
Safe Specification of Operator Precedence Rules

Ali Afroozeh1, Mark van den Brand3, Adrian Johnstone4, Elizabeth Scott4,
and Jurgen Vinju1,2

1 Centrum Wiskunde & Informatica, 1098 XG Amsterdam, The Netherlands
2 INRIA Lille Nord Europe, France

ali.afroozeh@cwi.nl, jurgen.vinju@cwi.nl
3 Eindhoven University of Technology, NL-5612 AZ Eindhoven, The Netherlands

m.g.j.v.d.brand@tue.nl
4 Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK

a.johnstone@rhul.ac.uk, e.scott@rhul.ac.uk

Abstract. In this paper we present an approach to specifying opera-
tor precedence based on declarative disambiguation constructs and an
implementation mechanism based on grammar rewriting. We observed a
problem with existing generalized context-free parsing and disambigua-
tion technology: generating a correct parser for a language such as OCaml
using declaraive precedence specification is not possible without resorting
to some manual grammar transformation. Our approach provides a fully
declarative solution to operator precedence specification for context-free
grammars, is independent of any parsing technology, and is safe in that
it guarantees that the language of the resulting grammar will be the
same as the language of the specification grammar. We evaluate our new
approach by specifying the precedence rules from the OCaml reference
manual against the highly ambiguous reference grammar and validate
the output of our generated parser.

1 Introduction

There is an increasing demand for front-ends for programming and domain-
specific languages. We are interested in parser generation technology that can
cover a wide range of programming languages, their dialects and embeddings.
These front-ends are used for example to implement reverse engineering tools,
to build quality assessment tools, to execute research in mining software reposi-
tories, or to build (embedded) domain specific languages. In these contexts the
creation of the parser is a necessary and important step, but it is also an overhead
cost that would preferably be mitigated. In such language engineering applica-
tions, as opposed to compiler construction, we may expect frequent updates and
maintenance to deal with changes in the grammar.

Expression grammars are an important part of virtually every programming
language. The natural specification of expressions is usually ambiguous. In pro-
gramming languages books and reference manuals, the semantic definition of
expressions usually includes a table of binary and unary operators accompa-
nied with their priority and associativity relationships. This approach feels very

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28905588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cwi.nl/sen1
http://www.inria.fr/centre-de-recherche-inria/lille-nord-europe

natural, probably because this is the way we learn basic arithmetic expressions
at school. Virtually all disambiguation techniques for expression grammars are
driven by such precedence rules. However, the implementation of such rules varies
considerably.

The implementation of operator precedence in grammars may considerably
deviate from such an initial design the language engineer has in mind. In man-
ual rewriting approaches, grammars are factored to remove ambiguities. These
approaches are not attractive for us because the resulting grammars are usually
large, and hard to read and understand. For example, languages such as OCaml,
C# and Java have dozens of operators with dozens of priority levels and mutual
associativity relations. Manually transforming such an expression grammar to
encode precedence rules is a significant undertaking. To make matters worse,
we expect changes and evolution of grammars. Every time a new operator is
introduced we would have to re-think or even re-do the whole complex and
error-prone process. Therefore, we consider declarative approaches in which the
parser is generated from the set of precedence rules.

Generalized context-free parsing algorithms provide the opportunity to write
any context-free grammar, and allow for language compositions, which helps in
modeling embeddings and dialects. This makes generalized context-free pars-
ing a good starting point for our purpose: satisfying the demand for powerful
and maintainable front-ends. This is especially desired in the fields of domain-
specific languages, reverse engineering, and formal semantics where grammars
should be easy to understand, evolvable, and maintainable. Therefore, the focus
of this paper is mainly targeted at providing a declarative framework for speci-
fication of precedence rules in generalized context-free parsing algorithms, such
as Earley [1], GLR [2,3,4,5] and GLL [6].

1.1 From Yacc to SDF

In this section, we discuss two disambiguation techniques that influenced our
work the most, and are related to generating parsers from ambiguous grammars
using a set of precedence rules. Aho, Johnson, and Ullman [7] (AJU) present an
approach in which the LR(1) parsing tables are modified to eliminate shift/re-
duce conflicts based on the declaration of precedence of operator tokens. The
AJU method is not only a disambiguation method, it is also a nondeterminism
reducer, meaning that it has to resolve all shift/reduce and reduce/reduce con-
flicts, even when there is no ambiguity, to make the parser deterministic. This
implies that the approach cannot predictably deal with expression grammars
that are not inherently LR(1), unless the language engineer understands how
additional shift/reduce and reduce/reduce actions, used for making the parser
deterministic, affect the language. More importantly, the AJU precedence se-
mantics is defined in terms of the deterministic LR parsers: to understand the
semantics of the precedence rules, one must understand what an LR(1) conflict
is and why it happens. Finally, this method is not directly applicable to non-LR
parsers.

2

The AJU approach is implemented in Yacc 1 and is very popular. For exam-
ple, the OCaml parser uses ocamlyacc, which is a variant of Yacc 2. However,
the OCaml grammar used in ocamlyacc is heavily factored and is very different
from the nice, concise reference manual grammar of OCaml.

Although the AJU method is fast and effective when used in the context of
arithmetic expressions, because it is bound to LR(1) parsing, it does not fit into
our definition of declarative operator precedence techniques. We require that a
declarative specification of operator precedence (1) be independent of the under-
lying parsing technology, so that we can reason about the precedence semantics
or use the mechanism in other parsing technologies, and (2) be safe, meaning
that the disambiguation mechanism derived from precedence rules should not
change the underlying sentences of the grammar.

There has been a number of efforts to formalize a parser-independent seman-
tics of precedence, and provide declarative precedence rules. The most notable
one is SDF3 in which the semantics of operator precedence is defined as a filter on
derivation trees. SDF precedence filters are implemented by removing transitions
corresponding to filtered productions from adapted SLR(1) tables [8]. Although
we believe that SDF was in the right direction in defining a declarative prece-
dence rules, its filters lack the safety requirements. For example, precedence rules
in SDF fail to disambiguate a left-associative binary operator having higher pri-
ority than a unary prefix operator. The limitations of SDF are discussed in detail
in Section 2.1.

