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Abstract. While expensive cryptographically verifiable computation aims
at defeating malicious agents, many civil purposes of outsourced compu-
tation tolerate a weaker notion of security, i.e., “lazy-but-honest” con-
tractors. Targeting this type of agents, we develop optimal contracts
for outsourcing of computational tasks via appropriate use of rewards,
punishments, auditing rate, and “redundancy”. Our contracts provably
minimize the expense of the outsourcer (principal) while guaranteeing
correct computation. Furthermore, we incorporate practical restrictions
of the maximum enforceable fine, limited and/or costly auditing, and
bounded budget of the outsourcer. By examining the optimal contracts,
we provide insights on how resources should be utilized when auditing ca-
pacity and enforceability are limited. Finally, we present a light-weight
cryptographic implementation of the contracts to mitigate the double
moral hazard problem between the principal and the agents.

1 Introduction

The idea of outsourcing complex computation tasks has been proposed and im-
plemented in a variety of applications. Research projects involving complex anal-
ysis on a huge multitude of data have utilized parallel processing of their compu-
tations on the processors of millions of volunteering Internet users. These include
search for extra-terrestrial life (SETI@Home), investigation of protein folding
and computational drug design (Folding@Home and Rosetta@home). Businesses
from different sections including finance, energy infrastructure, mining and com-
modities transport, technology and innovation [7] have also realized the benefits
of outsourcing their data and computation, and “moving to the cloud”. The
cloud, as a dedicated infrastructure with specialized man-force and powerful
computing capabilities, along with the ability to pool demands from different
clients and dynamic assignment of the resources can reduce the cost of compu-
tation. Meanwhile, the outsourcer is also relieved from maintaining a dedicated
computing infrastructure and in addition, has the total flexibility of pay-per-use
paradigm, to flex-on or to flex-off services effortlessly [7]. This growing trend
has made possible small virtualised computers and smart devices with powerful
computational power, applicable to critical mission scenarios and everyday use.

? The full version of this paper with formal proofs for all the propositions is accessible
via https://eprint.iacr.org/2014/374.pdf.
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In all of these scenarios, there is a concern for the outsourcer (client) about
the correctness of the returned results. The provider of computation services
(the servers) have an economic incentive to return guessed results as opposed to
performing the computation completely and honestly, and thereby save on the
computation work. Hence, to make this paradigm viable and guarantee sound-
ness of the results, there must be an auditing mechanism in place. The auditing,
however, is not free: it either creates computational overhead for the client, the
server, or both. The auditing can be done by the outsourcer itself or through
a trusted third party for a fee, say, through re-computation. Alternatively, a
redundancy scheme can be employed in which the same job is outsourced to
multiple servers and the results are checked against each other.

Irrespective of the auditing mechanism, the outsourcer can set an extremely
large fine for detected wrong results, and make cheating theoretically impossi-
ble even for the lowest probability of cheat detection. However, in practice, an
extremely large fine is a non-credible threat. A more reasonable assumption is
a cap on the maximum enforceable fine, with the special interesting case where
the cap is zero. In this paper we provide a concrete and general approach based
on Principal-Agent modelling from game theory to optimal contract designs for
outsourcing from the client (principal) to the servers (agents). Specifically, we as-
sume a general maximum enforceable fine, maximum budget, and costly and/or
limited auditing rate. We formulate the utilities of both the principal and the
agents, as well as essential constraints that guarantee honest computation (incen-
tive compatibility) along with their acceptance of the offer (participation). This
allows us to systematically compute the optimal contract such that the princi-
pal’s expense is minimized. Our work hence potentially provides a benchmark
enabling comparison among different deployments of outsourcing.

The paper is structured as follows: In Section 2, we review previous results
and describe our contributions. This is followed by a detailed motivation of our
contract model in Section 3, along with descriptions of important constraints
that make the problem non-trivial. In Section 4, we compute optimal contracts
involving only one agent, and explore related improvements. In Section 5, we
allow the principal to also potentially outsource the same task to multiple non-
colluding agents as an alternative means of auditing and develop optimal hybrid
contracts. We further establish the global optimality of our hybrid two-agent
contracts among all possible contracts involving any number of non-colluding
agents with respect to the notion of Nash Equilibria. In Section 6, we comment
on cryptographic implementation of our contracts, i.e., how to enforce the terms
and policies in an automated way. Finally, in Section 7, we conclude the paper
with a summary of the results and remark on some potential future directions.

2 Related work

A line of research is focused on designing reliable verification techniques for
outsourcing of special-purpose computations. For instance, [17] investigates out-
sourcing of linear optimizations. Other notable examples are queries on out-
sourced databases, including typical queries [1, 5] and aggregation [18]. Their



main paradigm is for the querier to rely on trusted information directly given
by the data owner (outsourcer) to verify the results returned by the servers.

Verification methods for general-purpose computing also appear in several
remarkable works. In [12] verification is performed by re-executing parts of the
computation. A variation is presented in [3] in which the authors utilize re-
dundancy over multiple agents, assuming that at least one of them is honest.
Outsourced computation has also caught attraction in cryptographic research: in
a seminal work, the authors of [8] formally define verifiable computation and give
a non-interactive solution. Their solution uses Yao’s garbled circuits to repre-
sent the computation and homomorphic encryption to hide such circuits from the
agents. More efficient but interactive solutions that use probabilistically-checkable
proofs (PCPs) have since been developed such as Pepper [15] and Ginger [16].

