on the left-hand side of Figure 5.8.

The KEM BMW from [39] is insecure in the RKA setting when the set Φ contains

a function φa(h0) = ha0 operating on the first element h0 of the secret key, admit-

ting the following attack. On receipt of the public key (Z, u1, u2), a key K∗, and a

ciphertext c∗ of the form (gt, ut1u
tw
2), where w = H.Eval(ppH, g

t) and t is the random-

ness used to generate the challenge ciphertext, the adversary then makes a query

Dec(φa, C
∗) and receives in response the key K ′ = e(g, h)ast. The adversary can

then compute the key encapsulated by the challenge ciphertext as K ′a
−1

= e(g, h)st

and check if this is equal to the challenge key K∗, outputting 1 if so and 0 if not,

winning the Φ-RKA-security game.

The right-hand side of Figure 5.8 shows the algorithms of MBMW, an enhanced

version of the KEM of [39] that resists such an attack. We modify the decapsulation

algorithm so that it uses the pairing to evaluate ciphertext validity, allowing us to

eliminate y1, y2 from the secret key. We move some public key elements from G1

103

5.2 RKA-Secure PKE

BMW.Pg(1λ) :

(p,G1,G2,GT , e)←$ G.Pg(1λ)

g←$ G∗1 ; h←$ G∗2
ppH←$ H.Pg(1λ)

pp ← (p,G1,G2,GT , e, g, h, ppH)

Return pp

BMW.Kg(pp) :

(p,G1,G2,GT , e, g, h, ppH)← pp

s←$ Z∗p
h0 ← hs

Z ← e(g, h0)

y1, y2←$ Z∗p
u1 ← gy1 ; u2 ← gy2

sk ← (h0, y1, y2)

pk ← (Z, u1, u2)

Return (sk , pk)

BMW.Enc(pp, pk) :

(p,G1,G2,GT , e, g, h, ppH)← pp

(Z, u1, u2)← pk

t←$ Z∗p
c1 ← gt

w ← H.Eval(ppH, c1)

c2 ← ut1u
tw
2

K ← Zt

Return ((c1, c2),K)

BMW.Dec(pp, sk , c) :

(p,G1,G2,GT , e, g, h, ppH)← pp

(h0, y1, y2)← sk

w ← H.Eval(ppH, c1)

w′ ← y1 + y2w mod p

If (cw
′

1 6= c2) then Return ⊥
Return e(c1, h0)

MBMW.Pg(1λ) :

(p,G1,G2,GT , e)←$ G.Pg(1λ)

g←$ G∗1 ; h←$ G∗2
y1, y2←$ Z∗p
u1 ← hy1 ; u2 ← hy2

ppH←$ H.Pg(1λ)

pp ← (p,G1,G2,GT , e, g, h, u1, u2, ppH)

Return pp

MBMW.Kg(pp) :

(p,G1,G2,GT , e, g, h, u1, u2, ppH)← pp

sk ←$ Z∗p
pk ← e(g, h)sk

Return (sk , pk)

MBMW.Enc(pp, pk) :

(p,G1,G2,GT , e, g, h, u1, u2, ppH)← pp

t←$ Z∗p
c1 ← gt

w ← H.Eval(ppH, c1||pk)

c2 ← ut1u
tw
2

K ← pk t

Return ((c1, c2),K)

MBMW.Dec(pp, sk , c) :

(p,G1,G2,GT , e, g, h, u1, u2, ppH)← pp

w ← H.Eval(ppH, c1||e(g, h)sk)

If (e(c1, u1u
w
2) 6= e(g, c2)) then Return ⊥

Return e(c1, h)sk

Figure 5.8: Left: Original Boyen-Mei-Waters KEM BMW. Right: RKA-secure
variant MBMW.

104

5.2 RKA-Secure PKE

main IND-RKAA
MBMW,Φ(λ) / GA

0 (λ)

b←$ {0, 1} ; c∗ ←⊥
(p,G1,G2,GT , e)←$ G.Pg(1λ)

g←$ G∗1 ; h←$ G∗2
y1, y2←$ Z∗p
u1 ← hy1 ; u2 ← hy2

ppH←$ H.Pg(1λ)

pp ← (p,G1,G2,GT , e, g, h, u1, u2, ppH)

sk ←$ Z∗p
pk ← e(g, h)sk

t←$ Z∗p
c∗1 ← gt

w∗ ← H.Eval(ppH, c
∗
1||pk)

c∗2 ← ut1u
tw∗

2

c∗ ← (c∗1, c
∗
2)

K ∗ ← pk t

If (b = 0) then K ∗←$ KSp(pp)

b′←$ADec,LR(pp, c∗,K ∗)

Return (b = b′)

proc Dec(φ, c) // GA
0 (λ)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(sk)

If ((sk ′ = sk) ∧ (c = c∗)) then Return ⊥
w ← H.Eval(ppH, c1||e(g, h)sk

′
)

If (e(c1, u1u
w
2) 6= e(g, c2)) then Return ⊥

If (w = w∗) then bad← true ; Return ⊥
Return e(c1, h)sk

′

Figure 5.9: Games used in the proof of Theorem 5.2.3.

to G2 to accommodate these changes. We store the exponent sk instead of the

group element hsk so that the secret key is a single element of Zp. We then apply

the technique of Section 4.4 by including the public key in the hash, resulting in a

Φaff -RKA-secure KEM. These modifications result in a scheme that is slightly less

efficient than the original KEM.

Theorem 5.2.3 Let H be a collision-resistant hash function and DBDH be hard for

G. Then MBMW is Φaff-RKA secure.

Proof: Let A be a PT adversary playing game IND-RKA. We build PT adversaries

105

5.2 RKA-Secure PKE

A1, A2 such that

Advind-rka
MBMW,Φ,A(λ) ≤ 2Advcoll

H,A1
(λ) + Advdbdh

G,A1
(λ)

for all λ ∈ N, from which the theorem follows.

The proof uses the games in Figure 5.9. Game G0 is as game IND-RKAMBMW,Φ,

but sets the flag bad and returns ⊥ if the adversary makes a decapsulation query

for a valid ciphertext with the same hash value as the challenge ciphertext.

We will build A1, A2 so that for all λ ∈ N we have

Pr[GA
0 (λ) sets bad] ≤ Advcoll

H,A1
(λ) (5.12)

2 Pr[GA
0 (λ)]− 1 ≤ Advdbdh

G,A2
(λ) . (5.13)

Games IND-RKAMBMW,Φ and G0 are identical until bad, so by the Fundamental

Lemma of Game-Playing [23] and the above, for all λ ∈ N we have:

Advind-rka
MBMW,Φ,A(λ) = 2 Pr[IND-RKAA

MBMW,Φ(λ)]− 1

= 2(Pr[IND-RKAA
MBMW,Φ(λ)]− Pr[GA

0 (λ)]) + 2 Pr[GA
0 (λ)]− 1

≤ 2 Pr[GA
0 (λ) sets bad] + 2 Pr[GA

0 (λ)]− 1

≤ 2Advcoll
H,A1

(λ) + Advdbdh
G,A2

(λ)

as desired. We proceed to the constructions of A1, A2. Adversary A1 against the

collision resistance of H behaves as follows:

106

5.2 RKA-Secure PKE

A1(ppH)

x ′ ←⊥
b←$ {0, 1} ; c∗ ←⊥
(p,G1,G2,GT , e)←$ G.Pg(1λ)
g←$ G∗1 ; h←$ G∗2
y1, y2←$ Z∗p
u1 ← hy1 ; u2 ← hy2

pp ← (p,G1,G2,GT , e, g, h, u1, u2, ppH)
sk ←$ Z∗p
pk ← e(g, h)sk

t←$ Z∗p
c∗1 ← gt

w∗ ← H.Eval(ppH, c
∗
1||pk)

x ← c∗1||pk
c∗2 ← ut1u

tw∗
2

c∗ ← (c∗1, c
∗
2)

K ∗ ← pk t

If (b = 0) then K ∗←$ KSp(pp)
b′←$ ADec(pp, pk , c∗,K ∗)
Return (x , x ′)

Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(sk)
If ((sk ′ = sk) ∧ (c = c∗))

then Return ⊥
w ← H.Eval(ppH, c1||e(g, h)sk

′
)

If (e(c1, u1u
w
2) 6= e(g, c2))

then Return ⊥
If (w = w∗)

then bad← true

x ′ ← c1||e(g, h)sk
′
; Return ⊥

Return e(c1, h)sk
′

If bad is set then there was a query (φ, c) with w = w∗, where c = (c1, c2)

is a valid ciphertext so is of the form (gs, us1u
xs
2) for some s ∈ Zp where w =

H.Eval(ppH, g
s||e(g, h)φ(sk)). Then we have a pair of values x = gt||e(g, h)sk and

x ′ = gs||e(g, h)φ(sk) with H.Eval(ppH, x) = H.Eval(ppH, x
′). To show this is a collision

it remains to show that x 6= x ′. If x = x ′ then e(g, h)sk = e(g, h)φ(sk), so φ(sk) = sk

(since GT is of prime order and e(g, h) 6= 1GT). Since c is valid, it follows from

the decapsulation oracle’s third check that if it has c1 = c∗1, then it must also have

c2 = c∗2. But by the first check performed by the decapsulation, we have that c 6= c∗,

so the ciphertexts must differ in the first component. Then gt 6= gs, contradicting

the assumption that x = x ′. We deduce that x and x ′ are not equal. A1 out-

puts (x , x ′), and we then have that Pr[GA
0 (λ) sets bad] ≤ Advcoll

H,A1
(λ), establishing

Equation (5.12).

Adversary A2 against the DBDH problem behaves as follows:

107

5.2 RKA-Secure PKE

A2(g, gα, gβ, gγ , h, hα, hβ, hγ , T)

b←$ {0, 1} ; c∗ ←⊥
(p,G1,G2,GT , e)←$ G.Pg(1λ)
g←$ G∗1 ; h←$ G∗2
ppH←$ H.Pg(1λ)
pk ← e(gα, hβ)
c∗1 ← gγ

w∗ ← H.Eval(ppH, c
∗
1||pk)

δ←$ Zp
u1 ← (hα)−w

∗
hδ

u2 ← hα

pp ← (p,G1,G2,GT , e, g, h, u1, u2, ppH)

c∗2 ← (hγ)δ

c∗ ← (c∗1, c
∗
2)

K ∗ ← T
b′←$ ADec(pp, pk , c∗,K ∗)
Return b′

Dec(φa,b, c)

If (φa,b /∈ Φ) then Return ⊥
pk ′ ← pkae(g, h)b

w ← H.Eval(ppH, c1||pk ′)
If ((pk ′ = pk) ∧ (c = c∗))

then Return ⊥
If (e(c1, u1u

w
2) 6= e(g, c2))

then Return ⊥
If (w = w∗)

then Return ⊥

K ← e(c1,(hβ)
−δ

w−w∗ u1uw2)

e((gβ)
−1

w−w∗ g,c2)

Return K

A2 computes pk ← e(gα, hβ) so that the private key sk is the unknown value αβ. It

chooses δ←$ Zp and sets

u1 ← (hα)−w
∗
hδ and u2 ← hα ,

computing the challenge ciphertext as c∗ ← (gγ , (hγ)δ). This is a valid ciphertext as

c∗ = (gγ , uγ1u
γw∗

2). A2 sets the challenge session key K ∗ ← T , so that it is the correct

session key when the DBDH tuple has T = e(g, h)αβγ , and a random element of GT

otherwise. Despite not knowing sk , A2 can detect when φ(sk) = sk by checking

whether pk = pka · e(g, h)b. Keys are decapsulated as

K ← e(c1, (h
β)

−δ
w−w∗u1u

w
2)

e((gβ)
−1

w−w∗ g, c2)
.

Note that, assuming all the decapsulation oracle’s checks hold, we have:

K =

(
e(g, h)α(w−w∗)+δ−β δ

w−w∗

e(g, h)α(w−w∗)+δ−β δ
w−w∗−αβ

w−w∗
w−w∗

)t
= e(g, h)αβt ,

where c1 = gt, i.e. t is the randomness used in creating the ciphertext. Hence

this decapsulated key is correct. A2 provides a perfect simulation of G0 for A2, so

A2 wins its game precisely when A wins, giving 2 Pr[GA
0 (λ)] − 1 ≤ Advdbdh

G,A2
(λ),

establishing Equation (5.13).

Our scheme bears comparison to the PKE schemes of Wee [99]. We reiterate that

Wee only achieves security for the claw-free RKD set Φlin, whereas our scheme

108

5.3 Joint Security in the RKA Setting

MBMW is Φaff -RKA secure. The most directly comparable scheme is the one in [99,

Section 5.2], which is presented in the symmetric setting e : G1 × G1 → GT . To

make an accurate comparison with MBMW, and for efficiency at high security levels,

this scheme needs to be translated to the asymmetric setting e : G1 × G2 → GT .

This can be done in such a way that ciphertexts are kept short, consisting of two

elements of G1 plus a verification key and a signature from a one-time signature

scheme, while the public key is also an element of G1. Here, we view the scheme as

a KEM and so ignore the element ψ ∈ GT . The modified scheme’s security is based

on an asymmetric version of the DBDH assumption, like MBMW.

By comparison, our scheme MBMW has ciphertexts that consist of two group ele-

ments, one in G1 and one in G2. Avoiding the overhead of a one-time signature and

verification key more than compensates for having an element of G2 in place of an

element of G1 in ciphertexts, and so our ciphertexts are more compact. On the other

hand, our parameters are larger. The costs of encapsulation and decapsulation for

MBMW are roughly the same as for Wee’s scheme: in both schemes, encapsulation

is pairing-free while decapsulation requires 3 pairings (a more detailed comparison

would count the number of exponentiations needed in the two schemes).

In summary, the two schemes have roughly comparable performance, but our scheme

MBMW is RKA secure for a significantly larger class of RKD functions.

5.3 Joint Security in the RKA Setting

We combine the existing security definitions for Φ-RKA security and joint security to

produce a new security model for Φ-RKA security of joint encryption and signature

schemes. We also extend the results of [14] and Chapter 3 to show that the joint

encryption and signature scheme JES[IBE,DS] of Chapter 3 is Φ-RKA secure if the

starting IBE scheme is Φ-RKA-secure. This construction can be applied to obtain

efficient JES schemes for interesting sets Φ using any of the RKA-secure IBE schemes

from Chapter 4.

The games associated with the notions of security for JES schemes are extended to

Φ-RKA-security in Figure 5.10

We say that JES is Φ-RKA IND-secure if Advind-rka
JES,Φ,A(·) is negligible for all PT adver-

saries A, where Advind-rka
JES,Φ,A(λ) = 2 Pr[IND-RKAA

JES,Φ(λ)] − 1 and game IND-RKA

109

5.3 Joint Security in the RKA Setting

main IND-RKAA
JES,Φ(λ)

b←$ {0, 1} ; c∗ ←⊥
pp←$ JES.Pg(1λ)

(sk , pk)←$ JES.Kg(pp)

b′←$ADec,Sign,LR(pp, pk)

Return (b = b′)

proc Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(sk)

If ((sk ′ = sk) ∧ (c = c∗)) then Return ⊥
Return m ← JES.Dec(pp, sk ′, c)

proc Sign(φ,m)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(sk)

Return σ←$ JES.Sign(pp, sk ′,m)

proc LR(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗←$ JES.Enc(pp, pk ,mb)

Return c∗

main EUF-RKAA
JES,Φ(λ)

Q← ∅
pp←$ JES.Pg(1λ)

(sk , pk)←$ JES.Kg(pp)

(m, σ)←$ASign,Dec(pp, pk)

Return (JES.Verify(pp, pk ,m, σ)∧m 6∈ Q)

proc Sign(φ,m)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(sk)

σ←$ JES.Sign(pp, sk ′,m)

If (sk ′ = sk) then Q← Q ∪ {m}
Return σ

proc Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(sk)

Return m ← JES.Dec(pp, sk ′, c)

Figure 5.10: Left: Game IND-RKA defining indistinguishability of joint encryption
and signature scheme JES under chosen-ciphertext related-key attack in the presence
of a signing oracle. Right: Game EUF-RKA defining existential unforgeability under
chosen-message related-key attack in the presence of a decryption oracle.

110

5.3 Joint Security in the RKA Setting

main OW-aID-RKAA
IBE,Φ(λ)

c∗ ←⊥ ; u∗ ←⊥ ; U ← ∅
pp←$ IBE.Pg(1λ)

m∗←$ IBE.MSp(pp)

(msk ,mpk)←$ IBE.MKg(pp)

m←$AKD,Chal(pp,mpk)

Return (m∗ = m)

proc φ,KD(φ, u)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

If (msk ′ = msk) then U ← U ∪ {u}
If (u∗ ∈ U) then Return ⊥
Return IBE.UKg(pp,msk , u)

proc Chal(u)

If (c∗ 6=⊥) then Return ⊥
u∗ ← u

If (u∗ ∈ U) then Return ⊥
c∗←$ IBE.Enc(pp,mpk , u∗,m∗)

Return c∗

Figure 5.11: Game OW-aID-RKA defining Φ-RKA one-wayness of identity-based
encryption scheme IBE.

is on the left-hand side of Figure 5.10. This represents indistinguishability under

chosen-ciphertext related-key attack in the presence of a signing oracle.

We say that JES is Φ-RKA EUF-secure if Adveuf-rka
JES,Φ,A(·) is negligible for all PT

adversaries A, where Adveuf-rka
JES,Φ,A(λ) = Pr[EUF-RKAA

JES,Φ(λ)] and game EUF-RKA

is on the right-hand side of Figure 5.10. This represents existential unforgeability

under chosen-message related-key attack in the presence of a decryption oracle.

Informally, we say that a JES scheme is Φ-RKA secure if it is both Φ-RKA IND-

secure and Φ-RKA EUF-secure.

We will make use of the following definition of IBE security. We say an identity-

based encryption scheme IBE is Φ-RKA one-way under chosen plaintext attack or

Φ-RKA one-way secure if Advow-aid-rka
IBE,Φ,A (·) is negligible for all PT adversaries A,

where Advow-aid-rka
PKE,Φ,A (λ) = Pr[OW-aID-RKAA

IBE,Φ(λ)] and game OW-aID-RKA is in

Figure 5.11.

111

5.3 Joint Security in the RKA Setting

The following theorems show that the JES scheme JES[IBE,DS] of Chapter 3 inherits

Φ-RKA security from the starting IBE scheme.

Theorem 5.3.1 Let IBE be a selectively Φ-RKA secure IBE scheme and DS be

a one-time strongly secure signature scheme. Then JES[IBE,DS] is Φ-RKA IND-

secure.

Proof: Let A be a PT adversary playing game IND-RKA. We build PT adversaries

A1, A2 such that

Advind-rka
JES[IBE,DS],Φ,A(λ) ≤ 2Advot-suf-cma

DS,A1
(λ) + Advind-sid-rka

IBE,Φ,A2
(λ)

for all λ ∈ N, from which the theorem follows.

The proof uses the games in Figure 5.12. We will build A1, A2 so that for all λ ∈ N
we have

Pr[GA
0 (λ) sets bad] ≤ Advot-suf-cma

DS,A1
(λ) (5.14)

2 Pr[GA
0 (λ)]− 1 ≤ Advind-sid-rka

IBE,Φ,A2
(λ) . (5.15)

Games IND-RKAJES[IBE,DS],Φ and G0 are identical until bad, so by the Fundamental

Lemma of Game-Playing [23] and the above, for all λ ∈ N we have:

Advind-rka
JES[IBE,DS],Φ,A(λ) = 2 Pr[IND-RKAA

JES[IBE,DS],Φ(λ)]− 1

= 2(Pr[IND-RKAA
JES[IBE,DS],Φ(λ)]− Pr[GA

0 (λ)])

+ 2 Pr[GA
0 (λ)]− 1

≤ 2 Pr[GA
0 (λ) sets bad] + 2 Pr[GA

0 (λ)]− 1

≤ 2Advot-suf-cma
DS,A1

(λ) + Advind-sid-rka
IBE,Φ,A2

(λ)

as desired. We proceed to the constructions of A1, A2,. Adversary A1 against the

one-time strong unforgeability of DS behaves as follows:

112

5.3 Joint Security in the RKA Setting

main IND-RKAA
JES[IBE,DS],Φ(λ) / GA

0 (λ)

b←$ {0, 1} ; c∗ ←⊥ ; pk∗DS ←⊥
ppIBE←$ IBE.Pg(1λ) ; ppDS←$ DS.Pg(1λ)

(msk ,mpk)←$ IBE.MKg(ppIBE)

b′←$ADec,Sign,LR((ppIBE, ppDS),mpk)

Return (b = b′)

proc Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

If ((msk ′ = msk) ∧ (c = c∗)) then Return ⊥
(pk DS, cIBE, σDS)← c

If (!DS.Verify(ppDS, pk DS, cIBE, σDS)) then Return ⊥
If ((pk DS = pk∗DS) ∧ ((cIBE, σDS) 6= (c∗IBE, σ

∗
DS))) then bad← true ; Return ⊥

u ← 1||pk DS

usk ←$ IBE.UKg(ppIBE,msk ′, u)

Return IBE.Dec(ppIBE, usk , cIBE)

proc Sign(m)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

u ← 0||m
Return IBE.UKg(ppIBE,msk ′, u)

proc LR(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
(sk∗DS, pk∗DS)←$ DS.Kg(ppDS)

u ← 1||pk∗DS

c∗IBE←$ IBE.Enc(ppIBE,mpk , u,m)

σ∗DS←$ DS.Sign(ppDS, sk∗DS, c
∗
IBE)

c∗ ← (pk∗DS, c
∗
IBE, σ

∗
DS)

Return c∗

Figure 5.12: Games used in the proof of Theorem 5.3.1.

113

5.3 Joint Security in the RKA Setting

ASign
1 (ppDS, pk∗DS)

(m∗, σ∗)←⊥
b←$ {0, 1} ; c∗ ←⊥
ppIBE←$ IBE.Pg(1λ)
(msk ,mpk)←$ IBE.MKg(ppIBE)
b′←$ ADec,SignSim,LR((ppIBE, ppDS),mpk)
Return (m∗, σ∗)

Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)
If ((msk ′ = msk) ∧ (c = c∗)) then Return ⊥
(pk DS, cIBE, σDS)← c
If (!DS.Verify(ppDS, pk DS, cIBE, σDS))

then Return ⊥
If ((pk DS = pk∗DS) ∧ ((cIBE, σDS) 6= (c∗IBE, σ

∗
DS)))

then (m∗, σ∗)← (cIBE, σDS) ; Return ⊥
u ← 1||pk DS

usk ←$ IBE.UKg(ppIBE,msk ′, u)
Return IBE.Dec(ppIBE, usk , cIBE)

SignSim(φ,m)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)
u ← 0||m
Return IBE.UKg(ppIBE,msk ′, u)

LR(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
u ← 1||pk∗DS

c∗IBE←$ IBE.Enc(ppIBE,mpk , u,mb)
σ∗DS←$ Sign(c∗IBE)
c∗ ← (pk∗DS, c

∗
IBE, σ

∗
DS)

Return c∗

Adversary A1 simulates game G0 for A, using its challenge public key in creating the

challenge ciphertext for A. Since Sign is only called when A calls LR and c∗ =⊥,

and this situation can occur only on A’s first call to LR, A1 makes at most one call

to its Sign oracle. The forgery that A1 outputs is valid exactly when the flag bad is

set in game G0. The “If” statements before the forgery (m∗, σ∗) is set ensure this.

The third “If” statement ensures the signature is valid, and the fourth ensures the

pair differs from that output by the signing oracle. This establishes Equation (5.14).

Adversary A2 against the selective-ID Φ-RKA security of IBE behaves as follows:

114

5.3 Joint Security in the RKA Setting

AsID,KD,LR
2 (ppIBE)

c∗ ←⊥
ppDS←$ DS.Pg(1λ)
(sk∗DS, pk∗DS)←$ DS.Kg(ppDS)
u∗ ← 1||pk∗DS

mpk ← sID(u∗)
b′←$ ADec,Sign,LRSim((ppIBE, ppDS),mpk)
Return b′

Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
(pk DS, cIBE, σDS)← c
If (!DS.Verify(ppDS, pk DS, cIBE, σDS))

then Return ⊥
If ((pk DS = pk∗DS) ∧ ((cIBE, σDS) 6= (c∗IBE, σ

∗
DS)))

then Return ⊥
u ← 1||pk DS

usk ←$ KD(φ, u)
If (usk =⊥) then Return ⊥
Return IBE.Dec(ppIBE, usk , cIBE)

Sign(φ,m)

If (φ /∈ Φ) then Return ⊥
u ← 0||m
Return KD(φ, u)

LRSim(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗IBE←$ LR(m0,m1)
σ∗DS←$ DS.Sign(ppDS, sk∗DS, c

∗
IBE)

c∗ ← (pk∗DS, σ
∗
DS, c

∗
IBE)

Return c∗

Adversary A2 simulates game G0 for A, choosing up-front the public verification

key that will determine the identity used in the challenge ciphertext. Adversary A2

must return ⊥ when A makes a decryption query with (φ(msk) = msk) ∧ (c = c∗),

without knowing msk . If the ciphertext A submits for decryption is the challenge

ciphertext, then the identity submitted to A2’s KD oracle is the challenge identity,

and if φ(msk) = msk then the KD oracle will return ⊥, so A2 detects this case and

returns ⊥ as required.

