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Abstract—In this paper, we point out the use of secret sharing
strategies as a promising solution for managing the key distribu-
tion and recovery in the Radio Frequency IDentification (RFID)-
enabled supply chains. To this end, we designed a new model
based on a secret sharing approach to solve the key distribution
issue within the supply chains. We further proposed a secret
key update protocol incorporating a resynchronisation capability
to counter the disruptive effects of location tracking, replay
attacks, and desynchronisation attacks. Compared with relevant
approaches, our work demonstrates a number of advantages in
terms of security and performance.
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I. INTRODUCTION

RFID is a wireless technology that uses radio signals to

identify objects [1]. RFID is composed of three main com-

ponents, namely a tag, a reader and a back-end server. The

reader broadcasts a radio frequency (RF) signal to power and

communicate with RFID tags without any physical contact;

the RFID tag is attached to an item and transmits the stored

information to nearby reader through the RF channel. The

reader sends the tag’s data to the backend server, which in

turn stores data about the RFID tags it manages.

In this paper, we focus on the supply chain management,

where thousands or millions of inbound and outbound products

move from the manufacturer to the customers. These products

should be correctly identified, verified and sorted at different

points in the supply chain. Normally, there are three main

parties within the supply chain: the manufacturer, the distrib-

utor centers (DC) and the retailer stores. The manufacturer

dispatches the cases to different distributors who then send

the products to the retailer stores, and in some instances the

distributor may dispatch the cases to other distributor as shown

in Fig. 1. We use the term “case” as the generic term for a

collection of goods and the term “good” for the product itself.

Fig. 1. Supply chain parties

RFID has captured the attention of many leading supply

chain companies to make this technology feasible. The RFID

technology enables the supply chain to identify, track and

verify the products automatically and in real time. By using the

RFID technology, all the parties has to store the products’ data

in their database. The database and the product’s tag should

share a secret key for protecting the data during transmission.

Thus, the secret key should be distributed among all the parties

involved in the supply chain.

Basically, a secret key distribution must rely on secure

channels established through pre-existing trust relationships.

However, in supply chain practice, especially for ad hoc supply

chain structures, there is often a lack of trust between the

parties involved, as the products’ owner may not know the

next owner [2]. Moreover, the wireless channel between the

reader and tags is vulnerable to possible attacks such as replay

attacks, Denial of Service attacks (DoS), counterfeiting attacks

and location tracking [3].

One solution to secure the communication channel is to

encrypt the exchanged data with a secret key. Yet, the question

remains regarding how to keep the secret key uncompromised.

Research has been done concerning the possibility of dis-

tributing the secret key securely in the RFID supply chain

via deploying the secret sharing approach.

Adi Shamir [4] proposed a secret sharing approach, where

a secret can be divided into (n) parts that, individually, do not

render any useful information about the secret. To reconstruct

the secret, not all the parts are needed, any (k) of the parts

are sufficient to reconstruct the original secret. This scheme is

called a (k, n) threshold scheme.

The main contribution of this paper include:

1) A proposal has been introduced in [5], where the authors

proposed to distribute one secret key securely among

the supply chain parties by using a secret key sharing

approach. Their model assumes that the distributor area

is secure as the adversaries have no access. The reader

can refer to Section III-A for more details.

However, in this paper, unlike Jules et al. assumption

that the distributer centers are secure, we assume that

any place outside the manufacturing area is insecure,

thus we designed a protocol for protecting the tags’

data outside the manufacturing area. Beside that, we

improve their model by generating two secret keys, one

key for the cases that hold the products and the other

key is for the products’ tags. Hence, facilitating the cases

identification for the distributer as it needs to read the

cases’ tags only not all the products’ tags.

2) Cai et al. [6] found that Jules et al. model [5] is

vulnerable to location tracking and counterfeiting attack.

Thus, they designed a protocol for updating the secret

key after recovering enough shares and authenticating

the tags successfully. Therefore, the tag will respond

with new data. The reader is referred to Section III-B for

more details. However, we discovered that an attacker

can desynchronise a tag without even compromising the

internal data stored in the tag. As as result, the attacker
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will be able to track the location of the tag and render the

tag unusable in the next session. Hence, in this paper, we

propose a new secret key update protocol in the RFID-

enabled supply chains to prevent such attacks.

The operational environment of the proposed model is

shown in Table I. In Table I, we assume that there are

two distributors for clarification but it can be more.

The remainder of the paper is organised as follows: Section

II lists the main goals of the proposed scheme. Section III

summarises the main related work to key distribution in the

RFID-enabled supply chain. In Section IV we explain the

proposed scheme in detail. Section V is an analysis of our

proposed scheme against the stated security requirements.