Incentive-based solutions such as [2, 13] have studied contracts that the out-
sourcer may offer to the agents and through a combination of auditing, fines
and rewards, honest computation is enforced. All of these verification techniques
are, however, costly in terms of computation, memory, incentive rewards, etc.,
either to the prover or the verifier, or both. For example, the scheme in [12]
requires partial re-execution of the tasks, and the verification in [3] incurs cost
in the redundancy of the number of computing agents. Also, efficient protocols
like Pepper still incurs a cost in the order of m3 [15] on the principal, where
m is the size of the problem. The cost of employing verifiable computing across
these different schemes hence raises the important question of how to use them
economically, especially when there is a flexibility in parameters that govern the
overall cost to the outsourcer. Motivated by this, we abstract verification tech-
niques as an auditing tool with a exogenous cost and provide incentive-based
contracts that minimise the expected cost of the principal. Our contributions
generalize the results in [2, 13] by (1) extending the feasibility of honesty enforc-
ing schemes for any bound on the enforceable fines and any auditing capacity;
(2) explicitly accounting for the cost of auditing and treating the auditing rate
as one of the choice variables; and (3) providing optimal contract that mini-
mize the aggregate cost of the principal as a combination of incentive payments
and auditing costs. In short, our work explicitly extends both applicability and
efficiency of incentive-based solutions based on a general abstraction of the verifi-
cation method employed. For readers’ interests, we also study in [10] the coalition
among agents that may give them advantages in cheating the principal.

3 Problem Definition: General Setup

In this section, we describe the general setting of the problem and basic assump-
tions behind our model. A list of notations is provided in Table 1 for reference.

The outsourcer, which we refer to as the principal1 has a deterministic com-
putation task to be executed to obtain the output (result). Instead of executing
the task itself, the principal hires a set of agents2 to do this. The principal

1 Also called the boss [2], master [6], outsourcer [4], client [8], data owner [13], etc.
2 Also referred to as the workers, servers, clouds, or contractors.



aims to enforce fully honest computation of the task through setting a contract,
involving rewards, auditing, and punishments (fines).

The principal and the agents are each selfish non-cooperative expected utility
maximizers. Initially, we assume that everybody is risk-neutral, i.e., they have
no strict preference between their expected utility and their utility of expected
reward, and hence [9, ch.2.4], their utilities are linear function of the costs (with
negative sign) and the rewards (with positive sign). Moreover, we assume that
agents are “lazy but not malicious”, that is, they do not have any interest in
potentially reporting dishonest computations other than saving in their computa-
tion cost. Suppose the range and the probability distribution of the computation
result is known. Generating a guessed output according to this distribution has
zero computation cost and accuracy probability of q0 (which can be negligibly
small if the range of the output is large). For the sake of generality, as in [2],
suppose each agent also has access to a private and independent tricky algorithm
Alg that generates the correct output with probability q1, where q0 < q1 < 1, at
the cost of c(q1) ≥ c(q0) = 0. The cost of honest computation is c(1), which is
strictly greater than c(q1). To enforce honesty of the agents, the principal au-
dits the returned result with probability λ. We assume that auditing is perfect,
i.e., if the output is indeed correct, the audit definitely confirms it (no “false
positives”), and if the output is incorrect, the audit surely detects it (no “false
negatives”). In the most basic contract, the principal decides on an auditing rate
λ, sets a penalty (fine) f for detected erroneous answers and reward r otherwise.
What make the problem non-trivial are the following observations:

1. Costly detectability of cheating : that auditing all of the results is either infea-
sible or undesirable. Regarding the infeasibility, suppose that in the long run
the principal has a continuous demand (e.g. the Folding@Home project) of
tasks awaiting computation, appearing at a rate ρ tasks per unit time. Also,
suppose that each audit takes the principal ν machine cycles, and the com-
putation capacity of the principal’s machine is κ cycles per unit time. Then
the maximum feasible rate of verification is κ

νρ .3 Moreover, auditing (e.g.

through re-computation) may be costly as it will consume the computation
power of the principal’s machine and slow it down, or it will require obtain-
ing additional hardware. The principal chooses the probability of auditing
of a task λ ∈ [0, Λ], where 0 < Λ ≤ 1 is associated with the computational
capacity of the principal. The principal incurs the cost Γ (λ) which is non-
decreasing in λ. For simplicity of exposition, we assume a linear relation:
Γ (λ) = γλ for a given γ ≥ 0. An alternative to the occasional redoing of the
whole computation by the principal can be using a third-party cloud that

3 Note that even when the principal is verifying at full capacity, it should not pick the
next immediate task to verify after finishing the previous one, since it may create
a “learnable” pattern of audited tasks, which the agent can use to only be honest
when computing them. This however can be avoided if the principal picks uniformly
randomly tasks at the rate of κ

νρ
and store them in a queue. However, the practical

buffer has a storage limit. Consequently, the maximum feasible auditing rate with
no essential pattern is strictly less than the full capacity rate κ

νρ
.



is highly reliable but costly (with per access cost of γ). For this scenario,
the maximum auditing rate Λ is one, i.e., all of the tasks could be audited,
albeit at an excessive cost.

2. Limited enforceability of the fines: The problem of verifiable computing could
become trivial if there is no bound on the fine that can be practically levied
on a wrongdoer: as long as there is even a tiniest probability of detection,
then the principal can make the expected utility of the smallest likelihood
of cheating become negative by setting the fine for erroneous results large
enough. The issue with this argument is that such a fine may be extremely
large and hence, become an incredible threat, in that, if the cheating of an
agent is indeed caught, the fine is practically or legally non-collectable. Thus,
existence (feasibility) results of honesty enforcement that rely on choosing
a “large enough” fine are rather straightforward and uninteresting. In par-
ticular, such approaches leave unanswered the question of whether honest
computation is still attainable for a bounded enforceable fine below their
prescriptive threshold. Moreover, such results do not provide a good met-
ric of comparison between alternative incentive schemes, or across different
choices of parameters for a particular scheme. We will explicitly introduce
F ≥ 0 in our model to represent the maximum enforceable fine and obtain
the optimal contracts subject to f ≤ F . This can be the “security deposit”,
prepaid by the agent to the principal, that is collectible upon a provable de-
tection of an erroneous result. A special case of interest is F = 0, i.e., when
the only means of punishment is refusal to pay the reward.

3. Limited budget : As with the maximum enforceable fine to make it a credi-
ble threat, the maximum instantaneous “budget” of the principal leads to a
bound on the reward to make it a credible promise. Let the maximum in-
stantaneous payable reward by the principal be R. Thus, we require: r ≤ R.