1.2 Contributions and Roadmap

In this paper we present a new semantics for the declarative specification of
precedence rules for context-free grammars. The key enablers of our technique
are the safety and support for resolving deeply nested precedence conflicts. We
also support indirect precedence conflicts when expression grammars are not ex-
pressed using a single recursive nonterminal but rather more. The new algorithms
proposed in this paper are part of the implementation of the parser generator
for Rascal. Using this implementation, we show that our approach is powerful
enough to allow declarative specification of operator precedence in OCaml. More
importantly, the semantics of our technique is implemented as a grammar trans-
formation, making it independent of the underlying parsing technology. We also
guarantee that the parsers we generate produce exact same parse trees (as if the
original grammar was used). The completeness proof of our semantics —whether
our semantics resolves all the precedence style ambiguities— and the soundness
proof of the transformation —whether the transformation exactly implement the
semantics— are future work.

The rest of this paper is organized as follows. After this introduction, we give
formal definitions which we need in the rest of this paper. Then, we explain the
problems with SDF in detail in Section 2.1. After that, the formal semantics

1 http://dinosaur.compilertools.net/yacc/
2 http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html
3 http://www.syntax-definition.org

3

http://dinosaur.compilertools.net/yacc/
http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html
http://www.syntax-definition.org

of precedence rules and its implementation as a grammar transformation are
presented in sections 3 and 4. We present the results of parsing the OCaml test
suite in Section 5. Finally, a discussion of related work and a conclusion of this
work are given in sections 6 and 7, respectively.

2 Motivation

A grammar is a 4-tuple (N,T, P, S) where N is a set of nonterminals, T a set
of terminals, P a set of production rules of the form A ::= α where A, the
head of the production rule, is a nonterminal and α is a string in (T ∪ N)∗.
We shall assume that there are no repeated rules, so we can identify a grammar
rule by writing its left and right hand sides. S ∈ N is the start symbol of the
grammar. By convention, in this paper, nonterminals and terminals start with
uppercase and lowercase letters, respectively. In addition, symbols, such as + or
∗, are terminals. We use lowercase letters u, v, w to denote non-empty sequences
of terminal symbols. A group of production rules that have the same head can
be grouped as A ::= α1|α2|...|αn where each A ::= αi is a production. In this
representation, each αi is called an alternate of A.

A derivation step is of the form αAβ⇒αγβ where α, β ∈ (T ∪N)∗ and
A ::= γ is a grammar rule. In a derivation step a nonterminal A is replaced
with the body of its production rule. A derivation of σ from τ is a possibly
empty sequence of derivation steps of the form τ⇒α1⇒α2⇒...⇒σ, which is also
written as τ

∗⇒σ. A derivation is left-most if at each step its left most nonterminal
is rewritten. A derivation from the start symbol is called a sentential form which
is a sequence of terminals or nonterminals. A sentential form consisting only of
terminal symbols is called a sentence.

A sentence is ambiguous if it has more than one left-most derivation. Dis-
ambiguation is a process which eliminates derivations. A disambiguation is said
to be safe if it does not remove all derivations. Therefore, a safe disambiguation
mechanism does not change the underlying language generated by a grammar.

2.1 Limitations of SDF

SDF features three meta notations >, left , and right , which specify the prece-
dence, left and right associativity of operators, respectively [9]. Having A ::= γ >
B ::= α 4 disallows the derivations of B ::= α from all B’s in γ. A ::= Aα {left}
means that th A in Aα should not derive A ::= Aα itself. Right associativity is
the same as the left, but applied on the right-most A. There are three problems
with the semantics of SDF5 disambiguation filters:

– It is unsafe: A filter is applied even if there is no ambiguity. For example,
having (E ::= E ∧ E > E ::= −E) rejects the string 1 ∧ −1, even though

4 SDF adheres to algebraic notations and writes A ::= γ as γ → A. In this paper we
use the more common ::= notation.

5 We describe here SDF version 2 [9] but we simply call it SDF.

4

this string is not ambiguous. The reason is that based on the semantics of
SDF, −E cannot appear under any of the E’s. SDF also allows the user
to specify under which nonterminal the filtering should be carried out. For
example, the user can specify that the filtering should be carried out under
the first E only as (E ::= E ∧E <0>> E ::= −E). More importantly,
the explicit selection of the nonterminal to be filtered is transitively applied
to all levels below, even where it should not be applied, producing wrong
results.

– It is incomplete: The precedence relationship in SDF is defined as a one-
level relationship. As a result, it cannot resolve ambiguities in some cases
that require deeper than one level searching in the derivation trees. For ex-
ample, a left-associative binary operator having higher priority than a prefix
unary operator remaines ambiguous. The problem with one-level filtering is
explained in Section 2.2.

– It is limited to directly recursive rules. Although SDF has some extensions
to filter priority modulo chain rules, general indirect recursion is not sup-
ported. Rules such as E ::= E A, where the right-most nonterminal, A, can
eventually produce an E at the right-most position cannot be filtered using
SDF priorities.

These limitations are encountered in practice. For example, the if-then-else
operator in functional programming languages such as OCaml and Haskell acts
as a unary operator with lower priority than left-associative binary operators.
Indirect recursion also happens for example in the reference grammar of OCaml.

2.2 Problem with one-level filtering

To illustrate the problem with one-level filtering, we consider the if-then-else

construct in OCaml, which has lower priority than +. For example, the expression
1 + if x then 2 else 3 + 4 is interpreted as 1 + (if x then 2 else (3 +

4)) rather than (1 + (if x then 2 else 3)) + 4. For notational simplicity,
the if...then..else part is replaced with if .

E ::=E + E

| if E
|Num

Fig. 1 shows the parse trees resulting from parsing the input 1 + if 2 + 3. For
a more compact presentation the terminals (1, 2 , 3) are removed.

