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Abstract

This thesis addresses and expands research in conformal prediction – a machine learn-

ing method for generating prediction sets that are guaranteed to have a prespecified

coverage probability.

Introductory Chapter 1 places conformal prediction among other machine learning

methods and describes fundamentals of the theory of conformal prediction.

Chapter 2 studies efficiency criteria for conformal prediction. It outlines four estab-

lished criteria of efficiency and also introduces six new criteria. The conformity measures

that optimise each of these ten criteria are described when the data-generating distribu-

tion is known. Lastly, the empirical behaviour of two of the outlined criteria is illustrated

for standard conformal predictors on a benchmark data set.

Chapter 3 introduces conformal prediction under hypergraphical models. These mod-

els express assumptions about relationships between data features. Several conformal

predictors under these models are constructed. Their performance is studied empir-

ically using benchmark data sets. Also label conditional conformal predictors under

hypergraphical models are described and studied empirically.

Chapter 4 addresses the problem of testing assumptions for complex data, with a

particular focus on the exchangeability assumption. Testing is conducted in the on-

line mode, which gives a valid measure of the degree to which this tested assumption

has been falsified after observing each data example. Such measures are provided by

martingales. Two new techniques for constructing martingales – mixtures of stepped

martingales and plug-in martingales – are suggested. It is also proved that, under a
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stationarity assumption, plug-in martingales are competitive with commonly used power

martingales. Results on testing two benchmark data sets are presented at the end of

this chapter.

Chapter 5 discusses conformal prediction under the Gauss linear assumption and on-

line testing is applied to this assumption. The performance of both prediction and

testing is studied empirically for synthetic data sets and a benchmark data set.
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Chapter 1.

Introduction

This introductory chapter discusses the area of machine learning within the scope of this

thesis with a particular focus on the theory of conformal prediction, and outlines the

content of this thesis.

1.1. Machine learning

The general problem in the area of machine learning is to create algorithms that learn

from data. Such problems can be found across the spectrum of science: from identifying

digits in handwritten postal codes, through filtering out “spam” messages by using

individual properties and words, to predicting which disease a patient has based on

their test results.

Generally speaking, we need to predict an outcome measurement (the label) based on

a set of features (the object). The pair of an object and its label is called the example.

Usually, a learning algorithm is initially given a training sequence of examples and the

goal is to learn how to predict the label for unseen objects. Problems where the training

sequence consists of objects with labels are known as “supervised” learning problems. In

“unsupervised” learning problems the training sequence contains objects without labels
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Chapter 1. Introduction

and usually the goal is to discover groups within the training data. This thesis focuses

on supervised learning problems.

Assumptions

It is traditional in machine learning to impose certain assumptions on data. Usually

such assumptions reflect some regularity in a learning environment; it is needed to guar-

antee that algorithms will be able to learn and produce useful predictions. A standard

assumption is that data examples are generated independently by the same (unknown)

mechanism – data is independent and identically distributed (i.i.d.). Other assumptions

can also represent certain knowledge about the nature of data. For example, assump-

tions on the structure of data represent information about relationships between data

features. In that context a learning algorithm can be designed to exploit the knowledge

about data.

Simple prediction and hedged prediction

Different methods have been developed to deal with supervised learning problems.

One of the first learning algorithms was proposed in 1957 by Frank Rosenblatt and

called the Perceptron. The Perceptron is a simple linear classifier (it uses a linear

combination of features to identify the corresponding label), and it learns by finding

the weights for the linear combination that result in a good performance on a training

sequence. Then one can combine a large number of the Perceptrons in a network –

this is known as neural networks. In this traditional version such a network represents

a composition of linear transformations and therefore produces linear solutions. Later

this idea was generalised for nonlinear solutions by introducing “activation functions”.

The activation function is applied to units in the middle of the network and transforms

the output of one unit before passing it further to next units. Then by using a nonlinear
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Chapter 1. Introduction

activation function (for example, the sigmoid function σ(v) = 1/(1+exp(−v)) the neural

network can produce powerful nonlinear solutions.