4 Contracts for Single Agent

In this section, we consider the case where the contract is designed for and
proposed to only one computing agent. We provide the optimal contract for the
basic model in subsection 4.1. In subsection 4.2, we investigate what happens if
the risk-neutrality assumption of the agents is relaxed. Next in subsection 4.3,
we comment on moderating against using tricky algorithms and clever guesses.
Subsequently, in subsection 4.4, we discuss the optimal choice of the principal
in the light of the optimal contracts theretofore developed. We close the case of
single-agent in subsection 4.5 by generalising our results to contracts in which the
principal is allowed to reward unaudited and verified tasks potentially differently.
In Section 5, we will investigate the multi-agent case.

The action of the agent, given the parameters of the contract set by the
principal, is first whether to accept it, and if so, which (probabilistic) algorithm
to choose for computation of the assigned task. Since a naive random guess
is correct with probability q0, we assume that the agent’s algorithm is correct
with probability q ∈ [q0, 1]. Let uA denote the expected utility of the agent



Table 1: List of main notations
parameter definition

λ probability of auditing an outsourced computation by the principal
Λ the physical upper-bound on λ
γ cost of auditing (incurred by the principal)
q probability of a correct computation by the agent
q0 the correctness probability of a random guess from the output space
c(q) the expected cost of computation to an agent for the correctness level of q
c(1), c cost of an honest computation to an agent
f fine collected from agent upon detection of an erroneous computation
F the maximum enforceable fine
r reward to the agent for an unaudited or audited and correct computation
R the maximum feasible reward
z the reserve utility (a.k.a., fallback utility or aspiration) of the agent
H auxiliary coefficient defined as c(1) + z (§4)
K auxiliary coefficient defined as (c(1)− c(q1))/(1− q1) (§4)
C the expected cost of the contract to the principal
α probability of using two agents for the same computation (§5.1)
F0 auxiliary coefficient defined as c/Λ− c (Proposition 5, §5.1)
F1 auxiliary coefficient defined as c[c− γ]+/[2γ − c]+ (Proposition 5, §5.1)

after accepting the contract. With correctness probability of q, the agent is
caught (and fined) with probability (1− q)λ. Hence, uA is composed of expected
reward [1− (1− q)λ]r, minus the expected cost composed of the cost c(q) of the
agent’s algorithm and the expected fines (1 − q)λf . Hence: uA(q) = [1 − (1 −
q)λ]r − c(q) − (1 − q)λf . The agent may be able to achieve the same level of
correctness, i.e., q, with different randomizations between the tricky algorithm
Alg, the honest algorithm and random (naive) guessing. It is straightforward to
make the following observation: For any q, the best c(q) is achieved as follows:

a) If [c(1)− c(q1)]/(1− q1) > c(1)/(1− q0), then: c(q) =

{
Lq0,q1(q) q0 ≤ q ≤ q1
Lq1,1(q) q1 ≤ q ≤ 1

;

b) If [c(1)− c(q1)]/(1− q1) < c(1)/(1− q0), then: c(q) = Lq0,1(q), where in both

cases, Lx,y(z) := c(x) +
c(y)− c(x)

y − x
(z−x), i.e., the linear combination of the

costs of the corresponding two end points.

Note that in case-(b), the risk-neutral agent would never use Alg, since the cost
of using it can be undercut (in expected value) by randomizing between honest
computation and random guessing. Hence, we only consider case-(a) for now and
revisit case-(b) in §4.3.

4.1 Optimum Contract for a Single Agent

The principal chooses the contract by setting the rate of auditing and reward and
punishment values, in order to maximize its own utility and ensure fully honest



computation. Hence, the reward and punishments, r and f , should be chosen
such that honest computation is the optimal course of action for the agent, if
the contract is accepted. This means ensuring: 1 = arg maxuA(q). Following the
Principal-Agent modelling in game theory (e.g. [9, ch.7] or [14, ch.6]), we will
refer to this as the incentive compatibility constraint. For case (a), this becomes:

uA(1) = r − c(1) ≥ uA(q1) = [1− (1− q1)λ]r − c(q1)− (1− q1)λf (1)

The agent accepts the contract if its expected utility is larger than its reserve
utility, z ≥ 0.4 Given incentive compatibility, this participation constraint is
hence:5

uA(1) = r − c(1) ≥ z. (2)

The principal wants to get away with the least reward and auditing rate. There-
fore, the optimal contract for the single agent reduces to solution of the following
optimization:

min
r,f,λ
C := r + γλ (3a)

s.t. r ≤ R, 0 ≤ f ≤ F, 0 ≤ λ ≤ Λ, (3b)

r ≥ H, rλ+ fλ ≥ K (3c)

where (3c) is derived from (1) and (2) in which we have used the auxiliary
coefficients H := c(1) + z and K := [c(1)− c(q1)]/(1− q1) for brevity. Then:

Proposition 1. With the parameters given in Table 1, the contract that enforces
honest computation and is accepted by the agent, and minimizes the cost of the
principal is by setting f∗ = F and choosing λ∗, r∗ as given by the following:6

γ ≤
K

Λ2
:


[
K

Λ
−H]

+ ≤ F : λ
∗
=

K

H + F
, r

∗
= H, C∗ = H +

γK

H + F

[
K

Λ
− R]

+ ≤ F < [
K

Λ
−H]

+
: λ

∗
= Λ, r

∗
=
K

Λ
− F, C∗ =

K

Λ
+ γΛ− F

γ >
K

Λ2
:



[
√
Kγ −H]

+ ≤ F : λ
∗
=

K

H + F
, r

∗
= H, C∗ = H +

γK

H + F

[
√
Kγ − R]

+ ≤ F < [
√
Kγ −H]

+
: λ

∗
=

√
K

γ
, r

∗
=

√
Kγ − F, C∗ = 2

√
Kγ − F

[
K

Λ
− R]

+ ≤ F < [
√
Kγ − R]

+
: λ

∗
=

K

R + F
, r

∗
= R, C∗ = R +

γK

R + F

For F < [KΛ − R]+, the optimization is infeasible, i.e., there is no honesty-
enforcing contract that is also accepted by the agent.

