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Abstract

The Learning with Errors (LWE) problem, introduced in 2005 by Regev, is a gener-

alisation to larger modulii of the Learning Parity with Noise problem and has proven

to be a remarkably versatile primitive for the construction of cryptographic schemes.

With an average-to-worst-case reduction from (assumed) hard lattice problems, the

LWE problem is highly attractive as a basis for post-quantum secure constructions.

However, the concrete hardness of the LWE problem remains little investigated, with

parameter choices in the literature tending to be conservative or completely absent

as a result. In this work we study the various known approaches for solving LWE

instances and develop new and modi�ed approaches. Two main approaches exist -

those employing lattice basis reduction and combinatorial approaches. For the latter

we present the �rst analysis and adaptation of the BKW algorithm to the LWE case,

illustrating that this approach is asymptotically more e�cient than known lattice-

based approaches with surprisingly low `crossover' dimension`. We also present a

modi�cation of the BKW algorithm, optimised for LWE instances in which the se-

cret vector entries are unusually small, demonstrating this modi�ed algorithm to

be signi�cantly more e�cient than previously-known approaches. We additionally

examine the recently-proposed public-key scheme of Huang, Liu and Yang and show

that, by viewing this scheme as a weak LWE-like problem we can break all challenges

in a matter of hours. With regard to algorithms which rely on lattice basis reduction,

we present the �rst experimental study of the e�cacy of applying Kannan's embed-

ding approach, showing that this approach out-performs the classical distinguishing

approach in the high-advantage regime.
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Introduction

Chapter 1

Introduction

1.1 Foreword

Cryptographic constructions rely, by necessity, upon random choices: consider, for

instance, a cryptosystem with a deterministic key-generation process: the key so

derived could not be secret. We rely therefore on the intractability of random in-

stances of (assumed) hard problems for the security of cryptographic constructions.

Herein lies the central di�culty in the design of secure cryptosystems: while we can

readily ascertain that the worst cases of many amenable problems are hard, we have

no way (in general) of determining the average-case hardness. As exempli�ed by

the majority of proposed cryptosystems to date, there can exist a substantial gap

between these two regimes.

The holy grail of (public-key) cryptography has been expressed as the development

of cryptosystems, the security of which relies on the question P = NP?: this, in a

sense, being the best we can hope to achieve. A necessary step in this direction is the

development of cryptosystems in which the average-case hardness of the underlying

hard problem is somehow `connected' to the worst-case hardness. Such a result was

achieved by Miklos Ajtai in his seminal work of 1996 [2], where it was shown that

there exists an average-case problem, de�ned on a certain class of random lattices,

14



Introduction

the solution (with non-negligible probability) of which would imply (inter alia) the

solution of the worst-case problem of determining the length of a shortest non-zero

vector in a related class of lattices, to within polynomial factors. This remarkable

result led to the subsequent development of the �eld of lattice-based cryptography,

motivated chie�y by the (still without analogue) prospect of basing the security of

cryptographic constructions on the worst-case hardness of a class of problems.

Another reason for the remarkableness of Ajtai's 1996 result is that, previously,

lattices and lattice basis reduction were viewed chie�y as a `destructive' in�uence

in cryptography, having been employed in the cryptanalysis of several schemes, the

e�ective termination of entire areas of research (e.g. knapsack cryptosystems) and

the development of attacks on low-exponent RSA, all largely through the application

of the famed 1982 LLL algorithm of Lenstra, Lenstra and Lovasz [60].

While the development of lattice-based `minicrypt' primitives was relatively straight-

forward, the development of `cryptomania' primitives has had a somewhat more

laboured history. The 1997 work of Ajtai and Dwork [3] contained a proposal of a

public-key cryptosystem, the hardness of which could be provably reduced to the

worst-case hardness of n8-unique SVP on a certain class of lattices. Several sub-

sequent developments along this path were made, culminating in the 2003 work of

Regev [85] in which a public-key cryptosystem based on n1.5-unique SVP was devel-

oped. The year 2005, however, saw a marked development with Regev's proof [86]

that the worst-case hardness of GapSVP could be reduced to the average-case hard-

ness of the Learning with Errors (LWE) problem, a problem which has the bene�t

of being intuitive and easy to understand. There followed a `growth-spurt' in the de-

velopment of lattice-based cryptomania primitives, a result of the inherent �exibility

of the LWE problem, with applications including homorphic encryption, oblivious

transfer protocols, identity-based encryption and more.

15
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Besides the average-case to worst-case security guarantees, the LWE problem has

the added attraction that the only operations necessary for en/decryption are mod-

ular multiplication and addition in a ring of polynomial size. Two disadvantages re-

mained, however - the quantum nature of the security reduction of LWE to GapSVP

and the relative ine�ciency (in both storage and communication complexity terms)

of LWE-based primitives. The �rst of these was resolved in 2013 [22] to obtain a

classical reduction of worst-case lattice problems to LWE, while the second of these

is an area of ongoing research with the use of ideal lattices to improve greatly the

e�ciency of LWE-based primitives, while retaining worst-case hardness, albeit only

to problems in a certain sub-class of lattices.

While theoretical progress has been swift in the development and application of

such primitives, practical considerations, including concrete instantiation of such

schemes has lagged somewhat behind. In particular, still very few algorithms are

known for solving the LWE problem and those that are known are less than per-

fectly understood. As a result, someone intending to employ such schemes would

have a somewhat di�cult task in understanding the applicability of current algo-

rithms and the corresponding parameters to choose to attain a given security level.

As an example of the need for better understanding of parameter choices for LWE

we examine a recently proposed provably-secure public-key cryptosystem and show

that, due to the close relationship between the hard problem underlying this scheme

and LWE, all parameter choices proposed in [49] are weak, indeed weak enough to

be practically attacked. Thus, this work aims to �ll this gap by analysing some

algorithms for LWE and modifying such algorithms where advantageous.

We hope that this work will assist future users of lattice-based cryptography in

understanding the various methods of solving the LWE and Ideal-LWE problems

and hence further bolster con�dence in their strength and complexity.
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1.2 Post-Quantum Cryptography

In 1994 a cryptographic earthquake occurred, taking the form of Shor's announce-

ment [92] of a quantum algorithm for factoring an RSA modulus n in (log2 n)2+o(1)

operations (using a large-enough quantum computer), with the current best-known

classical algorithms requiring ∼ e(1.923+o(1))(lnn)1/3(ln lnn)2/3 operations. The implica-

tions of Shor's discovery gave rise to the discipline known as `post-quantum cryptog-

raphy', the aim of which, as the name suggests, is to develop and strengthen con-

�dence in public-key and signature schemes against which only Grover's enhanced

exhaustive-search algorithm can be employed by a quantum computer (to the best

of our current knowledge).

This discipline now encompasses both constructions dating back to 1977 and post-

Shor constructions. The sub-�eld of code-based cryptography stems from the McEliece

scheme of 1977, multivariate cryptography from the early 1980s and lattice-based

cryptography from 1996. This work is concerned with the last of these sub-�eld,

lattice-based cryptography. From 2005 onwards, the principal hard problems in this

sub-�eld have been the Learning with Errors (LWE) problem and the Short Integer

Solution (SIS) problem, a pair of closely-related problems to which we can reduce

the worst-case hardness of certain (assumed) hard lattice problems. However, the

practical hardness of both the LWE and SIS problems are not well understood, with

the development of algorithms for their solution appearing to be at relatively early

stages of development. Thus, when actually proposing concrete instantiations of

lattice-based schemes for real-world use, a major stumbling-block is the lack of un-

derstanding of the complexity of even currently-known algorithms. This work aims

to advance our understanding of such questions and hence hopefully bring real-world

use of lattice-based cryptography one small step closer.

With recent work on algorithms for the discrete logarithm problem [14], the walls
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seem to be `closing in' on traditional number-theoretic public-key cryptography, with

con�dence, particularly in the long-term security scenario, of such schemes slowly but

steadily diminishing.

1.3 Notation and Preliminary De�nitions

We always start counting at zero and denote vectors in lower-case bold. Given a

vector a, we denote by a(i) the i-th entry in a, i.e. a scalar, and by a(i,j) the

subvector of a spanning the entries at indices i, . . . , j − 1. When given a list of

vectors, we index its elements by subscript, e.g. we use a0,a1,a2 to denote the �rst

three members of the list. We denote matrices in upper-case bold.

De�nition 1 (Negligible Function). A function ε : N → R is said to be negligible

if, for every constant c ∈ R>0, there exists a k0 ∈ N such that |ε(k)| < k−c,∀k > k0.

1.4 Lattices and Related Hard Problems

A (full-rank) lattice Λ in Rn is a discrete additive subgroup. For a general intro-

duction, the reader is referred to [70]. We view a lattice as being generated by a

(non-unique) basis B = {b0, . . . ,bn−1} ⊂ Rn of linearly-independent vectors. We

assume that the vectors b0, . . . ,bn−1 form the rows of the n× n matrix B. That is:

Λ = L(B) = Zn ·B =

{
n−1∑
i=0

xi · bi | x0, . . . , xn−1 ∈ Z

}
.

The rank of a lattice Λ is the dimension of the linear span span(Λ) of Λ. The basis B

is not unique - we call two bases B and B′ equivalent if and only if B′ = BU where

U is a unimodular matrix - an integer matrix with | det(U)| = 1 and note that such

unimodular matrices form the general linear group GLn(Z).

In modern lattice-based cryptography and hence also in this work, attention is mainly

restricted to a particular class of lattices, called q-ary lattices:
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De�nition 2 (q-ary Lattice). A lattice L is said to be a q-ary lattice if:

qZn ⊆ L ⊆ Zn

Equivalently, if we let A ∈ Zn×mq and view A : Zm → Zn and AT : Zn → Zm as

group homomorphisms, with πq : Zn → Znq denoting the natural projection, then we

have that the following two sets constitute full-rank lattices:

L(AT ) = Im(AT ) + qZm = {z ∈ Zm | ∃x ∈ Zn : z = ATx( mod q)} ⊆ Zm

L⊥(A) = Ker(πq(A)) = {z ∈ Zm | Az = 0( mod q)} ⊆ Zm

The determinant or volume vol (Λ) of a (full-rank) lattice Λ is the determinant of

any given basis of Λ, hence vol (Λ) = det(B). The dual of a lattice Λ, denoted by

Λ∗, is the lattice consisting of the set of all vectors z ∈ Rn such that 〈y, z〉 ∈ Z for

all vectors y ∈ Λ. Given a lattice Λ, we denote by λi(Λ) the i-th minimum of Λ

λi(Λ) := inf
{
r | dim(span(Λ ∩ B̄n(0, r))) ≥ i

}
where B̄n(0, r) denotes the closed, zero-centred n-dimensional (Euclidean) ball of

radius r. We de�ne the minimum distance from a given point t ∈ Rn to the lattice

by dist(Λ, t) = min {‖t− x‖2 | x ∈ Λ}.

Minkowski's second theorem gives us a bound on the geometric mean of the suc-

cessive minima. Given an n-dimensional lattice Λ and any 1 ≤ k ≤ n we have(
k∏
i=1

λi(Λ)

)1/k

≤ √γn · vol (Λ)1/n

where γn denotes Hermite's constant of dimension n.

However, determining the exact value of γn is a long-standing open problem in the

geometry of numbers, with the exact values being known for only 1 ≤ n ≤ 8 and

n = 24 [27]. Heuristically speaking, given a random lattice Λ of dimension n and

a Euclidean ball B̄n(x, r), we expect that the number of lattice points which lie in
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Λ∩ B̄n(x, r) to be approximately equal to
vol(B̄n(x,r))

vol(Λ) . From this observation we can

derive what is known as the `Gaussian heuristic'.

Now, the lattices we mainly consider in this work are not random in the sense of

Goldstein and Mayer [43] - for more details on the nature of random lattices, the

reader is referred to [43]. However, it is generally assumed in the literature, as in

this work, that the Gaussian heuristic holds well for the lattices considered here. If

the above approximate equality were to hold for any such ball, then by considering

the unit ball in B̄m(0, 1) ⊂ Rn, we would have

| Λ ∩ B̄m(0, 1) |≈ πm/2

Γ(1 +m/2) · vol (Λ)
.

where Γ denotes the standard gamma function Γ(z) =
∫∞

0 xz−1e−xdx, z ∈ C. Hence

we would expect that

λ1(Λ) ≈

(
vol (Λ)

vol
(
B̄m(0, 1)

))1/m

=
vol (Λ)1/m · Γ(1 +m/2)1/m

√
π

For random lattices, it is known that, with overwhelming probability, the above holds

(for all successive minima) [2]. This provides the motivation for the Hermite-SVP

problem, which we de�ne below. More generally, we list below the �ve main general-

lattice problems of relevance to this work:

The approximate Shortest Vector problem (γ-SVP):

Input. A lattice Λ = L(B).

Question. Find a vector v ∈ Λ such that 0 < ‖v‖ ≤ γ · λ1(Λ).

The approximate Hermite Shortest Vector problem (γ-HSVP):

Input. A lattice Λ = L(B).

Question. Find a vector v ∈ Λ such that 0 < ‖v‖ ≤ γ · det(Λ)
1
m .

Any algorithm which solves γ-SVP also solves γ
√
γn-HSVP while, reciprocally, we

20



Introduction

can use a γ-HSVP algorithm linearly-many times to solve γ2-SVP [66]. If an al-

gorithm solves κ-HSVP for lattices of dimension n, we say that such an algorithm

attains a `Hermite Root Factor' δ0 := κ1/n when applied to such lattices.

The approximate Shortest Vector Problem (γ-SVP) (γ ≥ 1) is NP-Hard under ran-

domized reduction for any γ < 2(logn)1/2−ε , where ε > 0 is an arbitrarily small

constant [54].

The bounded distance decoding problem (BDDη):

Input. A lattice Λ and a vector t such that dist(t,Λ) < η · λ1(Λ).

Question. Find the lattice vector y which is closest to t.

We note that, when considering BDDη from a complexity theory approach, arbi-

trary values for η can be considered while in practical settings, the problem is often

de�ned with the restriction that η ≤ 1
2 . The case of solving BDDη> 1

2
corresponds

to list-decoding in coding parlance. BDDη is known to be NP-hard for any constant

factor η > 1√
2

[65].

The GapSVP (promise) problem (GapSVPγ):

Input. A lattice Λ, a radius r > 0 and approximation factor γ > 1.

Question. Is λ1(Λ) ≤ r ? If so return YES, else if λ1(Λ) > γ · r return NO, and

otherwise return YES or NO.

GapSVPγ is NP-Hard for any constant γ [54].

The Generalised GapSVP (promise) problem (GapSVPζ,γ):

Input. A radius r > 0 and approximation factors ζ > γ > 1 and a lattice basis B

satisfying:

1. λ1(Λ) ≤ ζ
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2. mini ‖b̄i‖ ≥ 1 where the b̄i's are the Gram-Schmidt vectors of the basis B

3. 1 ≤ d ≤ ζ/γ

Question. Is λ1(Λ) ≤ r? If so return YES, else if λ1(Λ) > γ · r return No and

otherwise return YES or NO.

The unique shortest vector problem (USVP):

Input. A lattice Λ such that λ2(Λ)/λ1(Λ) = g.

Question. Find a shortest (non-zero) lattice vector.

1.4.1 Lattice Reduction.

The notion of lattice basis reduction can be brie�y described as `improving the qual-

ity' of a given basis, though there exists no general metric for the `quality' of a basis

- all basis reduction algorithms operate by applying a sequence of elementary trans-

formations to a given basis with the aim, loosely speaking, of obtaining a basis, the

constituent vectors of which are both relatively short and pairwise orthogonal. The

simplest lattice reduction algorithm is that of Gauss/Lagrange reduction for two-

dimensional lattices which always returns a shortest (non-zero) vector. In a seminal

1982 paper [60], Lenstra, Lenstra and Lovász proposed what has come to be known

as the LLL algorithm and which can be essentially described as combining Gram-

Schmidt orthogonalisation with the Gauss reduction algorithm on 2-dimensional pro-

jected sub-lattices. The LLL algorithm provably returns a basis of a lattice, the �rst

vector of which is no more than
(

2√
3

)n
times the length of the �rst minimum of the

lattice. Although this bound is tight (i.e. there exist lattices for which this approx-

imation factor holds), in practice LLL performs much more e�ectively than we can

expect or, indeed, satisfactorily explain. The LLL algorithm delivers what is known

as an `LLL-reduced' basis, which we now de�ne.

We �rst recall the Gram-Schmidt orthogonalisation process.
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De�nition 3. Given n linearly independent vectors b0, . . . ,bn−1 ∈ Rn, the Gram-

Schmidt orthogonalisation of b0, . . . ,bn−1 is de�ned by

b̃i = bi −
i−1∑
j=0

µi,jb̃j where µi,j =
〈bi, b̃j〉
〈b̃j , b̃j〉

The LLL Conditions are:

1. A lattice basis B = {b0, . . . ,bn−1} is said to be 'size-reduced' if

|µi,j | ≤
1

2
, ∀0 ≤ j < i < n

2. A lattice basis B = {b0, . . . ,bn−1} is said to satisfy the Lovász condition for

δ ∈ (1
4 , 1] if

δ‖b̃k−1‖2 ≤ ‖b̃k‖2 + µ2
k,k−1‖b̃k−1‖2 ∀1 ≤ k < n

If both conditions are satis�ed, we say that B is LLL-reduced. As the name suggests,

the LLL algorithm delivers such a basis. It easily follows that LLL solves γ-SVP with

γ ≈ 1.154n and hence also γ-HSVP with γ ≈ 1.074n.

The original motivations for and applications of the LLL algorithm were for factoris-

ing polynomials with rational coe�cients and for solving integer linear programming

problems. Applications speci�c to cryptography were quickly realised, with crypt-

analyses of knapsack-based cryptosystems, low-exponent RSA and more. Indeed, in

this thesis we present an attack on a recently-proposed cryptosystem in which LLL

is su�cient to recover the private key in a matter of hours on a desktop computer.

However, despite its simplicity and relative (i.e. 1982) antiquity, the behaviour of

LLL remains somewhat mysterious. Victor Shoup, the creator of the NTL library

(which contains one of the most widely used implementations of LLL) summarises

this succinctly:
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I think it is safe to say that nobody really understands how the LLL al-

gorithm works. The theoretical analyses are a long way from describing

what "really" happens in practice.

Several attempts have been made [79, 90] to clarify our understanding of the prac-

tical behaviour of LLL, but it would seem that there is still much to be done. LLL,

however, despite its utility, is the `weakest' and simplest of the arbitrary-dimension

lattice basis reduction algorithms, with variants of Schnorr's block reduction algo-

rithm (BKZ) [91] forming the best-known class of algorithms for practical use today.

In this thesis, we consider only the use of LLL and BKZ, but for brevity do not give

a detailed introduction to the workings of these algorithms.

Brie�y, however, the BKZ algorithm is mainly parameterised by a block-size, de-

noted by β, with β = 2 corresponding (essentially) to the LLL algorithm. While in

the LLL algorithm, we employ Gauss reduction to recover shortest non-zero vectors

in projected 2-dimensional lattices, BKZ-β �nds and incorporates shortest non-zero

vectors in projected β-dimensional lattices. However, with block-sizes greater than

2, Gauss reduction must be replaced by more costly search algorithms for shortest

vectors in the projected lattices. With `pure' BKZ, a block-size of up to around 30 is

practically feasible in low dimension, however with `pruned enumeration' strategies,

block-sizes of ∼ 60 are readily achievable in practise, with the work of [39] demon-

strating that it is possible to �nd shortest vectors in 110-dimensional lattices in a

few days using a relatively-modest parallel implementation. BKZ-β (provably) solves

γ-SVP for γ = γ
(n−1)/(β−1)
β and γ-HSVP for γ =

√
γβ

1+(n−1)/(β−1) where γβ denotes

Hermite's constant in dimension β.

As mentioned in the quote from Shoup, the practical behaviour of LLL (and simi-

larly of BKZ) is somewhat removed from the theoretical analyses, with the algorithms

generally performing much (and consistently) better than can be explained by the

theoretical analyses. Folklore for many years, the 2008 work of Gama and Nguyen
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[38] constituted the �rst attempt to document comprehensively such e�ects. That

work detailed the results of a large number of experiments applying LLL, BKZ (and a

third algorithm DEEP which we do not discuss), to solve HSVP and USVP instances.

In recent years, several piecemeal improvements have been proposed for BKZ, the

most e�ective of which are:

1. Early termination. Motivation: most of the improvement of the quality of the

basis occurs during the initial stages of BKZ, with quickly-diminishing returns

generally occurring in later stages;

2. Extreme pruning. Motivation: substantial speed-up of the searches for shortest

vectors in projected sub-lattices. Pruning heuristic rules can be applied to gain

exponential speed-ups in exchange for probabilistic success;

3. Pre-processing of local bases. Motivation: substantial speed-up of the searches

for shortest vectors in projected sub-lattices can occur if these local bases are

pre-processed with BKZ with a relatively small block-size.

However, unfortunately, no publicly-available implementations of BKZ which incor-

porate such improvements are available.

1.4.2 Experiments on Random Lattices and q-ary Lattices

Due to our current imperfect understanding of the practical behaviour of lattice ba-

sis reduction algorithms, we are forced to rely on experimental evidence to make

projections. The work of Nguyen and Stehle [79] examined some aspects of the

practical behaviour of LLL while the work of Gama and Nguyen [38] examined some

aspects of both the behaviour of LLL and BKZ (in addition to DEEP). Both of these

works, clearly required some notion of random lattices and random bases on which

to conduct experiments. What is a `random' lattice?. This subjected is touched on

brie�y in [79, 38]. In a mathematical sense, the answer is provided by Siegel (1945)
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[94], with e�cient methods for sampling such random lattices being proposed, for

instance by Goldstein and Mayer [43]. In contrast, the lattices we consider in this

work are somewhat removed from `random lattices' as such. However, in all cases

examined and in the course of experimentation, no departure from the results for

`random lattices' was observed.

The 2008 work of Gama and Nguyen con�rmed what had been known as folklore -

that (for the average case) LLL generally solved Approx-SVP and Hermite-SVP with

approximation factors much better than could be justi�ed by the theoretical analy-

ses, though with approximation factors still exponential in the lattice dimension and

that similar phenomena also held for BKZ. The experimental results indicate that the

experimental approximation and Hermite root factors are governed by (apparently)

Gaussian distributions. In addition, it transpires that, in practice, the Hermite root

factors rapidly converging to constants with increasing dimension. In Table 1.1 we

partially reproduce Table 1 from [38], illustrating the experimentally-derived Hermite

root-factors for LLL, BKZ-20 and BKZ-28 with the best upper bounds.

LLL BKZ-20 BKZ-28

Experimental δ0 1.0219 1.0128 1.0109

Best proved upper-bound 1.0754 1.0337 1.0282

Table 1.1: Mean experimental Hermite root factors, comparison with best-known

upper bounds, [38]

.

Also highly relevant for our purposes was a brief examination in [38] of the per-

formance of LLL and BKZ on lattices possessing a λ2/λ1 gap, this being (to the

best of our knowledge) the �rst work to examine such cases in practise. While it

had also been folklore that the presence of such a gap led to LLL having improved

performance as a λ1 oracle, this phenomena was (and still is) poorly understood. In

Chapter 4 we report the results of a number of experiments on unique-SVP instances
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related to LWE.

1.5 Noise Models

Gaussians. Given an s > 0, we denote the Gaussian function with domain Rn and

parameter s by

ρs(x) := exp
(
−π‖x/s‖2

)
We then denote by νs the Gaussian probability density function with parameter s:

νs(x) := ρs(x)/sn

If we then have a countable set C ⊂ Rn, we can de�ne the discrete Gaussian distri-

bution DC,s to be

DC,s(x) :=
ρs(x)∑

y∈C ρs(y)

for any x ∈ C. We typically take such a countable set to be a lattice.

Given a real α > 0 and a modulus q, we let Ψα denote the distribution on Zq

obtained by sampling a (real) normal variate of mean 0 and standard deviation

αq/
√

2π, rounding this variate to the nearest integer then reducing modulo q.

We state a straightforward lemma which, in conjuction with an assumption regarding

sums of discrete Gaussian variates, will be useful in our computations later.

Lemma 1. Let X0, . . . , Xm−1 be independent random variates, with Xi ∼ N (µ, σ2).

Then their sum X =
∑m−1

i=0 Xi is also normally distributed, with X ∼ N (mµ,mσ2).

In the case of Xi following a discrete Gaussian distribution, it does not necessarily

follow that a sum of such random variables is distributed in a way analogous to the

statement above. However, throughout this work, we assume that this does hold

i.e., that Lemma 1 applies to the discrete Gaussian case - while we do not know how

to prove this, this assumption causes no apparent discrepancies in our experimental
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results. For a detailed discussion on sums of discrete Gaussian random variables, the

interested reader is referred to [1].

1.6 Small Integer Solutions and Learning with Errors

The Small Integer Solution (SIS) problem is de�ned as

De�nition 4 (SIS). Let n and q be integers, n ∈ poly(n) and let β ∈ R, β > 0. Let

U(Zn×mq ) denote the uniform distribution on all n ×m matrices with entries in Fq.

Given a matrix A sampled from U(Zn×mq ) for some m ∈ poly(n), �nd a non-zero

integer vector z ∈ Zm such that Az = 0 mod q and ‖z‖2 ≤ β.

Note that β should be large enough for a solution to exist (β >
√
n log q typically

su�ces), while taking β ≥ q renders the problem trivially easy to solve. In [2],

Ajtai showed that, given appropriate parameters, the ability to solve SIS with non-

negligible probability is at least as hard as solving several lattice approximation

problems on n-dimensional lattices in the worst-case, to within polynomial factors.

We now de�ne the Learning with Errors (LWE) problem, but �rst introduce a simpler

sub-problem - Learning Parities with Noise (LPN).

1.6.1 Learning Parities with Noise

De�nition 5. Let 〈·, ·〉2 denote the binary inner product. Let n ∈ N and ε ∈ (0, 1/2).

Let s ← U({0, 1}n). De�ne Berε to be the Bernoulli distribution with parameter ε.

We de�ne Bs,ε to be the distribution given by

{a← U({0, 1}n), e← Berε : (a, 〈a, s〉2 ⊕ e)}

By abuse of notation, we also use Bs,ε to denote an oracle which outputs (indepen-

dent) samples from this distribution. The LPN problem is then, given access to such

an oracle, to recover s.

LPN is attractive for several reasons - �rstly, it is known to be NP-hard [20] and pos-

sesses a search-to-decision reduction [53] i.e. if we can distinguish between outputs
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of Bs,ε and U({0, 1}n+1) then we can recover s e�ciently. Additionally, primitives

based on LPN are extremely simple to implement, leading to substantial interest in

such primitives for implementation on lightweight devices (RFID tags and the like),

starting with [48] and followed by many others.

The �rst sub-exponential algorithm for solving LPN was given by Blum, Kalai and

Wasserman in [21], an algorithm possessing time and space complexity 2O(n/ logn).

This algorithm, henceforth referred to as the BKW algorithm is discussed at more

length in Chapters 2 and 3.

1.6.2 Learning with Errors

We can view the LWE problem as the generalisation of LPN to a larger modulus and

replacing the Bernoulli noise distribution with a (typically) Gaussian distribution.

De�nition 6 (LWE). Let n, q be positive integers, χ be a probability distribution on

Zq and s be a secret vector following the uniform distribution on Znq . We denote by

L
(n)
s,χ the probability distribution on Znq ×Zq obtained by choosing a from the uniform

distribution on Znq , choosing e ∈ Z according to χ, and returning (a, c) = (a, 〈a, s〉+

e) ∈ Znq × Zq.

� Search-LWE is the problem of �nding s ∈ Znq given pairs (ai, ci) ∈ Znq ×Zq sampled

according to L
(n)
s,χ.

� Decision-LWE is the problem of deciding whether pairs (ai, ci) ∈ Znq × Zq are

sampled according to L
(n)
s,χ or the uniform distribution over Znq × Zq.

The modulus q is typically taken to be polynomial in n. We note that the above

de�nition has been largely superseded in more recent works by `normal-form LWE'

in which the entries of both the secret vector and the noise elements follow χ.

Throughout this thesis, we often view a set of LWE samples as forming a single

'Matrix-LWE' sample, consisting of a matrix A ∈ Zn×mq and a vector c formed by
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c = AT s + e.

If q is prime, it easily follows that search and decision-LWE are equivalent by observ-

ing that if we have a decision-LWE oracle and an LWE sample (a, c), if we choose

b ∈ Zq and submit (a, c+〈a, (b, 0, . . . , 0)〉) to our oracle, it will respond in the a�rma-

tive only when b = −s0, the primality of q ensuring uniform distribution otherwise.

Hence we can recover s in qn ∈ poly(n) trials.

In the case of composite q, [82] extends the above approach to modulii of the form

q = q0 × . . .× qv−1 where each qi is a prime of polynomial size but not too small i.e.

qi ∈ ω(
√

log n). In [71], the second restriction on the size of qi is removed, at the

cost of an increase in the parameter of the noise Gaussian.

1.6.3 Reduction from Hard Lattice Problems

Here, we brie�y outline the main ideas of the known reductions from (assumed) hard

worst-case lattice problems to LWE. These are (in chronological order): the quantum

reduction due to Regev; the classical reduction (with exponential modulus) due to

Peikert and the classical reduction due to Brakerski et. al.

Regev's Reduction

On a high level, Regevs proof consists of a quantum and a classical part. Firstly, we

state a proposition from [87], noting that we now de�ne the noise distribution χ to

be a Gaussian distribution over R of standard deviation αq which has been rounded

to the nearest integer and reduced modulo q - we follow Regev by denoting such a

distribution by Ψα.

Proposition 1 (Proposition 2.1, [87]). Let q ≥ 2 be an integer and α ∈ (0, 1) be a real

number. Assume we are given access to an oracle that solves the LWE problem with

modulus q and errors distributed according to Ψα. Then, given as input any lattice

L and a basis B, a large enough polynomial number of samples from the discrete
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Gaussian distribution DL∗,r for some r ≥
√

2q · ηε(L∗) and a point x within distance

αq/(
√

2r) of L, we can output the (unique) closest lattice point to x in polynomial

time.