Another approach to supervised learning problems is called decision trees. In this

method one constructs a decision function in the form of a tree: each non-leaf node

corresponds to a question about features and branches from the node correspond to

answers, and each leaf node provides a decision about the label. Then for a given object

one can traverse the tree from its root to a leaf node to find the corresponding label.

Yet another method – k-Nearest Neighbours (KNN) – is based on measuring distances

between objects. For this purpose a metric on the space of objects is defined (for example,

the Euclidean metric). Then for a given object the label is assigned based on the labels

of the k nearest neighbours from a training sequence.

One more approach introduced by Vapnik and Chervonenkis – the support vector

machine – is based on the idea to transform the object space into a larger space and

then built a linear classifier in this transformed space.

There are also other interesting approaches to supervised learning, but a description of

all these methods is not the goal of this subsection and next their common disadvantage

is explained. Usually all these learning algorithms produce a point prediction (a possible

value for the label), but do not provide any information on how reliable the prediction is.

Some methods (such as cross-validation) allow us to evaluate the expected probability of

wrong predictions, indicating the average quality of prediction, but one cannot estimate

confidence for each individual prediction.

This thesis is concerned with algorithms that make “hedged predictions” [Gammer-

man and Vovk, 2007] – predictions associated with confidence values. Intuitively, the

confidence signifies the degree of certitude that the prediction is correct. Based on the

confidence values, one can obtain a prediction in the form of a set of labels whose confi-

dence values are above a certain threshold. There are several approaches which enable
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Chapter 1. Introduction

us to correlate prediction with confidence; among them are statistical learning theory,

Bayesian methods and classical statistical methods. We proceed by discussing these

three approaches.

Statistical learning theory

Statistical learning theory [Vapnik, 1998] (including the PAC theory [Valiant, 1984]

which stands for Probably Approximately Correct learning) allows us to estimate with

respect to some confidence level the upper bound on the probability of error. The theory

says that for a member of a certain class of algorithms and for some confidence level,

the upper bound on the probability of error can be obtained. The results from this

approach are valid (i.e. the methods provide correct upper bounds on the probability

of error) under the assumption that data is i.i.d. However, there are three main issues

with the practical use of such methods. First, that bounds produced by statistical

learning theory may depend on the VC-dimension of a family of algorithms or other

numbers that are difficult to attain for methods used in practice. Second, that the

bounds usually become informative when the size of the training sequence is large. The

example in [Vovk et al., 2005a, p. 249] shows that the bounds calculated for the USPS

data set are not useful. The authors calculate the upper bound on the probability of

errors for this data set, which results in a roughly assessed value of 1.7 – not a bound

for probability. Third, that the same confidence values are attached to all examples

independent of their individual properties.

Bayesian methods

Bayesian methods (see, e.g., Bernardo and Smith [2000]) require the assumptions that

the data-generating distribution belongs to a certain parametric family of distributions,

and that the prior distribution for the parameters is known. The Bayesian theorem can

18



Chapter 1. Introduction

then be applied to calculate the posterior distribution for the parameters, which provides

the basis for calculating the distribution of labels for a given object. The latter is used

to obtain prediction sets for new objects. Hedged predictions produced by the Bayesian

methods are optimal (in terms of the narrowness of their prediction sets). Nevertheless,

when their prior distributions are not correct, there is no theoretical base for validity of

these methods (i.e. the probability of error can be higher than it is expected). Melluish

et al. [2001] show that inaccurate priors used in Bayesian methods result in invalid

prediction sets. In practice, the prior is usually unknown and (arbitrary) chosen to

reflect certain knowledge about the parameters. But the correctness of such a prior is

the main problem in using this approach.