In SDF, the precedence and associativity rules for disambiguating this case
will be:

E ::=E + E {left} (Definition 1)

E ::=E + E > E ::= if E (Definition 2)

The disambiguation is not safe in this case, as E ::= if E is applied under
both E’s, rejecting a sentence such as 1+ if 2+3. We can make it safe by changing

5

E

E E+

E E+

Eif

(a) (E + ((ifE) + E))

E

E E+

E E+

Eif

(b) (E(E + (ifE)) + E)

E

E E+

Eif

E E+

(c) (E + (if(E + E)))

Fig. 1: Parse trees from parsing 1 + if 2 + 3

Definition 2 into (E ::= E + E <0>> E ::= if E). Now if we examine the
effect of the definitions on the shown parse trees in Fig. 1 we can observe that
the left-associativity removes the derivation in Fig. 2a. However, none of the
definitions affect the remaining two parse trees, and thus the disambiguation
fails. The reason that SDF definitions fail to disambiguate this grammar is that
patterns of depth greater than two are required. The first E in E ::= E +E can
first derive E ::= E+E and then the second E in the newly derived rule derives
E ::= if E. In other words, the following derivation sequence

E ⇒ E + E ⇒ E + E + E ⇒ E + if E + E

which is not rejected by any of the defined patterns, but it is semantically incor-
rect. The derivation in Fig 1c is correct and is the only one that should remain
after disambiguation.

For this grammar, a two level filtering can solve the problem, but in gen-
eral, we may need filters of arbitrary depth. For example, consider the following
grammar which has an additional expression rule E ::= E ∧ E , where ∧ is
right associative and has the highest priority.

E ::=E ∧ E

|E + E

| if E
|Num

To illustrate why filters of arbitrary depth may be needed, consider the fol-
lowing derivation:

E ⇒ E + E ⇒ E + E + E ⇒ E + E ∧E + E
∗⇒ E + E ∧ E ∧ ... ∧E + E

As can be seen, after deriving E+E, the second E may unboundedly produce
E ∧E, leading to wrong derivation trees. Fig. 2 shows two of such derivations.
For disambiguation of such grammars, either an infinite number of filters or a
mechanism to define filters with variable length is needed. It is not trivial to

6

E

E E+

E E+

E E^

Eif

(a) (E(E + E(E ∧ (if E))) + E)

E

E E+

E E+

E E^

E E^

Eif

(b) (E(E + E(E ∧ (E ∧E(if E)))) + E)

Fig. 2: For some expression grammars filters of arbitrary depth may be required.

implement a variable length filter during parsing and it is most likely that the
performance of such an implementation will suffer.

We have now established the gap in resolving ambiguity in expression gram-
mars. In the following we propose a general solution that will solve the afore-
mentioned limitation, and at the same time improve on several other quality
aspects.

3 Syntax and Semantics for operator-style disambiguation

Expression-style grammar rules display a specific kind of ambiguity, which we
call operator-style ambiguity. We characterize and define two complementary
and safe ambiguity removal schemes for exactly this kind of ambiguity: priority
and associativity. Note that this does not imply that our mechanisms completely
disambiguate any expression grammar. There may be other ambiguity hidden
in the same rules with different causes. This other ambiguity should be left
untouched for safety.

3.1 Definitions

Definition 1 (Operator-style ambiguity) An operator-style-ambiguity exists
if for some grammar nonterminal E there exist two leftmost derivations

xEµ ⇒ xβEµ
∗⇒
lm

xvEµ ⇒ xvEαµ (1)

xEµ ⇒ xEαµ ⇒ xβEαµ
∗⇒
lm

xvEαµ (2)

which contain identical sub-derivations β
∗⇒
lm
v.

The first derivation in the above definition effectively corresponds to the bind-
ing x(βE)αµ and the second derivation corresponds to binding xβ(Eα)µ. Both
derivations correspond to the same sentential form, but between them the order

7

of applying Eα and βE as been inverted. Note that it may happen that α = β,
but only for binary recursive rules E ::= EγE.

The benefit of the above characterization of operator-style ambiguity is that
we use pairs of derivation sequences that specifically allow an arbitrary distance
(
∗⇒) between application of βE and Eα. This creates the potential for supporting

deeper ambiguities, and indirectly recursive expression grammars. In addition,
we now have defined clearly what it means for operator-style ambiguity removal
to be safe: never both derivations (1) and (2) may be removed at the same time.

Given a grammar which contains operator-style ambiguity, the engineer has
to specify, somehow, which derivation should be removed. There are many sit-
uations in which the engineer wishes always (i.e. for all strings) to choose one
sequence over the other. We first describe priority-based ambiguity removal.

Definition 2 (Priority-based ambiguity removal via >) The user specifies
a strict partial order > (irreflexive, antisymmetric and transitive) between the
alternates of E. For all βE > Eα, derivations which contain sequences of the
form (2) are always removed. Vice versa, for all Eα > βE, we choose to remove
(1). Note that we do not intend to apply the partial order on other cases of am-
biguity, only in the case of the (1) and (2) pair it serves to choose one over the
other.

This definition correlates with the common use of operator priority to specify
disambiguation, for example choosing the first derivation gives the β “operator”
priority over the α “operator”. Since all derivations β

∗⇒v are available for both
choices, priority disambiguation does not put constraints on other disambigua-
tion choices.

The fact that > is asserted to define a strict partial order is an important
detail for satisfying the safety requirement. If there would be both α > β and β >
α for example, then the above definitions would together remove all derivations
for both some or all sentences that α and β generate. Similarly α > α is not
allowed. The fact that > is allowed to be partial implies that under-specified
orderings may leave some operator ambiguity intact. This means it is up to the
language engineer to fully declare what the relative precedence of operator is,
and also that the priority relation can safely be developed incrementally.

