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Abstract

Predictive complexity is a generalisation of Kolmogorov complexity motivated by an on-line prediction
scenario. It quantifies “unpredictability” of a sequence in a particular prediction environment. This paper
surveys key results on predictive complexity for games with finitely many outcomes. The issues of existence,
non-existence, uniqueness, and linear inequalities are covered.

1 Introduction

We consider the following on-line learning scenario: given a sequence of previous outcomes x1, x2, . . . , xn−1,
a prediction strategy is required to output a prediction γn for the next outcome xn. A loss function λ(γ, x) is
used to measure the discrepancy between predictions and actual outcomes. The performance of the strategy
is measured by the cumulative loss

∑n
i=1 λ(γi, xi) and the learner’s goal is to make the loss as small as

possible.
Different aspects of this prediction problem have been extensively studied; a key feature of the approach

of this paper is that no mechanism generating the outcomes is postulated. This approach is closely related
to (and shares concepts and methods with) prediction with expert advice; see [CBL06] for an overview.

We want to define a measure of “(un)predictability” of a string. “Simple” regular strings are easily pre-
dictable with small cumulative loss and “complex” ones defy prediction algorithms. However implementing
this idea is not straightforward.

One may want to define complexity of a sequence as the loss of an optimal prediction strategy. However
in natural cases there is no such strategy: every strategy is greatly outperformed by some other strategy on
some sequences (see Remark 1 below).

In [KVV14] the difficulty is resolved by considering asymptotic loss per element. This allows us to define
complexity of infinite sequences and infinite sets of finite sequences, but not of individual finite sequences.

The approach suggested in [VW98] is to extend the class of strategies to some superstrategies, which
often have optimal elements. This results in the notion of predictive complexity of a sequence. Predictive
complexity is defined up to a constant (or a function sublinear in the length of the sequence) and is concep-
tually similar to Kolmogorov complexity, which quantifies “incompressibility” of a sequence (Kolmogorov
complexity is surveyed in Chap. 3 of this book). Predictive complexity for a particular environment, the
logarithmic complexity, coincides with a version of Kolmogorov complexity, negative logarithm of Levin’s
apriori semimeasure (see Sect. 3 for references).

Section 3 contains proofs for the existence of basic predictive complexity for mixable games after [VW98]
and weak complexity up to

√
T for convex bounded games essentially extending the argument from [KV08].

After Sect. 4 describes the connections between predictive complexity and generalised entropy, Sect. 5
surveys negative results on the existence of complexity (after [KVV04b] and [KVV04a]) and Sect. 6 proves
the uniqueness theorem from [KVV04b]. Section 7 discusses linear inequalities between different predictive
complexities after [Kal02]. In Sect. 8 some more references are given.

∗This contribution has been written for Measures of Complexity: Festschrift for Alexey Chervonenkis, eds. V. Vovk, H. Pa-
padopoulos, and A. Gammerman, Springer 2014 (referred to as “this book” in the text).
†Department of Computer Science and Computer Learning Research Centre, Royal Holloway, University of London, Egham,

Surrey, TW20 0EX, United Kingdom.
e-mail: yura@cs.rhul.ac.uk
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2 Preliminaries

We denote the set of positive integers {1, 2, . . .} by N.

2.1 Games and Losses

The concept of a game describes the prediction environment. A game G is a triple 〈Ω,Γ, λ〉, where Ω is an
outcome space, Γ is a prediction space, and λ : Ω× Γ→ [0,+∞] is a loss function.

We assume that Ω is a finite set of cardinality M < +∞, i.e.,

Ω =
{
ω(0), ω(1), . . . , ω(M−1)

}
.

If M = 2, then Ω may be identified with B = {0, 1}; we will call games with two outcomes binary.
Bold letters x, y etc. are used to refer to finite sequences of outcomes. By |x| we denote the length of

a finite sequence x, i.e., the number of elements in it. The set of sequences of length n is denoted by Ωn,
n = 0, 1, 2, . . .. We denote the set of all finite sequences of elements of Ω by Ω∗. We will also be using the
notation ]ix for the number of ω(i)s among elements of x. Clearly,

∑M−1
i=0 ]ix = |x| for any finite sequence

x.
We assume that Γ ⊆ RK is compact and λ is continuous w.r.t. the topology of the extended half-line

[0,+∞]. We treat Ω as a discrete space and thus continuity of λ in two arguments is the same as continuity
in the second argument.

In order to take some important games into account we must allow λ to attain the value +∞. However we
assume that the set Γfin = {γ ∈ Γ | maxω∈Ω λ(ω, γ) < +∞} is dense in Γ. In other words, every prediction
γ0 leading to infinite loss can be approximated by predictions giving finite losses.

The following are examples of binary games with Ω = B and Γ = [0, 1]: the square-loss game with the
loss function λ(ω, γ) = (ω − γ)2, the absolute-loss game with the loss function λ(ω, γ) = |ω − γ|, and the
logarithmic game with

λ(ω, γ) =

{
− log2(1− γ) if ω = 0
− log2 γ if ω = 1

.

A prediction strategy S : Ω∗ → Γ maps a finite sequence of outcomes to a prediction. We say that on a
finite sequence x = ω1ω2 . . . ωT ∈ ΩT the strategy S suffers loss

LossGS(x) =

T∑
t=1

λ(S(ω1ω2 . . . ωt−1), ωt) .

The first term in this sum involves S(Λ), where Λ is the sequence of length 0. If x = Λ, the sum has no
terms and we assume LossGA(Λ) = 0. The upper index G will be omitted if it is clear from the context.

2.2 Superpredictions

Given a prediction γ ∈ Γ one can consider a function λ(γ, ·) : Ω→ [0,+∞]. If Ω is finite, this function can
be identified with a point from [0,+∞]|Ω|.

A generalised prediction is a function g : Ω → [0,+∞]. Superpredictions are generalised predictions
minorated by predictions; in other terms, s : Ω→ [0,+∞] is a superprediction if there is a prediction γ ∈ Γ
such that for all ω ∈ Ω we have s(ω) ≥ λ(γ, ω).

For x = (x1, x2, . . . , xK), y = (y1, y2, . . . , yK) ∈ RK we will be writing x < y if the inequality holds
coordinate-wise, i.e., xk < yk for k = 1, 2, . . . ,K; the same applies to inequalities x > y, x ≤ y, and x ≥ y.