The main idea of the proof is as follows: let v be the solution of the BDD problem. We

wish to generate LWE samples with secret s = B−1v mod q. We create such a sample

by taking a sample y from DL∗,r and setting a = BTy mod q, c = b〈y,x〉+ec mod q.

The condition on r ensures that a is (almost) uniformly distributed and e is some

additional Gaussian term. We can then observe that

〈y,x〉 = 〈y,v + e〉 = 〈BTy,B−1v〉+ 〈y, e〉

where e is an error vector of norm ‖e‖ ≤ αq/
√

2r. We have neglected some techni-

calities regarding the emergent noise distribution, though it should be apparent that

the ability to sample from DL∗,r thus furnishes us with the ability to solve BDD

with parameter αq/(
√

2r) for some r not too small. The main di�culty, then, is in

generating samples from DL∗,r.

We now require the 'bootstrapping' lemma from [86]:

Lemma 2 (Lemma 3.2, [86]). There exists an e�cient algorithm that, given any

n-dimensional lattice L and r > 22nλn(L), outputs a samples from a distribution

that is within statistical distance 2−Ω(n) of DL,r.

The proof proceeds by reducing the lattice basis using LLL, thus obtaining a basis of

maximal length at most 2nλn(L). If we then take a sample y from the (continuous)

n-dimensional Gaussian νr of parameter r and then output y − (y mod P(L)), the

resulting lattice vector follows a distribution close to DL,r.

The quantum component of Regev's reduction now arises:

Lemma 3 (Lemma 3.3, [86]). Let ε = ε(n) be a negligible function, α = α(n) ∈ (0, 1)

be a real number and q = q(n) ≥ 2 be an integer. Assume we have access to an oracle

which solves LWE with modulus q and noise parameter α, given a polynomial number
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of samples. Then, there exists a constant c > 0 and an e�cient quantum algorithm

that, given any n-dimensional lattice L, a number r >
√

2pηε(L), and nc samples

from DL,r, produces a sample from DL,r
√
n/(αq).

We do not discuss the proof here and refer the reader to [86] for further details. The

�nal stage of the proof is to give a reduction from GapSVP. For this, we reproduce

Theorem 3.1 from [82] and give a high-level description of the main idea of the proof.

Theorem 1 (Theorem 3.1, [82]). Let α ∈ (0, 1) be a real number and γ = γ(n) ≥

n/(α
√

log n). Let ζ = ζ(n) ≥ γ and q = q(n) ≥ (ζ/
√
n) · ω(

√
log n). There is

a probabilistic polynomial time reduction from solving GapSVPζ,γ in the worst case

(with overwhelming probability) to solving LWE with modulus q and noise parameter

α using poly(n) samples.

The main idea of the proof is to show that, by choosing a random lattice point and

then perturbing this by a point chosen at random from the n-dimensional ball Bn(u)

of a certain radius u, the BDD instances which result can be used as input (along

with samples from a Gaussian on the dual lattice) to the LWE oracle. We then use

our LWE oracle to solve these BDD instances and hence solve GapSVPζ,γ by altering

the radius u of the ball.

However, it is not currently known how to perform a step analogous to that in

Lemma 3 classically, hence Peikert's reduction is inherently 'lossy' compared to that

of Regev with only a reduction from GapSVPζ,γ in
√
n-dimensional lattices to n-

dimensional LWE.

However, the hardness of GapSVPζ,γ is less than clear, with the problem being

only equivalent to GapSVPγ only when ζ is large, such cases corresponding to LWE

with exponential modulus.
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Brakerski et. al.'s Reduction

Recently, Brakerski et. al. [22] gave the �rst classical reduction of worst-case lattice

problems to LWE with polynomial modulus by employing techniques originally in-

troduced by Brakerski and Vaikuntanathan [23] for controlling noise growth during

fully-homomorphic encryption. We examine such techniques in more detail in Chap-

ter 3 with regard to solving LWE instances. However, [22] takes such approaches

further, giving techniques for (essentially) transforming LWE samples of modulus q

and dimension n into (almost faithful) LWE samples of modulus q′ and dimension n′,

as long as n log q is preserved. By applying such techniques, it easily follows that we

can transform LWE samples with polynomial modulus into samples with exponential

modulus (and reduced dimension), allowing classical reduction from GapSVPγ .

We discuss such techniques further in Chapters 3 and 5.

1.7 Solving LWE using Lattice Reduction

In practise, the most e�cient methods for solving LWE involve viewing a set of LWE

samples as determining either a BDD instance or an SIS instance and attempting to

recover the lattice point corresponding to the secret vector or to �nd a short vector

in the (scaled) dual lattice, respectively. Here, we brie�y cover the standard lattice-

based methods for solving LWE instances, mainly for later reference and comparison.

We may classify lattice-based algorithms for solving LWE into two families. The �rst

family reduces LWE to the problem of �nding a short vector in the (scaled) dual lat-

tice (commonly known as the Short Integer Solution (SIS) problem) constructed from

a set of LWE samples. The second family solves the Bounded Distance Decoding

(BDD) problem in the primal lattice. For both families lattice reduction algorithms

may be applied. We may either use lattice reduction to �nd a short vector in the

dual lattice or apply lattice reduction and (a variant of) Babai's algorithm to solve
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BDD [61]. Indeed, the expected complexity of lattice algorithms is often exclusively

considered when parameters for LWE-based schemes are discussed. However, while

the e�ort on improving lattices algorithms is intense [88, 28, 77, 39, 80, 47, 75, 84],

our understanding of the behaviour and concrete complexity of these algorithms in

high dimensions is still somewhat limited.

In [73], the authors brie�y examine an approach for solving LWE by distinguish-

ing between valid matrix-LWE samples of the form (A, c) = (A,AT s + e) and

samples drawn from the uniform distribution over Zn×mq ×Znq . Given the matrix A,

one way of constructing such a distinguisher is to �nd a short vector u in the dual

lattice Λ(A)⊥ such that Au = 0 mod q. If c belongs to the uniform distribution

over Znq , then 〈u, c〉 belongs to the uniform distribution on Zq. On the other hand,

if c = AT s + e, then 〈u, c〉 = 〈u,AT s + e〉 = 〈u, e〉, where samples of the form

〈u, ei〉 are governed by another discrete, wrapped Gaussian distribution. Following

the work of Micciancio and Regev [73], the authors of [61] give estimates for the com-

plexity of distinguishing between LWE samples and uniform samples by estimating

the cost of the BKZ algorithm in �nding a short enough vector. In particular, given

n, q, σ = αq, we set s = σ ·
√

2π and compute β = q/s ·
√

log(1/ε)/π. From this β

we then compute the required root Hermite factor δ = 2log2
2(β)/(4n log2 q). Note that

this presupposes access to m =
√
n log2 q/ log2 δ samples.

Alternatively, we may attempt to solve the LWE problem in the primal lattice by

decoding to the closest lattice point. The classic algorithm for solving such CVP

instances is due to Babai and consists of successively projecting the noisy point onto

hyperplanes within the lattice and rounding. Applying Babai's algorithm to an LLL-

reduced basis and a noisy lattice point yields a lattice point which is exponentially

far from the true closest lattice point. If we wish for Babai's algorithm to recover

the closest lattice point for LWE instances, we would generally require very strong

lattice reduction. A simple modi�cation (originally due to Klein [58] and applied to
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the LWE case in [61]) can be made to Babai's algorithm, leading to a tree-based algo-

rithm in which we carry out (possibly) more than one projection at each stage of the

algorithm. Combining this modi�ed algorithm with strong lattice reduction allows

somewhat more e�cient attacks than the dual-lattice attack. A further improvement

to this algorithm was proposed in [63] in which fast enumeration techniques, as ap-

plied in exact-SVP algorithms, were applied to the tree arising from the modi�ed

Babai algorithm.

It is against these algorithms that we wish to compare the results obtained in Chap-

ters 2 and 3. Rigorous comparison, however, is problematic if not impossible, given

the current lack of understanding of the concrete complexity and optimal application

of lattice-reduction algorithms. As mentioned in 1.4.2, the results of [38] indicate

that, in practise, LLL achieves a δ0 ≈ 1.0219 while BKZ-20 and BKZ-28 achieve

δ0 ≈ 1.0128 and δ0 ≈ 1.0109, respectively and provide conjectures that the current

limits of `practical' lattice reduction appear to be a root Hermite factor of ≈ 1.01,

with δ0 = 1.005 being far beyond reach (in high dimension). However, estimation of

the running time of BKZ in high dimension with a large block-size is di�cult - no

good upper-bounds are known, with the best being super-exponential in n. For BKZ

2.0 [28], with several additional degrees of freedom, even less is presently known. To

attempt a conservative prediction of the running time of BKZ 2.0 with large block-

size, the authors of [61] assume that δ0 is the dominant in�uence on the running-time

of BKZ in high dimension and proposed a simple extrapolation of running times as

a function of δ0 leading to the model

log2 Tsec = 1.8/ log2 δ0 − 110. (1.1)

We can translate this �gure into bit operations by assuming 2.3 · 109 bit opera-

tions per second on a 2.3 GHz CPU. However, the accuracy and hence utility of

such models is debatable, with such models giving infeasibly low complexity esti-

mates for the application of LLL. Alternative models of which we are aware are
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log2 Tsec = exp(1/ log2(δ0)1.001 − 43.4) [88] proposed by Rueckert & Schneider and

the 'BKZ 2.0 simulator' of Chen & Nguyen [28], neither of which appear wholly

satisfactory.

An alternative method for solving LWE (and for BDD in general) using lattice reduc-

tion is to employ Kannan's embedding method. We discuss this approach in detail

in Chapters 4 and 5 and hence do not discuss it here.

1.8 Generating LWE Instances

For all experiments involving LWE/Ring-LWE instances featured in this thesis, we

employed an LWE instance generator, allowing the generation of LWE instances

adhering to all parameters proposed to date. The author participated in the devel-

opment of a SAGE module to allow the uni�ed generation of instances, along with

Martin Albrecht, Daniel Cabarcas, Florian Göpfert and Michael Schneider. This

project arose from a visit to TU Darmstadt and the amalgamation and consolida-

tion of various pieces of code for LWE instance generation from the various authors

and has since been included in SAGE. A brief description of the LWE instance gen-

erator is provided in Appendix A, as in [8].
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Chapter 2

Naïve Algorithms for LWE and

the BKW Algorithm

The contents of this chapter are based on the paper "On the Complexity of the BKW

Algorithm on LWE", which appeared in Designs, Codes and Cryptography [6] and

was a work conducted in collaboration with M. R. Albrecht, C. Cid, J. C. Faugére

and L. Perret.

The Blum-Kalai-Wasserman (BKW) algorithm is the prototypical method for solv-

ing LPN and LWE by searching for short dual-lattice vectors by �nding low-weight

linear combinations of initial vectors. In this chapter we present a study of the

complexity of the Blum-Kalai-Wasserman (BKW) algorithm when applied to LWE

and provide re�ned estimates for the data and computational e�ort requirements

for solving concrete instances of the LWE problem. We apply this re�ned analysis

to suggested parameters for various LWE-based cryptographic schemes from the lit-

erature and compare with alternative approaches based on lattice reduction. As a

result, we provide new upper bounds for the concrete hardness of these LWE-based

schemes. Rather surprisingly, it appears that BKW algorithm outperforms known

estimates for lattice reduction algorithms starting in dimension n ≈ 250 when LWE
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is reduced to SIS. However, this assumes access to an unbounded number of LWE

samples.

2.1 Introduction

Let us �rst consider some naïve algorithms for solving LWE with q ∈ poly(n)(n).

Perhaps the simplest algorithm would be to request enough LWE samples until we

obtain poly(n) samples of the form (a, c) where a = (1, 0, . . . , 0), allowing us to re-

cover s0. We then repeat for all other elements of s. Since the probability of obtaining

such samples is q−n, we require 2O(n logn) samples and also a running time of the

same order. A marginally more sophisticated algorithm arises from the observation

that, after observing O (n) samples, if we can �nd an s′ which `approximately satis-

�es' these equations, then s′ = s with overwhelming probability. We thus reduce the

sample complexity to O (n), though retaining the time complexity of 2O(n logn). In

more detail, consider a modulus N and χ being a discrete Gaussian on Z with param-

eter N
a for a some constant. Then, assuming we can treat this discrete Gaussian in

a continuous fashion, we �x a tail-cut and obtain Pr[e← χ : |e| > c] = 1− erf( c
√
π
s ).

Thus, if we have k samples, the probability that all error terms have absolute value

less than c is (erf( c
√
π
s ))k. Conversely, for a wrong guess, the probability that any

given error term has absolute value less than c is 2c/N and hence the probability that

all k error terms have absolute value less than c is (2c/N)k. Then, by taking a union

bound over all such wrong guesses, we have the probability of any such wrong guess

having all error terms < c is less than (N − 1) · (2c
N )k. Thus, after only a very small

number of samples, only the secret (with extremely high probability) approximately

satis�es the equations presented by the samples.

A third possible approach is to take a set of n LWE samples and perform Gaus-

sian elimination on the matrix [A | c], then take majority vote over all such reduced

samples. However, since the variance of the noise present in the elements of c in-
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creases linearly with the number of additions, it should be apparent that such an

approach can only work for the very smallest of examples.

The BKW algorithm, in contrast, requires 2O(n) samples and time and can best

be viewed as a form of structured Gaussian elimination in which we endeavour to

minimise the number of additions performed. BKW and algorithms related to it

are generally referred to as `combinatorial' methods for solving LWE. Combinatorial

algorithms for tackling the LWE problem remain rarely investigated from an algo-

rithmic point of view. For example, the main subject of this chapter � the BKW

algorithm � speci�cally applied to the LWE problem has received little treatment

in the literature1. However, since the BKW algorithm can be viewed as an oracle

producing short vectors in the dual lattice spanned by the ai (i.e., it reduces LWE

to SIS) it shares some similarities with combinatorial (exact) SVP solvers.

Finally, Arora and Ge [11] proposed a new algebraic technique for solving LWE

which does not rely upon lattice reduction. The algorithm has a total complexity

(time and space) of 2Õ(σ2) and is thus subexponential when σ ≤
√
n, remaining

exponential when σ >
√
n. It is worth noting that Arora and Ge achieve the

√
n

hardness-threshold found by Regev [86], and thus provide a subexponential algorithm

precisely in the region where the reduction to GapSVP fails. We note however that

currently the main relevance of Arora-Ge's algorithm is asymptotic as the constants

hidden in Õ(·) are rather large [5]; it is an open question whether one can improve

its practical e�ciency.

Firstly, we present a detailed study of a dedicated version of the Blum, Kalai and

Wasserman (BKW) algorithm [21] for LWE with discrete Gaussian noise. The BKW

1However, a study of the algorithm to the LPN case was conducted in [37], which inspired [6].

The authors of [37] also gave revised security estimates for some HB-type authentication protocols

relying on the hardness of LPN.
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algorithm is known to have (time and space) complexity 2O(n) when applied to LWE

instances with a prime modulus polynomial in n [86]; in this chapter we provide

both the leading constant of the exponent in 2O(n) and concrete cost of BKW when

applied to Search- and Decision-LWE. That is, by studying in detail all steps of the

BKW algorithm, we `de-asymptotic-ify' the understanding of the hardness of LWE

under the BKW algorithm and provide concrete values for the expected number of

operations for solving instances of the LWE problem. More precisely, we show the

following theorem in Section 2.3.4.

Theorem 2 (Search-LWE, simpli�ed). Let (ai, ci) be samples following L
(n)
s,χ, set a =

blog2(1/(2α)2)e, b = n/a and q a prime. Let d be a small constant 0 < d < log2(n).

Assume α is such that qb = qn/a = qn/blog2(1/(2α)2)e is superpolynomial in n. Then,

given these parameters, the cost of the BKW algorithm to solve Search-LWE is(
qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)

)
+

⌈
qb

2

⌉
·
(⌈n
d

⌉
+ 1
)
· d · a+ poly(n) ≈

(
a2n
)
· q

b

2

operations in Zq. Furthermore,

a ·
⌈
qb

2

⌉
+ poly(n) calls to L

(n)
s,χ and storage of

(
a ·
⌈
qb

2

⌉
· n
)

elements in Zq are needed.

We note that the above result is a corollary to Theorem 3 which depends on a

value m - a number of `reduced' samples. However, since at present no closed form

expressingm is known, the above simpli�ed statement avoidsm by restricting choices

on parameters of the algorithm. We also show the following simple corollary on the

algorithmic hardness of Decision-LWE.

Corollary 1 (Decision-LWE). Let (ai, ci) be samples following L
(n)
s,χ, 0 < b ≤ n be

a parameter, 0 < ε < 1 the targeted success rate and a = dn/be the addition depth.

Then, the expected cost of the BKW algorithm to distinguish L
(n)
s,χ from random with

success probability ε is(
qb−1

2

)
·
(
a(a−1)

2 · (n+ 1)− ba(a−1)
4 − b

6

(
(a− 1)3 + 3

2(a− 1)2 + 1
2(a− 1)

))
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additions/subtractions in Zq to produce elimination tables,

m ·
(
a
2 · (n+ 2)

)
with m = ε/ exp

(
−π2σ22a+1

q2

)
additions/subtractions in Zq to produce samples. Furthermore, a ·

⌈
qb

2

⌉
+m calls to

L
(n)
s,χ and storage for

(
qb

2

)
· a ·

(
n+ 1− ba−1

2

)
elements in Zq are needed.

This corollary is perhaps the more useful result for cryptographic applications which

rely on Decision-LWE and do not assume a prime modulus q. Here, we investigate

the search variant �rst because the decision variant follows easily. However, we em-

phasize that there are noticeable di�erences in the computational costs of the two

variants.

In Section 2.4, we apply the BKW algorithm to various parameter choices for LWE

from the literature [86, 61, 7] and compare with alternative approaches in Section 2.5.

It appears that the BKW algorithm outperforms known estimates for lattice reduc-

tion algorithms when LWE is reduced to SIS (called �Distinguishing� in [61]) starting

in dimension n ≈ 250 (but, assuming access to an unbounded number of LWE sam-

ples). However, reducing LWE to BDD (called �Decoding� in [61]) and applying a

combination of lattice reduction and decoding outperforms BKW for the parame-

ter sets considered in this chapter. However, since the concrete behaviour of lattice

reduction algorithms is not fully understood, the commonly used running-time esti-

mates tend to be optimistic. In contrast, for combinatorial algorithms such as BKW,

we have a much better understanding of the concrete complexity, leading to greater

con�dence in the recovered bounds. Finally, we report experimental results for small

instances of LWE in Section 3.5.

2.2 Preliminaries

Computational Model. We express concrete costs as computational costs and

storage requirements. We measure the former in Zq operations and the latter in
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the number of Zq elements requiring storage. However, as the hardness of LWE is

related to the quantity n log q [22], relying on these measures would render results

for di�erent instances incommensurable. We hence normalise these magnitudes by

considering �bit-operations� where one ring operation in Zq is equivalent to log2 q

such bit operations. The speci�c multiplier log2 q is derived from the fact that the

majority of operations are additions and subtractions in Zq as opposed to multiplica-

tions in Zq. In particular, we ignore the cost of �book keeping� and of �xed-precision

�oating point operations occuring during the algorithm (where the precision is typ-

ically a small multiple of n, cf. Section 2.4).

We make the assumption that we have unrestricted access to an LWE oracle, al-

lowing us to obtain a large number of independent LWE samples which may not be

available in practise. This assumption is usually made for combinatorial algorithms

and the Arora-Ge algorithm, while lattice reduction algorithms usually require only

a small number of LWE samples. However, as we discuss later, the optimal strategies

for employing lattice based approaches for solving LWE appear to require execut-

ing a large number of small-advantage executions, each requiring independent LWE

samples. While the cryptosystems considered in this work do not provide such an

LWE oracle it is known [87] that given roughly n log q LWE samples one can produce

many more LWE samples at the cost of a modest increase in the noise through inter-

addition. While employing these approaches would render our proofs inadequate, it

is assumed that in practice similar results would still hold. Similar notions (in the

case of LPN) were considered in [37], although, as in this work, the authors did not

analyse the impact of these steps.

2.3 The BKW Algorithm

The BKW algorithm was proposed by Blum, Kalai and Wasserman [21] as a method

for solving the LPN problem, with sub-exponential complexity, requiring 2O(n/ logn)
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samples and time. The algorithm can be adapted for tackling Search- and Decision-

LWE, with complexity 2O(n), when the modulus is taken to be polynomial in n.

To describe and analyse the BKW algorithm we use terminology and intuitions

from linear algebra. Recall that noise-free linear systems of equations are solved by

(a) transforming them into a triangular shape, (b) recovering a candidate solution

in one variable for the univariate linear equation produced and (c) extending this

solution by back substitution. Similarly, if we are only interested in deciding whether

a linear system of equations does have a common solution, the standard technique is

to produce a triangular basis and express other rows as linear combinations of this

basis, i.e., to attempt to reduce them to zero.

The BKW algorithm � when applied to Search-LWE � can be viewed as consist-

ing of three stages somewhat analogous to those of linear system solving:

(a) sample reduction is a form of Gaussian elimination which, instead of treating

each component independently, considers `blocks' of b components per itera-

tion, where b is a parameter of the algorithm.

(b) hypothesis testing tests candidate sub-solutions to recover components of the

secret vector s.

(c) back substitution such that the whole process can be continued on a smaller

LWE instance.

On a high-level, to aid intuition, if the standard deviation of χ was zero and hence all

equations were noise-free, we could obviously recover s by simple Gaussian elimina-

tion. When we have non-zero noise, however, the number of row-additions conducted

during Gaussian elimination result in the noise being `ampli�ed' to such levels that

recovery of s would generally be impossible. Thus the motivation behind the BKW

algorithm can be thought of as using a greater number of rows but eliminating many

variables with single additions of rows rather than just one. If we can perform a
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Gaussian elimination-like reduction of the sample matrix using few enough row ad-

ditions, the resulting noise in the system is still `low enough' to allow us to recover

one or a few components of s at a time. While, mainly for convenience of analysis, we

choose a nested-oracle approach below to de�ne the algorithm, the above intuitive

approach is essentially equivalent.

The way we study the complexity of the BKW algorithm for solving the LWE prob-

lem is closely related to the method described in [37]: given an oracle that returns

samples according to the probability distribution L
(n)
s,χ, we use the algorithm's �rst

stage to construct an oracle returning samples according to another distribution,

which we call B
(n)
s,χ,a, where a = dn/be denotes the number of `levels' of addition.

The complexity of the algorithm is related to the number of operations performed in

this transformation, to obtain the required number of samples for hypothesis testing.

We now study the complexity of the �rst stage of the BKW algorithm.

2.3.1 Sample Reduction

Given n ∈ Z, select a positive integer b ≤ n (the window width), and let a := dn/be

(the addition depth). Given an LWE oracle (which by abuse of notation, we will also

denote by L
(n)
s,χ), we denote by B

(n)
s,χ,` a related oracle which outputs samples where

the �rst b · ` coordinates of each ai are zero, generated under the distribution (which

again by abuse of notation, we denote by B
(n)
s,χ,`) obtained as follows:

� if ` = 0, then B
(n)
s,χ,0 is simply L

(n)
s,χ;

� if 0 < ` < a, the distribution B
(n)
s,χ,` is obtained by taking the di�erence of two

vectors from B
(n)
s,χ,`−1 that agree on the elements (a((`−1)·b), . . . ,a(`·b−1)).

We can then describe the �rst stage of the BKW algorithm as the (recursively con-

structed) series of sample oracles B
(n)
s,χ,`, for 0 ≤ ` < a. Indeed, we de�ne B

(n)
s,χ,0 as

the oracle which simply returns samples from L
(n)
s,χ, while B

(n)
s,χ,` is constructed from

B
(n)
s,χ,`−1, for ` ≥ 1. We will make use of a set of tables T (maintained across oracle
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calls) to store (randomly-chosen) vectors that will be used to reduce samples arising

from our oracles. More explicitly, given a parameter b ≤ n for the window width,

and letting a = dn/be, we can describe the oracle B
(n)
s,χ,` as follows:

1. For ` = 0, we can obtain samples from B
(n)
s,χ,0 by simply calling the LWE oracle

L
(n)
s,χ and returning the output.

2. For ` = 1, we repeatedly query the oracle B
(n)
s,χ,0 to obtain (at most) (qb− 1)/2

samples (a, c) with distinct non-zero vectors for the �rst b coordinates of a.

We only collect (qb− 1)/2 such vectors because we exploit the symmetry of Zq

and that of the noise distribution. We use these samples to populate the table

T 1, indexed by the �rst b entries of a. We store (a, c) in the table. During this

course of this population, whenever we obtain a sample (a′, c′) from B
(n)
s,χ,0, if

either the �rst b entries of a′ (resp. their negation) match the �rst b entries of

a vector a such that the pair (a, c) is already in T 1, we return (a′±a, c′±c), as

a sample from B
(n)
s,χ,1. Note that, if the �rst b entries in a′ are zero, we return

(a′, c′) as a sample from B
(n)
s,χ,1. Further calls to the oracle B

(n)
s,χ,1 proceed in a

similar manner, but using (and potentially adding entries to) the same table

T 1.

3. For 1 < ` < a, we proceed as above: we make use of the table T ` (constructed

by calling B
(n)
s,χ,`−1 up to (qb − 1)/2 times) to reduce any output sample from

B
(n)
s,χ,`−1 which has the b entries in its `-th block already in T `, to generate a

sample from B
(n)
s,χ,`.

Pseudo-code for the oracle B
(n)
s,χ,`, for 0 < ` < a, is given in Algorithm 3 (the case

` = a will be discussed below).
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Algorithm 1: B
(n)
s,χ,` for 0 < ` < a

Input: b � an integer 0 < b ≤ n

Input: ` � an integer 0 < ` < a

1 begin

2 T ` ← array indexed by Zbq maintained across all runs of B
(n)
s,χ,`;

3 query B
(n)
s,χ,`−1 to obtain (a, c);

4 if a(b·(`−1),b·`) is all zero vector then

5 return (a, c);

6 while T `a(b·(`−1),b·`)
= ∅ and T `−a(b·(`−1),b·`)

= ∅ do

7 T `a(b·(`−1),b·`) ← (a, c);

8 query B
(n)
s,χ,`−1 to obtain (a, c);

9 if a(b·(`−1),b·`) is all zero vector then

10 return (a, c);

11 if T `a(b·(`−1),b·`)
6= ∅ then

12 (a′, c′)← T `a(b·(`−1),b·`) ;

13 return (a− a′, c− c′);

14 else

15 (a′, c′)← T `−a(b·(`−1),b·`) ;

16 return (a+ a′, c+ c′);

Then, given an LWE oracle L
(n)
s,χ outputting samples of the form (a, 〈a, s〉+e), where

a, s ∈ Znq , the oracle B
(n)
s,χ,a−1 can be seen as another LWE oracle outputting samples

of the form (a′, 〈a′, s′〉+ e′), where a′, s′ ∈ Zkq , with k = n mod b, if b does not divide

n, or k = b otherwise, and e′ is generated with a di�erent distribution (related to the

original error distribution and the value a). The vector s′ is de�ned to be the last k

components of s. For the remainder of this section we will assume that n mod b = 0,

and therefore k = b (this is done to simplify the notation, but all the results obtained

can be easily adapted when the last block has length k < b).

We note that, in the analysis below, we make the assumption for simplicity that

all tables are completely �lled during the elimination stage of the algorithm, thus

giving conservative time and space bounds. In practise, especially in the �nal tables,
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this will not be the case and birthday-paradox arguments could be applied to derive

a more realistic (lower) complexity. Typically, if the number of samples required for

hypothesis-testing is small, the birthday paradox implies that the storage required

for the �nal table can be reduced by a square-root factor.

Moreover, we introduce an additional parameter d ≤ b which does not exist in

the original BKW algorithm [21]. This parameter is used to reduce the number of

hypotheses that need to be tested in the second stage of the algorithm, and arises

from the fact we work with primes q > 2. At times, instead of working with the last

block of length b, which could lead to potentially exponentially many hypotheses qb

to be tested, we may employ a �nal reduction phase � B
(n)
s,χ,a � to reduce the samples

to d < b non-zero entries in a. Thus d will represent the number of components

in our �nal block, i.e., the number of elements of the secret over which we conduct

hypothesis tests. So after running the B
(n)
s,χ,a−1 algorithm, we may decide to split the

�nal block to obtain vectors over Zdq . If so, we run the reduction function described

above once more, which we will denote by B
(n)
s,χ,a. In the simple case where we do

not split the last block (i.e., d = b), we adopt the convention that we will also call

the B
(n)
s,χ,a function, but it will perform no extra action (i.e., it simply calls B

(n)
s,χ,a−1).

Thus we have that for a choice of 0 ≤ d ≤ b, the oracle B(n)
s,χ,a will output samples of

the form (a′, 〈a′, s′〉+ e′), where a′, s′ ∈ Zdq . We pick d = 0 in the decision variant.

On choosing b and d. In general, as discussed above, choosing the parameter d

to be small (e.g. 1 or 2) leads to the best results. However, in general one could

also relax the condition d ≤ b to d ≤ n where d = n is equivalent to straight-forward

exhaustive search. Finally, a natural question is � should all the blocks be of equal

length or should some be shorter than others? Intuitively, choosing blocks which are

all of equal size (or as close as possible) appears to be the optimal strategy, though we

do not formally investigate this here. To ease the presentation, we assume through-

out this chapter that this is the case.
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From the constructions above, it follows that the cost of one call to B
(n)
s,χ,` is at

most dqb/2e calls to B
(n)
s,χ,`−1. We also need at most one addition of two outputs

of B
(n)
s,χ,`−1, which have the �rst b · ` entries in common. This operation requires

n+ 1− b · ` additions in Zq. Furthermore, since we maintain T ` across di�erent runs

of B
(n)
s,χ,`, this cost is amortised across di�erent runs of B

(n)
s,χ,`. Hence, when ` > 0 the

cost of calling B
(n)
s,χ,` a total of m times is upper bounded by:

m+
qb − 1

2
calls to B

(n)
s,χ,`−1 and m additions of outputs of B

(n)
s,χ,`−1.