There are, however, common situations in which we do not want to use
or cannot enforce a strict partial order as required by >. In particular, if an
expression-style rule has an alternate with both immediate left and right recur-
sion, E ::= EγE, then it is not possible to specify priority with itself, since
> must be irreflexive and antisymmetric. More generally, there may be two al-
ternates E ::= EγE | EδE where γ and δ are required to have a symmetric
relation (such as + and − in arithmetic expressions), which also contradicts a
strict partial order.

Definition 3 (Symmetric Operator-style Ambiguity) Instantiating α and
β from derivations (1) and (2) above as β = Eδ and α = γE both rules are now

8

binary recursive. We can instantiate derivations (1) and (2) above like:

xEµ ⇒ xEδEµ
∗⇒
lm

xvEµ ⇒ xvEγEµ (1’)

xEµ ⇒ xEγEµ ⇒ xEδEγEµ
∗⇒
lm

xvEγEµ (2’)

Also, taking β = Eγ and α = δE we can write derivations (1) and (2) above as

xEµ ⇒ xEγEµ
∗⇒
lm

xvEµ ⇒ xvEδEµ (1”)

xEµ ⇒ xEδEµ ⇒ xEγEδEµ
∗⇒
lm

xvEδEµ (2”)

Symmetric operator-style ambiguity is a special case of operator-style ambigu-
ity in which both rules are binary. Often we have δ = γ, although this is not
necessary. To see why we call the ambiguity symmetric, consider the example
where γ = + and δ = −, (1′) and (2′) both derive y + y − y and, (1′′) and (2′′)
both derive y− y+ y. Then, (1′) and (1′′) represent (y+ y)− y and (y− y) + y,
respectively.

Definition 4 (Associativity-based ambiguity removal via left and right)
We define two binary relations “left” and “right” between binary alternates, for
which holds that

(left ∩ right = ∅) ∧ (left ∩ ′>′= ∅) ∧ (right ∩ ′>′= ∅)

In other words, >, left and right are mutually exclusive relations.
When (α, β) ∈ left, associativity based ambiguity removal removes the se-

quences of the form (2′), corresponding to grouping γ and δ to the left, i.e. to
choosing x(wδE)γEµ over wδ(EγE)µ. This correlates with left associativity.
Similarly, when (α, β) ∈ right, removing derivations with sequences of the form
(1′) corresponds to right associativity.

The restriction of >, left and right being mutually exclusive is a sufficient
restriction for guaranteeing safety since now only one relation is allowed to be
active at the same time and each of the relations is safe in itself.

Since >, left and right need to define an order between all alternates of ex-
pression languages with dozens of rules, we cannot expect the language engineer
to specify each combination manually. This problem is dealt with in our formal-
ism, which is described later, by providing automatic transitive closure for >
and a computation akin to Cartesian product for left and right groups of rules.

In summary, the three relations >, left and right allow a language engineer
to remove all operator-style ambiguity of the form in Definition 1, either using
an anti-symmetric, irreflexive, transitive relation >, or using one of the possibly
reflexive, possibly symmetric and possibly non-transitive left and right relations
as long as the three relations exclude each other. Note that in theory all operator-
style ambiguity can be removed by simply asserting a full ordering among all
recursive alternates using > or by putting all rules in a single left or right group,

9

but this has no practical value. Instead, complete disambiguation of the operator-
style ambiguity in a language definition needs to be considered language-by-
language (see Section 5).

3.2 Pattern notation for illegal derivation sequences

As an intermediate step we now introduce a short notation for the sequences
(1), (2), (1′) and (2′), called “patterns”. Each pattern is specific for a given gram-
mar and combination of two alternate rules. In the next section, we demon-
strate how to compute a unified set of patterns from a context-free grammar
+(>, left , right), and how to use this set of patterns to compute a grammar
transformation that implements the above semantics.

Definition 5 (Operator ambiguity removal pattern) An operator ambi-
guity removal pattern (pattern for short) is a 4-tuple of the form
(head , parent , i, child), where head is the nonterminal head of the expression
grammar for which the precedence rules are defined, parent is an alternate of
head, i is the index of a nonterminal in the body of parent, and child is the al-
ternate that should be filtered from the nonterminal at position i of parent. The
nonterminal at position i is called the filtered nonterminal.

In this paper we write a pattern as (E,α q β , γ) where E is the head, and
α qβ and γ are the parent and the child alternates, respectively, and the filtered
nonterminal is identified by a dot before it.

The semantics of patterns are the same as derivations discussed above. For exam-
ple, the derivations (1) and (2) can be expressed as the patterns (E,α qE , Eβ)
and (E, q Eα , Eβ), respectively. Note that patterns are not implementation
mechanisms. In Section 4 we show a grammar rewriting algorithm to implement
patterns.

We now explain informally how to arrive at a set of patterns starting from
a context-free grammar augmented with (>, left , right). Table 1 documents the
semantics of priority in terms of patterns that are generated for each combination
of left, right and binary recursive expression rules. Note that for binary rules
sometimes two pattern are generated for the same combination of rules. The
semantics of left in terms of the patterns is expressed similarly in Table 2. We
leave the table for right associativity to the reader.

As can be seen, not all combinations of expression rules generate patterns.
Exactly when the combination of rules would not be ambiguous and filtering
would be unsafe no pattern is generated. This corresponds to the sequence def-
initions (1), (2), (1′), (2′) using specific combinations of left and right recursive
rules. In Section 4 we implement these tables, trivially generalizing them to allow
indirect left and right recursion as well.

10

Table 1: The semantics of the > operator in terms of patterns.

> E ::= Eα2E E ::= Eα2 E ::= α2E

E ::= Eα1E (E, qEα1E , Eα2E) (E,Eα1
qE , Eα2) (E, qEα1E , α2E)

(E,Eα1
qE , Eα2E)

E ::= Eα1 (E, qEα1 , Eα2E) —– (E, qEα1 , Eα2)

E ::= α1E (E,α1
qE , Eα2E) (E,α1

qE , Eα2) —–

Table 2: The semantics of left associativity

left E ::= Eα1E E ::= Eα2E

E ::= Eα1E (E,Eα1
qE , Eα1E) (E,Eα1

qE , Eα2E)

E ::= Eα2E (E,Eα2
qE , Eα1E) (E,Eα2

qE , Eα2E)

3.3 Defining >, left and right in practice

The following three features, which are taken from the design of SDF [10], are
described here for completeness sake. They are essential for having concise ex-
pression grammars, as mentioned above.