The challenge identity will never otherwise be queried to the KD oracle by Dec as

the third if statement will cause ⊥ to be returned before the KD oracle is called, and

will not be queried by Sign as the challenge identity begins with 1 and all Sign’s

KD queries are for identities beginning with 0. Adversary A2 outputs A’s guess as

its own, winning whenever A does, establishing Equation (5.15).

Theorem 5.3.2 Let IBE be a Φ-RKA one-way IBE scheme. Then JES[IBE,DS] is

Φ-RKA EUF-secure.

Proof: Let A be a PT adversary playing game EUF-RKA. We build a PT adversary

115

5.4 RKA-Secure Symmetric Encryption

A1 such that

Adveuf-rka
JES[IBE,DS],Φ,A(λ) ≤ Advow-aid-rka

IBE,Φ,A1
(λ) (5.16)

for all λ ∈ N, from which the theorem follows. Adversary A1 against the Φ-RKA

one-wayness of IBE behaves as follows:

AKD,Chal
1 (ppIBE)

ppDS←$ DS.Pg(1λ)
(m, σ)←$ ASign,Dec((ppIBE, ppDS),mpk)
usk ← σ
u ← 0||m
c∗IBE ← Chal(u)
Return IBE.Dec(ppIBE, usk , c∗IBE)

Sign(φ,m)

If (φ /∈ Φ) then Return ⊥
u ← 0||m
Return KD(φ, u)

Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
(pk DS, cIBE, σDS)← c
If (!DS.Verify(ppDS, pk DS, cIBE, σDS))

then Return ⊥
u ← 1||pk DS

usk ←$ KD(φ, u)
Return IBE.Dec(ppIBE, usk , cIBE)

Adversary A1 simulates game EUF-RKA for A, using its KD oracle to answer Dec

and Sign queries. When A halts outputting a message m and signature σ, A1

submits 0||m as its challenge identity. If A did not submit m to its Sign oracle

then this identity has not been queried to the KD oracle so the challenge oracle will

respond with a challenge ciphertext. If A output a valid signature on m then the

challenge ciphertext will decrypt successfully using the signature as a user-level key,

establishing Equation (5.16).

5.4 RKA-Secure Symmetric Encryption

We now show how to build an RKA-secure symmetric encryption scheme start-

ing from an IBE scheme meeting certain malleability properties and admitting a

collision-resistant identity renaming scheme.

We first show that the natural method of converting a PKE scheme into a symmetric

encryption scheme gives a Φ-RKA-secure CCA symmetric encryption scheme when

the PKE scheme meets a strong notion of RKA security, wherein the challenge

ciphertext is encrypted under a related key of the adversary’s choosing. We then

116

5.4 RKA-Secure Symmetric Encryption

show that if the underlying IBE scheme meets a similar notion of strong RKA

security, the CHK transform preserves this strong RKA security, giving strong Φ-

RKA-secure PKE from selective-ID strong Φ-RKA-secure IBE.

Finally, we show that applying the identity renaming transform of Section 4.4 to an

IBE scheme with the appropriate properties results in an IBE scheme that achieves

selective-ID strong Φ-RKA-security. Waters’ IBE scheme and the extended Waters

IBE scheme are shown to have the required properties.

5.4.1 RKA-Secure Symmetric Encryption from PKE

A definition of Φ-RKA-security for a symmetric encryption scheme is presented in

Figure 5.13. It is a find-then-guess style definition where the adversary is allowed

just one query to the LR oracle. This definition is equivalent to the left-or-right

definition presented in [14], losing a factor of q in the reduction where q is the

number of LR queries made in the same way as for standard CCA security. We say

a symmetric encryption scheme SE is Φ-RKA secure if Advind-rka
SE,Φ,A(·) is negligible for

all PT adversaries A, where Advind-rka
SE,Φ,A(λ) = 2 Pr[IND-RKAA

SE,Φ(λ)] − 1 and game

IND-RKA is in Figure 5.13.

We want to build a symmetric encryption scheme meeting this notion of security.

Since we already built RKA-secure PKE in Section 5.2, our starting point is a PKE

scheme, with the whole kepair (sk , pk) serving as the symmetric key K , and encrypt-

ing and decrypting as usual. However with this approach, the public key component

of K is also subject to modification by the related-key derivation function. To avoid

this, we require that the PKE scheme be canonical, and store only the private key

component as the symmetric key, deterministically computing the public key when

it is needed for encryption via pk ← PKE.PK(pp, sk). The algorithms of this scheme

can be seen in Figure 5.14.

In the standard (non-RKA) setting, it is clear that security of the SE scheme follows

from security of the PKE scheme. The reduction uses the PKE scheme adversary’s

own decryption oracle to handle decryption queries, and knowledge of the public

key to handle encryption queries and the LR query. In the RKA setting, we can

still handle decryption queries with the PKE adversary’s own decryption oracle,

however we must now be able to give encryptions relative to transformed public

keys pk ← PKE.PK(pp, φ(K)).

117

5.4 RKA-Secure Symmetric Encryption

main IND-RKAA
SE,Φ(λ)

b←$ {0, 1} ; K ∗ ←⊥ ; c∗ ←⊥
pp←$ SE.Pg(1λ) ; K ←$ SE.SKSp(pp)

b′←$AEnc,Dec,LR(pp)

Return (b = b′)

proc Enc(φ,m)

If (φ /∈ Φ) then Return ⊥
K ′ ← φ(K)

Return SE.Enc(pp,K ′,m)

proc Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
K ′ ← φ(K)

If ((K ′ = K ∗) ∧ (c = c∗)) then Return ⊥
Return SE.Dec(pp,K ′, c)

proc LR(φ,m0,m1)

If (φ /∈ Φ) then Return ⊥
If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
K ∗ ← φ(K)

c∗←$ SE.Enc(pp,K ∗,mb)

Return c∗

Figure 5.13: Game defining Φ-RKA security of symmetric encryption scheme SE.

SE[PKE].Pg(1λ) :

Return PKE.Pg(1λ)

SE[PKE].Enc(pp,K ,m) :

pk ← PKE.PK(pp,K)

Return PKE.Enc(pp, pk ,m)

SE[PKE].Kg(pp) :

K ←$ PKE.SKSp(pp)

Return K

SE[PKE].Dec(pp,K , c) :

Return PKE.Dec(pp,K , c)

Figure 5.14: SE scheme SE[PKE] from canonical PKE scheme PKE.

118

5.4 RKA-Secure Symmetric Encryption

main IND-SRKAA
PKE,Φ(λ)

b←$ {0, 1} ; sk∗ ←⊥ ; c∗ ←⊥
pp←$ PKE.Pg(1λ) ; sk ←$ PKE.SKSp(pp) ; pk ← PKE.PK(pp, sk)

b′←$ADec,Enc,LR(pp, pk)

Return (b = b′)

proc Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(sk)

If ((sk ′ = sk∗) ∧ (c = c∗)) then Return ⊥
Return m ← PKE.Dec(pp, sk ′, c)

proc Enc(φ,m)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(sk)

pk ′ ← PKE.PK(pp, sk ′)

Return PKE.Enc(pp, pk ′,m)

proc LR(φ,m0,m1)

If (φ /∈ Φ) then Return ⊥
If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
sk∗ ← φ(sk)

pk∗ ← PKE.PK(pp, sk∗)

c∗←$ PKE.Enc(pp, pk∗,mb)

Return c∗

Figure 5.15: Game defining strong Φ-RKA security of PKE scheme PKE.

The notion of strong-RKA security is defined for signatures in [14], requiring that an

adversary be unable to forge a signature even relative to a transformed public key.

Translating this to the case of PKE, we have a notion of security where the adversary

cannot distinguish between messages encrypted under a transformed public key. This

notion of strong Φ-RKA-security for PKE is exactly what is needed here. We say a

public-key encryption scheme PKE is strong Φ-RKA secure if Advind-srka
PKE,Φ,A(·) is negli-

gible for all PT adversaries A, where Advind-srka
PKE,Φ,A(λ) = 2 Pr[IND-SRKAA

PKE,Φ(λ)]−1

and game IND-SRKA is in Figure 5.15. We then have the following theorem.

Theorem 5.4.1 Let PKE be a strong Φ-RKA-secure PKE scheme. Then the sym-

metric encryption scheme SE[PKE] is Φ-RKA secure.

Proof: Let A be a PT adversary playing game IND-RKA. We build a PT adversary

119

5.4 RKA-Secure Symmetric Encryption

A1 such that

Advind-rka
SE[PKE],Φ,A(λ) ≤ Advind-srka

PKE,Φ,A1
(λ)

for all λ ∈ N, from which the theorem follows.

We will build A1 so that for all λ ∈ N we have

2 Pr[IND-RKAA
SE[PKE],Φ(λ)]− 1 ≤ Advind-srka

PKE,Φ,A1
(λ) (5.17)

as desired. Adversary A1 behaves as follows:

AEnc,Dec,LR
1 (pp, pk)

b′←$ ADec,Enc,LR(pp)
Return b′

DecSim(φ, c)

Return Dec(φ, c)

EncSim(φ,m)

Return Enc(φ,m)

LRSim(φ,m0,m1)

Return LR(φ,m0,m1)

That is the adversary simply runs A, forwarding all its queries to its own oracles.

When A halts and outputs a bit b′, A1 does the same, winning precisely when A

does, establishing Equation (5.17).

5.4.2 Strong RKA-Secure PKE from IBE

As shown in Section 5.2.1 and in [14], RKA-secure PKE can be constructed from

selective-ID RKA-secure IBE, so to construct strong RKA-secure PKE a natural

starting point is strong RKA-secure IBE. We say an IBE scheme IBE is selectively

strong Φ-RKA secure if Advind-sid-srka
PKE,Φ,A (·) is negligible for all PT adversaries A, where

Advind-sid-srka
PKE,Φ,A (λ) = 2 Pr[IND-sID-SRKAA

PKE,Φ(λ)]− 1 and game IND-sID-SRKA is

in Figure 5.16. In strong RKA security, in addition to obtaining user-level keys com-

puted under related master keys, the adversary may obtain the challenge encryption

under a related master key. An alternative definition of security could be considered

where instead of having access to an Enc oracle the adversary is given access to

an oracle returning the master public key corresponding to a related key deriving

function. The schemes considered here can be shown to meet this definition, but

meeting that of Figure 5.16 is sufficient as a step on the way to our end goal of

RKA-secure symmetric encryption.

120

5.4 RKA-Secure Symmetric Encryption

main IND-sID-SRKAA
IBE,Φ(λ)

b←$ {0, 1} ; c∗ ←⊥ ; u∗ ←⊥ ; msk∗ ←⊥ ; U ← ∅
pp←$ IBE.Pg(1λ)

msk ←$ IBE.MSKSp(pp)

mpk ← IBE.MPK(pp,msk)

b′←$AsID,KD,LR(pp,mpk)

Return (b = b′)

proc sID(u)

If (u∗ 6=⊥) then Return ⊥
u∗ ← u

Return mpk

proc KD(φ, u)

If (u∗ =⊥) then Return ⊥
If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

If (u = u∗) then U ← U ∪ {msk ′}
If (msk∗ ∈ U) then Return ⊥
Return IBE.UKg(pp,msk ′, u)

proc Enc(φ, u,m)

If (u∗ =⊥) then Return ⊥
If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

mpk ′ ← IBE.MPK(pp,msk ′)

Return IBE.Enc(pp,mpk ′, u,m)

proc LR(φ,m0,m1)

If (u∗ =⊥) then Return ⊥
If (φ /∈ Φ) then Return ⊥
If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
msk∗ ← φ(msk)

mpk∗ ← IBE.MPK(pp,msk∗)

If (msk∗ ∈ U) then Return ⊥
c∗←$ IBE.Enc(pp,mpk∗, u∗,mb)

Return c∗

Figure 5.16: Game IND-sID-SRKA defining selective-ID strong Φ-RKA security of
IBE scheme IBE.

121

5.4 RKA-Secure Symmetric Encryption

We show that applying the CHK transform to a selective-ID strong Φ-RKA-secure

IBE scheme results in a strong Φ-RKA-secure PKE scheme.

Theorem 5.4.2 Let IBE be a selectively strong Φ-RKA-secure IBE scheme and DS

be a one-time strongly secure signature scheme. Then the PKE scheme CHK[IBE,DS]

as defined in Figure 2.12 is strong Φ-RKA secure.

Proof: Let A be a PT adversary playing game IND-SRKA. We build PT adversaries

A1, A2 such that

Advind-srka
CHK[IBE,DS],Φ,A(λ) ≤ 2Advot-suf-cma

DS,A1
(λ) + Advind-sid-srka

IBE,Φ,A2
(λ)

for all λ ∈ N, from which the theorem follows.

The proof uses the games in Figure 5.17. We will build A1, A2 so that for all λ ∈ N
we have

Pr[GA
0 (λ) sets bad] ≤ Advot-suf-cma

DS,A1
(λ) (5.18)

2 Pr[GA
0 (λ)]− 1 ≤ Advind-sid-srka

IBE,Φ,A2
(λ) . (5.19)

Games IND-SRKACHK[IBE,DS],Φ and G0 are identical until bad, so by the Fundamen-

tal Lemma of Game-Playing [23] and the above, for all λ ∈ N we have:

Advind-srka
CHK[IBE,DS],Φ,A(λ) = 2 Pr[IND-SRKAA

CHK[IBE,DS],Φ(λ)]− 1

= 2(Pr[IND-SRKAA
CHK[IBE,DS],Φ(λ)]− Pr[GA

0 (λ)])

+ 2 Pr[GA
0 (λ)]− 1

≤ 2 Pr[GA
0 (λ) sets bad] + 2 Pr[GA

0 (λ)]− 1

≤ 2Advot-suf-cma
DS,A1

(λ) + Advind-sid-srka
IBE,Φ,A2

(λ)

as desired. We proceed to the constructions of A1, A2. Adversary A1 against the

one-time strong unforgeability of DS behaves as follows:

122

5.4 RKA-Secure Symmetric Encryption

main IND-SRKAA
CHK[IBE,DS],Φ(λ) / GA

0 (λ)

b←$ {0, 1} ; msk∗ ←⊥ ; c∗ ←⊥ ; pk∗DS ←⊥ ; σ∗DS ←⊥ ; c∗IBE ←⊥
ppIBE←$ IBE.Pg(1λ) ; ppDS←$ DS.Pg(1λ)

msk ←$ MSKSp(ppIBE) ; mpk ← IBE.MPK(ppIBE,msk)

b′←$ADec,Enc,LR((ppIBE, ppDS),mpk)

Return (b = b′)

proc Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

If ((msk ′ = msk∗) ∧ (c = c∗)) then Return ⊥
(pk DS, cIBE, σDS)← c

If (!DS.Verify(ppDS, pk DS, cIBE, σDS)) then Return ⊥
If ((pk DS = pk∗DS) ∧ ((cIBE, σDS) 6= (c∗IBE, σ

∗
DS))) then bad← true ; Return ⊥

u ← pk DS

usk ←$ IBE.UKg(ppIBE,msk ′, u)

Return IBE.Dec(ppIBE, usk , cIBE)

proc Enc(φ,m)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

pk ′ ← IBE.MPK(ppIBE,msk ′)

(sk DS, pk DS)←$ DS.Kg(ppDS)

u ← pk DS

cIBE←$ IBE.Enc(ppIBE,mpk ′, u,m)

σDS←$ DS.Sign(ppDS, sk DS, cIBE)

Return (pk DS, cIBE, σDS)

proc LR(φ,m0,m1)

If (φ /∈ Φ) then Return ⊥
If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
msk∗ ← φ(msk)

pk ′ ← IBE.MPK(ppIBE,msk∗)

(sk∗DS, pk∗DS)←$ DS.Kg(ppDS)

u ← pk∗DS

c∗IBE←$ IBE.Enc(ppIBE,mpk∗, u,m)

σ∗DS←$ DS.Sign(ppDS, sk∗DS, c
∗
IBE)

c∗ ← (pk∗DS, c
∗
IBE, σ

∗
DS)

Return c∗

Figure 5.17: Games used in the proof of Theorem 5.4.2.

123

5.4 RKA-Secure Symmetric Encryption

ASign
1 (ppDS, pk∗DS)

(m∗, σ∗)←⊥
b←$ {0, 1} ; msk∗ ←⊥ ; c∗ ←⊥
pk∗DS ←⊥ ; σ∗DS ←⊥ ; c∗IBE ←⊥
ppIBE←$ IBE.Pg(1λ)
msk ←$ MSKSp(ppIBE)
mpk ← IBE.MPK(ppIBE,msk)
b′←$ ADec,Enc,LR((ppIBE, ppDS),mpk)
Return (m∗, σ∗)

Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)
If ((msk ′ = msk∗) ∧ (c = c∗))

then Return ⊥
(pk DS, cIBE, σDS)← c
If (!DS.Verify(ppDS, pk DS, cIBE, σDS))

then Return ⊥
If ((pk DS = pk∗DS) ∧ ((cIBE, σDS) 6= (c∗IBE, σ

∗
DS)))

then (m∗, σ∗)← (cIBE, σDS) ; Return ⊥
u ← pk DS

usk ←$ IBE.UKg(ppIBE,msk ′, u)
Return IBE.Dec(ppIBE, usk , cIBE)

Enc(φ,m)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)
pk ′ ← IBE.MPK(ppIBE,msk ′)
(sk DS, pk DS)←$ DS.Kg(ppDS)
u ← pk DS

cIBE←$ IBE.Enc(ppIBE,mpk ′, u,m)
σDS←$ DS.Sign(ppDS, sk DS, cIBE)
Return (pk DS, cIBE, σDS)

LR(φ,m0,m1)

If (φ /∈ Φ) then Return ⊥
If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
msk∗ ← φ(msk)
pk ′ ← IBE.MPK(pp,msk∗)
u ← pk∗DS

c∗IBE←$ IBE.Enc(ppIBE,mpk∗, u,mb)
σ∗DS←$ Sign(c∗IBE)
c∗ ← (pk∗DS, c

∗
IBE, σ

∗
DS)

Return c∗

Adversary A1 simulates game G0 for A, using its challenge public key in creating the

challenge ciphertext for A. Since Sign is only called when A calls LR and c∗ =⊥,

and this situation can occur only on A’s first call to LR, A1 makes at most one call

to its Sign oracle. The forgery that A1 outputs is valid exactly when the flag bad is

set in game G0. The “If” statements before the forgery (m∗, σ∗) is set ensure this.

The third “If” statement ensures the signature is valid, and the fourth ensures the

pair differs from that output by the signing oracle. This establishes Equation (5.18).

Adversary A2 against the selective-ID strong Φ-RKA security of IBE behaves as

follows:

124

5.4 RKA-Secure Symmetric Encryption

AsID,KD,Enc,LR
2 (ppIBE)

c∗ ←⊥ ; pk∗DS ←⊥ ; σ∗DS ←⊥ ; c∗IBE ←⊥
ppDS←$ DS.Pg(1λ)
(sk∗DS, pk∗DS)←$ DS.Kg(ppDS)
u∗ ← pk∗DS

mpk ← sID(u∗)
b′←$ ADec,EncSim,LRSim((ppIBE, ppDS),mpk)
Return b′

Dec(φ, c)

If (φ /∈ Φ) then Return ⊥
(pk DS, cIBE, σDS)← c
If (!DS.Verify(ppDS, pk DS, cIBE, σDS))

then Return ⊥
If ((pk DS = pk∗DS) ∧ ((cIBE, σDS) 6= (c∗IBE, σ

∗
DS)))

then (m∗, σ∗)← (cIBE, σDS) ; Return ⊥
u ← pk DS

usk ←$ KD(φ, u)
If (usk =⊥) then Return ⊥
Return IBE.Dec(ppIBE, usk , cIBE)

EncSim(φ,m)

If (φ /∈ Φ) then Return ⊥
(sk DS, pk DS)←$ DS.Kg(ppDS)
u ← pk DS

cIBE←$ Enc(φ, u,m)
σDS←$ DS.Sign(ppDS, sk DS, cIBE)
Return (pk DS, cIBE, σDS)

LRSim(φ,m0,m1)

If (φ /∈ Φ) then Return ⊥
If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗IBE←$ LR(φ,m0,m1)
σ∗DS←$ DS.Sign(ppDS, sk∗DS, c

∗
IBE)

c∗ ← (pk∗DS, c
∗
IBE, σ

∗
DS)

Return c∗

Adversary A2 simulates game G0 for A, choosing up-front the public verification

key that will determine the identity used in the challenge ciphertext. Adversary A2

must return ⊥ when A makes a decryption query with (φ(msk) = msk∗)∧ (c = c∗),

without knowing msk or msk∗. If the ciphertext A submits for decryption is the

challenge ciphertext, then the identity submitted to A2’s KD oracle is the challenge

identity, and if φ(msk) = msk∗ then the KD oracle will return ⊥, so A2 detects this

case and returns ⊥ as required.

The challenge identity will never otherwise be queried to the KD oracle by Dec as

the third “If” statement will cause ⊥ to be returned before the KD oracle is called.

Adversary A2 outputs A’s guess as its own, winning whenever A does, establishing

Equation (5.19).

5.4.3 Strong RKA-Secure IBE

Finally, we show how to build strong Φ-RKA-secure IBE using the techniques of

Chapter 4 and some additional properties of the IBE scheme. Our schemes will

satisfy the adaptive notion of strong Φ-RKA security given in Figure 5.18, which

implies the selective notion of the previous section. We say an IBE scheme IBE

125

5.4 RKA-Secure Symmetric Encryption

main IND-SRKAA
IBE,Φ(λ)

b←$ {0, 1} ; c∗ ←⊥ ; u∗ ←⊥ ; msk∗ ←⊥ ; U ← ∅
pp←$ IBE.Pg(1λ)

msk ←$ IBE.MSKSp(pp)

mpk ← IBE.MPK(pp,msk)

b′←$AKD,LR(pp,mpk)

Return (b = b′)

proc KD(φ, u)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

U ← U ∪ {(u,msk ′)}
If ((u∗,msk∗) ∈ U) then Return ⊥
Return IBE.UKg(pp,msk ′, u)

proc Enc(φ, u,m)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

mpk ′ ← IBE.MPK(pp,msk ′)

Return IBE.Enc(pp,mpk ′, u,m)

proc LR(φ, u,m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
u∗ ← u

msk∗ ← φ(msk)

If ((u∗,msk∗) ∈ U) then Return ⊥
mpk∗ ← IBE.MPK(pp,msk∗)

c∗←$ IBE.Enc(pp,mpk∗, u∗,mb)

Return c∗

Figure 5.18: Game IND-SRKA defining strong Φ-RKA security of IBE scheme IBE.

126

5.4 RKA-Secure Symmetric Encryption

is strong Φ-RKA secure if Advind-srka
IBE,Φ,A(·) is negligible for all PT adversaries A,

where Advind-srka
IBE,Φ,A(λ) = 2 Pr[IND-SRKAA

IBE,Φ(λ)] − 1 and game IND-SRKA is in

Figure 5.18.

Master public key malleability. In Section 4.4 we showed how to use an

identity renaming transform to construct an RKA-secure IBE scheme from an adap-

tively secure IBE scheme that is key malleable and has a collision-resistant identity

renaming scheme. The additional property required to prove strong RKA security

is that of master public key malleability. We say that an IBE scheme IBE with

parameters pp is Φ-mpk-malleable if there exists an algorithm R and a function

f ∈ Fun(MSp(pp),MSp(pp)) such that

R(pp, IBE.Enc(pp, IBE.MPK(pp,msk), u, f(m); t), φ)

= IBE.Enc(pp, IBE.MPK(pp, φ(msk)), u,m; t)

for all msk ∈ MSKSp(pp), u ∈ USp(pp), m ∈ MSp(pp), φ ∈ Φ, and random coins t.

This property says that we can take a ciphertext encrypting a message f(m) related

to m under master public key IBE.MPK(pp,msk) and use it to build a ciphertext

encrypting m under master public key IBE.MPK(pp, φ(msk)), for the same user u

and under the same randomness, t.

Theorem 5.4.3 Let IBE = (Pg,MKg,UKg,Enc,Dec) be a Φ-key-malleable and Φ-

mpk-malleable adaptively secure IBE scheme with functions R and f and key sim-

ulator T . Let (SI,PI) be a statistically collision-resistant renaming scheme. Let

IBE = (Pg,MKg,UKg,Enc,Dec) be obtained from IBE and renaming scheme (SI,PI)

via the transform IRT described in Section 4.4. Then IBE is strong Φ-RKA secure.