Overall we obtain Lemma 4.

Lemma 4. Let n ≥ 1 be the dimension of the LWE secret vector, q be a positive

integer, and d, b ∈ Z with 1 ≤ d ≤ b ≤ n, and de�ne a = dn/be. The cost of

calling B
(n)
s,χ,a, which returns samples (ai, ci) with at most the d rightmost entries of

ai non-zero, m times is upper bounded by

(
qb−1

2

)
·
(
a(a−1)

2 · (n+ 1)− ba(a−1)
4 − b

6

(
(a− 1)3 + 3

2(a− 1)2 + 1
2(a− 1)

))
+ m ·

(
a
2 · (n+ 2)

)
<

(
qb−1

2

)
·
(
a(a−1)

2 · (n+ 1)
)
+ m · (a2 · (n+ 2))

additions in Zq and a ·
⌈
qb

2

⌉
+m calls to L

(n)
s,χ.

Proof. We may think of the B
(n)
s,χ,` oracles as constructing the matrix

B =



T 1

0 . . . 0 T 2

0 . . . 0 0 . . . 0 T 3

...
. . .

...
...

. . .
...

...
. . .

0 . . . 0 0 . . . 0 0 . . . 0 T a−1

0 . . . 0 0 . . . 0 0 . . . 0 0 T a

0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 M


where, for 1 ≤ i ≤ a − 1, T i represents a submatrix of (qb − 1)/2 rows and

n + 1 − b · (i − 1) columns (the +1 accounts for the ci column). According to

our convention, T a is either a submatrix of (qb−d − 1)/2 rows and n+ 1− b · (a− 1)

columns if we split the last block (i.e. d < b), or an empty matrix. Finally M
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represents a submatrix with m rows and d+ 1 columns. The matrix B has therefore

at most (a − 1) · ((qb − 1)/2) + ((qb−d − 1)/2) + m < a ·
⌈
qb

2

⌉
+ m rows and hence

needs as many calls to L
(n)
s,χ to be constructed. This proves the second claim.

For the upper-bound on the number of additions necessary in Zq, we have the follow-

ing (we treat the worst case, where full construction of all T tables is necessary before

obtaining any samples from B
(n)
s,χ,a): The construction of a T -tables is required, only

a− 1 (at most) of which require additions.

1. The construction of table T 1 requires 0 ring additions.

2. The construction of table T 2 requires at most ((qb−1)/2) ·(n+1−b) additions.

3. The construction of table T 3 requires at most ((qb− 1)/2) · ((n+ 1− b) + (n+

1− 2b)) additions.

4. In general, for 2 < i < a, the construction of table T i requires at most

(
qb − 1

2

)
·

(i− 1) · (n+ 1)−
i−1∑
j=1

j · b

 =
(
qb − 1

2

)
· (i− 1) ·

(
(n+ 1)− i

2
· b
)
.

5. The construction of T a - the above expression is an upper bound for i = a.

6. Thus, the construction of all the T i tables requires at most

(
qb − 1

2

)
·

a∑
j=2

(
(j − 1) · ((n+ 1)− j

2
· b)
)

=

(
qb − 1

2

)
·

(
a(a− 1)

2
· (n+ 1)−

a−1∑
k=1

k(k + 1)

2
· b

)

=

(
qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)− ba(a− 1)

4
− b

6

(
(a− 1)3 +

3

2
(a− 1)2 +

1

2
(a− 1)

))

additions in Zq.

7. Now, for the construction of our m �nal samples, the construction of each of

these samples requires at most

(n+ 1− b) + (n+ 1− 2b) + . . .+ (n+ 1− a · b) =
a∑
i=1

(n+ 1− ib)

< a ·
(

(n+ 1)− n

2

)
= a

2
· (n+ 2)
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additions (in Zq).

8. Thus, the number of additions (in Zq) incurred through calling B
(n)
s,χ,a m times

is upper-bounded by:

(
qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)− ba(a− 1)

4
− b

6

(
(a− 1)3 +

3

2
(a− 1)2 +

1

2
(a− 1)

))
+m ·

(a
2
· (n+ 2)

)

and this concludes the proof of the lemma.

The memory requirements for storing the tables T i are established in Lemma 5 below.

Lemma 5. Let n ≥ 1 be the dimension of the secret, q be a positive integer, and

d, b ∈ Z with 1 ≤ d ≤ b ≤ n, and de�ne a = dn/be. The memory required to store

the table T i is upper bounded by

(
qb

2

)
· a ·

(
n+ 1− ba− 1

2

)

Zq elements, each of which requires dlog2(q)e bits of storage.

Proof. The table T 1 has qb

2 entries each of which holds n + 1 elements of Zq. The

table T 2 has the same number of entries but holds on n + 1 − b elements of Zq.

Overall, we get that all tables together hold

a∑
i=1

(
qb

2

)
·
(
n+ 1− (i− 1)b

)
=

(
qb

2

) a∑
i=1

n+ 1− (i− 1)b

=
(
qb

2

)
· a ·

(
n+ 1− ba− 1

2

)

Zq elements.

Note however that, while the original LWE oracle L
(n)
s,χ may output zero vectors

(which o�er no information for the hypothesis tests in the search variant) with proba-

bility q−n, the oracle B
(n)
s,χ,a may output such zero vectors with noticeable probability.

In particular, calling B
(n)
s,χ,a m times does not guarantee that we get m samples with

non-zero coe�cients in ai. The probability of obtaining a zero vector from B
(n)
s,χ,a is

1
qd
, and thus expect to have to call the oracle B

(n)
s,χ,a around q

d/(qd − 1) ·m times to

obtain ≈ m useful samples with good probability.

50



Naïve Algorithms for LWE and the BKW Algorithm

2.3.2 Hypothesis Testing

To give concrete estimates for the time and data complexity of solving a Search-LWE

instance using BKW, we formulate the problem of solving an LWE instance as the

problem of distinguishing between two di�erent distributions. Assume we have m

samples in Zdq×Zq from B
(n)
s,χ,a. It follows that we have Zdq hypotheses to test. In what

follows, we examine each hypothesis in turn and derive a hypothesised set of noise

values as a result (each one corresponding to one of the m samples). We show that

if we have guessed incorrectly for the subvector s′ of s then the distribution of these

hypothesised noise elements will be (almost) uniform while if we guess correctly then

these hypothesised noise elements will be distributed according to χa. That is, if we

have that the noise distribution associated with samples from L
(n)
s,χ is χ = χα,q, then

it follows from Lemmas 1 and 4 that the noise distribution of samples obtained from

B
(n)
s,χ,` follows χ

√
2`α,q

if all inputs are independent, i.e., we are adding 2` discrete

Gaussians and produce a discrete Gaussian with standard deviation increased by

a factor of
√

2`. For the sake of simplicity, we denote this distribution by χ` in

the remainder of this chapter and also assume that the oracle B
(n)
s,χ,a performs non-

trivial operations on the output of B
(n)
s,χ,a−1, i.e., the oracle B

(n)
s,χ,a performs a further

reduction step. In other words we assume that the �nal oracle B
(n)
s,χ,a results in a

further increase in the standard deviation of the noise distribution associated with

the �nal samples which are used to test hypotheses for elements of s. We hence make

the following assumption in this section:

Assumption 1. If we let s′ := s(n−d,n) = (s(n−d), . . . , s(n−1)), then the output of

B
(n)
s,χ,a is generated as

a←$ Zdq , e←$ χa : (a, 〈a, s′〉+ e).

Remark: This section only refers to the Search-LWE problem in which we assume q

is prime for ease of analysis and exposition. This restriction does not apply to our

results below on the decision variant.
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For our hypothesis-testing strategies, we think of each of the samples returned by

B
(n)
s,χ,a as giving rise to many equations

fi = −ci ± j +
d−1∑
k=0

(ai)(k)x(k) for 0 ≤ j < q/2.

Given a number of these samples, in order to get an estimate for s′, we run through

qd hypotheses and compute an array of scores S indexed by the possible guesses in

Zdq . That is, a function W assigns a weight to elements in Zq which represent the

noise under the hypothesis s′ = v. For each guess v we sum over the weighted noises

W (−ci +
∑d−1

k=0(ai)(k) · v(k)). If W is such that the counter Sv grows proportionally

to the likelihood that v is the correct guess, then the counter Ss′ will grow fastest.

Pseudo-code is given in Algorithm 2.

Algorithm 2: Analysing candidates.

Input: F � a set of m samples following B
(n)
s,χ,a

Input: W � a weight function mapping members of Zq to real numbers

1 begin

2 S ← array �lled with zeros indexed by Zdq ;

3 for v ∈ Zdq do

4 wv ← ∅;

5 for fi ∈ F do

6 write fi as −ci +
∑d−1
k=0(ai)(k) · x(k);

7 j ← 〈ai,v〉 − ci;

8 wv ← wv ∪ {W (j)};

9 Sv ←
∑
wi∈wv

wi/m;

10 return S

Lemma 6. Running hypothesis testing costs m · qd operations in Zq.

Proof. Evaluating 〈ai,v〉 − ci at some point in Zdq naively costs 2d operations in Zq

which implies an overall cost of 2d ·m · qd. However, we can reorder the elements in

Zdq such that the element at index h di�ers from the element at index h + 1 by an

addition of a unit vector in Zdq . Evaluating 〈ai,v〉 − ci on all Zdq points ordered in

such a way reduces to one operation in Zq: addition of ai,(j) where j is the index at
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which two consecutive elements di�er. Hence, Algorithm 2 costs m · qd operations

in Zq.

Recall that χa is the distribution of the errors under a right guess. We de�ne Ua(v)

to be the distribution of errors under a wrong guess v 6= s′.

The Neyman-Pearson lemma states the following: Given two point hypotheses H0 : θ =

θ′ and H1 : θ = θ′′, then, given a set of i.i.d. random variables {X1, . . . , Xn} the most

powerful test of which distribution the random variables adhere to is the likelihood

ratio test in which we consider:

L(θ′ : {X1, . . . , Xn})
L(θ′′ : {X1, . . . , Xn}))

(2.1)

Now, since H1 is not a point set in our case, the Neyman-Pearson lemma cannot

be applied directly. Instead, in a simplifying step, we use Neyman-Pearson as the

motivation for taking the average of all possible denominators in 2.1. We can heuris-

tically justify this approach as most denominators are close to this average.

Now, when dealing with collections of i.i.d. random variables, the likelihood function

L can generally be factored into a product of likelihood functions for the individual

random variables, hence it is more convenient to use the log-likelihood function, al-

lowing us to sum the individual log-likelihood values. Thus, after �xing a guess for

s′, we obtain a corresponding set of hypothesised error values ji, d−q/2e ≤ ji ≤ bq/2c

- for each one we can de�ne the statistic W (ji) to be

W (ji) := log2

(
Pr[e←$ χa : e = ji]

E(Pr[e←$ Ua(v) : e = ji]
)

)
. (2.2)

In our setting, our adaptation of the Neyman-Pearson lemma indicates that the sum

of the statisticsW provides the most powerful test of which distribution theXi follow

and hence we use this sum as our �nal distinguishing statistic. Thus, the remainder

of this section will be used to establish the distribution of W (ji) in the cases of right

and wrong guesses, with the goal of establishing the conditions under which we can

identify the correct guess by way of the respective values of W (ji).
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We �rstly examine the relationships between p̃j := E(Pr[e ←$ Ua(v) : e = j] and

pj := Pr[e←$ χa : e = j]) and then proceed to examine the distribution of our �nal

distinguishing characteristic in the cases of correct and incorrect guesses, allowing

us to explicitly quantify the power of our �nal distinguisher in terms of m.

Our principal assumption in this section is that the sums of the statistics W (ji)

behave according to the central limit theorem, allowing us to derive approximate

Gaussian distribution descriptions of the sums of these statistics in both the correct

and incorrect guess cases. Under this assumption, if enough samples are available to

us then, with very high probability, we can easily distinguish between members of

these Gaussian distributions, allowing us to isolate the correct value of s′.

Lemma 7. Given a wrong guess v for s′, for each element fi = −ci+
∑d−1

k=0(ai)(k)x(k) ∈

Zq[x], with ci = 〈ai, s′〉 − ei, the probability of error j appearing is

p̃j := E(Pr[e←$ Ua(v) : e = j]) =
qd−1 − pj
qd − 1

(2.3)

if q is prime.

Proof. For an incorrect guess v, Pr[e←$ Ua(v) : e = j] = pj−aTi (s′−v). Thus

p̃j = E(pj−aTi (s′−v)) =
∑
k

pj−k Pr[aTi (s′ − v) = k]

= pj Pr[aTi (s′ − v) = 0] +
∑
k 6=0

pj−k Pr[aTi (s′ − v) = k]

= pj
qd−1 − 1

qd − 1
+
∑
k 6=0

pj−k
qd−1

qd − 1

=
qd−1 − pj
qd − 1

For the �nal back-substitution stage, we wish to ensure that the score for the correct

guess v = s′ is highest among the entries of S. Thus, what remains to be estab-

lished is the size m = |F | needed such that the score for the right guess v = s′
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is the highest. Under our sample independence assumptions, by the Central Limit

theorem, the distribution of Sv approaches a Normal distribution as m increases.

Hence, for su�ciently large m we may approximate the discrete distribution Sv by

a normal distribution [12]. If N (µ, σ2) denotes a Normal distribution with mean µ

and standard deviation σ we denote the distribution for v = s′ by Dc = N (Ec,Varc)

and for v 6= s′ by Dw = N (Ew,Varw). Recall that we now wish to determine the

number of samples m necessary to allow us to distinguish between variates following

Dw and those following Dc.

Establishing m hence �rst of all means establishing Ec,Ew,Varc and Varw. We

start with Ec.

Lemma 8. Let (a0, c0), . . . , (am−1, cm−1) be samples following B
(n)
s,χ,a, q be a pos-

itive integer, v ∈ Zdq , pj := Pr(e ←$ χa : e = j), wj := W (j) and Sv =

1
m

∑m−1
i=0 W (〈ai,v〉 − ci). When v = s′, E(Sv) is given by:

Ec = E(Sv | v = s′) =

bq/2c∑
j=d−q/2e

pjwj = p0w0 + 2 ·
j=bq/2c∑
j=1

pjwj . (2.4)

Proof. First, we remark that:

Pr[〈ai, s′〉 = ci + u] = Pr[〈ai, s′〉 = 〈ai, s′〉+ ei + u] = Pr[−ei = u] = pu.

The expected value for Sv in the case of a correct guess is then given by:

Ec := E(Sv | v = s′) =

bq/2c∑
j=d−q/2e

Pr[ei = j] ·W (j) =

bq/2c∑
j=d−q/2e

pjwj .

Finally, for all j, 1 ≤ j ≤ bq/2c, we have p−jw−j = pjwj . Thus:

bq/2c∑
j=d−q/2e

pjwj = p0w0 + 2 ·
j=bq/2c∑
j=1

pjwj .
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We now examine Ew = E(Sv | v 6= s′). To begin with, we �x a wrong guess v, such

that v = s′ + t with t 6= 0.

Lemma 9. Let (a0, c0), . . . , (am−1, cm−1) be samples following B
(n)
s,χ,a, q be a positive

integer, v ∈ Zdq , p̃j := E[Pr(e ←$ Ua(v) : e = j)], pj := Pr(e ←$ χa : e = j),

wj := W (j), and Sv = 1
m

∑m−1
i=0 W (〈ai,v〉 − ci). If v 6= s′, we have:

Ew = E(Sv | v 6= s′) =

bq/2c∑
j=d−q/2e

p̃jwj =

bq/2c∑
j=d−q/2e

qd−1 − pj
qd − 1

wj . (2.5)

Since the proof of Lemma 9 is analogous to Lemma 8 we omit it here. We now look

at the variances Varc and Varw.

Lemma 10. Let (a0, c0), . . . , (am−1, cm−1) be samples following B
(n)
s,χ,a, q be a posi-

tive integer, v ∈ Zdq , pj := Pr(e ←$ χa : e = j), p̃j := E[Pr(e ←$ Ua(v) : e = j)],

wj := W (j) and Sv =
∑m−1

i=0
1
mW (〈ai,v〉 − ci).

If v = s′, then

Varc := Var(Sv | v = s′) =
1

m

bq/2c∑
j=d−q/2e

pj · (wj − Ec)
2. (2.6)

If v 6= s′, then

Varw := Var(Sv | v 6= s′) =
1

m

bq/2c∑
j=d−q/2e

p̃j · (wj − Ew)2. (2.7)

Proof. In the case of v = s′ we have that for m = 1,

Varc =

bq/2c∑
j=d−q/2e

pj ·
(
wj − Ec

)2
.

In the case of adding then normalising m samples we can use the fact that when

adding random variables of zero covariance, the sum of the variances is the variance

of the sum. Thus the variance in the case of adding m samples and normalising is

given by:

Varc = m ·
bq/2c∑

j=d−q/2e

pj ·
(
wj
m
− Ec
m

)2

=
1

m

bq/2c∑
j=d−q/2e

pj · (wj − Ec)
2
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A similar argument holds in the case of Varw.

Finally, given Ec, Ew, Varc, and Varw, we can estimate the rank of the right secret

in dependence of the number of samples m considered. We denote by Yh the random

variable determined by the rank of a correct score Ss′ in a list of h elements. Now,

for a list of length qd and a given rank 0 ≤ r < qd, the probability of Yqd taking rank

r is given by a binomial-normal compound distribution. Finally, we get Lemma 11,

which essentially states that for whatever score the right secret gets, in order for it

to have rank zero the remaining qd − 1 secrets must have smaller scores.

Lemma 11. Let Ec, Ew, Varc and Varw be as in Lemmas 8, 9 and 10. Let also Yqd

be the random variable determined by the rank of a correct score Ss′ in the list S of

qd elements. Then, the number of samples m required for Yqd to take rank zero with

probability ε′ is recovered by solving

ε′ =
∫
x

[
1

2

(
1 + erf

(
x− Ew√

2Varw

))](qd−1)

·
(

1√
2πVarc

e−
(x−Ec)2
2Varc

)
dx,

for m.

Proof. Yqd follows a binomial-normal compound distribution given by Pr[Yqd = r] =

∫
x

((
qd − 1

r

)
· Pr[e←$ Dw : e ≥ x]r · Pr[e←$ Dw : e < x](q

d−r−1) · Pr[e←$ Dc : e = x]

)
dx.

Plugging in r = 0 and Pr[Yqd = r] = ε′ we get:

ε′ =
∫
x

Pr[e←$ Dw : e < x](q
d−1) · Pr[e←$ Dc : e = x] dx

=
∫
x

[
1

2

(
1 + erf

(
x− Ew√

2Varw

))](qd−1)

·
(

1√
2πVarc

e−
(x−Ec)2
2Varc

)
dx

as required.

Using Lemma 11 we can hence estimate the number of non-zero samples m we need

to recover subvector s′.

Remark: We note that Algorithm 2 not only returns an ordering of the hypotheses
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but also a score for each hypothesis. Hence, we can simply sample from B
(n)
s,χ,a until

the distance between the �rst and second highest rated hypothesis is above a certain

threshold.

2.3.3 Back-Substitution

Given a candidate solution for s′ which is correct with very high probability we can

perform back-substitution in our tables T i similarly to solving a triangular linear

system. It is easy to see that back-substitution costs 2d operations per row. Fur-

thermore, by Lemma 4 we have a · (dqb/2e) rows in all tables T i.

After back-substitution, we start the BKW algorithm again in stage one where all

the tables T i are already �lled. To recover the next d components of s then, we ask

for m fresh samples which are reduced using our modi�ed tables T i and perform

hypothesis testing on these m samples.

2.3.4 Complexity of BKW

We can now state the main theorem of this chapter.

Theorem 3 (Search-LWE). Let (ai, ci) be samples following L
(n)
s,χ, 0 < b ≤ n, d ≤ b

parameters, 0 < ε < 1 the targeted success rate and q prime. Let a = dn/be and m be

as in Lemma 11 when ε′ = (ε)1/dn/de. Then, the expected cost of the BKW algorithm

to recover s with success probability ε is(
qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)− ba(a− 1)

4
− b

6

(
(a− 1)3 +

3

2
(a− 1)2 +

1

2
(a− 1)

))
(2.8)

additions/subtractions in Zq to produce the elimination tables,

qd

qd − 1
·
⌈
n
d

⌉
+ 1

2
·m ·

(a
2
· (n+ 2)

)
(2.9)

additions/subtractions in Zq to produce samples for hypothesis testing. For the

hypothesis-testing step ⌈n
d

⌉
·
(
m · qd

)
(2.10)
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arithmetic operations in Zq are required and(⌈n
d

⌉
+ 1
)
· d · a ·

⌈
qb

2

⌉
(2.11)

operations in Zq for back-substitution. Furthermore,

a ·
⌈
qb

2

⌉
+

qd

qd − 1
·
⌈n
d

⌉
·m (2.12)

calls to L
(n)
s,χ and storage for(

qb

2

)
· a ·

(
n+ 1− ba− 1

2

)
(2.13)

elements in Zq are needed.

Proof. In order to recover s we need every run of stage 1 to be successful, hence we

have ε = (ε′)dn/de and consequently ε′ = (ε)1/dn/de.

Furthermore, we have:

� The cost of constructing the tables T i in Equation (2.8) follows from Lemma 4.

� Lemma 4 and the fact that with probability 1
qd

the oracle B
(n)
s,χ,a returns an

all-zero sample establish that to produce m non-zero samples for hypothesis

testing, qd

qd−1
·m ·

(
a
2 · (n+ 2)

)
operations are necessary. We need to produce m

such samples
⌈
n
d

⌉
times. However, as we proceed the number of required oper-

ations linearly approaches zero. Hence, we need
dnd e+1

2 · qd

qd−1
·m ·

(
a
2 · (n+ 2)

)
operations as in Equation (2.9).

� The cost of Algorithm 2 in Equation (2.10) which also is run
⌈
n
d

⌉
times follows

from Lemma 6.

� There are a ·
⌈
qb

2

⌉
rows in all tables T i each of which requires 2d operations in

back-substitution. We need to run back-substitution
⌈
n
d

⌉
times, but each time

the cost decreases linearly. From this follows Equation (2.11).

� The number of samples needed in Equation (2.12) follows from Lemma 4 and

that with probability 1
qd−1

the oracle B
(n)
s,χ,a returns a sample which is useless

to us.
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� The storage requirement in Equation (2.13) follows from Lemma 5.

We would like to express the complexity of the BKW algorithm as a function of n, q, α

explicitly. In this regard, Theorem 3 does not deliver yet. However, from the fact

that we can distinguish χa and Ua in subexponential time if the standard deviation
√

2aαq < q/2 (i.e, the standard deviation of the discrete Gaussian distribution over

Z corresponding to χa), we can derive the following simple corollary eliminating m.

Corollary 2. Let (ai, ci) be samples following L
(n)
s,χ, set a = blog2(1/(2α)2)e, b = n/a

and q a prime. Let d be a small constant 0 < d < log2(n). Assume α is such that

qb = qn/a = qn/blog2(1/(2α)2)e is superpolynomial in n. Then, given these parameters,

the cost of the BKW algorithm to solve Search-LWE is(
qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)

)
+

⌈
qb

2

⌉
·
(⌈n
d

⌉
+ 1
)
· d · a+ poly(n) ≈

(
a2n
)
· q

b

2

operations in Zq. Furthermore,

a ·
⌈
qb

2

⌉
+ poly(n) calls to L

(n)
s,χ and storage of

(
a ·
⌈
qb

2

⌉
· n
)

elements in Zq are needed.

Proof. From the condition
√

2a·α·q < q/2 follows that we must set a = log2(1/(2α)2).

If a is set this way we have that we can distinguish χa from U(Zq) in poly(n). Now,

since qb is superpoynomial in n we have that m ≤ qb and Theorem 3 is dominated

by terms involving qb.

In many cryptographic applications solving the Decision-LWE problem is equivalent

to breaking the cryptographic assumption. Furthermore, in many such constructions

q may not be a prime. Hence, we also establish the cost of distinguishing L
(n)
s,χ from

random with a given success probability for arbitrary moduli q.

Corollary 3 (Decision-LWE). Let (ai, ci) be samples following L
(n)
s,χ, 0 < b ≤ n be

a parameter, 0 < ε < 1 the targeted success rate and a = dn/be the addition depth.
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Then, the expected cost of the BKW algorithm to distinguish L
(n)
s,χ from random with

success probability ε is(
qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)− ba(a− 1)

4
− b

6

(
(a− 1)3 +

3

2
(a− 1)2 +

1

2
(a− 1)

))
(2.14)

additions/subtractions in Zq to produce elimination tables,

m ·
(a

2
· (n+ 2)

)
with m = ε/ exp

(
−π

2σ22a+1

q2

)
(2.15)

additions/subtractions in Zq to produce samples. Furthermore,

a ·
⌈
qb

2

⌉
+m (2.16)

calls to L
(n)
s,χ and storage for(

qb

2

)
· a ·

(
n+ 1− ba− 1

2

)
(2.17)

elements in Zq are needed.

Proof. No hypothesis testing, back-substitution and accounting for all zero samples

is necessary and hence any terms referring to those can be dropped from Theorem 3.

Choosing m = exp
(
−π2σ22a+1

q2

)
/ε leads to a distinguishing advantage of ε (cf. [61]).

2.4 Applications

In this section we apply Theorem 3 to various sets of parameters suggested in the

literature. In order to compute concrete costs we rely on numerical approximations

in various places such as the computation of pj . We used 2n − 4n bits of precision

for all computations, increasing this precision further did not appear to change our

results. The solving step for m of Lemma 11 is accomplished by a simple search

implemented in Sage [97]. As a subroutine of this search we rely on numerical inte-

gration which we performed using the mpmath library [50] as shipped with Sage.
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In all cases below we always set ε = 0.99 and a := dt · log2 nc where t is a small con-

stant, which is consistent with the complexity of the BKW algorithm qO(n/ log2(n)) =

2O(n) if q ∈ poly(n).

2.4.1 Regev's Original Parameters

In [86] Regev proposes a simple public-key encryption scheme with the suggested

parameters q ≈ n2 and α = 1/(
√
n · log2

2 n
√

2π). We consider the parameters in the

range n = 32, . . . , 256. In our experiments t = 3.0 produced the best results, i.e.,

higher values of t resulted in m growing too fast. Plugging these values into the

formulas of Theorem 3 we get an overall complexity of

mn9 + 1
6 2

2
3
nn5 +

[(
3n+ 9

2

)
·
(

2
2
3
nn4 + 1

)]
log2 (n)2 + 1

6 n

2 (n4 − 1)

operations in Zq after simpli�cation. Ifm < 2( 2
2.6
n) then this expression is dominated

by
1
6n

5 +
(
3n5 + 9

2n
4
)
· log2 (n)2

2 (n4 − 1)
2

2
3
n ∈ 2

2
3
n+O(logn).

However, since we computem numerically, we have to rely concrete values for various

n to verify that with these settings indeed m does not grow too fast. Table 2.1

lists the estimated number of calls to L
(n)
s,χ (�log2 #L

(n)
s,χ�), the estimated number

of required ring (�log2 #Zq�) and bit (�log2 #Z2�) operations, the costs in terms of

ring operations for each of the three stages sampling, hypothesis testing and back

substitution.

2.4.2 Lindner and Peikert's Parameters

In [61], Lindner and Peikert propose new attacks and parameters for LWE. Table 2.2

lists concrete costs of the BKW algorithm for solving LWE under the parameter

choices from [61] as interpreted in the LWE instance generator (Section 1.8). In our

computations t = 2.7 produced the best results, i.e., higher values of t resulted in m

growing too fast.
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n log2m log2 #Zq in log2 #Z2 log2 #L
(n)
s,χ

sample hypo. subs. total

32 19.93 32.76 34.94 29.31 35.25 38.57 25.64

48 28.90 43.70 45.66 40.69 46.02 49.50 35.81

64 34.22 54.36 52.22 51.86 54.85 58.43 45.87

80 42.19 65.50 61.16 62.94 65.78 69.44 56.60

96 49.83 76.52 69.58 73.91 76.75 80.47 67.31

112 58.79 87.51 79.22 84.84 87.72 91.49 78.02

128 67.44 98.46 88.44 95.75 98.67 102.48 88.74

144 76.40 109.35 97.91 106.61 109.56 113.40 99.43

160 86.37 120.23 108.34 117.46 120.43 124.30 110.12

176 97.34 131.09 119.71 128.29 131.28 135.18 120.82

192 106.30 141.93 129.06 139.10 142.12 146.04 131.51

208 117.27 152.76 140.37 149.91 152.95 156.89 142.20

224 128.56 163.57 151.98 160.70 163.76 167.72 152.88

240 139.52 174.37 163.24 171.48 174.56 178.54 163.57

256 150.49 185.17 174.49 182.26 185.35 189.35 174.25

Table 2.1: Cost of solving Search-LWE for parameters suggested in [86] with d =

1, t = 3, ε = 0.99 with BKW.

2.4.3 Albrecht et al.'s Polly-Cracker

In [7] a somewhat homomorphic encryption scheme is proposed based on the hardness

of computing Gröbner bases with noise. Using linearisation the equation systems

considered in [7] may be considered as LWE instances. Table 2.3 lists concrete costs

for recovering the secret Gröbner basis using this strategy for selected parameters

suggested in [7]. In Table 2.3 �λ� is the targeted bit-security level and n the number

of variables in the linearised system. We note that we did not exploit the structure

of the secret for Table 2.3.