Firstly, our formalism automatically transitively (but not reflexively) closes
the > relation precedence operator. As a result, when the language engineer
defines p1 > p2 and p2 > p3 we automatically derive p1 > p3. Furthermore,
when they accidentally define p1 > p1, or both p1 > p2 and p2 > p1, either
directly, or indirectly via the closure, an error message must be produced. Now
we can allow the short-hand p1 > p2 > p3 to obtain elegant definitions. Note that
the transitive closure step is carried out before generating the actual patterns.
The actual patterns are generated from the calculated priority pairs only when
is there is an operator-style ambiguity, as defined in Section 3.2 and documented
in Table 1.

Secondly, many programming languages have groups of binary operators that
have the same precedence level. For example, in E ::= E + E | E − E both
operators have the same precedence level but should be left associative with
respect to each other. We define a left associative group containing a set of rules
(p1| . . . |pn)(left) to generate a set of associativity declarations:⋃

1≤i,j≤n
pi left pj ,when (pi, pj) /∈ right ∧ (pi, pj) /∈ ′>′ ∧ (pj , pi) /∈ ′>′

Similarly for right associative groups. The groups simply compute the Carte-
sian product, but do not add tuples that would contradict a relation defined
elsewhere. Finally, associativity groups may occur in the middle of a priority
chain, as in (p1| . . . |pn)(A) > (q1| . . . |qn)(B). In this case > will be extended
by combining each element of the two groups pairwise (and before closure). An

11

E ::=E Arg+ //function application

| − E //unary minus

|E ∗∗E
|E + E

|E − E

| if E then E else E

|Id
Arg ::= E

| ∼ label : E

Operator Associativity

function application –

unary minus –

** right

+, - left

if-then-else –

Fig. 3: Excerpt from OCaml’s grammar with “challenging” operator precedence.

E ::=E Arg+ (non−assoc)

>− E

>E ∗∗E (right)

>(E + E |E − E) (left)

> if E then E else E

|Id
Arg ::= E

| ∼ label : E

Fig. 4: Example definition of challenging operator precedence rules.

additional safety feature (which is novel) is to simply statically check for >, left
and right to be non-overlapping as required.

Finally, some expression languages disallow certain direct nesting while indi-
rect nesting is allowed. For example 1 == 2 == 3 should be not allowed while
true == (2 == 2) is allowed. Normally we would have to introduce a new ex-
pression nonterminal just to disallow this direct nesting. So, in order to be able to
write concise grammars we add non−assoc declarations with the following seman-
tics. If p1 non−assoc p2, then (p1left p2) ∧ (p1 right p2). Notice that non−assoc
declarations are not safe: they remove sentences from the language as generated
by the grammar intentionally and explicitly. We extend the associativity group
semantics with non−assoc as well. Necessarily, any static safety checks on left
and right need to be done before the tuples from non−assoc have been added.

To illustrate the syntax of our approach we use the following example gram-
mar the priority and associativity properties are taken from the OCaml reference
manual6. The grammar and the precedence rules can now be written as in Fig-
ure 4. We use ::=, >, left , right and non−assoc meta notation to encode both
the syntax and the precedence table in one go.

6 http://caml.inria.fr/pub/docs/manual-ocaml-4.00/expr.html

12

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/expr.html

4 Grammar rewriting to exclude illegal derivations

In this section we present an algorithm for transforming a grammar accompanied
with a set of priority and associativity rules to a grammar that prevents the
generation of illegal derivations (see Figures 5 and 6).

1. We translate the definitions to a set of patterns (generatePatterns).
2. We apply these patterns to transform the grammar (rewriteGrammar)

The generation of patterns in Algorithm 5 follows exactly the semantics as
defined earlier in Tables 1 and 2. extractDefinitions produces a set of binary
tuples which represent the associativity and priority declarations in a grammar.
This set is an over-approximation of the patterns that will be generated later,
since they are not specific for positions in the parents yet and may be ignored
entirely if no ambiguity may arise. rightRecursive and leftRecursive com-
pute for a specific nonterminal which other nonterminals contribute to an even-
tual left/right recursion of that nonterminal. The generatePattern function
then filters the extracted definitions making sure to introduce a pattern only
where left recursion tangles with right recursion and vice versa, i.e. modeling
exactly the priority and associativity semantics of Section 3.

Given the set of patterns generated by generatePatterns, we can now
transform the grammar using the rewriteGrammar function as shown in Al-
gorithm 6. It is important to note that we use indexed nonterminals names,
such that when building parse trees, no new names for nonterminals is gener-
ated (indices can be removed easily). As each rewrite action can only remove
some alternates, no new shapes of rules are created by the algorithm (no addi-
tional chain rules). This preserve the shape of the parse forest as the language
engineer specified in the original grammar.

The algorithm first deterministically generates a set of nonterminals to im-
plement single-level filtering. Lines 14–20 reserve fresh nonterminal names. Lines
21–23 change existing rules to use the new nonterminals at the right positions.
Lines 24–28 generate definitions for the new nonterminals by cloning the origi-
nal while leaving our the filtered alternative. Then, in a fixed point computation
(lines 29–46) we treat each level of newly generated nonterminals to a procedure
for eliminating deeply nested cases. For left recursive positions (lines 40–46), we
make sure that a nonterminal is generated which cannot derive a given postfix
operator at arbitrary depth at the right-most position which has lower priority,
and vice versa for right recursive positions (lines 33–39). The applyPattern
helper function does the same as lines 21–46 for the first level, but it includes an
explicit check for the existence of generated nonterminals to reuse. This check
is necessary for termination as well as efficiency. The fixed point computation
will terminate because a new nonterminal is only created in ApplyPattern if a
nonterminal which defines the same subset of alternates does not already exist.
Since every step removes an alternate, eventually —in a worst case scenario—
all singleton sets will have been generated and the algorithm terminates.