4 The reserve utility (also referred to as the fall-back utility or aspiration wage) is
the minimum utility that the agent aspires to attain or can obtain from other of-
fers. Naturally, z ≥ 0. Note that an implicit assumption here is that the agent is
replaceable by any other agent with the same fall-back utility, i.e., there are many
agents available with the same reserve utility. Without this assumption, the agent
has negotiation power by refusing the contract knowing that it cannot be replaced.
Alternatively, z can be thought as to (exogenously) capture the negotiation power
of the agents. This is an assumption we make throughout the paper.

5 Participation constraint is sometimes also called Individual Rationality constraint.
6 The notation x+ := max{0, x}.



Discussion. The first observation is that the optimal contract should fully utilize
the maximum enforceable fine and punish at no less than F . For large values of
enforceable fines, we note that r∗ is at H, the minimum value to ensure partici-
pation, and limF→∞ λ∗ = 0, which yields limF→∞ C∗ = H. These are compatible
with intuition as a huge fine implies that honesty can be enforced with mini-
mum compensation and minuscule rate of inspection. When auditing is cheap
(γ ≤ K/Λ2), increasing the auditing rate is the better option to compensate
for lower values of F to maintain incentive compatibility (honest computation).
This is unless the auditing rate is at its maximum Λ, in which case, reward must
increase above H to maintain incentive compatibility and compensate for the
low value of F . Note that in this case, the participation constraint is not active
and is satisfied with a slack, while the incentive compatibility constraint is sat-
isfied tightly. For yet lower values of enforceable fine F , even maximum reward
r = R and auditing rate λ = Λ might not impose a strong enough threat against
cheating, hence the infeasibility region. When auditing is expensive (γ > K/Λ2),
in order to retain incentive compatibility in the situation of very low fine F , the
principal should increase reward, and only consider more frequent auditing if the
reward budget R has been reached. Fig. 1 depicts the optimal parameters of the
contract versus the maximum enforceable fine for the latter case (γ > K/Λ2).

Note that the infeasible region does not necessarily exist. Specifically, when
the principal’s instantaneous budget R is larger than K/Λ, then there is always
a feasible contract. Then even for F = 0, i.e., no enforceable fine, a contract
that enforces honest computing is feasible, albeit by using high values of reward
and/or auditing rate. In such cases, the principal “punishes” audited erroneous
computations only through not rewarding the agent. However, it is clear that
honesty cannot be enforced with zero auditing rate, and hence the case of Λ = 0
trivially leads to infeasibility. Moreover, to satisfy the participation constraint at
all, R has to be at least as large as H. Hence, for R < H, likewise, there exists no
feasible contract for any F . We also show that except for the special case of γ = 0,
the optimal contract has the feature that it is unique. Figures 2a and 2b depict

0 200 400 600 800 1,000

0.4

0.6

0.8

1

λ∗

r∗

infeasible

Maximum enforceable fine (F )

Fig. 1: Change of contract parameters r∗, λ∗ w.r.t. the maximum enforceable fine
F (Prop. 1, case of γ > K

Λ2 ), where K = 450, γ = 1200, Λ = 0.7, and c = 400.
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Fig. 2: Optimal contract parameters w.r.t (a) the auditing cost γ, with K = 450,
Λ = 0.8, c = 400, and (b) auditing capacity Λ, with K = 450, γ = 450, c = 450.

the change in the structure of the optimal contract versus varying auditing cost γ
and the maximum auditing capacity, respectively. From Fig. 2a, we can see that
for larger values of γ, the optimal contract utilizes lower values of inspection rate
λ∗ while using higher values of reward r to enforce honest computation. This
transition progress culminates when the payment reaches its threshold R, after
which the contract remains unchanged. In contrast, Fig. 2b shows how increasing
the maximum auditing capacity affects the optimal contract in the opposite
trend: as the principal is more capable of auditing, it should consider more
frequent auditing and lessen the reward for honest computation. The payment,
however, can never be lowered below H to maintain participation.

4.2 A Risk-Averse Agent

So far, we modelled the agent as risk-neutral, i.e., one that is indifferent between
its expected utility and utility of expectation, leading to a linear utility function.
However, empirically, individuals tend to show risk-aversion regarding decisions
that affect their income. By definition, (strict) risk aversion is (strict) preference
of expected utility over utility of expectation. Following Jensen’s inequality, this
is equivalent to assuming a (strictly) concave utility function (ref. e.g. [9, ch.2.4]).
We have the following simple but re-assuring result:

Proposition 2. The optimal contract given in Proposition 1 developed for a
risk-neutral agent stays feasible for any risk-averse agent as well.

Note that even though the feasibility of our contract is guaranteed, its optimal-
ity might no longer hold. This is because a lower value of fine and/or rewards
could potentially maintain incentive compatibility, as intuitively, cheating with
a chance of getting caught can be seen as a lottery. However, because the level of
risk-averseness of an agent is unknown, we argue that it is best practice to design
the optimal contract for the worst case with respect to risk, i.e., risk neutrality.



Specially, if a contract is designed assuming a particular degree of risk-aversion
of the agent but the agent turns out to be less risk-averse than assumed, then
the incentive-compatibility for honest computation may be violated, failing the
principal’s intolerance of erroneous computations. Accordingly, for the rest of
the paper, we will retain risk-neutrality for agents.

4.3 Mitigating clever guesses

An inherent problem of outsourced computation is that a (not always) correctly
guessed output is indistinguishable from an honestly computed one. For instance,
consider the question of whether a large natural number is a prime: the deter-
ministic guess of “no” is most likely correct. Also, since the principal might not
know the exact cost and success probability of potential guessing algorithms, it
is hard to design a contract that enforces honesty. Therefore, the principal may
prefer to avoid identifying the parameters of guessing algorithms altogether.