Proof: The proof is very similar to that of Theorem 4.4.1, and uses the games in

Figure 5.19 and Figure 5.20. KD of game G0 moves the identity renaming up before

the list of queried identities is updated and then adds the transformed identity to a

list. LR is likewise modified so its test now involves the transformed (rather than

original) identities. Additionally, the secret renaming function SI is used instead of

PI, a modification allowed by the compatibility property of the renaming scheme.

We claim this makes no difference, meaning

Pr[IND-SRKAA
IBE,Φ

(λ)] = Pr[GA
0 (λ)] .

Indeed, statistical collision-resistance tell us that

(msk ′, u) = (msk∗, u∗) iff SI(pp,msk ′, u) = SI(pp,msk∗, u∗) .

127

5.4 RKA-Secure Symmetric Encryption

main IND-SRKAA
IBE

(λ) / GA
0 (λ) / GA

1 (λ) / GA
2 (λ) / GA

3 (λ)

b←$ {0, 1} ; c∗ ←⊥ ; u∗ ←⊥ ; msk∗ ←⊥ ; U ← ∅ u∗ ←⊥ ; U ← ∅
pp←$ IBE.Pg(1λ) ; msk ←$ IBE.MSKSp(pp) ; mpk ← IBE.MPK(pp,msk)

b′←$A
KD,LR

(pp,mpk)

Return (b = b′)

proc KD(φ, u) // IND-SRKAA
IBE

(λ) / GA
0 (λ)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk)

U ← U ∪ {(u,msk ′)} ; If ((u∗,msk∗) ∈ U) then Return ⊥
u ← SI(pp,msk ′, u)

U ← U ∪ {u} ; If (u∗ ∈ U) then Return ⊥
Return IBE.UKg(pp,msk ′, u)

proc Enc(φ, u,m) // IND-SRKAA
IBE

(λ) / GA
0 (λ) / GA

1 (λ)

If (φ /∈ Φ) then Return ⊥
msk ′ ← φ(msk) ; mpk ′ ← IBE.MPK(pp,msk ′)

u ← PI(pp,mpk ′, u, id) u ← PI(pp,mpk , u, φ)

Return IBE.Enc(pp,mpk ′, u,m)

proc LR(φ, u,m0,m1) // IND-SRKAA
IBE

(λ) / GA
0 (λ)

If (φ /∈ Φ) then Return ⊥
If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
u∗ ← u ; msk∗ ← φ(msk) ; If ((u∗,msk∗) ∈ U) then Return ⊥
mpk∗ ← IBE.MPK(pp,msk∗) ; u∗ ← PI(pp,mpk∗, u∗, id)

msk∗ ← φ(msk) ; mpk∗ ← IBE.MPK(pp,msk∗) ; u∗ ← SI(pp,msk∗, u)

If (u∗ ∈ U) then Return ⊥
c∗←$ IBE.Enc(pp,mpk∗, u∗,mb)

Return c∗

Figure 5.19: Games used in the proof of Theorem 5.4.3.

128

5.4 RKA-Secure Symmetric Encryption

proc KD(φ, u) // GA
1 (λ) / GA

2 (λ) / GA
3 (λ)

If (φ /∈ Φ) then Return ⊥
u ← PI(pp,mpk , u, φ)

U ← U ∪ {u}
If (u∗ ∈ U) then Return ⊥
Return IBE.UKg(pp, φ(msk), u)

usk ← IBE.UKg(pp,msk , u)

Return T (pp,mpk , u, usk , φ)

proc Enc(φ, u,m) // GA
2 (λ) / GA

3 (λ)

If (φ /∈ Φ) then Return ⊥
u ← PI(pp,mpk , u, φ)

Return R(pp, IBE.Enc(pp,mpk , u, f(m)), φ)

proc LR(φ, u,m0,m1) // GA
1 (λ) / GA

2 (λ) / GA
3 (λ)

If (φ /∈ Φ) then Return ⊥
If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
msk∗ ← φ(msk) ; mpk∗ ← IBE.MPK(pp,msk∗)

u∗ ← PI(pp,mpk , u, φ)

If (u∗ ∈ U) then Return ⊥
c∗←$ IBE.Enc(pp,mpk∗, u∗,mb)

c∗ ← R(pp, IBE.Enc(pp,mpk , u∗, f(mb)), φ)

Return c∗

Figure 5.20: Games used in the proof of Theorem 5.4.3, continued.

129

5.4 RKA-Secure Symmetric Encryption

This means that the dashed-boxed code of IND-SRKAIBE,Φ and the boxed code of

G0 are equivalent.

Compatibility is invoked to use PI in place of SI in both Enc and in LR in G1, so

that

Pr[GA
0 (λ)] = Pr[GA

1 (λ)] .

Φ-mpk-malleability is invoked to use R(pp,Enc(pp,MPK(pp,msk), u, f(m)), φ) in

place of Enc(pp,MPK(pp, φ(msk)), u,m) in G2, so that

Pr[GA
1 (λ)] = Pr[GA

2 (λ)] .

Rather than use φ(msk) for key generation as in the boxed code of KD of G2, G3

uses msk and then applies the key simulator T . We claim that key-malleability

implies

Pr[GA
2 (λ)] = Pr[GA

3 (λ)] . (5.20)

To justify this we show that there is an adversary M such that

Pr[KMRealMIBE,Φ(λ)] = Pr[GA
2 (λ)] and Pr[KMSimM

IBE,Φ,T (λ)] = Pr[GA
3 (λ)] .

Adversary M behaves as follows:

MKD(pp,mpk)

b←$ {0, 1} ; c∗ ←⊥
u∗ ← ⊥ ; U ← ∅
b′←$ A

KDSim,Enc,LR
(pp,mpk)

Return (b = b′)

KDSim(φ, u)

u ← PI(pp,mpk , u, φ)
U ← U ∪ {u}
If (u∗ ∈ U) then Return ⊥
Return KD(φ, u)

Enc(φ, u,m)

If (φ /∈ Φ) then Return ⊥
u ← PI(pp,mpk , u, φ)
Return R(pp, IBE.Enc(pp,mpk , u, f(m)), φ)

LR(φ, u,m0,m1)

If (c∗ 6=⊥) then Return ⊥
u∗ ← PI(pp,mpk , u, φ)
If (u∗ ∈ U) then Return ⊥
c∗←$ R(pp, IBE.Enc(pp,mpk , u∗, f(mb)), φ)
Return c∗

If M is playing game KMReal then its KD oracle will behave as the boxed code

in game G2, while if M is playing game KMSim its KD oracle will behave as in

130

5.4 RKA-Secure Symmetric Encryption

game G3. If M is playing game KMReal then game G2 is perfectly simulated, while

if M is playing KMSim then game G3 is perfectly simulated, so M returns 1 with

the same probability that A wins in each case and by the key-malleability of IBE

Equation (5.20) holds.

Finally, we design A so that

Advind-aid
IBE,A (λ) = 2 Pr[GA

3 (λ)]− 1 .

Adversary A behaves as follows:

AKD,LR(pp,mpk)

b′←$ A
KDSim,Enc,LRSim

(pp,mpk)
Return b′

Enc(φ, u,m)

If (φ /∈ Φ) then Return ⊥
u ← PI(pp,mpk , u, φ)
Return R(pp, IBE.Enc(pp,mpk , u, f(m)), φ)

KDSim(φ, u)

u ← PI(pp,mpk , u, φ)
usk ← KD(u)
Return T (pp,mpk , u, usk , φ)

LRSim(φ, u,m0,m1)

u∗ ← PI(pp,mpk , u, φ)
c ← LR(u∗, f(m0), f(m1))
Return R(pp, c, φ)

Adversary A perfectly simulates G3 for A, winning whenever A does.

Waters’ IBE scheme is Φ-mpk-malleable for affine φ with a 6= 0. The restriction

that the linear coefficient be non-zero is necessary, as otherwise the master secret

key becomes the known value b. The function f is f(m) = ma−1
and the algorithm

R taking ciphertext c = (c′1, c
′
2, c
′
3) is as follows:

R(pp, (c′1, c
′
2, c
′
3), φa,b):

c1 ← c′1 ; c2 ← c′2
c3 ← (c′3)a · e((c′1)b, g1)

Return (c1, c2, c3)

Let

c ← Enc(pp,MPK(pp,msk), u,ma−1
; t) = (gt,H(u)t, e(MPK(pp,msk), g1)t ·ma−1

)

131

5.4 RKA-Secure Symmetric Encryption

be the ciphertext input to R. Then

c3 = (c′3)
a · e((c′1)

b
, g1)

= (e(gmsk , g1)
t ·ma−1

)
a
· e((gt)b, g1)

= e(g, g1)a·msk ·t ·m · e(g, g1)bt

= e(g, g1)(a·msk+b)t ·m

= e(g(a·msk+b), g1)
t ·m

= e(MPK(φ(pp,msk)), g1)t ·m ,

so

(c1, c2, c3) = (gt,H(u)t, e(MPK(pp, φ(msk)), g1)t ·m)

= Enc(pp,MPK(pp, φ(msk)), u,m; t)

and R’s output is correct.

The extended Waters IBE scheme is Φ-mpk-malleable for polynomial φa0,a1,...,ad with

linear coefficient a1 6= 0. The function f is f(m) = ma−1
1 and the algorithm R taking

ciphertext c = (c′1, c
′
2, c
′
3) is as follows:

R(pp, (c′1, c
′
2, c
′
3), φa0,a1,...,ad):

c1 ← c′1 ; c2 ← c′2
c3 ← (c′3)a1 · e((c′1)a0 , g1) · e((c′1)a2 , (gs

2

1)) · · · e((c′1)ad , (gs
d

1))

Return (c1, c2, c3)

Let

c ← Enc(pp,MPK(pp,msk), u,ma−1
1 ; t) = (gt,H(u)t, e(MPK(pp,msk), g1)t ·ma−1

1)

be the ciphertext input to R. Then

c3 = (c′3)
a1 · e((c′1)

a0 , g1) · e((c′1)
a2 , (gmsk2

1)) · · · e((c′1)
ad , (gmskd

1))

= (e(gmsk , g1)
t ·ma−1

1)
a1

· e((gt)a0 , g1) · e((gt)a2 , (gmsk2

1)) · · · e((gt)ad , (gmskd

1))

= e(g, g1)a1·msk ·t ·m · e(g, g1)a0t · e(g, g1)a2·msk2t · · · e(g, g1)ad·mskdt

= e(g, g1)(a0+a1·msk+a2·msk2+···+ad·mskd)t ·m

= e(g(a0+a1·msk+a2·msk2+···+ad·mskd), g1)
t
·m

= e(MPK(pp, φ(msk)), g1)t ·m ,

so

(c1, c2, c3) = (gt,H(u)t, e(MPK(pp, φ(msk)), g1)t ·m)

= Enc(pp,MPK(pp, φ(msk)), u,m; t)

132

5.5 Conclusion

and R’s output is correct.

If the linear coefficient of the RKD function is zero, then it is possible to com-

pute the mask e(g(a0+a2·msk2+···+ad·mskd), g1)
t

by pairing gt and the gmsk i
1 values, so

the IND-aID security of the extended Waters scheme means it cannot be Φ-mpk-

malleable for Φ including polynomials with zero linear coefficients. Strong RKA

security is unachievable for constant RKD functions φ(msk) = a0 as the adversary

can submit such a φ to the LR oracle to obtain the challenge ciphertext under a pub-

lic key for which it knows the corresponding secret key is a0. Thus strong Φ-RKA

security for the full set of polynomials φa0,a1,...,ad is unachievable. However there is

still a gap between the RKD set consisting of polynomials of non-zero degree and

our RKD set of polynomials with non-zero linear coefficient.

Constructing a symmetric encryption scheme from the PKE scheme obtained by

applying the CHK transform to the Waters and extended Waters IBE schemes under

the identity renaming transform of Section 4.4 gives Φ-RKA-secure SE for affine

and polynomial φ with non-zero linear coefficients. In [69] a CPA secure SE scheme

RKA secure against RKD functions consisting of polynomials of non-zero degree is

presented, while our SE scheme is RKA secure against the more restricted RKD

set consisting of polynomials with non-zero linear coefficients. Note however that

the construction of [69] relies on a specific hardness assumption rather than arising

from a general framework as our instantiations do. Moreover, our schemes are CCA

secure, whereas the scheme of [69] is only CPA secure.

5.5 Conclusion

We showed that the Boneh-Katz transform preserves RKA security, giving Φ-RKA-

secure PKE from the Φ-RKA-secure IBE schemes of the previous chapter. Previously

[14] showed the CHK transform has the same property, however the Boneh-Katz

transform is more efficient.

We also constructed an RKA-secure KEM based on the KEM of Boyen, Mei and

Waters [39] that is secure against an adversary applying affine transformations to

the key. We showed that the KEM-DEM composition theorem holds in the RKA

setting, leading to further RKA-secure PKE schemes.

We showed that our joint encryption and signature scheme of Section 3.5 preserves

133

5.5 Conclusion

RKA security, giving a scheme secure when the same key is used for both encryption

and signature, and the adversary can additionally obtain signatures and decryptions

under related keys.

We then turned our attention to symmetric encryption, extending the results of the

previous chapter to show that when the base IBE scheme has a further malleability

property, the PKE scheme obtained through the CHK transform can be converted

into an RKA-secure CCA-SE (CCA-secure symmetric encryption) scheme. Instan-

tiating the scheme with our affine and polynomial RKA-secure IBE schemes of the

previous chapter gives the first symmetric encryption schemes secure against affine

and polynomial RKAs in the CCA setting, such schemes having already been con-

structed in the CPA setting in [69]. In the CPA setting [69] gives a symmetric

encryption scheme RKA secure against the class Φpoly(d) \ Φc, while we are able to

achieve RKA security in the CCA setting against the set of polynomials of degree

d with linear coefficient zero. Closing this gap and achieving RKA security against

the full set Φpoly(d) \ Φc in the CCA setting is an open problem.

We have achieved RKA security under affine and polynomial key transformations for

many primitives for which previously constructions secure against only linear RKAs

were known. An interesting direction for future research is to construct schemes

secure against further classes of RKA such as those described by bit-flipping, shifting,

and masking, which are arguably more natural transformations to consider in the

setting of tampering attacks.

134

Chapter 6

Key-Versatile Signatures

Contents

6.1 Introduction . 135

6.2 Key-Versatile Signatures 141

6.2.1 Security of F-Keyed Signature Schemes 143

6.2.2 Constructing F-Keyed Signature Schemes 147

6.3 Joining Signature to Encryption with No Public-Key
Overhead . 150

6.4 RKA-Secure Signatures from RKA-Secure OWFs 157

6.5 KDM-Secure Storage . 163

6.6 Conclusion . 179

This chapter introduces key-versatile signatures. Key-versatile signatures allow us

to sign with keys already in use for another purpose, without changing the keys and

without impacting the security of the original purpose. This allows us to obtain

advances across a collection of challenging domains including joint encryption and

signature, security against related-key attack (RKA) and security for key-dependent

messages (KDM). Specifically we can (1) Add signing capability to existing encryp-

tion capability with zero overhead in the size of the public key (2) Obtain RKA-secure

signatures from any RKA-secure one-way function, yielding new RKA-secure signa-

ture schemes (3) Add integrity to encryption while maintaining KDM-security.

6.1 Introduction

One of the recommended principles of sound cryptographic design is key separation,

meaning that keys used for one purpose (e.g. encryption) should not be used for

another purpose (e.g. signing). The reason is that, as demonstrated in Chapter 3,

even if the individual uses are secure, the joint usage could be insecure [53]. This

135

6.1 Introduction

chapter shows, to the contrary, that there are important applications where key

reuse is not only desirable but crucial to maintain security, and that when done

“right” it works. We offer key-versatile signatures as a general tool to enable signing

with existing keys already in use for another purpose, without adding key material

and while maintaining security of both the new and the old usage of the keys. Our

applications include: (1) adding signing capability to existing encryption capability

with zero overhead in the size of the public key (2) obtaining RKA-secure signa-

tures from RKA-secure one-way functions (3) adding integrity to encryption while

preserving KDM security.

Closer look. Key-versatility refers to the ability to take an arbitrary one-way

function F and return a signature scheme where the secret signing key is a random

domain point x for F and the public verification key is its image y = F (x). By

requiring strong simulatability and key-extractability security conditions [46] from

these “F -keyed” signatures, and then defining F based on keys already existing for

another purpose, we will be able to add signing capability while maintaining existing

keys and security.

The most compelling motivation comes from security against related-key attack and

security for key-dependent messages (KDM), technically challenging areas where

solutions create, and depend on, very specific key structures. We would like to

expand the set of primitives for which we can provide these forms of security. Rather

than start from scratch, we would like to leverage the existing, hard-won advances in

these areas by modular design, transforming a primitive X into a primitive Y while

preserving RKA or KDM security. Since security is relative to a set of functions

(either key or message deriving) on the space of keys, the transform must preserve

the existing keys. Key-versatile signatures will thus allow us to create new RKA

and KDM secure primitives in a modular way.

We warn that our results are theoretical feasibility ones. They demonstrate that

certain practical goals can in principle be reached, but the solutions are not efficient.

Below we begin with a more direct application of key versatile signatures to joint

encryption and signature and then go on to our RKA and KDM results.

Joining signatures to encryption with zero public-key overhead. Sup-

pose Alice has keys (sk PKE, pk PKE) for a public-key encryption scheme and wants

to also have signing capability. Certainly, she could pick new and separate keys

(sk DS, pk DS) enabling her to use her favourite signature scheme. However, it means

136

6.1 Introduction

that Alice’s public key, now pk = (pk PKE, pk DS), has doubled in size. Practitioners

ask if one can do better. We want a joint encryption and signature scheme (recall

from Chapter 3 a JES scheme has a single keypair (sk , pk) used for both encryption

and signing). We aim to minimise the public-key overhead, (loosely) defined as the

size of pk minus the size of the public key pk PKE of the underlying encryption scheme.

Previous results in joint encryption and signature pertain to specific encryption

schemes. We step back to ask a general theoretical question. Namely, suppose we

are given an arbitrary IND-CCA-secure public-key encryption scheme. We wish to

add signing capability to form a JES scheme. How low can the public-key overhead

go? The (perhaps surprising) answer we provide is that we can achieve a public-key

overhead of zero. The public key for our JES scheme remains exactly that of the given

encryption scheme, meaning we add signing capability without changing the public

key. (Zero public-key overhead has a particular advantage besides space savings,

namely that, in adding signing, no new certificates are needed. This makes key

management significantly easier for the potentially large number of entities already

using Alice’s public key. This advantage is absent if the public key is at all modified.)

We emphasise again that this is for any starting encryption scheme.

To do this, we let F be the function that maps the secret key of the given encryption

scheme to the public key. (Not all encryption schemes will directly derive the public

key as a deterministic function of the secret key, although many, including Cramer-

Shoup [49], do. However, we can modify any encryption scheme to have this property,

without changing the public key, by using the coins of the key-generation algorithm as

the secret key.) The assumed security of the encryption scheme means this function is

one-way. Now, we simply use an F -keyed signature scheme, with the keys remaining

those of the encryption scheme. No new keys are introduced. We need however to

ensure that the joint use of the keys does not result in bad interactions that make

either the encryption or the signature insecure. This amounts to showing that the

JES security conditions, namely that encryption remains secure even given a signing

oracle and signing remains secure even given a decryption oracle, are met. This will

follow from the simulatability and key-extractability requirements we impose on our

F -keyed signatures.

New RKA-secure signatures. Recall from Chapter 4 that in a related-key attack

(RKA) [80, 24, 18, 14] an adversary can modify a stored secret key and observe

outputs of the cryptographic primitive under the modified key. Achieving proven

security against RKAs, however, is broadly recognised as very challenging. This has

lead several authors [66, 14] to suggest that we “bootstrap,” building higher-level Φ-

137

6.1 Introduction

RKA-secure primitives from lower-level Φ-RKA-secure primitives. In this vein, [14]

show how to build Φ-RKA signatures from Φ-RKA PRFs. Building Φ-RKA PRFs

remains difficult, however, and we really have only one construction [13]. This

has lead to the direct (non-bootstrapping) constructions in Chapter 5 of Φ-RKA

signatures for classes Φ of polynomials over certain specific pairing groups.

We return to bootstrapping and provide a much stronger result, building Φ-RKA

signatures from Φ-RKA one-way functions rather than from Φ-RKA PRFs. (For a

one-way function, the input is the “key.” In attempting to recover x from F (x),

the adversary may also obtain F (x′) where x′ is created by applying to x some

modification function from Φ. The definition is from [66].) The difference is sig-

nificant because building Φ-RKA one-way functions under standard assumptions is

easy. Adapting the key-malleability technique of [13], we show that many natural

one-way functions are Φ-RKA secure (for appropriate classes Φ) assuming nothing

more than their standard one-wayness. In particular this is true for discrete ex-

ponentiation over an arbitrary group and for the one-way functions underlying the

LWE and LPN problems. In this way we obtain Φ-RKA signatures for many new

and natural classes Φ.

The central challenge in our bootstrapping is to preserve the keyspace, meaning that

the space of secret keys of the constructed signature scheme must be the domain of

the given Φ-RKA one-way function F . (Without this, it is not even meaningful to

talk of preserving Φ-RKA security, let alone to show that it happens.) This is exactly

what an F -keyed signature scheme allows us to do. The proof that Φ-RKA security

is preserved exploits strong features built into our definitions of simulatability and

key-extractability for F -keyed signatures, in particular that these conditions hold

even under secret keys selected by the adversary.

KDM-secure storage. Over the last few years we have seen a large number of

sophisticated schemes to address the (challenging) problem of encryption of key-

dependent data (e.g., [27, 36, 9, 7, 43, 44, 26, 11, 87, 6, 40, 41, 17, 62, 75]). The

most touted application is secure outsourced storage, where Alice’s decryption key,

or some function thereof, is in a file she is encrypting and uploading to the cloud.

This can occur for example when making an offsite backup of a disk. But in this

setting integrity is just as important as privacy. To this end, we would like to add

signatures, thus enabling the server, based on Alice’s public key, to validate her

uploads, and enabling Alice herself to validate her downloads, all while preserving

KDM security.

138

6.1 Introduction

What emerges is a new goal that we call KDM-secure (encrypted and authenticated)

storage. In Section 6.5 we formalise the corresponding primitive, providing both

syntax and notions of security for key-dependent messages. Briefly, Alice uses a

secret key sk to turn her message M into an encrypted and authenticated “data”

object that she stores on the server. The server is able to check integrity based on

Alice’s public key. When Alice retrieves data, she can check integrity and decrypt

based on her secret key. Security requires both privacy and integrity even when

M depends on sk . (As we explain in more depth below, this goal is different from

signcryption [100] and authenticated symmetric encryption [20, 93], even in the

absence of KDM considerations.)

A natural approach to achieve our goal is for Alice to encrypt under a symmetric,

KDM-secure scheme and sign the ciphertexts under a conventional signature scheme.

But it is not clear how to prove the resulting storage scheme is KDM-secure. The

difficulty is that sk would include the signing key in addition to the encryption (and

decryption) key K, so that messages depend on both these keys while the KDM

security of the encryption only covers messages depending on K. We could attempt

to start from scratch and design a secure storage scheme meeting our notions. But

key-versatile signatures offer a simpler and more modular solution. Briefly, we take

a KDM-secure public-key encryption scheme and let F be the one-way function that

maps a secret key to a public key. Alice holds (only) a secret key sk and the server

holds pk = F (sk). To upload M , Alice re-computes pk from sk , encrypts M under it

using the KDM scheme, and signs the ciphertext with an F -keyed signature scheme

using the same key sk . The server verifies signatures under pk .

In Section 6.5 we present in full the construction outlined above, and prove that it

meets our notion of KDM security. The crux, as for our RKA-secure constructions,

is that adding signing capability without changing the keys puts us in a position

to exploit the assumed KDM security of the underlying encryption scheme. The

strong simulatability and key-extractability properties of our signatures do the rest.

We note that as an added bonus, we assume only CPA-KDM security of the base

encryption scheme, yet our storage scheme achieves CCA-KDM security.

Constructing F -keyed signatures. In Section 6.2 we define F -keyed signatures

and show how to construct them for arbitrary one-way F . This enables us to realise

the above applications.

Our simulatability condition, adapting [46, 1, 45], asks for a trapdoor allowing

the creation of simulated signatures given only the message and public key, even

139

6.1 Introduction

when the secret key underlying this public key is adversarially chosen. Our key-

extractability condition, adapting [46], asks that, using the same trapdoor, one can

extract from a valid signature the corresponding secret key, even when the public

key is adversarially chosen. Theorem 6.2.1, showing these conditions imply not just

standard but strong unforgeability, acts not just as a sanity check but as a way to

introduce, in a simple form, a proof template that we will extend for our applications.