2.5 Comparison with Alternative Approaches

Now, given the complexity estimates in Section 2.4 we may ask how these relate to

existing approaches in the literature. Hence, we brie�y describe some alternative
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n log2m log2 #Zq in log2 #Z2 log2 #L
(n)
s,χ

sample hypo. subs. total

32 7.64 35.91 33.65 33.92 36.46 39.78 28.84

48 9.97 45.75 36.56 43.58 46.04 49.52 37.94

64 15.61 54.82 42.62 52.53 55.09 58.67 46.49

80 22.25 63.39 49.58 61.02 63.65 67.31 54.66

96 30.90 71.62 58.49 69.18 71.86 75.58 62.57

112 40.86 79.57 68.68 77.08 79.81 83.58 70.25

128 54.15 87.32 82.16 84.78 87.58 91.39 77.76

144 37.54 102.31 67.71 99.73 102.53 106.37 92.54

160 46.51 110.38 76.83 107.77 110.60 114.47 100.43

176 56.47 118.31 86.93 115.68 118.53 122.43 108.20

192 70.76 126.13 101.35 123.47 126.34 130.26 115.87

208 80.73 133.84 111.43 131.15 134.05 137.99 123.44

224 94.34 141.45 125.15 138.74 141.66 145.62 130.92

240 109.62 148.98 140.53 146.25 149.18 153.16 138.33

256 126.23 156.42 157.24 153.68 157.96 161.96 145.67

Table 2.2: Cost of solving Search-LWE for parameters suggested in [61] with d =

1, t = 2.7, ε = 0.99 with BKW.

λ n q α t log2m log2 #Zq in log2 #Z2 log2 #L
(n)
s,χ

sample hypo. subs. total

80 136 1999 0.005582542. . . 2.2 93.58 109.40 121.59 105.71 121.59 125.04 100.23

231 92893 0.000139563. . . 3.4 127.23 157.47 167.09 154.40 167.09 171.13 146.54

128 153 12227 0.002797408. . . 2.4 84.05 132.07 117.45 129.66 132.32 136.08 122.39

253 594397 0.000034967. . . 3.8 100.66 175.15 146.00 171.88 175.29 179.55 163.89

Table 2.3: Cost of �nding G ≈ s for parameters suggested in [7] with d = 2, ε = 0.99.

strategies for solving the LWE problem.

2.5.1 Short Integer Solutions: Lattice Reduction

Table 2.4 compares the number of bit and ring operations using the BKW and BKZ

algorithm as described in [61] i.e. obtaining a short vector v in the (scaled) dual

lattice allows to distinguish between LWE samples and uniform with advantage (ap-

proximately) exp(−π · (‖v‖ · α ·
√

2π)2). In Table 2.4 running times and the number
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of required samples for BKZ include the 1/ε factor, hence both approaches distin-

guish with probability close to 1.

n q αq BKW NTL-BKZ Lindner/Peikert Model

t log2m log2 #Zq log2 #Z2 log2 #L
(n)
s,χ log2 ε log2m log2 #Zq log2 #Z2 log2 #L

(n)
s,χ

Regev [86]

128 16411 11.81 3.2 81.62 93.84 97.65 83.85 -18 26.47 61.56 65.36 26.47

256 65537 25.53 3.1 126.26 179.76 183.76 168.79 -29 38.50 175.48 179.48 38.50

512 262147 57.06 3.1 337.92 350.80 354.97 338.02 -48 58.52 386.75 390.92 58.52

Lindner & Peikert [61]

128 2053 2.70 2.9 63.86 82.40 85.86 72.73 -18 26.25 54.50 57.96 26.25

256 4099 3.34 2.8 105.08 151.45 155.04 140.64 -29 38.22 156.18 159.77 38.22

512 4099 2.90 2.6 157.78 278.01 281.59 266.14 -50 60.14 341.87 345.45 60.14

Table 2.4: Cost of solving Decision-LWE with BKZ as in [61] and BKW as in Corol-

lary 3.

Hence, Table 2.4 illustrates that for the families of parameters considered here, we

expect the BKW algorithm to be asymptotically faster than the BKZ algorithm with

a crossover around n = 250 at the cost of requiring a lot more samples and memory.
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Figure 2.1: BKZ running times in seconds s for given values of δ0.

Table 2.4 contains analogous approximations in which the BKZ entries are obtained

using the non-linear BKZ 2.0 model.
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n q αq BKW BKZ 2.0 Simulator Model

t log2m log2 #Zq log2 #Z2 log2 #L
(n)
s,χ log2 ε log2m log2 #Zq log2 #Z2 log2 #L

(n)
s,χ

Regev [86]

128 16411 11.81 3.2 81.62 93.84 97.65 83.85 -14 22.50 61.90 65.71 22.50

256 65537 25.53 3.1 126.26 179.76 183.76 168.79 -35 44.48 174.46 178.46 44.48

512 262147 57.06 3.1 337.92 350.80 354.97 338.02 -94 104.47 518.62 522.79 104.47

Lindner & Peikert [61]

128 2053 2.70 2.9 63.86 82.40 85.86 72.73 -14 22.28 57.06 60.52 22.28

256 4099 3.34 2.8 105.08 151.45 155.04 140.64 -33 42.21 151.16 154.74 42.21

512 4099 2.90 2.6 157.78 278.01 281.59 266.14 -86 96.09 424.45 428.03 96.09

Table 2.5: Cost of distinguishing LWE samples from uniform as reported as �Dis-

tinguish� in [61], compared to Corollary 3. BKZ estimates obtained using BKZ 2.0

simulator-derived cost estimate.

Thus, we can reasonably conclude that, under the assumptions made above, employ-

ing lattice reduction in a pure distinguishing approach is out-performed by BKW in

surprisingly low dimension.

2.5.2 Short Integer Solutions: Combinatorial

Recall that if we consider the set of samples from L
(n)
s,χ used during the course of the

BKW algorithm as determining a q-ary lattice, and the noisy vector as denoting a

point close to a lattice point, we may consider the BKW algorithm as analysed in

Corollary 3 as a combinatorial approach for sampling a sparse u in the dual lattice

with entries ∈ {−1, 0, 1}. Hence, it is related to a combinatorial approach for �nd-

ing short dual-(q-ary)lattice vectors as brie�y sketched in [73, p. 156] (cf. also [68]).

These algorithms, however, operate somewhat di�erently to BKW - given a relatively

small set of LWE samples, these are divided into a small number of subsets. Within

each subset, we compute all linear combinations of the members of that subset such

that the coe�cients of these linear combinations are in {−b′, . . . , b′} (note that the

parameter b′ is unrelated to the parameter b used in this chapter).

The algorithm sketched by [73] uses the generalised birthday paradox to produce
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collisions among samples produced by inter-addition, with the parameters of the

algorithm being chosen such that we expect to obtain a single short vector in the

dual-lattice vector.

There are some signi�cant di�erences between such algorithms and BKW, stem-

ming from the assumption of the former that we only have access to a very small

number of LWE samples. This requires the `expansion' of the sample set in such a

way that when we search for collisions, we are almost certain to �nd enough. On

the other hand, due to this expansion, the initial samples must be separated into

disjoint lists. Thus, probably the easiest way to describe the algorithm in [73] in

terms of BKW is to imagine a variant of BKW where, if a sample is not in a given

table, we add this sample plus all {−b, . . . , b}-bounded linear combinations of this

sample with the pre-existing table entries, to the table. To give a strict analogue

to [73], on �nding a subsequent collision, we would need to store a list of all noise

elements which had been added to a sample and ensure that, if we want to eliminate

a sample, that the set of noise elements belonging to the sample and the set of noise

elements belonging to the table entry are disjoint.

However, the fundamental di�erence stems from the assumption that the number

of samples is restricted. If this is not the case (as we assume), then it is clear that

BKW delivers a much shorter dual lattice vector.

2.5.3 Bounded Distance Decoding: Lattice Reduction

As discussed in the introduction, in [61], the authors propose a method to solve LWE

instances which consists of q-ary lattice reduction, then employing a decoding stage

to determine the secret. The decoding stage used is essentially a straightforward

modi�cation of Babai's well-known nearest plane algorithm for CVP. The authors es-

timate the running-time of the BKZ algorithm in producing a basis `reduced-enough'

for the decoding stage of the algorithm to succeed, then add the cost of the decoding

67



Naïve Algorithms for LWE and the BKW Algorithm

stage.

To obtain comparable complexity results, we calculate upper bounds on the bit

operation counts for two data-points based on the running times reported in [61]

multiplied by the clock speed of the CPU used. As can be seen from Table 2.6,

unsurprisingly these indicate substantially lower complexities than for BKW. In ad-

dition, the memory requirements of this approach are small compared to the memory

requirements of BKW.

n q αq BKW NTL-BKZ Lindner/Peikert Model

t log2m log2 #Zq log2 #Z2 log2 #L
(n)
s,χ log2 ε log2m log2 #Zq log2 #Z2 log2 #L

(n)
s,χ

136 2003 5.19 2.6 67.49 93.77 97.23 84.15 -25 33.46 91.35 94.81 33.46

214 16381 2.94 3.4 76.90 128.36 132.16 117.54 -18 26.95 82.31 86.11 26.95

Table 2.6: Cost of solving Search-LWE reported as �Decode� in [61], compared to

the cost solving Decision-LWE with BKW

2.6 Experimental Results

In order to verify the results of this chapter, we implemented stages 1 and 2 of the

BKW algorithm. Our implementation considers LWE with short secrets but we ig-

nore the transformation cost to produce samples with a short secret. Also, our imple-

mentation supports arbitrary bit-width windows b, not only multiplies of dlog2(q)e.

However, due to the fact that our implementation does not use a balanced repre-

sentation of �nite �eld elements internally � which simpli�es dealing with arbitrary

bit-width windows � our implementation does not fully implement the half-table

improvement. That is, for simplicity, our implementation only uses the additive in-

verse of a vector if this is trivially compatible with our internal data representation.

Furthermore, our implementation does not bit-pack �nite �eld elements. Elements

always take up 16 bits of storage. Overall, the memory consumption of our imple-

mentation in stage 1 is worse by a factor of up to four compared to the estimates
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given in this chapter and the computational work in stage is worse by a factor of up

to two. Finally, since our implementation is not optimised we do not report CPU

times. With these considerations in mind, our estimates are con�rmed by our im-

plementation. For example, consider Regev's parameters for n = 25 and t = 2.3

and d = 1. By Lemma 11 picking m = 212.82 will result in a success probability of

psuccess ≈ 0.99959 per component and Psuccess ≈ 0.99 overall. Lemma 4 estimates

a computational cost of 230.54 ring operation and 224.19 calls to L
(n)
s,χ in stage 1. We

ran our implementation with m = d212.82c and window bitsize w = 22 = n log2(q)
2.3 log2(n) .

It required 229.74 ring operations and 223.31 calls to L
(n)
s,χ to recover one component

of s. From this we conclude that Theorem 3 is reasonably tight.

To test the accuracy of Lemma 11 we ran our implementation with the parame-

ters n = 25, q = 631, α · q = 5.85, w = 24 = n log2(q)
2.1 log2(n) and m = 27. Lemma 11

predicts a success rate of 53%. In 1000 experiments we ranked zero for the correct key

component 665 times, while Lemma 11 predicted 530. Hence, it seems our predic-

tions are slightly pessimistic. The distribution of the ranks of the correct component

of s in 1000 experiments is plotted in Figure 2.2.
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Figure 2.2: Distribution of right key component ranks for 1000 experiments on n =

25, t = 2.3, d = 1, psuccess = 0.99.
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2.7 Magni�cation and Independence of Noise

During the course of the BKW algorithm, the structure implies that we will some-

times encounter a situation where the same noise element is added more than once to

a sample as it passes through the tables. This is generally undesirable from a point

of view of minimising noise growth as it leads to random walk scenario where (in

the standard BKW algorithm) a noise element is either repeatedly added to or sub-

tracted from itself2. Perhaps of greater concern is the possibility of two outputs from

B
(n)
s,χ,a being `imperfectly independent'. In this section we treat such issues and ar-

gue that, under the parameters employed in this chapter, such e�ects can be ignored.

We remark that the BKW algorithm as dealt with here (and also in [37]) is distinct

from the original proposition in [21]. Namely, in that work, the algorithm proceeds

by calling B
(n)
s,χ,a−1 to obtain a single reduced sample, then discards the contents of

all tables built up during this construction and starts again from the beginning to

obtain a second sample and so on for a third sample etc. The motivation for this

discarding of tables is to preserve perfect independence between the noise in the �nal

samples. To make the algorithm even remotely practical, however, the contents of

the tables are retained (and added to) between deriving �nal samples. Such an as-

sumption was also made in [37], though the authors apparently failed to appreciate

this loss of perfect independence. In this section we provide an analysis of some of

the e�ects of this loss of perfect independence along with a simple modi�cation to

BKW to lessen the incidence of shared noise.

2.7.1 Balls, Bins and Markov Chains

Upon obtaining a sample (ãi, c̃i) from B
(n)
s,χ,a it is easy to see that, with high prob-

ability, c̃i = 〈ãi, s̃〉 + ei where ei =
∑2a−1

j=0 ẽj , where the ẽj (with the exception of

ẽ0) derive from the table entries which have been `hit' during the `reduction' of the

2In contrast, this behaviour is somewhat desirable when dealing with LPN.
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sample. Now, previous analyses of the BKW algorithm rely on each ẽj in such a set

being distinct, allowing to argue that the �nal sum follows a particular noise distri-

bution. If these values are not distinct then, in general, the �nal noise will follow a

distribution of greater variance. In addition, it is clear that the distinguishing phase

of the algorithm is most e�ective when the noise present in each reduced LWE sam-

ple is independent from any other. If, say each reduced sample `contained' 100 noise

elements, but, say, 30 were shared between any two reduced samples, the resulting

loss of entropy leads to a more costly distinguishing phase.

Note: In the following, we deal with the execution of the BKW algorithm as de-

scribed previously, with the di�erence that we never `switch' table entries, this being,

in a sense which should be apparent later, the `worst-case'. We additionally assume

all necessary tables are �lled before deriving any output samples from B
(n)
s,χ,a - for

each such table T i we denote by ∗Ti the set of independent noise elements which

occur in T i (but in no earlier table) as a result of this construction. Clearly, in later

tables, these elements also appear (with some probability) in increasing number, in-

creasing the probability that a sample from B
(n)
s,χ,a will incorporate more than one

occurrence of such noise entries.

Clearly, given (ã, c̃)← B
(n)
s,χ,a, c̃ `contains' 2a noise elements, with

ni = 2a−1−i

samples from ∗Ti. These noise elements are not `equal', however - some will have

been chosen at random from ∗Ti, while others will have been chosen from a subset

of ∗Ti. For example, if we set a = 3 and consider ∗T0, then a sample (ã, c̃)← B
(n)
s,χ,2

will `contain' four members of ∗T0, three of which are drawn at random from ∗T0.

The fourth, however, is drawn at random from a (generally) smaller set of noise

elements, each member of which was drawn at random, with replacement, from ∗T0.

We denote drawing a noise element from ∗T0 as drawing a sample from a `0-th fold'
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of ∗T0 and the latter case as drawing a sample from a 1st fold of ∗T0. We denote

such sets by ∗T0
0 and ∗T0

1 with ∗Ti
j denoting the general case.

Then, given ni elements from ∗Ti occurring in a �nal sample, a simple counting

argument shows that the number of such elements from each fold of ∗Ti is given

by the binomial coe�cients. Namely, the number of elements from ∗Ti
k is given by

the k-th entry of the (a − 1 − i) − th row of Pascal's triangle, i.e. we have
(
a−1−i
k

)
elements from ∗Ti

k.

We need the following lemma, of which we shall omit the proof

Lemma 12. Given a set F0 of d0 distinctly-labelled balls, we denote by a `fold'

of F0 the random selection with replacement of d0 members of F0. Repeating this

sequentially n times leads to an `n-fold' of F0, with the original set being denoted by

a 0-fold of itself. Then, if we take an n-fold of F0 and draw two elements at random

(with replacement), we denote the probability that these elements collide by p(n,d0).

Then, if we assume that each random variable is independent

p(n,d0) =

dn∑
j=1

En[j] · j2

d2
0

where

E0[j] =


d0 if j = 1

0 if j 6= 1

Ei[j] =

di∑
k=1

Ei−1[k] ·
(
d0

j

)
·
(
k

d0

)j
·
(

1− k

d0

)d0−j
and

di = d0 −
i−1∑
m=1

Em[0]

More generally we wish to answer the question: if we take an element from ∗T0
i and

an element from ∗T0
j (j ≥ i), what is the probability that they collide? We denote

this general probability by p(i↔j,d0), with p(n,d0) corresponding to p(n↔n,d0).
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We denote the multiplicity of an element e in ∗T0
k by #k(e).

We approach the problem from a discrete-time, time-homogeneous Markov Chain

perspective, treating the multiplicities of elements in folds as being states and the

successive folds as being time-steps and then examine the transition probabilities.

We denote by random variables Xk the multiplicity of a given element after k folds or

time-steps. In notation standard for Markov chains, the probability of transitioning

from state i to state j in n steps is

p
(n)
ij := Pr[Xk+n = j | Xk = i]

Now, we de�ne the state-transition matrix A such that

Ai,j = p
(1)
ij = Pr[#k+1(e) = j | #k(e) = i]

Then the k-step transition probability matrix is simply Ak. For example, in the case

of d0 = 8, we have

A =


1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.344 0.393 0.196 0.056 0.010 0.001 0.000 0.000 0.000
0.100 0.267 0.311 0.208 0.086 0.023 0.003 0.000 0.000
0.023 0.112 0.235 0.282 0.211 0.101 0.030 0.005 0.000
0.003 0.031 0.109 0.219 0.273 0.219 0.109 0.031 0.003
0.000 0.005 0.030 0.101 0.211 0.282 0.235 0.112 0.023
0.000 0.000 0.003 0.023 0.086 0.208 0.311 0.267 0.100
0.000 0.000 0.000 0.001 0.010 0.056 0.196 0.393 0.344
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000


The stationary distributions are given by the (two distinct) left eigenvectors of A of

multiplicity one. The stochastic state row-vector relation is given by xk+1 = xkA.

In general, xk+n = xkAn.

The starting state-vector is always

x = x0 =
(

0 1 0 . . . 0
)

We now proceed to outline three simple cases which will be required in our analysis

Assumption 2. Let d = (0, 1/d0, 2/d0, . . . , (d0−1)/d0, 1). Then we can approximate

the probabilities of collisions between noise elements a, b by the following
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e1
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Figure 2.3: Example of Noise Tree

1. In the case of a and b being drawn from the same fold ∗Ti
j of

∗Ti

Pr[a = b] ≈
d0∑
m=1

Pr[#a = m] · m
d0

=

d0∑
m=1

i2

d0
Ak

1,i

We denote this by p(j↔,j).

2. In the case of a and b being drawn from two folds of ∗Ti, neither of which is a

derivative of the other

Pr[a = b] ≈ 1

d0

3. In the case of a being drawn from a fold F0 =∗ Ti
j of

∗Ti and b being drawn

from a fold F1 =∗ Ti
j+x of Ti where F1 is an x-th derivative of F0

Pr[a = b] ≈
d0∑
m=1

(
Pr[#a = m] ·

d0∑
n=1

n

d0
·
(
Ax

(m,n)

))
=

d0∑
m=1

(
m ·Ak

1,i · 〈d,Ax
(m,∗)〉

)
We denote this by p(j↔(j+x)).

2.7.2 The General Case

In the remainder of this section we quantify the expected number of collisions be-

tween elements of noise trees constructed implicitly during the execution of the BKW

algorithm. The arguments employed are largely derived from in-depth examination

of such trees and extrapolation, with rigorous proofs being exceedingly cumbersome,
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hence we rely on a multitude of counting arguments obtained by examining such

trees.

Now, we are interested in taking a k-th level tree and considering the probabil-

ity of collision between any two tree elements. We denote the tree with 2 elements

by K1, that with 4 elements by K2, etc., thus the tree in Figure 2.3 corresponds to

K4.

Within each Ki, we need to consider
(

2i

2

)
possible collisions. To go from K1 to

K2 we take each element of K1 and append a copy of K1, joining the root node

to the element. Or, to go from K1 to K3, we would append a copy of K2 to each

element of K1.

Then we can observe that #p(0↔0) in tree Kj is given by

#p(0↔0)(j) =

j−2∑
r=0

(
2r + 2

r

)

2.7.3 Putting it all together

Given a tree Kj , the possible number of (0↔ 0) collisions on level L is given by

#p(0,j,L) :=

j−L+1∑
b=1

((
j − b

j − L− b+ 1

)
·
j−L+1∑
c=b+1

(
j − c

j − L− c+ 1

))

Then, in general, we have

#p(k,j,L) =

j−L+1∑
d=1

(
d+ k − 2

d− 1

)
·#p(0,j−k−d+1,L−k)

Hence, in a speci�c row, the total expected number of collisions is given by

L−1∑
t=0

#p(t,j,L) · p(t↔t)

Thus, given a given row, we can calculate the expected number of collisions between

elements. For instance, let j = 14 and consider the 8th row of K14.
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So, this gives us the total expected number of collisions in a certain row of the

tree.

Given the treeKx, the expected number of collisions with direct-descendant elements

is

x∑
b=0

 (xb)∑
a=1

x−1∑
j=1

(
x− 1

j

)
· pj↔b




The expected number of collisions with indirect descendants is given as follows.

Consider b = 1. Then

E[indx,b=1]Σ =

x−1∑
j=b−1

(
j

j − b+ 1

)
·

 x−1∑
p=j+1

(
p∑
t=b

(
p

t

)
· p0↔0

)
Now consider x = 4, b = 2. We have

E[indx=4,b=2]Σ =
x−1∑
j=b−1

(
j

j − b+ 1

)
·

 x−1∑
p=j+1

(
p∑
t=b

(
p

t

)
· p0↔0

)+

+ E[indx=2,b=1]1 + E[indx=3,b=1]1

Similarly, for x = 4, b = 3 we have

E[indx=4,b=3]Σ =
x−1∑
j=b−1

(
j

j − b+ 1

)
·

 x−1∑
p=j+1

(
p∑
t=b

(
p

t

)
· p0↔0

)+

+ E[indx=3,b=2]1 + E[indx=2,b=2]2

We de�ne B(b,l,x) to be

B(b,l,x) =

x−1∑
j=b−1

(
j

j − b+ 1

)
·

 x−1∑
p=j+1

(
p∑
t=b

(
p

t

)
· p(l↔l)

)
Then, given tree K4, the expected number of indirect collisions is given by

B(1,0,4) +

+ B(2,0,4) +B(1,1,2) +B(1,1,3) +

+ B(3,0,4) +B(2,2,3)
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Similarly, given tree K5, the expected number of indirect collisions is given by

B(1,0,5) +

+ B(2,0,5) +B(1,1,2) +B(1,1,3) +B(1,1,4) +

+ B(3,0,5) +B(2,2,3) +B(2,2,4) +

+ B(4,0,5) +B(3,3,4)

So, in general, given tree Kx, the expected number of indirect collisions is given by

Eb(x) = B(1,0,x) +

x−1∑
a=2

(
B(a,0,x) +

x−1∑
u=a

B(a−1,a−1,u)

)

So, putting this all together, given tree Kx, we have

1. The expected number of collisions between elements lying in the same level of

the tree

2. The expected number of collisions between elements and their direct descen-

dants

3. The expected number of collisions between elements and their indirect descen-

dants

Thus, �nally, given tree Kx, the expected number of collisions is

Ax +Bx + Cx

where

Ax =
x∑
r=0

(
r−1∑
t=0

(
p(t↔t) ·

x−r+1∑
d=1

(
d+ t− 2

d− 1

)
·

(
x−r+1∑
b=1

((
x− b

x− r − b+ 1

)
·
x−r+1∑
c=b+1

(
x− c

x− r − c+ 1

)))))

Bx =
x∑
r=0

 (xr)∑
a=1

x−1∑
j=1

pj↔r ·
(
x− 1

j

)


Cx = B(1,0,x) +

x−1∑
a=2

(
B(a,0,x) +

x−1∑
u=a

B(a−1,a−1,u)

)

However, despite obtaining such expressions for the expected number of collisions,

extracting concrete �gures is problematic due to the cost of repeatedly multiplying
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the Markov matrix by itself leading to prohibitive running times for anything other

than small examples. To attempt a circumvention of this, we employ the above

expressions for small examples and then �t a 2-dimensional model to allow us to

extrapolate to larger instances.

For any reasonable parameters, the term Ax dominates, thus we only consider Ax

to obtain an estimate of the expected number of collisions. To do so, we �tted a

two-parameter model to small estimates, obtaining

log2(Ad0x ) ≈ 3.0103 · x− c(d0)

where

c(d0) ≈ 97.6417 · d0.0138
0 − 93.2746

Thus

Ad0x ≈ 23.0103·x−97.6417·d0.01380 +93.2746

and we can approximate the number of collisions in a given sample from B
(n)
s,χ,a by

a∑
i=0

Ad0i

2.7.4 Implications

In the LPN case, the above considerations could only be bene�cial when we consider

self-intersections, since the noise in a single sample cannot grow as a result. However,

the impact on independence can be substantial and detrimental. In the LWE case,

both cases can impact the e�cacy of the algorithm.

2.7.5 Mitigation

A simple modi�cation to the BKW algorithm leads to substantial mitigation of the

incidence of shared noise elements. Simply, when we have a table T i and a sample

(a, c) which is to be reduced by (a′, c′) in table T i, we compute (a− a′, c− c′) and,

instead of simply returning this vector, we additionally replace (a′, c′) in T i by (a, c),
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discarding (a′, c′) from the table. This is somewhat related to a modi�cation in the

next chapter, though for unrelated reasons. However, we do not analyse the e�ects

of this modi�cation here.

2.8 Closing Remarks

In this chapter we provided a concrete analysis of the cost of running the BKW

algorithm on LWE instances both for the search and the decision variants of the

LWE problem. We also applied this analysis to various sets of parameters found in

the literature. From this we conclude that the BKW algorithm outperforms lattice

reduction algorithms in an SIS setting for the parameter sets proposed in [86, 61]

starting around dimension n ≈ 250 at the cost of requiring many more samples and

storage. On the other hand, lattice reduction in a BDD setting currently outper-

forms the BKW algorithm as analysed in this chapter.

We also provide a partially-heuristic analysis of the expected number of (undesirable)

collisions which result from more practical versions of BKW, showing such e�ects

to be insigni�cant in the LWE case and illustrating how such e�ects can be mitigated.

Furthermore, in this chapter we ignored the so-called LWE �normal form� where

the secret follows the noise distribution χ (cf. [22]) and other small secret variants of

LWE. For the BKW algorithm as presented in this chapter, only hypothesis testing

is a�ected by the size of the secret and hence we do not expect the algorithm to

bene�t from considering small secrets in this form. A dedicated variant of the BKW

algorithm tackling small secrets is thus a clear direction for investigation, one which

we visit in the next chapter.
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Chapter 3

Lazy Modulus Switching for the

BKW Algorithm

The contents of this chapter are based on the paper "Lazy Modulus Switching for the

BKW Algorithm" which was presented at PKC 2014, Buenos Aires, Argentina and

was a work conducted in collaboration with M. R. Albrecht, J. C. Faugére and L.

Perret.

3.1 Introduction

The motivation for this chapter comes from the observation that recent constructions

based on LWE do not sample the secret uniformly at random but rather from some

distribution which produces small entries (e.g. [10, 4, 44, 41, 83]). From a theoretical

point of view, this is motivated by the observation that every LWE instance can be

transformed into an instance where the secret follows the same distribution as the

noise [10].1 However, many constructions use secrets which are considerably smaller.

For example, binary-LWE samples the secret from {0, 1}∗ [22] or {−1, 0, 1}∗ [41].

The presence of such small secrets provokes the question of what implications such

choices have on the security of LWE. Is solving LWE with, say, binary secrets easier

1also in [57] for the LPN case.
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than standard LWE ? From a theoretical point of view, [22] proves that their binary-

LWE is as secure as LWE. In this chapter, we try to address the question from an

algorithmic point of view; i.e. what is the actual impact of small secrets on concrete

parameters.

3.1.1 Organisation of the Chapter and Main Results

While none of the algorithms discussed previously (BKW, dual-lattice distinguish-

ing, primal lattice reduction + decoding/enumeration) take advantage of the pres-

ence of small secrets, we may combine them with the modulus switching technique.

The modulus switching technique was initially introduced to improve the perfor-

mance of homomorphic encryption schemes [23] and was recently used to reduce

the hardness of LWE with polynomially sized moduli to GAPSVP [22]. Modu-

lus switching is essentially the same as computing with a lower precision similar

to performing �oating point computations with a low �xed precision. Namely, let(
a, c = 〈a, s〉+ e

)
∈ Znq × Zq be LWE sample where s ∈ Znq is the secret vector, and

e ∈ Zq is an error. Let also some p < q and consider
(
bp/q · ae , bp/q · ce

)
with⌊

p

q
· c
⌉

=

⌊
p

q

(
〈a, s〉+ q · u+ e

)⌉
, for some u ∈ Z⌊

p

q
· c
⌉

=

⌊
〈p
q
· a, s〉p +

p

q
· e
⌉

=

⌊
〈
⌊
p

q
· a
⌉
, s〉p + 〈p

q
· a−

⌊
p

q
· a
⌉
, s〉p +

p

q
· e
⌉

=〈
⌊
p

q
· a
⌉
, s〉p + 〈p

q
· a−

⌊
p

q
· a
⌉
, s〉p +

p

q
· e+ e′, where e′ ∈ [−0.5, 0.5]

=〈
⌊
p

q
· a
⌉
, s〉p + e′′ +

p

q
· e+ e′. (3.1)

where 〈x,y〉p denotes the modulo p inner product of x and y.

