
Related Randomness Attacks for Public Key Encryption?

Kenneth G. Paterson, Jacob C. N. Schuldt, Dale L. Sibborn

Information Security Group, Royal Holloway, University of London
{kenny.paterson,jacob.schuldt,dale.sibborn.2011}@rhul.ac.uk

Abstract. Several recent and high-profile incidents give cause to believe that randomness failures of var-
ious kinds are endemic in deployed cryptographic systems. In the face of this, it behoves cryptographic
researchers to develop methods to immunise – to the extent that it is possible – cryptographic schemes
against such failures. This paper considers the practically-motivated situation where an adversary is able
to force a public key encryption scheme to reuse random values, and functions of those values, in encryp-
tion computations involving adversarially chosen public keys and messages. It presents a security model
appropriate to this situation, along with variants of this model. It also provides necessary conditions on
the set of functions used in order to attain this security notation, and demonstrates that these conditions
are also sufficient in the Random Oracle Model. Further standard model constructions achieving weaker
security notions are also given, with these constructions having interesting connections to other primitives
including: pseudo-random functions that are secure in the related key attack setting; Correlated Input
Secure hash functions; and public key encryption schemes that are secure in the auxiliary input setting
(this being a special type of leakage resilience).

1 Introduction

Modern cryptographic primitives are heavy consumers of randomness. Unfortunately, random number generators
(RNGs) used to provide this randomness often fail in practice [17, 19, 21, 22, 13, 1, 16, 27]. This is due to issues
including poor algorithmic design, software bugs, insufficient or poor estimation of system entropy, and the
handling of randomness across virtual machine resets [29]. The results of randomness failures can be catastrophic
and newsworthy in practice – DSA, ECDSA and Schnorr private signing keys can be exposed [9, 29]; plaintext
recovery for low entropy plaintext becomes possible in the the public key encryption setting; key generation
processes can be severely weakened [13, 25, 23, 10]; ephemeral Diffie-Hellman keys can become predictable leading
to compromise of session keys [19]; and electronic wallet security can be compromised [11].

Evidently, randomness failures are a major problem in practice. The cryptography research community has
begun to address this problem only relatively recently [30, 31, 24, 2, 35, 29]. Accepting that randomness failures
are endemic and unlikely to be eliminated in totality, a basic approach is to try to hedge against randomness
failures, that is, to design cryptographic primitives that still offer a degree of security in the face of randomness
failures. Work in this direction can be summarised as follows:

– For signatures, there is a folklore de-randomisation technique which neatly sidesteps security issues arising
from randomness failures: simply augment the signature scheme’s private key with a key for a pseudo-
random function (PRF), and derive any randomness needed during signing by applying this PRF to the
message to be signed; meanwhile verification proceeds as normal. This renders trivial the problem of dealing
with bad randomness for signatures.

– In the private key (symmetric) encryption setting, Rogaway [30] argued for the use of nonce-based encryp-
tion, thus reducing reliance on randomness. Rogaway and Shrimpton [31] initiated the study of misuse-
resistant authenticated encryption (AE), considering the residual security of AE schemes when nonces are
repeated. Katz and Kamara [24] considered the security of symmetric encryption in a chosen-randomness
setting, wherein the adversary has complete control over the randomness used for encryption (except for
the challenge encryption which uses fresh randomness).

– In the public key encryption (PKE) setting, Bellare et al. [2] considered security under chosen distribution
attack, wherein the joint distribution of message and randomness is specified by the adversary, subject to
containing a reasonable amount of min entropy. The PKE scheme designer’s challenge is to find a way of
“extracting” this entropy in a secure way. Bellare et al. gave several designs for PKE schemes achieving
this notion in the Random Oracle Model (ROM) and in the standard model. This is a powerful and general
approach, but does have its limitations: under extreme failure conditions, the joint message-randomness
distribution may simply fail to contain sufficient entropy, at which point all security guarantees may be
lost; moreover, for technical reasons, the model in [2] requires the target public key to be hidden from the
adversary until all encryption queries have been made. This is impractical in real world applications.

? A short version of this paper appeared at PKC 2014. This is the full version. All authors were supported by EPSRC
Leadership Fellowship EP/H005455/1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28905451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

– Also in the PKE setting, Yilek [35], inspired by virtual machine reset attacks in [29], considered the scenario
where the adversary does not know the randomness (in contrast to the chosen-randomness setting of [24]),
but can instead force the reuse of random values that are otherwise well-distributed and unknown to the
adversary. This is referred to in [35] as the Reset Attack (RA) setting. To fully reflect the reality of ran-
domness failures in this setting, Yilek provides the adversary with the ability to encrypt chosen messages
under adversarially generated public keys using the unknown but repeated random values. This makes his
model very powerful, to the extent that certain trivial attacks must be excluded by assuming the adversary
is equality-pattern respecting. In [35], Yilek also gave a general construction in which the random coins of
the encryption algorithm are used as a key to a PRF, the input to the PRF is the public key concatenated
with the message to be encrypted, and the output of the PRF is then used as the ‘randomness’ for the
encryption algorithm. This is sufficient to achieve security in his RA setting. Note that the RA security
model is incomparable with the CDA model of [2].

– Ristenpart and Yilek [29] studied the use of “hedging” as a general technique for protecting against broad
classes of randomness failures in already-deployed systems, and implemented and benchmarked this tech-
nique in OpenSSL. Hedging in the sense of [29] involves replacing the random value r required in some
cryptographic scheme with a hash of r together with other contextual information, such as a message, algo-
rithm or unique operation identifier, etc. Their results, while applying to a variety of different randomness
failure types (see in particular [29, Figure 3]), all have their security analyses restricted to the ROM.

1.1 Motivation

Inspired by the challenge of preserving security under randomness failures, we initiate the study of security for
PKE in what we call the Related Randomness Attack (RRA) setting. Our RRA setting builds on the RA setting
from [35] and brings the theory of hedging PKE against randomness failures closer to practice. As we shall see,
it also has interesting connections with related key attacks for PRFs and PKE, as developed in [5, 3, 4, 6, 34],
and leakage resilient cryptography (and in particular, the techniques developed in [14] to provide security for
PKE in the auxiliary input setting).

In our RRA setting, the adversary can now not only force the reuse of existing random values as in the RA
setting, but can also force the use of functions of those random values. This power is analogous to the power
granted to the adversary in the Related Key Attack (RKA) setting, wherein an adversary is able to tamper
with private (or secret) keys used during cryptographic operations. The RA setting arises as the special case of
our RRA setting where only the identity function is allowed. The extra adversarial power in the RRA setting
allows the modelling of reset attacks in which the adversary does not have an exact reset capability, but where
the randomness used after a reset is in some way related to that used on previous resets. Such behaviours were
observed in the experimental work in [29]. Furthermore, our RRA setting allows modelling of situations where
the randomness used in a scheme comes from a PRNG which is not regularly refreshed with new entropy, but
which steps forward under some deterministic state evolution function Next and output function Out; here the
appropriate functions in our RRA setting would be the compositions Out(Nexti(·)).

More generally, RRA security has a strong theoretical motivation as being a stepping stone towards giving
the adversary enhanced control over the inputs to cryptographic algorithms – messages (in the standard PKE
setting), keys (in the RKA setting), and now randomness (in our new RRA setting). It is an interesting direction
for future research to develop this theme further, by examining security in a combined RKA/RRA setting, where
the adversary would be able to simultaneously tamper with all the inputs to a PKE scheme.

1.2 Our contributions

RRA security model In this paper, we provide a strong model and security definition for PKE in the RRA
setting, which we name RRA-ATK security (where ATK = CPA or CCA) . Our model is inspired by that of
Yilek for the RA setting: via access to an Enc oracle, we allow the adversary to get arbitrary messages encrypted
under arbitrary public keys, using functions φ of an initial set of well-distributed but unknown random values.
The public keys can even be maliciously generated, and the adversary can of course know all the corresponding
private keys. The adversary is tasked with winning an indistinguishability-style game, via an LR oracle which
gives access to encryptions of left or right messages with respect to an honestly generated target public key pk∗,
but again where the adversary can force the use of functions φ of the initial random values. When the functions
φ are limited to coming from some set Φ, we speak of a Φ-restricted adversary.

Because the adversary may know all but one of the private keys, it can check that its challenger is behaving
correctly with respect to its encryption queries. This also rules out the possibility of achieving RRA-ATK
security for any randomness recovering PKE scheme, like RSA-OAEP [7] and PKE schemes based on the
Fujisaki-Okamoto transformation [18]. Moreover, the encryption queries concern public keys that are outside
the control of the challenger. This increases the technical challenge of achieving security in the RRA setting.
This facet of the RRA setting bears comparison with the RKA setting for PKE [4, 6, 34]. In the RKA setting,
the tampering via related key functions only affects the PKE scheme’s private key, and so only comes into play

when simulating decryption queries. By contrast, it is encryption queries that require special treatment in our
RRA setting.

Given the power of the adversary in the RRA setting, we cannot hope to achieve security against all sets
of adversarial queries. So we must restrict the adversary from achieving “trivial wins”. In particular, no matter
what set of functions Φ the adversary uses to modify the random values, it can win simply by making the same
combination of messages and functions in its LR quires as in its encryption queries under target public key
pk∗. These must then be ruled out by identifying forbidden combinations of queries. Thus we must assume the
adversary is equality-pattern respecting, for a suitable definition that extends that of [35]. However, this alone
is not enough: from the RKA setting and the results of [15], we already know that certain set of functions Φ are
too powerful, in allowing trivial wins for the adversary in that setting. We should not be surprised that the same
is true in our RRA setting. For example, if constant functions are allowed in the RRA setting, an adversary
would trivially be able to determine which of two challenge message is encrypted in a ciphertext from the LR
oracle. Analogously to [5], we identify collision-resistance and output-unpredictability as necessary conditions
on the set of functions Φ which the adversary uses to transform random values in its attack.

ROM construction We are able to show that, in the ROM, these necessary conditions on the function set Φ are
actually also sufficient. More specifically, we show how to transform any IND-ATK secure PKE scheme PKE into
a new PKE scheme Hash-PKE that is RRA-ATK secure for equality-pattern respecting, Φ-restricted adversaries,
simply by hashing the random input together with the public key and message during encryption. In fact, this
is just an application of the hedging approach from [29], and an instance of the randomized-encrypt-with-hash
(REwH) scheme from [2]. Our result then shows that this approach also provides security in our new RRA
setting.

Standard model constructions Having dealt with the ROM, we then turn our attention to constructions in
the standard model. Reinforcing the connections to RKA security, we are able to show that any Φ-restricted
RKA-PRF can be used to build a RRA-ATK secure PKE scheme for Φ-restricted adversaries, thus transferring
security from the RKA setting for PRFs to the RRA setting for PKE. But the limited range of RKA-PRFs
currently available in the literature [26, 3] essentially restricts the obtained RRA-ATK secure PKE scheme to
a class of functions Φ consisting of linear or group-induced functions. To achieve an RRA-ATK secure PKE
scheme for richer classes of functions, we must seek alternative methods of construction.

Unfortunately, we have not been able to achieve our full RRA-ATK security notion for more interesting
function classes using other constructions. So we must resort to exploring alternative versions of this notion in
order to make progress. We relax RRA-ATK security along two independent dimensions: the degree of control
that the adversary enjoys over the public keys under which it can force encryptions for related random values,
and the degree of adaptivity it has in the selection of functions φ ∈ Φ:

– We first consider the situation where the public keys are all honestly generated at the start of the security
game, and the public keys and all but one of the private keys are then given to the adversary — the honest-
key, related randomness attack (HK-RRA) setting. This is a reasonable relaxation in that, in practice, all the
public keys that the adversary might be able to induce a user to encrypt under would be properly generated
by users and then certified by a CA ahead of time. In this setting, we provide a generic construction for
a scheme achieving HK-RRA-ATK security based on combining any IND-ATK secure PKE scheme with
a Correlated-Input Secure (CIS) hash function [20]. Currently known instantiations of CIS hash functions
allow us to obtain selective, HK-RRA-ATK security for Φ-restricted adversaries where Φ is a large class
of polynomial functions (as opposed to the linear functions we can achieve using our RKA-PRF-based
construction). Here, selectivity refers to the adversary committing at the start of the game to the set of
functions it will use.

– We then consider the situation where there is no restriction on public keys, but the adversary is committed
up-front to a vector of functions φ = (φ1, . . . , φq) that it will use in its attack, and where security is in the
end quantified over all choices of φ from some set Φ. This quantification is subtly different from allowing
the adversary a fully adaptive choice of functions φ ∈ Φ (for a detailed discussion, see Section 3). In this
situation, we refer to the function-vector, related randomness attack (FV-RRA) model. Here, we are able to
give a direct construction for a PKE scheme that is FV-RRA-ATK secure solely under the DDH assumption,
assuming the component functions φi of φ are simultaneously hard to invert on a random input. Our scheme
is inspired by a PKE scheme of Boneh et al. [12] that is secure in the so-called auxiliary input setting, wherein
the adversary is given a hard-to-invert function of the secret key as part of its input. By swapping the roles
of secret key and randomness in the Boneh et al. scheme, we are able to obtain security in a setting where
a hard-to-invert function of the encryption randomness is leaked to the adversary. This leakage is then
sufficient to allow us to simulate the encryptions for adversarially chosen public keys. For technical reasons,
to obtain a construction, we must also limit our adversary to using the identity function when accessing its
LR oracle.

proc. Initialise(λ):

b←$ {0, 1};
(pk, sk)←$ PKE.K(1λ);
S ← ∅; Return pk

proc. LR(m0,m1):

c←$ PKE.E(pk,mb)
S ← S ∪ {c}
return c

proc. Dec(c):

If c ∈ S, return ⊥
Else return PKE.D(sk, c)

proc. Finalise(b′):

If b = b′, return 1

Fig. 1. Game IND-CCA for PKE.