Thus s ∈ [0,+∞]|Ω| is a superprediction if there is p =
(
λ
(
γ, ω(0)

)
, λ
(
γ, ω(1)

)
, . . . , λ

(
γ, ω(M−1)

))
, where

γ ∈ Γ, such that s ≥ p.

2.3 Computability

We use the computational model from [Ko91].
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A dyadic rational number is a number of the form n/2m, where n and m are integers. We call a triple
r = 〈b,x,y〉, where b ∈ B is a bit and x = (x1x2 . . . xu),y = (y1y2 . . . yv) ∈ B∗ are binary strings, a
representation of a dyadic number d if x1 = 1 and

d = s

(
u−1∑
i=0

xu−i2
i +

v∑
i=1

yi2
−i

)
, (1)

where s = 1 if b = 1 and s = −1 if b = 0. Intuitively, b represents the sign of d and x.y is the finite binary
expansion of |d|. We will denote the set of correctly formed triples by D. Let d map correctly formed triples
into dyadic numbers according to (1). We will call v the precision of the triple r and write v = prec(r).

For every x ∈ R let CFx be the set of sequences of triples, i.e., functions φ from positive integers to
representations of dyadic numbers, such that prec(φ(m)) = m and | d(φ(m))−x| ≤ 2−m for all m = 1, 2, . . ..
Any element of CFx can be thought of as a representation of x. A number x ∈ R is computable if CFx
contains a computable function φ.

A point x = (x1, x2, . . . , xK) ∈ RK is computable if all its coordinates x1, x2, . . . , xK are computable.
Let M be a finite set. The elements of M can be identified with letters in a finite alphabet and passed

to a Turing machine directly. A function f : M∗ → R is computable if there is a Turing machine that given
a finite string x = x1x2 . . . xn ∈ M∗ and non-negative integer precision m outputs a representation r of a
dyadic number such that prec(r) = m and |f(x) − d(r)| ≤ 2−m. In other words, for every x ∈ M∗ the
machine calculates a function from CFf(x). A function f = (f1, f2, . . . , fK) : M∗ → RK is computable if all
its components f1, f2, . . . , fK are computable.

A function f : M → R, where M ⊆ R, is computable if there is an oracle Turing machine that given
a non-negative integer precision m and an oracle evaluating some φ ∈ CFx outputs a representation r of a
dyadic number such that prec(r) = m and |f(x)−d(r)| ≤ 2−m. It is easy to see that the class of computable
functions is closed under composition.

Computable functions on M ⊆ RK and M ⊆ R∗ to R and RN are defined in a similar fashion. For
convenience of notation we extend d to DK in the natural way and refer to elements of DK as dyadic vectors.
By the absolute value |d| of d = (d1, d2, . . . , dK) we mean the 1-norm

∑K
k=1 |dk|.

2.4 Computable Games

In this section we define a computable game G = 〈Ω,Γ, λ〉.
We assume that Ω is a finite set and its elements can be passed to a Turing machine directly. Let Γ

be a subset of RK . We require that the function e−λ(γ,ω) : Γ × Ω → [0, 1] should be computable1. We do
not require computability of λ itself so as not to exclude games with unbounded loss functions (such as the
logarithmic game) from consideration.

We also require that dyadic vectors are dense in Γ and moreover there is an effective sequence of dyadic
vectors γi ∈ Ω, i ∈ N, that is dense in Ω.

3 Definition and Existence

3.1 Superloss Processes

Consider a game G = 〈Ω,Γ, λ〉. A process is a function L : Ω∗ → [0,+∞]. A process L is a superloss process
if for every x ∈ Ω∗ there is γ ∈ Γ satisfying

L(xω)− L(x) ≥ λ(γ, ω) (2)

for all ω ∈ Ω. In other terms, the difference L(xω)−L(x) considered as a function of ω is a superprediction.
A process L : Ω∗ → [0,+∞] is upper semi-computable if its epigraph is enumerable. Let us expand

this definition. If Ω is finite, then L : Ω∗ → [0,+∞] is upper semi-computable if and only if the set
{(x, d) ∈ Ω∗ × D | d(d) > L(x)} is enumerable, i.e., coincides with the image of a computable function

1According to Theorem 2.31 in [Ko91] the domain of a partial computable function is open; therefore any machine calculating
e−λ(γ,ω) on Γ for a fixed ω will also calculate an extension of this function to some open set.
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on N. It is easy to see that an equivalent requirement is the existence of a partial computable function
f : Ω∗ × N→ D such that L(x) = infn∈N d(f(x, n)), where undefined values of f are taken to be +∞.

Yet another (arguably more intuitive) equivalent definition may be given. A process L : Ω∗ → [0,+∞]
is upper semi-computable if there is a total computable function f : Ω∗ × N → D, where D is D appended
with a symbol for +∞, such that d(f(x, n)) ≥ d(f(x, n + 1)) for all x ∈ Ω∗ and n ∈ N and L(x) =
limn→∞ d(f(x, n)). This definition implies that an upper semi-computable process is the monotonous limit
of computable upper bounds.

The concept of a superloss process generalises the concept of a loss process. A loss process L : Ω∗ →
[0,+∞] is the loss of a prediction strategy, i.e.,

L(ω1ω2 . . . ωT ) =

T∑
t=1

λ(S(ω1ω2 . . . ωt−1), ωt)

for some strategy S. Clearly, every loss process is a superloss process; for a loss process, inequality (2) holds,
because γ = S(x) turns it into an equality.

Let us show that if a strategy S is computable, then the corresponding loss process L is upper semi-
computable. We will define the partial function f(x, n) such that L(x) = infn∈N d(f(x, n)) as the result of
the following calculation. Take x = ω1ω2 . . . ωT and n ∈ N. Let us calculate the values of

e−λ(γt,ωt) = e−λ(S(ω1ω2...ωt−1),ωt) ,

t = 1, 2, . . . , T , accurate to within 2−n. If any of the resulting values lt is less than or equal to 2−n, the
calculation diverges (e.g., falls into an infinite loop) and outputs nothing. Otherwise we calculate the sum
−
∑T
t=1 ln lt with the maximum possible accuracy given that lt are accurate to within 2−n (we allow extra

loss of accuracy of 2−n to cater for non-dyadic results). Let the result l be accurate to within a dyadic
rational ε. We then output a dyadic representation of l + ε.