Since p/q · a − bp/q · ae takes values ∈ [−0.5, 0.5] we have that e′′ is small if s is

small. We may hence compute with the smaller `precision' p at the cost of a slight

increase of the noise rate by a `rounding error' e′′. Modulus switching allows then

to map a LWE instance mod q to a scaled instance of LWE mod p. Thus, modulus

switching can be used in the solving of small secret instances of LWE, a folklore ap-
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proach which has not been explicitly studied in the literature. Namely, if we pick p

such that e′′ is not much larger than p/q ·e then, for example, the running time of the

BKW algorithm improves from (a2n) · q
b

2 to (a2n) · p
b

2 . Since typically b ≈ n/ log n

this may translate to substantial improvements. Indeed, we can pick p such that

|〈p/q · a− bp/q · ae, s〉| ≈ p/q · |e|. This implies σs ·
√

n
12 ≈ p/q · σ, or

p ≈ min

{
q,
σs
σ
·
√

n

12
· q
}

where σs is the standard deviation of elements in the secret s. In this chapter, we

re�ne this approach and present a variant of the BKW algorithm which fuses mod-

ulus switching and BKW-style reduction. In particular, this chapter contains two

main contributions. Firstly, in Section 3.2 we present a modulus switching strategy

for the BKW algorithm in which switching is delayed until necessary. In a nutshell,

recall that the BKW algorithm performs additions of elements which collide in cer-

tain components. Our variant will search for such collisions in `low precision' Zp but

will perform arithmetic in `high precision' Zq. From now on, we call rounding error

the inner product of the sub-vector of `low bits' of a with the secret s. Our strategy

permits to decrease rounding errors and allows to reduce p by a factor of
√
a. Sec-

ondly, this perspective enables us to choose reductors in the BKW algorithm which

minimise the rounding errors further (Section 3.3). Namely, we favour components a

with small distance | bp/q · ae − p/q · a| in already reduced components, called `child

components' in this work. Our strategy ensures that the probability of �nding such

elements is highest for those components which are considered �rst by the BKW

algorithm, i.e. those components which contribute most to the noise. We note that

the �rst contribution relies on standard independence assumptions only, while the

second contribution relies on stronger assumptions, which however seem to hold in

practice. We then discuss the complexity of our variants in Section 3.4. For typical

choices of parameters � i.e. q ≈ nc for some small constant c ≥ 1, a = log2 n and

b = n/ log2 n � the complexity of BKW as analysed in Chapter 2 is O
(
2cn · n log2

2 n
)
.

For small secrets, a naive modulus switching technique allows the reduction of this
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complexity to O
(

2
n
(
c+

log2 d
log2 n

)
· n log2

2 n

)
where 0 < d ≤ 1 is a small constant. If

the secret distribution does not depend on n and if an unbounded number of LWE

samples is available our improved version of BKW allows to get a complexity of:

O

(
2
n
(
c+

log2 d−
1
2 log2 log2 n

log2 n

)
· n log2

2 n

)
.

We then study the behaviour of this algorithm by applying it to various instances of

LWE with binary secrets. In Section 3.5 we report on experiments conducted with

a proof-of-concept implementation of our algorithm. In Section 3.6, we compare the

results with plain BKW and BKZ under modulus switching and a simple meet-in-

the-middle approach or generalised birthday attack. We show that our lazy-modulus-

switching variant of the BKW algorithm provides better results than applying plain

BKW after modulus reduction. We also demonstrate that under the parameters

considered here this algorithm also � as n increases � outperforms the most optimistic

estimates for BKZ when we apply BKZ to the same task as that to which we apply

BKW: �nding short vectors in the (scaled-)dual lattice - we obtain this perspective

by viewing the rounding error as an increase in the noise rate while still �nding short

vectors in the (scaled)-dual p-ary lattice determined by our modulus-reduced LWE

samples. Indeed, our results indicate that our algorithm outperforms BKZ 2.0 when

both are used to �nd a short vector in the (scaled-)dual lattice in dimension as low as

≈ 256 when considering LWE parameters from [86] with binary secret. However, we

stress again that we always assume an unbounded number of samples to be available

for solving.

3.2 Modifying BKW: Lazy Modulus Switching

Similarly to the approach taken in Chapter 2, we consider BKW � applied to

Decision-LWE � as consisting of two stages: sample reduction and hypothesis testing

(we neglect back-substitution in this chapter). In this chapter, we only modify the

�rst stage.

83



Lazy Modulus Switching for the BKW Algorithm

3.2.1 The Basic Idea

We brie�y recall the principle of standard BKW, as examined in Chapter 2. Assume

we are given samples of the form (a, c) following either L
(n)
s,χ or UZnq × UZq. Our

goal is to distinguish between the two cases. Standard BKW proceeds by producing

samples (a∗, c∗) with a∗ being all zero such that statistical tests can be applied to

c∗ to decide whether they follow U(Zq) or some distribution related to L
(n)
s,χ. This is

achieved by grouping the n components of all vectors into a groups of b components

each (assuming a and b divide n for simplicity). If two vectors collide on all b entries

in one group, the �rst is subtracted from the second, producing a vector with at least

b all zero entries. These vectors are then again combined to produce more all zero

entries and so forth until all a groups are eliminated to zero. However, as we add

up vectors the noise increases. Overall, after ` addition levels the noise has standard

deviation
√

2`αq. Our algorithm, too, will be parametrized by a positive integer

b ≤ n (the window width), and a := dn/be (the addition depth).

Recall that the complexity of the BKW algorithm is essentially qb. However, b

only depends on the ratio αq/
√

2πq = α/
√

2π and thus not on q. Hence, it is clear

that applying modulus reduction before running the BKW algorithm may greatly

improve its running time: b is preserved whilst q is reduced to p. However, instead

of applying modulus reduction in `one shot' prior to executing BKW, we propose

switching to a lower precision only when needed. For this, we actually never switch

the modulus but simply consider elements in Zq `through the perspective' of Zp. We

then essentially only consider the top-most log2 p bits of Zq.

Under this perspective, given samples of the form (a, c) we aim to produce
(
ã, c̃ =

〈ã, s〉+ ẽ
)
, where ã is short enough, i.e.

|〈ã, s〉| ≈
√

2aαq. (3.2)
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Although other choices are possible, this choice means balancing the noise ẽ after a

levels of addition and the contribution of |〈ã, s〉| such that neither dominates. From

now on, we shall call rounding error the term 〈ã, s〉. So, condition (3.2) is such that

after a levels of additions performed by the BKW algorithm the escalated initial

noise and the noise coming from rounding errors have the same size.

3.2.2 Sample Reduction for Short Secrets

Let (a0, c0), . . . , (am−1, cm−1) be samples which follow L
(n)
s,χ or U(Znq ) × U(Zq). We

now explain how to produce samples (ãi, c̃i)i≥0 that satisfy condition (3.2). For sim-

plicity, we assume from now on that p = 2κ. 2

The main idea of the algorithm is to search for collisions among the �rst b compo-

nents of samples (ai, ci) by only considering their top log2 p bits. If such a collision

is found, we proceed as in the normal BKW algorithm, i.e. we subtract the colliding

samples to clear the �rst b components. In our case, we clear the top-most log2 p bits

of the �rst b components. Hence, instead of managing elimination tables for every

bit of all components, we only manage elimination tables for the most signi�cant κ

bits. Put di�erently, all arithmetic is performed in Zq but collisions are searched for

in Zp after rescaling or modulus switching.

As in chapter 2, we realise the �rst stage of the BKW algorithm as a (recursively

constructed) series of oracles B
(n)
s,χ,`. In our case, we have 0 ≤ ` < a, where B

(n)
s,χ,a−1

produces the �nal output and B
(n)
s,χ,−1 calls the LWE oracle. We will make use of a

set of tables T ` (maintained across oracle calls) to store (randomly-chosen) vectors

that will be used to reduce samples arising from our oracles. However, compared to

Chapter 2 our oracles B
(n)
s,χ,` take an additional parameter p which speci�es the preci-

sion which we consider. Hence, if p = q then we recover the algorithm from Chapter

2While we do not have to restrict our attention to p of the form 2κ, we choose it for ease of

exposition and implementation.
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2 where we perform no modulus reduction at all. In particular, B
(n)
s,χ,` proceeds as

follows:

1. For ` = −1, we can obtain samples from B
(n)
s,χ,−1 by simply calling the LWE

oracle L
(n)
s,χ and returning the output.

2. For ` = 0, we repeatedly query the oracle B
(n)
s,χ,0 to obtain (at most) (pb− 1)/2

samples (a, c) with distinct non-zero vectors
⌊
p/q · a(0,b)

⌉
. We use these samples

to populate the table T 0, indexed by
⌊
p/q · a(0,b)

⌉
. We store (a, c) in the table.

During this course of this population, whenever we obtain a sample (a′, c′) from

B
(n)
s,χ,−1, if

⌊
p/q · a′(0,b)

⌉
(resp. the negation) match

⌊
p/q · a(0,b)

⌉
such that the

pair (a, c) is already in T 1, we return (a′ ± a, c′ ± c), as a sample from B
(n)
s,χ,0.

Note that, if
⌊
p/q · a(0,b)

⌉
is zero, we return (a′, c′) as a sample from B

(n)
s,χ,0.

Further calls to the oracle B
(n)
s,χ,0 proceed in a similar manner, but using (and

potentially adding entries to) the same table T 0.

3. For 0 < ` < a, we proceed as above: we make use of the table T ` (constructed

by calling B
(n)
s,χ,`−1 up to (pb − 1)/2 times) to reduce any output sample from

B
(n)
s,χ,`−1 with

⌊
p/q · a(b·`,b·`+b)

⌉
by an element with a matching such vector, to

generate a sample returned by B
(n)
s,χ,`.

Pseudo-code for the modi�ed oracle B
(n)
s,χ,`, for 0 ≤ ` < a, is given in Algorithm 3.

3.2.3 Selecting p

Yet, we still have to establish the size of p to satisfy Condition 3.2. In contrast to the

technique described in (3.3), we emphasise that in our approach we do not actually

multiply by p/q. Let σr be the standard deviation of uniformly random elements

in Zbq/pe. Performing one-shot modulus switching in this setting would mean to

split a into two vectors, a′ with the `high order' bits and a′′ with `low order' bits.

In essence, when performing one-shot modulus reduction leads us to immediately

discard or ignore all low order bits at the outset, then to proceed with BKW on
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Algorithm 3: B
(n)
s,χ,` for 0 ≤ ` < a.

Input: b � an integer 0 < b ≤ n

Input: ` � an integer 0 ≤ ` < a

Input: p � an integer 0 < p ≤ q

1 begin

2 T ` ← table with pb rows maintained across all runs of B
(n)
s,χ,`;

3 repeat

4 query B
(n)
s,χ,`−1 to obtain (a, c);

5 z←
⌊
p · a(b·`,b·(`+1))

q

⌉
;

6 if z is all zero then

7 return (a, c);

8 else if Tz 6= ∅ then

9 break;

10 Tz ← (a, c);

11 z←
⌊
−p · a(b·`,b·(`+1))

q

⌉
;

12 Tz ← (−a,−c);

13 until the world ends;

14 (a′, c′)← Tz;

15 return (a− a′, c− c′);
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the remaining high-order bits. By discarding the low order bits at the outset, we

immediately increase the noise present in the resulting modulus-switched samples.

The standard deviation of each component of a′′ is σr, thus the standard deviation

of the product of such a component with a component of s is
√
σ2
rσ

2
s . Considering

all such products, it is apparent that the initial one-shot modulus switching adds

noise of standard deviation
√
n · σ2

rσ
2
s to the modulus-switched samples. Hence, af-

ter applying BKW to these pre-processed samples, the standard deviation of the

noise contributed by modulus-switching in the �nal output would be√
n · 2a · σ2

rσ
2
s =

√
a b · 2a · σ2

rσ
2
s . (3.3)

In more detail, we can observe that by performing one-shot modulus reduction, we

immediately gain the additional noise term e′′, as in Equation 3.1, which has vari-

ance n · σ2
s ·. However, as the following lemma establishes, we may consider smaller

p because the �nal noise contributed by modulus switching under Algorithm 3 is

smaller than in (3.3). This is because if (ãi, c̃i) are �nal output samples then the

entries ãi,(b·a−1) will be signi�cantly smaller than ãi,(0).

Yet, to formalise this, we need to make a (standard) simplifying assumption, namely

that the outputs of the BKW algorithm (at every stage) are independent. That

is, we make the assumption that, during the course of the algorithm described, all

components of each sample from B
(n)
s,χ,` are independent from every other sample. In

3.6.1 we examine the application of arguments from 2.7 to typical table sizes arising

from this modi�ed algorithm to illustrate that we can, to all intents and purposes,

treat all outputs as being independent.

Assumption 3. We assume that all outputs of B
(n)
s,χ,` are independent.

Assumption 3 allows to establish the following lemma:

Lemma 13. Let n ≥ 1 be the dimension of the LWE secret vector, q be a modulus,

b ∈ Z with 1 ≤ b ≤ n. Let also σr be the standard deviation of uniformly random
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elements in Zbq/pe. Under Assumption 3, the components of ã = a− a′ returned by

B
(n)
s,χ,` satisfy:

Var(ã(i)) = 2`−bi/bcσ2
r , for 0 ≤ bi/bc ≤ `

and Var
(
UZq

)
for bi/bc > `.

Proof. We assume b = 1 without loss of generality and proceed by induction on `.

Initialization. If ` = 0, then i = 0. The output of B
(n)
s,χ,0 is the sum of two random

vectors in Znq which collide in component zero when considered in Zp. The variance

of the result is hence that of a random element in Zbq/pe, i.e. σ2
r , in component zero,

all other components follow the uniform distribution in Zq.

If ` = 1, then i = 0 and 1. Also, we have two elimination tables T 0 and T 1.

Outputs of B
(n)
s,χ,1 are the sum of two outputs of B

(n)
s,χ,0. Under Assumption 3 these

are independent and the sum of their variances is the variance of their sum. The

variance of ã(0) is hence 2σ2
r and ã(1) has variance σ2

r similarly to case ` = 0. All

other components are uniformly random in Zq.

Induction. More generally, for ` > 0 the output of B
(n)
s,χ,` is the sum of two outputs

of B
(n)
s,χ,`−1. Hence, its components satisfy Var(ã(i)) = 2 · 2`−1−iσ2

r for 0 < i < ` and

σ2
r for a(`).

Using Lemma 13 we may adapt our choice of p, because the noise contributed by

modulus switching for a given p is smaller:

Corollary 4. Let n ≥ 1 be the dimension of the LWE secret vector, q be a modulus,

b ∈ Z with 1 ≤ b ≤ n. Let σr be the standard deviation of uniformly random elements

in Zbq/pe and σs be the standard deviation of the distribution from which the secret

s is sampled. Let (ã, c̃) be an output of B
(n)
s,χ,a−1. Under Assumption 3, the noise

added by lazy modulus switching in the �nal output of B
(n)
s,χ,a−1, that is |〈ã, s〉|, has
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standard deviation√√√√b ·

(
a−1∑
i=0

2a−i−1

)
· σ2

rσ
2
s =

√
b · (2a − 1) · σ2

rσ
2
s .

Proof. From Lemma 13, we are adding n (assumed to be) independent random vari-

ables, each of which takes the form ãi · si where ãi is distributed according to the

interval of b elements in which i lies. The corollary then follows by adding the

variances of b such random variables from each interval.

The main observation of this part is obtained by comparing Corollary 4 with the

standard deviation (3.3). We see that the standard deviation obtained using our

lazy modulus switching is divided by a factor
√
a w.r.t. to a naive use of modulus-

switching, i.e. as in (3.3). As a consequence, we may reduce p by a factor
√
a.

3.3 Improved Algorithm: Stunting Growth by Unnatural

Selection

Based on the strategy in the previous section, we now introduce a pre-processing step

which allows to further reduce the magnitude of the noise present in the outputs of

B
(n)
s,χ,a−1 by reducing rounding errors further. For this, it will be useful to establish

notation to refer to various components of ai in relation to B
(n)
s,χ,`.

Children: are all those components with index j < b · `, i.e, those components that

were reduced by some B
(n)
s,χ,k with k < `: they grow up so quickly.

Parents: are those components of ai with index b · ` ≤ j < b · ` + b, i.e. those

components among which collisions are searched for in B
(n)
s,χ,`: collisions among

parents produce children.

Strangers: with respect to B
(n)
s,χ,` are all other components j ≥ b · ` + b: they are

indi�erent towards each other.

So, for example, if n = 10 and b = 2 and we are considering ` = 2 then a(0−3) are

child components, a(4−5) are parents and a(6−9) are strangers (cf. Figure 3.1).
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��|��|��|��|��
a(0) a(9)

Child entries, parents live in T 0

Child entries, parents live in T 1

Parent entries (w.r.t. T 2)
Strangers

Figure 3.1: Children, parents and strangers.

3.3.1 The Basic Idea

For the general idea and intuition, assume b = 1 and that ãi are outputs of B
(n)
s,χ,0

and we hence have Var(ãi,(0)) = σ2
r . Now, some of these ãi will be stored in Table

T 1 by B
(n)
s,χ,1 based on the value in the parent component ãi,(1). All future outputs of

B
(n)
s,χ,1 which collide with ãi in the parent component at index 1 will have ãi added/-

subtracted to it, we are hence adding a value with Var(ãi,(0)) = σ2
r in index 0.

Now, however, if the ãi,(0) happened to be unusually short, all B
(n)
s,χ,` for ` > 0

would output vectors with a shorter ãi,(0) added/subtracted in, i.e. would also have

unusually small child components (although to a lesser degree). That is, improving

the outputs of B
(n)
s,χ,1 � i.e. decreasing the magnitude of the ãi,(0) stored in T 1 � has a

knock-on e�ect on all later outputs. More generally, improving the outputs of B
(n)
s,χ,`

will improve the outputs of B
(n)
s,χ,k for k > `.

On the other hand, improving the outputs of B
(n)
s,χ,` where ` is small, is easier than

for larger values of `. In the algorithm as described so far, when we obtain a collision

between a member of T ` and an output (ai, ci) of B
(n)
s,χ,`−1, we reduce (ai, ci) using

the colliding member of T `, retaining this member in the table. Alternatively we

can reduce (ai, ci) using the in-situ table entry, replace the table entry with (the

now reduced) (ai, ci) and return the former table entry as the output of B
(n)
s,χ,`. If

we selectively employ this alternative strategy using the relative magnitudes of the
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child components of (ai, ci) and the table entry as a criterion, we can improve the

`quality' of our tables as part of a pre-processing phase.

That is, in B
(n)
s,χ,` for each collision in a parent component we may inspect the child

components for their size and keep that in T ` where the child components are small-

est. Phrased in the language of `children' and `parents': we do not let `nature', i.e.

randomness, run its course but intervene and select children based on their size. As

the number of child components is b · ` it becomes more di�cult as ` increases to

�nd vectors where all child components are short.

3.3.2 Algorithms

This leads to a modi�ed algorithm Bsmall,s,χ(b, `, p) given in Algorithm 4. Using

Algorithms 3 and 4 we may then present our revised version of the BKW algorithm

in Algorithm 5 where we �rst use Algorithm 4 to produce `good' tables and then use

Algorithm 3 to sample (ãi, c̃i) as before. We note that, in Algorithm 4, we employ

the `1 norm for selecting desirable child entries. However, modifying this choice to

use any other norm would be straightforward.

Algorithm 4: Bsmall,s,χ(b, `, p) for 0 ≤ ` < a.

Input: b � an integer 0 < b ≤ n

Input: ` � an integer 0 ≤ ` < a

Input: p � an integer 0 < p ≤ q

1 begin

2 T ` ← table with pb rows maintained across all runs of Bsmall,s,χ(b, `, p);

3 Find (a′, c′)← T `z that collides with a fresh sample (a, c) from B
(n)
s,χ,`−1 as in

Algorithm 3;

4 if
∑b·`−1
i=0 |a

′
(i)| >

∑b·`−1
i=0 |a(i)| then

5 T `z ← (a, c);

6 return (a− a′, c− c′);
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Algorithm 5: BKW with lazy modulus switching.

Input: b � an integer 0 < b ≤ n

Input: a � an integer such that ab = n

Input: p � an integer 0 < p < q

Input: o � an integer 0 ≤ o

Input: m � an integer 0 ≤ m

1 begin

2 ot ← o/(a+ 1);

// populate elimination tables with random entries

3 for 0 ≤ i < ot do

4 (ã, c)← B
(n)
s,χ,a−1; // (ã, c) is discarded

// sample small entries

5 for 0 ≤ i < a do

6 for 0 ≤ j < ot do

7 (ã, c)← Bsmall,s,χ(b, i, p); // (ã, c) is discarded

8 for 0 ≤ i < m do

9 (ãi, ci)← B
(n)
s,χ,a−1;

10 Run distinguisher on ci and return output;
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τ 1 2 3 4 5

cτ 0.405799353869 0.692447899282 0.789885269135 0.844195936036 0.854967912468

τ 6 7 8 9 10

cτ 0.895446987232 0.91570933651 0.956763578012 0.943424544282 0.998715322134

Table 3.1: cτ for small values of τ

3.3.3 Selecting p

It remains to be established what the e�ect of such a strategy is, i.e. how fast children

grow up or how fast rounding errors accumulate. In particular, given n vectors xi

sampled from some distribution D where each component has standard deviation σ,

i.e. Var(xi,(j)) = σ2 we are interested in the standard deviation σn of each component

for x∗ = minabs (x0, . . . ,xn−1) where minabs picks that vector where
∑b·`−1

j=0 |x(j)| is

minimal. At this point we know no closed algebraic expression for σn. However, we

found � as detailed in Section 3.8 � that σn can be estimated as follows:

Assumption 4. Let the vectors x0, . . . ,xn−1 ∈ Zτq be sampled from some distri-

bution D such that σ2 = Var(xi,(j)) where D is any distribution on (sub-)vectors

observable in Algorithm 5. Let x∗ = minabs (x0, . . . ,xn−1) where minabs picks that

vector x∗ with
∑b·`−1

j=0 |x∗(j)| minimal. The standard deviation σn =
√
Var(x∗(0)) =

· · · =
√
Var(x∗(τ−1)) of components in x∗ satis�es

σ/σn ≥ cτ τ
√
n+ (1− cτ )

with cτ as in Table 3.1 for τ ≤ 10 and

cτ = 0.201514
√
τ + 0.323621 ≈ 1

5

√
τ +

1

3

otherwise.

With Assumption 4 we can now estimate the size of the entries of the variance matrix

associated with our elimination tables. That is, a matrix M where the entry M(i,j)

holds the variance of entries (b · j, . . . , b · j + b− 1) in T i.

It is clear that M(i,j) = Var(U(Zq)) for 0 ≤ i < a and i ≤ j as no reductions
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take place for entries on and above `the main diagonal'. Now, in Algorithm 5 the

child components in T 1 are reduced by calling Algorithm 4 o/(a + 1) times. Each

table T ` has pb/2 rows and we can hence apply Assumption 4 on T 1 with τ = b and

n = 2o
(a+1)pb

+ 1 uniform samples (i.e. D is the uniform distribution) with standard

deviation σr. Note that this assumes (idealistically) that each table entry is `hit' ex-

actly n times during this process. While the expected value of `hits' each table entry

receives is n, ideally we wish to ensure that the majority of table entries are `hit' at

least a certain number of times. Clearly, the number of `hits' for a given table entry

is governed by a binomial distribution - if we consider the problem from a `balls and

bins' perspective, we have the random and independent placing of o/(a + 1) balls

into pb/2 bins. Then we can approximate the expected number of bins containing j

balls by a Poisson random variable with parameter o/((a + 1) · pb/2), implying we

can approximate the number of such bins by

(o/((a+ 1) · pb/2))j

j!
· e−

2o

(a+1)·pb

Thus we can approximate the number of bins containing less than M balls by

pb/2 · e−
o

(a+1)·pb/2 ·
M−1∑
k=0

((o/((a+ 1) · pb/2)))k

k!

Now, it is well known that when the parameter is large enough, the Poisson distribu-

tion itself may be approximated closely by a Gaussian distribution. The parameter

for the Poisson distribution is o
(a+1)·pb/2 hence, by a standard result, we can approxi-

mate this Poisson distribution by a Gaussian of mean o
(a+1)·pb/2 and of variance also

o
(a+1)·pb/2 .

Thus, under the assumption that these approximations hold, we can approximate

the probability that a given bin contains less than x balls by the standard CDF for

Gaussians:

1

2

1 + erf

x− o
(a+1)·pb/2√

2·o
(a+1)·pb/2

 .
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However, in Algorithm 6 below we use the mean and take the distribution of balls

in bins into account by reducing the number of observed samples by a fudge factor

of 2 in our calculations.

By Assumption 4 we hence get

M(1,0) =
σ2
r

(cb b
√
n+ 1− cb)2

Moving on toM(2,0) we have τ = 2b. Hence, using the same reasoning as in Lemma 13

we expect

M(2,0) =
σ2
r + M(1,0)

(c2b
2b
√
n+ 1− c2b)

2 =

σ2
r + σ2

r

(cb b
√
n+1−cb)

2

(c2b
2b
√
n+ 1− c2b)

2

and so on for M(3,0),M(4,0), . . . .

An algorithm for constructing M is given in Algorithm 6 which we expect this algo-

rithm to give a reasonable approximation of the variances of components of entries

in T ` and back up this expectation with empirical evidence in Section 3.5.

Using the matrix M computed by Algorithm 6, we can estimate the variances of

components of ãi as output by B
(n)
s,χ,a−1. This result follows immediately from As-

sumption 4.

Lemma 14. Let n ≥ 1, q be a modulus, b ∈ Z with 1 ≤ b ≤ n and σr be the standard

deviation of UZbq/pe. De�ne a := dn/be and pick some p < q and let M be the output

of Algorithm 6 under these parameters. Let (ãi, ci) be samples returned by B
(n)
s,χ,a−1.

Finally, de�ne v as the a−vector of variances of the components of ã where v(k)

holds the variance of the components ã(b·k) to ã(b·k+b−1). Under Assumption 4, the

components of v satisfy:

v(i) = σ2
r +

a∑
j=i+1

M(j,i).

This now allows us to given an expression for the noise distribution output by

B
(n)
s,χ,a−1.
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Algorithm 6: Constructing M.

1 begin

2 T ← 2 · pb/2; // fudge factor: 2

3 n← o
(a+1)·T + 1;

4 Varred = Var(U(Zbq/pe)) = σ2
r ; // the variance of freshly reduced elements

5 M is an a× a matrix;

6 for 0 ≤ r < a do

7 for 0 ≤ c < a do

8 M(r,c) ← Var(U(Zq)); // elements on and above main diagonal are not

reduced

9 for 1 ≤ t < a do

// row t is the sum of previous rows + one fresh element being added

for each index

10 for 0 ≤ i < t do

11 M(t,i) ← Varred +
∑t−1
j=i+1 M(j,i);

12 τ ← b · `;

13 for 0 ≤ i < t do

14 M(t,i) ←
M(t,i)

(cτ τ
√
n+1−cτ )

2 ;
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Lemma 15. Let n ≥ 1 be the dimension of the LWE secret vector, q be a modulus,

b ∈ Z with 1 ≤ b ≤ n. De�ne a := dn/be and pick some p < q and let v be as in

Lemma 14. Let (ãi, c̃i) be outputs of B
(n)
s,χ,a−1. We assume that Assumptions 3 and

4 hold. Then as a increases the distribution of c̃i approaches a discrete Gaussian

distribution modulo q with standard deviation

σtotal :=

√√√√2aσ + b σ2
rσ

2
s

a−1∑
i=0

v(i) ≤
√

2aσ + (2a − 1) · b · σ2
rσ

2
s .

Proof. The standard deviation follows from Assumption 3 and Lemma 14. Since

the distribution is formed by adding up 2a vectors it approaches a discrete Gaussian

distribution when considered over Z as a increases by the Central Limit Theorem.

Assumption 5. We assume that Lemma 15 holds for 128 ≤ n, i.e. the values of n

considered in this work.

3.4 Complexity

Finally, we analyse the complexity of the algorithms presented until now. To do so,

we assume that Assumptions 3, 4, and 5 hold. Lemma 15 allows us to estimate the

numbers of samples needed to distinguish the outputs of B
(n)
s,χ,a−1 if B

(n)
s,χ,−1 returns

LWE samples from uniform. For this, we rely on standard estimates from [61] (as

used in Chapter 2) for the number of samples required to distinguish. This estimate

provides a good approximation for the advantage obtainable in distinguishing be-

tween U(Zq) and a discrete Gaussian reduced mod q with standard deviation σtotal.

In particular, we compute the advantage as

Adv = exp

−π(σtotal · √2π

q

)2
 . (3.4)

We can now state the overall complexity of running the algorithm in Theorem 4.

Remark that the proof of next two results are omitted; they follow by an easy

adaptation of the proof of Lemma 5.
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Theorem 4. Let n ≥ 1 be the dimension of the LWE secret vector, q be a modulus,

b ∈ Z with 1 ≤ b ≤ n and σs the standard deviation of the secret vector components.

Let also σr be the variance of random elements in Zbq/psmalle. De�ne a := dn/be

and pick a pair (psmall, o) such that b σ2
rσ

2
s

∑a−1
i=0 v(i) ≤ 2aσ, where v(i) is de�ned

as in Lemma 15. Then B
(n)
s,χ,a−1 will return (ã0, c̃0), . . . , (ãm−1, c̃m−1) where c̃i has

standard deviation ≤
√

2a+1 · σ. Furthermore, this costs

pbsmall

2
·
(
a(a− 1)

2
· (n+ 1)

)
+ (m+ o) na

additions in Zq and a ·
(
pbsmall

2

)
+m+ o calls to L

(n)
s,χ.

The memory requirement for storing each table is established in Corollary 5 below.

Corollary 5. The memory required to store the table T i is upper-bounded by

pbsmall

2
· a · (n+ 1)

elements in Zq, each of which requires dlog2(q)e bits of storage.

To clarify the impact of Theorem 4, we consider o = 0 � i.e. the case discussed in

Section 3.2 � on classical parameters of LWE.

Corollary 6. Let q ≈ nc, for some constant c > 0, and α = n1/2−c such that σ ≈

αq ≈
√
n. Let d ≈ min{1, σs/

√
12}. Furthermore, let a = log2 n and b = n/ log2 n be

the usual choices of parameters for BKW. Assume σs does not depend on n. Then,

solving Decision-LWE costs at most

O

(
2
n
(
c+

log2 d−
1
2 log2 log2 n

log2 n

)
· n log2

2 n

)

operations in Zq. We also need to store O

(
2
n
(
c+

log2 d−
1
2 log2 log2 n

log2 n

)
· n log2 n

)
ele-

ments in Zq.