To summarise, in the standard model, we can achieve our full security notion, RRA-ATK security, but only
for a limited class of functions Φ (inherited from known results on RKA-PRFs), while we can achieve alternative
security notions for richer classes Φ.

1.3 Future Directions

In this paper, we concentrate on PKE, but RRA security notions can be developed for other primitives. As
previously noted, the case of signatures is quite simple, provided one is prepared to extend a scheme’s private
key. We would expect symmetric key encryption and key exchange primitives to be more complex. Also as noted
above, our RRA setting is related to the RKA setting, and it is an open problem to develop these connections
further, possibly by considering a combined RKA/RRA setting.

2 Preliminaries

Throughout the paper we will use λ ∈ N to denote the security parameter, which will sometimes be written
in its unary representation, 1λ. We denote by y ← x the assignment of y to x, and by s ←$ S we denote the
selection of an element s uniformly at random from the set S. The notation [n] represents the set {1, 2, . . . , n}.
We let FF(K,D,R) denote the set of all families of functions F : K ×D → R.

All our security games and proofs will utilise code-based games and the associated language. Here we briefly
recall the basic definitions from [8]. A game consists of at least two procedures. We begin with Initialise, which
assigns starting values to all variables and then gives outputs, if there are any, to the adversary. The adversary
A may then submit queries to the oracle procedures, and when A halts (and possibly outputs a value) the
Finalise procedure begins. Finalise will take the output from A (if there is one) as its input and will output
its own value. The value output by Finalise is defined to be the output of the game. We write P[GA ⇒ b] to
denote the probability that game G outputs bit b when run with A. However, in some proofs we will use the
notation AG ⇒ b. This means that the adversary outputs b when run with the game G. We will occasionally
use the notation A(x) ⇒ b, which denotes adversary A outputting b when given the input x. For brevity, in
what follows ATK will denote either CPA or CCA, where theorems or statements apply to both games. Any
proofs or figures will refer to the CCA setting, but may be easily modified to the CPA case.

2.1 Public Key Encryption

We denote a specific PKE scheme by PKE = (PKE.K, PKE.E, PKE.D). All three algorithms are polynomial-time.
The randomised key generation algorithm PKE.K takes the security parameter as its input and outputs a key
pair (pk, sk). The encryption algorithm, on input a message m ∈M and a public key pk chooses random coins
from Rnd and uses these coins to output a ciphertext c. The decryption algorithm is deterministic. Its inputs
are a private key sk and a ciphertext c. The algorithm either outputs a message m or an error symbol ⊥. We
require the scheme PKE to satisfy the correctness property. That is, for all λ ∈ N, all all pairs (pk, sk) output
by the key generation algorithm, and all messages m ∈M, we require that PKE.D(sk, PKE.E(pk,m)) = m.

Definition 1. The advantage of an IND-ATK adversary A against a scheme PKE is

Advind-atk
PKE,A (λ) := 2 · P[IND-ATKAPKE(λ)⇒ 1]− 1

where game IND-ATK is shown in Figure 1. A scheme PKE is IND-ATK secure if the advantage of any
polynomial-time adversary is negligible in the security parameter λ.

2.2 Data Encapsulation Mechanisms

We define a DEM DEM = (DEM.K, DEM.E, DEM.D) in the natural way. The three algorithms are polynomial-time.
Key generation takes the security parameter as an input and outputs a key K. The encryption algorithm takes
a message m ∈MDEM

λ and a key K as its inputs, chooses random coins from RndDEMλ , and outputs a ciphertext c.
Decryption takes a key K and a ciphertext c. The output is either a message m or an error symbol ⊥. Again we
require the correctness property, so that for all K output by the key generation algorithm and all m, we have
DEM.D(K, DEM.E(K,m)) = m.

proc. Initialise(λ):

b←$ {0, 1};
K ←$ DEM.K(1λ);
S ← ∅

proc. LR(m0,m1):

c←$ DEM.E(K,mb)
S ← S ∪ {c}
return c

proc. Dec(c):

If c ∈ S, return ⊥
Else return DEM.D(K, c)

proc. Finalise(b′):

If b = b′, return 1

Fig. 2. Game IND-CCA for a DEM DEM.

proc. Initialise(λ):

K ←$ Keysλ

proc. Function(x):

Return F (K,x).

proc. Finalise(b):

return b

proc. Initialise(λ):

FunTab← ∅

proc. Function(x):

If FunTab[x] =⊥, then
FunTab[x]←$ Rngλ

Return FunTab[x].

proc. Finalise(b):

return b

Fig. 3. Games for PRF security. Game PRFReal is on the left, PRFRand on the right.

Definition 2. The advantage of an IND-ATK adversary A against a scheme DEM is

Advind-atk
DEM,A (λ) := 2 · P[IND-ATKADEM(λ)⇒ 1]− 1

where game IND-ATK is shown in Figure 2. A scheme DEM is IND-ATK secure if the advantage of any
polynomial-time adversary is negligible in the security parameter λ.

2.3 Pseudorandom Functions

Definition 3. Let F : Keysλ × Domλ → Rngλ be a family of functions. The advantage of a PRF adversary A
against F is

Advprf
F,A(λ) := P[PRFRealAF (λ)⇒ 1]− P[PRFRandA$ (λ)⇒ 1]

where the games PRFReal and PRFRand are defined in Figure 3. We say F is a secure PRF family if the
advantage of any polynomial-time adversary is negligible in the security parameter λ.

Related Key Attack Pseudorandom Function

Definition 4. Let F : Keysλ×Domλ → Rngλ be a family of functions. The advantage of an RKA-PRF adversary
A against F is

Advrka-prf
F,A (λ) := P[RKA-PRFRealAF (λ)⇒ 1]− P[RKA-PRFRandA$ (λ)⇒ 1]

where the games PRFReal and PRFRand are defined in Figure 4. We say F is Φ-RKA-PRF secure if the
advantage of any Φ-restricted, polynomial-time adversary is negligible in the security parameter λ.

2.4 Key Derivation Functions

Definition 5. Let λ be a security parameter. Consider a polynomial-time computable function f that maps
from D(λ) to R(λ). The advantage of a KDF adversary A against f is

Advkdf
f,A(λ) := P[KDFRealAf (λ)⇒ 1]− P[KDFRandA$ (λ)⇒ 1]

proc. Initialise(λ):

K ←$ Keysλ

proc. Function(φ, x):

return F (φ(K), x).

proc. Finalise(b):

return b

proc. Initialise(λ):

G← FF(Keysλ, Domλ, Rngλ)
K ←$ Keysλ

proc. Function(φ, x):

return G(φ(K), x).

proc. Finalise(b):

return b

Fig. 4. Games for RKA-PRF security. Game RKA-PRFReal is on the left, RKA-PRFRand on the right.

proc. Oracle:

s←$ D(λ)
return f(s)

proc. Finalise(b):

output b

proc. Oracle:

r ←$ R(λ)
return r

proc. Finalise(b):

output b

Fig. 5. Games for KDF security. Game KDFReal is on the left, KDFRand is on the right.

where games KDFReal and KDFRand are defined in Figure 5. We say f is a secure Key Derivation Function
(KDF) if the advantage of any polynomial-time adversary is negligible in the security parameter λ.

This definition can be extended to allow the adversary to make multiple oracle queries. In the real game, for
query i, a random value si ←$ D(λ) is chosen for each query and the adversary is given f(si). In the random
game, ri ←$ R(λ) is chosen for each query and the adversary is given ri. Then, using a hybrid argument, we
can show that, for any t-query adversary A, there is a (single-query) KDF adversary B such that:

Advt-kdff,A (λ) ≤ t ·Advkdf
f,B(λ)

where Advt-kdff,A (λ) denotes the advantage of t-query KDF adversary A against f .

2.5 Computational Assumption

Definition 6 (Decisional q-Diffie-Hellman Inversion (q-DDHI) Problem). The advantage of an algo-
rithm A in solving the decisional q-Diffie-Hellman inversion problem in a cyclic group G of order p = p(λ),
is

Advq-ddhiG,A (λ) := |P[A(g, gx, gx
2

, . . . , gx
q

, g1/x) = 1]− P[A(g, gx, gx
2

, . . . , gx
q

, R) = 1]|

where g is a random generator of G, x←$ Zp, R←$ G, and the probability is taken over the choice of g,R ∈ G,
choice of x ∈ Zp, and the random coins consumed by A.

3 Related Randomness Security for Public Key Encryption

We now formalise our notions of related randomness security for PKE. We give a detailed treatment of our
strongest notion, before sketching restricted versions. The description of our security notions will utilise code-
based games and the associated language (see [8]).

Our strongest security notion, RRA-CCA security, is defined via the game in Figure 6. Here, a challenge
key pair (pk∗, sk∗) for a PKE scheme PKE = (PKE.K, PKE.E, PKE.D) with randomness space Rnd is honestly
generated, and the adversary is considered successful if it wins an indistinguishability game with respect to
messages encrypted under pk∗. Extending the standard PKE setting, the adversary is able to control which
one of polynomially many random values ri ∈ Rnd is used in responding to each encryption query for pk∗;
furthermore, the adversary is able to obtain the encryption of messages of its choice under (possibly maliciously
generated) arbitrary public keys. Extending the model of Yilek [35], our adversary not only specifies which one
of the random values ri is to be used in each query, but also specifies, for each query he makes, a function φ on
Rnd; the value φ(ri) is used for encryption in place of ri. In the CCA setting, the adversary also has access to
a regular decryption oracle for private key sk∗. Note that if the adversary uses only the identity function, then
we recover the Resettability Attack (RA) model of Yilek [35].

It is not difficult to see that, as in the RA setting, an adversary may trivially win this game if no restrictions
are placed on oracle queries.1 We will shortly introduce an equality-pattern respecting definition for adversaries,
designed to prevent trivial wins of this kind. This extends the related RA definition from [35]. However, restric-
tions on the functions φ will also be required. To illustrate the issue, consider as an extreme case the constant
function φC (with φC(r) = C for all r ∈ Rnd). Suppose the adversary submits LR query (m0,m1, j, φC) for any
m0 6= m1 and any j ∈ N; the adversary receives a ciphertext c∗ and then computes c0 = PKE.E(pk∗,m0;C); the
adversary outputs guess b′ = 0 if and only if c∗ = c0. It is easy to see that this adversary wins the RRA-ATK
game with probability 1. This example is analogous to one in the related key attack setting for PRFs in [5].
Hence, we will need to restrict the class of functions which the adversary is allowed to access in its queries to
come from some set Φ, in which case we speak of Φ-restricted adversaries. We have already seen that constant

1 For example, if an adversary requests the encryption of m under the target public key using coins φ(ri),
PKE.E(pk∗,m;φ(ri)), and submits LR query (m,m′, i, φ), then the adversary guesses b is 0 if the two ciphertexts
match, otherwise he guesses b is 1. This adversary wins the game with probability 1. As in the RA setting, such wins
are unavoidable in our setting since encryption essentially becomes deterministic when the same random coins and
functions φ are used.

proc. Initialise(λ):

b←$ {0, 1};
(pk∗, sk∗)←$ PKE.K(1λ);
CoinTab← ∅;
S ← ∅; Return pk∗

proc. Dec(c):

If c ∈ S, then return ⊥
Else return PKE.D(sk∗, c)

proc. LR(m0,m1, i, φ):

If CoinTab[i] =⊥
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk∗,mb;φ(ri))
S ← S ∪ {c}
Return c

proc. Enc(pk,m, i, φ):

If CoinTab[i] =⊥
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk,m;φ(ri))
Return c

proc. Finalise(b′):

If b = b′, return 1

Fig. 6. Game RRA-ATK. (Note that if ATK = CPA, then the adversary’s access to proc. Dec is removed.)

functions must be excluded from Φ if we are to have any hope of achieving our related randomness security
notion.

Thus we have two sets of constraints that we need to consider to prevent trivial wins: those on messages and
randomness indices (analogous to the RA setting from [35]) and those on functions φ (analogous to the RKA
setting for PRFs from [5]). Let us deal with the first set of constraints first and define what it means for an
adversary to be equality-pattern respecting. The following definition is adapted from [35] for our purposes.