One way to mitigate the possibility of “clever” guesses is to enlarge the
output range by requiring the agent to return not just the final computation
output, but also snapshots of intermediate steps of the computing process [2].
This will reduce the correctness probability of a naive guess down to q0 = negl.
Moreover, requiring snapshots of the intermediate steps makes guessing of the
correct output more costly. Let c(q1) be the cost of a tricky algorithm that
tries to produce the expanded output with the intermediate steps of the honest
computation, where it succeeds with probability q1. We make the assumption
that now c(q1) > q1c(1), so that any guessing algorithm with cost c(q1) can be
replaced with a randomization between naive guess (with weight 1 − q1) and
honest computation (with weight q1). Thus, for incentive compatibility, we only
need to make sure that the agent’s utility from honest computation is better
than a naive guess that succeeds with negligible probability q0 = negl. To avoid
distraction in our analysis, we assume q0 = 0, as the results can easily be realized
for q0 = negl. Our simplified constraints for the contract become:

participation : r ≥ c(1) + z, incentive compatibility : r ≥ 1

λ
c(1)− f. (4)

Comparing to the constraints in (3c), this translates to changing K to c(1).
This in turn implies that the new incentive compatibility constraint requires a
strictly lower fine value. Intuitively, as guessing becomes more difficult, cheating
becomes less attractive and hence can be deterred with a smaller fine. Hereafter,
we assume that the principal is employing this technique and use the above
incentive compatibility constraint. Moreover, for simplicity of exposition, we
assume that the reserve utility z is zero, and hence H becomes c(1), which we
will abbreviate as c.

4.4 Optimal Choice for the Principal

So far we have considered auditing as a blackbox and only included its cost and
capacity into the model. However, when auditing is via redoing the computation



(at the cost of γ) it might be optimal for the principal to not offer any contract
at all. Indeed, when Λ = 1, the principal can potentially audit all computations
by redoing them. Specifically, if the optimal contract costs C∗ ≥ γ, then it
is optimal for the principal to do the computation itself, as that only costs
γΛ = γ. In case Λ < 1, the principal cannot do all the computations, and must
outsource a portion of it. Interestingly, the following proposition establishes that
the principal’s optimal choice is either to not outsource at all, or fully outsource
its computation.

Proposition 3. Consider the case where auditing is through redoing the compu-
tation. Let x be the probability that the principal computes the tasks itself. Then,
either x∗ = 0 and the optimal contract is as per Proposition 1, or x∗ = Λ = 1
and there should be no outsourcing.

The proposition has this important corollary:

Corollary 1. When Λ < 1, the optimal choice for the principal is to use the
optimal contact given by Proposition 1. When Λ = 1, the optimal choice of the
principal is to compare the expected cost achieved by the optimal contract in
Proposition 1 (for the value of maximum enforceable fine at hand) against γ,
and accordingly decide to outsource or independently compute all of the tasks.

4.5 Optimal Contract for a Single Agent: Two-Level Reward

In our contracts so far, verified correct results and unaudited results are rewarded
identically at r. Suppose, alternatively, that the principal rewards r0 for accepted
but not audited results and r1 for corroborated correct answers, and as before,
penalizes f for detected wrong computations. This way, the principal may hope
to save significantly by, for example, not paying for unaudited computations. The
new incentive compatibility and participation constraints are: (1−λ)r0+λr1−c ≥
(1−λ)r0−λf and (1−λ)r0 +λr1− c ≥ 0, respectively. The optimization of (3)
for a contract with two-level reward changes to:

min
r0,r1,f,γ

C := r1λ+ r0(1− λ) + γλ

s.t. r0, r1 ≤ R, f ≤ F, 0 ≤ λ ≤ Λ, r1λ+ r0(1− λ) ≥ c, r1 ≥
c

λ
− f.

Proposition 4. For F ≥ [c/Λ − R]+, the optimal single-agent contract for
two-level rewarding is given as: f∗ = F , λ∗ = c/(F +R), r∗1 = R, r∗0 =
Fc/(R− c+ F ), C∗ = c (1 + (γ + c−R)/(F +R)). For F < [c/Λ − R]+, the
contract is infeasible.

Discussion of the two level reward contract. First, note that there is no improve-
ment in terms of the infeasibility region compared with the single-level reward
contract. However, the achieved cost is always better. This was to be expected as
the single-level rewarding can be thought of as a special case of two-level. How-
ever, the behaviour of the optimal contract now does not depend on the value



of the auditing cost γ. This is where the strength of the two-level rewarding lies:
for high values of γ, the two-level contract increasingly outperforms the single
reward-level contract.

Note that the optimal reward for audited and correct results r1 is at the
principal’s maximum budget R irrespective of the value of F . The value of reward
for unaudited results r0 is always strictly less than c, i.e., the cost of honest
computation (and hence strictly less than r1 as well). The value of r0, unlike r1,
depends on F : For higher values of maximum enforceable fine, in fact somewhat
unexpectedly, the optimal contract chooses increasing values of reward r∗0 . Still
intuitively, a larger threat allows less necessity for auditing, and thus the contract
starts to behave as a “lottery”, in which the low-chance “winner” receives r∗1 = R
and the “loser” r0 < c < R.

5 Optimal Contracts for Multiple Agents

When there are more than one agent available, the set of possible contracts gets
extended. Specifically, as e.g. [2] and [13] discuss, the principal has the option
of submitting the same task to multiple agents and comparing the outcomes.
We will refer to this option as the redundancy scheme. If the returned results
do not match, it is clear that at least one agent is cheating. Furthermore, as
[13] assumes, if the agents are non-colluding, and returning the intermediate
steps along with the computation result is required, then the probability that
the results produced by cheating will be the same will be negligible, which we
again assume to be zero (for simplicity). Hence, the returned results are correct
if and only if they are the same.

In the next subsection, we develop optimal contracts considering two agents.
Subsequently, we establish the global optimality of two-agent contracts among
any number of agents with respect to the notion of Nash Equilibrium.