Proof. First, we recall that the time complexity of the BKW algorithm, under these

parameters and as given in Corollary 3, is ≈ a2 n qb. Note that the memory needed
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is also ≈ an qb. With the parameters considered, this yields a time complexity dom-

inated by O
(
ncn/ log2 n · n log2

2 n
)

= O
(
2c n · n log2

2 n
)
.

This can be improved by �rst performing a one-shot modulus switching, as explained

in Section 3.2.3, and then using BKW on this pre-processed instances. A good

choice is to take psmall ≈ min{q, σs
σ

√
n
12 · q}, which simpli�es to min{q, σs√

12
· q}

or d · q, with 0 < d ≤ 1, under these parameter choices. This allows to re-

duces the complexity to O
(
(dnc)n/ log2 n · n log2

2 n
)

= O
(
dn/ log2 n · 2cn · n log2

2 n
)

=

O
(

2
n
(
c+

log2 d
log2 n

)
· n log2

2 n

)
. Since log2 d < 0, this indeed improves the complexity of

the plain BKW.

Applying lazy modulus switching, once can reduce psmall by an additional factor

of
√
a =

√
log2 n (Corollary 4). This gives:

O

( dnc√
log2 n

)n/ log2 n

· n log2
2 n

 = O
(

2
n
(
c+

log2 d
′

log2 n

)
· n log2

2 n

)
, with d′ =

(
d√

log2 n

)
.

Finally log2 d
′ = log2 d− 1

2 log2 log2 n, and then:

O

( dnc√
log2 n

)n/ log2 n

· n log2
2 n

 = O

(
2
n
(
c+

log2 d−
1
2 log2 log2 n

log2 n

)
· n log2

2 n

)
.

The very same arguments yields the memory complexity claimed.

3.5 Implementation

We implemented the algorithm presented in this chapter, i.e. Algorithm 5, to verify

the assumptions made in this chapter and to con�rm the expected behaviour of the

algorithm. Our implementation supports machine size ring elements and integer

values for b. We mention that our implementation is not optimised and hence we do

not report CPU times.
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3.5.1 Correctness of Algorithm 6: Constructing M

The behaviour our algorithm depends critically on the quality of approximation made

in Algorithm 6. We hence veri�ed that the matrix M returned by that algorithm

matches the actual variances observed in practice. We start, with an example where

the prediction is quite precise. We considered the parameters q = 65521, a = 20,

b = 2, p = 211 and o = 226.

Algorithm 6 returns the following matrix

log2 M =



28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
6.6 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
7.7 7.0 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
8.6 7.9 7.1 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
9.5 8.9 8.1 7.2 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
10.5 9.8 9.0 8.1 7.2 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
11.4 10.8 10.0 9.1 8.2 7.3 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
12.4 11.7 10.9 10.0 9.1 8.2 7.3 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
13.3 12.7 11.9 11.0 10.1 9.2 8.2 7.3 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
14.3 13.6 12.8 11.9 11.1 10.1 9.2 8.3 7.3 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
15.3 14.6 13.8 12.9 12.0 11.1 10.2 9.2 8.3 7.3 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
16.2 15.6 14.7 13.9 13.0 12.1 11.1 10.2 9.2 8.3 7.3 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
17.2 16.5 15.7 14.8 13.9 13.0 12.1 11.2 10.2 9.3 8.3 7.3 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
18.2 17.5 16.7 15.8 14.9 14.0 13.1 12.1 11.2 10.2 9.3 8.3 7.3 28.4 28.4 28.4 28.4 28.4 28.4 28.4
19.1 18.5 17.7 16.8 15.9 15.0 14.0 13.1 12.2 11.2 10.2 9.3 8.3 7.4 28.4 28.4 28.4 28.4 28.4 28.4
20.1 19.4 18.6 17.8 16.9 15.9 15.0 14.1 13.1 12.2 11.2 10.3 9.3 8.3 7.4 28.4 28.4 28.4 28.4 28.4
21.1 20.4 19.6 18.7 17.8 16.9 16.0 15.0 14.1 13.1 12.2 11.2 10.3 9.3 8.3 7.4 28.4 28.4 28.4 28.4
22.1 21.4 20.6 19.7 18.8 17.9 17.0 16.0 15.1 14.1 13.2 12.2 11.2 10.3 9.3 8.3 7.4 28.4 28.4 28.4
23.0 22.4 21.6 20.7 19.8 18.9 17.9 17.0 16.1 15.1 14.1 13.2 12.2 11.3 10.3 9.3 8.3 7.4 28.4 28.4
24.0 23.3 22.5 21.7 20.8 19.9 18.9 18.0 17.0 16.1 15.1 14.2 13.2 12.2 11.3 10.3 9.3 8.3 7.4 28.4


whereas our implementation constructed tables with the follow variance matrix

log2 M
′ =



28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
6.6 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
7.6 6.9 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
8.5 7.8 7.1 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
9.5 8.8 8.0 7.2 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
10.4 9.7 8.9 8.1 7.3 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
11.4 10.7 9.9 9.1 8.2 7.3 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
12.4 11.6 10.8 10.0 9.2 8.3 7.3 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
13.3 12.6 11.8 11.0 10.1 9.2 8.3 7.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
14.3 13.6 12.8 12.0 11.1 10.2 9.3 8.3 7.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
15.3 14.5 13.8 12.9 12.1 11.2 10.3 9.3 8.4 7.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
16.3 15.5 14.7 13.9 13.1 12.2 11.3 10.3 9.4 8.4 7.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
17.3 16.5 15.7 14.9 14.0 13.2 12.2 11.3 10.3 9.4 8.4 7.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
18.3 17.5 16.7 15.9 15.0 14.1 13.2 12.3 11.3 10.4 9.4 8.4 7.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
19.3 18.5 17.7 16.9 16.0 15.1 14.2 13.3 12.3 11.4 10.4 9.4 8.4 7.4 28.4 28.4 28.4 28.4 28.4 28.4
20.3 19.5 18.7 17.9 17.0 16.1 15.2 14.3 13.3 12.4 11.4 10.4 9.4 8.4 7.4 28.4 28.4 28.4 28.4 28.4
21.3 20.5 19.7 18.9 18.0 17.1 16.2 15.3 14.3 13.4 12.4 11.4 10.4 9.4 8.4 7.4 28.4 28.4 28.4 28.4
22.2 21.5 20.7 19.8 19.0 18.1 17.2 16.3 15.3 14.3 13.4 12.4 11.4 10.4 9.4 8.4 7.4 28.4 28.4 28.4
23.2 22.4 21.7 20.8 20.0 19.1 18.2 17.3 16.3 15.3 14.4 13.4 12.4 11.4 10.4 9.4 8.4 7.4 28.4 28.4
24.2 23.4 22.6 21.8 21.0 20.1 19.2 18.2 17.3 16.3 15.4 14.4 13.4 12.4 11.4 10.4 9.4 8.4 7.4 28.4


To highlight the limitations of Algorithm 6 we consider the parameters q = 65521, n =

30, b = 3, σ = 1.0, p = 28 and o = 229. Algorithm 6 predicts

log2 M
′ =


28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
11.8 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
12.9 12.5 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
13.8 13.4 12.8 28.4 28.4 28.4 28.4 28.4 28.4 28.4
14.6 14.2 13.6 12.9 28.4 28.4 28.4 28.4 28.4 28.4
15.5 15.1 14.5 13.8 13.0 28.4 28.4 28.4 28.4 28.4
16.3 15.9 15.3 14.6 13.9 13.1 28.4 28.4 28.4 28.4
17.2 16.8 16.2 15.5 14.8 13.9 13.1 28.4 28.4 28.4
18.1 17.7 17.1 16.4 15.6 14.8 14.0 13.1 28.4 28.4
19.0 18.6 18.0 17.3 16.5 15.7 14.9 14.0 13.2 28.4


but implementation produced tables with variance matrix

log2 M =


28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
11.7 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
12.6 12.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
13.4 13.2 12.8 28.4 28.4 28.4 28.4 28.4 28.4 28.4
14.1 13.9 13.5 13.0 28.4 28.4 28.4 28.4 28.4 28.4
14.8 14.6 14.2 13.7 13.1 28.4 28.4 28.4 28.4 28.4
15.4 15.3 15.0 14.5 13.9 13.2 28.4 28.4 28.4 28.4
16.1 16.0 15.7 15.3 14.7 14.0 13.2 28.4 28.4 28.4
16.9 16.7 16.4 16.0 15.5 14.9 14.1 13.3 28.4 28.4
17.6 17.4 17.2 16.8 16.3 15.7 15.0 14.2 13.3 28.4


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Figure 3.2: Histogram of distribution of 0th component in T ` for 1 ≤ ` ≤ 4 with

parameters q = 32003, b = 2, p = 29, n = 10, and o = 220.

which means we overestimated the variance of child components in our tables T . The

main reason for this e�ect is that our approximation of the shrinking of variances

when taking the minimum is based on the uniform distribution. However, the distri-

butions actually governing the entries of our tables T ` are not uniform, as discussed

in 3.3. Figure 3.5.1 gives histograms for these distributions.

Overall, for the instances considered our estimates are pessimistic, which means we

expect our algorithm to perform better in practice than predicted. A more re�ned

model for its behaviour is hence a good topic for future work.

3.6 Parameters

To understand the behaviour of our more careful modulus switching technique for

concrete parameters, we compare it with one-shot modulus switching. Speci�cally,

we consider the standard BKW algorithm as analysed in Chapter 2. We also compare

with the BKZ (2.0) algorithm when applied to SIS instances derived from LWE sam-

ples and with a simple meet-in-the-middle (MITM) approach or generalised birthday

attack.
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Instances. We choose n ∈ [128, 256, 512, 1024, 2048] and � using the LWE generator

[8] � pick q ≈ n2 and σ = q√
2πn log2

2 n
as in Regev's original encryption scheme [86]. We

then consider both variants of what is known as binary-LWE in the literature: we �rst

assume s ←$ U(Zn2 ) as in [22] and then s ←$ U({−1, 0, 1}n) as in [41]. However, in

contrast to those works we assume an unbounded number of samples being available

to the attacker to establish the performance of the algorithms discussed here under

optimal conditions.

BKW. For complexity estimates of the plain BKW algorithm we rely on Chapter

2. Recall that, there, the BKW algorithm takes a parameter t which controls the

addition depth a := t log2 n. Here we �rst pick t = 2(log2 q − log2 σ)/ log2 n which

ensures that the standard deviation of the noise after a levels of additions grows

only as large as the modulus. We then slowly increase t in steps of 0.1 until the

performance of the algorithm is not estimated to improve any further because too

many samples are needed to perform the distinguishing step. In the same manner as

in chapter 2, we translate operations in Zq into �bit operations� by multiplying by

log2 q.

MITM. One can also solve small secret LWE with a meet-in-the-middle attack that

requires (somewhat optimistically) ≈ cn/2 time and space where c is the cardinality

of the set from which each component of the secret is sampled (so c = 2 or c = 3

for binary-LWE depending on the de�nition used): compute and store a sorted list

of all As′ where s′ = (s(0), . . . , s(n/2)−1, 0, 0, . . . , 0) for all possible cn/2 choices for s′.

Then compute c −As′′ where we have s′′ = (0, 0, . . . , 0, s(n/2), . . . , sn−1) and check

for a vector that is close to this value in the list.

Results for s ←$ U(Zn2 ). In Table 3.2 we give the number of bit operations

(�logZ2�), calls to the LWE oracle (�logL
(n)
s,χ�) and memory requirement (�logmem�)

for BKW without any modulus reduction to establish the baseline. All costs are
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MITM BKZ [61] BKZ 2.0 [63] BKW [6]

n logZ2 logmem log ε logL
(n)
s,χ logZ2 log ε logL

(n)
s,χ logZ2 t logL

(n)
s,χ logZ2 logmem

128 67.8 64 -18 26.5 65.4 -14 22.5 65.7 3.18 83.9 97.6 90.0

256 132.0 128 -29 38.5 179.5 -35 44.5 178.5 3.13 167.2 182.1 174.2

512 260.2 256 -48 58.5 390.9 -94 104.5 522.8 3.00 344.7 361.0 352.8

1024 516.3 512 -82 93.5 785.0 -265 276.5 1606.2 2.99 688.0 705.5 697.0

2048 1028.5 1024 -133 145.3 1327.6 -636 648.1 3929.5 2.71 1135.3 1153.6 1145.3

Table 3.2: Cost for solving Decision-LWE with advantage ≈ 1 for BKW, BKZ and

MITM where q, σ are chosen as in [86] and s ←$ U(Zn2 ). We run BKZ 1/ε times,

�logZ2� gives the number of �bit operations�, �logL
(n)
s,χ� the number of LWE oracle

calls and �logmem� the memory requirement of Zq elements. All logarithms are

base-2.

BKZ [61] BKZ 2.0 [63] BKW [6]

n log ε logL
(n)
s,χ logZ2 log ε logL

(n)
s,χ logZ2 t logL

(n)
s,χ logZ2 logmem

128 -20 28.3 68.5 -16 24.3 68.6 2.84 76.1 89.6 81.2

256 -31 40.3 172.5 -36 45.3 169.5 2.74 149.6 164.0 156.7

512 -49 59.3 360.2 -89 99.2 457.8 2.76 289.8 305.6 297.9

1024 -80 91.3 701.6 -232 243.2 1312.8 2.78 563.1 580.2 572.2

2048 -133 145.3 1327.6 -636 648.1 3929.5 2.71 1135.3 1153.6 1145.3

Table 3.3: Cost for solving Decision-LWE with advantage ≈ 1 for BKW and BKZ

variants where q, σ are chosen as in [86] and s ←$ U(Zn2 ) after one-shot modulus

reduction with p = q
√
n/12σs/σ.

given for the high advantage case, i.e. if ε � 1 we multiply the cost by 1/ε.

Table 3.3 gives the running times after modulus reduction with p = q
√
n/12σs/σ.

In particular, Table 3.3 lists the expected running time (number of oracle calls and

where applicable memory requirements) of running BKW and BKZ after applying

modulus reduction.

Finally, Table 3.4 gives the expected costs for solving these LWE instances using the

techniques described in this work. We list two variants: one with and one without

�unnatural selection� . This is because these techniques rely on more assumptions
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this work (w/o unnatural selection) this work

n t log p log o logL
(n)
s,χ logZ2 logmem t log p log o logL

(n)
s,χ logZ2 logmem

128 2.98 10 0 64.7 78.2 70.8 2.98 6 60 60.0 74.2 46.3

256 2.83 11 0 127.8 142.7 134.9 2.83 5 117 117.0 132.5 67.1

512 2.70 11 0 235.1 251.2 243.1 2.70 8 225 225.0 241.8 180.0

1024 2.59 12 0 477.4 494.8 486.5 2.59 10 467 467.0 485.0 407.5

2048 2.50 12 0 897.8 916.4 907.9 2.50 10 834 834.0 853.2 758.9

Table 3.4: Cost for solving Decision-LWE with advantage ≈ 1 with the algorithms

discussed in this work when s←$ U(Zn2 ).

MITM BKZ [61] BKZ 2.0 [63] BKW [6]

n logZ2 logmem log ε logL
(n)
s,χ logZ2 log ε logL

(n)
s,χ logZ2 t logL

(n)
s,χ logZ2 logmem

128 105.2 101.4 -18 26.5 65.4 -14 22.5 65.7 3.18 83.9 97.6 90.0

256 206.9 202.9 -29 38.5 179.5 -35 44.5 178.5 3.13 167.2 182.1 174.2

512 409.9 405.8 -48 58.5 390.9 -94 104.5 522.8 3.00 344.7 361.0 352.8

1024 815.8 811.5 -82 93.5 785.0 -265 276.5 1606.2 2.99 688.0 705.5 697.0

2048 1627.5 1623.0 -141 153.6 1523.6 -773 785.4 5100.0 3.00 1369.8 1388.7 1379.9

Table 3.5: Cost for solving Decision-LWE with advantage ≈ 1 for BKW, BKZ and

MITM where q and σ are chosen as in [86] and s←$ U({−1, 0, 1}n).

than the rest of this work which means we have greater con�dence in the predictions

avoiding such assumptions. Yet, as discussed in Section 3.5, these assumptions seem

to hold reasonably well in practice.

Results for s←$ U({−1, 0, 1}n). Tables 3.5, 3.6 and 3.7 correspond to Tables 3.2,

3.3 and 3.4 and adopt the same notation.

Discussion. The results in this section (summarised in Figure 3.6) indicate that

the variants of the BKW algorithms discussed in this work compare favourably

for the parameters considered. In particular, in the case s ←$ U({0, 1}n) these

BKW variants are the only algorithms which beat the simple MITM approach. For

s ←$ U({−1, 0, 1})n that advantage naturally increases. The results in this table

also indicate that the unnatural selection strategy has little impact on the overall

time complexity. However, it allows to reduce the data complexity, in some cases,
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BKZ [61] BKZ 2.0 [63] BKW [6]

n log ε logL
(n)
s,χ logZ2 log ε logL

(n)
s,χ logZ2 t logL

(n)
s,χ logZ2 logmem

128 -21 29.3 70.2 -16 24.4 69.8 2.85 76.8 90.2 82.4

256 -31 40.3 175.3 -37 46.3 172.8 2.85 150.4 165.6 153.7

512 -50 60.3 365.0 -90 100.2 467.0 2.76 293.8 309.6 301.9

1024 -81 92.3 710.1 -236 247.2 1339.1 2.78 570.3 587.4 579.4

2048 -134 146.3 1342.3 -647 659.2 4006.5 2.71 1149.0 1167.3 1159.1

Table 3.6: Cost for solving Decision-LWE with advantage ≈ 1 for BKW and BKZ

variants where q, σ are chosen as in [86] and s ←$ U({−1, 0, 1}n) after one-shot

modulus reduction with p = q
√
n/12σs/σ.

this work (w/o unnatural selection) this work

n t log p log o logL
(n)
s,χ logZ2 logmem t log p log o logL

(n)
s,χ logZ2 logmem

128 2.98 10 0 64.7 78.2 70.8 2.98 6 61 61.0 75.2 46.3

256 2.83 11 0 127.8 142.7 134.9 2.83 5 118 118.0 133.5 67.1

512 2.70 11 0 235.1 251.2 243.1 2.70 8 225 225.0 241.8 180.0

1024 2.59 12 0 477.4 494.8 486.5 2.59 10 467 467.0 485.0 407.5

2048 2.50 12 0 971.4 990.7 907.9 2.50 12 961 961.0 980.2 907.9

Table 3.7: Cost for solving Decision-LWE with advantage ≈ 1 with the algorithms

discussed in this work when s←$ U({−1, 0, 1}n).
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Figure 3.3: Cost of solving Decision-LWE using various algorithms discussed in this

work.

considerably. In particular, e.g. considering line 1 of Table 3.7, we note that applying

this technique can make the di�erence between a feasible (≈ 80 · 10244 bytes) and

infeasible (≈ 1260 · 10246 bytes) attack for a well-equipped attacker.

3.6.1 Independence Assumption

To verify the independence assumption, i.e. Assumption 3, and in particular that

the noise part behaves like discrete Gaussian modulo q with s =
√

2aαq, we ran

our implementation for q = 4093, σ = 3.0, and b = 2 with n = 10, 25 and 30. In
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n t log p log o log2

∑
Ap

b

i

128 2.98 6 61 14.81

256 2.83 5 118 -7.99

512 2.70 8 225 -323.91

1024 2.59 10 467 < −1000

2048 2.50 12 961 < −1000

Table 3.8: Expected Number of Noise-Element Collisions, no Table-Switching
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Figure 3.4: Distribution of ci − 〈ãi, s〉 for parameters q = 4093, n = 30, a = 15, σ =

3.0.

each case, we asked for 220 samples and extracted the noise by computing ci−〈ãi, s〉

and analysed the resulting distributions. In all our experiments, the noise followed

a discrete Gaussian closely. In Figure 3.4 we plot a histogram for the experimental

data (in grey) for the case n = 30 and the expected distribution for N (0,
√

2aq).

If we consider the application of arguments from 2.7 and assume, pessimistically

that no replacement of table elements is carried out, we obtain estimates, given in

Table 3.8 for the expected number of collisions between noise elements, given the pa-

rameters in Table 3.4, thus illustrating that, though more severe than in the standard

BKW case, such phenomena can be safely neglected.
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3.7 Closing Remarks

In this chapter we investigated applying modulus switching to exploit the presence

of a small secret in LWE instances and demonstrated that it can make a signi�cant

impact on the complexity of solving such instances. We also adapted the BKW

algorithm to perform modulus-switching `on-the-�y', showing that this approach

is superior to performing `one-shot' modulus reduction on LWE samples prior to

solving. Our �rst variant improves the target modulus by a factor of
√

log2 n in

typical scenarios; our second variant mainly improves the memory requirements of

the algorithm, one of the key limiting aspects of the BKW algorithm. Our algorithms,

however, rely on various assumptions which, though appearing sound, are unproven.

Our estimates should thus be considered heuristic, as are performance estimates for

all currently-known algorithms for solving LWE. Verifying these assumptions is hence

a promising direction for future research. Furthermore, one of the main remaining

obstacles for applying the BKW algorithm to cryptographic constructions based on

LWE is that it requires an unbounded number of samples ot proceed. Lifting this

requirement, if only heuristically, is hence a pressing research question.

3.8 Justi�cation of Assumption 4

We arrive at the approximation in Assumption 4 as follows. We chose D = UZ232

and observed that σ/σn behaves linearly when τ = 1 (cf. Figure 3.5). As we increase

τ we expect the problem of �nding short vectors to become exponentially harder.

We also require σ/σ1 = 1 for any τ . The approximation cτ τ
√
x + (1 − cτ ) = σ/σn

satis�es all these conditions. Furthermore, experimental evidence suggests that there

exist cτ such that a function of this form approximates the observed data closely (cf.

Figure 3.5). We then used curve �tting (as implemented in Sage [97] via calls to

SciPy [51] which in turn calls MINPACK [74]) on experimental data for 1 ≤ n ≤ 128

to �nd cτ for 1 ≤ τ ≤ 512; Table 3.1 lists the �rst 10 such values. The expression

cτ ≈ 1/5
√
τ + 1/3 was recovered by curve �tting the pairs (1, c1), . . . , (512, c512)
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recovered before (cf. Figure 3.6 for a plot of this data and 1/5
√
τ+1/3). However, for

small values of τ this expression diverges too much from the observed, which is why

we are using explicit values instead. Finally, we assume that all distributions observed

during the course of running our algorithm `shrink' at least as fast as the uniform

distribution. An assumption we experimentally veri�ed for the normal distribution

and which seems to be con�rmed by our experimental results in Section 3.5.
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Figure 3.5: σ/σn for 1 ≤ τ ≤ 3 and τ = 128.
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Chapter 4

Applying Kannan's Embedding

Approach to LWE

The contents of this chapter are based on the paper "On the E�cacy of Solving LWE

by Reduction to Unique-SVP" which appeared at ICISC 2013, Seoul, Korea [9] and

was a work conducted in collaboration with M. R. Albrecht and F. Göpfert.

4.1 Introduction

In Chapter 1, we discussed, albeit brie�y, the most common techniques for solving

LWE instances through the use of lattice basis reduction. In this chapter we examine

an approach, Kannan's embedding technique [52], which is lesser-known and which

has received little treatment in the literature for the LWE case. We also present

the results of experiments using LLL and BKZ. In [67] it is shown that while the

embedding approach has been successfully employed in past works (see for instance

[76]), the approach remains somewhat mysterious with our current understanding of

the e�cacy of the approach being comparatively poor.
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4.1.1 Related Work

In [64] Liu et. al. investigate similar questions, though their work lacks an experimen-

tal component which, in our opinion, forms an indispensable part of any such work,

given the current state of knowledge regarding the concrete complexity of unique-

SVP. The current understanding of how a particular gap is related to the success of

a particular reduction algorithm in disclosing a shortest vector, is poor. In [38] the

results of a number of experiments were reported in which the authors examined the

success of a number of algorithms in disclosing a shortest vector when (at least) a

good approximation to the gap was known (though not in bounded-distance decod-

ing/LWE cases). A simple model was proposed as a criterion for the success of a

particular algorithm and particular class of lattices, with `explaining the unique-SVP

phenomenon' being posed as an open question. This general question was partly an-

swered by the work of Luzzi et. al. [62], explaining one of the questions posed by

[38], i.e. why a κ-Hermite SVP algorithm (characterised by δ0) solves unique-SVP

with gap of order δ
dim(L)
0 rather than requiring a gap of order δ

2·dim(L)
0 .

4.1.2 Organisation

We provide some background discussion in Section 4.2 and discuss the embedding

gap in Section 4.3.1. In Section 4.4 we apply the embedding approach to lattices

derived from LWE instances. Finally, in Section 4.5 we discuss the limits of the

embedding approach and compare our results with results from the literature.

4.2 Background and Notation

If we have an algorithm which solves κ-Hermite SVP for lattices of dimension n,

we say that the algorithm attains a root Hermite factor of δ0 := κ1/n. It is an

experimentally-veri�ed heuristic [38] that the root Hermite factor a given algorithm

attains converges swiftly with increasing dimension. Now, if we have an algorithm

which can solve Hermite-SVP with approximation factor κ, we can use this algorithm
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linearly many times [66] to solve Approx-SVP with approximation factor κ2. Hence,

we can use our κ-HSVP algorithm to solve uSVP instances in which the gap is at

least κ2. Similarly, if we have a root Hermite factor δ0 characterising our Hermite-

SVP algorithm, we can solve uSVP instances of gap δ2m
0 . This was improved in [62]

to δm0 by proving a reduction from unique-SVP to Hermite-SVP. However, one of the

conclusions from [38], as we discuss later, is that, as with the gulf between the the-

oretical and practical performance of lattice reduction algorithms, we can generally

solve uSVP instances with much smaller gap.

All experiments reported in this chapter were carried out using the NTL implemen-

tation of BKZ and all LWE instances were generated using the afore-mentioned LWE

instance generator. In this work, due to the probabilistic nature of our experiments

(as opposed to one-o� reductions), we are constrained to experiments in relatively

low block-size. Here, we report the results of experiments using block-sizes of 5 and

10 (with no pruning) which collectively took around 2 months on two servers. Partial

results for BKZ with a block-size of 20 indicate no discrepancy with our conclusions.

While much larger block-sizes, in particular with pruning, have been achieved, our

experiments required the execution of a substantial number (100) of reductions for

each attempt at a solution. For simplicity, we assume throughout that enough LWE

samples are exposed by a cryptosystem to allow the employment of the embedding

technique in the optimal lattice dimension. While this may not always be the case

in reality, in this chapter (as in this thesis in general) we are concerned primarily

with the LWE problem "in theory".

The following tail bound on discrete Gaussians is needed. This tail bound is ob-

tained by employing the tail-bound on DZ,s from [13] and then observing that the

product distribution of n copies of this distribution gives DZn,s.

Lemma 16. Let c ≥ 1 and C = c · exp((1− c2)/2) < 1. Then for any real s > 0 and
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any integer n ≥ 1 we have

Pr[‖DZn,s‖ ≥ c ·
s
√
n√

2π
] ≤ Cn.

4.2.1 Concrete Hardness of uSVP

It is folklore that the presence of a signi�cant gap between the �rst and second min-

ima of a lattice makes �nding a shortest non-zero vector somewhat easier than would

otherwise be the case, with an exponential gap allowing a shortest non-zero vector

to be disclosed by application of LLL. However, in cases with sub-exponential gap,

the success of lattice reduction algorithms in disclosing shortest non-zero vectors is

poorly understood with a brief investigation in [38] being (to the best of our knowl-

edge) the only practical investigation of such e�ects.

In [38] it was posited that given a lattice-reduction algorithm which we assume

to be characterised by a root Hermite factor δ0 and a (full-rank) m-dimensional lat-

tice Λ, the algorithm will be successful in disclosing a shortest non-zero vector with

high probability when λ2(Λ)/λ1(Λ) ≥ τ · δm0 , where τ was taken to be a constant

depending both on the nature of the lattices examined and also on the lattice re-

duction algorithm applied. In [38] values of τ ranging between 0.18 and 0.48 were

experimentally-derived for various classes of lattices (though not LWE-derived lat-

tices) and algorithms. However, the phrase `with high probability' was not elaborated

on in [38] and thus it is unclear as to whether a �xed threshold was used throughout

the experiments in [38] or a variable threshold.

We can speculate that the probabilistic behaviour observed in our experiments arises

from phenomena somewhat analogous to the bearing of starting conditions on �nd-

ing global minima in optimisation problems, though such considerations are beyond

the scope of this work.
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4.3 The Embedding Approach

In this section we outline and examine our application of Kannan's embedding tech-

nique, the resulting λ2/λ1-gap distributions and the resulting implications for the

success of the approach.

4.3.1 Construction of Embedding Lattices

Given a set of m LWE samples (ai, ci), we construct a Matrix-LWE instance of

dimension m by constructing a matrix A′ by taking the ai vectors to be the columns

of A′ and form the vector c from the ci's to obtain c = A′T s + e. We consider the

problem of being given a matrix-LWE instance (A′, c) of dimension m and forming

a lattice basis as follows. We take the matrix A′ ∈ Zn×mq and calculate the reduced

echelon form A′′ ∈ Zn×mq . For the right permutation matrix P ∈ Zm×m, we obtain

the form A′′ =
(

I A
)
with I ∈ Zn×nq and A ∈ Zn×(m−n)

q . If we interpret this

matrix as a matrix over Z, extend it with
(

0 qI
)
∈ Z(m−n)×m and de�ne

A =

 I A

0 qI

P−1,

A is a basis of the lattice {v ∈ Zm | ∃x ∈ Znq : xA = v mod q}. Now, given this A

and a target vector t ∈ Zmq and attempting to solve the LWE instance by reducing

the embedding lattice basis

B(A,t,t) :=

 A 0

t t


where t > 0 is an embedding factor to be determined. We then de�ne Λe := L(B).