Definition 7. Let A be a Φ-restricted adversary in Game RRA-ATK that queries r different randomness indices
to its LR and Enc oracles and makes qi,φ queries to its LR oracle with index i and function φ ∈ Φ. Let Ei,φ be

the set of all messages m such that A makes Enc query (pk∗,m, i, φ). Let (mi,φ,1
0 ,mi,φ,1

1), . . . , (m
i,φ,qi,φ
0 ,m

i,φ,qi,φ
1)

be A’s LR queries for index i ∈ [r] and φ ∈ Φ. Suppose that for all pairs (i, φ) ∈ [r]×Φ and for all j 6= k ∈ [qi,φ],
we have:

mi,φ,j
0 = mi,φ,k

0 iff mi,φ,j
1 = mi,φ,k

1

and that, for all pairs (i, φ) ∈ [r]× Φ, and for all j ∈ [qi,φ], we have:

mi,φ,j
0 /∈ Ei,φ ∧mi,φ,j

1 /∈ Ei,φ.

Then we say that A is equality-pattern respecting.

Notice that if the adversary is restricted to using only the identity function, then this definition reduces to
the equality-pattern respecting definition for the RA setting, cf. [35, Appendix A].

Definition 8. We define the advantage of an equality-pattern respecting, RRA-ATK adversary A against a
PKE scheme PKE to be:

Advrra-atk
PKE,A (λ) := 2 · P[RRA-ATKAPKE(λ)⇒ 1]− 1.

A PKE scheme PKE is said to be Φ-RRA-ATK secure if the advantage of any Φ-restricted, equality-pattern
respecting, RRA-ATK adversary against PKE that runs in polynomial time is negligible in the security parameter
λ.

3.1 Alternative security notions

The above definition for Φ-RRA-ATK security is very powerful: it allows an adversary to submit any public key
to its encryption oracle and allows the adversary to adaptively choose the functions φ, the only restriction being
that they lie in Φ. In Theorem 3 we will exhibit conditions that are both necessary and sufficient for achieving
security in this sense in the ROM (given a starting PKE scheme that satisfies the usual definition of IND-ATK
security). In the standard model, we will give a construction that relies on RKA-PRFs. Since constructions for
these are currently very limited in terms of the function classes they can handle, we will now consider alternative
versions of the Φ-RRA-ATK notion.

The first alternative notion we consider is called Honest Key Related Randomness (HK-RRA) security. The
security game is given in Figure 7 and has two parameters, λ and `. Informally, the game itself generates a
polynomial number ` of key pairs and returns the public keys to the adversary. The adversary then chooses which
public key he wishes to be the target key, and is given the private keys corresponding to all the non-target public
keys. Meanwhile, the adversary’s queries to its Enc oracle are restricted to using the public keys generated by
the game. Suitable Φ-HK-RRA-ATK security notions follow by analogy with our earlier definitions.

One may consider notions intermediate between Φ-RRA-ATK security and Φ-HK-RRA-ATK security. For
example, a registered key notion could be defined, in which the adversary chooses and registers key pairs (pk, sk),
with registration involving a test for validity by some procedure, and all queries involve only registered public
keys. One may also consider weaker variants of these notions in which the adversary’s choice of functions φ is
non-adaptive (or selective). That is, the adversary must submit a set of functions {φ} ⊂ Φ of polynomial size

proc. Initialise(λ, `):

b←$ {0, 1};
funchoice← false;
Keys← ∅; Functions← ∅;
target← false;
CoinTab← ∅;
S ← ∅; (pk∗, sk∗)← ∅
For i = 1 to `

(pki, ski)←$ PKE.K(1λ)
Keys← Keys ∪ pki

Return Keys

proc. Target(j):

If target = true, return ⊥
Else (pk∗, sk∗)← (pkj , skj)
target← true

Return {ski}i6=j

proc. Enc(pk,m, i, φ):

If target = false, return ⊥
If pk /∈ Keys, return ⊥
If CoinTab[i] =⊥,

CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk,m;φ(ri))
Return c

proc. Dec(c):

If target = false, return ⊥
If c ∈ S, then return ⊥
Else return PKE.D(sk∗, c)

proc. LR(m0,m1, i, φ):

If target = false,
return ⊥

If CoinTab[i] =⊥,
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk∗,mb;φ(ri))
S ← S ∪ {c}
Return c

proc. Finalise(b′):

If b = b′, return 1

Fig. 7. Game `-HK-RRA-ATK. (Note that if ATK = CPA, then the adversary’s access to proc. Dec is removed.)

proc. Initialise(λ):

b←$ {0, 1};
(pk∗, sk∗)←$ PKE.K(1λ);
CoinTab← ∅; S ← ∅;
return pk∗

proc. Dec(c):

If c ∈ S, then return ⊥
Else return PKE.D(sk∗, c)

proc. LR(m0,m1, i):

If CoinTab[i] =⊥,
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk∗,mb; ri)
S ← S ∪ {c}
return c

proc. Enc(pk,m, i, j):

If CoinTab[i] =⊥,
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk,m;φj(ri))
return c

proc. Finalise(b′):

If b = b′, return 1

Fig. 8. Game φ-FV-RRA-ATK, where φ = (φ1, . . . , φq). (As usual, if ATK = CPA, then the adversary’s access to proc.
Dec is removed.)

to the game before he is allowed to see the target public key (or set of public keys, if playing in the Honest Key
setting). In this setting, we refer to Φ-sHK-RRA-ATK security.

The final alternative notion we consider is called Function-Vector Related Randomness (FV-RRA) security,
and is based on the game in Figure 8. Here, the adversary is parameterised by a vector of functions φ =
(φ1, . . . , φq), and is limited to using only these functions in its oracle queries. Additionally, we restrict the
adversary by demanding that the LR queries use only the identity function. However, once again, the adversary
has complete freedom over public keys submitted to its encryption oracle. Furthermore, security will be quantified
over all choices of vector from a particular class. (Specifically, in our construction in Section 7, we will demand
that security holds over all vectors φ that are simultaneously hard to invert on a common random input r.)
This quantification actually makes our notion rather strong.

Definition 9. Let φ = (φ1, . . . , φq) be a vector of q := q(λ) functions. We define the advantage of an equality-
pattern respecting, φ-FV-RRA-ATK adversary A against a PKE scheme PKE to be:

Adv
φ-fv-rra-atk
PKE,A (λ) := 2 · P[φ-FV-RRA-ATKAPKE(λ)⇒ 1]− 1.

If Φ is a set of vectors of functions, then a PKE scheme PKE is said to be Φ-FV-RRA-ATK secure if, for all
φ ∈ Φ, the advantage of any equality-pattern respecting, φ-FV-RRA-ATK adversary against PKE that runs in
polynomial time is negligible in the security parameter λ.

Comparison of security notions The first alternative security notion, HK-RRA-ATK security, is easily seen
to be a strictly weaker notion than full RRA-ATK security2. Likewise, the selective models are easily seen
to be weaker then their adaptive counterparts. However, the relation between full RRA-ATK security and
FV-RRA-ATK security is not immediately obvious. Aside from the restriction on LR-queries in FV-RRA-ATK
security, there is a subtle distinction between requiring security for all vectors φ of functions from a particular
set Φ and requiring security for a fully adaptive choice of functions φ ∈ Φ. In particular, the former notion
will allow a security reduction to consider multiple runs of an adversary with different random coins for a fixed

2 A separation can be established by considering a scheme where public keys generated by the key generation algorithm
always have a certain bit set to 0, and where the encryption algorithm, given a public key with this bit set to 1 (i.e. a
maliciously generated public key), will expose the randomness used for the encryption.

proc. Initialise(λ):

(pk∗, sk∗)←$ PKE.K(1λ);
CoinTab← ∅;
S ← ∅; Return pk∗

proc. Enc(pk,m, i, φ):

If CoinTab[i] =⊥,
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk,m;φ(ri))
Return c

proc. LR(m0,m1, i, φ):

If CoinTab[i] =⊥,
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
If i ≤ qr − j,

return c← PKE.E(pk∗,m0;φ(ri))
If i > qr − j,

return c← PKE.E(pk∗,m1;φ(ri))
S ← S ∪ {c}
return c

proc. Dec(c):

If c ∈ S, then return ⊥
Else return PKE.D(sk∗, c).

proc. Finalise(b′):

If b = b′, return 1.

Fig. 9. The game Gj used in the proof of Lemma 1.

choice of function vector φ, whereas the latter notion will leave open the possibility that an adversary will chose
a different sequence of functions φ in each run. Also note that FV-RRA-ATK security guarantees that there is
no choice of φ for which the considered scheme is weak, even if this choice might be computationally hard for
an adaptive adversary to find. Furthermore, the relation between the notions might also be influenced by the
considered class of functions Φ. It remains future work to fully explore and categorise the possible notions of
RRA security.

It is not hard to see that our RRA security notions are incomparable with the CDA security notions of [2].
In the RA setting, Yilek defines only an equivalent of our full RRA-ATK notion; it is clear that RRA-ATK
security is stronger than his RA-ATK security whenever the function set Φ contains the identity function. The
same would carry over to relaxed versions of RA-ATK security.

3.2 A Simplifying Lemma

Lemma 1. Consider an equality-pattern respecting, RRA-ATK adversary A that queries qr distinct random-
ness indices and makes at most qLR LR queries. Then there exists an equality-pattern respecting, RRA-ATK
adversary B that queries at most 1 randomness index and makes at most qLR LR queries such that

Advrra-atk
PKE,A (λ) ≤ qr ·Advrra-atk

PKE,B (λ),

where B runs in approximately the same time as A. In the CCA setting, B makes the same number of decryption
queries as A.

Proof. To keep the notation from becoming too cluttered, we denote by AG(qLR,qr) an adversary A playing the
RRA-ATK game that makes qLR LR queries and queries qr distinct randomness indices. To prove the lemma
we will use an alternative, but equivalent, notion of adversarial advantage, namely:

Advrra-atk
PKE,A (λ) = |P[AG(qLR,qr) ⇒ 1 | b = 0]− P[AG(qLR,qr) ⇒ 1 | b = 1]|.

Notice that we are now interested in the output of the adversary, rather than the output of the game. Let G0

denote the RRA-ATK security game in Figure 6 where b = 0. Let Gqr denote the same game where b = 1. If
games Gj are as defined in Figure 9, then

Advrra-atk
PKE,A (λ) = |P[AG0 ⇒ 1]− P[AGqr ⇒ 1]|

=

∣∣∣∣∣∣
qr−1∑
j=0

P[AGj ⇒ 1]− P[AGj+1 ⇒ 1]

∣∣∣∣∣∣
≤
qr−1∑
j=0

|P[AGj ⇒ 1]− P[AGj+1 ⇒ 1]|,

Without loss of generality, we will assume that games j∗ and j∗ + 1 have the largest difference. Then,

Advrra-atk
PKE,A (λ) ≤ qr · |P[AGj∗ ⇒ 1]− P[AGj∗+1 ⇒ 1]|.

The only difference between games j∗ and j∗+ 1 is in how the LR oracle responds to a query with randomness
index qr − j∗. If A can distinguish between games j∗ and j∗ + 1, then we can use this adversary to build an
adversary B winning the RRA-ATK game and using only 1 randomness index. The Initialise procedure for B’s
RRA-ATK game is run, returning a target public key pk∗ to B. Then adversary B sets up the simulation for A.

Setup
CoinTab← ∅;
S ← ∅

Then B forwards the key pk∗ to A. Adversary B will simulate either game Gj∗ or Gj∗+1 for A by answering
A’s oracle queries as follows:

Enc query (pk,m, l, φ)
If l = qr − j∗, B submits (pk,m, φ) to its Enc oracle. It returns the result to A.
Otherwise, if CoinTab[l] =⊥, B chooses CoinTab[l]←$ Rnd

rl ← CoinTab[l], and B returns PKE.E(pk,m;φ(rl)).
LR query (m0,m1, l, φ)

If l = qr − j∗, B submits (φ,m0,m1) to its LR oracle and returns the result to A.
Otherwise, if CoinTab[l] =⊥, B chooses CoinTab[l]←$ Rnd

rl ← CoinTab[l]
if l < qr − j∗, B returns PKE.E(pk∗,m0;φ(rl))
else if l > qr − j∗, B returns PKE.E(pk∗,m1;φ(rl))

B updates S to include the ciphertext returned to A
Dec query c

If c ∈ S, then B returns ⊥.
Otherwise B submits c to its Dec oracle and the output is returned to A.

When A halts with output bit b′, B halts and outputs the same bit b′.
When b = 0 (and B receives an encryption of m0), it perfectly simulates Gj∗ for A. When b = 1, B provides a
perfect simulation of Gj∗+1. It follows that

Advrra-atk
PKE,A (λ) ≤ qr · |P[AGj∗ ⇒ 1]− P[AGj∗+1 ⇒ 1]|

= qr · |P[B ⇒ 1|b = 1]− P[B ⇒ 1|b = 0]|
= qr ·Advrra-atk

PKE,B (λ).

This completes the proof.