Our construction of an F -keyed signature scheme is a minor adaptation of a NIZK-

based signature scheme of Dodis, Haralambiev, López-Alt and Wichs (DHLW) [56].

While DHLW [56] prove leakage-resilience of their scheme, we prove simulatability

and key-extractability. The underlying SE NIZKs (defined in Chapter 2) are a

variant of simulation-sound extractable NIZKs [50, 70, 71] introduced by [56] under

the name tSE NIZKs and shown by [56, 73] to be achievable for all of NP under

standard assumptions.

Discussion and related work. F -keyed signatures can be viewed as a special

case of signatures of knowledge as introduced by Chase and Lysyanskaya [46]. The

main novelty of our work is in the notion of key-versatility, namely that F -keyed

signatures can add signing capability without changing keys, and the ensuing ap-

plications to joint encryption and signature, RKA security and KDM security. In

particular our work shows that signatures of knowledge have applications beyond

those envisaged in [46].

The first NIZK-based signature scheme was that of [15]. It achieved only unforge-

ability. Simulatability and extractability were achieved in [46] using dense cryp-

tosystems [52, 51] and simulation-sound NIZKs [96, 50]. The DHLW construction

we use can be viewed as a simplification and strengthening made possible by the

significant advances in NIZK technology since then.

F -keyed signatures, and, more generally, signatures of knowledge [46] can be seen as

a signing analogue of Witness encryption [63, 16], and we might have named them

Witness Signatures. GGSW [63] show how witness encryption allows encryption

with a flexible choice of keys, just as we show that F -keyed signatures allow signing

with a flexible choice of keys.

Signcryption [100] (sometimes called authenticated public-key encryption [3]), JES

(see Chapter 3) and our secure storage goal all have in common that both encryption

and signature are involved. However, in signcryption, there are two parties and thus

two sets of keys, Alice encrypting under Bob’s public key and signing under her own

140

6.2 Key-Versatile Signatures

secret key. In JES and secure storage, there is one set of keys, namely Alice’s. Thus

for signcryption the question of using the same keys for the two purposes, which is at

the core of our goals and methods, does not arise. Self-signcryption [59] is however

similar to secure storage, minus the key-dependent message aspect. Authenticated

symmetric encryption [20, 93] also involves both encryption and authentication, but

under a shared key, while JES and secure storage involve public keys. KDM-secure

authenticated symmetric encryption was studied in [17, 10].

KDM-secure signatures were studied in [90], who show limitations on the security

achievable. Our secure storage scheme bypasses these limitations by signing cipher-

texts rather than plaintexts and by avoiding KDM-secure signatures altogether: we

use F -keyed signatures and are making no standalone claims or assumptions regard-

ing their KDM security. Combining KDM encryption and KDM signatures would

not give us KDM-secure storage because the keys for the two primitives would be

different and we want joint KDM security.

Secure storage is an amalgam of symmetric and asymmetric cryptography, encryp-

tion being of the former kind and authentication of the latter. With secure storage,

we are directly modelling a goal of practical interest rather than trying to create a

general-purpose tool like many of the other works just mentioned. The difference

between JES and secure storage is that in the former, arbitrary messages may be

signed, while in the latter only ciphertexts may be signed. The difference is cru-

cial for KDM security, which for JES would inherit the limitations of KDM-secure

signatures just mentioned, but is not so limited for secure storage.

6.2 Key-Versatile Signatures

We define F-keyed signature schemes, for F a family of functions rather than the

single function F used for simplicity in Section 6.1. The requirement is that the

secret key sk is an input for an instance ppF of the family and the public key pk =

F.Eval(ppF, sk) is the corresponding image under this instance, the instance ppF itself

specified in public parameters. We intend to use these schemes to add authenticity

in a setting where keys (sk , pk) may already be in use for another purpose (such as

encryption). We need to ensure that signing will neither lessen the security of the

existing usage of the keys nor have its own security be lessened by it. To ensure

this strong form of composability, we define simulatability and key-extractability

requirements for our F-keyed schemes. The fact that the keys will already be in use

141

6.2 Key-Versatile Signatures

main SIMA
DS,F(λ)

b←$ {0, 1}
(ppF, ppaux1)←$ DS.Pg(1λ)

pp1 ← (ppF, ppaux1)

(ppaux0, std , xtd)←$ DS.SimPg(1λ)

pp0 ← (ppF, ppaux0)

b′←$ASign(ppb)

Return (b = b′)

Sign(sk ,m)

If (sk 6∈ F.Dom(ppF))

then Return ⊥
pk ← F.Eval(ppF, sk)

If (b = 1)

then σ←$ DS.Sign(pp1, sk ,m)

Else σ←$ DS.SimSign(pp0, std , pk ,m)

Return σ

main EXTADS,F(λ)

Q← ∅
ppF←$ F.Pg(1λ)

(ppaux, std , xtd)←$ DS.SimPg(1λ)

pp ← (ppF, ppaux)

(pk ,m, σ)←$ASign(pp)

If (pk /∈ F.Rng(ppF))

then Return false

If (!DS.Verify(pp, pk ,m, σ))

then Return false

If ((pk ,m, σ) ∈ Q)

then Return false

sk ←$ DS.Ext(pp, xtd , pk ,m, σ)

Return (F.Eval(ppF, sk) 6= pk)

Sign(sk ,m)

If (sk 6∈ F.Dom(ppF))

then Return ⊥
pk ← F.Eval(ppF, sk)

σ←$ DS.SimSign(pp, std , pk ,m)

Q← Q ∪ {(pk ,m, σ)}
Return σ

Figure 6.1: Left: Game SIM defining simulatability of F-keyed signature scheme DS.
Right: Game EXT defining key-extractability.

for another purpose also means that we do not have the luxury of picking the family

F, but must work with an arbitrary family emerging from another setting. The only

assumption we will make on F is thus that it is one-way. (This is necessary, else

security is clearly impossible.) With the definitions in place, we go on to indicate

how to build F-keyed signature schemes for arbitrary, one-way F.

We clarify that being F-keyed under an F assumed to be one-way does not mean

that security (simulatability and key-extractability) of the signature scheme is based

solely on the assumption that F is one-way. The additional assumption in our con-

struction is a SE-secure NIZK. (But this itself can be built under standard assump-

tions.) It is possible to build a signature scheme that is unforgeable assuming only

that a given F is one-way [94], but this scheme will not be F-keyed relative to the

same F underlying its security, and it will not be simulatable or key-extractable.

F-keyed signature schemes. Let F be a function family. We say that a signature

142

6.2 Key-Versatile Signatures

scheme DS is F-keyed if the following are true:

• Parameter compatibility: Parameters pp for DS are a pair pp = (ppF, ppaux) con-

sisting of parameters ppF for F and auxiliary parameters ppaux, these indepen-

dently generated. Formally, there is a PT auxiliary parameter generation algo-

rithm DS.APg such that DS.Pg(1λ) picks ppF←$ F.Pg(1λ) ; ppaux←$ DS.APg(1λ)

and returns (ppF, ppaux).

• Key compatibility: The signing key sk is a random point in the domain of F.Eval

and the verifying key pk is its image under F.Eval. Formally, DS.Kg((ppF, ppaux))

picks sk ←$ F.Dom(ppF), lets pk ← F.Eval(ppF, sk) and returns (sk , pk). (DS.Kg

ignores the auxiliary parameters ppaux, meaning the keys do not depend on them.)

6.2.1 Security of F-Keyed Signature Schemes

We require two (strong) security properties of an F-keyed signature scheme DS:

• Simulatable: Under simulated auxiliary parameters and an associated simula-

tion trapdoor std , a simulator, given pk = F.Eval(ppF, sk) and m, can pro-

duce a signature σ indistinguishable from the real one produced under sk ,

when not just m, but even the secret key sk , is adaptively chosen by the ad-

versary. Formally, DS is simulatable if it specifies additional PT algorithms

DS.SimPg (the auxiliary parameter simulator) and DS.SimSign (the signature

simulator) such that Advsim
DS,A(·) is negligible for every PT adversary A, where

Advsim
DS,A(λ) = 2 Pr[SIMA

DS(λ)] − 1 and game SIM is specified on the left-hand

side of Figure 6.1.

• Key-extractable: Under the same simulated auxiliary parameters and an associ-

ated extraction trapdoor xtd , an extractor can extract from any valid forgery

relative to pk an underlying secret key sk , even when pk is chosen by the adver-

sary and the adversary can adaptively obtain simulated signatures under secret

keys of its choice. Formally, DS is key-extractable if it specifies another PT al-

gorithm DS.Ext (the extractor) such that Advext
DS,A(·) is negligible for every PT

adversary A, where Advext
DS,A(λ) = Pr[EXTA

DS(λ)] and game EXT is specified on

the right-hand side of Figure 6.1.

The EXT game includes a possibly non-PT test of membership in the range of the

family, but we will ensure that adversaries (who must remain PT) do not perform

this test. Our definition of simulatability follows [46, 1, 45]. Those definitions were

143

6.2 Key-Versatile Signatures

for general signatures, not F-keyed ones, and one difference is that our simulator can

set only the auxiliary parameters, not the full parameters, meaning it does not set

ppF.

Sim+Ext implies unforgeability. The simulatability and key-extractability

notions we have defined may seem quite unrelated to the standard unforgeability

requirement for signature schemes [67]. As a warm-up towards applying these new

conditions, we show that in fact they imply not just the standard unforgeability but

strong unforgeability, under the minimal assumption that F is one-way.

Theorem 6.2.1 Let DS be an F-keyed signature scheme that is simulatable and

key-extractable. If F is one-way then DS is strongly unforgeable.

Here we sketch the intuition. First we switch to a game using simulated parameters,

building an adversary A1 against the simulatability property of DS to show this

change is indistinguishable to an adversary. In the next game we extract a secret

key from the adversary’s forgery, and set a flag bad if this secret key does not

correspond to the challenge public key. We show through an adversary A2 against

the extractability property of DS that this happens with negligible probability, and

move to a game that outputs false when bad is set. Now we are in a position to build

an inverter I for F. On input (ppF, pk), adversary I generates simulated auxiliary

parameters ppaux together with simulation and extraction trapdoors. It now runs A

with parameters (ppF, ppaux), answering signing queries via the signature simulator.

(Note the latter only needs the simulation trapdoor and the public key, not the

secret key.) When A produces its forgery m, σ, the inverter I runs the extractor to

obtain sk , which is a pre-image of pk under F.Eval(ppF, ·) with the same probability

that A wins the final game.

The reader may note that the above theorem would hold under weaker simulata-

bility and extractability conditions where the adversaries do not choose secret and

public keys. This is true, but the stronger conditions are crucial to other upcoming

applications in this chapter. We proceed to prove Theorem 6.2.1.

Proof: Let A be a PT adversary playing game SUF-CMA. We build PT adversaries

A1, A2, I such that

Advsuf-cma
DS,A (λ) ≤ Advsim

DS,A1
(λ) + Advext

DS,A2
(λ) + Advow

F,I(λ)

for all λ ∈ N, from which the theorem follows.

144

6.2 Key-Versatile Signatures

main SUF-CMAA
DS(λ)

Q← ∅
(ppF, ppaux)←$ DS.Pg(1λ) ; pp ← (ppF, ppaux)

(sk , pk)←$ DS.Kg(pp)

(m, σ)←$ASign(pp, pk)

Return (DS.Verify(pp, pk ,m, σ) ∧ ((m, σ) 6∈ Q))

main GA
0 (λ) / GA

1 (λ)

Q← ∅
ppF←$ F.Pg(1λ) ; (ppaux, std , xtd)←$ DS.SimPg(1λ) ; pp ← (ppF, ppaux)

(sk , pk)←$ DS.Kg(pp)

(m, σ)←$ASign(pp, pk)

sk ′←$ DS.Ext(pp, xtd , pk ,m, σ)

If (DS.Verify(pp, pk ,m, σ) ∧ (m, σ) 6∈ Q) then

d← true

If (F.Eval(ppF, sk ′) 6= pk) then bad← true ; d← false

Return d

Sign(m) // SUF-CMAA
DS(λ) / GA

0 (λ) / GA
1 (λ)

σ←$ DS.Sign(pp, sk ,m)

σ←$ DS.SimSign(pp, std , pk ,m)

Q← Q ∪ {(m, σ)}
Return σ

Figure 6.2: Games used in the proof of Theorem 6.2.1.

The proof uses the games in Figure 6.2. We will build A1, A2, I so that for all λ ∈ N
we have

Pr[SUF-CMAA
DS(λ)]− Pr[GA

0 (λ)] ≤ Advsim
DS,A1

(λ) (6.1)

Pr[GA
0 (λ) sets bad] ≤ Advext

DS,A2
(λ) (6.2)

Pr[GA
1 (λ)] ≤ Advow

F,I(λ) . (6.3)

145

6.2 Key-Versatile Signatures

Games G0 and G1 are identical until bad, so by the Fundamental Lemma of Game-

Playing [23] and the above, for all λ ∈ N we have:

Advsuf-cma
DS,A (λ) = Pr[SUF-CMAA

DS(λ)]

= (Pr[SUF-CMAA
DS(λ)]− Pr[GA

0 (λ)])

+ (Pr[GA
0 (λ)]− Pr[GA

1 (λ)]) + Pr[GA
1 (λ)]

≤ (Pr[SUF-CMAA
DS(λ)]− Pr[GA

0 (λ)])

+ Pr[GA
0 (λ) sets bad] + Pr[GA

1 (λ)]

≤ Advsim
DS,A1

(λ) + Advext
DS,A2

(λ) + Advow
F,I(λ)

as desired. We proceed to the constructions of A1, A2, I. Adversary A1 against the

simulatability of DS behaves as follows:

ASign
1 (pp)

Q← ∅
(sk , pk)←$ DS.Kg(pp)
(m, σ)←$ ASignSim(pp, pk)
If (DS.Verify(pp, pk ,m, σ) ∧ ((m, σ) 6∈ Q))

then b′ ← 1
Else b′ ← 0
Return b′

SignSim(m)

σ←$ Sign(sk ,m)
Q← Q ∪ {(m, σ)}
Return σ

The Sign oracle that A1 invokes is its own. When the challenge bit b in game SIM is

0, adversary A1’s Sign oracle returns signatures computed through DS.SimSign and

so A1 simulates for A game G0, while if b = 1, adversary A1’s Sign oracle returns

signatures computed through DS.Sign and so A1 simulates game SUF-CMA. We

thus have

Pr[SUF-CMAA
DS(λ)]− Pr[GA

0 (λ)] = Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]

≤ Advsim
DS,A1

(λ) ,

which establishes Equation (6.1). Adversary A2 against the extractability of DS

behaves as follows:

ASign
2 (pp)

(sk , pk)←$ DS.Kg(pp)
(m, σ)←$ ASignSim(pp, pk)
Return (pk ,m, σ)

SignSim(m)

σ←$ Sign(sk ,m)
Return σ

146

6.2 Key-Versatile Signatures

We skip the simple analysis establishing Equation (6.2). Adversary I against the

one-wayness of F behaves as follows:

I(ppF, pk)

(ppaux, std , xtd)←$ DS.SimPg(1λ)
pp ← (ppF, ppaux)
(m, σ)←$ ASign(pp, pk)
sk ′←$ DS.Ext(pp, xtd , pk ,m, σ)
Return sk ′

Sign(m)

σ←$ DS.SimSign(pp, std , pk ,m)
Return σ

The value pk input to I is generated through choosing a random point in the domain

of F and applying the evaluation function to it, just as key compatibility dictates

DS.Kg generates pk in game G1. We exploit in this game the parameter compatibility

of DS, which allows us to generate ppaux independently of ppF. We skip the simple

analysis establishing Equation (6.3).

6.2.2 Constructing F-Keyed Signature Schemes

A key-versatile signing schema is a transform KvS that given an arbitrary family

of functions F returns an F-keyed signature scheme DS = KvS[F]. We want the

constructed signature scheme to be simulatable and key-extractable. We now show

that this is possible with the aid of appropriate NIZK systems which are themselves

known to be constructable under standard assumptions.

Recall from Chapter 2 the definition of a SE (Simulation Extractable) NIZK system.

SE was called tSE in [56] and is a variant of NIZK-security notions from [70, 50, 96].

The definition is based on [50, 70, 71, 56]. Roughly, it says that an adversary, given

polynomially many simulated proofs of statements of his choosing, cannot come up

with a new valid proof from which a witness cannot be extracted.

Before we use such proofs to construct a F-keyed signature scheme, we must know

that they exist. The first construction of SE NIZKs (using a stronger notion of simu-

lation extractability) was given in [70], but for a fairly restricted language related to

sets of pairing product equations in bilinear groups. In [56] (and further formalised

in [73]), the authors provide a generic construction of SE NIZKs from a (regular)

NIZK, an IND-CCA encryption scheme, and a one-time signature, which establishes

that SE NIZKs exist for all NP.

147

6.2 Key-Versatile Signatures

DS.APg(1λ) :

crs ←$ NIZK.Pg(1λ)

Return crs

DS.Pg(1λ) :

crs ←$ DS.APg(1λ)

ppF←$ F.Pg(1λ)

Return (ppF, crs)

DS.Kg((ppF, crs)) :

sk ←$ F.Dom(ppF)

pk ← F.Eval(ppF, sk)

Return (sk , pk)

DS.Sign((ppF, crs), sk ,m) :

pk ← F.Eval(ppF, sk)

Return NIZK.P(crs, (ppF, pk ,m), sk)

DS.Verify((ppF, crs), pk ,m, σ) :

Return NIZK.V(crs, (ppF, pk ,m), σ)

DS.SimPg(1λ) :

(crs, std , xtd)←$ NIZK.SimPg(1λ)

Return (crs, std , xtd)

DS.SimSign((ppF, crs), std , pk ,m) :

Return NIZK.SimP(crs, std , (ppF, pk ,m))

DS.Ext((ppF, crs), xtd , pk ,m, σ) :

Return NIZK.Ext(crs, xtd , (ppF, pk ,m), σ)

Figure 6.3: F-keyed signature scheme DS = KvS[F].

The scheme is simple. We define the relation R((ppF, pk ,m), sk) to return true iff

F.Eval(ppF, sk) = pk . A signature of m under sk is then a SE-secure NIZK proof for

this relation in which the witness is sk and the instance (input) is (ppF, pk ,m). The

interesting aspect of this construction is that it at first sounds blatantly insecure,

since the relation R ignores the message m. Does this not mean that a signature is

independent of the message, in which case an adversary could violate unforgeability

by requesting a signature σ of a message m under pk and then outputting (m ′, σ) as

a forgery for some m ′ 6= m? What prevents this is the strength of the SE notion of

NIZKs. The message m is present in the instance (ppF, pk ,m), even if it is ignored

by the relation; the proof in turn depends on the instance, making the signature

depend on m. Intuitively the SE-secure NIZK guarantees a form of non-malleability,

so signatures (proofs) for one message (instance) cannot be transferred to another.

Formally, Let F be a function family. We associate to it the NP-relation R defined

by R((ppF, pk ,m), sk) = (F.Eval(ppF, sk) = pk) for all λ ∈ N and all ppF, pk ,m, sk ∈
{0, 1}∗. Let NIZK be a NI system for R that is zero knowledge and simulation

extractable. The signature scheme DS = KvS[F] is specified in Figure 6.3.

A similar construction of signatures was given in [56] starting from a leakage-resilient

hard relation rather than (as in our case) a relation arising from a one-way function.

Our construction could be considered a special case of theirs, with the added dif-

ference that they use labelled NIZKs with the message as the label while we avoid

labels and put the message in the input. The claims established about the construc-

148

6.2 Key-Versatile Signatures

tion are however different, with [56] establishing leakage resilience and unforgeability

of the signature and our work showing simulatability and key-extractability. The

technique of [56] was also used by [45] to construct malleable signatures. Going

back further, the first NIZK-based signature scheme was that of [15]. This used

PRFs and commitment, but only regular (as opposed to SE) NIZKs, these being all

that was available at the time. One might see the simpler and more elegant modern

NIZK-based signatures as being made possible by the arrival of the stronger NIZK

systems of works like [50, 70, 71, 56].

Security of the construction. Simulatability of the signature scheme follows

directly from the zero knowledge property of the NIZK. The key extractability of

the signature scheme likewise follows from the SE security of the NIZK.

Theorem 6.2.2 Assume there exist SE NIZK systems for all of NP. Then there

is a key-versatile signing schema KvS such that if F is any family of functions then

the signature scheme DS = KvS[F] is simulatable and key-extractable.

Proof: Let A be a PT adversary playing game SIM. We construct a PT adversary

A1 such that Advsim
DS,F,A(λ) ≤ Advzk

NIZK,R,A1
(λ) for all λ ∈ N. Adversary A1 against

the zero-knowledge property of NIZK behaves as follows:

AProve
1 (crs)

ppF←$ F.Pg(1λ)
pp ← (ppF, crs)
b′←$ ASign(pp)
Return b′

Sign(sk ,m)

If (sk 6∈ F.Dom(ppF)) then Return ⊥
pk ← F.Eval(ppF, sk)
π←$ Prove((ppF, pk ,m), sk)
Return π

Let A be a PT adversary playing game EXT. We construct a PT adversary A2

such that Advext
DS,F,A(λ) ≤ Advse

NIZK,R,A2
(λ) for all λ ∈ N. Adversary A2 against the

simulation extractability of NIZK behaves as follows:

AProve
2 (crs)

ppF←$ F.Pg(1λ)
pp ← (ppF, crs)
(pk ,m, σ)←$ ASign(pp)
Return ((ppF, pk ,m), σ)

Sign(sk ,m)

If (sk 6∈ F.Dom(ppF)) then Return ⊥
pk ← F.Eval(ppF, sk)
π←$ Prove((ppF, pk ,m), sk)
Return π

149

6.3 Joining Signature to Encryption with No Public-Key Overhead

If (pk ,m, σ) /∈ Q in game EXT then ((ppF, pk ,m), σ) /∈ Q in game SE, the sets being

those defined in the games. Furthermore, by the definition of DS.Ext and R, if sk ←
DS.Ext(crs, xtd , pk ,m, σ) is such that F.Eval(ppF, sk) 6= pk , then R((ppF, pk ,m), sk)

= false.

6.3 Joining Signature to Encryption with No Public-Key
Overhead

Let PKE be an arbitrary IND-CCA-secure public-key encryption scheme. As an

example, it could be the Cramer-Shoup [49], the Kurosawa-Desmedt [82], or the

DDN scheme [57], but it could be any other IND-CCA-secure scheme as well. Alice

has already established a keypair (sk PKE, pk PKE) for this scheme, allowing anyone to

send her ciphertexts computed under pk PKE that she can decrypt under sk PKE. She

wants now to add signature capability. This is easily done. She can create a keypair

(sk DS, pk DS) for her favourite signature scheme and sign an arbitrary message m

under sk DS, verification being possible given pk DS. The difficulty is that her public

key is now pk = (pk PKE, pk DS). It is not just larger but will require a new certificate.

The question we ask is whether we can add signing capability in a way that is more

parsimonious with regard to public key size. Technically, we seek a joint encryption

and signature scheme where Alice has a single keypair (sk , pk), with sk used to

decrypt and sign, and pk used to encrypt and verify, each usage secure in the face of

the other, and we want pk smaller than that of the trivial solution pk = (pk PKE, pk DS).

Perhaps surprisingly, we show how to construct a JES scheme with pk-overhead zero,

meaning pk is unchanged, remaining pk PKE. We not only manage to use sk PKE to sign

and pk PKE to verify, but do so in such a way that the security of the encryption is not

affected by the presence of the signature, and vice versa. Previous standard model

JES schemes had been able to reduce the pk-overhead only for specific starting

encryption schemes (see Chapter 3) while our result says the overhead can be zero

regardless of the starting encryption scheme. The result is obtained by defining F

as the function mapping sk PKE to pk PKE and using a simulatable and key-extractable

F-keyed signature scheme with the keys remaining (sk PKE, pk PKE).

The base PKE scheme. We are given a public-key encryption scheme PKE meet-

ing the usual notion of IND-CCA security. Let us say that PKE is canonical if the

operation (sk , pk)←$ PKE.Kg(ppPKE) picks sk at random from a finite, non-empty

set we denote PKE.SKSp(ppPKE), and then applies to (ppPKE, sk) a PT deterministic

public-key derivation function we denote PK to get pk . Canonicity may seem like an

150

6.3 Joining Signature to Encryption with No Public-Key Overhead

extra assumption, but isn’t. First, many (most) schemes are already canonical. This

is true for the Cramer-Shoup scheme [49], the Kurosawa-Desmedt scheme [82] and

for schemes obtained via the CHK transform [32] applied to the identity-based en-

cryption schemes of Boneh-Boyen [29] or Waters [98]. Second, if by chance a scheme

is not canonical, we can modify it be so. Crucially (for our purposes), the modifica-

tion does not change the public key. (But it might change the secret key.) Briefly,

the modification, which is standard, is to use the random coins of the key generation

algorithm as the secret key. In some more detail, given PKE, the new key-generation

algorithm, on input ppPKE, picks random coins ω, lets (sk , pk) ← PKE.Kg(ppPKE;ω),

and returns (ω, pk), so that the new secret key is ω and the public key is still pk .