Classical statistical methods

A classical statistical approach for hedged prediction is constructing statistical toler-

ance regions (see, e.g., [Guttman, 1970]), which are also known as prediction regions

or prediction sets. In this context, given a sample of independent observations from a

population, one aims to predict new observations from this population. A statistical

tolerance region is a range of values for new observations and can have different guaran-

tees. One type of tolerance regions is β-content tolerance regions at a confidence level

γ. Such a region contains at least 100β percent of the population with probability at

least γ. Another type is β-expectation tolerance regions. Such a region is constructed to

have the expected coverage probability β. The first limitation for many of these results

is that they are based on the assumption of a certain parametric statistical model for

data. For example, it is typical to assume that data has a normal, or Gaussian, distri-

bution. However, statistical tolerance regions can be constructed under the assumption

that data is i.i.d. (and additionally that the data-generating distribution is continuous);

in this case it is just an instance of conformal predictors that will be discussed later (see
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p. 257 [Vovk et al., 2005a]).

To summarise the discussion of statistical learning theory, Bayesian methods and clas-

sical statistical methods, following limitations can be pointed out: the first approach fails

to provide useful confidence values in usual settings, the second one requires restrictive

assumptions on the data-generating distribution, finally the last one is often based on

parametric assumptions about the statistical model for data or represents an instance of

more general methods for prediction. Another approach to construct methods for hedged

prediction that do not have these limitations was described in Vovk et al. [2005a]. This

approach is called conformal prediction and will be studied in this thesis. The next

section sets the stage for this study.

1.2. Conformal Prediction

This section outlines the basis of conformal prediction. Subsection 1.2.1 introduces ter-

minology that will be used throughout this thesis and describes the general prediction

framework. Subsection 1.2.2 discusses conformal predictors (CPs) under the exchange-

ability assumption and their main properties. After this Subsection 1.2.3 defines on-line

compression models (OCMs) and CPs under these models.

1.2.1. Terminology

We assume that Reality outputs a sequence of pairs

((x1, y1), (x2, y2), . . .),

where each pair (xi, yi) consists of an object xi and its label yi. Each object is from a

measurable space X, called the object space, and each label is from a measurable space
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Y, called the label space. The Cartesian product

Z := X×Y

is called the example space and its elements are called examples (often in this thesis zi

will be also written for (xi, yi) for brevity).

This thesis studies prediction under certain assumptions on the process which Reality

uses to generate examples. As mentioned earlier, it is traditional in machine learning to

assume that examples are generated independently and from the same (but unknown)

probability distribution Q on Z, which is the assumption that data is independent and

identically distributed (i.i.d.). This is equivalent to saying that infinite sequences of

examples
(
z1, z2, . . .) are drawn from the power probability distribution Q∞ on Z∞.

Exchangeability

The main assumption for conformal prediction is the exchangeability assumption, which

is slightly weaker than assuming that data is i.i.d.

Consider a sequence of random variables (Z1, Z2, . . .) that all take values in the same

example space Z. Then the joint probability distribution P (Z1, . . . , ZN) of a finite

number of the random variables is exchangeable if it is invariant under any permutation

of the indices: for any measurable E ∈ ZN and any permutation π of the set {1, . . . , N}

P (E) = P{(z1, . . . , zN) : (zπ(1), . . . , zπ(N)) ∈ E}.

The joint distribution of an infinite number of random variables (Z1, Z2, . . .) is exchange-

able if the marginal distribution P (Z1, . . . , ZN) is exchangeable for every N .
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Learning environments

There are two main types of learning environments – batch and on-line.

In the context of batch prediction, Predictor is initially given a training sequence of

examples ((x1, y1), . . . , (xl, yl)) and Predictor’s goal is to predict labels for a sequence of

new objects, called the test objects or the test sequence, taking the advantage of knowing

the training sequence.

In the on-line prediction setting, the training sequence is initially empty and prediction

is performed as follows: for i = 1, 2, . . ., (1) Predictor observes an object xi and makes

a prediction on its label based on a current training sequence; (2) then the true label yi

for the object is revealed; (3) finally, the current training sequence is augmented with

the pair (xi, yi). On the next prediction trial the process is repeated using the updated

training sequence for prediction. To summarise, in this context the prediction for a new

object xn is based on the knowledge of all previous examples ((x1, y1), . . . , (xn−1, yn−1)).

