
1 

 

Genetic diversity and parasite prevalence in two species of bumblebee 

Penelope R. Whitehorn
1,*

, Matthew C. Tinsley
1
, Mark J.F. Brown

2
, Ben Darvill

3
 and 

Dave Goulson
4
. 

1
School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK. 

2
School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK. 

3
BTO Scotland, Biological and Environmental Science, University of Stirling, FK9 4LA, UK. 

4
School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK. 

 

*
 Corresponding author: p.r.whitehorn@stir.ac.uk 01786 467810 

 

Abstract 

 

Many bumblebee species have been suffering from significant declines across their 

ranges in the Northern Hemisphere over the last few decades. The remaining populations 

of the rare species are now often isolated due to habitat fragmentation and have reduced 

levels of genetic diversity. The persistence of these populations may be threatened by 

inbreeding depression, which may result in a higher susceptibility to parasites. Here we 

investigate the relationship between genetic diversity and prevalence of the parasitic mite 

Locustacarus buchneri in bumblebees, using the previously-studied system of Bombus 

muscorum and Bombus jonellus in the Western Isles of Scotland. We recorded L. 

buchneri prevalence in 17 populations of B. muscorum and 13 populations of B. jonellus 

and related the results to levels of heterozygosity. For B. muscorum, we found that 

prevalence of the mite was higher in populations with lower genetic diversity but there 
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was no such relationship in the more genetically diverse B. jonellus.  In contrast to 

population-level measures of genetic diversity, the heterozygosity of individual bees was 

not correlated with infection status. We suggest population-level genetic homogeneity 

may facilitate parasite transmission and elevate prevalence, with potential consequences 

for population persistence. 
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Introduction 

 

The role bumblebees have as pollinators makes them a vital component of ecosystems 

and also gives them great economic value. Over recent decades many bumblebee species 

have been declining across their range in the Northern hemisphere, predominantly due to 

the intensification of agriculture and the resultant loss of habitats (Goulson et al., 2008; 

Williams & Osborne, 2009). These declines have been particularly severe in the UK 

where 3 of the 27 native species have become extinct and 10 species have undergone 

severe range contractions (Goulson, 2010). The remaining populations of the rarer 

species have become isolated in habitat patches where suitable forage and sites for 

nesting still exist. There are instances of these populations going extinct, despite the 

continuing presence of good habitat. For example, Wicken Fen in central England 

supported 14 species of Bombus in the 1920s but by 1978 only six remained (Williams, 

1986).  
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In order to implement the appropriate conservation strategies for bumblebees it is 

important to understand what is driving these remaining populations to extinction. 

Research has suggested that genetic factors might have a role; rare species with 

fragmented populations, such as B. sylvarum and B. muscorum in the UK and B. 

occidentalis and B. pensylvanicus in North American have much lower genetic diversity 

than common, widespread species such as B. terrestris and B. pascuorum in the UK and 

B. bifarius and B. impatiens in North America (Ellis et al., 2006; Darvill et al., 2006; 

Cameron et al., 2011; Lozier et al., 2011).  Detailed study of the genetic diversity and 

population structure of B. muscorum has provided further information. B. muscorum has 

become rare across its range in the UK and is now predominantly found in the Western 

Isles of Scotland. Darvill et al. (2006) found that the more isolated island populations of 

B. muscorum were genetically differentiated from those closer to the mainland and had 

substantially reduced genetic diversity. These studies suggest that habitat fragmentation 

and population isolation have led to a loss of genetic diversity in rare species of 

bumblebees. If the populations with reduced levels of genetic diversity also have lower 

fitness, inbreeding depression may be occurring. This might be the mechanism driving 

these populations towards extinction, as has been demonstrated in other invertebrate 

species (Saccheri et al., 1998; Reed et al., 2007). 