Encryption is unchanged. The modified decryption algorithm, given (ppPKE, ω, c),

lets (sk , pk)← PKE.Kg(ppPKE;ω) and outputs m ← PKE.Dec(ppPKE, sk , c). It is easy

to see that the modified scheme is canonical and also inherits both the correctness

and the IND-CCA security of the original scheme.

Construction. Given a canonical PKE scheme as above, we construct a JES

scheme JES[PKE]. The first step is to construct from PKE a function family F as

follows: let F.Pg = PKE.Pg, so the parameters of F are the same those of PKE; let

F.Dom = PKE.SKSp, so the domain of F is the space of secret keys of PKE; and let

F.Eval = PKE.PK, so the function defined by ppF maps a secret key to a corresponding

public key. Now let DS be an F-keyed signature scheme that is simulatable and key-

extractable. (We can obtain DS via Theorem 6.2.2.) Now we define our JES scheme

JES[PKE]. Let JES[PKE].Pg = DS.Pg, so parameters for JES[PKE] have the form

ppJES[PKE] = (ppF, ppaux), where ppF are parameters for F, which by definition of F are

also parameters for PKE. Let JES[PKE].Kg = DS.Kg. Recall that key compatibility

requires DS.Kg first samples from F.Dom then applies F.Eval, so that keys are those of

PKE which are also those of DS. Let JES[PKE].Sign = DS.Sign and JES[PKE].Verify =

DS.Verify, so the signing and verifying algorithms of the joint scheme JES[PKE]

are inherited from the signature scheme DS. Let JES[PKE].Enc((ppF, ppaux), pk ,m)

return PKE.Enc(ppF, pk ,m) and let JES[PKE].Dec((ppF, ppaux), sk , c) return PKE.Dec

(ppF, sk , c), so that the encryption and decryption algorithms of the joint scheme

JES[PKE] are inherited from the PKE scheme PKE. Note that the public key of the

joint scheme JES[PKE] is exactly that of PKE, so there is zero public-key overhead.

(If PKE had been born canonical, there is also zero secret-key overhead. Had it

undergone the transformation described above to make it canonical, the secret-key

overhead might be non-zero but the public-key overhead would still be zero because

the transformation did not change the public key.) The following says that JES[PKE]

is both IND-CCMA and EUF-CCMA secure.

151

6.3 Joining Signature to Encryption with No Public-Key Overhead

Theorem 6.3.1 Let PKE be an IND-CCA-secure canonical public-key encryption

scheme. Let F be defined from it as above. Let DS be a simulatable and key-

extractable F-keyed signature scheme, and let JES[PKE] be the corresponding joint

encryption and signature scheme constructed above. Then (1) JES[PKE] is IND-

CCMA secure, and (2) JES[PKE] is EUF-CCMA secure.

First we give some intuition. For (1), given an adversary A against the IND-CCMA

security of JES[PKE], we build an adversary D against the IND-CCA security of

PKE. D will simply run A on simulated auxiliary parameters, using the simulator to

answer A’s Sign queries and using its own Dec oracle to answer A’s Dec queries. An

adversary against simulatability is built alongside, but key extraction is not needed.

For (2), given an adversary A against the EUF-CCMA security of JES[PKE], we

again build an adversary D against the IND-CCA security of PKE. It will run A

with simulated auxiliary parameters, replying to A’s oracle queries as before. From a

forgery it extracts the secret key, using this to defeat IND-CCA security. Adversaries

A1 and A2 against simulatability and key-extractability of DS are built alongside to

show that D succeeds.

Proof: Part (1): IND-CCMA security

Let A be a PT adversary playing game IND-CCMA. We build PT adversaries A1, D

such that

Advind-ccma
JES[PKE],A(λ) ≤ 2Advsim

DS,F,A1
(λ) + Advind-cca

PKE,D (λ)

for all λ ∈ N, from which part (1) of the theorem follows.

The proof uses the games in Figure 6.4. Game G0 switches to using simulated

parameters and signatures. We will build A1, D so that for all λ ∈ N we have

Pr[IND-CCMAA
JES[PKE](λ)]− Pr[GA

0 (λ)] ≤ Advsim
DS,F,A1

(λ) (6.4)

2 Pr[GA
0 (λ)]− 1 ≤ Advind-cca

PKE,D (λ) . (6.5)

Using this we have

Advind-ccma
JES[PKE],A(λ) = 2 Pr[IND-CCMAA

JES[PKE](λ)]− 1

= 2
(

Pr[IND-CCMAA
JES[PKE](λ)]− Pr[GA

0 (λ)] + Pr[GA
0 (λ)]

)
− 1

= 2
(

Pr[IND-CCMAA
JES[PKE](λ)]− Pr[GA

0 (λ)]
)

+ 2 Pr[GA
0 (λ)]− 1

≤ 2Advsim
DS,F,A1

(λ) + Advind-cca
PKE,D (λ)

152

6.3 Joining Signature to Encryption with No Public-Key Overhead

main IND-CCMAA
JES[PKE](λ) / GA

0 (λ)

b←$ {0, 1} ; c∗ ←⊥
(ppF, ppaux)←$ DS.Pg(1λ)

ppF←$ F.Pg(1λ) ; (ppaux, std , xtd)←$ DS.SimPg(1λ)

ppJES[PKE] ← (ppF, ppaux) ; (sk , pk)←$ DS.Kg(ppJES[PKE])

b′←$ADec,Sign,LR(ppJES[PKE], pk)

Return (b = b′)

proc Dec(c) // IND-CCMAA
JES[PKE](λ) / GA

0 (λ)

If (c = c∗) then Return ⊥
Return m ← JES[PKE].Dec(ppJES[PKE], sk , c)

proc Sign(m) // IND-CCMAA
JES[PKE](λ) / GA

0 (λ)

Return DS.Sign(ppJES[PKE], sk ,m)

Return DS.SimSign(ppJES[PKE], std , pk ,m)

proc LR(m0,m1) // IND-CCMAA
JES[PKE](λ) / GA

0 (λ)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗←$ JES[PKE].Enc(ppJES[PKE], pk ,mb)

Return c∗

Figure 6.4: Games used in the proof of part (1) of Theorem 6.3.1.

as desired. We proceed to the constructions of A1, D. Adversary A1 against the

simulatability of DS behaves as follows:

ASign
1 (pp)

(sk , pk)←$ DS.Kg(pp)
c∗ ← ⊥ ; d←$ {0, 1}
d′←$ ADec,SignSim,LR(pp, pk)
If (d′ = d) then b′ ← 1
Else b′ ← 0
Return b′

SignSim(m)

σ←$ Sign(sk ,m)
Return σ

Dec(c)

If (c = c∗) then m ← ⊥
Else m ← JES[PKE].Dec(pp, sk , c)
Return m

LR(m0,m1)

If (c∗ 6=⊥) then Return ⊥
If (|m0| 6= |m1|) then Return ⊥
c∗ ← JES[PKE].Enc(pp, pk ,md)
Return c∗

153

6.3 Joining Signature to Encryption with No Public-Key Overhead

When the challenge bit b in game SIM is 0, adversary A1 simulates for A game G0,

and if b = 1, adversary A1 simulates game IND-CCMA. We thus have

Pr[IND-CCMAA
JES[PKE](λ)]− Pr[GA

0 (λ)] = Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]

≤ Advsim
DS,F,A1

(λ) ,

establishing Equation (6.4). Adversary D against the IND-CCA security of PKE

behaves as follows:

DDec,LR(ppF, pk)

(ppaux, std , xtd)←$ DS.SimPg(1λ)
ppJES[PKE] ← (ppF, ppaux)
b′←$ ADec,Sign,LR(ppJES[PKE], pk)
Return b′

Sign(m)

σ←$ DS.SimSign(ppJES[PKE], std , pk ,m)
Return σ

We omit the analysis establishing Equation (6.5).

Part (2): EUF-CCMA security

Let A be a PT adversary playing game EUF-CCMA. We build PT adversaries

A1, A2, D such that

Adveuf-ccma
JES[PKE],A(λ) ≤ Advsim

DS,F,A1
(λ) + Advext

DS,F,A2
(λ) + Advind-cca

PKE,D (λ)

for all λ ∈ N, from which part (2) of the theorem follows.

The proof uses the games in Figure 6.5. Games G0 and G1 switch to using simulated

parameters and signatures. We will build A1, A2, D so that for all λ ∈ N we have

Pr[EUF-CCMAA
JES[PKE](λ)]− Pr[GA

0 (λ)] ≤ Advsim
DS,F,A1

(λ) (6.6)

Pr[GA
0 (λ) sets bad] ≤ Advext

DS,F,A2
(λ) (6.7)

Pr[GA
1 (λ)] ≤ Advind-cca

PKE,D (λ) . (6.8)

154

6.3 Joining Signature to Encryption with No Public-Key Overhead

main EUF-CCMAA
JES[PKE](λ)

Q← ∅ ; d← false

(ppF, ppaux)←$ DS.Pg(1λ)

ppJES[PKE] ← (ppF, ppaux) ; (sk , pk)←$ DS.Kg(ppJES[PKE])

(m, σ)←$ASign,Dec(ppJES[PKE], pk)

sk ′←$ DS.Ext(ppJES[PKE], xtd , pk ,m, σ)

Return (Verify(ppJES[PKE], pk ,m, σ) ∧ (m 6∈ Q))

main GA
0 (λ) / GA

1 (λ)

Q← ∅ ; d← false

ppF←$ F.Pg(1λ) ; (ppaux, std , xtd)←$ DS.SimPg(1λ)

ppJES[PKE] ← (ppF, ppaux) ; (sk , pk)←$ DS.Kg(ppJES[PKE])

(m, σ)←$ASign,Dec(ppJES[PKE], pk)

sk ′←$ DS.Ext(ppJES[PKE], xtd , pk ,m, σ)

If (Verify(ppJES[PKE], pk ,m, σ) ∧ (m 6∈ Q)) then

d← true

If (F.Eval(ppF, sk ′) 6= pk) then bad← true ; d← false

Return d

proc Sign(m) // EUF-CCMAA
JES[PKE](λ) / GA

0 (λ) / GA
1 (λ)

σ←$ DS.Sign(ppJES[PKE], sk ,m)

σ←$ DS.SimSign(ppJES[PKE], std , pk ,m)

Q← Q ∪ {m}
Return σ

proc Dec(c) // EUF-CCMAA
JES[PKE](λ) / GA

0 (λ) / GA
1 (λ)

Return m ← Dec(ppJES[PKE], sk , c)

Figure 6.5: Games used in the proof of part (2) of Theorem 6.3.1.

Games G0 and G1 are identical until bad, so by the Fundamental Lemma of Game-

Playing [23] and the above, for all λ ∈ N we have:

Adveuf-ccma
JES[PKE],A(λ) = Pr[EUF-CCMAA

JES[PKE](λ)]

= (Pr[EUF-CCMAA
JES[PKE](λ)]− Pr[GA

0 (λ)])

+ (Pr[GA
0 (λ)]− Pr[GA

1 (λ)]) + Pr[GA
1 (λ)]

≤ (Pr[EUF-CCMAA
JES[PKE](λ)]− Pr[GA

0 (λ)])

+ Pr[GA
0 (λ) sets bad] + Pr[GA

1 (λ)]

≤ Advsim
DS,F,A1

(λ) + Advext
DS,F,A2

(λ) + Advind-cca
PKE,D (λ)

as desired. We proceed to the constructions of A1, A2, D. Adversary A1 against the

simulatability of DS behaves as follows:

155

6.3 Joining Signature to Encryption with No Public-Key Overhead

ASign
1 (pp)

(sk , pk)←$ DS.Kg(pp) ; Q← ∅
(m, σ)←$ ADec,SignSim(pp, pk)
If (Verify(pp, pk ,m, σ) ∧ (m 6∈ Q))

then b′ ← 1
Else b′ ← 0
Return b′

Dec(c)

m ← JES[PKE].Dec(pp, sk , c)
Return m

SignSim(m)

σ←$ Sign(sk ,m)
Q← Q ∪ {m}
Return σ

When the challenge bit b in game SIM is 0, adversary A1 simulates for A game G0,

and if b = 1, adversary A1 simulates game EUF-CCMA. We thus have

Pr[EUF-CCMAA
JES[PKE](λ)]− Pr[GA

0 (λ)] = Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]

≤ Advsim
DS,F,A1

(λ) ,

establishing Equation (6.6). Adversary A2 against the key-extractability of DS be-

haves as follows:

ASign
2 (pp)

(sk , pk)←$ DS.Kg(pp)
(m, σ)←$ ADec,SignSim(pp, pk)
Return (pk ,m, σ)

Dec(c)

m ← JES[PKE].Dec(pp, sk , c)
Return m

SignSim(m)

σ←$ Sign(sk ,m)
Return σ

We omit the analysis establishing Equation (6.7). Adversary D against the IND-

CCA security of PKE behaves as follows:

DDec,LR(ppF, pk)

(ppaux, std , xtd)←$ DS.SimPg(1λ)
ppJES[PKE] ← (ppF, ppaux)
(m, σ)←$ ADec,Sign(ppJES[PKE], pk)
sk ′←$ DS.Ext(pp, xtd , pk ,m, σ)
If (F.Eval(ppF, sk ′) 6= pk) then Return 0
m0 ← 0λ ; m1 ← 1λ

c∗←$ LR(m0,m1)
m ← PKE.Dec(ppF, sk ′, c∗)
If (m = m1) then b′ ← 1 else b′ ← 0
Return b′

Sign(m)

σ←$ DS.SimSign(ppJES[PKE], std , pk ,m)
Return σ

156

6.4 RKA-Secure Signatures from RKA-Secure OWFs

When A wins G1 we have that F.Eval(ppF, sk ′) = pk , so sk ′ is a valid secret key for pk .

By correctness of PKE, we then have PKE.Dec(ppF, sk ′,PKE.Enc(ppF, pk ,mb)) = mb,

where b is the challenge bit in game IND-CCA, so

Advind-cca
PKE,D (λ) = Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0] ≥ Pr[GA

1 (λ)] .

This is because the first term in the difference above is at least Pr[GA
1 (λ)] and the

second term is zero. The second term is zero because b′ = 1 only when sk ′ is a valid

secret key for pk and the challenge ciphertext decrypts under sk ′ to m1, which cannot

happen when b = 0 as this would violate the correctness of PKE. This establishes

Equation (6.8).

6.4 RKA-Secure Signatures from RKA-Secure OWFs

RKA security is notoriously hard to provably achieve. Recognising this, several

authors [66, 14] have suggested a bootstrapping approach in which we build higher-

level RKA-secure primitives from lower-level RKA-secure primitives. In this vein,

a construction of RKA-secure signatures from RKA-secure PRFs was given in [14].

We improve on this via a construction of RKA-secure signatures from RKA-secure

one-way functions. The result is simple: If F is a Φ-RKA-secure OWF then any F-

keyed simulatable and key-extractable signature scheme is also Φ-RKA secure. The

benefit is that (as we will show) many popular OWFs are already RKA secure and

we immediately get new RKA-secure signatures.

RKA security. Let F be a function family. A class of RKD (related-key deriving)

functions Φ for F is a set of PT-computable functions φ(ppF, ·) : F.Dom(ppF) →
F.Dom(ppF). We say that F is Φ-RKA secure if Advow-rka

F,Φ,A (·) is negligible for every PT

adversary A, where Advow-rka
F,Φ,A (λ) = Pr[OWF-RKAA

F,Φ(λ)] and game OWF-RKA

is on the left-hand side of Figure 6.6. In this game, A, like in the basic one-wayness

notion, is given y = F.Eval(ppF, x) and attempts to find x′ such that F.Eval(ppF, x
′) =

y. Now, however, it has help. It can request that the hidden challenge input x be

modified to x′ = φ(ppF, x) for any φ of its choice, and obtain y′ = F.Eval(ppF, x
′).

This should not help it in its inversion task. The definition is from Goldenberg and

Liskov [66], adapted to our notation, and represents a particularly simple and basic

form of RKA security.

Let DS be an F-keyed signature scheme and let Φ be as above. We say that DS

is Φ-RKA secure if Advsuf-rka
DS,F,Φ,A(·) is negligible for every PT adversary A, where

157

6.4 RKA-Secure Signatures from RKA-Secure OWFs

main OWF-RKAA
F,Φ(λ)

ppF←$ F.Pg(1λ)

x←$ F.Dom(ppF)

y ← F.Eval(ppF, x)

x′←$AEval(ppF, y)

Return (F.Eval(ppF, x
′) = y)

Eval(φ)

If (φ /∈ Φ) then Return ⊥
x′ ← φ(ppF, x)

y′ ← F.Eval(ppF, x
′)

Return y′

main SUF-RKAA
DS,F,Φ(λ)

Q← ∅
(ppF, ppaux)←$ DS.Pg(1λ)

pp ← (ppF, ppaux)

(sk , pk)←$ DS.Kg(pp)

(m, σ)←$ASign(pp, pk)

Return ((Verify(pp, pk ,m, σ)) ∧ ((pk ,m, σ) 6∈ Q))

Sign(φ,m)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(ppF, sk)

pk ′ ← F.Eval(ppF, sk ′)

σ←$ Sign(pp, sk ′,m)

Q← Q ∪ {(pk ′,m, σ)}
Return σ′

Figure 6.6: Left: Game OWF-RKA defining Φ-RKA security of function family F.
Right: Game SUF-RKA defining Φ-RKA security of F-keyed signature scheme DS.

Advsuf-rka
DS,F,Φ,A(λ) = Pr[SUF-RKAA

DS,F,Φ(λ)] and game SUF-RKA is on the right-hand

side of Figure 6.6. In this game, A, like in the basic (strong) unforgeability notion, is

given public key pk and is attempting to forge a signature under it. Now, however,

it has help beyond its usual signing oracle. It can request that the hidden secret

key sk be modified to sk ′ = φ(ppF, sk) for any function φ of its choice, and obtain

a signature under sk ′ of any message of its choice. This should not help it in its

forgery task. Our definition adapts the one of Bellare, Cash and Miller [14] for Φ-

RKA security of arbitrary signature schemes to the special case of F-keyed signature

schemes.1

Construction. Suppose we are given a Φ-RKA-secure OWF F and want to build

a Φ-RKA-secure signature scheme. For the question to even make sense, RKD

functions specified by Φ must apply to the secret signing key. Thus, the secret key

needs to be an input for the OWF and the public key needs to be the image of

the secret key under the OWF. The main technical difficulty is, given F, finding a

signature scheme with this property. But this is exactly what a key-versatile signing

1 One change (strengthening the definition) is that we use a strong unforgeability formulation
rather than an unforgeability one. On the other hand while the authors of [14] disallow A a victory
from forgery m, σ when m was previously signed under sk ′ = sk , we disallow it when m was
previously signed under pk ′ = pk even if sk ′ 6= sk . In our setting this is more natural since the
secret key determines the public key. In any case Theorem 6.4.1 extends to the definition of [14]
assuming F is additionally injective or collision-resistant, which is true in most examples.

158

6.4 RKA-Secure Signatures from RKA-Secure OWFs

main SUF-RKAA
DS,F,Φ(λ)

Q← ∅ ; d← false

(ppF, ppaux)←$ DS.Pg(1λ)

pp ← (ppF, ppaux) ; (sk , pk)←$ DS.Kg(pp)

(m, σ)←$ASign(pp, pk)

Return (Verify(pp, pk ,m, σ) ∧ ((pk ,m, σ) 6∈ Q))

main GA
0 (λ) / GA

1 (λ)

Q← ∅ ; d← false

ppF←$ F.Pg(1λ)

(ppaux, std , xtd)←$ DS.SimPg(1λ)

pp ← (ppF, ppaux) ; (sk , pk)←$ DS.Kg(pp)

(m, σ)←$ASign(pp, pk)

sk ′←$ DS.Ext(pp, xtd , pk ,m, σ)

If (Verify(pp, pk ,m, σ) ∧ ((pk ,m, σ) 6∈ Q)) then

d← true

If (F.Eval(ppF, sk ′) 6= pk) then bad← true ; d← false

Return d

Sign(φ,m) // SUF-CMAA
DS(λ) / GA

0 (λ) / GA
1 (λ)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(ppF, sk) ; pk ′ ← F.Eval(ppF, sk ′)

σ←$ DS.Sign(pp, sk ′,m)

σ←$ DS.SimSign(pp, std , pk ′,m)

Q← Q ∪ {(pk ′,m, σ)}
Return σ

Figure 6.7: Games used in the proof of Theorem 6.4.1.

schema gives us. The following says that if the signature scheme produced by this

schema is simulatable and key-extractable then it inherits the Φ-RKA security of

the OWF.

Theorem 6.4.1 Let F be a Φ-RKA secure one-way function, and let DS be a sim-

ulatable and key-extractable F-keyed signature scheme. Then DS is Φ-RKA secure.

The proof extends that of Theorem 6.2.1. The adversary I that we build uses its

Eval oracle to simulate the Sign oracle of the given adversary A. In applying the

simulation and key-extractability, we make crucial use of the fact that the adversaries

can obtain signatures under secret keys of their choice.

159

6.4 RKA-Secure Signatures from RKA-Secure OWFs

Proof: Let A be a PT adversary playing game SUF-RKA. We build PT adversaries

A1, A2, I such that

Advsuf-rka
DS,F,Φ,A(λ) ≤ Advsim

DS,F,A1
(λ) + Advext

DS,F,A2
(λ) + Advow-rka

F,Φ,I (λ)

for all λ ∈ N, from which the theorem follows. The proof uses the games in Fig-

ure 6.7. Games G0 and G1 switch to using simulated parameters and signatures.

We will build A1, A2, I so that for all λ ∈ N we have

Pr[SUF-RKAA
DS,F,Φ(λ)]− Pr[GA

0 (λ)] ≤ Advsim
DS,F,A1

(λ) (6.9)

Pr[GA
0 (λ) sets bad] ≤ Advext

DS,F,A2
(λ) (6.10)

Pr[GA
1 (λ)] ≤ Advow-rka

F,Φ,I (λ) . (6.11)

Games G0 and G1 are identical until bad, so by the Fundamental Lemma of Game-

Playing [23] and the above, for all λ ∈ N we have:

Advsuf-rka
DS,F,Φ,A(λ) = Pr[SUF-RKAA

DS,F,Φ(λ)]

= (Pr[SUF-RKAA
DS,F,Φ(λ)]− Pr[GA

0 (λ)])

+ (Pr[GA
0 (λ)]− Pr[GA

1 (λ)]) + Pr[GA
1 (λ)]

≤ (Pr[SUF-RKAA
DS,F,Φ(λ)]− Pr[GA

0 (λ)])

+ Pr[GA
0 (λ) sets bad] + Pr[GA

1 (λ)]

≤ Advsim
DS,F,A1

(λ) + Advext
DS,F,A2

(λ) + Advow-rka
F,Φ,I (λ)

as desired. We proceed to the constructions of A1, A2, I. Adversary A1 against the

simulatability of DS behaves as follows:

ASign
1 (pp)

Q← ∅ ; (sk , pk)←$ DS.Kg(pp)
(m, σ)←$ ASignSim(pp, pk)
If (Verify(pp, pk ,m, σ) ∧ ((pk ,m, σ) 6∈ Q))

then b′ ← 1
Else b′ ← 0
Return b′

SignSim(φ,m)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(ppF, sk)
pk ′ ← F.Eval(ppF, sk ′)
σ←$ Sign(sk ′,m)
Q← Q ∪ {(pk ′,m, σ)}
Return σ

When the challenge bit b in game SIM is 0, adversary A1 simulates for A game G0,

and if b = 1, adversary A1 simulates game SUF-RKA. We thus have

Pr[SUF-RKAA
DS,F,Φ(λ)]− Pr[GA

0 (λ)] = Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]

≤ Advsim
DS,F,A1

(λ) ,

establishing Equation (6.9). Adversary A2 against the key-extractability of DS be-

haves as follows:

160

6.4 RKA-Secure Signatures from RKA-Secure OWFs

ASign
2 (pp)

Q← ∅
(sk , pk)←$ DS.Kg(pp)
(m, σ)←$ ASignSim(pp, pk)
Return (pk ,m, σ)

SignSim(φ,m)

If (φ /∈ Φ) then Return ⊥
sk ′ ← φ(ppF, sk)
pk ′ ← F.Eval(ppF, sk ′)
σ←$ Sign(sk ′,m)
Q← Q ∪ {(pk ′,m, σ)}
Return σ

If bad is set to true in game G0 then we have: (1) Verify(pp, pk ,m, σ) (2) (pk ,m, σ) 6∈
Q, and (3) F.Eval(ppF, sk ′) 6= pk . These are exactly the necessary conditions for A2 to

win game EXT, establishing Equation (6.10). Adversary I against the one-wayness

of F behaves as follows:

IEval(ppF, pk)

(ppaux, std , xtd)←$ DS.SimPg(1λ)
(m, σ)←$ ASignSim((ppF, ppaux), pk)
sk ′←$ DS.Ext(pp, xtd , pk ,m, σ)
Return sk ′

SignSim(φ,m)

If (φ /∈ Φ) then Return ⊥
pk ′←$ Eval(φ)
σ←$ DS.SimSign(pp, std , pk ′,m)
Return σ

Adversary I uses the simulation trapdoor std to answer A’s signing queries, gener-

ating the appropriate public key through a call to his Eval oracle. Whenever A

wins G1, that is A outputs a new valid forgery from which a valid secret key can be

extracted, I outputs this secret key and breaks the RKA security of F, establishing

Equation (6.11).