Section VI discusses the parameterization issues. Finally,

Section VII provides the concluding remarks.

II. THE MAIN REQUIREMENTS AND GOALS

The proposed model should meet the following require-

ments and goals:

• Privacy: The designed scheme must achieve two impor-

tant notions related to privacy namely:

– Tag information privacy: RFID tags should provide

a mechanism for preventing the tag information

from being revealed by any malicious reader. For

example, encrypting the tag’s reply will only allow

an authorised reader to decrypt it.

– Untraceability: If the data being sent from the tag to

the reader is static or linked to data sent previously,

the tag’s holder location can be tracked without his

knowledge. Therefore, the RFID tag’s data should be

anonymous and unlinkable.

• Security: The designed protocol should resist the follow-

ing attacks:

– Replay attack: The adversary can eavesdrop on the

communication between a reader and tag, reuse the

data and send it repeatedly.

– Desynchronisation attack: The adversary can eaves-

drop on the communication between a reader and tag,

and prevent messages from reaching their target, thus

causing a desynchronisation attack.

– Tag and reader impersonation attack: The attacker

sends a message to the reader that claims to come

from a legitimate tag, and this message fabrication

enables the attacker to masquerade as a legitimate

tag. The same applies to the reader impersonation.

– Secret key secrecy: We require that the adversary

cannot recover the secret key unless he can get access

to at least (k) shares..

• Mutual authentication: The scheme should provide a

mutual entity authentication, where the communication

should take place between valid tags and readers and

provide assurance to the receiver (reader) about the

identity of the sender (tag) and vice versa.

• Flexibility: The proposed model should allow all the

participants in the supply chain to change the threshold

parameters to process the cases and goods that have been

divided into smaller or larger quantities.

III. RELATED WORK

Most of the proposed privacy enhanced RFID mutual au-

thentication protocols such as [3], [14]–[18] are based on

storing the secret key used for authentication in a database.

This may fail on delivering the secret key to the correct parties

especially when a large scale of RFID tags move along ad hoc

supply chains.

A practical solution to the key distribution problem is the

secret sharing approach. Some research have been proposed to

distribute the secret key securely based on the notion of secret

key sharing [2], [5]–[7].

To begin, Langheinrich et al. [7] proposed the “Shamir

tag”, which is the first proposal based on using secret sharing

approach in the RFID systems to protect the transmission of

the tag’s ID. This approach splits the ID of a tag into multiple

shares based on Shamir secret sharing scheme [4], and stores

all the shares on the tag itself. These shares are concatenated

to form the new ID of a tag. Upon a reader’s inquiry, an initial

set of random bits from the new ID is released, followed by

subsequent throttled single-bit releases. Once the entire new

ID is released, the reader can compute the original ID. In this

scheme, an RFID reader requires several minutes to recover

the ID, which is not practical in the supply chain, where a

large number of tags need to be processed [6].

Li et al. [2] proposed a new scheme called “Resilient Secret

Sharing (RSS)”. In this paper, the authors designed a secure

and practical key distribution system between three parties (A,

B, C) in the supply chain. Each tag stores two shares; one

share belongs to the secret key (x) between A and B, and the

other share is intended for the secret key (y) between A and

C. The secret key (x) is divided into multiple shares that are

stored in (r) tags, and the remaining shares (n-k-r) are stored

in the database, where n is the number of shares, and k is

the number of shares required to reconstruct the secret key.

The same process is done on the secret key (y). Although

this scheme is secure, the key shares are still distributed to a

database, which does not solve the key distribution problem.

In this paper we focus on two research papers [5] and [6] as

they are relevant to our main goals. These papers are discussed

further in the following section.

A. Review of Jules et al. unidirectional RFID key distribution

In [5], the author proposed a secret key sharing approach to

be used within the RFID-enabled supply chain to protect the

transmission of the tag’s ID. This approach does not require

any computations on the tag side, the tag just stores two values

and sends them to the reader.

The authors suggested the following:

• A group of tags share one secret key (K).

• Using a threshold scheme (k, n) where k ≤ n, the secret

key is divided into (n) shares, only (k) shares are needed

to reconstruct the secret key.

• The ith tag Ti stores two values namely share (Si) and a

symmetrically encrypted information (EK(EPCi)), where

the Electronic Product Code (EPC) [8] is a universal

identifier that provides a unique identity to every tag.