 

One form of inbreeding depression, which may lead to an increased extinction risk, is 

higher susceptibility to parasitism (de Castro & Bolker, 2005). Increased homozygosity 

can increase both the prevalence of parasites at the population level and susceptibility to 

parasites at the individual level (Frankham et al., 2010). At the population level, the more 
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genetic diversity present, the more likely it is that some individuals can resist a pathogen. 

If this genetic diversity is lost due to inbreeding, pathogen epidemics may spread more 

efficiently in the genetically homogenous population. Previous work by Whitehorn et al. 

(2011) has supported this theory, revealing a negative correlation between genetic 

diversity of island populations of B. muscorum, and prevalence of the intestinal 

microparasite Crithidia bombi. Further support comes from North America, where 

declining bumblebee populations have lower levels of genetic diversity and a 

significantly higher prevalence of the pathogen N. bombi compared to stable bumblebee 

populations (Cameron et al., 2011). Similar relationships have been found in other 

invertebrates (e.g. Ebert  et al. 2007), but not universally (Trouve et al. 2003; Field et al. 

2007).  

 

Experimental work with Drosophila in the laboratory suggests that inbreeding can 

decrease the immunity of invertebrates at the individual level through the loss of specific 

resistance alleles (Spielman et al. 2004) or reduced defensive behaviour (Luong et al. 

2007). Knowledge of the individual inbreeding co-efficient (f) is informative when 

establishing whether such relationships exist between inbreeding and parasite 

susceptibility at the level of the individual. This is calculated using detailed pedigree 

information, but this is rarely available for wild populations (Marshall et al., 2002). As an 

alternative, microsatellites have been increasingly used to provide a measure of multi-

locus heterozygosity (MLH), which is then used to infer relative levels of inbreeding 

among individuals. Correlations between MLH and fitness related traits are known as 

heterozygosity-fitness correlations (HFCs). HFCs based on a small number of 
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microsatellite loci have been found in many different species for a range of fitness traits, 

including parasite susceptibility (Coltman et al., 1999) and lifetime reproductive success 

(Slate et al., 2000). Support for the existence of HFCs in invertebrates comes from 

research on the damselfly Calopteryx splendens, where a negative correlation between an 

individual’s inbreeding coefficient (estimated from AFLP markers) and its parasite 

burden has been found (Kaunisto et al. 2013).   

 

This study aims to further investigate the relationship between genetic diversity and 

parasitism in bumblebees. We consider two bumblebee species, B. muscorum and B. 

jonellus, that live sympatrically in the Western Isles of Scotland but have different levels 

of genetic diversity. Investigating their levels of parasitism allows us to compare the 

impacts that inbreeding and population differentiation have on parasites. Bombus 

muscorum belongs to the subgenus Thoracobombus and is considered threatened. It has 

been placed on the UK Biodiversity Action Plan (UKBAP) along with three other species 

belonging to its subgenus. Bombus jonellus is a member of the subgenus Pyrobombus and 

has a widespread but local distribution and is not thought to be threatened (Benton, 

2006). Darvill et al. (2010) found that the two species differed significantly in overall 

heterozygosity with B. muscorum exhibiting much lower genetic diversity. B. muscorum 

also shows markedly higher population structuring and isolation by distance than B. 

jonellus (θ = 0.13 compared to θ = 0.034). B. jonellus has evidently retained genetic 

cohesion over greater distances and it was estimated that they are able to disperse >50km 

relatively frequently. In contrast, B. muscorum were estimated to disperse >8km only 

infrequently and the species also showed an increased frequency of population 
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bottlenecks (Darvill et al. 2010). These differences in dispersal abilities suggest that B. 

muscorum is more susceptible to population isolation due to habitat fragmentation.  

 

This study tests how genetic diversity differences between host species, populations and 

individuals impact on parasite prevalence. To do this we quantify the prevalence of the 

tracheal mite, Locustacarus buchneri, in the B. muscorum and B. jonellus individuals 

collected by Darvill et al. (2010).  