Finding Φ-RKA OWFs. Theorem 6.4.1 motivates finding Φ-RKA-secure function

families F. The merit of our approach is that there are many such families. To

enable systematically identifying them, we adapt the definition of key-malleable

PRFs of [13] to OWFs. We say that a function family F is Φ-key-malleable if there

is a PT algorithm M , called a Φ-key-simulator, such that M(ppF, φ,F.Eval(ppF, x))

= F.Eval(ppF, φ(ppF, x)) for all ppF ∈ [F.Pg(1λ)], all φ ∈ Φ and all x ∈ F.Dom(ppF).

Proposition 6.4.2 Let F be a Φ-key-malleable, one-way function family. Then F

is Φ-RKA secure.

Proof: Let A be a PT adversary attacking the Φ-RKA security of F and let M be a

Φ-key-simulator. We construct a PT adversary A1 against the (regular) one-wayness

161

6.4 RKA-Secure Signatures from RKA-Secure OWFs

F EXP RSA LWE
ppF (〈G〉, g,m) (N, e) (A,n,m, q)
x ∈ Zm ∈ Z∗N (s, e) ∈ Zmq ×Znq

F.Eval(ppF, x) gx xe mod N (As+e) mod q
φ(ppF, x) (ax+b) mod m, xa mod N, (s+s′, e+e′) mod q,

(a, b) ∈ Zm×Zm a ∈ N (s′, e′) ∈ Zmq × Znq
M(ppF, φ, y) yagb ya mod N (y+As′+e′) mod q

Figure 6.8: Φ-RKA secure OWFs: We succinctly define the families and the Φ-key-
simulator showing their Φ malleability and hence their Φ-RKA security.

of F such that Advow-rka
F,A (λ) ≤ Advow

F,A1
(λ) for all λ ∈ N. On input (ppF, y), adver-

sary A1 runs A(ppF, y). When A makes an Eval query φ, adversary A1 computes

y′ ←M(ppF, φ, y) and returns y′ to A. Φ-key malleability says that y′ = F.Eval(ppF,

φ(ppF, x)) as A expects. When A eventually halts and outputs a value x′, adversary

A1 does the same.

Previous uses of key-malleability in [13] and in Chapter 4 for RKA security required

additional conditions on the primitives, such as key-fingerprints in the first case and

some form of collision-resistance in the second. For OWFs, it is considerably easier,

key-malleability alone sufficing. We now exemplify how to leverage Proposition 6.4.2

to find Φ-RKA OWFs and thence, via Theorem 6.4.1, Φ-RKA signature schemes.

Table 6.8 examines three popular one-way functions: discrete exponentiation in a

cyclic group, RSA, and the LWE one-way function. It succinctly describes F, Φ, and

the Φ-key-simulator M showing Φ-key-malleability. Briefly:

• EXP: The first column of Table 6.8 shows that exponentiation in any group

with hard discrete logarithm problem is Φ-RKA secure for the class Φ of affine

functions over the exponent space. Here G is a cyclic group of order m generated

by g ∈ G.

• RSA: The second column of Table 6.8 shows that the RSA function is Φ-RKA

secure for the class Φ of functions raising the input to integer powers a, under

the assumption that RSA is one-way. Here N is an RSA modulus and e ∈ Z∗ϕ(N)

is an encryption exponent. Notice that in this rendition of RSA the latter has

no trapdoor.

• LWE: The third column of Table 6.8 shows that the LWE function is Φ-RKA

secure for the class Φ of functions shown. Here A is an n by m matrix over Zq
and Φ-RKA-security relies on the standard LWE one-wayness assumption.

The summary is that standard, natural one-way functions are Φ-RKA secure, leading

162

6.5 KDM-Secure Storage

main IND-KDMA
PKE,Φ(λ)

b←$ {0, 1} ; pk←⊥
pp←$ PKE.Pg(1λ)

b′←$AMkKey,Enc(pp)

Return (b = b′)

MkKey(1n)

If (pk 6=⊥) then Return ⊥
For i = 1, . . . , n do (sk[i],pk[i])←$ PKE.Kg(pp)

Return pk

Enc(φ, i)

If (pk =⊥) then Return ⊥
If (φ /∈ Φ) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
m ← φ(sk)

If (b = 1) then c←$ PKE.Enc(pp,pk[i],m)

Else c←$ PKE.Enc(pp,pk[i], 0|m|)

Return c

Figure 6.9: Game IND-KDM defining Φ-KDM security of public-key encryption
scheme PKE.

to signature schemes that are Φ-RKA secure over standard and natural keyspaces.

6.5 KDM-Secure Storage

Services like Dropbox, Google Drive and Amazon S3 offer outsourced storage. Users

see obvious benefits but equally obvious security concerns. We would like to secure

this storage, even when messages (files needing to be stored) depend on the keys

securing them. If privacy is the only concern, existing KDM-secure encryption

schemes (e.g., [27, 36, 9, 7, 43, 44, 26, 11, 87, 6, 40, 41, 17, 62, 75]) will do the

job. However, integrity is just as much of a concern, and adding it without losing

KDM security is challenging. This is because conventional ways of adding integrity

introduce new keys and create new ways for messages to depend on keys. Key-

versatile signing, by leaving the keys unchanged, will provide a solution.

We begin below by formalising our goal of encrypted and authenticated outsourced

storage secure for key-dependent messages. In our syntax, the user encrypts and

authenticates under her secret key, and then verifies and decrypts under the same

163

6.5 KDM-Secure Storage

secret key, with the public key used by the server for verification. Our requirement

for KDM security has two components: IND for privacy and SUF for integrity. With

the definitions in hand, we take a base KDM-secure encryption scheme and show

how, via a key-versatile signature, to obtain storage schemes meeting our goal. Our

resulting storage schemes will achieve KDM security with respect to the same class

of message-deriving functions Φ as the underlying encryption scheme. Also, we will

assume only CPA KDM security of the base scheme, yet achieve CCA KDM privacy

for the constructed storage scheme. Interestingly, our solution uses a public-key base

encryption scheme, even though the privacy component of the goal is symmetric and

nobody but the user will encrypt. This allows us to start with KDM privacy under

keys permitting signatures through key-versatile signing. This represents a novel

application for public-key KDM-secure encryption.

KDM security. A class of KDM (key-dependent message) functions Φ is a set

of PT-computable message-deriving functions φ(·). These functions take input

a vector sk (of keys) and return a string (the message) of length `(φ), where

`(φ) ∈ N, the output length of φ, is computable in polynomial time. We as-

sume Φ always includes all constant functions. Formally, Φ contains the function

φm(sk) = m for all m ∈ MSp. We say that public-key encryption scheme PKE

is Φ-KDM secure if Advind-kdm
PKE,Φ,A(·) is negligible for every PT adversary A, where

Advind-kdm
PKE,Φ,A(λ) = 2 Pr[IND-KDMA

PKE,Φ(λ)]−1 and game IND-KDM is in Figure 6.9.

The argument n ≥ 1 to MkKey determines the number of keys and must be given

in unary. The definition follows [27] except in parameterising security by the class Φ

of allowed message-deriving functions. The parameterisation is important because

many existing KDM-secure encryption schemes are for particular classes Φ, for ex-

ample for encryption cycles, affine functions or cliques [36, 7, 40, 41, 75]. We aim

to transfer whatever KDM security we have in the encryption to the secure storage,

meaning we want to preserve Φ regardless of what it is. Of course a particularly

interesting case is that of “full” security, but this is captured as the special case

where Φ is all functions.

In the setting of direct practical interest, Alice arguably has just one key, corre-

sponding to the vector sk above having just one component. However, as noted

above, much of the literature on KDM security concerns itself with the encryption

of cycles and cliques, which represent message-deriving functions on multiple keys,

and so our definitions allow the latter.

Secure storage schemes. A storage scheme ST specifies the following PT al-

164

6.5 KDM-Secure Storage

gorithms: via pp←$ ST.Pg(1λ) one generates public parameters pp common to all

users; via (sk , pk)←$ ST.Kg(pp) a user can generate a secret key sk and correspond-

ing public key pk ; via D←$ ST.Store(pp, sk ,m) a user can produce some data D

based on m ∈ ST.MSp(pp) to store on the server; via m ← ST.Retrieve(pp, sk , D)

a user can deterministically retrieve m ∈ ST.MSp(pp) ∪ {⊥} from their stored data

D; and via d ← ST.Verify(pp, pk , D) the server can deterministically produce a

decision d ∈ {true, false} regarding the validity of D. Correctness requires that

ST.Retrieve(pp, sk ,ST.Store(pp, sk ,m)) = m and ST.Verify(pp, pk , ST.Store(pp, sk ,

m)) = true for all λ ∈ N, all pp ∈ [ST.Pg(1λ)], all (sk , pk) ∈ [ST.Kg(pp)], and all

messages m ∈ ST.MSp(pp).

We say that ST is Φ-IND secure if Advind
ST,Φ,A(·) is negligible for all PT adversaries

A, where Advind
ST,Φ,A(λ) = 2 Pr[INDA

ST,Φ(λ)] − 1 and game IND is on the left-hand

side of Figure 6.10. The presence of the Retrieve oracle makes this a CCA KDM

notion. We say that ST is Φ-SUF secure if Advsuf
ST,Φ,A(·) is negligible for all PT

adversaries A, where Advsuf
ST,Φ,A(λ) = Pr[SUFAST,Φ(λ)] and game SUF is on the

right-hand side of Figure 6.10. In both cases, we require that the argument n ≥ 1

given to MkKey, indicating the number of keys, be given in unary.

Construction. The base scheme we take as given is a Φ-KDM secure, canonical

public-key encryption scheme PKE. As in Section 6.3, we begin by constructing

from PKE a function family F. We do not repeat this construction here, but refer

the reader to Section 6.3. We then let DS be an F-keyed signature scheme that is

simulatable and key-extractable. We construct our storage scheme ST through an

“Encrypt then Sign” construction as follows:

• ST.Pg(λ): Return (ppF, ppaux)←$ DS.Pg(1λ). Thus, parameters for ST have the

form pp = (ppF, ppaux), where ppF are parameters for both F and PKE.

• ST.Kg((ppF, ppaux)): Return (sk , pk)←$ DS.Kg((ppF, ppaux)). Thus, the keys are

those of PKE and DS.

• ST.Store((ppF, ppaux), sk ,m): pk ← F.Eval(ppF, sk) ; c←$ PKE.Enc(ppF, pk ,m) ;

σ←$ DS.Sign((ppF, ppaux), sk , c) ; Return (c, σ).

• ST.Retrieve((ppF, ppaux), sk , (c, σ)): pk ← F.Eval(ppF, sk) ;

If DS.Verify((ppF, ppaux), pk , c, σ) = false then Return ⊥
Else Return PKE.Dec(ppF, sk , c).

• ST.Verify((ppF, ppaux), pk , (c, σ)): Return DS.Verify((ppF, ppaux), pk , c, σ).

The following says that our construction provides both privacy and integrity for

165

6.5 KDM-Secure Storage

main INDA
ST,Φ(λ)

b←$ {0, 1} ; Q← ∅ ; pk←⊥
pp←$ ST.Pg(1λ)

b′←$AMkKey,Store,Retrieve(pp)

Return (b = b′)

MkKey(1n)

If (pk 6=⊥) then Return ⊥
For i = 1, . . . , n do

(sk[i],pk[i])←$ ST.Kg(pp)

Return pk

Store(φ, i)

If (pk =⊥) then Return ⊥
If (φ /∈ Φ) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (b = 1)

then m ← φ(sk)

Else m ← 0`(φ)

D←$ ST.Store(pp, sk[i],m)

Q← Q ∪ {(D, i)}
Return D

Retrieve(D, i)

If (pk =⊥) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If ((D, i) ∈ Q) then Return ⊥
m ← ST.Retrieve(pp, sk[i], D)

Return m

main SUFAST,Φ(λ)

Q← ∅ ; pk←⊥
pp←$ ST.Pg(1λ)

(D, i)←$AMkKey,Store,Retrieve(pp)

If (D, i) ∈ Q then Return false

If !(1 ≤ i ≤ n) then Return false

Return ST.Verify(pp,pk[i], D)

MkKey(1n)

If (pk 6=⊥) then Return ⊥
For i = 1, . . . , n do

(sk[i],pk[i])←$ ST.Kg(pp)

Return pk

Store(φ, i)

If (pk =⊥) then Return ⊥
If (φ /∈ Φ) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
m ← φ(sk)

D←$ ST.Store(pp, sk[i],m)

Q← Q ∪ {(D, i)}
Return D

Retrieve(D, i)

If (pk =⊥) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If ((D, i) ∈ Q) then Return ⊥
m ← ST.Retrieve(pp, sk[i], D)

Return m

Figure 6.10: Left: Game IND defining Φ-IND security of storage scheme ST. Right:
Game SUF defining Φ-SUF security.

166

6.5 KDM-Secure Storage

key-dependent messages, assuming Φ-KDM security of the base encryption scheme

and simulatability and key-extractability of the F-keyed signature scheme:

Theorem 6.5.1 Let PKE be a Φ-KDM-secure canonical PKE scheme, and let F

be defined from it as above. Let DS be a simulatable and key-extractable F-keyed

signature scheme, and let ST be the corresponding storage scheme constructed above.

Then (1) ST is Φ-IND secure and (2) ST is Φ-SUF secure.

First we provide sketches to highlight some of the unusual difficulties. Taking first

the proof of privacy, we would like, given an adversary A breaking the Φ-IND security

of ST, to build an adversary D breaking the assumed Φ-KDM security of PKE. The

first problem is how D can create the signatures needed to answer Store queries

of A, since these rely on secret keys hidden from D. We solve this by switching to

simulation parameters, so that D can simulate signatures without a secret key. In

answering Retrieve queries, however, we run into another problem: the assumed

KDM security of PKE is only under CPA. To solve this, we use the extractor to

extract the secret key from signatures and decrypt under it. The full proof involves

building simulation and extractability adversaries in addition to D.

Turning next to the proof of unforgeability, we might at first expect that it relies

on nothing more than the unforgeability of the signature scheme, so that given an

adversary A breaking the Φ-SUF security of ST we could build an adversary break-

ing the SUF security of DS. However, we run into the basic issue that, since the

same keys are used for signing, encryption, and decryption, an adversary against

the unforgeability of the signature scheme cannot even construct the messages (ci-

phertexts) on which A would forge. Instead, we will build from A an adversary D

breaking the Φ-KDM security of PKE. This adversary will extract a secret key from

a forgery of A and use this to break privacy. To get D to work we must first, as

above, switch to simulated signatures, and then use extractability to switch to a

simpler Retrieve oracle.

Proof: Part (1): Φ-IND security

Let A be a PT adversary playing game IND. Let q(·) be a polynomial such that the

number of Retrieve queries of A in game INDA
ST,Φ(λ) is q(λ) for all λ ∈ N. We

provide PT adversaries A1, A2, D and a negligible function ν(·) such that

Advind
ST,Φ,A(λ) ≤ 2Advsim

DS,F,A1
(λ) + Advind-kdm

PKE,Φ,D(λ) + 2ν(λ) + 2q(λ) ·Advext
DS,F,A2

(λ)

167

6.5 KDM-Secure Storage

for all λ ∈ N, from which part (1) of the theorem follows.

The proof uses the games in Figure 6.11 and Figure 6.12. Game G0 is as IND, but

switches to simulated parameters and keeps track of the stored data objects (c, σ)

together with the public keys they were computed under in a list Q′. The Retrieve

oracle in game G1 extracts a secret key sk ′ from σ and uses it to decrypt c. If the

public key pk ′ computed from sk ′ is not equal to pk[i], it instead uses sk[i] to decrypt

c. Correctness of PKE says that when F.Eval(ppF, sk ′) = F.Eval(ppF, sk[i]) = pk[i],

decryption under sk ′ and sk[i] return the same value, so the responses are identical

to those of the Retrieve oracle in game G0, and we have

Pr[GA
0 (λ)] = Pr[GA

1 (λ)] . (6.12)

Game G2 is as G1, but if the Retrieve oracle sets the flag bad, that is if A submits

((c, σ), i) such that the public key computed from the secret key extracted from σ is

not equal to pk[i], it decrypts c under the extracted key sk ′ instead of under sk[i].

Games G1 and G2 are thus identical until bad, so by the Fundamental Lemma of

Game-Playing [23] we have

Pr[GA
1 (λ)]− Pr[GA

2 (λ)] ≤ Pr[GA
1 (λ) sets bad] . (6.13)

Game G3 is as G1, but additionally sets bad if A submits ((c, σ), i) such that

(pk[i], c, σ) is in the list Q′, so we have

Pr[GA
1 (λ) sets bad] ≤ Pr[GA

3 (λ) sets bad] . (6.14)

We build A1, A2, D and ν(·) such that for all λ ∈ N we have

Pr[INDA
ST,Φ(λ)]− Pr[GA

0 (λ)] ≤ Advsim
DS,F,A1

(λ) (6.15)

2 Pr[GA
2 (λ)]− 1 ≤ Advind-kdm

PKE,Φ,D(λ) (6.16)

Pr[GA
3 (λ) sets bad] ≤ ν(λ) + q(λ) ·Advext

DS,F,A2
(λ) . (6.17)

Combining Equations (6.12)-(6.17), for all λ ∈ N we have:

Advind
ST,Φ,A(λ) = 2 Pr[INDA

ST,Φ(λ)]− 1

= 2
(

Pr[INDA
ST,Φ(λ)− Pr[GA

0 (λ)]
)

+ 2
(

Pr[GA
0 (λ)]− Pr[GA

1 (λ)]
)

+ 2
(

Pr[GA
1 (λ)]− Pr[GA

2 (λ)]
)

+ 2 Pr[GA
2 (λ)]− 1

≤ 2
(

Pr[INDA
ST,Φ(λ)− Pr[GA

0 (λ)]
)

+ 2 Pr[GA
1 (λ) sets bad] + 2 Pr[GA

2 (λ)]− 1

≤ 2Advsim
DS,F,A1

(λ) + Advind-kdm
PKE,Φ,D(λ) + 2 Pr[GA

1 (λ) sets bad]

≤ 2Advsim
DS,F,A1

(λ) + Advind-kdm
PKE,Φ,D(λ) + 2 Pr[GA

3 (λ) sets bad]

≤ 2Advsim
DS,F,A1

(λ) + Advind-kdm
PKE,Φ,D(λ)

+ 2ν(λ) + 2q(λ) ·Advext
DS,F,A2

(λ)

168

6.5 KDM-Secure Storage

main INDA
ST,Φ(λ) / GA

0 (λ) / GA
1 (λ) / GA

2 (λ) / GA
3 (λ)

b←$ {0, 1} ; Q← ∅ ; pk←⊥ ; Q′ ← ∅

(ppF, ppaux)←$ DS.Pg(1λ)

ppF←$ F.Pg(1λ) ; (ppaux, std , xtd)←$ DS.SimPg(1λ)

pp ← (ppF, ppaux) ; b′←$AMkKey,Store,Retrieve(pp)

Return (b = b′)

MkKey(1n) // INDA
ST,Φ(λ) / GA

0 (λ) / GA
1 (λ) / GA

2 (λ) / GA
3 (λ)

If (pk 6=⊥) then Return ⊥
For i = 1, . . . , n do (sk[i],pk[i])←$ DS.Kg(pp)

Return pk

proc Store(φ, i) // INDA
ST,Φ(λ) / GA

0 (λ) / GA
1 (λ) / GA

2 (λ) / GA
3 (λ)

If (pk =⊥) then Return ⊥
If (φ /∈ Φ) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (b = 1) then m ← φ(sk) Else m ← 0`(φ)

c←$ PKE.Enc(ppF,pk[i],m)

σ←$ DS.Sign(pp, sk[i], c) σ←$ DS.SimSign(pp, std ,pk[i], c)

Q← Q ∪ {((c, σ), i)} ; Q′ ← Q′ ∪ {(pk[i], c, σ)}
Return (c, σ)

proc Retrieve((c, σ), i) // INDA
ST,Φ(λ) / GA

0 (λ)

If (pk =⊥) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (((c, σ), i) ∈ Q) then Return ⊥
If !(DS.Verify(pp,pk[i], c, σ)) then Return ⊥
m ← PKE.Dec(ppF, sk[i], c)

Return m

Figure 6.11: Games used in the proof of part (1) of Theorem 6.5.1.

169

6.5 KDM-Secure Storage

proc Retrieve((c, σ), i) // GA
1 (λ) / GA

2 (λ)

If (pk =⊥) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (((c, σ), i) ∈ Q) then Return ⊥
If !(DS.Verify(pp,pk[i], c, σ)) then Return ⊥
sk ′←$ DS.Ext(pp, xtd ,pk[i], c, σ) ; pk ′ ← F.Eval(ppF, sk ′)

m ← PKE.Dec(ppF, sk ′, c)

If (pk ′ 6= pk[i]) then bad← true ; m ← PKE.Dec(ppF, sk[i], c)

Return m

proc Retrieve((c, σ), i) // GA
3 (λ)

If (pk =⊥) Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (((c, σ), i) ∈ Q) then Return ⊥
If !(DS.Verify(pp,pk[i], c, σ)) then Return ⊥
m ← PKE.Dec(ppF, sk[i], c)

If (pk[i], c, σ) ∈ Q′ then bad← true ; Return m

sk ′←$ DS.Ext(pp, xtd ,pk[i], c, σ) ; pk ′ ← F.Eval(ppF, sk ′)

If (pk ′ 6= pk[i]) then bad← true

Return m

Figure 6.12: Games used in the proof of part (1) of Theorem 6.5.1, continued.

as desired. We proceed to the constructions of A1, A2, D and ν.

Adversary A1 against the simulatability of DS behaves as follows:

170

6.5 KDM-Secure Storage

ASign
1 (1λ, pp)

Q← ∅ ; d←$ {0, 1} ; pk←⊥
(ppF, ppaux)← pp
d′←$ AMkKey,Store,Retrieve(pp)
If (d′ = d) then b′ ← 1 Else b′ ← 0
Return b′

MkKey(1n)

If (pk 6=⊥) Return ⊥
For i = 1, . . . , n do

(sk[i],pk[i])←$ DS.Kg(pp)
Return pk

Store(φ, i)

If (pk =⊥) Return ⊥
If (φ /∈ Φ) Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (d = 1) then m ← φ(sk)

Else m ← 0`(φ)

c←$ PKE.Enc(ppF,pk[i],m)
σ←$ Sign(sk[i], c)
Q← Q ∪ {((c, σ), i)}
Return (c, σ)

Retrieve((c, σ), i)

If (pk =⊥) Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (((c, σ), i) ∈ Q) then Return ⊥
If (DS.Verify(pp,pk[i], c, σ))

then Return ⊥
m ← PKE.Dec(ppF, sk[i], c)
Return m

When the challenge bit b in game SIM is 1, Sign returns real signatures and so

adversary A1 simulates IND, while when b = 0 Sign returns simulated signatures

and so A1 simulates G0. We thus have

Pr[INDA
ST,Φ(λ)]−Pr[GA

0 (λ)] = Pr[b′ = 1 | b = 1]−Pr[b′ = 1 | b = 0] ≤ Advsim
DS,F,A1

(λ),

establishing Equation (6.15).