The strongest results of the theory of conformal prediction are stated for on-line

prediction, and this thesis mainly considers on-line learning.

Now we discuss a general notion of confidence predictors and then a special type of

confidence predictors – CPs – will be defined.

Confidence predictors

For a given sequence of examples ((x1, y1), . . . , (xl, yl)), a new object x and at each

significance level ε ∈ (0, 1) a deterministic confidence predictor Γ outputs a subset

Γε := Γε((x1, y1), . . . , (xl, yl), x)

of Y, that is called the prediction set. Naturally in this context, the confidence predictor

Γ makes an error for an object x at level ε if the true label y is not in Γε.

Two properties of confidence predictors are their validity and information efficiency.
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Consider data generated by an exchangeable distribution on Z∞. We say that a de-

terministic confidence predictor is valid if for any significance level ε ∈ (0, 1) at each

prediction trial it makes errors independently and with probability ε. The primary goal

is to develop valid confidence predictors. Information efficiency of such valid predictors

can be measured differently. Broadly speaking, it is desirable that a valid prediction set

contains a small number of labels: the narrower the prediction set is, the more efficient

the predictor. For example, consider the problem of medical diagnosis where one predicts

possible diagnoses for a patient based on their test results, in this context prediction sets

containing one diagnosis are more informative than those with two or more diagnoses.

It was shown [Vovk et al., 2005a, Theorem 2.1] that no deterministic confidence pre-

dictor can be valid under the exchangeability assumption. This theorem explains that

in the deterministic case it is impossible to construct the predictor that makes errors

independently and with exactly probability ε for any significance level ε ∈ (0, 1) due to

finite precision. This is the reason to consider randomised confidence predictors.

A randomised confidence predictor at each significance level ε outputs a prediction set

Γε := Γε((x1, y1), . . . , (xn, yn), x, τ),

which additionally depends on a random number τ distributed uniformly in [0, 1]. The

validity for randomised confidence predictors is defined in the same way as for determin-

istic confidence predictors. Protocol 1.1 summarises randomised confidence prediction

in the on-line context: Reality generates examples (xn, yn) and random numbers τn uni-

formly distributed in [0, 1], at each significance level ε Predictor outputs the prediction

set Γε((x1, y1), . . . , (xn−1, yn−1), xn, τn).

We proceed with a discussion of special confidence predictors called CPs. Hereinafter

discussions are restricted to randomised CPs (also called smoothed CPs in [Vovk et al.,

2005a]). The adjectives “randomised” or “smoothed” will be omitted for brevity.
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Protocol 1.1 On-line confidence prediction

for n = 1, 2, . . . do
Reality outputs xn ∈ X and a random number τn ∼ U [0, 1]
Predictor outputs Γεn ⊆ Y for all ε ∈ (0, 1)
Reality outputs yn ∈ Y

end for

1.2.2. Conformal prediction under the exchangeability assumption

In this subsection we discuss conformal prediction under the exchangeability assumption.

Conformity measure

The general idea of conformal prediction is to test how well a new example fits to

previously observed examples. For this purpose a “conformity measure” is defined.

Formally, conformity measure A is a measurable function that estimates how well one

example fits to a bag of others assigning a conformity score α to the example:

α := A
(
*z1, . . . , zl+, z

)
.

A bag of examples *z1, . . . , zl+, in general, is a multiset (the same element may be

repeated more than once) rather than a set. Usually conformity measures are based

on some prediction method. Numerous machine learning algorithms have been used

for designing conformity measures: see, e.g., Vovk et al. [2005a] and Balasubramanian

et al. [2013]. Some examples of conformity measures will be given in Chapters 2–5. In

particular, on page 68 it will be discussed that conformity measures can represent a “soft

model” for data: if this model is incorrect only the efficiency of predictions may suffer,

but it does not affect their validity.
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Conformal predictors