 

Methods 

 

During the summers of 2003 to 2005, individuals of B. muscorum and B. jonellus were 

collected from islands in the Inner and Outer Hebrides and stored in 100% ethanol. In a 

previously published study (Darvill et al., 2010), B. muscorum were genotyped at 8 

microsatellite loci (B10, B11, B96, B118, B124, B126, B131, B132) and B. jonellus were 

also genotyped at 8 microsatellite loci (B10, B11, B96, B100, B121, B124, B126, B132). 

This gave each bee a measure of individual heterozygosity (the number of heterozygous 

loci divided by the number of genotyped loci). Tests for genotypic linkage disequilibrium 

and departure from Hardy-Weinberg equilibrium (HWE) were performed using 

GENEPOP version 3.4 (Raymond and Rousset, 1995). Darvill et al. (2010) excluded loci 

with null alleles from their analysis. The presence of sisters within each population was 

checked using KINSHIP v 1.3.1 (Goodnight & Queller, 1999), which assigned workers to 

colonies, allowing all but one representative from each nest to be removed. A measure of 

average (unbiased) heterozygosity (HE) for each population was also calculated using 
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FSTAT and these figures are published in Darvill et al. (2010) (table 1). For the present 

study, the width of the thorax of each bee was measured using electronic digital callipers 

and the bee’s age was estimated by assessing the extent of wing wear, using a four point 

scale (modified from Mueller & Wolfmueller, 1993). Each abdomen was then dissected 

in order to quantify the number of adult L. buchneri present.  

 

Statistical analyses 

 

All analyses were performed in R, version 2.15.3 (R Core Team 2013). Binomial 

generalised linear mixed effect models were used to investigate whether L. buchneri 

prevalence was influenced by the level of genetic diversity at the population level. 

Bombus muscorum and B. jonellus were analysed separately as island heterozygosity 

measures are different for the two species. Population-level heterozygosity, bee age 

(entered as a covariate with a four point scale), bee size (thorax width), sampling date 

(entered as a covariate, numbered continuously from June 1
st
 through to September) and 

finally island area (as a proxy for bumblebee population size) were entered as fixed 

effects. Island and sampling year were entered as random factors and individual bee was 

the unit of replication. Binomial generalised linear mixed effect models were also used to 

analyse determinants of L. buchneri infection on an individual level. Fixed effects 

included: bumblebee species, individual heterozygosity, bee age, bee size and sampling 

date. Island and sampling year were entered as random factors. Models were fit with lmer 

in the lme4 package (ver. 1.0-4; Bates et al., 2013). Locustacarus buchneri infection 

intensity was also analysed, but no variables were found to significantly influence the 
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number of adult mites infecting the bees and so only the presence/absence results are 

presented here. All statistical tests were two-tailed and models were selected and 

simplified according to Akaike’s Information Criterion (AIC). All two-way interactions 

were investigated, but as none of these were significant they are not reported here.  

 

 

Results 

A total of 506 B. muscorum and 360 B. jonellus workers were dissected. The B. 

muscorum samples came from 17 island populations with a mean sample size of 29.8 

(range: 20 to 41) from each island. The B. jonellus samples came from 13 island 

populations with a mean sample size of 27.7 (range: 18 to 30) from each island. The 

tracheal mite L. buchneri was present in 15 out of the 17 populations of B. muscorum and 

had an overall prevalence of 28% in this species. The parasite was present in all 

populations of B. jonellus and had an overall prevalence of 39% (table 1). The mean 

number of mites per infected bee was 6.45 (range: 1 to 68).  
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  Bombus muscorum   Bombus jonellus 

           

 Longitude Latitude 
Island 
size HE 

Locustacarus 
buchneri prevalence  HE 

Locustacarus 
buchneri prevalence 

    km
2
   n Mean     n Mean 

Barra 7° 28′ 0″ W 56° 59′ 0″ N 67 0.393 (0.113) 30 0.50 (0.32-0.68)  0.766 (0.048) 30 0.67 (0.47-0.82) 