• Each ith good’s tag sends (Si, EK (EPCi)) to any dis-

tributer/retailer reader who queries it.

• When the reader receives k shares from the goods’tags,

it recovers the secret key and obtains the EPC value for

each tag.

The authors claim that their protocol is secure due to the

following reasons:
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TABLE I
THE OPERATIONAL ENVIRONMENT OF THE PROPOSED MODEL

Responsibility Aim

Manufacturer

1- Use two types of RFID tags. A tag attached to each case that holds
the products, and a tag attached to each product in the case.

Facilitate the cases identification process within the dis-
tributer center.

2- Generate two secret keys, one key is for the cases that hold the
products and the other key is for the products’ tags, and divide them
into multiple shares.

Encrypt the tags’ unique IDs and protect the tag’s identity
from being revealed.

3- Specify the secret key threshold to recover the secret keys.
4- Assign one share of the cases’ secret key to each case’s tag along
with the encrypted tag’s ID and any other values.
5- Assign one share of the products’ secret key to each product’s tag
along with the encrypted tag’s ID and any other values.
6- Lock all the products’ tags with different PINs. Protect the goods’ tags from revealing their data to any

entity.

Distributer 1
Stage 1:
Read all the cases’ tags and collect enough shares to recover the cases’
secret key.

Authenticate the cases’ tags.

Stage 2:
1- Update the secret key and generate new shares. 1- Distribute the cases to downstream distributer(s) with

new secret key threshold.
2- Resist replay attack, desynchronisation attack and
impersonation attack.

2- Dispatch the products to the next distributer.

Distributer 2 1- Read all the cases’ tags and collect enough shares to recover the
cases’ secret key.

Authenticate the cases’ tags.

2- Dispatch the products to the retailer.

Retailer
1- Retrieve a list of PINs (from step 6 above) associated to each
product’s tag from the manufacturer.

Allow the retailer’s reader to unlock the tag.

2- Unlock the tags.
3- Read all the products tags and collect enough shares to recover the
products’ secret key.

Authenticate the products’ tags.

• This scheme provides an efficient solution for a tag

ownership transfer, as there is no need to distribute the

secret key in the supply chain databases.

• The adversary will not be able to recover the secret key

when he obtains the two values (Si, (EK (EPCi))) from a

customer’s tag as he needs to collect k shares to recover

the secret key.

• The authors assumed that the manufacturer and distributer

centers are secure where the adversary does not have

access, only the legitimate parties can collect k shares.

Cai et al. [6] shows that the tag’s response can be tracked as

(Si, EK(EPCi)) are fixed and sent to any reader who queries

it. Also, an adversary can obtain the fixed tag’s reply, and thus

he is able to counterfeit the tag.

In addition, from our point of view, it is inefficient for the

distributer to scan all the goods’ tags to find the secret key.

The distributor’s concern is to make sure that all the cases

containing goods are delivered safely.

B. Review of Cai et al. secret key update protocol

Cai et al. [6] proposed an enhanced protocol for Jules et al.

scheme [5] to avoid tag tracking and counterfeiting attacks.

They presented a protocol for updating the secret key (K) and

shares (S) after recovering the secret key and authenticating

the tag successfully, thus the tag will respond with new values.

The authors proposed to store a new data called (c) to serve

as a secret value and to authenticate the reader before updating

the data. This value is stored in the tag i.e. ci=h(K ‖ Si),

where (h) is a hash function, h:{0,1}∗→ {0,1}L, and L is the

security parameter. The tag responds to the reader query with

three values namely (Si, ci, Mi), where Mi=EK (EPCi).

During manufacturing, the manufacturer assigns the initial

data (Si, ci, Mi) to the tag. The protocol uses simple cryp-

tographic functions such as hash function, XOR operator (⊕)

and concatenation operator (‖). A ← B means that the value

of A is updated to that of B.

The protocol in [6] is described as follows:

• Tag→ Reader: The tag Ti sends (Si, ci, M) to the reader.

• Reader: After receiving k shares and recovering the secret

key, the reader calculates ci=h(K ‖ Si) to find a match

with the received ci, if there is a match, it authenticates

the tag.

• Reader: If the reader successfully authenticated the tag

Ti, the reader generates a new secret key K′, divides it

into (n) new shares, calculates Mi
′ and generates a new

threshold(k′, n′).

• Reader: For the ith tag Ti, the reader calculates:

– ci
′=h(K′ ‖ Si

′)

– A=(Si
′ ‖ Mi

′) ⊕ h(’0’ ‖ ci)

– B=ci
′ ⊕ h(1 ‖ ci)

– C=h(ci ‖ Si
′ ‖ Mi

′ ‖ ci
′)

• Reader → Tag: The reader sends (A,B,C) to Ti.