For most natural games the set of upper semi-computable superloss processes is enumerable, i.e., there
is a total computable function on N outputting programs enumerating epigraphs of superloss processes
such that for every upper semi-computable processes at least one program enumerating its epigraph will be
output. Equivalently, there is a partial computable function f(x, n, i) : Ω∗ ×N×N→ D such that for every
i ∈ N the process ki(x) = infn∈N f(x, n, i) is a superloss process and every upper semi-computable superloss
process coincides with some ki. In the Appendix we formulate a sufficient condition for the set of upper
semi-computable superloss processes to be enumerable.

3.2 Basic Predictive Complexity

If for a game G = 〈Ω,Γ, λ〉 there is an upper semi-computable superloss process minimal up to a constant,
we call it (basic) predictive complexity. In other terms, an upper semi-computable superloss process K is
called basic predictive complexity if for any other upper semi-computable superloss process L there is a
constant C such that

K(x) ≤ L(x) + C

for all x ∈ Ω∗. One can say that basic predictive complexity is defined up to a constant (cf. the situation
with Kolmogorov complexity described in Sect. 3.3 of this book).

A fundamental theorem proven in [VW98] states that predictive complexity exists for mixable games.
Let |Ω| = M and S ⊆ [0,+∞]M be the set of superpredictions w.r.t. G. For every η > 0 consider the

transformation Bη : [0,+∞]M → [0, 1]M given by

Bη(x0, x1, . . . , xM−1) = (e−ηx0 , e−ηx1 , . . . , e−ηxM−1) .

The game G is called η-mixable for η > 0 if the set Bη(S) is convex. The game G is called mixable if there
is η > 0 such that the game is η-mixable.

It is easy to check (e.g., by differentiation) that the square-loss game is mixable for η ≤ 2 and the
logarithmic-loss game is mixable for η ≤ ln 2 while the absolute-loss game is not mixable.

Theorem 1. If a game G is mixable and there is an effective enumeration of upper semi-computable superloss
processes w.r.t. G, then there is basic predictive complexity w.r.t. G.
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Proof. Let ki, i ∈ N, be an enumeration of upper semi-computable superloss processes and let f(x, n, i) :
Ω∗ × N× N→ D be a partial computable function such that ki(x) = infn f(x, n, i).

Let G be η-mixable. Put

K(x) = −1

η
ln

∞∑
i=1

1

2i
e−ηki(x) . (3)

Let us show that it is an upper semi-computable superloss process.
We get

K(xω)−K(x) = −1

η
ln

∞∑
i=0

e−ηki(x)/2i∑∞
j=1 e

−ηkj(x)/2j
e−η(ki(xω)−ki(x))

= −1

η

∞∑
i=0

pie
−η(ki(xω)−ki(x)) ,

where
∑∞
i=1 pi = 1. All the series in the formula converge absolutely because the exponents are upper

bounded by 1.
Let S be the set of superpredictions w.r.t. G. The points

si =
(
ki
(
xω(0)

)
− ki(x), ki

(
xω(1)

)
− ki(x), . . . , ki

(
xω(M−1)

)
− ki(x)

)
are superpredictions, i ∈ N. Since the set Bη(S) is convex, the infinite convex combination

∑∞
i=1 piBη(si)

belongs to Bη(S) (see [BG54], Theorem 2.4.1). Thus the inverse image B−1
η

(∑∞
i=1 piBη(si)

)
is a superpre-

diction and K is a superloss process.
In order to see that K is upper semi-computable, note that by truncating the infinite sum in (3) we get

an upper bound on K. Then upper bounds on ki will lead to upper bounds on K.
Finally if we drop all terms in (3) except for one, we get

K(x) ≤ ki(x) +
i ln 2

η

and thus K is minimal up to a constant.

Since the square-loss and logarithmic games are mixable, there are basic predictive complexities Ksq

and Klog w.r.t. them. The logarithmic game coincides with a variant of Kolmogorov complexity known
as the negative logarithm of Levin’s apriori semimeasure and denoted by KM (see [ZL70] and [LV08],
Definition 4.5.8).

Remark 1. One may wonder why the construction based on (3) does not lead to the existence of an optimal
strategy. Let us show first that in natural cases there are no optimal strategies.

We will consider an example of the square-loss game. Pick a computable strategy S : {0, 1}∗ → [0, 1]. We
will build a computable sequence ω1, ω2, . . . and a computable strategy S′ such that S′ greatly outperforms S
on the sequence. The construction is by induction. Suppose that xt = ω1ω2 . . . ωt has been constructed. Let
us run S(xt) and calcualte the result γt accurate to within 1/8. We then will be able to guarantee that one
of the inequalities hold: γt ≥ 1/4 or γt ≤ 1/2. In the former case let S′(xt) = ωt+1 = 0 and in the later
S′(xt) = ωt+1 = 1 (if the prediction calculates at precisely 3/8 let us go for the first option for the sake of
being definite). Clearly,

LossS′(xt) = 0 ,

LossS(xt) ≥
t

16

for all t = 1, 2, . . . by construction. Thus there is no optimal computable strategy (up to a constant or even
a function α(T ) that is o(T ) as T → +∞, cf. Sect. 3.3) w.r.t. the square-loss game.

On the other hand, the construction from (3) provides a universal strategy for any enumerable set of
strategies. One may conclude that computable strategies w.r.t. the square-loss game are not enumerable.
This parallels a result from the theory of recursive functions stating that total computable functions from N
to N are not enumerable.

This observation can be generalised to a large class of games in a straightforward fashion.
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3.3 Weak Complexity

We can relax the definition of predictive complexity by allowing C to grow with the length of x.
Take a function α : N → (0,+∞). An upper semi-computable superloss process K is called (weak)

predictive complexity up to α(T ) if for any other upper semi-computable superloss process L there is a
constant C such that

K(x) ≤ L(x) + Cα(|x|)
for all x ∈ Ω∗.

We call a game G = 〈Ω,Γ, λ〉 with |Ω| = M convex if the “finite” part of its set of superpredictions
S ∩ RM is convex. A game is bounded if the loss function λ is bounded.

The following theorem essentially reproduces Lemma 11 from [KV08].