5.1 Optimal Contracts for Two Agents

Consider the case that there are two agents available: agent 1 and 2. As in
the single-agent case, consider a principal that has a computation task and a
maximum auditing rate of Λ. Then, in general, a principal can use a hybrid
scheme: it may choose to send the same job to both of the agents sometimes,
and to one randomly selected agents the rest of the time. Sending the same
task to two agents provides a definite verification, however, at the cost of paying
twice the reward, since both agents must be rewarded for honest computation.
Hence, an optimal choice of redundancy scheme is not immediately clear, even
less so if this schemes is randomized with just choosing one agent and doing
independent audits. In this section, we investigate optimal contracts among all
hybrid schemes.

Besides lack of collusion, we assume the agents do not communicate either.
Therefore, on the event that any of the agents receives a task, it has no infor-
mation about the busy/idle state of the other agent. The action of each agent is



selection between honest computation, which we represent by H , and cheating,
which we denote by C . Since the agents have no information about the state of
the other agent, the set of their (pure) strategies and actions are the same.

The expected utility of each agent depends in part on the action of itself and
of the other agent. Let uA(a1, a2) represent the utility of agent 1 when it chooses
action a1 and agent 2 chooses a2, where a1, a2 ∈ {H ,C }. The principal wants to
enforce honest computation with probability one. If uA(H ,H ) ≥ uA(C ,H ),
then given that agent 2 is going to be computing honestly, agent 1 will prefer
to do the same too, and due to symmetry, likewise for agent 2. In the game
theoretic lingo, this means that (H ,H ) is a (Nash) equilibrium. If, further,
uA(H ,C ) ≥ uA(C ,C ), then (H ,H ) will be the dominant (Nash) equilibrium,
i.e., honest computation is the preferred action irrespective of the action of the
other agent.

The principal utilizes the redundancy scheme with probability α or employs
only one of the agents (selected equally likely)7 with probability 1 − α. If the
principal chooses only one agent, then it audits it with probability ρ. Since
auditing only occurs when a single agent receives the task, the likelihood λ that
the task will ever be audited is ρ(1 − α). As in the single-agent single-reward
scenario, if only one agent is selected, the agent is rewarded r if there is no
indication of wrongdoing, and is punished f if audited and caught wrong. When
the redundancy scheme is selected and the returned results are equal, both agents
are rewarded r. Otherwise, both are fined at f . With the model so described,
the expected utilities of an agent are computed as follows:8

uA(H ,H ) =r − c, uA(C ,H ) =(1− α− λ)r/2− (α+ λ/2)f.

Hence, the condition uA(H ,H ) ≥ uA(C ,H ) becomes: r ≥ (1 + α)c/(λ+ 2α)−
f . Subject to making (H ,H ) an equilibrium, the contract is accepted if the
expected utility of it to the agents is above their reserve utility, which we assume
here too to be zero for simplicity: r−c ≥ 0. Then the expected cost of the contract
to the principal is:

C = 2rα+ γλ+ r(1− α) = (1 + α)r + γλ.

The principal chooses λ, α, f , r such that honest computation is enforced, the
contract is accepted, and the expected cost of the principal is minimized. λ and
α must satisfy the structural condition 0 ≤ α ≤ 1, 0 ≤ λ ≤ Λ and α + λ ≤ 1.
The instantaneous budget of the principal imposes r ≤ R if α = 0, and 2r ≤ R if
α > 0. We assume R ≥ 2c, since otherwise, the principal can never employ both
of the agents without violating its instantaneous budget constraint, and hence,
the problem reduces to the single agent problem. Then, the budget constraint

7 We will formally show through the proof of proposition 6 that equal randomization
is the best option. Intuitively, this removes any information that the agents may
infer upon receiving a task.

8 Since the only information state to an agent is whether it receives the job, the ex-ante
and ex-post analysis, i.e., before and after reception of the task, become equivalent.
We present the ex-ante view for simplicity.



simplifies to r ≤ R/2. Therefore, the optimal contracts for two agents that make
(H ,H ) an equilibrium are solutions of the optimization problem of:

min
r,f,α,λ

r(1 + α) + γλ subject to:

r ≤ R/2, f ≤ F, 0 ≤ λ ≤ Λ, λ ≤ 1− α, α ≥ 0, r ≥ c, r ≥ c(1 + α)

λ+ 2α
− f.

Note that the above optimisation only guarantees that (H ,H ) is a Nash equi-
librium. Other strategy profiles might become equilibria, for example (C ,C ).
However we notice that because agents are only rewarded when they are both
honest, (H ,H ) is thus the most attractive equilibrium to agents both individu-
ally and socially. We therefore only care to ensure that (H ,H ) is an equilibrium.
The optimal contracts are as follows:

Proposition 5. Let F0 = c/Λ − c and F1 = c[c − γ]+/[2γ − c]+,9 the optimal
one-level reward two-agent contract that makes (H ,H ) a Nash equilibrium is:



F1 ≤ F : f
∗
= F, α

∗
=

c

2F + c
, λ

∗
= 0, r

∗
= c, C∗ = c(1 +

c

2F + c
)

F0 ≤ F < F1 : f
∗
= F, α

∗
= 0, λ

∗
=

c

c+ F
, r

∗
= c, C∗ = c(1 +

γ

F + c
)

F < min(F0, F1) : f
∗
= F, α

∗
=
c− Λ(c+ F )

c+ 2F
, λ

∗
= Λ, r

∗
= c, C∗ =

c(c+ F )(2− Λ)
c+ 2F

+ γΛ

For Λ = 1, (H ,H ) is moreover the dominant Nash equilibrium.

Corollary 2. If auditing is more expensive than the cost of honest computation
(γ ≥ c), the optimal contract only uses the redundancy scheme. When γ ≤ c/2,
either there is no redundancy scheme (α = 0) or the whole auditing capacity is
used (λ∗ = Λ).

The first part of the corollary is quite intuitive: when γ > c, any instance of out-
sourcing to a single agent and performing independent auditing can be replaced
by the redundancy scheme (job duplication) and strictly lower the cost by γ− c.