Canna 6° 32′ 44.3″ W 57° 3′ 28.4″ N 14 0.433 (0.086) 30 0.23 (0.11-0.43)  0.758 (0.070) 30 0.23 (0.11-0.43) 

Coll 6° 33′ 26″ W 56° 38′ 0″ N 73 0.499 (0.091) 29 0.34 (0.19-0.54)  0.738 (0.073) 30 0.30 (0.15-0.50) 

Colonsay 6° 13′ 0″ W 56° 4′ 0″ N 44 0.416 (0.086) 20 0.15 (0.04-0.39)  - - - 

Eigg 6° 10′ 0″ W 56° 54′ 0″ N 30 0.533 (0.094) 30 0.00 (0.00-0.14)  0.757 (0.066) 30 0.37 (0.21-0.56) 

Lunga 6° 25′ 18″ W 56° 29′ 27″ N 1 0.507 (0.108) 30 0.00 (0.00-0.14)  0.742 (0.076) 30 0.33 (0.18-0.53) 

Mingulay 7° 38′ 15″ W 56° 48′ 41.4″ N 6 0.374 (0.115) 30 0.33 (0.18-0.53)  0.696 (0.048) 18 0.22 (0.07-0.48) 

Monachs 7° 40′ 0″ W 57° 31′ 0″ N 4 0.305 (0.092) 30 0.13 (0.04-0.32)  - - - 

Muck 6° 14′ 56″ W 56° 50′ 3″ N 6 0.425 (0.088) 30 0.20 (0.08-0.39)  0.751 (0.056) 30 0.20 (0.08-0.39) 

Muldoanich 7° 26′ 35″ W 56° 55′ 9″ N 1 0.421 (0.103) 26 0.62 (0.41-0.79)  - - - 

N. Uist 7° 20′ 0″ W 57° 36′ 0″ N 308 0.404 (0.113) 20 0.25 (0.10-0.49)  - - - 

Pabbay 7° 34′ 21.4″ W 56° 51′ 31.7″ N 3 0.399 (0.118) 30 0.53 (0.35-0.71)  0.729 (0.046) 22 0.82 (0.59-0.94) 

Rum 6° 21′ 0″ W 57° 0′ 0″ N 109 0.451 (0.077) 29 0.21 (0.09-0.40)  0.749 (0.079) 28 0.32 (0.17-0.52) 

S. Uist 7° 19′ 0″ W 57° 16′ 0″ N 309 0.404 (0.113) 25 0.40 (0.22-0.61)  0.755 (0.054) 22 0.32 (0.15-0.55) 

Sandray 7° 31′ 0″ W 56° 53′ 36″ N 4 0.367 (0.111) 30 0.57 (0.38-0.74)  0.763 (0.054) 30 0.47 (0.29-0.65) 

Staffa 6° 20′ 25″ W 56° 26′ 10″ N 0.5 0.484 (0.091) 46 0.09 (0.03-0.22)  0.697 (0.082) 30 0.53 (0.35-0.71) 

Tiree 6° 49′ 0″ W 56° 31′ 0″ N 75.25 0.499 (0.086) 41 0.27 (0.15-0.43)   0.715 (0.076) 30 0.27 (0.13-0.46) 

Overall 
  

  0.437 (0.015) 506 0.28 (0.24-0.32)   0.743 (0.005) 360 0.39 (0.33-0.43) 

 

Table 1: Population means for host genetic diversity and parasite prevalence. The figures in parentheses are the standard errors for genetic diversity and the 

95% C.I. for parasite prevalence. Measures for heterozygosity (HE) are taken from Darvill et al. (2010). 
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Population level results 

There was a significant negative correlation between the prevalence of L. buchneri and B. 

muscorum population heterozygosity (Z = -2.78, P = 0.005, figure 1). There was also a 

significant positive correlation between island size and L. buchneri prevalence (Z = 3.15, 

P = 0.002). There was no correlation between these two explanatory variables (r = -0.052, 

P = 0.843). Sampling date significantly influenced L. buchneri infection; bees sampled 

later in the year were more likely to be infected (Z = 2.33, P = 0.020). Neither bee age 

nor size significantly affected L. buchneri infection in B. muscorum (table 2). No variable 

significantly influenced the overall prevalence of L. buchneri in B. jonellus populations 

(table 2). 
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Figure 1: Relationship between L. buchneri prevalence and heterozygosity of the host population.  