Theorem 2. If a game G is convex and bounded and there is an effective enumeration of superloss processes
w.r.t. G, then there is predictive complexity up to

√
T w.r.t. G.

Proof. Let L be a dyadic upper bound on λ, i.e., λ(γ, ω) ≤ L for all γ ∈ Γ and ω ∈ Ω. Let ki, i ∈ N, be an
effective enumeration of upper semi-computable superloss processes.

Take βt = e−1/
√
t and

K(x) =

|x|∑
t=1

L2

2
√
t

+ logβ|x|

∞∑
i=1

1

2i
β
ki(x)

|x| . (4)

Let us show that K is an upper semi-computable superloss process.

Lemma 1. For all sequences pi and xi, i ∈ N, such that pi ≥ 0 for all i ∈ N and
∑∞
i=1 pi = 1 and for all

0 < β1 < β2 < 1 we have

logβ1

∞∑
i=1

piβ
xi
1 ≤ logβ2

∞∑
i=1

piβ
xi
2 .

Proof. We have

β
logβ1

∑∞
i=1 piβ

xi
1

2 = β
(logβ1

β2) logβ1

∑∞
i=1 piβ

xi
1

1

=

(
∞∑
i=1

piβ
xi
1

)logβ1
β2

≥
∞∑
i=1

piβ
xi
2 .

(The inequality follows by concavity of the function xδ with δ ∈ (0, 1) in x.) Taking the logarithm to the
base β2 yields the desired inequality.

The lemma implies that

K(x) ≤
|x|∑
t=1

L2

√
t

+ logβ|x|+1

∞∑
i=1

1

2i
β
ki(x)

|x|+1 .

and

K(xω)−K(x) ≥ L2

2
√
|x|+ 1

+ logβ|x|+1

∑∞
i=1

1
2i
β
ki(xω)

|x|+1∑∞
i=1

1
2i
β
ki(x)

|x|+1

≥ L2

2
√
|x|+ 1

+ logβ|x|+1

∞∑
i=1

β
ki(x)

|x|+1/2
i∑∞

j=1 β
kj(x)

|x|+1/2
j
β
ki(xω)−ki(x)

|x|+1

≥ L2

2
√
|x|+ 1

+ logβ|x|+1

∞∑
i=1

piβ
λ(γi,ω)

|x|+1 ,
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where

pi =
β
ki(x)

|x|+1/2
i∑∞

j=1 β
kj(x)

|x|+1/2
j

and γi ∈ Γ is such that ki(xω)− ki(x) ≥ λ(γi, ω) for all ω ∈ Ω.

Lemma 2. For all sequences pi and xi, i ∈ N, such that pi ≥ 0 and |xi| ≤ L for all i ∈ N and
∑∞
i=1 pi = 1

and for all 0 < β < 1 we have
∞∑
i=1

pixi − logβ

∞∑
i=1

piβ
xi ≤ −L

2

2
lnβ .

(Compare with Lemma A.3 from [CBL06].)

Proof. Applying the inequality lnx ≤ x− 1 yields

− logβ

∞∑
i=1

piβ
xi ≤ − 1

lnβ

(
∞∑
i=1

piβ
xi − 1

)
. (5)

Taylor’s decomposition implies

βx = ex ln β ≤ 1 + x lnβ +
(L lnβ)2

2
. (6)

Substituting (6) into (5) completes the proof.

The lemma implies that

K(xω)−K(x) ≥
∞∑
i=1

piλ(γi, ωi) .

The convexity of S ∩RM implies that there is γ ∈ Γ such that K(xω)−K(x) ≥ λ(γ, ω) for all ω ∈ Ω. Thus
K is a superloss process.

One can show that K is upper semi-computable in the same way as in the proof of Theorem 1.
By dropping all terms except for one in the infinite series (4) one gets

K(x) =

|x|∑
t=1

L2

2
√
t

+ i
√
|x| ln 2 + ki(x) .

It remains to note that
T∑
t=1

1√
t
≤
∫ T

0

1√
t

= 2
√
T .

The theorem follows.

The question of the existence of predictive complexity for unbounded convex games is an open problem.
(Note that the case of unbounded mixable games, such as the logarithmic game, is straightforward.)

4 Generalised Entropy and Asymptotic Expectations

In this section we discuss an important technical lemma linking asymptotic properties of predictive com-
plexity with geometric properties of the game.

Consider a game G = 〈Ω,Γ, λ〉, where Ω =
{
ω(0), ω(1), . . . , ω(M−1)

}
. The simplex

∆M = {(p0, p1, . . . , pM−1) ∈ [0, 1]M |
M−1∑
m=0

pm}
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can be identified with the set of all probability distribution on Ω. The generalised entropy HG : ∆M → R is
defined by

HG(p) = inf
γ∈Γ

M−1∑
m=0

pmλ
(
γ, ω(m)

)
,

where p = (p0, p1, . . . , pM−1) ∈ ∆M . It follows from the compactness of Γ and continuity of λ that the infi-
mum in the definition is always achieved and can be replaced by the minimum (cf. [KVV14]). Proposition 10
from [KVV14] shows that HG is a continuous function on ∆M .

The definition of entropy can also be rewritten as

HG(p) = inf
x=(x0,x1,...,xM−1)∈ΣG

M−1∑
m=0

pmxm , (7)

where ΣG is the set of superpredictions w.r.t. G. We can restrict the infimum to x = (x0, x1, . . . , xM−1) ∈
ΣG ∩ RM because the predictions leading to finite losses are dense.

Lemma 3. If the game G is computable and K is predictive complexity w.r.t. G up to α(t) such that
α(t) = o(t) as t→∞, then for every p = (p0, p1, . . . , pM−1) ∈ ∆M we have

lim
T→∞

1

T
EK

(
ξ

(p)
1 ξ

(p)
2 . . . ξ

(p)
T

)
= HG(p) ,

where ξ
(p)
t are independent identically distributed Bernoulli trials such that

Pr
(
ξ

(p)
t = ω(m)

)
= pm ,

m = 0, 1, . . . ,M − 1, t = 1, 2, . . ..