The above lemma shows that we need only consider adversaries that use one randomness index. The lemma
actually applies for all variations of related randomness security considered above, not just our strongest
RRA-ATK notion. This enables us to make a simplifying step at the beginning of all our proofs (at the cost of
a qr factor in all advantages), and to use the following simplified equality-pattern definition in all our proofs:

Definition 10. Let A be a Φ-restricted adversary in Game RRA-ATK that queries 1 randomness index (as-
sumed to be j = 1) to its LR and Enc oracles and makes qφ queries to its LR oracle with function φ. Let Eφ

be the set of all messages m such that A makes Enc query (pk∗,m, 1, φ). Let (mφ,1
0 ,mφ,1

1), . . . , (m
φ,qφ
0 ,m

φ,qφ
1)

be A’s LR queries with function φ and randomness index 1. Suppose that for all φ ∈ Φ and for all j 6= k ∈ [qφ],
we have:

mφ,j
0 = mφ,k

0 iff mφ,j
1 = mφ,k

1

and that, for all φ ∈ Φ and for all j ∈ [qφ], we have:

mφ,j
0 /∈ Eφ ∧mφ,j

1 /∈ Eφ.

Then we say that A is equality-pattern respecting.

Yilek claimed in [35] that a further simplification is possible in his Reset Attack (RA) setting, namely that
there is a reduction from any adversary making q LR queries to an adversary making just one LR query. One
might hope that a corresponding result would be possible in our Related Randomness setting. Only a sketch
proof is given for the RA setting claim in [35], but it appears to be flawed.3 While we do not have a separation
between models with 1 and q > 1 LR queries for either Yilek’s RA or our RRA setting, neither have we been
able to prove the desired simplification from q to 1 LR query.

3 The adversary with one LR query, which we will call A1, is supposed to simulate the game for Aq, the adversary with
q LR queries. Adversary A1 first guesses an index i ∈ {1, . . . , q}. When adversary Aq makes its ith LR query, A1

passes the query to its own LR oracle. For all other queries, A1 is supposed to pass either m0 or m1 to its Enc oracle.
However, this simulation is not always possible because of the necessary equality-pattern restrictions in the RA setting.
For example, an adversary making two LR queries may submit the pairs (m0,m1) and (m1,m0) to its LR oracle,
as these are equality-pattern respecting in the model of [35]. Without loss of generality, the simulating adversary A1

passes the pair (m0,m1) to its LR oracle, and then, for LR query (m1,m0), submits either m0 or m1 to its Enc oracle.
However, A1 would no longer be equality-pattern respecting, even though the original adversary is. Fortunately, the
main construction in [35] is still secure against an adversary making multiple LR queries.

3.3 Function Restrictions

Above, we briefly alluded to the fact that the class of functions Φ used by our RRA adversaries must be
restricted in various ways. The example given showed that constant functions must always be excluded. Here,
we exhibit much stronger necessary conditions on Φ that must be satisfied, namely output-unpredictability and
collision-resistance. These notions are closely related to notions with the same names arising in the setting of
related key security for PRFs that was considered in [5]. Here, however, we are concerned with functions acting
on the randomness used in PKE schemes rather than on PRF keys.

Definition 11 (Output-unpredictability for Φ). Let Φ be a set of functions from Rnd to Rnd. Let α and β
be positive integers. Then the (α, β)-output-unpredictability of Φ is defined to be:

InSecupΦ (α, β) = max
P⊆Φ,X⊆R,|P |≤α,|X|≤β

{P [r ←$ Rnd : {φ(r) : φ ∈ P} ∩X 6= ∅]} .

Definition 12 (Collision-resistance for Φ). Let Φ be a set of functions from Rnd to Rnd. Let α be a positive
integer. Then the α-collision-resistance of Φ is defined to be:

InSeccrΦ (α) = max
P⊆Φ,|P |≤α

{P [r ←$ Rnd : |{φ(r) : φ ∈ P}| < |P |]} .

Regarding these two definitions, we have the two following results.

Theorem 1 (Necessity of output-unpredictability). Let Φ be a class of functions from Rnd to Rnd. Suppose
there are natural numbers α = poly1(λ) and β = poly2(λ) such that InSecupΦ (α, β) = p, where p := p(λ) is non-
negligible. Then no PKE scheme can be RRA-ATK secure with respect to the class of functions Φ.

Proof. By definition, there exists a set P ⊆ Φ and a set X ⊆ Rnd, both of polynomial size, such that

P [r ←$ Rnd : {φ(r) : φ ∈ P} ∩X 6= ∅] = p.

We will construct a polynomial-time adversary A that has advantage p against any scheme PKE. Let pk∗ denote
the target public key in the RRA-ATK security game. The adversary, A, chooses two distinct messages m0 and
m1 and computes E0 = {PKE.E(pk∗,m0; r) : r ∈ X} and E1 = {PKE.E(pk∗,m1; r) : r ∈ X}. Then A requests
LR oracle outputs for (m0,m1, 1, φ) for all φ ∈ P . Let Eφ = {PKE.E(pk∗,mb;φ(r1)) : φ ∈ P} denote the set of
responses to A’s LR queries. If Eb ∩Eφ 6= ∅, then A outputs b, otherwise A chooses b←$ {0, 1} and outputs b.
Let pred denote the event that Eb ∩ Eφ 6= ∅, then

Advrra-atk
PKE,A (λ) = 2 · P[RRA-ATKAPKE(λ)⇒ 1]− 1

= 2 · P[RRA-ATKAPKE(λ)⇒ 1 | pred] · P[pred]

+2 · P[RRA-ATKAPKE(λ)⇒ 1 | pred] · P[pred]− 1

= 2

(
p+

1

2
(1− p)

)
− 1

= p.

The third line follows because if pred occurs then A wins with probability 1, whilst if pred does not occur
then A guesses and hence wins with probability 1/2. No Dec queries are required for this attack, so it applies
to both the CPA and CCA settings.

Theorem 2 (Necessity of collision-resistance). Let Φ be a class of functions from Rnd to Rnd. Suppose
there is a natural number α = poly1(λ) such that InSeccrΦ (α) = p, where p := p(λ) is non-negligible. Then no
PKE scheme can be RRA-ATK secure with respect to the class of functions Φ.

Proof. By definition, there exists a subset P ⊆ Φ of polynomial size such that

P [r ←$ Rnd : |{φ(r) : φ ∈ P}| < |P |] = p.

We construct a polynomial-time adversary A that has advantage p/2. Let the target public key be pk∗. Then
A chooses |P |+ 1 distinct messages m0,m1, . . . ,m|P | and assigns an index to each φ ∈ P . For i from 1 to |P |,
A requests LR oracle output for query (m0,mi, 1, φi). Let the output of the LR oracle for the ith query be ci.
Let coll denote the event that φi(r1) = φj(r1) for some i 6= j, where r1 is the randomness chosen by the game
for index 1. Adversary A outputs b = 0 if ci = cj for some i 6= j. Otherwise, A chooses b←$ {0, 1} and outputs
b. Then,

Alg. Hash-PKE.K(1λ):

(pk, sk)←$ PKE.K(1λ)

Alg. Hash-PKE.E(pk,m):

r ←$ Rnd

c← PKE.E(pk,m;H(pk||m||r))
return c

Alg. Hash-PKE.D(sk, c):

m← PKE.D(sk,m)
return m

Fig. 10. Scheme Hash-PKE built from a PKE scheme PKE and a hash function H.

Advrra-atk
PKE,A (λ) = 2 · P[RRA-ATKAPKE(λ)⇒ 1]− 1

= 2 · P[RRA-ATKAPKE(λ)⇒ 1 | b = 0 ∧ coll] · P[b = 0 ∧ coll]

+2 · P[RRA-ATKAPKE(λ)⇒ 1 | b = 0 ∧ coll] · P[b = 0 ∧ coll]− 1

= 2

(
1

2
p+

1

2
(1− 1

2
p)

)
− 1

=
1

2
p.

This follows because if b = 0 and coll occurs (which happens with probability p/2) then A wins with probability
1, whilst if coll does not occur or b = 1 then A guesses and hence wins with probability 1/2. No Dec queries
are required for this attack, so this argument applies equally well to both the CPA and CCA settings.

We note that many classes of functions that arise from practical attacks satisfy the output-unprecdictability and
collision-resistance conditions. For example, the class of functions that flip bits at certain positions, or the class
of functions that fix the value of certain bits, are both output-unpredictable and collision-resistant (provided at
least a polynomial number of bits are not fixed, in the latter case).

4 Construction in the Random Oracle Model

We have seen that the class of functions Φ must be collision-resistant and output-unpredictable in order to be
secure against related randomness attacks. In the ROM, these two conditions are in fact also sufficient to ensure
security in our strongest RRA-ATK models, in the following sense: given a hash function H, any PKE scheme
PKE that is IND-ATK secure, and a set of functions Φ that is both collision-resistant and output-unpredictable,
the scheme Hash-PKE constructed from PKE as in Figure 10 is Φ-RRA-ATK secure in the ROM. The next result
formalises this claim.

Theorem 3. Suppose A is a Φ-restricted, equality-pattern respecting adversary in the RRA-ATK game against
the scheme Hash-PKE defined in Figure 10. Suppose A requests encryptions for qφ distinct functions, queries qr
randomness indices, and makes qRO random oracle queries. Then there exists an IND-ATK adversary C against
PKE such that:

Advrra-atk
Hash-PKE,A(λ) ≤ qr · qLR ·Advind-atk

PKE,C (λ) + 2qr · InSecΦcr(qφ) + 2qr · InSecΦup(qφ, qRO).

Adversary C’s running time is approximately the same as that of A. In the CCA game, C makes the same
number of decryption queries as A.

Proof. First, we invoke Lemma 1, so that we now only have to prove the theorem for an adversary using just
one randomness value, which we assume to be r∗. Without loss of generality, we assume that queries to the
random oracle take the form pk||m||r, where pk is a public key, m is a message and r is a randomness value. Let
pred denote the event that A makes a query X = pk||m||r to the random oracle and this value X is used by
the Enc or LR oracle as an input to the random oracle to encrypt a message m with randomness φ(r∗) under
public key pk. Let coll denote the event that A queries distinct functions φ1 and φ2 such that φ1(r∗) = φ2(r∗).
Then

Advrra-atk
Hash-PKE,A(λ) = 2 · P[RRA-RO-ATKAHash-PKE ⇒ 1]− 1

≤ 2 ·
(
P[RRA-RO-ATKAHash-PKE ⇒ 1 | coll ∨ pred] + P[coll ∨ pred]

)
− 1

≤ 2 · P[IND-ATKBPKE ⇒ 1]− 1 + 2 · P[coll] + 2 · P[pred]

≤ Advind-atk
PKE,B (λ) + 2 · InSecΦcr(qφ) + 2 · InSecΦup(qφ, qRO)

≤ qLR ·Advind-atk
PKE,C (λ) + 2 · InSecΦcr(qφ) + 2 · InSecΦup(qφ, qRO).

Alg. PRF-PKE.K(1λ):

(pk, sk)←$ PKE.K(1λ)

Alg. PRF-PKE.E(pk,m):

r ←$ Rnd

r′ ← Fr(pk||m)
c← PKE.E(pk,m; r′)
return c

Alg. PRF-PKE.D(sk, c):

m← PKE.D(sk, c)
return m

Fig. 11. Scheme PRF-PKE built from a standard PKE scheme, PKE and a PRF, F .

The third line follows because if neither coll nor pred occurs, then the inputs to the random oracle are
distinct and unknown, so the outputs may be replaced with random values chosen independently and uniformly
at random. Hence, a standard IND-ATK adversary B can simulate this game for A. For A’s Enc queries, B
chooses a fresh random value and uses this to encrypt. For LR queries, B forwards the message pair to his
own LR oracle. Dec queries are forwarded to B’s Dec oracle and B returns a random value for random oracle
queries. From A’s perspective, B provides a perfect simulation. When A outputs a bit, B outputs the same bit.
The final line comes from a straightforward hybrid argument. B is allowed multiple LR queries, but this may
be simulated by a standard IND adversary that is allowed only 1 LR query, with a security loss. The simulator
C guesses an index j ∈ {1 . . . , qLR} and forwards the target public key. For B’s i-th query, if i < j (resp. i > j)
C encrypts m0 (resp. m1) with fresh randomness and returns the ciphertext to B. If i = j, C forwards (m0,m1)
to his own LR oracle and forwards the output to B. At the end of the simulation C outputs the same bit as B.
This completes the proof.

Bellare et al. [2] introduced the randomized-encrypt-with-hash (REwH) method to protect against random-
ness failures in public key encryption. This method amounts to incorporating as much context as possible via
hashing when setting up randomness. It was further developed in [29] as a general purpose technique applicable
to multiple cryptographic primitives. The construction in Figure 10 can be seen as an instance of this method,
in that the “random value” used during encryption is replaced with a hash of the public key, the message to
be encrypted, and the actual random value. Theorem 3 then shows that hedging in this way not only protects
against the various forms of randomness failure considered in [2, 29], but also protects against failures in our
related randomness setting, to the maximum extent possible.

Now that we have shown a necessary and sufficient condition for RRA security in the ROM, the challenge is
to extend our results to the standard model. The remainder of this paper is concerned with achieving this goal.