• Tag: After receiving (A,B,C) from the reader, Ti com-

putes:

– (Si
′ ‖ Mi

′)=A ⊕ h(’0’ ‖ ci)

– ci
′=B ⊕ h(1 ‖ ci)

If C=hash(ci ‖ Si
′ ‖Mi

′ ‖ ci
′), the reader is authenticated.

Then Ti updates its values to:

– Si ← Si
′

– Mi ← Mi
′

– ci ← ci
′

Cai et al. claim that their protocol is immune against

location tracking, as the tag data are updated after a successful

key recovery process. Thus, the tag will reply with new data

every time the reader queries it. However, we deduce three

attacks over their protocol namely desynchronisation attack,

location tracking, and failure tag authentication. The attacks
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work as follows:

1) Desynchronisation attack:

Cai et al. protocol does not provide resistance to desyn-

chronisation attack. An adversary can easily cause a syn-

chronisation failure by intercepting the communication

between the reader and the tag. If the reader’s messages

sent to x tags, where x < k, are blocked, the next owner’s

reader will not be able to recover the new secret key and

complete the authentication, causing a desynchronisation

attack.

2) Location tracking:

Since the tag does not receive any data from the reader as

a result of a desynchronisation attack, it will reply with

the same data (Si, ci, Mi) for every query it receives,

and hence permits location tracking.

3) Authentication failure:

The reader will not authenticate the compromised tag

anymore due to desynchronising the tag’s data, hence

rendering the tag unusable.

IV. A KEY DISTRIBUTION IN AN RFID-ENABLED SUPPLY

CHAINS SCHEME

In order to solve the security and flexibility problems

found in previous works [2], [5]–[7] while maintaining their

merits, we propose a flexible and secure key management and

recovery model as an enhancement of the Jules et al. model

and Cai et al. secret key update protocol. The details of our

work are illustrated below.

A. Our approach

The proposed scheme is described below:

1) Manufacturer initialisation process:

The main goal of this process is to protect the secret keys

namely (KC and KT ) from being revealed during the transmis-

sion to the next owner. The manufacturer does the following:

1) The manufacturer generates two random numbers (R1

and R2).

2) The manufacturer calculates KC=h(R1) and KT =h(R2)

where h is a one-way hash function. KC is the secret

key for the cases and KT is the secret key for the goods.

3) The manufacturer splits KC into n shares and stores one

share (Si) in the ith case’s tag memory. Similarly, KT is

divided into n′ shares, where each share (Si
′) is stored

in the ith good’s tag memory, as shown in Fig. 2.

4) The manufacturer specifies the threshold (k, n) for

recovering (KC) secret key and (k′, n′) for recovering

(KT ) secret key. We assume that the number of shares (k,

k′) is large enough to prevent the attacker from reading

k or k′ shares.

5) For each tag Ti in the cases, the manufacturer computes

Ci=h(KC ⊕ Si) and stores Ci in the case tag’s memory

for authenticity purpose.

6) To ensure privacy of the tag’s data, such as EPC during

transmission, the manufacturer encrypts each case tag’s

EPC value and stores it in the tag’s memory, i.e. EPC-

Casei=EKC
{EPCi}, and similarly encrypts the EPC

value of each good’s tag and stores it in the tag’s

memory, i.e. EPC-Tagi=EKT
{EPCi}, where EKC

and

EKT
represent a symmetric key encryption using KC

and KT , respectively.

7) The manufacturer locks only the goods’ tags with an

access-PIN, thus the tag will only send its data to the

intended retailer(s) if it receives the correct access-PIN.

8) The manufacturer puts the goods inside the cases and

then sends these cases to the next distributer.

2) Distributor key recovery:

In this section we discuss the key recovery process when all the

cases reach the distributor. The distributor uses the threshold

scheme to recover the secret key (KC), decrypt the encoded-

EPC (EPC-Casen) and obtain the EPC values.

• When the distributor ensures that all the expected cases

have arrived, the reader scans the cases’ tags.

• Each tag sends (Si, Ci, EPC-Casei) to the reader.

• The reader collects k shares to obtain the secret key (KC).

• The reader decrypts EPC-Case for each case’s tag using

the recovered secret key (KC) to retrieve the EPC value.

• The reader re-calculates Ci=h(KC ⊕ Si) for every cases’

tags to authenticate the cases. If there is a match, the

distributer looks for the next owner:

– If the next owner is another distributor the secret

key update process is performed as shown in Section

IV.A.3.