Consider a training sequence of examples (z1, . . . , zl), a new object x and a random

number τ distributed uniformly in [0, 1]. The conformal predictor (CP) Γ determined

by a conformity measure A is defined by

Γε(z1, . . . , zl, x, τ) := {y | py > ε} , (1.1)

where ε ∈ (0, 1) is a given significance level and for each y ∈ Y the corresponding p-value

py is defined by

py :=

∣∣{i = 1, . . . , l + 1 | αyi < αyl+1

}∣∣+ τ
∣∣{i = 1, . . . , l + 1 | αyi = αyl+1

}∣∣
l + 1

, (1.2)

and the corresponding conformity scores are defined by

αyi := A
(
*z1, . . . , zi−1, zi+1, . . . , zl, (x, y)+, zi

)
, i = 1, . . . , l;

αyl+1 := A
(
*z1, . . . , zl+, (x, y)

)
.

Notice that the system of prediction sets (1.1) output by a CP is decreasing in ε, or

nested.

Conformal transducers

The conformal transducer determined by a conformity measure A outputs the system of

p-values (py | y ∈ Y) defined by (1.2) for each training sequence (z1, . . . , zl), an object

x and a random number τ ∼ U [0, 1]. (This is just another representation of CPs.)

Chapter 2 will discuss several criteria of information efficiency for conformal prediction

that do not depend on the significance level, these criteria are defined using the output

of conformal transducers.
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In [Vovk et al., 2005b, Section 2.5] the definition of transducers is slightly different:

they process a sequence of examples in the on-line mode and translate each example

into the p-value corresponding to the true label of the example. The definition used in

this thesis is more general. Having the system of p-values, the sequence of p-values cor-

responding to examples can be obtained easily. To make it precise, consider a sequence

of examples (z1, z2, . . .) and a sequence of independent random numbers (τ1, τ2, . . .) uni-

formly distributed on [0, 1], the corresponding sequence of p-values is defined by

pi := pyi , i = 1, 2, . . . ,

where pyi is the p-value computed by (1.2) for the training sequence (z1, . . . , zi−1), the

object xi, the random number τi and corresponding to the label yi. (The process will

be further detailed on page 87 (Protocol 4.2).) If these p-values are independent and

distributed uniformly on [0, 1] we say that the conformal transducer is valid.

The following theorem is a standard result in the theory of conformal prediction (see,

e.g., [Vovk et al., 2003, Theorem 1]).

Theorem 1. If examples (z1, z2, . . .) (resp. (z1, z2, . . . , zn)) satisfy the exchangeability

assumption, the corresponding p-values (p1, p2, . . .) (resp. (p1, p2, . . . , pn)), generated in

the on-line mode using (1.2), are independent and uniformly distributed on [0, 1].

In Chapter 4 we will see that this result is the midpoint in constructing martingales

for testing exchangeability.

Another implication of Theorem 1 is that in the on-line mode CPs are automatically

valid under the exchangeability assumption: the probability to make an error on any

step is equal to the significance level and errors on different steps occur independently

of each other.
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1.2.3. Conformal prediction under OCMs

This subsection defines a class of statistical models – on-line compression models – and

then discusses the definition of CPs under these models. (Conformal prediction under

the exchangeability assumption discussed earlier is a special case of conformal prediction

under OCMs, but the definitions for the exchangeability assumption is more intuitive,

and that is why that case has been considered first.)

On-line compression models

The idea of OCMs is to compress data into a more or less compact summary, which is

interpreted as the useful information in the data.

The following simple example demonstrates operations within OCMs. Consider the

coin tossing game, let us extract the useful information for predicting head or tail from

a sequence of observed outcomes. Suppose that at the first trial we observe tail. Let us

summarise this event by two numbers – the number of heads and the number of tails,

(#head,#tail) = (0, 1). Then at the second trial we observe head. Our summary is

updated as (#head,#tail) = (1, 1). We proceed as follows: each trial after receiving

head or tail we update the summary. Suppose that after 10 trials the following sequence

of outcomes has been realised:

(tail, head, tail, tail, tail, tail, head, head, tail, head).

The summary of this sequence is (#head,#tail) = (4, 6). This is the useful information

extracted from the sequence of 10 observations. On the other hand, having the summary

(#head,#tail) = (4, 6) one may ask what is the probability of having tail at the last trial.