5 Related Randomness Security for PKE from RKA-PRFs

Since the RA setting of [35] is a special case of our RRA setting, an obvious way to try to achieve RRA security
is to extend the main construction from [35]. That construction combines a PRF with an IND-ATK secure PKE
scheme. Specifically, the randomness r is used as a key to the PRF, and the input to the PRF is the “context”
pk||m; the output from the PRF is then used as the actual randomness for encryption. This construction extends
directly to our setting, and security is guaranteed against Φ-restricted adversaries in our strongest RRA-ATK
models, under the assumption that the PRF is Φ-RKA-secure (i.e. secure against related key attacks for the
same class of functions Φ). Thus the construction transfers RKA security for PRFs to RRA-ATK security for
PKE. Figure 11 formalises the construction, and Theorem 4 our security result. Notice that our RO scheme
in Section 4 may be interpreted as an instantiation of the scheme in Figure 11, since a random oracle can be
viewed as an (unkeyed) RKA-PRF.

Theorem 4. Suppose A is a Φ-restricted, equality-pattern respecting adversary in the RRA-ATK game against
the scheme PRF-PKE defined in Figure 11. Suppose A makes qLR LR queries, qs Enc queries, and uses qr
randomness indices. Then there exists a Φ-restricted RKA-PRF adversary B and an IND-ATK adversary C
such that

Advrra-atk
PRF-PKE,A(λ) ≤ qLR · qr ·Advind-atk

PKE,C (λ) + 2qr ·Advrka-prf
F,B (λ).

Adversaries B and C run in approximately the same time as A. Adversary C makes 1 LR query and the same
number of Dec queries as A. Adversary B makes at most qLR + s queries to its oracle.

Proof. We first apply Lemma 1, so that we may concentrate on an adversary using just one randomness value.
Let G0 be the real RRA-ATK security game played by an adversary A against the scheme PRF-PKE and let G1

be the game where outputs of the PRF F are replaced with values chosen uniformly at random. That is, in
G1, each encryption uses fresh random coins rather than using outputs from F . We first claim that there is an
adversary B against the Φ-RKA-PRF security of F such that:

P[GA0 ⇒ 1]− P[GA1 ⇒ 1] ≤ Advrka-prf
F,B (λ)

Our construction of Adversary B is as follows. Adversary B flips a bit b and generates a key pair (pk∗, sk∗).
Then, B gives pk∗ to A and runs A. When A submits an Enc query (pk,m, 1, φ), B sends (φ, pk||m) to its

oracle, uses the output, r′ to encrypt, so that c ← PKE.E(pk,m; r′), and returns c to A. When A submits
an LR query (m0,m1, 1, φ), B sends (φ, pk∗||mb) to its oracle and uses the output, r′, to encrypt, setting
c← PKE.E(pk∗,mb; r

′) and returning c to A. In the CCA game, B generated sk∗ so he may use this to respond
to any decryption queries. At the end of the simulation, when A outputs a bit b′, B outputs 1 if and only if
b = b′. If B is in the real world, he simulates G0, otherwise he simulates G1.

Now adversary A’s queries in game G1 can be simulated by an IND-ATK adversary C against PKE as follows.
The adversary C must guess an index j ∈ {1, . . . , qLR}. For the i-th LR query made by A, when i < j (resp.
i > j) C responds with an encryption of m0 (resp. m1). For the j-th LR query made by A, C forwards the
query to his own LR oracle and returns the output. At the end of the simulation C outputs the same bit as A
playing G1. A standard hybrid argument shows that:

2 · P[GA1 ⇒ 1]− 1 ≤ qLR ·Advind-atk
F,C (λ).

Hence,

Advrra-atk
PRF-PKE,A(λ) = 2 · P[GA0 ⇒ 1]− 1

= 2(P[GA0 ⇒ 1]− P[GA1 ⇒ 1]) + 2 · P[GA1 ⇒ 1]− 1

≤ 2 ·Advrka-prf
F,B (λ) + qLR ·Advind-atk

F,C (λ).

Combining with the randomness reduction lemma gives the desired result.

The previous theorem is seductively simple, but currently of limited application because the set of known
RKA-secure PRFs is rather sparse. RKA-PRFs were first formalised in 2003 by Bellare and Kohno [5], and
some initial (though not fully satisfactory) constructions were given in [5] and [26]. Setting these aside, the only
known constructions are due to Bellare and Cash [3]. They gave a first construction for an RKA-PRF (based
on the Naor-Reingold PRF) which is provably secure under the DDH assumption for related key functions
Φ corresponding to component-wise multiplication on the key-space (Z∗p)n+1. They also provided a second
construction achieving a similar result under the DLIN assumption. A third construction for related key functions
Φ corresponding to component-wise addition on the key-space (Zp)n was recently withdrawn by the authors of
[3].

The limited nature of existing RKA-PRF families forces us to find alternative approaches to achieving
security in the RRA setting. The application for RKA-PRFs implied by Theorem 4 also provides yet more
motivation for the fundamental problem of constructing RKA-PRFs for richer classes of related key function.

6 Related Randomness PKE from CIS Hash Functions

To address some of the limitations encountered in the previous approach, we show how a PKE scheme secure
in the RRA setting can be constructed using correlated-input secure (CIS) hash functions as introduced in [20].
While the currently known instantiations of CIS hash functions only allow us to obtain selective HK-RRA-ATK
security, we are able to obtain security for a large class of polynomial functions, as opposed to linear functions
to which the previous construction is currently restricted.

In its strongest form, a CIS hash function h (with key k) will yield output hk(x) which is pseudorandom, even
when given the hash value of multiple correlated input values (hk(φ1(x)), . . . , hk(φq(x))), where the correlation
functions φ1, . . . , φq are maliciously chosen. This type of CIS hash function is closely related to RKA-secure
PRFs. In fact, the authors of [20] show that given a CIS hash function h, an RKA-secure weak PRF F can be
obtained simply by exchanging the role of the key and the input of h:

FK(x) := hx(K).

Recall that weak PRF security does not allow an adversary to choose the function inputs, but instead, the
inputs are chosen uniformly at random in the security game.

The authors of [20] furthermore give a concrete construction of a CIS hash function secure for a class of
correlation functions consisting of uniform-output4 polynomials of bounded degree, albeit in a restricted security
model where the adversary’s function queries are non-adaptive. This then yields a non-adaptive, RKA-secure
weak PRF.

Unfortunately, such a PRF this is not sufficient for our purposes. Surprisingly, however, by making a relatively
simple modification to the above construction of PRFs from CIS hash functions, it is possible to obtain a
primitive similar to an RKA-secure (standard) PRF. More specifically, consider a CIS hash function h and a

4 A polynomial is said to be a uniform-output polynomial if its output range is equal to its domain i.e. evaluating the
polynomial on all values in the domain will again yield the elements of the domain.

proc. Initialise(λ, `):

(K,D,R, h)← GenFun(1λ)
For i = 1 to `

ki ←$ K
x←$ D
b←$ {0, 1}
S ← ∅
func← false

chal← false

return (K,D,R, h)

proc. Functions(φ1, . . . , φq):

If func = true, return ⊥
func← true

return k1, . . . , k`

proc. Hash(i, j):

If func = false

or chal = true,
return ⊥

S ← S ∪ {(i, j)}
return hki(φj(x))

proc. Chal(i∗, j∗):

If func = false

or chal = true,
return ⊥

If (i∗, j∗) ∈ S,
return ⊥

y0 ←$ R
y1 ← hki∗ (φj∗(x))
chal← true

return yb

proc. Finalise(b′):

If b = b′, return 1

Fig. 12. Game `-MK-SCI-PR for a family H of keyed hash functions defined by GenFun.

Alg. CI-Hash-PKE.K(1λ):

(pk, sk)←$ PKE.K(1λ)

k ←$ CI-HASH.K(1λ)

(p̂k, ŝk)← (pk||k, sk)

Alg. CI-Hash-PKE.E(p̂k,m):

(pk||k)← p̂k
r ←$ Rnd

r′ ← hk(r)

r′′ ← Fr′(p̂k||m)
c← PKE.E(pk,m; r′′)
return c

Alg. CI-Hash-PKE.D(ŝk, c):

m← PKE.D(ŝk, c)
return m

Fig. 13. Scheme CI-Hash-PKE built from PKE scheme PKE, PRF F , and hash function family H.

standard PRF f . We introduce a public parameter c of F which will correspond to the key for h, and then,
instead of using the output of h directly, we use h to derive a key for f . More specifically, we define

Fc,K(x) := fhc(K)(x).

Whilst not strictly an RKA-secure PRF due to the presence of the public parameter c, this primitive allows
adaptively chosen inputs x, while remaining secure under related key attacks. This ‘partial’ RKA-secure PRF
will allow us to obtain HK-RRA-ATK secure encryption schemes for the function families of the underlying
CIS hash function h. However, to achieve this, we need to extend the definitions and theorems of [20] to the
multi-key setting (reflecting the fact that in the HK-RRA setting, our adversary can interact with multiple
public keys).

We formally define multi-key selective correlated-input pseudorandomness (MK-SCI-PR) for a family of
keyed hash functions via the security game shown in Figure 12. The definition is selective in the sense that the
adversary is required to submit the correlation functions before seeing the hash function keys used in the game.
As in the definition of related randomness security, we consider Φ-restricted adversaries i.e. adversaries who are
restricted to submit correlation functions belonging to a given class of functions Φ.

Definition 13. A family H of keyed hash functions is said to be (Φ, `)-MK-SCI-PR secure if for all Φ-restricted
adversaries A, the advantage of A against H, defined as

Adv`-mk-sci-pr
H,A (λ) := 2 · P[`-MK-SCI-PRAH(λ)⇒ 1]− 1,

is negligible in the security parameter λ.

Based on an ordinary PKE scheme PKE, a PRF F , and a family of hash functions H, we construct a PKE
scheme CI-Hash-PKE as shown in Figure 13. The following theorem establishes the selective `-HK-RRA-ATK
security of this scheme based on the IND-ATK security of PKE, the multi-key selective CIS security of H, and
the (regular) pseudorandomness of F .

Theorem 5. Suppose A is a Φ-restricted, equality pattern respecting adversary in the selective `-HK-RRA-ATK
game against the scheme CI-Hash-PKE in Figure 13. Suppose A makes qLR LR queries, uses qr randomness in-
dices, and uses qφ functions in its oracle queries. Then there exists a Φ-restricted, multi-key, selective correlated-
input hash adversary B, a PRF adversary C and an IND-ATK adversary D such that

Adv`-shk-rra-atkCI-Hash-PKE,A(λ) ≤ 2qφ · qr ·Adv`-mk-sci-pr
H,B (λ) + 2qφ · qr ·Advprf

F,C(λ)

+` · qLR · qr ·Advind-atk
PKE,D (λ) +

`2 · qr
|HashKeySpace|

.

Adversaries B, C and D run in approximately the same time as A. Adversary C makes at most qLR queries, and
D makes 1 LR query and as many Dec queries as A.

Proof. First, we invoke Lemma 1, so that we now only have to prove the theorem for an adversary using just
one randomness value. We prove the theorem via a sequence of game hops and hybrid arguments. Let G0 be
the real correlated-input hash PKE game, which is the non-adaptive version of the game in Figure 7. The game
G1 is the same except for queries on the target key. Rather than using the hash function, the game picks a
uniformly random output for each function and uses this value as a key for the PRF.

Adv`-hk-rra-atkCI-Hash-PKE,A(λ) = 2 · P[GA0]− 1

≤ 2 · (P[GA0 | coll] + P[coll])− 1

= 2 · (P[GA0 | coll]− P[GA1 | coll]) + 2 · P[coll]− 1

+2 · P[GA1 | coll].

If there are no collisions in the hash function keys, then the difference between G0 and G1 is negligible. This
can be stated formally as:

Lemma 2. The difference between the success probability of A in games G0 and G1 is bounded by the advnatage
of a multi-key, CI hash adersary B. That is:

P[GA0 | coll]− P[GA1 | coll] ≤ Adv`-mk-sci-pr
H,B (λ).

Proof. We will prove this via a hybrid argument. Let G0,i denote the game in which, for the target public key,
for function k ≤ qφ − i the output of the hash function is real, whereas for function k > qφ − i the output is
random, rather than using the hash function. Notice that G0 = G0,0 and G1 = G0,qφ , so

P[GA0 | coll]− P[GA1 | coll] =

qφ−1∑
n=0

P[GA0,i | coll]− P[GA0,i+1 | coll]

≤ qφ · |P[GA0,j∗ | coll]− P[GA0,j∗+1 | coll]|.

If an adversary can distinguish games j∗ and j∗ + 1 when there are no collisions of hash keys, then we may
use this adversary to construct a multi-key CI hash adversary that distinguishes with the same probability. The
CI-hash adversary B will simulate either the game G0,j∗ or G0,j∗+1 for A.

Adversary B initiates the CI hash game and is given the description of a hash function. Then, B sets up the
game for A.