– In case that the next owner is a retailer, the

distributor updates the threshold of the goods’ tags

(knew
′, nnew

′) to fit the new dispatched items as

shown in Section IV.A.4. In addition, the distributor

should destroy the cases’ tags as they will not be

used anymore; hence avoid tampering or tracking

the cases’ tags.

3) Distributer secret key update process:

This process occurs only if the next owner of the RFID tags

is another distributor. The main goals of updating the secret

key and the threshold are to prevent location tracking and

counterfeiting attacks. If KC , Si and EPC-Casei are fixed, the

attacker will be able to trace the location of the tag and/or

obtain such data to counterfeit a legitimate tag. The secret

key update process and resynchronisation process is shown in

Table II.

• Distributor key initialisation process:

Once the reader recovered the secret key, and obtained

EPCi for a specific tag Ti, it does the following:

1) The reader generates a random number (R).

2) The reader calculates KC
′=h(R). KC

′ is the new

secret key for the cases.

3) For each tag, the reader computes EPC-

Case2i=EKC

′{EPCi} for the ith tag in the

system.

4) The reader divides KC
′ into n new shares (Sn

′).

5) The reader specifies the new threshold parameters

(knew, nnew) for recovering (KC ').

6) The reader calculates Ci
′=h( KC

′ ⊕ Si
′).

7) To distribute the new values of Si
′, and Ci

′ securely

for the ith tag, the reader does as follows:

– Generates a random number R1.

– Calculates M1= h(EPCi ⊕ EPC-Case2i ⊕ R1 ⊕
Ci) ⊕ Si

′.

4



KC

S1 Sn

KT

S1
′ Sn

′

Fig. 2. Key splitting process

– Calculates M2= h(Si
′ ⊕ EPCi ⊕ R1) ⊕ Ci

′.

– Sends M1, M2, EPC-Case2i and R1 to the tag.

8) When the tag receives the messages, it obtains Si
′

and Ci
′ by calculating:

Si
′= M1 ⊕ h(EPCi ⊕ EPC-Case2i ⊕ R1 ⊕ Ci)

Ci
′= M2 ⊕ h(Si

′ ⊕ EPCi ⊕ R1)

Now, the tag guarantees that the reader has success-

fully recovered the secret key, decrypted EPC-Casei
and obtained EPCi. The tag updates its values to:

Si ← Si
′

EPC-Casei ← EPC-Case2i
Ci ← Ci

′

9) To inform the reader that the tag has received the

new data, it does the following operations:

– The tag generates a random number R2.

– The tag calculates M3= H(EPCi ⊕ Si ⊕ Ci ⊕ R1

⊕ R2), where Si and Ci are the updated values,

and sends M3 to the reader, along with R2.

10) The reader then recalculates M3. If there is a match,

the reader guarantees that the tag has updated its

values successfully.

11) The distributor dispatches the cases to the next dis-

tributor. However, if the reader did not receive M3

from the tag, the reader starts the resynchronisation

process as shown in the next section.

• Resynchronisation process:

If the reader did not receive M3 from the tag, then the

reader does the following:

1) To re-distribute (Si
′, Ci

′) securely for the ith tag,

the reader does as follows:

– Generates a new random number (R3).

– Computes M4= h(EPCi ⊕ EPC-Case2i ⊕ R3) ⊕
Si

′.

– Computes M5= h(Si
′ ⊕ EPCi ⊕ R3) ⊕ Ci

′.

– Sends a resynchronization request with M4, M5,

EPC-Case2i and R3 to the tag.

2) When the tag receives a resynchronisation request,

M4, M5, EPC-Case2 and R3, it re-computes M4

and M5 as in step 8 above.

a) If the received values of Si
′, EPC-Case2 and Ci

′

are equal to the current values, the tag assumes

that M3 did not reach the reader and keeps the

values the same without update.

b) If the received values of Si
′, EPC-Case2 and Ci

′

are not equal to the current values of Si, EPC-

Case and Ci, the tag updates its values to:

Si ← Si
′

EPC-Casei ← EPC-Case2i
Ci ← Ci

′

3) The tag generates a random number R4.

4) The tag calculates M6= H(EPCi ⊕ Si ⊕ Ci ⊕ R3

⊕ R4) and sends it to the reader along with R4 to

inform the reader that it received the new values.

The process is iterated until the reader assures that

the tag has updated its values.

5) The distributor dispatches the cases to the next

distributor.