Each point represents an island population. Islands with higher heterozygosity had significantly lower 

prevalence of L. buchneri (P = 0.005, table 2). 
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      Bombus muscorum    Bombus jonellus 

             

    

Co-
efficient 
esimate SE Z P    

Co-efficient 
esimate SE Z P 

                 

Heterozygosity    -8.760 3.149 -2.78 0.005    1.223 10.050 0.12 0.903 
of population       (1)        (1)  
                 

Date    0.026 0.011 2.33 0.020    0.008 0.014 0.61 0.543 
       (1)        (1)  
                 

Age    0.104 0.112 0.93 0.350    0.157 0.127 1.24 0.217 
       (1)        (1)  
                 

Bee size    -0.022 0.261 -0.09 0.932    0.097 0.349 0.28 0.782 
       (1)        (1)  
                 

Island Area    0.006 0.002 3.15 0.002    -0.001 0.003 -0.31 0.755 
       (1)        (1)  

                          

 

Table 2: Output of binomial generalised linear mixed effect models for the prevalence of L. buchneri 

in B. muscorum and B. jonellus populations. Degrees of freedom are given in parentheses and significant 

results are highlighted in bold. 

 

Individual level results 

Bombus jonellus were more frequently infected with L. buchneri than B. muscorum (χ
2
 = 

11.85, df = 1, p < 0.001). Bees sampled later in the season were more likely to be infected 

(χ
2
 = 5.51, df = 1, p = 0.019). Individual heterozygosity, bee age and size did not 

significantly predict whether bees were infected with L. buchneri (table 3). 
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Co-
efficient 
esimate SE χ

2
 P 

         

B. muscorum    -0.558 0.162 11.85 <0.001 

compared to       (1)  

B. jonellus         
         

Individual    -0.017 0.540 0.001 0.975 
heterozygosity       (1)  
         

Age    0.135 0.082 2.665 0.103 
       (1)  
         

Bee Size    0.112 0.202 0.305 0.581 
       (1)  
         

Sampling date    0.025 0.009 5.507 0.019 
       (1)  
              

 

Table 3: Output of binomial generalised linear mixed effect models for the presence/absence of L. 

buchneri. Degrees of freedom are given in parentheses. Likelihood ratio tests provide χ2 and p values for 

each term. Significant results are highlighted in bold. 

 

 

Discussion 

 

This study demonstrates that B. muscorum populations with lower levels of 

heterozygosity have higher prevalence of the tracheal mite L. buchneri. This builds on 

previous work by Whitehorn et al. (2011), who also studied Hebridean island populations 

of B. muscorum and found a significant negative relationship between parasite prevalence 

and host population genetic diversity in the gut trypanosome parasite Crithidia bombi. 

While this earlier study also examined L. buchneri, sample sizes were too low to detect 

meaningful biological relationships. Together with the recently discovered higher 
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prevalence of N. bombi in US bumblebee populations that had reduced genetic diversity 

(Cameron et al., 2011), our results suggest a general relationship between parasite 

prevalence and genetic diversity in bumblebee populations. These findings support 

previous experimental work that found genetic heterogeneity within colonies to be 

negatively correlated with parasitic infections in social insects (Baer & Schmid-Hempel, 

2001; Hughes & Boomsma, 2004; Seeley & Tarpy, 2007).  