Setup
b←$ {0, 1}
guess an index j∗ ∈ {0, . . . , qφ − 1}
funchoice← false; target← false

Keys← ∅; Functions← ∅, S ← ∅; (ˆpk∗, ˆsk∗)← ∅

When B has finished this setup procedure, he forwards the description of the hash function to A. Adversary B
will then answer A’s Func and Target queries as follows:

Func query (φ1, . . . , φqφ)
If functions = true, B returns ⊥
Otherwise B forwards the query to his CI challenger and receives k1, . . . , k`
For i = 1 to `, B generates (pki, ski)←$ PKE.K(1λ)

B sets ˆpki = pki||ki, and ˆski = ski
functions← true

B returns { ˆpki} to A
Target query (j)

If target = true, B returns ⊥
otherwise B sets (ˆpk∗, ˆsk∗)← (ˆpkj , ˆskj)
target← true

For i 6= j, B returns { ˆski}

AdversaryA is denied access to the other oracles until target=true and functions=true. When target=true and
functions=true, B submits (i, κ) to his CI Hash oracle for all (i, κ) 6= (j, j∗) Then B submits (j, j∗) to his
CI challenge oracle. B keeps a table of inputs and outputs to the CI oracle. B’s challenge oracle will return a
value r, which is either the real output for hkj (φqφ−j∗(r)) or a uniformly random value. This value r should

be stored alongside (kj , qφ − j∗) in the table. For input pairs (kj , κ), where κ > qφ − j∗, B replaces the oracle
outputs in the table with uniformly random values. (N.B. Adversary B could (and would in practice) generate
this table ‘on-the-fly’ in response to A’s Enc and LR queries. However, to keep our presentation clear and un-
cluttered, we adopt the current approach of generating the whole table before answering A’s Enc or LR queries.)

Enc query (p̂k,m, 1, κ)
If target = false or functions = false, return ⊥
B parses p̂k = pki||ki
B finds (ki, κ, ri,κ) in the look up table and returns PKE.E(pk,m;Fri,κ(p̂k||m))

LR query (m0,m1, 1, κ)
If target = false or functions = false, return ⊥
B finds (kj , κ) in the table and gets corresponding value rj,κ

B returns PKE.E(pk∗,mb;Frj,κ(p̂k
∗
||mb))

B adds the ciphertext to the set S
Dec query (c)

If target = false or functions = false, return ⊥
If c is not in S, B returns PKE.D(skj , c)
Else B returns ⊥

At the end of the simulation, B outputs 1 if A outputs b = b′. If B is in the real world, he simulates G0,j∗

perfectly. In the random world, he simulates G0,j∗+1 perfectly. Hence, we may conclude that

|P[GA0,j∗ | coll]− P[GAj∗+1 | coll]| ≤ Adv`-mk-sci-pr
H,B (λ).

Game 2 is the same as G1, except that, for the target public key, a fresh output is chosen for each encryption
rather than using the PRF. If an adversary can distinguish games 1 and 2 when there are no collisions in the
hash keys, then we may use this adversary to win the PRF game.

Lemma 3. The difference between the success probabilities of any adversary A is bounded by a PRF adversary
B as follows:

P[GA1 | coll]− P[GA2 | coll] ≤ qφ ·Advprf
F,C(λ).

Proof. Let G1,i denote the game in which, for function k ≤ i, a uniformly random value is chosen rather than
using the PRF, whereas for k > i the PRF is used. Observe that G1 = G1,0 and G2 = G1,qφ , from which we see
that

P[GA1 | coll]− P[GA2 | coll] =

qφ−1∑
n=0

P[GA1,i | coll]− P[GA1,i+1 | coll]

≤ qφ · |P[GA1,j∗ | coll]− P[GA1,j∗+1 | coll]|.

If an adversary can distinguish games G1,j∗ and G1,j∗+1, then we may use this adversary to construct a PRF
adversary with the same advantage in the PRF game. The PRF adversary C will simulate either game G1,j∗ or
G1,j∗+1. Adversary C’s setup procedure for the simulation is as follows:

Setup
b←$ {0, 1}
choose an index j∗ ∈ {0, . . . , qφ − 1}
r ←$ Rnd

choose qφ − j∗ − 1 uniformly random PRF keys ρj∗+2, . . . , ρqφ
funchoice← false; target← false

Keys← ∅; Functions← ∅; S ← ∅; (ˆpk∗, ˆsk∗)← ∅

When C finishes this setup procedure, he forwards the description of the hash function to A. Then C responds
to A’s queries as follows:

Func query (φ1, . . . , φqφ)
If functions = true, C returns ⊥
otherwise C chooses hash keys k1, . . . , k` uniformly at random, making sure they are all distinct
For i = 1 to `, C generates (pki, ski)←$ PKE.K(1λ)

C sets ˆpki = pki||ki and ˆski = ski
functions← true

C returns { ˆpki} to A

Target query (j)
If target← true, C returns ⊥
otherwise C sets (ˆpk∗, ˆsk∗)← (ˆpkj , ˆskj)
target← true

For i 6= j, C returns { ˆski}
Enc query (p̂k,m, 1, κ)

C parses p̂k = pki||ki
if i = j,

if κ < j∗ + 1, C chooses r′ ←$ Rnd

else if κ = j∗ + 1, C submits ˆpki||m to his oracle and recieves output r′

else if κ > j∗ + 1, C computes r′ ← Fρκ(p̂k||m)
else C computes r′ ← Fhki (φκ(r))(m)
C returns c← PKE.E(pki,m; r′)

LR query (m0,m1, 1, κ)
if κ < j∗ + 1, C chooses r′ ←$ Rnd

else if κ = j∗ + 1, C submits ˆpkj ||m to his oracle and recieves output r′

else if κ > j∗ + 1, C computes r′ ← Fρκ(p̂kj ||mb)
C returns PKE.E(pk∗,mb; r

′) C adds the ciphertext c to S
Dec query (c)

If c is not in S, C returns PKE.D(skj , c).
Else C returns ⊥

At the end of the simulation, C outputs 1 if and only if A outputs b = b′. If C is in the real world, he simulates
G1,j∗ perfectly. In the random world, he simulates G1,j∗+1 perfectly. Hence, we may conclude that

|P[GA1,j∗ | coll]− P[GA1,j∗+1 | coll]| ≤ Advprf
F,C(λ).

Finally, the game G2 may be simulated by a standard IND-ATK adversary. That is:

Lemma 4. For any adversary A, we may bound A’s advantage by an IND-ATK adversary’s advantage as
follows:

2 · P(GA2 | coll)− 1 ≤ ` · qLR ·Advind-atk
PKE,D (λ).

Proof. Again, we use a hybrid argument. Let G2,i denote the game in which, for the kth LR query, if k ≤ qLR−i,
LR queries are answered with an encryption of m0, whilst if k > qLR − i LR queries are answered with an
encryption of m1.

2 · P(GA2 | coll)− 1 = |P(AG2,0 ⇒ 1 | coll)− P(AG2,qLR ⇒ 1 | coll)|
≤ qLR · |P(AG2,j∗ ⇒ 1 | coll)− P(AG2,j∗+1 ⇒ 1 | coll)|.

If an adversary A can distinguish the games G2,j∗ and G2,j∗+1, then we may construct a standard IND-ATK
adversary that distinguishes with the same advantage.

The IND-ATK adversary D first runs his Initialise procedure and is given a public key pk∗. Then D sets-up
the simulation for A as follows:

Setup
guesses an index j∗ ∈ {0, . . . , qLR − 1}
choose a uniformly random t ∈ {1, . . . , `}
choose r ←$ Rnd

ctr← 1
funchoice← false; target← false

Keys← ∅; Functions← ∅; S ← ∅; (ˆpk∗, ˆsk∗)← ∅

When completed, the IND-ATK adversary D forwards the description of the hash function to A and answers
A’s oracle queries as follows:

Func query (φ1, . . . , φqφ)
If functions = true, D returns ⊥
otherwise D chooses hash keys k1, . . . , k` uniformly at random, making sure they are all distinct
For i ∈ {1, . . . , t− 1, t+ 1, . . . , `} D generates (pki, ski)←$ PKE.K(1λ)
D sets pkt = pk∗

For i = 1 to `, D sets ˆpki = pki||ki and ˆski = ski
functions← true

D returns { ˆpki} to A

Target query (j)
If target = true, D returns ⊥
D sets (ˆpk∗, ˆsk∗)← (ˆpkj , ˆskj)
target← true

For i 6= j, D returns { ˆski}
Enc query (p̂k,m, 1, κ)

D parses p̂k = pki||ki
if i = j, D chooses r′ ←$ Rnd

else D computes r′ ← Fhhi (φκ(r))(m)
D returns c← PKE.E(pki,m; r′)

LR query (m0,m1, 1, κ)
if ctr = qLR − j∗, D submits (m0,m1) to his own LR oracle and receives c
else, D chooses r′ ←$ Rnd

if ctr < qLR − j∗, D computes c← PKE.E(pkj ,m0; r′)
else if ctr > qLR − j∗, D computes c← PKE.E(pkj ,m1; r′)

ctr← ctr + 1
D adds the cipherext c to the set S
D returns c

Dec query (c)
If c is not in S, D returns PKE.D(skj , c).
Else D returns ⊥

At the end of the simulation, D outputs the same bit as A. If A has chosen pkt as his target public key
(which he does with probability 1/`) then, when D is given an encryption of m0, he simulates G2,j∗ perfectly.
If he receives an encryption of m1, he simulates G2,j∗+1 perfectly. Hence, we may conclude that

1

`
|P(AG2,j∗ ⇒ 1 | coll)− P(AG2,j∗+1 ⇒ 1 | coll)| ≤ Advind-atk

PKE,D (λ).

The theorem follows by combining the preceding lemmas.

It remains to show that we can instantiate a hash function satisfying the above defined multi-key correlated-
input security notion. We achieve this by extending the security results for the CIS hash function defined in
[20]. Concretely, the CIS hash function from [20] is defined as follows:

GenFun(1λ) : Pick a group G of prime order p, and set the keyspace to K = G × Zp, the domain to D = Zp,
and the range to R = G. Return (K,D,R, h) where h is a description of the function defined below.

hk(x) : For k ∈ K and x ∈ D, parse k as (g, a) ∈ G× Zp and return

hk(x) = g
1

x+a ,

where 1/(x+ a) is computed modulo p.

Based on the decisional q-Diffie Hellman Inversion (q-DDHI) assumption in G (see Appendix 2.5), and extend-
ing the results of [20], we are able to show that the above hash function achieves multi-key correlated-input
pseudorandomness for a class of functions consisting of uniform-output polynomials of bounded degree.

Theorem 6. Assume the decisional q-DDHI assumption holds in G, and let Φ be a class of uniform-output poly-
nomials over Zp. Then there exists no polynomial-time Φ-restricted adversary A with non-negligible advantage
in the (Φ, `)-MK-SCI-PR security game when interacting with H defined as above, provided that ` · d ≤ q + 1,
where d is an upper bound on the sum of the degrees of the polynomials submitted by A. More precisely, if
` · d ≤ q+ 1, then for any polynomial-time Φ-restricted A, there exists a polynomial-time algorithm B such that

Adv`-mk-sci-pr
H,A (λ) ≤ 2n` ·Advq-ddhiG,B (λ)

where n is the number of polynomials submitted by A.

Proof. Assume that a polynomial-time Φ-respecting adversaryA against the `-MK-SCI-PR security of the family
of keyed hash functions H from Section 6 is given. Using A, we will construct a polynomial-time Φ-respecting
adversary B against the 1-MK-SCI-PR of H i.e. B will interact in the 1-MK-SCI-PR game while simulating the
`-MK-SCI-PR for A. B is constructed as follows.

Initially, B is given a description (K,D,R, h) where K = G× Zp, D = Zp and R = G. B runs A with input
(K,D,R, h) and responds to A’s queries as follows:

Functions(φ1, . . . , φn) : B picks random bi ←$ Zp for i ∈ [`] and computes polynomials φ′(i−1)n+j = φj + bi
for i ∈ [`], j ∈ [n]. Note that the polynomials {φ′k}k∈[n`] are uniform-output polynomials assuming {φi}i∈[n]
are. B submits {φ′k}k∈[n`] as his own Functions query.
Upon reception of a hash key k′ = (g′, a′) ∈ G × Zp, B picks xi ←$ Zp for i ∈ [`] and computes ki =
(gi, ai) ← (gxi , a′ + bi). Note that {ki}i∈[`] are distributed uniformly in G × Zp. Lastly, B returns {ki}i∈[`]
to A.

Hash(i, j) : B simply submits k ← (i− 1)n+ j to his own Hash oracle, obtains a value y, and returns yxi to
A. Note that

yxi =

(
(g′)

1
φ′
k
(x)+a′

)xi
= ((g′)xi)

1
φj(x)+a

′+bi = g
1

φj(x)+ai

i

where x is chosen by the 1-MK-SCI-PR game B interacts with.
Chal(i∗, j∗) B simply responds to this query as in the Hash query above. Note that if the value y obtained by
B is uniform in G, then so is B’s response to A.

Finalise(b′) B simply submits b′ in his own Finalise query.

It should be clear from the description above that B’s simulation for A is perfect, and that whenever A wins
the `-MK-SCI-PR game, B wins the 1-MK-SCI-PR game.

Taking into account the number of polynomials B submits in the 1-MK-SCI-PR game and applying the
above theorem from [20] completes the proof of Theorem 6.