We can illustrate the algorithm using the following example: Grammar G:

E ::= E + E(left) > iE | a;

13

function extractDefinitions(G)
′>′ ← ′>′ ∪ {(pi, qj)|(p1 . . . pi)(A) > (q1 . . . qj)(B) ∈ G} . expand the groups
P ← {(p1, p2) | p1 > p2 ∈ G}+ . note the transitive closure
L ← {(p, p) | p left p ∈ G}, L′ ← L
R ← {(p, p) | p right p ∈ G}
L ← L ∪

⋃
0≤i,j≤n{(pi, pj) | (p1| . . . |pn)(left) ∈ G, (pi, pj) /∈ R}

R ← R ∪
⋃

0≤i,j≤n{(pi, pj) | (p1| . . . |pn)(right) ∈ G, (pi, pj) /∈ L′}
return P ∪ L ∪R

function rightRecursive(G, N) . leftRecursive is elided for brevity
R← {N}
while R changes do R← R ∪ {X|X ::= αY ∈ G,Y ∈ R}
return R

function plain(x) = x in which all Ni are replaced by N .

function rules(G,N) = {β|N ::= β ∈ G}
function fresh(N) = Ni where the integer index i has not been used before.

function generatePatterns(G)
D ← extractDefinitions(G)
R← {}
for all (A ::= Xα,A ::= βY) ∈ D do

if X ∈ leftRecursive(G,A) ∧ Y ∈ rightRecursive(G,A) then
R← R ∪ {(A, •Xα, βY)}

for all (A ::= αX,A ::= Y β) ∈ D do
if X ∈ rightRecursive(G,A) ∧ Y ∈ leftRecursive(G,A) then

R← R ∪ {(A,α •X,Y β)}
return R

Fig. 5: Translating priority and associativity definitions to safe patterns

generates patterns P (see Figure 5): {(E, ·E + E, iE), (E, E + ·E, E +
E)} Now the algorithm in Figure 6 can start. Lines 14–23 create the following
grammar rule in G1, having found two patterns to apply and allocating two fresh
nonterminals: E ::= E1 + E2 | iE | a

Then, at lines 24–28 we define the two new nonterminals and extend G1 with
their definition:

E ::= E1 + E2 | iE | a

E1 ::= E1 + E2 | a

E2 ::= iE | a

Finally we search for nested issues in lines 30–46. The outer loop executes twice.
The first time, considering E1 results in a new nonterminal E3 and considering
E2 does nothing. The second time round nothing changes and we terminate with

14

1: function ApplyPattern(G, W, δ, V ::= µ′W ′τ ′))
2: Yalts = ∅
3: for all ρ ∈ rules(G,W) do
4: if plain(ρ) 6= plain(δ) then add ρ to Yalts

5: if ∃Z ∈ G : (plain(Z) = plain(W)) ∨ (rules(G,Z) = Yalts) then
6: Y ′ ← Z
7: else
8: Y ′ ← fresh(W)
9: for all β ∈ Yalts do add Y ′ ::= β to G

10: remove V ::= µ′W ′τ ′ from G
11: add V ::= µ′Y ′τ ′ to G
12: return (G,Y ′)

13: function RewriteGrammar((G,P))
14: New← ∅
15: Slots[]← ∅ . an empty map from indexed nonterminal names to dotted rules
16: for all patterns (Y, β · Y γ, δ) in P do . Stage 1, reserve nonterminal names
17: Yi ← fresh(Y)
18: Slots[Yi]← β · Y γ
19: add Yi to New
20: G1 ← G

21: for all patterns (Y, β · Y γ, δ) in P do
22: if Slots[Yi] = β · Y γ then . Stage 2, update use sites
23: replace Y ::= βY γ in G1 with Y ::= βYiγ

24: for all Yi in New do . Stage 3, add definitions for new nonterminals
25: if Slots[Yi] = β · Y γ then
26: for all Y ::= α in G1 do
27: if 6 ∃ a pattern (Y, β · Y γ, δ) ∈ P with plain(α) = δ then
28: add Yi ::= α to G1

29: (G′′, G′)← (G1, G) . Stage 4, look for nested ambiguity
30: while G′ 6= G′′ do
31: (G′,New′)← (G′′,New)
32: for all Yi ∈ New′ do
33: if Slots[Yi] = ·Y γ then
34: for all grammar rules Yi ::= µW ∈ G′ do
35: if plain(W) = Y ∧ ∃Z(plain(Z) = Y then
36: ∧ W ∈ RightRecursive(G1, Z)) then
37: for all patterns (Y, ·Y γ, δ) do
38: (G′′, U)← ApplyPattern(G′′, W, δ, Yi ::= µW)
39: (Slots[U],New)← (Slots[W],New ∪ {U})
40: if Slots[Yi] = β · Y then
41: for all grammar rules Yi ::= Wµ in G′′ do
42: if plain(W) = Y ∧ ∃Z : (plain(Z) = Y
43: ∧W ∈ leftRecursive(G1, Z)) then
44: for all patterns (Y, β · Y, δ) do
45: (G′′, U)← applyPattern(G′′, W, δ, Yi ::= Wµ)
46: (Slots[U], NT)← (Slots[W],New ∪ {U})
47: return G′′

Fig. 6: Core algorithm that rewrites a grammar, applying patterns to remove
alternates from indexed nonterminals.

15

the final grammar:

E ::= E1 + E2 | iE | a

E1 ::= E1 + E3 | a

E2 ::= iE | a

E3 ::= a

5 Validation using the OCaml case

For the current paper, we have conducted an extensive validating experiment.
The goal is to show that the our approach is indeed more powerful than SDF,
and to provide evidence that the algorithm works for complicated, real-world
examples.