Further Discussion. First, note that in our optimal two-agent contract, as long
as R ≥ 2c, there is no infeasible region: there is always a contract that makes
(H ,H ) an equilibrium. Moreover, the payment to any of the agents is never
more than the cost of honest computation. Fig. 3a provides a pictorial represen-
tation of the proposition where c/2 < γ < c and Λ = 0.5. When the enforceable
fine is large, the redundancy scheme is preferable. This is despite the fact that
the redundancy scheme is more expensive than auditing: it costs an extra c as
opposed to γ < c. In other words, for high values of fine, the redundancy scheme
is a more effective threat against cheating than independent auditing. When F is
less than F1, the independent auditing becomes the preferred method. For lower
values of F , when the auditing capacity is all used up, the redundancy scheme
is added to compensate for the low value of fine to maintain incentive compati-
bility. Fig. 3b depicts the effect of auditing capacity, Λ, on the optimal contract

9 We adopt the convention that x/0 = +∞ for x > 0.



where c/2 < γ < c. When Λ = 0, redundancy scheme is the only means to en-
force honest computation. If furthermore no fine can be enforced (F = 0), then
α = 1: the job should be always duplicated. As Λ increases, there is a gradual
transition from using redundancy scheme to independent auditing (F < F1).
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Fig. 3: Optimal contract (where c = 400, γ = 250) w.r.t. (a) max. enforceable
fine F (Λ = 0.5); and (b) auditing capacity Λ (F1 = 600). Recall ρ = λ

1−α is the
conditional probability of auditing given the job is assigned to a single agent.

5.2 Global Optimality of Two-Agent Contracts

In developing the optimal contracts for two-agent case, we made a few critical
assumptions: (a) the independent auditing is perfect; (b) the agents are non-
colluding and non-communicating; (c) the range of intermediate steps is large
enough that the probability of any two guessed results to be same, or the guessed
result to be the correct result, is negligible; and (d) the agents are lazy but not
malicious. It turns out that these assumptions are sufficient to warrant global
optimality of two-agent contracts among contracts that engage any number of
agents in the following notion:

Proposition 6. The contract that hires at most two agents and chooses its
terms according to proposition 5, is globally optimal, that is, it achieves the least
cost to the principal among all contracts that employ any number of agents and
aim to make honest computation a Nash Equilibrium.

The above proposition shows that our contract for two agents is not just a
special case solution of multiple agents, but it is indeed the solution involving
any number of agents. In other words, given the stipulated assumptions, there is
no advantage ever in hiring more than two agents. Incidentally, we also show that
the best contracts makes the probability of any of the agents to be hired equal.
This makes intuitive sense, as unequal probability of task assignment creates
some “information” which the agents can potentially exploit to their benefit,
and to the detriment of the principal.



6 Contract Implementation

For completeness of the solutions, in this section we discuss notable technical
concerns on the implementation of our contracts.

6.1 Intermediate steps and hash functions

As we discussed in Section 4.3, the use of intermediate steps as part of the output
would prevent trivial/clever guessing. However, the data representing intermedi-
ate steps could be large and thus cumbersome for transmission. [2] proposes the
use of cryptographic hash as a sufficient representation of intermediate steps:
Instead of sending a large amount of data detailing these steps, the agent can
only send the cryptographic hash of such data. On receiving the agent’s hash
hA, the principal repeats the computation, and computes its own hash hP from
the intermediate steps, then verifies that hA = hP .

Informally, the use of hash function is considered secure if it is unlikely that
the agent can come up with the correct hash without knowing the correct inter-
mediate steps. The authors in [2] require such hash function to be a “random
oracle”, i.e., a function mapping in which each output is chosen uniformly ran-
domly regardless of the input. While this is a sufficient condition, the notion
of random oracle is rather impractical, and also an overkill. Indeed, we argue
that for this purpose of hash checking, it is necessary and sufficient that the
hash function is “collision resistant”, that is, it should be difficult to find two
different messages with the same hash.

Lastly, note that the process of hashing the intermediate steps may itself
carry a considerable cost. For instance, if the computation task is to hash a
large string, then the cost of hashing the intermediate steps (if the same hash
function is used) would be at least as much as computation cost. Therefore,
either the cost of hasing intermediate steps must be negligible compared to that
of the original computation task, or it must enter the contract model.

6.2 Enforcing contract policies

With regards to legal enforcement of the contract, it is necessary that behaviours
of contract participants are observable and verifiable. Actions such as “assigning
a job” or “paying a reward” are of this type. However, probabilistic behaviours,
e.g., “employing two agents with probability α”, are usually unverifiable. Our
contracts unfortunately rely on these probabilistic actions of the principal as
explicitly stated in the terms and policies for auditing, task duplication and/or
rewarding (the latter in two-level reward contracts of §4.5). It is critical to ensure
(by both ends) that the principal in reality sticks to such actions, for two reasons.
Firstly, the principal must establish to the agents its compliance to the contract
so as to make the threats credible. Secondly, the agent needs an assurance that
the principal cannot deviate from the contract and thus take away some of
its benefits (in two-level rewarding). Without an appropriate security measure,
this is usually not possible, e.g., the fact that the principal does not audit tells



little about whether its auditing probability is indeed λ = 0.3 or λ = 0.6. This
important implementation issue has not been discussed in previous works.

Usually this could be achieved cryptographically using multiparty compu-
tation (MPC) [11], in which a sampling function on the principal’s behaviour
is accurately and securely computed among the contract participants. However,
MPC assumes pairwise secure communication among participants, which in this
case implies a need for direct communication between the agents. This poses a
potential threat to our model: if agents can freely communicate, they may as well
collude and give identically incorrect result, thus fooling the principal. Therefore
we seek a mechanism that requires no agent-to-agent communication. In Fig. 4,
we propose a communication protocol between the principal and two agents that
resolves this problem. Particularly, our security objective is to make sure that
the principal gains negligible benefit by deviating from its prescribed behaviour
as stated in the contract. To fulfil this objective, we rely on the fact that the
contract can be legally enforced by an authority (e.g., a court), and thus pun-
ishment on the principal’s cheating is guaranteed if there is enough evidence for
the accusation. What remains is to ensure that each agent alone can prove the
principal’s deviation (from the contract) whenever the principal benefits from
doing so.