Adversary D against the Φ-KDM security of PKE behaves as follows:

171

6.5 KDM-Secure Storage

DMkKey,Enc(ppF)

Q← ∅
(ppaux, std , xtd)←$ DS.SimPg(1λ)
pp ← (ppF, ppaux)
b′←$ AMkKey,Store,Retrieve(pp)
Return b′

Store(φ, i)

If (pk =⊥) Return ⊥
If (φ /∈ Φ) Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
c←$ Enc(φ, i)
σ←$ DS.SimSign(pp, std ,pk[i], c)
Q← Q ∪ {((c, σ), i)}
Return (c, σ)

Retrieve((c, σ), i)

If (pk =⊥) Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (((c, σ), i) ∈ Q) then Return ⊥
If !(DS.Verify(pp,pk[i], c, σ))

then Return ⊥
sk ′←$ DS.Ext(pp, xtd ,pk[i], c, σ)
m ← PKE.Dec(ppF, sk ′, c)
Return m

D correctly simulates game G2 for A, successfully determining b′ whenever A does,

establishing Equation (6.16).

Now we would like to show that G1 (equivalently, G2) sets bad with negligible

probability. Intuitively, this should follow from extractability, since bad is set when

extraction fails. A difficulty is that extraction is not required to succeed when

(pk [i], C, σ) ∈ Q′. So first we show that the latter event is unlikely, and then,

assuming it does not happen, that failure of extraction is unlikely. This is formalised

via G3, which breaks the setting of bad from G1 into two parts corresponding to the

two events of interest. To establish Equation (6.17), let E1 be the event that bad is

set by the line 6 “If” statement, and E2 the event that bad is set by the line 8 “If”

statement. We first show the existence of a negligible ν(·) such that Pr[E1] ≤ ν(λ).

Then we build A2 such that Pr[E2 ∧ E1] ≤ q(λ) ·Advext
DS,F,A2

(λ). This establishes

Equation (6.17), as we have

Pr[GA
3 (λ) sets bad] = Pr[E1 ∨ E2]

= Pr[E1] + Pr[E2 ∧ E1]

≤ ν(λ) + q(λ) ·Advext
DS,F,A2

(λ).

For the first claim, let E be the event that there is a collision in the public keys chosen

in MkKey, meaning there are distinct i, j ∈ {1, . . . , n} such that pk[i] = pk[j]. We

172

6.5 KDM-Secure Storage

claim that if this event does not happen, then neither will E1. This is because setting

bad requires that (pk[i], c, σ) ∈ Q′ yet ((c, σ), i) 6∈ Q, but this cannot happen if the

public keys are all distinct. So Pr[E1] ≤ Pr[E]. However, if E does happen with

probability that is not negligible, then it is easy to break KDM security of PKE. An

adversary just has to itself sample keypairs, hoping to get one where the public key

matches one of her challenge public keys. In that case, having the corresponding

secret key, it is easy to defeat security. We omit the details because this argument

is standard.

Adversary A2 against the key-extractability of DS behaves as follows:

ASign
2 (pp)

Q← ∅ ; b←$ {0, 1} ; pk =⊥ ; j ← 0
(ppF, ppaux)← pp
b′←$ AMkKey,Store,Retrieve(pp)
`←$ {1, . . . , j}
Return (pk `, c`, σ`)

MkKey(1n)

If (pk 6=⊥) Return ⊥
For i = 1, . . . , n do

(sk[i],pk[i])←$ DS.Kg(pp)
Return pk

Store(φ, i)

If (pk =⊥) Return ⊥
If (φ /∈ Φ) Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (b = 1) then m ← φ(sk)

Else m ← 0`(φ)

c←$ PKE.Enc(ppF,pk[i],m)
σ←$ Sign(sk[i], c)
Q← Q ∪ {((c, σ), i)}
Return (c, σ)

Retrieve((c, σ), i)

If (pk =⊥) Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (((c, σ), i) ∈ Q) then Return ⊥
If !(DS.Verify(pp,pk[i], c, σ))

then Return ⊥
m ← PKE.Dec(ppF, sk[i], c)
j ← j + 1 ; pk j ← pk[i]

cj ← c ; σj ← σ
Return m

Adversary A2 always performs correct decryptions when responding to Retrieve

queries, following G3. If bad is set at line 8 but not at line 6, then there is some

tuple on which the extractor would succeed. Since a tuple is guessed at random

we have Pr[E2 ∧ E1] ≤ q(λ) ·Advext
DS,F,A2

(λ) as desired. The importance of bad not

being set at line 6 is that otherwise extraction is not required to succeed according

to game EXT.

173

6.5 KDM-Secure Storage

main HA
Φ(λ)

Q← ∅ ; win← false ; pk←⊥ ; (ppF, ppaux)←$ DS.Pg(1λ) ; pp ← (ppF, ppaux)

⊥←$AMkKey,Store,Retrieve(pp)

Return win

MkKey(1n)

If (pk 6=⊥) then Return ⊥
For i = 1, . . . , n do (sk[i],pk[i])←$ DS.Kg(pp)

Return pk

Store(φ, i)

If (pk =⊥) then Return ⊥
If (φ /∈ Φ) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
m ← φ(sk) ; c←$ PKE.Enc(ppF,pk[i],m)

σ←$ DS.Sign(pp, sk[i], c) ; Q← Q ∪ {((c, σ), i)}
Return (c, σ)

Retrieve((c, σ), i)

If (pk =⊥) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If ((c, σ), i) ∈ Q) then Return ⊥
If DS.Verify(pp,pk[i], c, σ) then win← true Else Return ⊥
m ← PKE.Dec(ppF, sk[i], c)

Return m

Figure 6.13: Game H defining alternate form of SUF for the proof of part (2) of
Theorem 6.5.1.

Part (2): Φ-SUF security

Let A′ be a PT adversary playing game SUF. Our first step is to consider the

simplified form of the SUF game shown in Figure 6.13. Here the adversary does not

output a forgery but instead wins via Retrieve queries. We can easily transform

A′ into a PT adversary A such that Advsuf
ST,Φ,A′(λ) ≤ Pr[HA

Φ(λ)] for all λ ∈ N.

Adversary A simply runs A′, answering all queries via its own oracles (the two

adversaries have the same oracles). When A′ halts with output ((c, σ), i), A makes

query Retrieve((c, σ), i) and halts with output ⊥. The flag win is set to true with

at least the probability that A′ wins its game. We now proceed to upper bound

Pr[HA
Φ(λ)].

Let q(·) be a polynomial such that the number of Retrieve queries of A in game

HA
Φ(λ) is q(λ) for all λ ∈ N. We provide PT adversaries A1, A2, D and a negligible

174

6.5 KDM-Secure Storage

main GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

Q← ∅ ; Q′ ← ∅ ; win← false ; pk←⊥
ppF←$ F.Pg(1λ) ; (ppaux, std , xtd)←$ DS.SimPg(1λ) ; pp ← (ppF, ppaux)

⊥←$AMkKey,Store,Retrieve(pp)

Return win

MkKey(1n) // GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

If (pk 6=⊥) then Return ⊥
For i = 1, . . . , n do (sk[i],pk[i])←$ DS.Kg(pp)

Return pk

proc Store(φ) // GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

If (pk =⊥) then Return ⊥
If (φ /∈ Φ) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
m ← φ(sk) ; c←$ PKE.Enc(ppF,pk[i],m)

σ←$ DS.SimSign(pp, std ,pk[i], c)

Q← Q ∪ {((c, σ), i)} ; Q′ ← Q′ ∪ {(pk[i], c, σ)}
Return (c, σ)

proc Retrieve((c, σ), i) // GA
0 (λ)

If (pk =⊥) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (((c, σ), i) ∈ Q) then Return ⊥
If (DS.Verify(pp,pk[i], c, σ)) then win← true Else Return ⊥
m ← PKE.Dec(ppF, sk[i], c)

Return m

Figure 6.14: Games used in the proof of part (2) of Theorem 6.5.1.

function ν(·) such that

Pr[HA
Φ(λ)] ≤ Advsim

DS,F,A1
(λ) + Advind-kdm

PKE,Φ,D(λ) + ν(λ) + q(λ) ·Advext
DS,F,A2

(λ)

for all λ ∈ N, from which part (2) of the theorem follows.

The proof uses the games in Figure 6.14 and Figure 6.15. The modifications between

games mirror those made in the proof of part (1) above. Game G0 is as H, but

switches to simulated parameters and keeps track of the stored data objects (c, σ)

together with the public keys they were computed under in a list Q′. The Retrieve

oracle in game G1 extracts a secret key sk ′ from σ and uses it to decrypt c. If the

public key pk ′ computed from sk ′ is not equal to pk[i], it instead uses sk[i] to decrypt

c. Correctness of PKE says that when F.Eval(ppF, sk ′) = F.Eval(ppF, sk[i]) = pk[i],

decryption under sk ′ and sk[i] return the same value, so the responses are identical

175

6.5 KDM-Secure Storage

proc Retrieve((c, σ), i) // GA
1 (λ) / GA

2 (λ)

If (pk =⊥) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (((c, σ), i) ∈ Q) then Return ⊥
If (DS.Verify(pp,pk[i], c, σ)) then win← true Else Return ⊥
sk ′←$ DS.Ext(pp, xtd ,pk[i], c, σ) ; pk ′ ← F.Eval(ppF, sk ′)

m ← pk .Dec(ppF, sk ′, c)

If (pk ′ 6= pk[i]) then bad← true ; m ← PKE.Dec(ppF, sk[i], c)

Return m

proc Retrieve((c, σ), i) // GA
3 (λ)

If (pk =⊥) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (((c, σ), i) ∈ Q) then Return ⊥
If (DS.Verify(pp,pk[i], c, σ)) then win← true Else Return ⊥
m ← PKE.Dec(ppF, sk[i], c)

If (pk[i], c, σ) ∈ Q′ then bad← true ; Return m

sk ′←$ DS.Ext(pp, xtd ,pk[i], c, σ) ; pk ′ ← F.Eval(ppF, sk ′)

If (pk ′ 6= pk[i]) then bad← true

Return m

Figure 6.15: Games used in the proof of part (2) of Theorem 6.5.1, continued.

to those of the Retrieve oracle in game G0, and we have

Pr[GA
0 (λ)] = Pr[GA

1 (λ)] . (6.18)

Game G2 is as G1, but if the Retrieve oracle sets the flag bad, that is if A submits

((c, σ), i) such that the public key computed from the secret key extracted from σ is

not equal to pk[i], it decrypts c under the extracted key sk ′ instead of under sk[i].

Games G1 and G2 are thus identical until bad, so by a variant of the Fundamental

Lemma of Game-Playing [23] we have

Pr[GA
1 (λ) ∧ bad] = Pr[GA

2 (λ) ∧ bad] , (6.19)

where the notation in Equation (6.20) means that we are considering the event that

the game returns true and also bad is not set. Game G3 is as G1, but additionally

sets bad if A submits ((c, σ), i) such that (pk[i], c, σ) is in the list Q′, so we have

Pr[GA
1 (λ) sets bad] ≤ Pr[GA

3 (λ) sets bad] . (6.20)

We build A1, A2, D and ν such that for all λ ∈ N we have

Pr[HA
Φ(λ)]− Pr[GA

0 (λ)] ≤ Advsim
DS,F,A1

(λ) (6.21)

Pr[GA
2 (λ) ∧ bad] ≤ Advind-kdm

PKE,Φ,D(λ) (6.22)

Pr[GA
3 (λ) sets bad] ≤ ν(λ) + q(λ) ·Advext

DS,F,A2
(λ) . (6.23)

176

6.5 KDM-Secure Storage

The notation in Equation (6.22) means that we are considering the event that the

game returns true and also bad is not set. Now games G1,G2 are identical un-

til bad so a variant of the Fundamental Lemma of Game-Playing [23] says that

Pr[GA
1 (λ) ∧ bad] = Pr[GA

2 (λ) ∧ bad]. We also observe that Pr[GA
1 (λ) sets bad] ≤

Pr[GA
3 (λ) sets bad]. (In both games, decryption in Retrieve is always done cor-

rectly.) Combining Equations (6.18)-(6.23), for all λ ∈ N we have:

Advsuf
ST,A′,Φ(λ) ≤ Pr[HA(λ)]

= Pr[HA(λ)]− Pr[GA
0 (λ)] + (Pr[GA

0 (λ)]− Pr[GA
1 (λ)]) + Pr[GA

1 (λ)]

≤ Pr[HA(λ)]− Pr[GA
0 (λ)] + Pr[GA

1 (λ) ∧ bad] + Pr[GA
1 (λ) sets bad]

≤ Pr[HA(λ)]− Pr[GA
0 (λ)] + Pr[GA

2 (λ) ∧ bad] + Pr[GA
1 (λ) sets bad]

≤ Pr[HA(λ)]− Pr[GA
0 (λ)] + Pr[GA

2 (λ) ∧ bad] + Pr[GA
3 (λ) sets bad]

≤ Advsim
DS,F,A1

(λ) + Advind-kdm
PKE,Φ,D(λ) + ν(λ) + q(λ) ·Advext

DS,F,A2
(λ)

as desired. We proceed to the constructions of A1, A2, D and ν.

Adversary A1 against the simulatability of DS behaves as follows:

ASign
1 (pp)

Q← ∅ ; pk←⊥
⊥←$ AMkKey,Store,Retrieve(pp)
If win then b′ ← 1 Else b′ ← 0
Return b′

Store(φ, i)

If (pk =⊥) then Return ⊥
If (φ /∈ Φ) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
m ← φ(sk)
c←$ PKE.Enc(ppF,pk[i],m)
σ←$ Sign(sk[i], c)
Q← Q ∪ {((c, σ), i)}
Return (c, σ)

MkKey(1n)

If (pk 6=⊥) then Return ⊥
For i = 1, . . . , n do

(sk[i],pk[i])←$ DS.Kg(pp)
Return pk

Retrieve((c, σ), i)

If (pk =⊥) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (((c, σ), i) ∈ Q) then Return ⊥
If (DS.Verify(pp,pk[i], c, σ))

then win← true ;
Else Return ⊥
m ← PKE.Dec(ppF, sk[i], c)
Return m

When the challenge bit b in game SIM is 1, Sign returns real signatures and so

adversary A1 simulates H, while when b = 0 Sign returns simulated signatures and

so A1 simulates G0. This establishes Equation (6.21).

Adversary D against the Φ-KDM security of PKE behaves as follows:

177

6.5 KDM-Secure Storage

DMkKey,Enc(ppF)

Q← ∅ ; sk∗ ← ⊥ ; j ← ⊥ ; pk←⊥
(ppaux, std , xtd)←$ DS.SimPg(1λ)
pp ← (ppF, ppaux)
⊥←$ AMkKey,Store,Retrieve(pp)
If (sk∗, j) = (⊥,⊥) then Return 0
m1 ← 1λ ; c∗←$ Enc(φm1 , j)
m ← PKE.Dec(ppF, sk∗, c∗)
If (m = m1) then b′ ← 1 Else b′ ← 0
Return b′

Store(φ, i)

If (pk =⊥) then Return ⊥
If (φ /∈ Φ) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
c←$ Enc(φ, i)
σ←$ DS.SimSign(pp, std ,pk[i], c)
Q← Q ∪ {((c, σ), i)}
Return (c, σ)

Retrieve((c, σ), i)

If (pk =⊥) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (((c, σ), i) ∈ Q) then Return ⊥
If (DS.Verify(pp,pk[i], c, σ))

then win← true ;
Else Return ⊥
sk ′←$ DS.Ext(pp, xtd ,pk[i], c, σ)
If (F.Eval(ppF, sk ′) 6= pk[i])

then bad← true
Else (sk∗, j)← (sk ′, i)
m ← PKE.Dec(ppF, sk ′, c)
Return m

Recall that φm1 denotes the constant function that always returns m1. If win is set

in G2 then we are assured that there is at least one Retrieve query which leads

to extraction being performed. If additionally bad is not set then this extraction

succeeds, which means decryption under sk∗ will be correct. That in turn means

that m is the correct decryption of c∗ and hence D succeeds if win ∧ bad. This

establishes Equation (6.22).

Now we would like to show that G1 (equivalently, G2) sets bad with negligible

probability. Intuitively, this should follow from extractability, since bad is set when

extraction fails. A difficulty is that extraction is not required to succeed when

(pk [i], c, σ) ∈ Q′. So first we show that the latter event is unlikely, and then,

assuming it does not happen, that failure of extraction is unlikely. This is formalised

via G3, which breaks the setting of bad from G1 into two parts corresponding to the

two events of interest. To establish Equation (6.23), let E1 be the event that bad is

set by the line 6 “If” statement, and E2 the event that bad is set by the line 8 “If”

statement. We show the existence of a negligible ν(·) such that Pr[E1] ≤ ν(λ) as in

the proof of part (1) above, first arguing that Pr[E1] is at most the probability of

a collision in public keys, and then arguing that this is negligible by the assumed

security of PKE. To establish Equation (6.23), we now build an adversary A2 against

the key-extractability of DS so that Pr[E2 ∧ E1] ≤ q(λ) ·Advext
DS,F,A2

(λ):

178

6.6 Conclusion

ASign
2 (pp)

Q← ∅ ; j ← 0 ; pk←⊥
⊥←$ AMkKey,Store,Retrieve(pp)
`←$ {1, . . . , j}
Return (pk `, c`, σ`)

MkKey(1n)

If (pk 6=⊥) then Return ⊥
For i = 1, . . . , n do

(sk[i],pk[i])←$ DS.Kg(pp)
Return pk

Store(φ, i)

If (pk =⊥) then Return ⊥
f (φ /∈ Φ) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
m ← φ(sk)
c←$ PKE.Enc(ppF,pk[i],m)
σ←$ Sign(sk[i], c) ; Q← Q ∪ {((c, σ), i)}
Return (c, σ)

Retrieve((c, σ), i)

If (pk =⊥) then Return ⊥
If !(1 ≤ i ≤ n) then Return ⊥
If (((c, σ), i) ∈ Q) then Return ⊥
If !(DS.Verify(pp,pk[i], c, σ)) then Return ⊥
m ← PKE.Dec(ppF, sk[i], c)
j ← j + 1 ; pk j ← pk[i] ; cj ← c ; σj ← σ

Return m

Adversary A2 always returns correct decryptions in responding to Retrieve queries,

following G3. If bad is set at line 8 but not at line 6, then there is some tuple on

which the extractor would succeed. Since a tuple is guessed at random we have

Pr[E2 ∧E1] ≤ q(λ) ·Advext
DS,F,A2

(λ) as desired. The importance of bad not being set

at line 6 is that otherwise extraction is not required to succeed according to game

EXT.

Instantiation. We require our base scheme PKE to be canonical. In Section 6.3

we showed how to modify an encryption scheme to be canonical while preserving

IND-CCA security, but the transformation does not in general preserve KDM secu-

rity. Instead, we would use a KDM-secure scheme that is already canonical. One

possibility is the scheme of [87]. The schemes of [36, 11, 7] are not canonical.

6.6 Conclusion

This chapter introduced key-versatile signatures, signatures where public keys are

computed from private keys through an arbitrary one-way function family F. Key-

versatile signatures allow us to sign with keys already in use for another purpose,

without changing the keys and without impacting the security of the original pur-

pose.

179

6.6 Conclusion

We required strong security properties for key-versatile signatures, namely simu-

latability and key-extractability, conditions that are significantly stronger than (and

together imply) the usual unforgeability. These properties allowed us to obtain

advances across a collection of challenging domains including joint encryption and

signature, security against related-key attack and security for key-dependent mes-

sages.

We constructed key-versatile signatures from NIZKs with strong security proper-

ties. An obvious area for further research is finding more efficient constructions, as

the current construction can be seen more as a proof of concept than a practical

candidate for implementation.

Stepping away from the versatility aspect of the signatures and focusing on the

applications of signatures with such strong security properties, it is likely easier

to find efficient signatures meeting simulatability and key-extractability for specific

function families F, rather than generic constructions for any F as we have provided.

In the joint security setting, we showed that it is possible to add signing capability

to an existing encryption scheme with no overhead in the size of the public key. This

construction leaves the public key untouched, meaning no need for further certificate

generation or dissemination. An open question in this area is that of finding the

lowest possible cost in terms of public key overhead of adding encryption to existing

signatures. This is a more difficult problem, however we might look to witness

encryption [63, 16] for ideas.

We showed that key-versatile signatures inherit RKA security of the underlying

one-way function family F. The problem of RKA security of the signatures can then

be reduced to finding RKA-secure one-way functions We show that several known

one-way functions are already RKA-secure. On the other hand, there are not many

known one-way functions to analyse and our approach would be more valuable if

there were more candidates available.

In our final application of key-versatile signatures we added integrity to encryption

while maintaining key-dependent message security, creating a new primitive for au-

thenticated and encrypted storage. With the rise of outsourced storage this is an

important area in which to determine users’ needs and build appropriate tools. This

provides a novel application for KDM-secure PKE, further constructions of which

would lead to more instantiations of our secure storage primitive. However here

we are limited by the current techniques for achieving KDM security, which often

180

6.6 Conclusion

involve storing a secret key in a specific way, meaning that the public key is not a

one-way function of the secret key. Constructing new canonical PKE schemes with

KDM security is therefore an interesting open problem.

Through these applications, key-versatile signatures have been shown to be a effec-

tive tool, likely to be of use in further applications.

181

Bibliography

[1] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and

Miyako Ohkubo. “Structure-Preserving Signatures and Commitments to

Group Elements”. In: CRYPTO 2010. Ed. by Tal Rabin. Vol. 6223. LNCS.

Santa Barbara, CA, USA: Springer, Berlin, Germany, 2010, pp. 209–236.

[2] Tolga Acar, Mira Belenkiy, Mihir Bellare, and David Cash. “Cryptographic

Agility and Its Relation to Circular Encryption”. In: EUROCRYPT 2010.

Ed. by Henri Gilbert. Vol. 6110. LNCS. French Riviera: Springer, Berlin,

Germany, 2010, pp. 403–422.

[3] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. “On the Security of Joint Sig-

nature and Encryption”. In: EUROCRYPT 2002. Ed. by Lars R. Knudsen.

Vol. 2332. LNCS. Amsterdam, The Netherlands: Springer, Berlin, Germany,

2002, pp. 83–107.

[4] Ross Anderson and Markus Kuhn. “Tamper Resistance – a Cautionary Note”.

In: Proceedings of the 2nd USENIX Workshop on Electronic Commerce. Oak-

land, CA, USA: USENIX Association, 1996, pp. 1–11.

[5] Benny Applebaum. “Garbling XOR Gates “For Free” in the Standard

Model”. In: TCC 2013. Ed. by Amit Sahai. Vol. 7785. LNCS. Tokyo, Japan:

Springer, Berlin, Germany, 2013, pp. 162–181.

[6] Benny Applebaum. “Key-Dependent Message Security: Generic Amplifica-

tion and Completeness”. In: EUROCRYPT 2011. Ed. by Kenneth G. Pa-

terson. Vol. 6632. LNCS. Tallinn, Estonia: Springer, Berlin, Germany, 2011,

pp. 527–546.

[7] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. “Fast Cryp-

tographic Primitives and Circular-Secure Encryption Based on Hard Learning

Problems”. In: CRYPTO 2009. Ed. by Shai Halevi. Vol. 5677. LNCS. Santa

Barbara, CA, USA: Springer, Berlin, Germany, 2009, pp. 595–618.

182

BIBLIOGRAPHY

[8] Benny Applebaum, Danny Harnik, and Yuval Ishai. “Semantic Security under

Related-Key Attacks and Applications”. In: ICS 2011. Ed. by Andrew Chi-

Chih Yao. Tsinghua University Press, 2011.

[9] Michael Backes, Markus Dürmuth, and Dominique Unruh. “OAEP Is Se-

cure under Key-Dependent Messages”. In: ASIACRYPT 2008. Ed. by Josef

Pieprzyk. Vol. 5350. LNCS. Melbourne, Australia: Springer, Berlin, Germany,

2008, pp. 506–523.

[10] Michael Backes, Birgit Pfitzmann, and Andre Scedrov. “Key-dependent mes-

sage security under active attacks - BRSIM/UC-soundness of Dolev-Yao-style

encryption with key cycles”. In: Journal of Computer Security 16.5 (2008),

pp. 497–530.

[11] Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. “Bounded

Key-Dependent Message Security”. In: EUROCRYPT 2010. Ed. by Henri

Gilbert. Vol. 6110. LNCS. French Riviera: Springer, Berlin, Germany, 2010,

pp. 423–444.

[12] Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-Friendly Elliptic

Curves of Prime Order”. In: SAC 2005. Ed. by Bart Preneel and Stafford

Tavares. Vol. 3897. LNCS. Kingston, Ontario, Canada: Springer, Berlin, Ger-

many, 2005, pp. 319–331.

[13] Mihir Bellare and David Cash. “Pseudorandom Functions and Permutations

Provably Secure against Related-Key Attacks”. In: CRYPTO 2010. Ed. by

Tal Rabin. Vol. 6223. LNCS. Santa Barbara, CA, USA: Springer, Berlin,

Germany, 2010, pp. 666–684.

[14] Mihir Bellare, David Cash, and Rachel Miller. “Cryptography Secure against

Related-Key Attacks and Tampering”. In: ASIACRYPT 2011. Ed. by Dong

Hoon Lee and Xiaoyun Wang. Vol. 7073. LNCS. Seoul, South Korea: Springer,

Berlin, Germany, 2011, pp. 486–503.