4) Retailer key recovery process:

At this stage, the retailer wants to authenticate all the goods’

tags and retrieve their EPC values. The reader needs to unlock

the tag first and then recover the secret key KT to obtain the

EPC values form the tags.

The good’s tag data is both read and write locked so

everyone cannot read or modify the tag’s data, but only the

legitimate reader with the correct access-PIN. We assume

that the retailer contacts the manufacturer to retrieve a list

of the access-PIN values attached with the tag’s sequence

number to unlock the tag, and stores them in a database.

The authentication and authorisation between the retailer and

manufacturer is beyond the scope of this paper.

The purpose of locking the tag is to prevent it from sending

the values of Si and EPC-Tagi to any reader query, which in

turn permits location tracking and impersonation attacks. Thus,

in order to obtain the tag’s data, the reader has to have the

correct access-PIN.

The retailer key recovery process is shown in Table III and

summerised below:

• To unlock the tag, the reader sends a random number R1

to the tag as a challenge. The tag responses with another

random number R2 and the tag’s sequence number.

• The reader retrieves the access-PIN based on the re-

ceived sequence number from the database, and calculates

PIN=h(R1 ⊕ R2 ⊕ access-PIN), and sends PIN to the tag.

• The tag re-calculates PIN. If the received PIN is correct,

the tag calculates M1= h(access-PIN ⊕ R1) ⊕ Si and

sends it to the reader along with EPC-Tagi.
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• The reader re-calculates M1 ⊕ h(access-PIN ⊕ R1) to

obtain Si. After unlocking all the tags, the reader collects

k' shares to recover KT .

• Finally, the reader decrypts EPC-Tagi based on the re-

covered KT and retrieves EPCi for every ith tag.

V. ANALYSIS

The proposed model also provides protection against the

following attacks:

• Reader impersonation attack: An attacker may attempt

to generate a fake random number and send it with the

messages (M1, M2, EPC-Case2i) to the tag in order

to modify the tag with incorrect values. However, the

attacker cannot calculate M1 and M2, as they involve a

secret value namely (EPCi), which is 144 bits length, that

is only known to the tag and legitimate reader. Moreover,

the attacker cannot impersonate a retailer reader as he

needs first to be authenticated by the manufacturer to

retrieve a list of access-PINs.

• Tag impersonation attack: The attacker cannot send M3

on behalf of the tag to the reader, as it involves three

secret values unknown to the attacker (EPCi, Si, Ci) and

it is a result of a one-way hash function that is pre-image

resistant.

The attacker cannot impersonate a good’s tag once he

obtained M1,and EPC-Tagi from a previous compromised

session as he needs to know the access-PIN value to

accomplish such attack.

• Desynchronisation attack: The new secret update protocol

addresses the realistic scenario, where messages might

not reach their intended recipient due to accidental or

malicious interference. The following scenario needs to

be considered:

– If the reader does not receive M3 from the tag

within a specific timeout, the reader will assume

that the tag did not receive M1 and M2, or M3 was

lost during transmission, so the reader will start the

resynchronisation process and send M4, M5, EPC-

Case2 and R3. Similarly, if the resynchronisation

messages are blocked or M6 was lost, after timeout

the reader will restart the resynchronisation process.

Eventually, when the jamming stops, the tag and reader

will resynchronise and will be able to authenticate each

other. In summary, as long as the desynchronise attack is

not continuous, the tag and reader will eventually be able

to synchronise. All the attacker can gain by jamming the

messages is to delay the synchronisation process.

• Tag information privacy: The aim of the proposed model

is to protect the identity of the tags (EPC). The value of

the EPC is protected via encrypting it with a secret key.

This key is not openly distributed and is not stored in the

participants’ database. Also, the tag does not maintain

the secret key in its memory. Hence, the attacker cannot

obtain the value of EPC unless he collects k shares. It

will take up to (2144) attempts to guess the EPC value,

which is conceptually strong. Moreover, the access-PIN

is not sent in clear, it is protected via the hash function.

• Untraceability: The tag’s secret key KC , S, EPC-Case

and C values are updated after each successful key

recovery process, so the tag’s responses will be different

for every reader query. Hence, the attacker cannot track

the tag’s location.

Resynchronisation process plays an important role in

preventing location tracking as the reader keeps resending

the new updated data until it confirms that the tag has

successfully changed its data.

Furthermore, the attacker will not be able to track the

good’s tag purchased by a customer as he needs a correct

access-PIN to read the tag’s data.

• Replay attack: The intruder can eavesdrop on a session,

obtain M1 and M2 and resend the messages to the tag.