Note that, with overwhelming probability, det(Λe) = t · qm−n, i.e. A′ has full rank

over Zq.

It is well-known [67] that 1/(2γ)-BDD can be reduced to solving γ-USVP by set-

ting the embedding factor t ≥ dist(t,L(A)). In practice, however, employing a
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smaller embedding factor generally allows us to create a unique-SVP instance with

larger λ2/λ1 gap than by setting t = dist(t,L(A)). However, by setting t <

dist(t,L(A)), with non-zero probability there exists a vector v ∈ Λ such that

‖v + c · [t t]‖ < ‖[e t]‖ where c ∈ Z and, in general, if t < dist(t,L(A)), we

will have λ2(Λe) < λ1(L(A)). Thus when we reduce t, quanti�cation of the resulting

λ2/λ1 gap becomes di�cult.

To the best of our knowledge, no good model exists to determine the distribu-

tion of the lattice gap when taking an embedding factor smaller than ‖e‖. To at-

tempt circumvention of such di�culties, we conduct experiments on LWE-derived

unique-SVP lattices, examining �rstly the λ2/λ1 gap required for success when we

set t = ddist(t,L(A))e (where we know λ2/λ1) and then for the case t = 1, under

the assumption that the `necessary gap' is unlikely to change, allowing us to derive

analogous models.

4.3.2 On the Determination of τ when t = d‖e‖e

As mentioned in 4.2.1, we employ the simple model of Gama and Nguyen for pre-

dicting the success of a particular basis-reduction algorithm in recovering a shortest

non-zero vector, namely that there exist values of τ such that, for a given probabil-

ity, basis-reduction algorithm and lattice class, the basis-reduction algorithm �nds a

shortest non-zero vector with probability greater or equal than the given probability

over the random choice of lattices in the class whenever λ2(Λ)/λ1(Λ) ≥ τ · δm0 where

Λ represents a random choice of lattice in the class with dimensionm. Thus, if we are

able to sample such lattices randomly, determining a particular value of τ requires

us to know (at least approximately) the λ2/λ1 gap of the lattices we are dealing with.

In the q-ary lattices we consider (i.e. lattices of the form L(A)), unfortunately,

there is no known good bound (in the Euclidean norm) on the �rst minimum when

m < 5n log2 q. The case of m ≥ 5n log2 q is dealt with in [96]. For the case of ran-
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dom lattices (in the sense of [43]), it is known that with overwhelming probability the

minima of such an n-dimensional lattice are all asymptotically close to the Gaussian

heuristic i.e.
λi(Λ)

vol(Λ)1/n
≈ Γ(1 + n/2)1/n

√
π

.

Now the q-ary lattices (e.g. L(A)) widely employed in lattice-based cryptography

are not random in this sense. However, in all cases, it appears that the Gaussian

heuristic appears to hold exceedingly well for such lattices (at least for the �rst min-

imum and with the added property that we always have vectors of norm q within

the lattice), thus we assume throughout that the �rst minimum of such lattices is

lower-bounded by the Gaussian heuristic with overwhelming probability.

For the �rst minimum of the embedding lattices, we only deal with this explic-

itly in the `known-λ1' case where we take this to be λ1(Λe) =
√

2 · ‖e‖.

Then we can state the following lemma, the proof of which we omit

Lemma 17. Let A ∈ Zn×mq , let s > 0 and let c > 1. Let e be drawn from DZm,s.

Under the assumption that λ1(Λ(A)) ≥ GHq,n,m
1 and that the rows of A are linearly-

independent over Zq, we can create an embedding lattice Λe with λ2/λ1-gap greater

than

min

{
q,

q1−
n
m Γ(1+m

2
)
1
m

√
π

}
cs
√
m√
π

≈
min

{
q, q1− n

m
√

m
2πe

}
cs
√
m√
π

with probabillity greater than 1− (c · exp((1− c2)/2))m.

We wish to obtain the value of m for which we can expect to gain the largest gaps

(again, probabilistically).

1We employ the notation GHq,n,m to denote the application of the Gaussian heuristic to an LWE

lattice formed from m LWE samples of dimension n, with modulus q.
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Corollary 7. Under the assumptions stated in Lemma 17 and for a �xed value of c

(c > 1), we can construct embedding lattices with the largest possible gap when

q =
q1− n

mΓ(1 + m
2 )

1
m

√
π

.

Proof. We assume that the approximation is close enough such that the maximum

occurs for the same value of m. Consider the functions:

� f0(m) =
√
πq1−

n
m
√

m
2πe

cs
√
m

where c > 1, s > 0.

� f1(m) = q
√
π

cs
√
m

where c,m > 1 and s > 0.

Then f1(m) is clearly monotonically-decreasing and f0(m) has the form f0(m) =

d · q1− n
m , where d is a positive constant, hence is clearly monotonically-increasing

under the conditions given.

Thus, in our experiments, it appears valid to derive values of τ by assuming the

Gaussian heuristic holds and that the (Euclidean) norm of the noise vector is equal

to the expected value.

4.3.3 On the Determination of τ when t < d‖e‖e

However, as mentioned, the employment of an embedding factor smaller than the

norm of the noise vector e generally leads to a modest decrease in the size of the

second minimum of the resulting lattice. In all cases observed, however, this decrease

in the second minimum is less than the corresponding decrease in the �rst minimum

(as a result of making the target vector shorter), leading to a more e�ective attack.

However, quanti�cation of the resulting gap is not simple � we know of no e�cient

method for determining the distribution of the λ2/λ1 gap under such conditions.

In an attempt to circumvent the lack of knowledge of the distribution of the λ2/λ1

gap when we take an embedding factor t such that t < ‖e‖, we assume that (for the

same probabilistic success of a given basis-reduction algorithm) the same size of gap
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is required as in the case where we take t = d‖e‖e and then derive a modi�ed value

for τ . That is, we assume that the basis-reduction algorithm is in some sense obliv-

ious to the embedding factor, with the size of the gap being the `deciding factor'.

While this is a somewhat arbitrary assumption, we believe it to be reasonable and

intuitive. We denote the value of τ when t = d‖e‖e by τ‖e‖ and the analogous value

of τ when t = 1 by τ1. Given a particular value of n and knowing τ‖e‖, we hence

know (approximately) the gap required, denoted by g‖e‖ and hence a correspond-

ing minimum lattice dimension which we denote by m‖e‖. Then, denoting by m1

the minimum lattice dimension in the case t = 1 and assuming that the minimum

required gap in the second case, denoted by g1, is the same, we can write

τ1 = min
{
τ‖e‖ · δ

(m‖e‖−m1)

0 , 1
}
.

However, for easier and more intuitive comparison, we wish to express τ values for

the case t = 1 when using the gaps from the t = d‖e‖e cases. For this comparison,

we simply use the λ2/λ1 gaps from the case t = d‖e‖e and plug in the minimum

dimension values from the case t = 1. We denote these `illustrative' values of τ by

τ ′.

4.4 Application to LWE and comparisons

We now examine in more detail the model of [38] when applied to such unique-SVP

instances. One di�culty with this model is that, while Gama and Nguyen state

that success will occur with `high probability', this probability is not explained.

In the cases examined in this work, it appears to be often impossible to exceed a

certain success probability regardless of the lattice λ2/λ1 gap (when �xing a partic-

ular algorithm and parameterisation). For instance, Figure 4.1 demonstrates success

probabilities for LLL for the case of Regev's parameterisation with n ∈ {35, 40, 45}

(t = ‖e‖) and increasing values of m, with between 50 and 100 cases being run for

each value of m.
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Figure 4.1: Experimental Success Rates, Regev-LWE, LLL, n ∈ {35, 40, 45}, t = ‖e‖

We treat only the LWE parameterisations proposed by Regev [86] and Lindner &

Peikert [61] and view each family of LWE instances as being parameterised by a

value of n, from which values of s and q are derived. We then wish to examine the

conditions under which applying the embedding approach yields a basis in which the

target vector is present (though not necessarily the shortest vector in this reduced

basis).

As in [38], our experiments indicate that the target vector lies in the reduced basis

with some (�xed) probability whenever the gap is large enough such that

λ2(Λm)

λ1(Λm)
≥ τ · δm0

where τ is some real constant such that 0 < τ ≤ 1 depending on the desired proba-

bility level, the `nature' of the lattices considered and the basis-reduction algorithm

used. Our experiments proceed by �xing values of n to obtain corresponding LWE

parameterisations then generating instances with increasing values of m � using [8]

� until �nding the minimum such value that recovery of the target vector is possi-

ble with the desired probability. We denote such values of m by mmin(n). In the

t = d‖e‖e case, plugging this value mmin(n) in λ2(Λm)
λ1(Λm) = τ · δm0 for m where we use

Lemma 17 then recovers τ‖e‖. From this value and experimental data for t = 1 we
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can then derive τ1 = min
{
τ‖e‖ · δ

(m‖e‖−m1)

0 , 1
}
and τ ′ by solving λ2(Λm)

λ1(Λm) = τ ′ · δm1
0 .

Throughout, the experimental data points indicate the minimum lattice dimension

for which the lattice basis reduction algorithm succeeds in recovering the target vec-

tor with success rate 10%.
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Figure 4.2: Minimum lattice dimension, Regev-LWE, success rate 10%, t = ‖e‖.
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Figure 4.3: Minimum lattice dimension, Regev-LWE, success rate 10%, t = 1.

In all experiments carried out, we arti�cially force that every ‖e‖ takes value ≈

E[‖e‖]. This allows us to gain a good estimate of the λ2/λ1 gap in the t = ‖e‖

case. In addition, for the mmin calculations, we used the experimentally-derived root

Hermite factors with linear interpolation.
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4.4.1 Regev's Parameters

We �rstly examine the case of Regev's original parameters as proposed in [86]. We

take q ≈ n2 and set α = 1/(
√
n · log2

2 n), s = αq. Figure 4.2 illustrates the predicted

feasible regions when t = d‖e‖e. Similarly, Figure 4.3 gives analogous plots in the

case t = 1, using the `illustrative' values of τ ′ mentioned in Section 4.3.3. Figure

4.4 gives the m‖e‖/m1 ratio for LLL and BKZ-5, illustrating the greater e�ciency of

using t = 1.

Based on the results as displayed above, we obtain parameters for embedding factors

of d‖e‖e and 1, given in Table 4.2. We note that, while using an embedding factor

t = 1 is most e�cient, obtaining τ1 > τ‖e‖ possibly seems counter-intuitive. However,

the assumption of a �xed gap required for success to occurs (with probability ≈ 0.1)

indeed leads to a larger value for τ1.

4.4.2 Lindner and Peikert's Parameters

For Lindner and Peikert's parameters, as in the Regev-LWE case, we choose a series

of values for n and generate parameters accordingly, then apply LLL, BKZ-5 and

BKZ-10 to solve such instances as far as is possible. Speci�cally, Table 4.1 gives
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a selection of the parameters considered as produced by the LWE generator. We

n 20 30 40 50 60 70 80

q 2053 2053 2053 2053 2053 2053 2053

s 9.026 8.566 8.225 7.953 7.728 7.536 7.369

Table 4.1: Selected Lindner & Peikert LWE Parameters

proceed similarly to the Regev-LWE case, with minimum lattice dimensions being

given in Figure 4.5 for the t = ‖e‖ case and in Figure 4.6 for the t = 1 case. Table 4.2

also gives the derived values of τ for Lindner and Peikert's parameterisation.

20 30 40 50 60 70 80

5

6

7

8

n

lo
g

2
m

m
in Experimental data, LLL

Experimental data, BKZ-5
Experimental data, BKZ-10
Model, LLL, τ = 0.400
Model, BKZ-5, τ = 0.385
Model, BKZ-10, τ = 0.385

Figure 4.5: Minimum lattice dimension, Lindner & Peikert Parameterisation, success

rate 10%, t = ‖e‖

Regev Lindner and Peikert

LLL BKZ-5 BKZ-10 LLL BKZ-5 BKZ-10

τ (t = ‖e‖) 0.410 0.400 0.400 τ (t = ‖e‖) 0.400 0.385 0.385

τ (t = 1) 0.467 0.464 0.444 τ (t = 1) 0.435 0.431 0.439

τ ′ (t = 1) 0.340 0.320 0.320 τ ′ (t = 1) 0.330 0.310 0.310

Table 4.2: Parameters for �nding e with success rate 10%, Regev's and Lindner &

Peikert's parameters.

We note that the values of τ derived seem consistent and do not vary widely between

parameterisations. Of course, the value of τ may be expected to change when using
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Figure 4.6: Minimum lattice dimension, Lindner & Peikert Parameterisation, success

rate 10%, t = 1

`stronger' algorithms than BKZ-10 or BKZ-20, however our limited experiments,

and the results reported in [38] appear to indicate that the use of `stronger' basis

reduction algorithms leads to modest decreases in the values of τ . Thus, when we

project these results in Section 4.5.1, we use the experimentally-derived τ values and

thus expect the resulting complexity predictions to be somewhat conservative.

4.5 Limits of the Embedding Approach

Using the above model, we can derive an estimation of the limits of applicability of

the embedding approach. Given a values (δ0, τ), we can de�ne the maximum value

of n for which we can recover the target vector using the embedding approach to be

nmax := max

{
n : ∃m s.t.

λ2(Λe(n,m))

λ1(Λe(n,m))
= τ · δm0

}
The goal is to determine the values of nmax. Lemma 2 shows that we can construct

a gap of size (under the assumption that we use basis-reduction algorithms with δ0

small enough that q1−(n/m)
√
m/(2πe) < q)

λ2

λ1
≈
q1− n

m

√
1
2e

cs
.
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If we want to solve an LWE instance with secret-dimension n, we have to �nd m

such that

q1− n
m

√
1
2e

cs · τ · δm0
≥ 1.

In order to determine the optimal m, we want to maximize the function

fn(m) =
q1− n

m

√
1
2e

c · s · τ · δm0
.

the �rst derivative of which is zero only when

n log q

m2
= log δ0,

and therefore m =
√

n log q
log δ0

is the optimal sub-dimension. In other words, we expect

the attack to succeed if

q

1− n√
n log q
log δ0

√
1
2e

c · s · τ · δ
√
n log q
log δ0

0

≥ 1

Thus, we only need to consider the optimal sub-dimension to ascertain whether

we can expect the attack to succeed (with the given probability). Since, in our

experiments we force ‖e‖ ≈ E[‖e‖], we increase the value of c to cover all but the

upper-tail of the distribution of ‖e‖. We can then state the following:

Assumption 6. Given a �xed LWE parameterisation and a given value of τ (de-

rived as above using ‖e‖ ≈ E[‖e‖] instances and also corresponding to a �xed δ0)

corresponding to a �xed success rate ps, we can solve general instances from the pa-

rameterisation with secret-dimension n with a particular value of m with probability

pc ≥ ps ·
(
1− (c · exp((1− c2)/2))m

)
(4.1)

if

q

1− n√
n log q
log δ0

√
1
2e

c · s · τ · δ
√
n log q
log δ0

0

≥ 1 (4.2)
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We note that this assumption follows immediately from the above discussion and

Lemma 16. Thus, given a target success probability, we attempt to satisfy conditions

4.1 and 4.2.

n 64 96 128 160 192 224 256 288 320

δ0 1.0159 1.0111 1.0085 1.0069 1.0058 1.0050 1.0045 1.0040 1.0036

log2(sec) = negl. negl. 37.41 71.44 105.74 140.16 167.88 202.54 237.20

1.8/ log2 δ0 − 110

log2(sec) = negl. negl. 33.36 64.45 102.29 146.83 187.50 244.37 307.85

0.009/ log2
2 δ0 − 27

Table 4.3: Estimated cost of �nding e with success rate 0.099, Regev's parameters.

4.5.1 Comparisons

We brie�y compare the application of BKZ in both the embedding approach and the

short dual-lattice vector distinguishing approach. For all embedding approach pre-

dictions, we take success probability slightly lower than 0.1, employing Assumption 6

- we choose c such that condition 4.1 holds for pc ≥ 0.099. While the dual-lattice dis-

tinguishing approach is not the best-known attack, it is easy to analyse in comparison

to reduction-then-decode algorithms. We consider the application of BKZ in both

situations. In the distinguishing approach, we can choose a desired distinguishing

advantage ε and set γ = q/s·
√

ln(1/ε)/π, from which we can compute a required root

Hermite factor of δ0 = 2log2
2(γ)/(4n log2 q). So, for instance, with n = 128, we require

δ0 ≈ 1.0077 to gain a distinguishing advantage of ≈ 0.099, i.e. signi�cantly worse

than the 1.0085 required for the embedding attack. In Table 4.4 we give compara-

ble estimated costs for distinguishing between LWE samples and uniformly random

samples using the approach of Micciancio and Regev.

However, we note that the expression of Lindner and Peikert for the advantage of the

dual-lattice distinguishing approach gives an upper-bound on the advantage obtained

through the use of a speci�c algorithm. While the approximation is close overall,

in the high-advantage regime the model is somewhat optimistic in estimating the
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n 64 96 128 160 192 224 256 288 320

δ0 1.0144 1.0099 1.0077 1.0063 1.0053 1.0046 1.0040 1.0036 1.0033

log2(sec) = negl. negl. 53.15 89.99 126.44 162.56 198.39 234.00 269.38

1.8/ log2 δ0 − 110

log2(sec) = negl negl 46.93 84.10 128.29 179.35 237.18 301.70 372.81

0.009/ log2
2 δ0 − 27

Table 4.4: Estimated cost of solving decision-LWE, advantage ∼ 0.099, Regev's

parameters, dual-lattice distinguisher

advantage obtainable.

More rigorous comparison to the dual-lattice distinguishing attack is di�cult, how-

ever, since the optimal strategy for said attack is to run a large number of low-

advantage attacks and we can only analyse the embedding approach for high-advantages

due to the (current) practical component of the analysis.

4.5.2 Closing Remarks

In conclusion, we provide evidence that the model of Gama and Nguyen is applicable

to the solution of unique-SVP instances constructed from LWE instances and experi-

mentally derive the constants which embody the performance of the approach. Based

on the models used and assumptions made, we show that the embedding approach

outperforms the dual-lattice distinguishing approach of Micciancio and Regev (in the

high-advantage regime). We view a more in-depth comparison of the e�ciency of the

embedding technique and enumeration techniques as a pressing research question.

The practical behaviour of lattice-reduction algorithms on unique-SVP instances re-

mains mysterious, with (to the best of our knowledge) no recent progress in explaining

the phenomena observed.
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Chapter 5

Practical Cryptanalysis of a

MQPKC after Reduction to LWE

The contents of this chapter are based on the paper "Practical Cryptanalysis of a

Public-Key Encryption Scheme Based on New Multivariate Quadratic Assumptions"

which was presented at PKC 2014, Buenos Aires, Argentina and was a work con-

ducted in collaboration with M. R. Albrecht, J. C. Faugere, L. Perret, Y. Todo and

K. Xagawa.

5.1 Introduction

A member of the family of conjectured quantum-secure alternatives to number-

theoretic cryptography, the �eld of multivariate quadratic (MQ) cryptography is

based on the hardness of solving systems of quadratic polynomial equations. This

line of research dates back to the mid-eighties with the design of C∗ [69], later fol-

lowed by many other proposals, e.g. [89, 59, 30, 81, 55, 102, 103]. While the construc-

tions that have emerged from this �eld possess remarkable speed and simplicity and

are commonly considered to be an interesting alternative to constructions based on

number-theoretic problems, the �eld su�ers from a lack of clear security reductions to

well-understood problems, leading to a series of attacks, [56, 29, 34, 45, 36, 33, 35, 31].
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Until recently, no such schemes with security proofs had been proposed, leading

to a history of attacks and improvements, resulting in steadily diminishing con�-

dence in the feasibility of using multivariate cryptography in practise. Recently, the

�eld has seen e�orts to develop provably-secure constructions, with the proposal of

the QUAD stream cipher [19] being an elegant example.

At PKC 2012 Huang, Liu and Yang (HLY) proposed a new public-key encryption

scheme [49] whose security can be provably reduced to the the hardness of solving

a system of non-linear equations. The key innovation of HLY [49] is aMQ scheme

in which the public key is noise-free and non-linear but ciphertexts are noisy and

linear. Hence, the scheme proposed by HLY can be viewed as a hybrid between the

Learning with Errors (LWE) problem [86] and MQ cryptosystems. The semantic

security of the scheme [49] can be provably reduced to the di�culty of solving a

system of non-linear equations which is somewhat structured as the coe�cients of

the non-linear parts of the polynomials are chosen according to a discrete Gaussian

distribution. The main assumption of [49] is that this new problem is not easier than

the problem of solving a random system of quadratics equations.

5.1.1 Overview of the Results

We describe the HLY proposal in Section 5.2. The new hard problem introduced by

HLY is as follows:

De�nition 7 (MQ(n,m,Φζ , Hβ)). Let n be positive integer, m = cn for some c ≥ 1,

q be a polynomially bounded prime, a constant β, 0 < β < q/2 and s be a secret

vector in Hβ := [−β, . . . , β]n ⊆ Znq . We denote by ZΦζ
q [x1, . . . , xn] the distribution on

quadratic polynomials of Zq[x1, . . . , xn] obtained by sampling the monomials of degree

2 according to a discrete Gaussian distribution Φζ of standard deviation ζ ∈ O (1) and

centred on zero and by sampling the others coe�cients (linear, and constant parts)

uniformly at random. MQ
(n)
s,Φ is the probability distribution on the Zq[x1, . . . , xn]m×
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Zmq obtained by sampling p = (p1, . . . , pm) from ZΦα
q [x]m, and returning (p, c) =(

p,p(s)
)
∈ Zq[x1, . . . , xn]m×Zmq . MQ(n,m,Φζ , Hβ) is the problem of �nding s ∈ Hn

β

given a pair
(
p,p(s)

)
←$ MQ

(n)
s,Φ.

The main assumption made in [49] is that MQ(n,m,Φζ , Hβ) is not easier than the

problem of solving a random system of quadratic equations (Assumption 7). Re-

mark that the latter problem is notoriously known as a hard problem from a the-

oretical [40] and practical point of view [15, 16, 17]. In this chapter, we show that

MQ(n,m,Φζ , Hβ) is in fact related to a much easier problem. The starting point

of our analysis is to simply remark that MQ(n,mΦζ , Hβ) closely resembles a LWE

problem with a discrete Gaussian with variance γ2 = O
(
n2β2ζ2

)
(centred at zero).

We use this fact, together with the Micciancio-Regev distinguisher and the lattice-

reduction complexity model of Lindner and Peikert to derive a new necessary con-

ditions on the security of the HLY scheme (Section 5.3). In particular, such scheme

has at most τ -bit security � with regard to constructing a distinguisher of advantage

d � if (n, β, c, k, τ, d) veri�es

exp

(
−π

2

8
n−4 · (ck)−2

6β2
·
(

21.8/(τ+78.9)
)2cn

)
= d

For example, with β = c = 2, k = 12, d = 0.5, setting n = 1190 satis�es this condi-

tion for τ = 80. With n = 1190, however, the public-key is of size ≈ 1.17 GB.

It appears then that all parameters suggested in [49] (reproduced in Table 5.1) are

too small to verify our new security condition. Indeed, we have been able to mount

several practical attacks: distinguishing attack with Micciancio-Regev, and a key-

recovery attack with the embedding technique, and an improved key-recovery attack

exploiting the presence of a small secret (Section 5.4). We successfully run the two

�rst attacks in roughly one day for the �rst challenge
(
i.e. Case 1)

)
and in roughly

three days for the second challenge
(
i.e. Case 2

)
proposed by the authors [49]. The

last practical attack is even more e�cient. For the �rst challenge, we recovered the
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secret-key in less than 5 minutes and less than 30 minutes for the second challenge.

The experimental results are detailed in Section 5.5.

5.2 A NewMultivariate Quadratic Assumption and LWE

with Small Secrets

In [49] the authors introduced a variant of the classical Polynomial System Solving

Problem (PoSSo).

De�nition 8. Let f0, . . . , fm−1 ∈ Zq[x0, . . . , xn−1] be non-linear polynomials. PoSSo

is the problem of �nding � if any � s ∈ Zq
n
such that f0(s) = 0, . . . , fm−1(s) = 0.

It is well known [40] that this problem is NP-hard. Note that PoSSo remains NP-

hard [40] even if we suppose that the input polynomials are quadratics. In this case,

PoSSo is also called MQ. HLY proposed a variant of MQ where the monomials of

highest degree (i.e. 2) in the system have their coe�cients chosen according to a

discrete Gaussian distribution of standard deviation ζ ∈ O (1) and centered on zero.

Following [49], we denote this distribution by Φζ .
1 The remaining coe�cients (linear,

and constant parts) are chosen uniformly at random. We denote this distribution on

Zq[x1, . . . , xn] by ZΦα
q [x]. As mentioned in [49], MQ(n,m,Φζ , Hβ) is rather close to

LWE. In fact, each
(
p,p(s)

)
←$ MQ

(n)
s,Φ can be mapped to a LWE instance. To do

so, we just consider the matrix Ap ∈ Zn×mq corresponding to the linear part of p. We

then remark that each component of p(s)−s ·Ap−p(0) is the sum of n(n+1)
2 discrete

Gaussians each having variance
(

(2β+1)2−1
12

)2
· ζ2. From now, we assume that this

sum is a discrete Gaussian of variance γ2 = n(n+1)
2 ·

(
(2β+1)2−1

12

)2
·ζ2 (centred at zero).

It is proven in [49] that MQ(n,m,Φζ , Hβ) has decision to search equivalence. Such

equivalence makes the problem appealing to design an encryption scheme. The

1The parameter ζ is called α in [49] but this notation clashes with the standard notation for

LWE.
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public-key of the scheme proposed in [49] is a pair of the form
(
p,p(s)

)
= (p, c) ∈

ZΦα
q [x]m×Zmq . To encrypt a bit b, we choose r ∈ Hnλ := [−nλ, . . . , nλ]m ⊂ Zmq with

λ being a new parameter. We then compute : c =
(
Ap · rT , 〈 r, c− p(0) 〉+ b · bq/2e

)
.

Thus, each encryption of zero produces a LWE sample whose error has variance:

m · n2λ · γ2. As a consequence, we expect the noise to have size
√

2
π ·
√
m · nλ · γ.

Note that [49] also proposed a Key Encapsulation Mechanism (KEM) scheme, based

on the same new hard problem, but which we do not discuss here.

Regarding the security, [49] showed that breaking the semantic security of the en-

cryption scheme is equivalent to solving MQ(n,m,Φζ , Hβ). More precisely:

Theorem 5 ([49]). Let A be an adversary breaking the semantic security of the

scheme working in time T with advantage ε. Then, there exists a probabilistic algo-

rithm B solving MQ(n,m,Φζ , Hβ) in time at most T · 128
ε2
· (2β + 1) · (n2 log q)2,

with success probability at least ε/(4 q).

A similar result holds for the KEM scheme, i.e. breaking the semantic security of

the KEM scheme allows to solve MQ(n,m,Φζ , Hβ). Such a reduction is then used

to establish concrete parameters for the proposed encryption scheme. The basic

hypothesis for setting the parameter is to assume that solving p − p(s) = 0, for(
p,p(s)

)
←$ MQ

(n)
s,Φ, is essentially not easier than solving a random system of equa-

tions [49].

Assumption 7 (HLY Hardness Hypothesis). Solving MQ(n,m,Φζ , Hβ) is as hard

as solving a random system of m quadratic equations in n variables modulo q with a

pre-assigned solution in Hn
β .

The fact that the secret is in Hn
β implies that one can always add n equations of

degree 2β + 1 of the form
∏
j∈Hβ (xi − j). Clearly, the evaluation of such equations

on any s ∈ Hn
β will be zero.

Arguably, this connection between the semantic security and hardness of PoSSo
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is the main di�erence between the HLY scheme and the classical encryption scheme

based on LWE. Indeed, the HLY scheme is very similar to a textbook LWE encryp-

tion scheme equipped with a Gaussian of standard deviation
√
m · nλ · γ with a very

small secret. A noteworthy di�erence lies in the fact that we also consider small

(i.e. of norm bounded by nλ) linear combinations of public samples. In the classical

LWE encryption scheme due to Regev [86], we consider only linear combinations

with coe�cients in {−1, 0, 1} of the public samples. However, [73] also suggest to

sample r from {−r,−r + 1, . . . , r}m.

Assumption 7 allows to estimate the cost of the best attack against MQ(n,m,Φζ , Hβ).

A well-established approach to solve PoSSo is to compute a Gröbner basis [18, 24, 25].

The cost of solving a (zero-dimensional, i.e. �nite number of solutions) system of m

non-linear equations in n variables with the F5 algorithm [15, 32] is O
((n+Dreg

Dreg

)ω)
,

where Dreg is the maximum degree reached during the Gröbner basis computation,

and ω is the matrix multiplication exponent (or the linear-algebra constant) as de-

�ned in [100, Chapter 12]. We recall [101, 99] that ω ∈ [2, 2.3727].

In general, it is a hard problem to predict a priori the degree of regularity of a

given system of equations. However, Assumption 7 implies that the system of non-

linear equations involved is no easier to solve than semi-regular equations [15, 16, 17].

Precisely, Dreg is bounded from below by the index of the �rst non-positive coe�cient

of:
∑

k≥0 ckz
k = (1−z2)m(1−z(2β+1))n

(1−z)n . This is the degree of regularity of a system of

m equations of degree 2 plus n equations of degree 2β+ 1 in n variables.2 From now

on, we will denote by Tref(m,n, q) the cost of solving such system with F5 algorithm,

and by εref the success probability. Usually, a Gröbner basis computation always

succeeds, but one can relax this condition by randomly �xing variables. Precisely, a

2Note that this quantity can be explicitly computed for any value of n,m and β.

135



Practical Cryptanalysis of a MQPKC after Reduction to LWE

success probability εref allows to �x

rref =

⌈
log2β+1

(
1

εref

)⌉
variables for systems sampled according to MQ

(n)
s,Φ.