[15] Mihir Bellare and Shafi Goldwasser. “New Paradigms for Digital Signatures

and Message Authentication Based on Non-Interative Zero Knowledge

Proofs”. In: CRYPTO’89. Ed. by Gilles Brassard. Vol. 435. LNCS. Santa

Barbara, CA, USA: Springer, Berlin, Germany, 1990, pp. 194–211.

[16] Mihir Bellare and Viet Tung Hoang. “Adaptive Witness Encryption and

Asymmetric Password-based Cryptography”. Cryptology ePrint Archive, Re-

port 2013/704. 2013.

183

BIBLIOGRAPHY

[17] Mihir Bellare and Sriram Keelveedhi. “Authenticated and Misuse-Resistant

Encryption of Key-Dependent Data”. In: CRYPTO 2011. Ed. by Phillip Rog-

away. Vol. 6841. LNCS. Santa Barbara, CA, USA: Springer, Berlin, Germany,

2011, pp. 610–629.

[18] Mihir Bellare and Tadayoshi Kohno. “A Theoretical Treatment of Related-

Key Attacks: RKA-PRPs, RKA-PRFs, and Applications”. In: EUROCRYPT

2003. Ed. by Eli Biham. Vol. 2656. LNCS. Warsaw, Poland: Springer, Berlin,

Germany, 2003, pp. 491–506.

[19] Mihir Bellare, Sarah Meiklejohn, and Susan Thomson. “Key-Versatile Signa-

tures and Applications: RKA, KDM and Joint Enc/Sig”. In: EUROCRYPT

2014. Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441. LNCS.

Copenhagen, Denmark: Springer, Berlin, Germany, 2014, pp. 496–513.

[20] Mihir Bellare and Chanathip Namprempre. “Authenticated Encryption: Re-

lations among Notions and Analysis of the Generic Composition Paradigm”.

In: Journal of Cryptology 21.4 (Oct. 2008), pp. 469–491.

[21] Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. “RKA Security be-

yond the Linear Barrier: IBE, Encryption and Signatures”. In: ASIACRYPT

2012. Ed. by Xiaoyun Wang and Kazue Sako. Vol. 7658. LNCS. Beijing,

China: Springer, Berlin, Germany, 2012, pp. 331–348.

[22] Mihir Bellare and Thomas Ristenpart. “Simulation without the Artificial

Abort: Simplified Proof and Improved Concrete Security for Waters’ IBE

Scheme”. In: EUROCRYPT 2009. Ed. by Antoine Joux. Vol. 5479. LNCS.

Cologne, Germany: Springer, Berlin, Germany, 2009, pp. 407–424.

[23] Mihir Bellare and Phillip Rogaway. “The Security of Triple Encryption and a

Framework for Code-Based Game-Playing Proofs”. In: EUROCRYPT 2006.

Ed. by Serge Vaudenay. Vol. 4004. LNCS. St. Petersburg, Russia: Springer,

Berlin, Germany, 2006, pp. 409–426.

[24] Eli Biham. “New Types of Cryptoanalytic Attacks Using related Keys (Ex-

tended Abstract)”. In: EUROCRYPT’93. Ed. by Tor Helleseth. Vol. 765.

LNCS. Lofthus, Norway: Springer, Berlin, Germany, 1993, pp. 398–409.

[25] Eli Biham and Adi Shamir. “Differential Fault Analysis of Secret Key Cryp-

tosystems”. In: CRYPTO’97. Ed. by Burton S. Kaliski Jr. Vol. 1294. LNCS.

Santa Barbara, CA, USA: Springer, Berlin, Germany, 1997, pp. 513–525.

[26] Nir Bitansky and Ran Canetti. “On Strong Simulation and Composable Point

Obfuscation”. In: CRYPTO 2010. Ed. by Tal Rabin. Vol. 6223. LNCS. Santa

Barbara, CA, USA: Springer, Berlin, Germany, 2010, pp. 520–537.

184

BIBLIOGRAPHY

[27] John Black, Phillip Rogaway, and Thomas Shrimpton. “Encryption-Scheme

Security in the Presence of Key-Dependent Messages”. In: SAC 2002. Ed. by

Kaisa Nyberg and Howard M. Heys. Vol. 2595. LNCS. St. John’s, Newfound-

land, Canada: Springer, Berlin, Germany, 2003, pp. 62–75.

[28] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. “Non-

interactive zero-knowledge”. In: SIAM Journal on Computing 20.6 (1991),

pp. 1084–1118.

[29] Dan Boneh and Xavier Boyen. “Efficient Selective Identity-Based Encryp-

tion Without Random Oracles”. In: Journal of Cryptology 24.4 (Oct. 2011),

pp. 659–693.

[30] Dan Boneh and Xavier Boyen. “Short Signatures Without Random Oracles

and the SDH Assumption in Bilinear Groups”. In: Journal of Cryptology 21.2

(Apr. 2008), pp. 149–177.

[31] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. “Hierarchical Identity Based

Encryption with Constant Size Ciphertext”. In: EUROCRYPT 2005. Ed.

by Ronald Cramer. Vol. 3494. LNCS. Aarhus, Denmark: Springer, Berlin,

Germany, 2005, pp. 440–456.

[32] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. “Chosen-Cipher-

text Security from Identity-Based Encryption”. In: SIAM J. Comput. 36.5

(2007), pp. 1301–1328.

[33] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the Impor-

tance of Checking Cryptographic Protocols for Faults (Extended Abstract)”.

In: EUROCRYPT’97. Ed. by Walter Fumy. Vol. 1233. LNCS. Konstanz, Ger-

many: Springer, Berlin, Germany, 1997, pp. 37–51.

[34] Dan Boneh and Matthew Franklin. “Identity-Based Encryption from the Weil

Pairing”. In: SIAM J. Comput. 32.3 (2003), pp. 586–615.

[35] Dan Boneh and Matthew K. Franklin. “Identity Based Encryption from the

Weil Pairing”. In: SIAM Journal on Computing 32.3 (2003), pp. 586–615.

[36] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. “Circular-

Secure Encryption from Decision Diffie-Hellman”. In: CRYPTO 2008. Ed. by

David Wagner. Vol. 5157. LNCS. Santa Barbara, CA, USA: Springer, Berlin,

Germany, 2008, pp. 108–125.

[37] Dan Boneh and Jonathan Katz. “Improved Efficiency for CCA-Secure Cryp-

tosystems Built Using Identity-Based Encryption”. In: CT-RSA 2005. Ed. by

Alfred Menezes. Vol. 3376. LNCS. San Francisco, CA, USA: Springer, Berlin,

Germany, 2005, pp. 87–103.

185

BIBLIOGRAPHY

[38] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil

Pairing”. In: ASIACRYPT 2001. Ed. by Colin Boyd. Vol. 2248. LNCS. Gold

Coast, Australia: Springer, Berlin, Germany, 2001, pp. 514–532.

[39] Xavier Boyen, Qixiang Mei, and Brent Waters. “Direct Chosen Ciphertext

Security from Identity-Based Techniques”. In: ACM CCS 05. Ed. by Vijay-

alakshmi Atluri, Catherine Meadows, and Ari Juels. Alexandria, Virginia,

USA: ACM Press, 2005, pp. 320–329.

[40] Zvika Brakerski, Shafi Goldwasser, and Yael Tauman Kalai. “Black-Box Circ-

ular-Secure Encryption beyond Affine Functions”. In: TCC 2011. Ed. by Yu-

val Ishai. Vol. 6597. LNCS. Providence, RI, USA: Springer, Berlin, Germany,

2011, pp. 201–218.

[41] Zvika Brakerski and Vinod Vaikuntanathan. “Fully Homomorphic Encryp-

tion from Ring-LWE and Security for Key Dependent Messages”. In:

CRYPTO 2011. Ed. by Phillip Rogaway. Vol. 6841. LNCS. Santa Barbara,

CA, USA: Springer, Berlin, Germany, 2011, pp. 505–524.

[42] Jon Callas, Lutz Donnerhacke, Hal Finney, David Shaw, and Rodney Thayer.

OpenPGP Message Format. RFC 4880. http://www.ietf.org/rfc/rfc4880.txt.

2007.

[43] Jan Camenisch, Nishanth Chandran, and Victor Shoup. “A Public Key En-

cryption Scheme Secure against Key Dependent Chosen Plaintext and Adap-

tive Chosen Ciphertext Attacks”. In: EUROCRYPT 2009. Ed. by Antoine

Joux. Vol. 5479. LNCS. Cologne, Germany: Springer, Berlin, Germany, 2009,

pp. 351–368.

[44] Ran Canetti, Yael Tauman Kalai, Mayank Varia, and Daniel Wichs. “On

Symmetric Encryption and Point Obfuscation”. In: TCC 2010. Ed. by Daniele

Micciancio. Vol. 5978. LNCS. Zurich, Switzerland: Springer, Berlin, Germany,

2010, pp. 52–71.

[45] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meikle-

john. “Malleable Signatures: Complex Unary Transformations and Delegat-

able Anonymous Credentials”. Cryptology ePrint Archive, Report 2013/179.

http://eprint.iacr.org/. 2013.

[46] Melissa Chase and Anna Lysyanskaya. “On Signatures of Knowledge”. In:

CRYPTO 2006. Ed. by Cynthia Dwork. Vol. 4117. LNCS. Santa Barbara,

CA, USA: Springer, Berlin, Germany, 2006, pp. 78–96.

186

BIBLIOGRAPHY

[47] Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier. “Uni-

versal Padding Schemes for RSA”. In: CRYPTO 2002. Ed. by Moti Yung.

Vol. 2442. LNCS. Santa Barbara, CA, USA: Springer, Berlin, Germany, 2002,

pp. 226–241.

[48] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs.

“Detection of Algebraic Manipulation with Applications to Robust Secret

Sharing and Fuzzy Extractors”. In: EUROCRYPT 2008. Ed. by Nigel P.

Smart. Vol. 4965. LNCS. Istanbul, Turkey: Springer, Berlin, Germany, 2008,

pp. 471–488.

[49] Ronald Cramer and Victor Shoup. “Design and Analysis of Practical Public-

Key Encryption Schemes Secure against Adaptive Chosen Ciphertext At-

tack”. In: SIAM Journal on Computing 33.1 (2003), pp. 167–226.

[50] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Per-

siano, and Amit Sahai. “Robust Non-interactive Zero Knowledge”. In:

CRYPTO 2011. Ed. by Joe Kilian. Vol. 2139. LNCS. Santa Barbara, CA,

USA: Springer, Berlin, Germany, 2001, pp. 566–598.

[51] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. “Neces-

sary and sufficient assumptions for non-interactive zero-knowledge proofs of

knowledge for all np relations”. In: Automata, Languages and Programming.

Springer. 2000, pp. 451–462.

[52] Alfredo De Santis and Giuseppe Persiano. “Zero-knowledge proofs of knowl-

edge without interaction”. In: Foundations of Computer Science, 1992. Pro-

ceedings., 33rd Annual Symposium on. IEEE. 1992, pp. 427–436.

[53] Jean Paul Degabriele, Anja Lehmann, Kenneth G. Paterson, Nigel P. Smart,

and Mario Strefler. “On the Joint Security of Encryption and Signature in

EMV”. In: CT-RSA 2012. Ed. by Orr Dunkelman. Vol. 7178. LNCS. San

Francisco, CA, USA: Springer, Berlin, Germany, 2012, pp. 116–135.

[54] Yevgeniy Dodis, Michael J. Freedman, Stanislaw Jarecki, and Shabsi Walfish.

“Optimal Signcryption from Any Trapdoor Permutation”. Cryptology ePrint

Archive, Report 2004/020. http://eprint.iacr.org/. 2004.

[55] Yevgeniy Dodis, Michael J. Freedman, Stanislaw Jarecki, and Shabsi Wal-

fish. “Versatile Padding Schemes for Joint Signature and Encryption”. In:

ACM CCS 04. Ed. by Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick

McDaniel. Washington D.C., USA: ACM Press, 2004, pp. 344–353.

187

BIBLIOGRAPHY

[56] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel

Wichs. “Efficient Public-Key Cryptography in the Presence of Key Leakage”.

In: ASIACRYPT 2010. Ed. by Masayuki Abe. Vol. 6477. LNCS. Singapore:

Springer, Berlin, Germany, 2010, pp. 613–631.

[57] Danny Dolev, Cynthia Dwork, and Moni Naor. “Nonmalleable Cryptogra-

phy”. In: SIAM Journal on Computing 30.2 (2000), pp. 391–437.

[58] EMV Specifications, Version 4.2, Books 1–4. http://www.emvco.com/. 2008.

[59] Jia Fan, Yuliang Zheng, and Xiaohu Tang. “A Single Key Pair is Adequate for

the Zheng Signcryption”. In: ACISP 11. Ed. by Udaya Parampalli and Philip

Hawkes. Vol. 6812. LNCS. Melbourne, Australia: Springer, Berlin, Germany,

2011, pp. 371–388.

[60] David Freeman, Michael Scott, and Edlyn Teske. “A Taxonomy of Pairing-

Friendly Elliptic Curves”. In: Journal of Cryptology 23.2 (Apr. 2010), pp. 224–

280.

[61] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. “Pairings for

cryptographers”. In: Discrete Applied Mathematics 156.16 (2008), pp. 3113–

3121.

[62] David Galindo, Javier Herranz, and Jorge L. Villar. “Identity-Based Encryp-

tion with Master Key-Dependent Message Security and Leakage-Resilience”.

In: ESORICS 2012. Ed. by Sara Foresti, Moti Yung, and Fabio Martinelli.

Vol. 7459. LNCS. Pisa, Italy: Springer, Berlin, Germany, 2012, pp. 627–642.

[63] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. “Witness encryp-

tion and its applications”. In: Proceedings of the 45th annual ACM symposium

on Symposium on theory of computing. ACM. 2013, pp. 467–476.

[64] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Ra-

bin. “Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for

Security against Hardware Tampering”. In: TCC 2004. Ed. by Moni Naor.

Vol. 2951. LNCS. Cambridge, MA, USA: Springer, Berlin, Germany, 2004,

pp. 258–277.

[65] Craig Gentry. “Practical Identity-Based Encryption Without Random Ora-

cles”. In: EUROCRYPT 2006. Ed. by Serge Vaudenay. Vol. 4004. LNCS. St.

Petersburg, Russia: Springer, Berlin, Germany, 2006, pp. 445–464.

[66] David Goldenberg and Moses Liskov. “On Related-Secret Pseudorandom-

ness”. In: TCC 2010. Ed. by Daniele Micciancio. Vol. 5978. LNCS. Zurich,

Switzerland: Springer, Berlin, Germany, 2010, pp. 255–272.

188

BIBLIOGRAPHY

[67] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. “A Digital Signature

Scheme Secure Against Adaptive Chosen-message Attacks”. In: SIAM Jour-

nal on Computing 17.2 (Apr. 1988), pp. 281–308.

[68] Maria Isabel Gonzalez Vasco, Florian Hess, and Rainer Steinwandt. “Com-

bined (Identity-Based) Public Key Schemes”. Cryptology ePrint Archive, Re-

port 2008/466. http://eprint.iacr.org/. 2008.

[69] Vipul Goyal, Adam O’Neill, and Vanishree Rao. “Correlated-Input Secure

Hash Functions”. In: TCC 2011. Ed. by Yuval Ishai. Vol. 6597. LNCS. Prov-

idence, RI, USA: Springer, Berlin, Germany, 2011, pp. 182–200.

[70] Jens Groth. “Simulation-Sound NIZK Proofs for a Practical Language and

Constant Size Group Signatures”. In: ASIACRYPT 2006. Ed. by Xuejia Lai

and Kefei Chen. Vol. 4284. LNCS. Shanghai, China: Springer, Berlin, Ger-

many, 2006, pp. 444–459.

[71] Jens Groth and Rafail Ostrovsky. “Cryptography in the Multi-string Model”.

In: CRYPTO 2007. Ed. by Alfred Menezes. Vol. 4622. LNCS. Santa Barbara,

CA, USA: Springer, Berlin, Germany, 2007, pp. 323–341.

[72] Stuart Haber and Benny Pinkas. “Securely Combining Public-Key Cryptosys-

tems”. In: ACM CCS 01. Philadelphia, PA, USA: ACM Press, 2001, pp. 215–

224.

[73] Kristiyan Haralambiev. “Efficient Cryptographic Primitives for Non-Interac-

tive Zero-Knowledge Proofs and Applications”. PhD thesis. New York Uni-

versity, May 2011.

[74] Florian Hess. “Efficient Identity Based Signature Schemes Based on Pair-

ings”. In: SAC 2002. Ed. by Kaisa Nyberg and Howard M. Heys. Vol. 2595.

LNCS. St. John’s, Newfoundland, Canada: Springer, Berlin, Germany, 2003,

pp. 310–324.

[75] Dennis Hofheinz. “Circular Chosen-Ciphertext Security with Compact Ci-

phertexts”. In: EUROCRYPT. Vol. 7881. Lecture Notes in Computer Science.

To appear. Springer, 2013, pp. 520–536.

[76] Dennis Hofheinz and Eike Kiltz. “Programmable Hash Functions and Their

Applications”. In: CRYPTO 2008. Ed. by David Wagner. Vol. 5157. LNCS.

Santa Barbara, CA, USA: Springer, Berlin, Germany, 2008, pp. 21–38.

[77] John Kelsey, Bruce Schneier, and David Wagner. “Protocol Interactions and

the Chosen Protocol Attack”. In: Security Protocols Workshop. Ed. by Bruce

Christianson, Bruno Crispo, T. Mark A. Lomas, and Michael Roe. Vol. 1361.

LNCS. Springer, Berlin, Germany, 1997, pp. 91–104.

189

BIBLIOGRAPHY

[78] Eike Kiltz. “Chosen-Ciphertext Secure Key-Encapsulation Based on Gap

Hashed Diffie-Hellman”. In: PKC 2007. Ed. by Tatsuaki Okamoto and Xi-

aoyun Wang. Vol. 4450. LNCS. Beijing, China: Springer, Berlin, Germany,

2007, pp. 282–297.

[79] Vlastimil Kĺıma and Tomás Rosa. “Further Results and Considerations on

Side Channel Attacks on RSA”. In: CHES 2002. Ed. by Burton S. Kaliski

Jr., Çetin Kaya Koç, and Christof Paar. Vol. 2523. LNCS. Redwood Shores,

California, USA: Springer, Berlin, Germany, 2002, pp. 244–259.

[80] Lars R. Knudsen. “Cryptanalysis of LOKI91”. In: AUSCRYPT’92. Ed. by

Jennifer Seberry and Yuliang Zheng. Vol. 718. LNCS. Gold Coast, Queens-

land, Australia: Springer, Berlin, Germany, 1992, pp. 196–208.

[81] Yuichi Komano and Kazuo Ohta. “Efficient Universal Padding Techniques for

Multiplicative Trapdoor One-Way Permutation”. In: CRYPTO 2003. Ed. by

Dan Boneh. Vol. 2729. LNCS. Santa Barbara, CA, USA: Springer, Berlin,

Germany, 2003, pp. 366–382.

[82] Kaoru Kurosawa and Yvo Desmedt. “A New Paradigm of Hybrid Encryption

Scheme”. In: CRYPTO 2004. Ed. by Matthew Franklin. Vol. 3152. LNCS.

Santa Barbara, CA, USA: Springer, Berlin, Germany, 2004, pp. 426–442.

[83] Chung Ki Li, Guomin Yang, Duncan S. Wong, Xiaotie Deng, and Sherman

S. M. Chow. “An Efficient Signcryption Scheme with Key Privacy”. In: Eu-

roPKI 2007. Ed. by Javier Lopez, Pierangela Samarati, and Josep L. Ferrer.

Vol. 4582. LNCS. Springer, Berlin, Germany, 2007, pp. 78–93.

[84] Benôıt Libert and Jean-Jacques Quisquater. “Efficient Signcryption with Key

Privacy from Gap Diffie-Hellman Groups”. In: PKC 2004. Ed. by Feng Bao,

Robert Deng, and Jianying Zhou. Vol. 2947. LNCS. Singapore: Springer,

Berlin, Germany, 2004, pp. 187–200.

[85] Benôıt Libert and Jean-Jacques Quisquater. “Improved Signcryption from

q-Diffie-Hellman Problems”. In: SCN 04. Ed. by Carlo Blundo and Stelvio

Cimato. Vol. 3352. LNCS. Amalfi, Italy: Springer, Berlin, Germany, 2004,

pp. 220–234.

[86] Stefan Lucks. “Ciphers Secure against Related-Key Attacks”. In: FSE 2004.

Ed. by Bimal K. Roy and Willi Meier. Vol. 3017. LNCS. New Delhi, India:

Springer, Berlin, Germany, 2004, pp. 359–370.

190

BIBLIOGRAPHY

[87] Tal Malkin, Isamu Teranishi, and Moti Yung. “Efficient Circuit-Size Indepen-

dent Public Key Encryption with KDM Security”. In: EUROCRYPT 2011.

Ed. by Kenneth G. Paterson. Vol. 6632. LNCS. Tallinn, Estonia: Springer,

Berlin, Germany, 2011, pp. 507–526.

[88] John Malone-Lee. “Signcryption with Non-interactive Non-repudiation”. In:

Des. Codes Cryptography 37.1 (2005), pp. 81–109.

[89] Takahiro Matsuda, Kanta Matsuura, and Jacob C. N. Schuldt. “Efficient

Constructions of Signcryption Schemes and Signcryption Composability”. In:

INDOCRYPT 2009. Ed. by Bimal K. Roy and Nicolas Sendrier. Vol. 5922.

LNCS. New Delhi, India: Springer, Berlin, Germany, 2009, pp. 321–342.

[90] M. González Muñiz and R. Steinwandt. “Security of signature schemes in the

presence of key-dependent messages”. In: Tatra Mt. Math. Publ. 47 (2010),

pp. 15–29.

[91] Kenneth G. Paterson, Jacob C. N. Schuldt, Martijn Stam, and Susan Thom-

son. “On the Joint Security of Encryption and Signature, Revisited”. In:

ASIACRYPT 2011. Ed. by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073.

LNCS. Seoul, South Korea: Springer, Berlin, Germany, 2011, pp. 161–178.

[92] Duong Hieu Phan and David Pointcheval. “About the Security of Ciphers (Se-

mantic Security and Pseudo-Random Permutations)”. In: SAC 2004. Ed. by

Helena Handschuh and Anwar Hasan. Vol. 3357. LNCS. Waterloo, Ontario,

Canada: Springer, Berlin, Germany, 2004, pp. 182–197.

[93] Phillip Rogaway. “Authenticated-Encryption With Associated-Data”. In:

ACM CCS 02. Ed. by Vijayalakshmi Atluri. Washington D.C., USA: ACM

Press, 2002, pp. 98–107.

[94] John Rompel. “One-way functions are necessary and sufficient for secure

signatures”. In: 22nd ACM STOC. Baltimore, Maryland, USA: ACM Press,

1990, pp. 387–394.

[95] Karl Rubin and Alice Silverberg. “Compression in Finite Fields and Torus-

Based Cryptography”. In: SIAM J. Comput. 37.5 (2008), pp. 1401–1428.

[96] Amit Sahai. “Non-Malleable Non-Interactive Zero Knowledge and Adaptive

Chosen-Ciphertext Security”. In: 40th FOCS. New York, New York, USA:

IEEE Computer Society Press, 1999, pp. 543–553.

[97] Sergei P. Skorobogatov and Ross J. Anderson. “Optical Fault Induction At-

tacks”. In: CHES 2002. Ed. by Burton S. Kaliski Jr., Çetin Kaya Koç, and

Christof Paar. Vol. 2523. LNCS. Redwood Shores, California, USA: Springer,

Berlin, Germany, 2002, pp. 2–12.

191

BIBLIOGRAPHY

[98] Brent R. Waters. “Efficient Identity-Based Encryption Without Random Or-

acles”. In: EUROCRYPT 2005. Ed. by Ronald Cramer. Vol. 3494. LNCS.

Aarhus, Denmark: Springer, Berlin, Germany, 2005, pp. 114–127.

[99] Hoeteck Wee. “Public Key Encryption against Related Key Attacks”. In:

PKC 2012. Ed. by Marc Fischlin, Johannes Buchmann, and Mark Manulis.

Vol. 7293. LNCS. Darmstadt, Germany: Springer, Berlin, Germany, 2012,

pp. 262–279.

[100] Yuliang Zheng. “Digital Signcryption or How to Achieve Cost(Signature &

Encryption) << Cost(Signature) + Cost(Encryption)”. In: CRYPTO’97. Ed.

by Burton S. Kaliski Jr. Vol. 1294. LNCS. Santa Barbara, CA, USA: Springer,

Berlin, Germany, 1997, pp. 165–179.

192