Then, the tag authenticates the intruder, changes its data

and sends M3. However, the proposed protocol utilises a

challenge-response scheme, where each party maintains a

set of random numbers it has seen from previous protocol

run to avoid repeatable random numbers.

In the retailer store, the attacker cannot replay the PIN

to the tag because it involves fresh random numbers. As

highlighted in the previous paragraph the tag maintains a

set of random numbers it has seen from previous protocol

run to avoid replay attack.

• Forward security: In the proposed protocol, the cases’ tag

is updated with new values (S, EPC-Case, C), which are

totally independent from its previous values.

• Mutual authentication: The proposed protocol allows the

distributor’s reader to access the tag and update the tag’s

data by sending authentication messages M1 and M2,

which confirm that the reader has successfully recovered

the secret key and has obtained the right value of (EPCi).

Similarly, the tag also sends M3, which confirms to the

reader that the legitimate tag has successfully changed the

values of Si, EPCi and Ci, which can only be obtained

by a legitimate tag.

Similarly, the reader in the retailer shop cannot access

the tag until it authenticates itself to the tag via sending

the correct access-PIN, which can only be obtained by

the legitimate reader (authenticated by the manufacturer).

Also, the tag is authenticated to the reader via the access-

PIN which is previously assigned by the manufacturer.

• Flexibility: In our model, any legitimate party in the

supply chain can generate new secret sharing parame-

ters (knew,nnew). Thus, a downstream party may choose

knew≤k and nnew≤n to process small cases of tags,

or choose knew≥k and nnew≥n to process large cases

of tags. Beside that, the distributer needs only to read

the cases’ tags for an identification purpose instead of

scanning thousands or millions of the products’ tags.

As shown in Table IV, Cai et al [6] has several issues that

this paper attempts to address.

VI. PARAMETERIZATION

In real-world implementation, the µ-Chip Hibiki tag can be

employed [9]. This kind of tags has the capability to lock

all the banks in the tag’s memory via utilising a PIN (called

access-PIN in this paper) to lock the tag’s memory.

An EPC tags memory is logically divided into four banks

namely, reserved memory for storing the kill and access pass-

words, UII memory for storing the EPC code, TID memory

for storing the tag identifier value, and user memory which

allows user-specific data storage.

6



TABLE II
DISTRIBUTER SECRET KEY UPDATE PROCESS

Reader Tagi
[EPCi, Si, EPC-Casei, Ci]

←−−−−−−−−−−−−−−−−−−−→
Successfullyrecoverthekey

1- Generates a random number R
2- Calculates KC

′=h(R)
3- Encrypts EPC-Case2i=EKC

′{EPCi}
4- Divides the new secret KC

′ into new n
shares
5- Generates a random number R1
6- Calculates M1= h(EPCi ⊕ EPC-Case2i
⊕ R1 ⊕ Ci) ⊕ Si

′,
M2= h(Si

′ ⊕ EPCi ⊕ R1) ⊕ Ci
′

7- Sends M1, M2, EPC-Case2i and R1
M1,M2,EPC−Case2i,R1−−−−−−−−−−−−−−−−−−→ 8- Calculates Si

′=M1⊕ h(EPCi ⊕ EPC-
Case2i ⊕ R1 ⊕ Ci),
Ci

′=M2 ⊕ h(Si
′ ⊕ EPCi ⊕ R1)

9- Updates its values to:
Si ← Si

′

EPC-Casei← EPC-Case2i
Ci← Ci

′

10- Generates a random number R2
11- Calculates M3= h(EPCi ⊕ Si ⊕ Ci ⊕
R1 ⊕ R2)

12- Recalculates M3
M3,R2←−−−−−

Resynchronisation process:

1- Generates R3
2- Computes M4= h(EPCi ⊕ EPC-Case2i
⊕ R3) ⊕ Si

′

M5= h(Si
′ ⊕ EPCi ⊕ R3) ⊕ Ci

′

Resynchronisationrequest,M4,M5,EPC−Case2i,R3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
3- Re-computes M4 and M5
4- If Si

′ == Si, EPC-Case2 == EPC-Case
and Ci

′ == Ci:
no update
else update:
Si ← Si

′

EPC-Casei← EPC-Case2i
Ci← Ci

′

5- Generates a random number R4

The process is iterated until the tag updates
its values successfully

M6,R4←−−−−− 6- Calculates M6= h(EPCi ⊕ Si ⊕ Ci ⊕
R3 ⊕ R4)

In the proposed scheme, the case’s tag stores four values

in a rewritable flash memory namely (EPC, S, EPC-Case, and

C). The size of each value is 144 bits length. The EPC value

is stored in the UII memory, and the values of (S, EPC-Case

and C) are stored in the user memory.