Proof. For every computable prediction γ ∈ Γ one can consider the strategy Sγ predicting γ on every step.
We have K(x) ≤ LossSγ (x) + cα(|x|) and

1

T
ELossSγ

(
ξ

(p)
1 ξ

(p)
2 . . . ξ

(p)
T

)
=

M−1∑
m=0

pmλ
(
γ, ω(m)

)
;

thus

lim sup
T→∞

1

T
EK

(
ξ

(p)
1 ξ

(p)
2 . . . ξ

(p)
T

)
≤
M−1∑
m=0

pmλ
(
γ, ω(m)

)
for every computable γ. Since computable predictions are dense in Γ and λ is continuous, we get

lim sup
T→∞

1

T
EK

(
ξ

(p)
1 ξ

(p)
2 . . . ξ

(p)
T

)
≤ HG(p) .

In order to obtain a lower bound, notice that

EK
(
ξ

(p)
1 ξ

(p)
2 . . . ξ

(p)
T

)
=

T∑
t=1

E
(
K
(
ξ

(p)
1 ξ

(p)
2 . . . ξ

(p)
t

)
−K

(
ξ

(p)
1 ξ

(p)
2 . . . ξ

(p)
t−1

))
and

E
(
K
(
xξ

(p)
t

)
−K(x)

)
≥
M−1∑
m=0

pmλ
(
γ, ω(m)

)
for some γ ∈ Γ. Hence

E
(
K
(
xξ

(p)
t

)
−K(x)

)
≥ HG(p)

and
EK

(
ξ

(p)
1 ξ

(p)
2 . . . ξ

(p)
T

)
≥ THG(p) . (8)

Therefore

lim inf
T→∞

1

T
EK

(
ξ

(p)
1 ξ

(p)
2 . . . ξ

(p)
T

)
≥ HG(p) .

The theorem follows.
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In [KVV04b] this lemma is strengthened. It can be shown that under general conditions the ratio

K
(
ξ

(p)
1 ξ

(p)
2 . . . ξ

(p)
T

)
/T converges to H(p) almost surely. In [GN12] the result is generalised to ergodic

sequences of outcomes.
For the logarithmic game the generalised entropy is the Shannon entropy; the connections between

Shannon entropy and Kolmogorov complexity are explored in [LV08], Sect. 2.8.1.
For connections between the generalised entropy and a related asymptotic complexity see [KVV14].

5 Negative Results on the Existence of Predictive Complex-
ity

The following simple theorem shows that convexity of the game is a necessary condition for the existence of
complexity. We therefore concentrate on convex games throughout the paper.

Theorem 3. If a computable game G is not convex, there is no predictive complexity w.r.t. G up to α(T )
such that α(T ) = o(T ) as T →∞.

Lemma 4. The set of superpredictions Σ ⊆ [−∞,+∞]M w.r.t. a game G is closed w.r.t. the extended
Euclidean topology.

Proof. Take G = 〈Ω,Γ, λ〉 with Ω =
{
ω(0), ω(1), . . . , ω(M−1)

}
.

Suppose that a sequence of superpredictions si =
(
s

(0)
i , s

(1)
i , . . . , s

(M−1)
i

)
, i ∈ N, converge to s =(

s(0), s(1), . . . , s(M−1)
)

w.r.t. the extended topology. For every i ∈ N there is γi ∈ γ such that λ
(
γi, ω

(m)
)
≤

s
(m)
i , m = 0, 1, . . . ,M−1. Since Γ is compact, there a subsequence of γi converging to γ0 ∈ Γ and continuity

of λ implies λ
(
γ0, ω

(m)
)
≤ s(m), m = 0, 1, . . . ,M − 1.

of Theorem 3. Let Σ be the set of superpredictions w.r.t. G = 〈Ω,Γ, λ〉 with Ω =
{
ω(0), ω(1), . . . , ω(M−1)

}
.

If G is not convex, there are points b′ = (b′0, b
′
1, . . . , b

′
M−1) and b′′ = (b′′0 , b

′′
1 , . . . , b

′′
M−1) ∈ Σ ∩ RM such

that the line segment connecting them is not contained in Σ ∩ RM , i.e., there is β ∈ (0, 1) such that
a′ = βb′+(1−β)b′′ /∈ Σ. Since Σ is closed, there is a vicinity of a′ outside of Σ and a = (a0, a1, . . . , aM−1) > a′

such that a /∈ Σ.
Since b′ and b′′ are superpredictions, there are predictions γ′ and γ′′ from Γ such that λ

(
γ′, ω(m)

)
≤ b′m

and λ
(
γ′′, ω(m)

)
≤ b′′m, m = 0, 1, . . . ,M − 1. Since computable predictions are dense in Γ, b′ and b′′ can be

slightly moved to ensure that γ′ and γ′′ can be chosen to be computable and the line segment connecting
them is still not contained in Σ. Let us assume b′ and b′′ are of this king without restricting the generality.

Assume that K is predictive complexity w.r.t. α(T ) such that α(T ) = o(T ) w.r.t. G. By considering the
two strategies, one predicting γ′ and another predicting γ′′ all the time, we get the following inequalities for
all x ∈ Ω∗:

K(x) ≤
M−1∑
m=0

b′m]mx + Cα(|x|) (9)

K(x) ≤
M−1∑
m=0

b′′m]mx + Cα(|x|) (10)

where C ∈ R. Taking a convex combination of (9) and (10) we get

K(x) ≤
M−1∑
m=0

a′m]mx + Cα(|x|) . (11)

Since a /∈ Σ, no point s ∈ Σ satisfies s ≤ a and for every s = (s0, s1, . . . , sM−1) ∈ Σ there is i such that
si > ai. By induction we construct a sequence ω1, ω2, . . ., such that for every T we have

K(ω1ω2 . . . ωTωT+1)−K(ω1ω2 . . . ωT ) > ai

9



1

1

Σ

Figure 1: The set of superpredictions for the absolute-loss game.

where ωT = ω(i) or, in other terms,

K(ω1ω2 . . . ωT ) >

M−1∑
m=0

am]m(ω1ω2 . . . ωT ) . (12)

Combining this with (11) we get

M−1∑
m=0

(am − a′m)]m(ω1ω2 . . . ωT ) ≤ o(T )

as T →∞. Taking δ = minm=0,1,...,M−1(am − a′m) > 0 we get

δT ≤ o(T )

as T →∞, which is a contradiction.

For the absolute-loss game we can prove a matching lower bound.

Theorem 4. There is no predictive complexity w.r.t. the absolute-loss game up to α(T ) such that α(T ) =
o(
√
T ) as T →∞.