5.1 Method

For this case study, we selected the OCaml (.ml) files in the test suite directory
of the source release of OCaml 4.0.1. OCaml features the kind of ambiguity that
SDF filtering semantics cannot solve and our method should be able to solve. The
test suite contains numerous examples of different sizes and complexity, testing
the language features. We believe the test suite is a good choice for testing
our parser on safety and completeness, as the suite rigorously tests the language
itself. The suite contains 387 files of which 162 (in the tool-ocaml folder) contain
only source code comments that document expected output (assembler code) of
the compiler. The other 225 files are examples of OCaml code that exercise all
features of the language in different combinations to test the compiler.

We performed the experiments in Rascal [11], which is a meta-programming
DSL supporting embedded syntax definitions as proposed in this paper. The
parsing mechanism of Rascal is based on GLL [6].

Our goal is to provide solid evidence of the complete equivalence between the
original OCaml parser and the parser generated from our approach. This means
that no parse error should be produced by the Rascal parser if no parse error was
produced by the original OCaml parser, and the generated parser should produce
single parse trees (no ambiguities), and that the structure of the abstract syntax
trees should be exactly the same.

To compare parse trees we adapted both the parser from the OCaml compiler
and the output of our generated parser to produce exactly the same bracketed
forms. The resulting files are then compared with diff, ignoring whitespace, to
check for equivalence.

OCaml programs are basically composed of groups of expressions. The AST
produced by the OCaml parser is complex and contains many features. However,
because of the expression-like nature of the language, most of the unnecessary
information can be removed, resulting in a bracketed form. We modified the
default AST printer7 to produce the bracketed form. For example, the original

7 At src/4.00/parsing/printast.ml in the OCaml source release.

16

http://www.rascal-mpl.org

Ptop_def
[
structure_item ([1,0+0]..[1,0+5]) ghost
Pstr_eval
expression ([1,0+0]..[1,0+5])
Pexp_apply
expression ([1,0+1]..[1,0+2])
Pexp_ident "+"

[
<label> ""
expression ([1,0+0]..[1,0+1])
Pexp_constant Const_int 1

<label> ""
expression ([1,0+2]..[1,0+5])
Pexp_apply
expression ([1,0+3]..[1,0+4])
Pexp_ident "*"

[
<label> ""
expression ([1,0+2]..[1,0+3])
Pexp_constant Const_int 2

<label> ""
expression ([1,0+4]..[1,0+5])
Pexp_constant Const_int 3

]]]

(
+
(

1
*
(

2
3

)
)

)

Fig. 7: The original AST print from the OCaml parser (left) and the stripped
version containing only the structure and the labels.

AST and its bracketed form, resulting from parsing the string 1+2*3 is shown
in Fig. 7. The bracketed forms of all the examples we examined are on GitHub.

For conducting the experiments we wrote a Rascal grammar definition using
the notations defined in this paper. The grammar is obtained from the OCaml
reference manual8. We try to be as faithful as possible to the grammar in the
reference manual, avoiding changes as much as possible.

5.2 Results

The priority and associativity properties, retrieved from the precedence tables
in the language manual, resulted in a grammar that uses > and left , right and
non−assoc declarations. These declarations result in about 800 derivation ambi-
guity removal patterns. The rewriting was performed as explained in Section 4.

The rewritten grammar provided us with a very close over-approximation
of what the OCaml language designers had in mind. Only a handful of ambi-
guities, such as the dangling-else ambiguity and identifier conflicts with key-
words, remained, which were resolved using other ambiguity resolution fea-
tures of Rascal. The OCaml grammar written in Rascal is available at: https:
//github.com/cwi-swat/ocaml-operator-ambiguity-experiment.

We have performed the parsing and comparison process for the given 225
number of files in the case study. All files parse correctly and without ambiguity.

8 http://caml.inria.fr/pub/docs/manual-ocaml-400/language.html

17

https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment
https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment
https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment
http://caml.inria.fr/pub/docs/manual-ocaml-400/language.html

Of the 225 parsed files, 172 files (76%) generate ASTs that are identical in both
versions. This means that our parser produces the same grouping as the original
OCaml parser, providing evidence for the correctness of our algorithms. The
remaining files which are left with minor differences caused by AST de-sugaring
and normalization steps in the OCaml compiler.

5.3 Discussion and threats to validity

One of the difficulties in this study was how to compare ASTs. The AST from the
OCaml parser, in some places, is significantly different from the grammar written
in the reference manual. The reason is the trees have been normalized by the
front-end for easier processing later in the compiler. For example, flat argument
lists are converted to cons lists, presumably to simplify currying and partial
function features in OCaml. These changes are not documented anywhere. We
resolved them by observing the original AST output to deduce the normalization
step. We then mimicked these normalization steps as rewrite rules in Rascal
before outputting the final bracketed form.

Moreover, OCaml has some language extension and syntax varieties that are
not documented in the main language reference document. The use of semicolon
was particularly confusing. Semicolons is used in OCaml to separate expressions,
defined by the rule E ::= E ; E which is right associative. However, in the
inputs we parsed, we observed several occasions in which semicolon can end an
expression regardless of being preceded by another expression. We resolved this
issue by allowing optional semicolons at the end of expressions.

6 Related work

Besides the AJU and SDF methods which have been described so far, there are
a number of work which present similar ideas. Aasa [12] proposes a framework
for specification of precedences for implementing programming language. To the
best of our knowledge, this is the only declarative model that supports deeper
patterns. In [12], a tree is considered precedence correct based on the weights
given to operators in its parse trees. This work correctly recognizes that, for ex-
ample, a unary operator can be placed under the right most operand of a binary
rule, regardless of their precedence. However, our approach in defining prece-
dence semantics is very different. Instead of focusing on parse trees, we defined
the semantics of precedence as derivations, which is closer to our implementa-
tion technique. The main shortcoming of [12] is that operators must be unique.
They are considered separately from their context, e.g., there cannot be a unary
minus and a binary minus at the same time. In addition, there is no discussion
of indirect recursions in [12]. Similar to us, the disambiguation technique in [12]
is implemented as a grammar rewriting.