The good’s tag stores five variables namely (EPC, S, EPC-

Tag, access-PIN, and sequence) each of which is 144 bits

length. The access-PIN is stored in the reserved memory. The

EPC value is stored in the UII memory, and the S, EPC-Tag

and sequence values are stored in the user memory.

The designed scheme is compatible with µ-Chip Hibiki tag

chips that can store 272 bits in the EPC memory bank and

1536 bits in the user memory bank. Furthermore, additional

tag memory is necessary to store a list of random numbers re-

ceived from previous queries, for example by adding extended

on-chip non-volatile memory on the RFID tags.

Due to the limited computational power in the low cost

RFID tags, we propose to use the Keccak which has been

selected as the winner of the NIST SHA-3 competition in 2012

[10]. The design of the SHA-3 algorithm takes into account

the hardware implementation, so it has some properties of

lightweight hash function [11]. Kavun et al. [12] shows that

Keccak[400], which takes an input of size 144 bits, is suitable

for the RFID low cost tag. According to [12], the area of the

SHA-3 algorithm is around 5K gate equivalents (GE) which

confirms to the requirement of low-cost RFID tags (4-5K gates

for security modules).

Distributor scenario: We suppose there are a total of

100 cases (small numbers for more clarity). A manufacturer

randomly generates a 144 bits for instance, hashing it with

SHA-3, and then take the output as the secret key (KC) for the

cases. KC is then divided into 100 shares. The manufacturer

assigns exactly one share to each case. The manufacturer

employs, for example, a (80, 100) secret sharing threshold, so

the distributor needs to collect at least 80 shares to recover

the cases’ secret key. We chose the threshold to be 80 to

maximally tolerate (up to 20) reading errors.

Retailer scenario: Similarly, suppose we have 200 goods.

A manufacturer generates another random number 144 bits,

hashing it with SHA-3, and then takes the output as the secret

key (KT ) for the goods. KT is then divided into 200 shares.

The manufacturer assigns exactly one share to each good’s

tag. The distributor de-packs the goods and re-packs them

into smaller 80 goods and delivers them to retailer A, for

example. They employ a new (60, 80) secret sharing threshold,

so retailer A needs to collect at least 60 shares to recover the

7



TABLE III
RETAILER KEY RECOVERY PROCESS

Reader Tagi
[EPCi, Si, EPC-Tagi, access-PINi, sequencei]

1- Generates a random number R1
R1−−→

2- Generates a random number R2

3- Retrieves the access-PIN based on sequencei
R2,sequencei←−−−−−−−−−

4- Calculates PIN=h(R1 ⊕ R2 ⊕ access-PIN)
PIN−−−→ 5- Confirms the correctness of the PIN

If the received PIN is correct, the tag calculates M1=
h(access-PIN ⊕ R1) ⊕ Si

6- Obtains Si by calculating M1 ⊕ h(access-PIN ⊕ R1)
M1,EPC−Tagi←−−−−−−−−−−−

7-Collects k' shares to recover KT

8- Decrypts EPC-Tagi based on the recovered KT

9- Retrieves EPCi for every ith tag

TABLE IV
SECURITY FEATURES COMPARISON

Cai et al [6] Section IV

Reader impersonation
√ √

Tag impersonation
√ √

Desynchronisation attack × √
Tag information privacy

√ √
Untraceability × √
Replay attack × √
Forward security

√ √
Mutual authentication × √
Goods’ tag access control

√ √
Flexibility

√ √

goods’ secret key.

VII. CONCLUSION

In this paper, we proposed an improved version of a key

distribution and recovery model in the RFID-enabled supply

chain. Firstly, our scheme distributes the secret key securely

in the RFID-enabled supply chain via deploying the secret

sharing approach. Secondly, it updates the secret key after each

successful key recovery, and thus eliminates the threats asso-

ciated with location tracking. Thirdly, the proposed protocol

avoids replay attack using fresh random numbers generated by

the reader and tags. Fourthly, to counter the disruptive effects

of desynchronisation attacks, the protocol has a resynchronisa-

tion phase that is initiated by the reader whenever it suspects a

desynchronisation with the tag. Fourthly, the proposed scheme

permits the distributor to change the threshold based on the

dispatched items, also it facilitates the tags identification

process for the distributer. Finally, the proposed protocol meets

the main requirements of the low cost RFID tags in terms of

storage and computational costs.
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