It is worth mentioning and commending that [49] propose concrete parameters for

their scheme (reproduced in Table 5.1). The parameters are chosen as follows. As-

sume there exists an adversary A breaking the semantic security of the HLY encryp-

tion in time Tdist = 2` with advantage εdist = 2−s. According to Theorem 5, we can

construct an algorithm B solving MQ(n,m,Φζ , Hβ) in time Tsearch(Tdist, εdist, n, q)

with success probability εsearch(εdist, q). From Assumption 7, the best algorithm for

solving MQ(n,m,Φζ , Hβ) works in time Tref(m,n−rref , q) with a success probability

εref . The parameters m,n, q are chosen such that

Tsearch(Tdist, εdist, n, q) < Tref(m,n, q) and εsearch(εdist, q) < εref .

Under the HLY hypothesis (Assumption 7), this means that no adversary can break

the semantic security of the scheme in time less than 2` with success probability

better than 2−s.

5.3 Analysis of the Parameters

In this section, we show that security and e�ciency are essentially incompatible for

HLY. To do so, we derive a set of conditions on the parameters that would thwart

the simplest known attack against LWE-style systems such as those discussed above.

That is, we want to �nd parameters such that both computing a Gröbner basis

and lattice attacks (in particular the non-optimal Micciancio-Regev approach) are

exponentially hard in the security parameter τ . Below, we recall the constraints on

the parameters from [49]:

1. k · ζ · n2+λ ·m · β2 ≤ q/4 (to allow for correct decryption)
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2. m · log(2nλ + 1) ≥ (n+ 1) log q + 2k (to make sure the subset sum problem is

hard)

3. n,m, q, ζ, β (to satisfy the condition in the MQ assumption such that

MQ(n,m, q,Ψζ , Hβ) is hard to solve).

For the number of equations, we may restrict m = c · n where c is a constant (we

remark that the challenges proposed in [49] have c = 2). In this case, we can assume

that MQ is hard (that is, the cost of computing a Gröbner basis is exponential in

the number of variables [15, 16, 17]). From Condition 2, we then get :

m · log(2nλ + 1) ≥ (n+ 1) log q + 2k ≥ n log q,

c · n · log(2nλ + 1) ≥ n log q,

c · log(2nλ + 1) ≥ log q.

This means that 2nλ should be roughly (or at least) q1/c. Hence, the �rst condition

yields:

k · ζ · n2+λ ·m · β2 ≤ q/4

k · ζ · n2+λ · c · n · β2 ≤ 2(c−2)ncλ

ζ · n2 · β2 ≤ (ck)−12(c−2)n(c−1)λ−1

as a bound on the noise in each of the m samples. As mentioned in the introduction

to this thesis, (heuristically) lattice reduction will produce vectors of length

v = qn/m · δm0 = q1/c · δcn0 ≤ 2nλ · δcn0 .

By combining this with the above, we get a distinguishing advantage
(
as de�ned in

Equation 3.4
)
of

exp

(
−πs

2v2

q2

)
= exp

(
−πs

24n2λδ2cn
0

q2

)
= exp

(
−2π2σ24n2λδ2cn

0

q2

)
= exp

(
−2π2σ24n2λδ2cn

0

4cn2cλ

)
,

= exp
(
−(4(1−c+ 1

2
)π2σ2n2λ(1−c)δ2cn

0 )
)
.

Now, we can write:

σ2 = ζ2 · n(n+ 1)

2
·
(

(2β + 1)2 − 1

12

)2
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which, after some manipulation, gives:

σ2 /
4c−2 · (ck)−2 · n2λc−2λ−4 · (16β2 + 32β + 16)

288 · β2

Hence we can lower-bound the distinguishing advantage by:

exp
(
−(4

3
2
−cπ2σ2n2λ(1−c)δ2cn

0 )
)
≈ exp

(
−π

2

8
n−4δ2cn

0 · (ck)−2

6β2

)

We now introduce a parameter τ , representing the bit-complexity of solving such

instances using the model of Lindner and Peikert. We then replace δ0 by 2(1.8/(τ+78.9))

(employing the estimates of Lindner & Peikert for the running time of BKZ 2.0 to

deliver an estimate of the number of bit operations required to obtain such a root

Hermite factor) and require that the advantage is constant in terms of τ . In other

words

exp

(
−π

2

8
n−4 · (ck)−2

6β2
·
(

21.8/(τ+78.9)
)2cn

)
= d. (5.1)

For example, for τ = 80, with β = 2, c = 2, k = 12 and d = 0.5, setting n = 1190

satis�es this condition. For τ = 128, the same parameters require n = 1600. We

note, however, that setting n = 1190 already results in a public key of considerable

size (optimistically setting ζ = 10):

m ·
(
n+2

2

)
· log2(2πζ)

8 · 10243
≈ 1.17 GB, (5.2)

while setting n = 1600 results in a public-key of size 2.85 GB.

Furthermore, we stress that these parameters do not take other potential attack

methods into account and should be viewed as a somewhat loose upper-bound on the

complexity of solving such instances. In particular, this discussion does not re�ect

the possibility of exploiting the small secret for example through modulus reduction

and the approach discussed next.

5.4 Improved Embedding Attack

We present an improved version of the embedding attack described in Chapter 4. To

do so, we exploit the fact that the secret key s is extremely short. Recall that the
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coe�cients of the secret lie in a small subset H = [−β, β] ⊂ Zq. Typically, Huang,

Liu and Yang suggested to take β = 2 (Table 5.1).

Let
(
p,p(s)

)
= (p, c) ←$ MQ

(n)
s,Φ be a public-key of HLY scheme. Let Ap ∈ Zn×mq

be the matrix corresponding to the linear part of p. According to the fact that we

can map an MQ
(n)
s,Φ instance to and LWE instance, we can write:

c ≡ s ·Ap + e + p(0) mod q,

where e ≡ p(s)− s ·Ap−p(0) mod q. Notice that each coe�cient of e is the sum of

n(n+ 1)/2 discrete Gaussians. From now on, we let y ≡ c−p(0) ≡ s ·Ap +e mod q

to ignore the constant part.

The basic idea is to consider the lattice de�ned by the following basis B:

B =


qIm 0 0

Ap In 0

−y 0 1

 .

Since y ≡ sAp +e (mod q), there exists k ∈ Zm satisfying y = s ·Ap +e+ qk ∈ Zm.

Notice that, using this k, the lattice L(B) contains a short vector w = [−e | s | 1] ∈

Zm+n+1:

[k | s | 1] ·


qIm 0 0

Ap In 0

−y 0 1

 = [−e | s | 1].

Applying the reduction algorithm to the lattice L(B) is less e�cient than the basic

embedding attack. The dimension m + n + 1 is larger than m + 1 and the short

vector w = [−e | s | 1] ∈ Zm+n+1 contains e entirely.

However, we can consider a truncated lattice de�ned by an (m′ + n + 1)-dimension
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right-bottom submatrix B′ of B. By this truncation, we have the following relations:

[k′ | s | 1] ·


qIm′ 0 0

A′p In 0

−y′ 0 1

 = [−e′ | s | 1] ∈ Zm
′+n+1.

We note that w′ = [−e′ | s | 1] should be shorter than the previous w. Hence, we

could expect a `less powerful' basis reduction algorithm to be required for recovery

of ±w′ as compared to one required for recovery of the previous w. We �nally note

that, if m′ < m − n, then the dimension is smaller than that of the lattice in the

direct approach.

5.4.1 Estimation of the Expected Gap

For an N dimensional lattice L, we have

λ1(L) ≈
√
N/2πe · vol(L)1/N

according to the Gaussian heuristic. In our case, assuming this heuristic holds, we

have

λ1(L(B′)) ≈
√

(n+m′ + 1)/2πe · qm′/(n+m′+1).

Next, we estimate ‖w′‖ =
√
‖s‖2 + ‖e′‖2 + 1. Since the components of s are

chosen from {−β, . . . , β} uniformly at random, the expected value of ‖s‖2 is n ·
1

2β+1

∑β
i=−β i

2 = nβ(β + 1)/3. As mentioned above, each coe�cient of e′ follows

a discrete Gaussian of standard deviation γ. Hence, E[‖e′‖] can be estimated as
√
m′ · γ. Summarizing the above, we obtain (using β = 2):

E[‖w′‖] ≈
√
m′γ2 + 2n+ 1 ≈

√
m′ · ζ2 · n · (n+ 1) + 2n.

Hence, the expected gap is expected to be

λ1(L(B′))

‖w′‖
≈

√
n+m′ + 1

2πen(m′ζ2(n+ 1) + 2)
· qm′/(n+m′+1). (5.3)
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Case n m ζ β q Hardness (T, µ)

1 200 400 10 2 ≈ 274 (2156, 2−100)

2 256 512 10 2 ≈ 276 (2205, 2−104)

Table 5.1: Suggested parameters in [49].

We �nally note that, when comparing the e�cacy of embedding attacks, the expected

gaps should be compared with those of lattices of the same dimension. If the dimen-

sions di�er, we derive less information regarding the success of the lattice-reduction

algorithm in �nding the shortest vector.

5.5 Practical Attacks against HLY Challenges

From the discussion in Section 5.3, we expect that all parameters suggested in [49]

should be weak against a lattice-reduction attack. The number of variables being

considered is much smaller that what is required by condition (5.1). The goal of this

part is to provide experimental results to con�rm the analysis. To mount the attack,

we also make use of the fact that we can look at the hard problem from [49] as an

LWE instance and then solve these instances using lattice reduction. In particular,

we consider all the parameter sets proposed in [49] (Table 5.1).

The column �Hardness" (T, µ) is a strict lower bound [49] on the complexity of solving

MQ(n,m,Φζ , Hβ) under Assumption 7. The parameters of Case (1) are chosen such

that no adversary running in time less than 282 can break the semantic security of

the HLY bit-encryption scheme with advantage better than 2−11. For the KEM,

Case (1) provides a security of (285, 2−10) (which denotes (time, advantage). Case

(2) was expected to provide a security level of (2130, 2−11) for the bit encryption

scheme (and a security level of (2130, 2−10) for the KEM scheme).

141



Practical Cryptanalysis of a MQPKC after Reduction to LWE

Case (1)

Distinguishing. We have m = 400 equations in n = 200 unknowns. Coe�cients

for quadratic terms are chosen from a discrete Gaussian with standard deviation

ζ = 10 and the secret is in [−β, . . . , β] for β = 2. If we ignore all quadratic terms

and only consider the linear part, we have an LWE-style instance with m = 400, n =

200, q = 18031317546972632788519 and standard deviation

γ =

√
n · (n+ 1)

2
· ζ2 ·

(
(2β + 1)2 − 1

12

)2

=

√
200 · 201

2
· 102 ·

(
52 − 1

12

)2

≈ 211.47.

In this instance, the optimal sub-lattice dimension for applying LLL is√
n log(q)/ log(1.0219) ≈ 688. However, applying LLL in dimension 400 is expected

to return a vector of norm v = qn/m ·δm0 ≈ 249.47 which is more than su�cient to dis-

tinguish between such LWE samples and random with advantage ε = exp
(
−πs2v2

q2

)
≈

0.9999. We ran the LLL algorithm as implemented in fpLLL [78, 95] on lattice in-

stances as in Case (1), i.e., with m = 400, n = 200, q = 18031317546972632788519.

More precisely, we ran LLL (using Sage's default parameters [97]) on the 400× 400

dual lattice. The shortest vector recovered by LLL had norm 249.76 while we pre-

dicted a norm of 249.47. The entire computation took 26 hours on a single core.

Modulus Reduction. A slightly more e�cient variant is to perform modulus

reduction before performing LLL in order to keep coe�cients small. We may apply

the modulus reduction technique with the above parameters and pick p ≈ 265.00 and

γ ≈ 23.59. Applying LLL in dimension 400 is expected to return a vector of norm

v = 245.00 which translates into a distinguishing advantage of ε ≈ 1.

Embedding. We may also consider the embedding attack. We apply LLL to

the 401 × 401 extended primal lattice and using a (conservative) embedding factor

d
√
m · σe. The λ2/λ1 gap in this case is approximately

vol(L(B))1/m · Γ(1 +m/2)1/m

√
2πmσ

≈
q
m−n
m
√

m
2πe√

2mσ
≈ 222.94.
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The attack recovered the `noise' from the public key, allowing the private key (or an

equivalent) to be recovered by simple linear algebra. We note that this attack obvi-

ates the need for a separate search-to-distinguishing phase, as required in the dual-

lattice method, the attack taking again ∼26 hours using a 1.4GHz Intel Core2Duo

CPU.

Improved Embedding. We set m′ = 66 ≈ 200/3. In this dimension, the run-

ning times varied from 268.69 to 295.34 seconds on a Core i7 CPU using the NTL

library [93] with GMP [42]. We note that the expected gap (5.3) in this case is

≈ 26.267. In each case, we ran the BKZ algorithm (G_BKZ_FP with δ = 0.99, block

size = 30, and prune = 10) on the 267-dimensional lattices constructed from the

public-keys. We computed m′ by incrementing m′ from 1 until we were successfully

able to recover a shortest vector.

Case (2)

Distinguishing. We have m = 512 equations in n = 256 unknowns modulo

q ≈ 275.47. Coe�cients for quadratic terms are chosen from a discrete Gaussian

with standard deviation ζ = 10 and the secret is in [−2, . . . , 2] for β = 2. This

gives a standard deviation γ =

√
256·257

2 · 102 ·
(

52−1
12

)2
≈ 211.82. Applying LLL in

dimension 512 is expected to return a vector of norm v = qn/m · δm0 ≈ 253.74 which

is more than su�cient to distinguish between such LWE samples and random with

advantage ε = exp
(
−πs2v2

q2

)
≈ 1.

Modulus Reduction. Using modulus reduction, we pick p ≈ 266.36 and γ ≈ 23.76.

Applying LLL in dimension 512 is expected to return a vector of norm v = 216.00

which translates into a distinguishing advantage of ε ≈ 1.

Improved Embedding. We set m′ = 90 as a slightly larger integer than a third

of n. Again, we ran the improved embedding attack ten times and successfully
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recovered the secret keys from all ten public-keys. The running times varied from

898.14 to 1119.53 seconds. We note that the expected gap is ≈ 27.176.

Beyond The Challenges.

To examine how the improved embedding attack scales, we consider larger parameters

than those provided by the two challenges of Huang, Liu and Yang. In order to

extend these challenges, we �x ζ = 10, β = 2, m = 2n, k = 12, and λ = 5

and calculate q. From the correctness condition in [49] (see also Section 5.3), we

should set q ≥ NextPrime(4kζβ2mn2+λ) = NextPrime(3840n8). From the provable

security side, in order to employ the leftover hash lemma, HLY [49] require q to

satisfy m · log(2nλ+ 1) ≥ (n+ 1) log q+ 2k. We here take q as small as possible, that

is, we take q = NextPrime(3840n8), which always satis�es the correctness constraint

and the security constraint.

Employing an Core i7 CPU (3.4GHz), we ran the LLL algorithm on lattices con-

structed from the public keys with the parameter n increasing from 100 in increments

of 25. We computed the necessary m′ for each n by increasing m′ from 30 by incre-

ments of 10 until we were able to successfully recover a shortest vector in such a case.

Table 5.3 summarises the results of experiments using G_LLL_FP, G_LLL_QP, and

G_LLL_RR (with precision 150), respectively. Due to precision issues, G_LLL_FP

fails at n = 300 while G_LLL_QP fails at n = 450. Due to time constraints, we

only ran G_LLL_RR for n up to 325. Figure 5.1 shows the logarithm of TFP, TQP,

and TRR, the running times (in seconds) for these algorithms. We can approximate

these times by log2(TFP) = 6.9675 log(n) − 27.238, log2(TQP) = 7.3037 log(n) −

27.208, and log2(TRR) = 6.4345 log(n) − 18.502, By using Tcycle = T · 3.4 · 109, we

obtain bit-operation complexity estimates log2(TFP,cycle) = 6.9675 log(n) + 4.425,

log2(TQP,cycle) = 7.3037 log(n) + 4.459, and log2(TRR,cycle) = 6.4345 log(n) + 13.161.

If we wished to extend our experiments using G_LLL_RR for n = 450, our model

indicates that around 220.808 seconds ≈ 21 days would be required. However, we
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n q |pk| (MB)

100 38400000000000000001 ≈ 265.058 0.875

125 228881835937500000029 ≈ 267.533 1.655

150 984150000000000000073 ≈ 269.737 2.794

175 3377813085937500000071 ≈ 271.517 4.361

200 9830400000000000000007 ≈ 273.057 6.423

225 25222688085937500000079 ≈ 274.417 9.046

250 58593750000000000000013 ≈ 275.633 12.300

275 125600906835937500000067 ≈ 276.733 16.247

300 251942400000000000000043 ≈ 277.737 20.960

325 477967219335937500000059 ≈ 278.661 26.501

350 864720150000000000000017 ≈ 279.516 32.940

375 1501693725585937500000047 ≈ 280.313 40.343

400 2516582400000000000000041 ≈ 281.057 48.778

425 4087357875585937500000001 ≈ 281.757 58.311

450 6457008150000000000000029 ≈ 282.417 69.009

Table 5.2: Extended parameters: We �x m = 2n, k = 12, ζ = 10, β = 10, and

λ = 5. We calculate q by NextPrime(4kζβ2mn2+λ) = NextPrime(3840n8) to satisfy

the correctness condition.
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expect that application of LLL would prove insu�cient to recover the private key

(with probability ∼ 1) in this manner for values of n greater than ∼ 500. For such

values of n, lattice reduction algorithms achieving lower root Hermite factors will

be required 3 - we expect this to be the case due to observations made in [38] (as

discussed in Chapter 4) that we can expect to solve unique-SVP instances with a

certain probability p whenever we have

λ2(L)

λ1(L)
≥ τp · δdim(L)

0

for some τp ∈ (0, 1]. Though there are `structural' di�erences in the lattices em-

ployed in this work and those in Chapter 4, we expect the model above to also hold

reasonably well, with τ0.1 ≈ 0.4.

In any case, our experimental results suggest that the security bounds derived in

Section 5.3 are already very pessimistic; even bigger keys than (5.2), for example,

should be considered to thwart the improved embedding attack.
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Figure 5.1: Logarithmic Running Times, G_LLL_FP, G_LLL_QP, and G_LLL_RR

3However, further improved embedding attacks may enable larger values of n to be attacked

using only LLL, but we do not deal with this here.
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G_LLL_FP G_LLL_QP G_LLL_RR (with precision 150)

n q |pk|(MB) m′ exp. gap TFP (sec.) m′ exp. gap TQP (sec.) m′ exp. gap TRR (sec.)

100 ≈ 265.058 0.875 30 23.942 31 ≈ 24.954 30 23.942 115 ≈ 26.845 30 23.942 2412 ≈ 211.237

125 ≈ 267.533 1.655 40 24.959 82 ≈ 26.358 40 24.959 294 ≈ 28.200 40 24.959 5960 ≈ 212.541

150 ≈ 269.737 2.794 50 25.748 177 ≈ 27.468 50 25.748 626 ≈ 29.290 50 25.748 11974 ≈ 213.548

175 ≈ 271.517 4.361 70 28.433 466 ≈ 28.864 70 28.433 1411 ≈ 210.463 70 28.433 27190 ≈ 214.731

200 ≈ 273.057 6.423 80 28.689 810 ≈ 29.662 80 28.689 2441 ≈ 211.253 80 28.689 50976 ≈ 215.638

225 ≈ 274.417 9.046 100 210.494 1456 ≈ 210.508 100 210.494 4513 ≈ 212.140 100 210.494 86427 ≈ 216.399

250 ≈ 275.633 12.300 120 211.940 2487 ≈ 211.280 120 211.940 7587 ≈ 212.889 120 211.940 135423 ≈ 217.047

275 ≈ 276.733 16.247 140 213.134 3784 ≈ 211.886 130 211.916 11720 ≈ 213.517 140 213.134 203450 ≈ 217.634

300 ≈ 277.737 20.960 � � fail 160 214.143 19285 ≈ 214.235 160 214.143 292092 ≈ 218.156

325 ≈ 278.661 26.501 200 216.891 32016 ≈ 214.967 190 215.969 439574 ≈ 218.746

350 ≈ 279.516 32.940 230 218.324 44158 ≈ 215.430

375 ≈ 280.313 40.343 280 220.972 82369 ≈ 216.330

400 ≈ 281.057 48.778 330 223.151 119767 ≈ 216.870

425 ≈ 281.757 58.311 400 226.013 175007 ≈ 217.417

450 ≈ 282.417 69.009 � � fail

Table 5.3: Experimental results using G_LLL_FP, G_LLL_QP, and G_LLL_RR.
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5.6 Closing Remarks

We presented a review and practical cryptanalysis of the public-key encryption

scheme of Huang, Liu and Yang by exploiting the close connection between the

hard problem underlying the scheme and the LWE problem, demonstrating from a

practical and theoretical point of view that the assumptions of Huang, Liu and Yang

are too optimistic. We further examine the possibility of �nding a set of parameters

for the scheme which would o�er the desired security level against lattice attacks,

reaching the conclusion that such an instantiation would only be possible at the

cost of an enormous public key size even when not taking into account additional

structural properties such as the presence of a small secret.
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Appendix A

An LWE Instance Generator

The contents of this appendix are based on �A Generator for LWE and Ring-LWE

Instances" which was a work conducted in collaboration with M. R. Albrecht, D.

Cabarcas, F. Göpfert and M. Schneider during a visit of M. R. Albrecht and the

author to TU Darmstadt in 2013. The code described herein was included in SAGE

[98].

A.1 Introduction

The LWE and Ring-LWE problems (reproduced in de�nitions 9 and 10) have received

widespread attention from the cryptographic community in recent years.

De�nition 9 (LWE). Let n, q be positive integers, χ be a probability distribution on

Zq and s be a secret vector following the uniform distribution on Znq . We denote by

L
(n)
s,χ the probability distribution on Znq ×Zq obtained by choosing a from the uniform

distribution on Znq , choosing e ∈ Z according to χ, and returning (a, c) = (a, 〈a, s〉+

e) ∈ Znq × Zq.

� Search-LWE is the problem of �nding s ∈ Znq given pairs (ai, ci) ∈ Znq ×Zq sampled

according to L
(n)
s,χ.

� Decision-LWE is the problem of deciding whether pairs (ai, ci) ∈ Znq × Zq are

sampled according to L
(n)
s,χ or the uniform distribution over Znq × Zq.
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Under certain conditions on the modulus and noise distribution χ (as discussed in

Chapter 1), the solving certain (assumed hard) worst-case lattice problems can be

reduced to solving (average-case) LWE. In recent work [22], the authors go beyond

the quantum reduction of Regev [86], to give a classical reduction, further bolstering

con�dence in the hardness of LWE.

De�nition 10 (Ring-LWE (informal)). Let n ≥ 1 be a power of 2 and let q ≡ 1

mod 2n, q ∈ poly(n) be a prime modulus. Let f(x) = xn + 1 ∈ Z[x], implying that

f(x) is irreducible over Q. Set R = Z[x]/〈f(x)〉, the ring of integer polynomials

modulo f(x) and set Rq = R/〈q〉. Then the ring-LWE problem can (informally) be

de�ned as: choosing s ∈ Rq to be a uniformly random ring element and de�ning an

error distribution χ on R such that the `weight' of χ (in general terms) is concen-

trated on `small' elements of R. Similarly to decision-LWE, the (decision) Ring-LWE

problem is to distinguish between pairs (a, a ∗ s + e) (where a ← U(Rq), e ← χ and

∗ denotes multiplication in Rq) and pairs (a, c)← U(Rq ×Rq).

It should be noted that, despite the signi�cant extra structure (and thus enhanced

e�ciency in constructions based on Ring-LWE) present in instances of the Ring-

LWE problem, no algorithms are currently known which can exploit this structure

in a signi�cant manner, thus the present algorithms for the LWE and Ring-LWE

problems are essentially the same.

This appendix aims to provide such benchmark instances and to facilitate research

on the concrete hardness of LWE instances by making easy-to-use instance gener-

ators for the LWE and Ring-LWE problem available. This includes both generic

classes for these problems (LWE and RingLWE) as well as speci�c generators for various

proposals from the literature [86, 61, 26]. Our generators are written for and have

been included in the SAGE mathematics software [98]. We start with an example

where we construct an LWE oracle following [86]:

sage: from lwe import Regev

sage: Regev(n=128) # Regev's parameters with security parameter n=128
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LWE(128, 16411 , DiscreteGaussianSamplerRejection (11.809841 , 16411, 4), '

uniform ', None)

A.2 The Generator

The LWE and RingLWE constructors accept as parameter a noise distribution D which,

when invoked, returns an element in Z. We provide instances of such noise distribu-

tion oracles called �samplers� in our work. Somewhat contrary to intuition, sampling

faithfully from Gaussian and (in particular) discretised Gaussian distributions is not

a straight-forward task. The approach we employ is simple rejection sampling, in

which elements are drawn uniformly at random from the support of a distribution,

then rejected with probability inversely proportional to the probability density at

the chosen point.

DiscreteGaussianSamplerRejection samples element in Z according to a a discrete Gaus-

sian distribution centred at zero with standard deviation σ. We stress that this

sampler is parameterised by the target standard deviation instead of the parameter

s = (σ ·
√

2π) often found in the literature. We give an example below:

sage: from lwe import DiscreteGaussianSamplerRejection

sage: D = DiscreteGaussianSamplerRejection (3.0)

sage: variance ([D() for _ in range (2000) ]).sqrt().n()

3.01445160173946

Note that rejection sampling is currently the default strategy for sampling from a dis-

crete Gaussian distribution. Hence, the default Gaussian sampler DiscreteGaussianSampler

points to DiscreteGaussianSamplerRejection.

Some recent works (e.g.[46, 72]) raise the possibility of employing the uniform dis-

tribution over a small subset of Z in place of a discrete Gaussian, thus we include

UniformSampler which samples uniformly between a lower and an upper bound as

illustrated in the following example:

sage: from lwe import UniformSampler
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sage: D = UniformSampler (-2,2)

sage: L = [D() for _ in range (2000)]

sage: [L.count(i) for i in (-2,-1,0,1,2)]

[399, 409, 380, 395, 417]

For each of these classes there also exist analogous polynomial variants for Ring-LWE.

The basic LWE class characterises LWE instances by the dimension n, a modulus

q and a noise distribution D de�ned over Z. We can construct LWE instances as

follows:

sage: from lwe import DiscreteGaussianSampler , LWE

sage: D = DiscreteGaussianSampler (3)

sage: LDist = LWE(n=20, q=401, D=D)

sage: LDist

LWE(20, 401, DiscreteGaussianSamplerRejection (3.000000 , 53, 4), 'uniform ',

None)

sage: LDist()

((19, 118, 249, 127, 347, 269, 232, 383, 16, 265, 247, 133, 102, 74, ... ,

272), 63)

The LWE class also accepts a parameter secret_dist which may be either �uniform� or

�noise�. In the later case, the secret is sampled from D. It also accepts a parameter m

to limit the number samples returned, as is the case in some proposals, for instance

[61]. After this limit is reached an IndexError is raised whenever another sample is

requested. We highlight this using RingLWE:

sage: from lwe import RingLWE , DiscreteGaussianPolynomialSampler

sage: D = DiscreteGaussianPolynomialSampler(euler_phi (8), stddev =3)

sage: rlwe = RingLWE(N=8, q=next_prime (400), D=D, m=5); rlwe

RingLWE(8, 401, DiscreteGaussianPolynomialSamplerRejection (4, 3.000000 , 53, 4)

, x^4 + 1, 'uniform ', 5)

sage: rlwe() # note that samples are tuples of vectors over IntegerModRing(q)

((314 , 333, 270, 367), (89, 276, 152, 388))

sage: _ = [ rlwe() for _ in range (4) ]

sage: rlwe()

...

IndexError: Number of available samples exhausted.
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A.2.1 Instances from the Literature

We also provide high-level interfaces to generate LWE instances from the literature.

In particular, the following instance generators are supported.

� Regev instantiates an LWE oracle given a security parameter n following [86].

sage: from lwe import Regev

sage: Regev (128)

LWE(128, 16411 , DiscreteGaussianSamplerRejection (11.809841 , 16411, 4), '

uniform ', None)

� LindnerPeikert instantiates an LWE oracle given a security parameter n follow-

ing [61].

sage: from lwe import LindnerPeikert

sage: LindnerPeikert (128)

LWE(128, 2053, DiscreteGaussianSamplerRejection (2.705800 , 53, 4), 'noise

', None)

� UniformNoiseLWE instantiates an LWE oracle given a security parameter n fol-

lowing [26].

sage: from lwe import UniformNoiseLWE

sage: UniformNoiseLWE (128)

LWE(128, 389164331 , UniformSampler (0, 486), 'noise', 177)

� RingLindnerPeikert instantiates a Ring-LWE oracle given a security parameter

n following a generalisation of [61].

sage: from lwe import RingLindnerPeikert

sage: RingLindnerPeikert (128)

RingLWE (128, 2053, DiscreteGaussianPolynomialSamplerRejection (64,

3.050908 , 53, 4), x^64 + 1, 'noise', None)

A.2.2 Utility Functions

The function samples provides easy, one-line access to all generators. It accepts a

number m requested samples, a security parameter n, an LWE instance generator,
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a seed for the random number generator and a special parameter �balanced�: by

default, elements in Zq are represented as integers in x ∈ [0, q − 1] by Sage. If, in-

stead, we wish to use the balanced representation x ∈ [−bq/2c, bq/2c], the parameter

�balanced� can be used to apply the balanced representation to scalars and vectors

in and over Zq (with output given as integers or Z-module elements, respectively).

sage: S = samples (20, 10, 'RingLindnerPeikert ', seed =1337); S

[((706 , 21, 602, 420), (197, 136, 639, 177)),

...

((709, 855, 682, 57), (504, 166, 894, 963))]

sage: len(S)

20

With balanced-representation output:

sage: samples (20, 10, 'RingLindnerPeikert ', seed =1337, balanced=True)

[((-325, 21, -429, 420), (197, 136, -392, 177)),

...

((-322, -176, -349, 57), (504, 166, -137, -68))]
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