Proof. The set of superpredictions for the absolute-loss game is shown in Fig. 1. If K is predictive complexity
w.r.t. the absolute loss game, then

K
(
ξ

(1/2)
1 ξ

(1/2)
2 . . . ξ

(1/2)
T

)
≥ T

2
, (13)

where ξ
(1/2)
t are independent Bernoulli trials such that

Pr
(
ξ

(1/2)
t = 0

)
= Pr

(
ξ

(1/2)
t = 1

)
= 1/2

(recall inequality (8)).
Consider two strategies, S1 that always predicts 1 and S0 that always predicts 0. If K is predictive

complexity up to α(T ), then there is a constant C such that

K(x) ≤ LossS1(x) + Cα(T ) = ]0x + Cα(|x|) , (14)

K(x) ≤ LossS0(x) + Cα(T ) = ]1x + Cα(|x|) (15)

for every x ∈ B∗. Since min(]0x, ]1x) ≤ |x|/2, combining the inequalities yields

K(x) ≤ |x|
2

+ Cα(|x|) . (16)

10



Consider the set ΞT ⊆ BT of strings x with T/2 +
√
T or more zeroes. The DeMoivre-Laplace limit

theorem (see, e.g., [Fel68]) implies that

Pr
(
ξ

(1/2)
1 ξ

(1/2)
2 . . . ξ

(1/2)
T ∈ ΞT

)
= δ + o(1)

as T →∞, where δ > 0. It follows from (14) that for every x ∈ ΞT the inequality

K(x) ≤ T

2
−
√
T + Cα(|x|)

holds. Combining this with inequality (16) for x ∈ BT \ ΞT we get

EK
(
ξ

(1/2)
1 ξ

(1/2)
2 . . . ξ(1/2)

n

)
≤
(
T

2
−
√
T

)
Pr(ΞT ) +

T

2
(1− Pr(Ξ)) + Cα(T )

=
T

2
−
√
T (δ + o(1)) + Cα(T ) .

Comparing this with (13) completes the proof.

Obtaining tight lower bounds of this kind in the general case is an open problem. In [KVV04a] the
argument from Theorem 4 is developed to show that there is no basic predictive complexity for non-mixable
binary games. In [KV02] some lower bounds for general convex binary games are obtained.

6 Uniqueness Theorem

In this section we show that predictive complexity uniquely determines the set of superpredictions; different
games with the same set of superpredictions can be thought as mere parametrisations.

We start by considering generalised entropies.

Lemma 5. Let H1 and H2 be generalised entropies w.r.t. convex games G1 and G2 with the same finite
outcome space Ω of size M < +∞ and sets of superpredictions Σ1 and Σ2, respectively. Then H1(p) ≤ H2(p)
for all p ∈ ∆M if and only if Σ2 ⊆ Σ1.

Proof. It immediately follows from (7) that Σ2 ⊆ Σ1 implies H1(p) ≤ H2(p) for all p ∈ ∆M .
Let Σ2 * Σ1 and there is s = (s0, s1, . . . , sM−1) ∈ Σ2 \Σ1. Lemma 4 and the assumption that predictions

leading to finite losses are dense imply that without restricting the generality we can assume s ∈ RM .
Corollary 11.4.2 from [Roc70] implies that closed convex sets {s} and Σ1 ∩ RM can be strongly separated
by a hyperplane, i.e., there is a linear function h : RM → R given by h(x0, x1, . . . , xM−1) = α0x0 + α1x1 +
. . .+ αM−1xM−1 such that

α(s) < inf
x∈Σ1

h(x) . (17)

If there is i such that αi < 0, then (17) cannot hold. Indeed, take a point x ∈ Σ1. For every y > 0 the
point x + (0, . . . , 0, y, 0, . . . , 0), where y is in position i, belongs to Σ1 and h(x + (0, . . . , 0, y, 0, . . . , 0)) =
h(x) + αiy → −∞ as y → +∞.

Therefore the numbers pi = αi/
∑M−1
j=0 αj ≥ 0, i = 0, 1, . . . ,M − 1, form a distribution

p = (p0, p1, . . . , pM−1) ∈ ∆M .

We get

H2(p) ≤
M−1∑
i=0

pisi < inf
(x0,x1,...,xM−1)∈S∩RM

M−1∑
i=0

pixi = H1(p) .

This completes the proof.

Corollary 1. Let H1 and H2 be generalised entropies w.r.t. convex games G1 and G2 with the same finite
outcome space Ω of size M < +∞ and sets of superpredictions Σ1 and Σ2, respectively. Then H1(p) = H2(p)
for all p ∈ ∆M if and only if Σ1 = Σ2.

11



Theorem 5. Let K1 be predictive complexity w.r.t. G1 up to α1(T ) such that α1(T ) = o(T ) as T → ∞
and K2 be predictive complexity w.r.t. G2 up to α2(T ) such that α2(T ) = o(T ) as T → ∞. If the games
G1 and G2 are computable, have the same finite set of outcomes Ω, and there is a function α3(T ) such that
|K1(x) − K2(x)| ≤ α3(|x|) and α3(T ) = o(T ) as T → ∞, then the games G1 and G2 have the same set of
superpredictions.

Proof. The proof is by combining Lemma 3 with Corollary 1.

The theorem implies the following observation. There are several versions of Kolmogorov complexity,
plain, prefix, and monotonic complexities, all within a term not exceeding C ln(|x|) but not within a constant
term from complexity KM equal to the logarithmic complexity. One may wonder if these complexities can
be predictive complexities for some other games. Theorem 5 implies that this is not the case.

7 Inequalities

In this section we consider inequalities between predictive complexities for different games.