Note 1. Our ‘partial’ RKA-secure PRF is only secure when an adversary’s function queries are non-adaptive,
which is why we are only able to prove selective HK-RRA-ATK security. If we had a result similar to The-
orem 6 for adaptive function queries, then we would immediately obtain a PKE scheme that is (adaptively)
HK-RRA-ATK secure.

Note 2. The above construction is only shown to achieve HK-RRA-ATK security, as opposed to RRA-ATK
security. The technical reason for this is that public keys include a hash key, and the CIS hash function is only
assumed to be secure for honestly generated keys. An alternative solution would be to introduce a common
reference string (CRS) containing a single hash key, and let all users make use of this. While this requires a
trusted third party to initially set up the CRS, it would be possible to show RRA-ATK security of the above
construction in a security model appropriately extended to model the presence of a CRS.

Likewise, if we had a multi-key CIS hash function that remained secure for maliciously chosen keys, then
we would be able to obtain full RRA-ATK security for the above construction. Unfortunately, we are currently
unaware of how to obtain such CIS hash functions.

7 Function-Vector Related Randomness Security

Our previous standard model constructions concerned functions φ that are linear (scheme PRF-PKE analysed in
Theorem 4 combined with known RKA-PRF families), or of bounded degree and having unpredictable outputs
(scheme CI-Hash-PKE analysed in Theorem 6). We now turn our attention to alternative classes of functions.
Specifically, we will propose a construction for a PKE scheme that is Φ-FV-RRA-ATK secure for the set Φ of
vectors of functions that are hard to invert, in a sense that we make precise next.

Definition 14. Let φ = (φ1, . . . , φq) denote a vector of functions on a set Rndλ, where q := q(λ) is polynomial
in the security parameter λ. Let δ(λ) be a function. We say that φ is δ(λ)-hard-to-invert if, for all polynomial-
time algorithms A and all sufficiently large λ, we have:

P[r ← A(φ1(r), . . . , φq(r)) : r ←$ Rndλ] ≤ δ(λ).

We say that a set of vectors of functions Φ is δ-hard-to-invert if each vector φ ∈ Φ is δ-hard-to-invert (note
that the vectors in such a set Φ need not all be of the same dimension, but we assume they each have dimension
that is polynomial in λ).

We will now construct a PKE scheme that offers Φ-FV-RRA-CPA security, where Φ is the set of all suffi-
ciently hard-to-invert vectors of functions on the scheme’s randomness space Rnd. As noted in Section 3, security
in this setting is quantified over all vectors in Φ, and the adversary is allowed to work with any set of public
keys (even maliciously generated) in its attack. This makes our result relatively strong.

To ease the security analysis of our scheme, we will use a variant of the standard DDH assumption.

Definition 15. Let G be a cyclic group of prime order p. The game q-DDH in G selects generators g1, . . . , gq
from G and a bit b ←$ {0, 1}. The game chooses (r1, . . . , rq) ←$ Zqp and r ←$ Zp. If b = 1, the game returns

g1, . . . , gq, g
r
1, . . . , g

r
q to the adversary. Otherwise, the game returns g1, . . . , gq, g

r1
1 , . . . , g

rq
q to the adversary. When

the adversary returns a bit b′, the game outputs 1 if and only if b = b′. We then define the advantage of a q-DDH
adversary A to be:

Advq-ddhG,A (λ) = 2 · P[q-DDHAG (λ)⇒ 1]− 1.

Alg. mBHHO.K(1λ):

g1, . . . , gk ←$ G
x←$ Zp
pk = (g1, . . . , gk, g

x
1 . . . , g

x
k)

sk = x

Alg. mBHHO.E(pk,m):

r ←$ {0, 1}k

c1 =
∏k
i=1 g

ri
i

(K, r′)← f(
∏k
i=1(gxi)ri)

r′′ ← Fr′(pk||m)
c2 = DEM.E(K,m; r′′)
return (c1, c2)

Alg. mBHHO.D(sk, (c1, c2)):

(K, r′)← f(cx1)
m← DEM.D(K, c2)
return m

Fig. 14. Modified BHHO scheme mBHHO, constructed using a PRF, F , a KDF, f , and a DEM DEM.

Assumption 1 (The q-Decisional Diffie Hellman (q-DDH) Assumption) For any polynomial-time ad-
versary A, and any q that is polynomial in λ, we have:

Advq-ddhG,A (λ) ≤ negl(λ).

The q-DDH assumption follows from the standard Decisional Diffie Hellman assumption [28].
With these definitions in hand, Figure 14 defines our PKE scheme mBHHO which offers security in the

FV-RRA-CPA setting. This scheme is obtained by modifying a PKE scheme of Boneh et al. [12] (the BHHO

scheme) which Dodis et al. [14] showed to be secure in the auxiliary input setting. The scheme makes use of
a KDF f and a PRF F with certain domains and ranges, and a DEM DEM. To arrive at our modified scheme
mBHHO, we swap the roles of secret key and randomness in the original BHHO scheme. This then enables us to
provide the values φi(r) as auxiliary inputs without undermining the usual IND-CPA security of the scheme;
in turn, these values enables our security reduction to properly handle Enc queries involving any function φi.
For technical reasons discussed below, we also need to set the randomness space of the scheme to be {0, 1}k
where k := k(λ) denotes a polynomial function of λ. The following theorem gives our formal result concerning
the FV-RRA-CPA security of this scheme.

Theorem 7. Let Φ be the set of δ-hard-to-invert vectors of functions on {0, 1}k. Consider any polynomial-size
vector of functions φ ∈ Φ and any equality-pattern respecting, φ-FV-RRA-CPA adversary A against mBHHO.
Suppose A makes qLR LR queries and uses qr randomness indices. Then there exists a k-DDH adversary B, a
KDF adversary D, a PRF adversary E, and an IND-CPA adversary F , all running in polynomial time, such
that:

Adv
φ-fv-rra-cpa
mBHHO,A (λ) < 2qr ·Advk-ddhG,B (λ) + 2qr ·Advkdf

f,D(λ)

+2qr ·Advprf
F,E(λ) + qr ·Advind-cpa

DEM,F (λ)

+2qr
3
√

512δkp4.

In particular, when δ is sufficiently small, the advantage of A is negligible in the security parameter λ.

The bound in the above theorem is slightly better than that appearing in the PKC 2014 version of this paper
because of a small error in our original probability analysis. We have also set the randomness space in the
scheme to be {0, 1}k(λ), rather than {0, 1}λ as in the original presentation. This is important in being able to

set parameters so as to achieve a meaningful (i.e. small) value for the term 2qr
3
√

512δkp4 in our security bound.

Proof. In what follows, we let r1,i denote the ith bit of r1 and, without loss of generality, we assume that the
function of vectors is of size q = poly(λ). First, we invoke Lemma 1, so that we now only have to prove the
theorem for an adversary using just one randomness value, which we will call r1. The proof then uses a sequence
of games, as follows:

G0: G0 is the real game with the scheme defined in Figure 14.
G1: G1 is the same as G0, except the target public key components gx1 , . . . , g

x
k are replaced with gu1 , . . . , guk

where g is a group generator and ui ←$ Zp. If A’s success probability is significantly different in games G0

and G1, then we can use A to build an adversary B winning the k-DDH game.
G2: G2 is the same as G1, except for the challenge ciphertexts, which use gw as the input to the KDF where

w ←$ Zp, rather than using
∏k
i=1(guii)r1,i . If A’s success probability is significantly different in games G1

and G2, then we can use A to build an adversary C that inverts the vector of functions (φ1, . . . , φq).
G3: G3 is the same as G2, except that the output of the KDF for the challenge ciphertexts is replaced by a

uniformly random value. If A’s success probability is significantly different in games G2 and G3, then we
can use A to build an adversary D that wins the KDF security game.

G4: G4 is the same as G3, except that the PRF outputs used in constructing the challenge ciphertexts are
replaced by uniformly random values. If A’s success probability is significantly different in games G3 and
G4, then we can use A to build an adversary E that wins the PRF security game. Finally, A’s success in G4

can be related to that of an IND-CPA adversary F against the DEM component of the scheme.

We now analyse each of the game transitions in more detail.
G0 – G1: We will prove the following:

Lemma 5. For any adversary A, there exists a λ-DDH adversary B such that:

P[GA1 ⇒ 1]− P[GA0 ⇒ 1] ≤ Advλ-ddhG,B (λ).

Proof. The k-DDH adversary B with access to φ = (φ1, . . . , φq) will simulate either G0 or G1 for A. Adversary
B is given g1, . . . , gk, g

′
1, . . . , g

′
k, where g′1, . . . , g

′
k is either gx1 , . . . , g

x
k or gu1 , . . . , guk for uniformly random ui.

Adversary B sets b ←$ {0, 1} and r1 ←$ {0, 1}k. It then simulates proc. Initialise in the φ-FV-RRA-CPA
security game by forwarding pk∗ = (g1, . . . , gk, g

′
1, . . . , g

′
k) to A. Then B answers A’s queries as follows:

Enc query (pk,m, i)
B returns mBHHO.E(pk,m;φi(r1)) to A

LR query (m0,m1)
B returns mBHHO.E(pk∗,mb; r1) to A

When A halts and outputs a bit b′, B halts and outputs 1 if and only if b = b′. If g′1, . . . , g
′
k = gx1 , . . . , g

x
k , then

B perfectly simulates G0. If g′1, . . . , g
′
k = gu1 , . . . , guk , then B perfectly simulates G1. Since the distributions of

gu1 , . . . , guk and gr11 , . . . , g
rk
k are identical, we may conclude that

|P[GA1 ⇒ 1]− P[GA0 ⇒ 1]| = |P[B ⇒ 1|(g′1, . . . , . . . , g′k) = (gu1 , . . . , guk)]

−P[B ⇒ 1|(g′1, . . . , . . . , g′k) = (gx1 , . . . , g
x
k)]|

= Advk-ddhG,B (λ).

G1 – G2: We will show that if A’s success probability is significantly different in games G1 and G2, then we
can use A to build an adversary C that inverts the vector of functions φ = (φ1, . . . , φq). Specifically, we show:

Lemma 6. For any polynomial-time adversary A, we have:

|P[GA1 ⇒ 1]− P[GA2 ⇒ 1]| < 3
√

512δp4k.

Here, recall that p is the size of the group G while φ is a δ-hard-to-invert vector of functions.

Proof. If the success of A differs between games G1 and G2, then we can construct an adversary C that
inverts the vector of functions φ on input r1. First, we consider an intermediate step. Suppose adversary A′
is attempting to distinguish tuples of the form T1 = (g1, . . . , gk,

∏k
i=1 g

r1,i
i ,φ(r1), u, 〈r1, u〉) from tuples of the

form T2 = (g1, . . . , gk,
∏k
i=1 g

r1,i
i ,φ(r1), u, w), where w is uniformly random. If A can distinguish games 1 and

2 with probability ε, then A′ can distinguish the previous two tuples with probability ε. The simulation runs as
follows. Distinguisher A′ is given a tuple (g1, . . . , gk,

∏k
i=1 g

r1,i
i ,φ(r1), u, z), where z is either 〈r1, u〉 or uniformly

random. Then A′ chooses a uniformly random generator g and bit b. A′ uses the generators and the vector u to
form a public key pk∗ = (g1, . . . , gk, g

u1 , . . . , guk), where ui is the ith component of the vector u, and forwards
this public key to A. Then the distinguisher A′ will answer the oracle queries of A as follows:

Enc query (pk,m, i)
return mBHHO.E(pk,m;φ(r1)) to A

LR query (m0,m1)

c1 ←
∏k
i=1 g

r1,i
i

(K, r)← f(gz)
r′ ← Fr(pk

∗||mb)
c2 ← DEM.E(K,mb; r

′)
return (c1, c2) to A

When A outputs bit b′, A′ outputs 1 if and only if b = b′. It follows that

|P[GA1 ⇒ 1]− P[GA2 ⇒ 1]| = |P[A′T1
⇒ 1]− P[A′T2

⇒ 1]|,

where A′Ti ⇒ 1 denotes that A′ outputs 1 when given tuple Ti.
Now we shall use the distinguisher A′ to construct our adversary C that will invert the vector of functions

by using a modified version of Theorem 4.1 of [14]. The theorem shows how an adversary may invert a function
when given access to a distinguisher that distinguishes tuples of the form (φ(r1), u, 〈r1, u〉) from tuples of the
form (φ(r1), u, w), where w is uniformly random. We therefore need a slight modification of their proof in order
to invert the function when given tuples of the form T1 or T2 since these tuples require the extra parameters
g1, . . . , gk,

∏k
i=1 g

r1,i
i . The inverter C can easily choose the generators, but the value

∏k
i=1 g

r1,i
i must be guessed

by C (since he does not have the necessary information to form this value correctly), hence C’s advantage is
conditioned on the probability that he correctly supplies this value to A′. The modified theorem we require is
as follows:

Theorem 8. Let p be a prime, let G be a group of size p, and let H = Z2. Let φ : Zk2 → {0, 1}∗ be a vector of
functions, and let g1, . . . , gk be generators of G. If there is a distinguisher A′ that runs in time t such that

|P[r1 ← Zk2 , u← Zkp, {gi}i=1...k ← Gk : A′(g1, . . . , gk,
k∏
i=1

g
r1,i
i ,φ(r1), u, 〈r1, u〉)⇒ 1]

− P[r1 ← Zk2 , u← Zkp, {gi}i=1...k ← Gk, w ← Zp : A′(g1, . . . , gk,
k∏
i=1

g
r1,i
i ,φ(r1), u, w)⇒ 1]| = ε

then there is an inverter C that runs in time t′ = poly(k, 2, 1/ε) such that

P[r1 ← Zk2 : C(φ(r1))⇒ r1] ≥ ε3

512p4k
.