Protocol ContractProtocol

Requirement A (non-interactive) commitment scheme (Setup,Commit,Open)
and a trusted third party TTP. An optimal contract 〈r, f, α, λ〉, a compu-
tation task J, and a security parameter k > 0.

Preparation The contract is signed by all parties with an additional term: if the
principal is caught deviating from the below protocol, it must pay the worst
possible cost 10. TTP generates CK from Setup(k) and gives it to the principal
(P ), agent 1 (A1) and agent 2 (A2).

Protocol 1. A1: generates N1 ←$ {0, 1}k, computes (c∗1, d
∗
1) = CommitCK(N1),

then sends c∗1 to P .
2. A2: generates N2 ←$ {0, 1}k, computes (c∗2, d

∗
2) = CommitCK(N2), then

sends c∗2 to P .
3. P : sends (c∗1, c

∗
2) to both A1 and A2.

4. A1: sends d∗1 to P .
5. A2: sends d∗2 to P .
6. P : opens N1 ← OpenCK(c∗1, d

∗
1), N2 ← OpenCK(c∗2, d

∗
2), compute ω ←

Gen∆(Ω)(N1 ⊕N2), and follows plan ω.
7. P : sends (d∗1, d

∗
2) to both A1 and A2.

8. A1, A2: open N1 ← OpenCK(c∗1, d
∗
1), N2 ← OpenCK(c∗2, d

∗
2), compute ω ←

Gen∆(Ω)(N1 ⊕N2), and check if the principal follows ω.

Fig. 4: Communication protocol for the contract



In order to provably design such mechanism, we define the principal’s action
as a plan, which essentially captures the its deterministic choices for all possible
decision-making situations which might arise while executing the contract. An
example of such plan could be: give the task to both agents; if the result com-
ing back is the same, then reward both. Another example is: give the task to
agent 1, then audit on return. For convenience we denote the set of all possible
plans as Ω, which also contains an element ⊥ representing an invalid plan. The
principal P is supposed to pick a plan ω ∈ Ω according to a contract-specific
probability distribution ∆(Ω), but the agents do not know if P actually follows
this distribution, or a different one to its eventual benefit. As a result, we decide
to let such a plan be picked by the agents instead of the principal. The protocol
for “picking plan” should satisfy the following properties:

– Correctness: Honest execution of the protocol must ensure that the plan
is picked according to ∆(Ω).

– Hiding: Before the contract is executed, the agents must know nothing
about the plan they have picked for the principal.

– Revealing: After the contract is executed, there must be a secure way for
the previously picked plan to be revealed to the agents.

– No cheating: Suppose that the agents execute the protocol honestly, then
the principal receives no better benefit than being a honest principal.

We are now ready to construct our contract implementation protocol. For
each probability distribution ∆(Ω) assume that there exists a PPT contract-
generation algorithm Gen∆(Ω)(·) which efficiently samples ∆(Ω), that is, there
exists a negligible function εG and k1 > 0 such that for all k ≥ k1:

sup
o∈Ω

∣∣Pr
[
r ←$ {0, 1}k;ω ← Gen∆(Ω)(r)

]
− Pr [ω ← ∆(Ω)]

∣∣ ≤ εG(k). (7)

Whilst the protocol construction can be seen in Fig. 4, its security is described in
Proposition 7. In words, the protocol involves the agents independently generate
at uniformly random nonces N1 and N2, respectively. The agents then exchange
these values using a commitment scheme via the principal P . The use of com-
mitment ensures that even if the principal is able to modify the messages, it
must not be able to convince each agent Ai of a nonce from the other which is
dependent of Ni. This ensures that when Ai perform N1 ⊕ N2 it would get a
uniformly random value. Given the above property of Gen∆(Ω) the agent would
receive a plan ω in the same distribution implied by the contract, thus avoid
meaningful cheating by the principal.

Proposition 7 (informal). Suppose all participants in ContractProtocol are
PPT algorithms. Suppose that (Setup,Commit,Open) is a secure non-malleable
commitment scheme, and that contract terms can be legally enforced and that
both agents are honest, then ContractProtocol satisfies the following properties:
correctness, hiding, revealing, and no cheating.

10 Here the worst possible cost (including what has been spent) is max(2r, r + γ), and
it could either be distributed to the agents, or paid to the court as fine.



7 Conclusion

In this paper, we provide an incentive analysis of outsourced computation with
non-malicious but selfish utility-maximising agents. We design contracts that
minimise the expected cost of the outsourcer whilst ensuring participation and
honesty of computing agents. We incorporate important real-world restrictions,
in that the outsourcer can only levy a restricted fine on dishonest agents and
that auditing can be costly and/or limited. We allow partial outsourcing, direct
auditing and auditing through redundancy, i.e., employing multiple agents and
comparing the results, and optimized the utility of the outsourcer among all
hybrid possibilities.

We observe that outsourcing all or none of the tasks is optimal (and not par-
tial outsourcing). We show that when the enforceable fine is restricted, achieving
honest computation may still be feasible by appropriately increasing the reward
above the sheer cost of honest computation. We demonstrate that when auditing
is more expensive than the cost of honest computation, redundancy scheme is
always the preferred method, and when the auditing cost is less than half of the
cost of honest computation, independent auditing is preferable. When the cost
of auditing is between half and the full cost of honest computation, the preferred
method depends on the maximum enforceable fine: for large enforceable fines,
redundancy scheme is preferred despite the fact that it is more expensive “per
use” than independent auditing, since owing to its higher effectiveness, it can be
used more sparingly. We establish the global optimality of contracts involving at
most two agents among any arbitrary number of agents as far as implementing
honesty as a Nash Equilibrium is aimed for. Finally, we present a light-weight
cryptographic implementation of our contracts that provides mutual affirmation
on proper execution of the agreed terms and conditions.
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