Theorem 6. Let K1 be predictive complexity w.r.t. G1 up to α1(T ) such that α1(T ) = o(T ) as T →∞ and
K2 be predictive complexity w.r.t. G2 up to α2(T ) such that α2(T ) = o(T ) as T →∞. If the games G1 and
G2 are computable and have the same finite set of outcomes

Ω =
{
ω(0), ω(1), . . . , ω(M−1)

}
,

then the following conditions are equivalent:

i. there is a function α(T ) such that α(T ) = o(T ) as T →∞ and for all x ∈ Ω∗ we have

K1(x) + α(|x|) ≥ K2(x) ;

ii. there is a constant C ∈ R such that for all x ∈ Ω∗ we have

K1(x) + Cα2(|x|) ≥ K2(x) ; (18)

iii. Σ1 ⊆ Σ2, where Σ1 and Σ2 are the sets of superpredictions w.r.t. G1 and G2, respectively;

iv. for all p ∈ ∆M we have H2(p) ≤ H1(p), where H1 and H2 are the generalised entropies w.r.t. G1 and
G2, respectively;

v. for every distribution p ∈ ∆M there is a function αp(T ) such that αp(T ) = o(T ) as T →∞ and

EK1

(
ξ

(p)
1 . . . ξ

(p)
T

)
+ αp(T ) ≥ EK2

(
ξ

(p)
1 . . . ξ

(p)
T

)
(19)

for every T ∈ N, where ξ
(p)
t are independent identically distributed Bernoulli trials such that

Pr
(
ξ

(p)
t = ω(m)

)
= pm ,

m = 0, 1, . . . ,M − 1, t = 1, 2, . . .;

vi. there is a constant C ∈ R such that

EK1

(
ξ

(p)
1 . . . ξ

(p)
T

)
+ Cα2(T ) ≥ EK2

(
ξ

(p)
1 . . . ξ

(p)
T

)
for every T ∈ N, where ξ

(p)
t are as above.

Proof. Some implications on the list are trivial: ii implies i while vi implies v. By taking expectations we
can go from ii to vi and from i to v. Items iii and iv are equivalent by Lemma 5.

By dividing (19) by T , letting T go to infinity and invoking Lemma 3, which connects expectations and
entropies, one can show that v implies iv.
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Let us show that iii implies ii. Since K1 is a superloss process w.r.t. G1, for every x ∈ Ω∗ the tuple(
K1

(
xω(0)

)
−K1(x),K1

(
xω(1)

)
−K1(x), . . . ,K1

(
xω(M−1)

)
−K1(x)

)
is a superprediction w.r.t. G1 and belongs to Σ1. If Σ1 ⊆ Σ2 then the tuple belongs to Σ2 and therefore
K1 is a superloss process w.r.t. G2. Since the process K1 is upper semi-computable, by the definition of
predictive complexity there is a constant C such that (18) holds for all x ∈ Ω∗.

The theorem covers inequalities K1(x) + α(|x|) ≥ K2(x) with α(T ) = o(T ) as T →∞. What if α grows
linearly? We need the following notation. For M ⊆ [−∞,+∞]K , c ∈ R and s = (s1, s2, . . . , sK) ∈ RK we let

cM + s = {(cx1 + s1, cx2 + cs2, . . . , cxK + sK) | (x1, x2, . . . , xK) ∈M} .

Corollary 2. Under the conditions of Theorem 6, if a ∈ (0,+∞) and b ∈ R are computable, then there is
C > 0 such that

aK1 + b|x|+ Cα2(x) ≥ K2(x)

for all x ∈ Ω if and only if aΣ1 + (b, b, . . . , b) ⊆ Σ2.

In [Kal02] there is a discussion of inequalities of the type a1K1(x) + a2K2(x) ≤ b|x| for binary games
with Γ = [0, 1] that are symmetric (i.e., λ(γ, 0) = λ(1 − γ, 1)). There is also a description of the set
(a, b) ∈ R2 that is the closure of the set of computable a > 0 and b such that for some C ∈ R the inequality
aKsq(x) + b|x|+C ≥ Klog(x) holds for all x ∈ B∗, where Ksq and Klog are the basic predictive complexities
w.r.t. the square-loss and logarithmic games. In [VV02] the behaviour of the ratioKlog(x)/Ksq(x) is analysed.

8 Other Results

This section gives references to some more results on predictive complexity.
The result of [KVV05] may be called unpredictability property; this property of predictive complexity

parallels the incompressibility property of Kolmogorov complexity (see Sect. 3.15 of this book). Most strings
of length n have Kolmogorov complexity close to n and only exponentially few can have lower complexity.
In a similar way, most sequences of length T have predictive complexity close to the loss of a trivial minimax
strategy and only exponentially few can have smaller complexity.

In [VV05] the concepts of conditional predictive complexity (cf. Sect. 3.12 of this book, where conditional
Kolmogorov complexity is discussed) and mutual information are given and analysed.
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Appendix: Enumerating Superloss Processes

In this appendix we will discuss the question of effective enumeration of superloss processes. We reproduce
and analyse the construction from [VW98].

A process L : Ω∗ → [0,+∞] is finitary if the set {x ∈ Ω∗ | L(x) < +∞} is finite. A process L is dyadic
if its values are dyadic rationals or +∞.

We call a dyadic finitary superloss process L verifiable if for every x ∈ Ω there is γ ∈ Γ such that
L(xω) − L(x) > λ(γ, ω) for all ω ∈ Ω. The inequality is equivalent to eL(x)−L(xω) < e−λ(γ,ω). Since λ is
continuous, the inequalities will still hold in a small vicinity of γ. Recall that for computable games we
postulated the existence of an effective dense dyadic sequence γi. Thus for a computable game if we are
given a finite list of pairs (xs, rs) ∈ Ω∗ × D, s = 1, 2, . . . , S, such that

N(x) =


min{d(rs) | (x, rs) is in the list} if x = xs for some

s = 1, 2, . . . , S ;

+∞ otherwise

(20)
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is a verifiable dyadic finitary superloss process, we will be able to confirm that.
Therefore verifiable dyadic finitary superloss processes can be effectively enumerated. Let Pi, i ∈ N,

be an effective enumeration of programs such that each Pi outputs a finite list of pairs (xs, rs) ∈ Ω∗ × D,
s = 1, 2, . . . , Si (the program must halt after finitely many steps) defining a verifiable dyadic finitary superloss
process Ni as in (20) and every verifiable dyadic finitary superloss process is calculated by some Pi.