Proof. The proof is very similar to that of Theorem 4.1 of [14], so we highlight only the modifications. Before C
runs the simulation he first chooses generators g1, . . . , gk because these must be provided to A′ (but they are not

needed in [14]). Next, C needs to calculate the value
∏k
i=1 g

r1,i
i since this must also be given to A′ (but is also

not needed in [14]). Unfortunately, C does not have the required information to do this, so he randomly guesses
an element g∗ ∈ G. Everything then proceeds as in the proof of Theorem 4.1 of [14], except when C is required
to run A′ he runs him with the extra inputs g1, . . . , gk, g

∗ (as well as the inputs that were required in [14]). If

C’s guess g∗ for
∏k
i=1 g

r1,i
i is correct then C will provide tuples of the correct form to A′. Hence, we condition

on the probability that the guess is correct (1/p, the size of the group) and when the guess is correct we may
use the same argument as Theorem 4.1 of [14] to bound C’s advantage (notice that we ignore the probability
of inverting when the guess is incorrect because the probability is always greater than or equal to zero and we
only need a lower bound for C).

P[C(φ(r1))⇒ r1] =
1

p
· P[C(φ(r1))⇒ r1 | g∗ =

k∏
i=1

g
r1,i
i] +

p− 1

p
· P[C(φ(r1))⇒ r1 | g∗ 6=

k∏
i=1

g
r1,i
i]

>
1

p
· P[C(φ(r1))⇒ r1 | g∗ =

k∏
i=1

g
r1,i
i]

≥
|P[A′T1

⇒ 1]− P[A′T2
⇒ 1]|3

512p4k

=
ε3

512p4k
.

Since A′ has the same advantage as A, we may conclude that

P[C(φ(r1))⇒ r1] >
|P[GA1 ⇒ 1]− P[GA2 ⇒ 1]|3

512p4k
.

Furthermore, we must have

|P[GA1 ⇒ 1]− P[GA2 ⇒ 1]| < 3
√

512δp4k.

because otherwise C would invert the vector of functions with probability greater than δ, which is impossible
by assumption.

G2 – G3: We will prove the following:

Lemma 7. For any adversary A, there exists a KDF adversary D such that:

|P[GA2 ⇒ 1]− P[GA3 ⇒ 1]| ≤ Advkdf
f,D(λ).

Proof. The KDF adversary D against f with access to φ will simulate either the game G2 or G3 for A. Adversary
D is given as input a value Z that is either a uniformly random value from the range of the KDF or an output
of the KDF on a uniformly random value from the domain of the KDF. Adversary D simulates proc. Initialise
in the φ-FV-RRA-CPA security game by setting b ←$ {0, 1}, r1 ←$ {0, 1}k and by choosing and forwarding
pk∗ = (g1, . . . , gk, g

u1 , . . . , guk) to A. Adversary D then answers A’s oracle queries as follows:

Enc query (pk,m, i)
return mBHHO.E(pk,m;φ(r1)) to A

LR query (m0,m1)

c1 ←
∏k
i=1 g

r1,i
i

(K, r)← Z
r′ ← Fr(pk

∗||mb)
c2 = DEM.E(K,mb; r

′)
return (c1, c2) to A

When A halts and outputs a bit b′, D halts and outputs 1 if and only if b = b′. When D is given a random Z,
it simulates G3 perfectly. Otherwise, it provides a perfect simulation for G2. Hence,

|P[GA2 ⇒ 1]− P[GA3 ⇒ 1]| = |P[KDFRealDf (λ)⇒ 1]− P[KDFRandD$ (λ)⇒ 1]|

= Advkdf
f,D(λ).

G3 – G4: Notice that we now have a uniformly random output from the KDF in the LR queries, which means
we now have a uniformly random key for the PRF in these queries. Hence, we can prove the following:

Lemma 8. For any adversary A, there exists a PRF adversary E such that:

|P[GA3 ⇒ 1]− P[GA4 ⇒ 1]| ≤ Advprf
F,E(λ).

Proof. The PRF adversary E will simulate either G3 or G4 for A. Adversary E simulates proc. Initialise in
the φ-FV-RRA-CPA security game by setting b←$ {0, 1}, r1 ←$ {0, 1}k, K ←$ DEM.K(λ) and by choosing and
forwarding pk∗ = (g1, . . . , gk, g

u1 , . . . , guk) to A. Adversary E then answers A’s oracle queries as follows:

Enc query (pk,m, i)
return mBHHO.E(pk,m;φi(r1)) to A

LR query (m0,m1)

c1 =
∏k
i=1 g

r1,i
i

forward pk∗||mb to E ’s PRF oracle, receiving output r∗

c2 = DEM.E(K,mb; r
∗)

return (c1, c2) to A

When A halts and outputs b′, E halts and outputs 1 if and only if b = b′. When E is playing the game PRFReal
(in which case his oracle outputs are those of the PRF), he simulates G3 perfectly. Otherwise, when E is playing
the game PRFRand (and his outputs are uniformly random), he simulates G4 perfectly. Hence,

|P[GA3 ⇒ 1]− P[GA4 ⇒ 1]| = |P[PRFRealEF (λ)⇒ 1]− P[PRFRandE$ (λ)⇒ 1]|
= Advprf

F,E(λ).

Finally, since in handling A’s LR queries, the outputs of the KDF f and the PRF F have now both been
replaced with uniformly random values, we have uniformly random K and r′′. Hence, the game G4 may be
simulated by a standard IND-CPA DEM adversary, F . More formally:

Lemma 9. For any adversary A, there exists an IND-CPA DEM adversary F such that:

2 · P[GA4 ⇒ 1]− 1 ≤ Advind-cpa
DEM,F (λ).

Proof. The adversary F will simulate G4 for A. Adversary F chooses r1 ←$ {0, 1}k and generates a public
key pk∗ of the form (g1, . . . , gk, g

u1 , . . . , guk). Adversary F gives pk∗ to A, and answers A’s oracles queries as
follows:

Enc query (pk,m, i)
return mBHHO.E(pk,m;φi(r1))

LR query (m0,m1)

c1 =
∏k
i=1 g

r1,i
i

forward (m0,m1) to F ’s encryption oracle, receiving as output c2
return (c1, c2) to A

When A halts and outputs b′, F halts and outputs b′. We conclude that

2 · P[GA4 ⇒ 1]− 1 ≤ Advind-cpa
DEM,F (λ).

The theorem follows by combining all these inequalities.

The class of related randomness functions which our scheme mBHHO can tolerate is quite different from those
in our previous constructions: linear and bounded-degree polynomials are certainly not hard-to-invert in general.
Our proof of Theorem 7 actually shows that even if φ(r) were to completely leak to the adversary (instead of
merely being indirectly accessible via Enc queries), the scheme mBHHO would still be secure. This would not be
the case if the analogous φ(r) values were to leak in our earlier schemes PRF-PKE and CI-Hash-PKE, since the
adversary could actually reconstruct r from this leakage for the relevant φ functions and win the security game.
Furthermore, the functions are not required to be collision-resistant or output-unpredictable. These restrictions
are only strictly required of the functions queried to the LR oracle. However, since an an adversary is restricted
to using only the identity function (which is collision-resistant and output-unpredictable) in its LR queries, the
functions in Φ do not need to satisfy these conditions.

References

1. Andrew Becherer, Alex Stamos, and Nathan Wilcox. Cloud computing security: Raining on the trendy new parade.
BlackHat USA, 2009.

2. Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav Shacham, and Scott Yilek. Hedged
public-key encryption: How to protect against bad randomness. In Mitsuru Matsui, editor, ASIACRYPT, volume
5912 of Lecture Notes in Computer Science, pages 232–249. Springer, 2009.

3. Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure against related-key
attacks. In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 666–684. Springer,
2010.

4. Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against related-key attacks and tampering. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages
486–503. Springer, 2011.

5. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and
applications. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages 491–506.
Springer, 2003.

6. Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. RKA security beyond the linear barrier: IBE, encryption
and signatures. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT, volume 7658 of Lecture Notes in Computer
Science, pages 331–348. Springer, 2012.

7. Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo De Santis, editor, EUROCRYPT,
volume 950 of Lecture Notes in Computer Science, pages 92–111. Springer, 1994.

8. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In Vaudenay [33], pages 409–426.

9. Mike Bendel. Hackers describe PS3 security as epic fail, gain unrestricted access, 2011. http://www.exophase.com/
20540/hackers-describe-ps3-security-as-epic-fail-gain-unrestricted-access/.

10. Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Nadia Heninger, Tanja Lange, and Nicko van
Someren. Factoring RSA keys from certified smart cards: Coppersmith in the wild. Cryptology ePrint Archive,
Report 2013/599, 2013. http://eprint.iacr.org/.

11. Bitcoin.org. Android security vulnerability, 2013. http://bitcoin.org/en/alert/2013-08-11-android.
12. Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure encryption from decision diffie-

hellman. In David Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 108–125.
Springer, 2008.

13. Debian. Debian Security Advisory DSA-1571-1: OpenSSL – predictable random number generator, 2008. http:

//www.debian.org/security/2008/dsa-1571.
14. Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Public-key

encryption schemes with auxiliary inputs. In Daniele Micciancio, editor, TCC, volume 5978 of Lecture Notes in
Computer Science, pages 361–381. Springer, 2010.

15. Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai. On the (im)possibility of cryptography with
imperfect randomness. In FOCS, pages 196–205. IEEE Computer Society, 2004.

16. Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Vergnaud, and Daniel Wichs. Security analysis
of pseudo-random number generators with input: /dev/random is not robust. IACR Cryptology ePrint Archive,
2013:338, 2013.

17. Leo Dorrendorf, Zvi Gutterman, and Benny Pinkas. Cryptanalysis of the random number generator of the Windows
operating system. ACM Trans. Inf. Syst. Secur., 13(1), 2009.

18. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes. In
Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 537–554. Springer,
1999.

19. Ian Goldberg and David Wagner. Randomness and the Netscape browser, 1996. http://www.drdobbs.com/windows/
184409807.

20. Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash functions. In Yuval Ishai, editor,
TCC, volume 6597 of Lecture Notes in Computer Science, pages 182–200. Springer, 2011.

21. Zvi Gutterman and Dahlia Malkhi. Hold your sessions: An attack on java session-id generation. In Alfred Menezes,
editor, CT-RSA, volume 3376 of Lecture Notes in Computer Science, pages 44–57. Springer, 2005.

22. Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. Analysis of the linux random number generator. In IEEE
Symposium on Security and Privacy, pages 371–385. IEEE Computer Society, 2006.

23. Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Mining your Ps and Qs: Detection of
widespread weak keys in network devices. In Proceedings of the 21st USENIX Security Symposium, August 2012.

24. Seny Kamara and Jonathan Katz. How to encrypt with a malicious random number generator. In Kaisa Nyberg,
editor, FSE, volume 5086 of Lecture Notes in Computer Science, pages 303–315. Springer, 2008.

25. Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten Kleinjung, and Christophe Wachter.
Public keys. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer
Science, pages 626–642. Springer, 2012.

26. Stefan Lucks. Ciphers secure against related-key attacks. In Roy and Meier [32], pages 359–370.
27. Kai Michaelis, Christopher Meyer, and Jörg Schwenk. Randomly failed! the state of randomness in current java

implementations. In Ed Dawson, editor, CT-RSA, volume 7779 of Lecture Notes in Computer Science, pages 129–
144. Springer, 2013.

28. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions. J. ACM,
51(2):231–262, 2004.

29. Thomas Ristenpart and Scott Yilek. When good randomness goes bad: Virtual machine reset vulnerabilities and
hedging deployed cryptography. In NDSS. The Internet Society, 2010.

30. Phillip Rogaway. Nonce-based symmetric encryption. In Roy and Meier [32], pages 348–359.
31. Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap problem. In Vaudenay [33],

pages 373–390.
32. Bimal K. Roy and Willi Meier, editors. Fast Software Encryption, 11th International Workshop, FSE 2004, Delhi,

India, February 5-7, 2004, Revised Papers, volume 3017 of Lecture Notes in Computer Science. Springer, 2004.
33. Serge Vaudenay, editor. Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings,
volume 4004 of Lecture Notes in Computer Science. Springer, 2006.

34. Hoeteck Wee. Public key encryption against related key attacks. In Marc Fischlin, Johannes Buchmann, and Mark
Manulis, editors, Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science, pages 262–279.
Springer, 2012.

35. Scott Yilek. Resettable public-key encryption: How to encrypt on a virtual machine. In Josef Pieprzyk, editor,
CT-RSA, volume 5985 of Lecture Notes in Computer Science, pages 41–56. Springer, 2010.