 

Although there was a population-level relationship between genetic diversity in B. 

muscorum and prevalence of L. buchneri, there was no such relationship between 

individual heterozygosity and infection. This could be because heterozygosity is not 

affecting susceptibility to parasites at an individual level, which is supported by 

Whitehorn et al. (2011) who found that individual immune measures were unaffected by 

genetic diversity. We hypothesise that the population-level effect that we observed results 

because particular parasite genotypes can spread to high prevalence in populations that 

lack genetic diversity at relevant pathogen susceptibility loci. Another explanation for the 

absence of a heterozygosity-infection association in individuals is that heterozygosity at 

the neutral markers genotyped may not be a good indicator of underlying inbreeding at 

the individual level. This is possibly due to the relatively small number of loci genotyped: 

a study by Slate & Pemberton (2002) concluded that, in order to reliably detect 

Heterozygosity Fitness Correlations (HFCs), a panel of ten or more microsatellite 

markers were needed. Other studies have also found that multi-locus heterozygosity is an 

unreliable predictor of individual genetic diversity at loci influencing fitness (for 

example, Hedrick, 2001; Pemberton, 2004; Slate et al., 2004). 
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Relatively little research has been conducted on L. buchneri but limited data suggest that 

heavy infections might be associated with lethargy and reduced foraging (Husband & 

Sinha, 1970). In contrast, Acarapis woodi, the tracheal mite of honey bees Apis mellifera, 

has been studied in more detail. For example, experimental work has found that infection 

with A. woodi causes a reduction in the metabolic rate of individual bees and this may 

constrain activity, particularly in cool weather (Harrison et al., 2001). Additionally, a 

recent review (McMullan & Brown, 2009) concluded that honey bee colonies infected 

with tracheal mites exhibit increased temperature dependent mortality. It is certainly 

possible that L. buchneri inflicts similar costs on bumblebees. Parasitic infection may 

also have indirect effects on fitness simply by stimulating the immune system (Brown et 

al., 2003; Bashir-Tanoli & Tinsley, 2014) and L. buchneri infection does indeed trigger a 

melanisation response in the host’s trachea (pers. obs.). Bumblebee colonies whose 

workers are immune challenged may have lower reproductive output, an effect that is 

exacerbated by harsh environmental conditions (Moret & Schmid-Hempel, 2001; Moret 

& Schmid-Hempel, 2004). Therefore, parasitism is likely to exert fitness costs on the 

hosts and as prevalence is higher in less genetically diverse populations, it may increase 

their risk of extinction, as suggested by de Castro & Bolker (2005). 

 

In contrast to the observations in B. muscorum, there was no relationship between the 

prevalence of L. buchneri and the genetic diversity of B. jonellus populations. This may 

be a result of the appreciably lower range in the measures of population heterozygosity (a 

range of only 0.019 compared to a range of 0.228 for B. muscorum), which may limit our 
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ability to detect any influence that genetic diversity has on parasite prevalence. 

Interestingly, B. jonellus had consistently higher infection rates compared to B. 

muscorum, something its greater heterzyogosity would not lead us to expect. This could 

reflect the inability of the less genetically diverse B. muscorum to survive high levels of 

infection, meaning that high parasite prevalence was not observed. Alternatively, this 

observation may be due to an inter-specific difference in the parasitism rates of these two 

species, as such differences are commonly found in bumblebees (for example, Shykoff & 

Schmid-Hempel, 1991; Korner & Schmid-Hempel, 2005). The reasons behind these 

differences remain unknown but are likely to relate to inter-specific variation in 

transmission opportunities, host genetics and parasite defence, environmental factors or 

parasite virulence. 

 

In conclusion, this study has demonstrated that low genetic diversity in B. muscorum 

populations is associated with a higher prevalence of the tracheal mite L. buchneri. This 

supports theories that suggest parasite species can spread to higher prevalence in 

populations that are more genetically homogeneous. Therefore, the persistence of small, 

isolated populations of bumblebees may be threatened due to inbreeding and the 

associated effects on levels of parasitic infection.  
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