Thorup [13] presents an algorithm for transforming an ambiguous grammar
with a set of partial illegal parse trees to grammar excluding those derivations.

18

On the surface, the approach looks very similar to our technique shown in Sec-
tion 4, but the inner working is very different. The rewriting technique in [13]
expects a set of illegal parse trees, and in case the set is unbounded, as in Sec-
tion 2.2, a set of parse forests with cycles. Then, the algorithm works bottom
up, generating all production rules which do not produce any of those illegal
parse trees. The result is an algorithm which is complicated and does not look
as nice as the hand-written ones. The resulting grammar should go through an-
other transformation be simplified. The problem of how to find sufficient illegal
parse trees is addressed in another work by the same author [14]. The rewriting
presented by Thorup is not directly aiming at providing a declarative disam-
biguation mechanism, rather it is more an implementation mechanism. It also
covers a wider range or rewriting provided that enough illegal parse trees are
provided, but the overall procedure is complicated. We are not aware of any
practical parser generator that uses this technique.

Visser presents “From context-free grammars with priorities to character
class grammars” [15], which describes a grammar transformation to give seman-
tics to the SDF2 priority relation similar to our transformation. In a first step
a grammar’s nonterminals are replaced by explicit sets of identities (integers)
of production alternates. Then, elements are removed from these sets based on
the priority relation and parse table is generated normally. Since every rule is
identified, the resulting parse trees do not show the signs of grammar transfor-
mation. Character class grammars do not guarantee to preserve the language
and do not support indirect recursion, like our semantics do. Although char-
acter class grammars are formalized quite differently from our approach that
directly manipulates grammars using indexed nonterminals, both methods use
grammar transformation to implement the priority relation. Therefore, we can
label Visser’s work a predecessor of our contribution.

7 Conclusions

Constructing a parser that correctly implements precedence rules, for a language
such as OCaml, using its ambiguous reference manual and the set of precedence
rules is not possible without resorting to some manual grammar transformation.
In this paper, we defined a parser-independent semantics for operator-style am-
biguities that is safe and is able to deal with deeper level and indirect precedence
ambiguities. We evaluated our approach using an extensive experiment by com-
paring the output of the standard OCaml compiler front-end with the output
of our own parser, generated from Rascal BNF extended with priority and as-
sociativity declarations. The result is promising and shows that our approach is
powerful enough to parse OCaml.

For other languages such as Haskell, F#, and Lua, which offer similar ex-
pression languages, our approach is expected to be equally beneficial. Although
the focus of this paper is mainly on generalized parsing algorithms, we should
also emphasize that our approach can be used by any parser generator that
supports left recursion, such as SDF, ANTLR 4, Elkhound[4], or DMS [5]. As

19

future work, we plan to work on the soundness and completeness proofs of our
grammar transformation of Section 4. Moreover, we will apply our approach on
more programming languages that have complex precedence rules.

Acknowledgments. We would like to thank Peter Mosses who has originally
identified the problem in OCaml. Also many thanks to Davy Landman and Mark
Hills from CWI who assisted us in performing the validation experiments.

References

1. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2)
(February 1970) 94–102

2. Tomita, M., ed.: Generalized LR parsing. Kluwer Academic Publishers (1991)
3. Rekers, J.: Parser Generation for Interactive Environments. PhD thesis, University

of Amsterdam, The Netherlands (1992)
4. McPeak, S., Necula, G.C.: Elkhound: A fast, practical glr parser generator. In:

CC. (2004) 73–88
5. Baxter, I.D., Pidgeon, C., Mehlich, M.: DMS R©: Program transformations for prac-

tical scalable software evolution. In: Proceedings of the 26th International Confer-
ence on Software Engineering. ICSE ’04, Washington, DC, USA, IEEE Computer
Society (2004) 625–634

6. Scott, E., Johnstone, A.: GLL parse-tree generation. Science of Computer Pro-
gramming (2012) to appear ISSN:0167-6423.

7. Aho, A.V., Johnson, S.C., Ullman, J.D.: Deterministic parsing of ambiguous gram-
mars. In: Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on
Principles of programming languages. POPL ’73, ACM (1973) 1–21

8. Visser, E.: Scannerless generalized-LR parsing. Technical Report P9707, Program-
ming Research Group, University of Amsterdam (July 1997)

9. Klint, P., Visser, E.: Using filters for the disambiguation of context-free grammars.
In Pighizzini, G., San Pietro, P., eds.: Proc. ASMICS Workshop on Parsing Theory,
Milano, Italy, Tech. Rep. 126–1994, Dipartimento di Scienze dell’Informazione,
Università di Milano (October 1994) 1–20

10. Visser, E.: Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam (1997)

11. Klint, P., van der Storm, T., Vinju, J.J.: EASY meta-programming with Rascal.
leveraging the extract-analyze-synthesize paradigm for meta-programming. In:
Proceedings of the 3rd International Summer School on Generative and Transfor-
mational Techniques in Software Engineering (GTTSE’09). LNCS, Springer (2010)

12. Aasa, A.: Precedences in specifications and implementations of programming lan-
guages. Theor. Comput. Sci. 142(1) (May 1995) 3–26

13. Thorup, M.: Disambiguating grammars by exclusion of sub-parse trees. Acta
Informatica 33(5) (1996) 511–522

14. Thorup, M.: Controlled grammatic ambiguity. ACM Trans. Program. Lang. Syst.
16(3) (May 1994) 1024–1050

15. Visser, E.: From context-free grammars with priorities to character class grammars.
In van Deursen, A., Brune, M., Heering, J., eds.: Dat Is Dus Heel Interessant, Liber
Amicorum dedicated to Paul Klint. CWI (1997) 217–230

20

http://www.rascal-mpl.org

	Safe Specification of Operator Precedence Rules