Pick a universal partial computable function M(i, j) on N2. Universality means that every partial
computable function on integers coincides with some M(i, ·). Put M∗(i, j) = M(i, j) if

1. the function M is defined on all pairs (i, j′) with j′ ≤ j and

2. the dyadic finitary superloss process NM∗(i,j′) never exceeds NM∗(i,j′+1) (i.e., for all x ∈ Ω∗ we have
NM∗(i,j′)(x) ≤ NM∗(i,j′+1)(x)), j′ = 1, 2, . . . , j − 1.

and let M∗(i, j) be undefined otherwise.
For every i ∈ N define a process ki by

ki(x) = inf
j
NM∗(i,j) ,

where the infimum is taken over all j such that M∗(i, j) is defined. Clearly, ki is an upper semi-computable
superloss process. Indeed, if M∗(i, j) is undefined from some j on, then ki is a finitary superloss process.
Otherwise each value ki(x) is the limit of a non-increasing sequence of Lj(x) = NM∗(i,j)(x). Since each Lj is
a superloss process, for every x there is a γj ∈ Γ such that (2) holds for Lj for all ω ∈ Ω. Since Γ is compact,
there is a converging subsequence of γj and therefore (2) holds in the limit and thus ki is a superloss process.
Since the partial function f(x, n) = Ln(x) is uniformly computable, ki is upper semi-computable.

In order to show that this construction allows us to enumerate all superloss processes, we need to prove
that every superloss process is the limit of a uniformly computable sequence of verifiable dyadic finitary
superloss processes. We will formulate a sufficient condition for that.

Consider a game G = 〈Ω,Γ, λ〉 with Ω =
{
ω(0), ω(1), . . . , ω(M−1)

}
. Consider the partial function H :

[0,+∞]M → R defined by

H(x0, x1, . . . , xM−1) = max{h ≥ 0 | there is γ ∈ Γ such that

xm − h ≥ λ
(
γ, ω(m)

)
,m = 0, 1, . . . ,M − 1}

(if the set is empty, the function is undefined). Note that the maximum is achieved because Γ is compact
and λ is continuous. Let us call G a game with effective minoration if H is computable where it is defined
(here we assume that +∞ is given to us as a special symbol).

Lemma 6. Let a computable binary game 〈B, [0, 1], λ〉 have a monotonous loss function so that λ(γ, 0) is
non-decreasing and λ(γ, 1) is non-increasing. Then the function H is computable where it is defined.

This lemma implies that the binary square-loss, absolute-loss, and logarithmic games are games with
effective minoration.

Proof. The system of inequalities

x0 − h ≥ λ(γ, 0) ;

x1 − h ≥ λ(γ, 1)

is equivalent to

eh ≤ ex0e−λ(γ,0) ;

eh ≤ ex1e−λ(γ,1) .

The maximum h is achieved where the monotonous graphs of the functions on the right-hand side intersect.

Lemma 7. If G is a computable game with effective minoration, then every upper semi-computable superloss
process L is the infimum of a non-increasing effective sequence of verifiable finitary superloss processes.

14



Proof. We say that a process L1 majorates a process L2 if L1(x) ≥ L2(x) for all x ∈ Ω∗. A set of pairs
(xs, rs) ∈ Ω∗ × D, s = 1, 2, . . . , S, majorates a process L2 if d(rs) ≥ L2(xs) for all s = 1, 2, . . . , S.

Lemma 8. For a finite set of pairs (xs, rs) ∈ Ω∗ ×D, s = 1, 2, . . . , S, that majorate some superloss process
there is the maximum finitary superloss process N that the set majorates, i.e., there is a finitary superloss
process N majorated by the set of pairs and majorating every other superloss process majorated by the set of
pairs.

Proof. Let n = maxs |xs| be the maximum length of a sequence in the set. If |x| > n we let N(x) = +∞.
If |x| = n we let N(x) to be the minimum of d(rs) such that (x, rs) is in the set or +∞ if there are none.
Clearly, for every superloss process L′ majorated by the set of pairs, we have N(x) ≥ L′(x) so far.

For sequences x of smaller length we define N(x) by induction from larger lengths to smaller by setting
N(x) to be the minimum of d(rs) such that the pair (x, rs) is in the set and

H
(
N
(
xω(0)

)
, N
(
xω(1)

)
, . . . , N

(
xω(M−1)

))
.

It is easy to see that if for some superloss process L′ we have N
(
xω(m)

)
≥ L′

(
xω(m)

)
for all m =

0, 1, . . . ,M − 1, then H ≥ L′(x).

Let L(x) = infn∈N d(f(x, n)) for some partial computable f : Ω∗ × N → D. We keep generating pairs
(x, f(x, n)) ∈ Ω∗ × D and every so often (e.g., after every 1000 computation steps) we define a verifiable
dyadic finitary superloss process Li; however sometimes we withhold it. The first process L1 is not withheld.

Let Lj be the latest process that was not withheld. The procedure for producing Li is as follows. Suppose
that we have generated S pairs (xs, rs). Let n be the largest length of xs. Take a dyadic ε = 2−i−k where
2k is the minimum power of 2 exceeding 3n.

There exists the maximum superloss process Ni(x) majorated by the set of pairs (xs, rs) produced so far.
Since G is a game with effective minoration, the values of Ni(x) are computable. We will now approximate
it with a verifiable finitary superloss process Li. If Ni(x) = +∞, we let Li(x) = +∞. For each x such that
Ni(x) < +∞ we can find dyadic numbers d′x and d′′x such that d′′x − d′x ≤ ε/2 and d′x ≤ Ni(x) ≤ d′′x. Take
Li(x) = d′′x + 2ε|x|.

We have Li(xω)− Li(x) ≥ Ni(xω)−Ni(x) + ε. Thus Li is a verifiable finitary superloss process.
Let us compare Li with the latest process Lj that was not withheld. If Li(x) ≤ Lj(x) for all x ∈ Ω∗,

we output Li; otherwise we withhold it.
We need to show that L(x) = infi Li(x), where the infimum is taken over all i such that Li is not withheld.

First note that L(x) = infi∈NNi(x). Indeed, since Ni is maximal by construction, L(x) ≤ Ni(x). On the
other hand L(x) is the infimum of d(rs) such that (x, rs) occur in the enumeration and for every (x, rs)
there is Ni majorated by it. Secondly by construction we have Li(x) ≤ Ni(x)+2−i. Thus L(x) = infi Li(x).
Finally note that Lj(x) ≥ Nj(x) + 2−j−k+1 ≥ L(x) + 2−j−k+1 for some k ∈ N, i.e., there is a non-zero gap
between Lj and L. Therefore infinitely many Li will not be withheld.

Corollary 3. If G is a computable game with effective minoration, then there is an enumeration of upper
semi-computable processes w.r.t. G.
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