Then, assuming that all sequences of outcomes are equally probable, this probability can

be found using the summary: it is the number of sequences of length 9 with 5 tails divided

27



Chapter 1. Introduction

by the number of sequences of length 10 with 6 tails

(
9
5

)(
10
6

) =
6

10
.

Analogously, the probability of having head at the last trial is 4
10

. In this simple example

we can see two important operations – updating summary and looking back one step.

Formally these operations are expressed by OCMs.

For the formal description of OCMs Markov kernels are used. Let Ω and Z be two

measurable spaces. A function Q(ω,A), usually written as Q(A | ω), where ω ranges

over Ω and A ranges over the measurable sets in Z, is called a Markov kernel if:

• as a function of A, Q(A | ω) is a probability distribution on Z, for each ω ∈ Ω;

• as a function of ω, Q(A | ω) is measurable, for each measurable A ⊆ Z.

It will be said that Q is a Markov kernel of the type Ω ↪→ Z. In other words, a Markov

kernel maps ω ∈ Ω to probability distributions on Z. Often in this thesis Q(ω) is used

to denote the probability distribution A 7→ Q(A | ω) on Z.

An on-line compression model (OCM) consists of five elements (Σ,�,Z, F, B), where:

1. � is called the empty summary ;

2. Σ is a measurable space, called the summary space; � ∈ Σ and elements σ ∈

Σ \ {�} are called summaries ;

3. Z is the example space from which examples are drawn;

4. F is called the forward function, this is a measurable function of the type Σ×Z→ Σ

that describes how to update a summary after observing a new example;
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5. B is called the backward kernel, this is a Markov kernel of the type Σ ↪→ Σ×Z; it

is also required that B be an inverse to F in the sense that

B(F−1(σ) | σ) = 1

(in other words, it is required that B(·|σ) gives probability one to the set of pairs

(σ′, z) such that F (σ′, z) = σ).

Let us discuss the intuition behind elements of this model and introduce some further

notation.

Consider the on-line setting where data examples arrive one by one. An OCM is a

way of summarising statistical information. At the beginning we have no information,

which is represented by the empty summary σ0 := �. When the first example z1 arrives,

the summary is updated to σ1 := F (σ0, z1) and so on. In general, past examples are

summarised using statistics that contain all the information useful for predicting future

examples. A precise form of this summary is individual for different statistical models,

and this is analogous to the notion of sufficient statistics. Let tn(z1, . . . , zn) be the nth

statistics in the OCM, which maps z1, . . . , zn to σn:

t1(z1) := F (σ0, z1),

tn(z1, . . . , zn) := F (tn−1(z1, . . . , zn−1), zn), n = 2, 3, . . . .

(1.3)

The value σn = tn(z1, . . . , zn) is a summary of z1, . . . , zn; it is required that the sum-

maries should be computable sequentially: the forward function F updates σn−1 to σn

This on-line character of summarising is reflected in Condition 4 in the definition of

OCM. It is also important that when summarising no useful information is lost, which

is formally reflected in Condition 5. If σn is the summary obtained from (σn−1, zn), then

the distribution of (σ′n−1, z) given σn is known, and therefore the more detailed descrip-

29



Chapter 1. Introduction

tion (σn−1, zn) does not carry any additional information about the statistical model

generating examples z1, z2, . . ..

An OCM can be used to find the distribution of data sequences (z1, . . . , zn) from

summary σn. This is done by combining the one-step backward kernels B(σn), . . . , B(σ1).

Intuitively, it can be understood as a sequence of drawings whose outcomes have the

probability distributions specified by the kernels. The drawing from σn (specified by

probabilities given by B(σn)) gives us zn and σn−1, the drawing from σn−1 (specified by

probabilities given by B(σn−1)) gives us zn−1 and σn−2, and so on. Finally this process

gives us the conditional distribution Pn of (z1, . . . , zn) given σn, which can be described

as

Pn( dz1, . . . , dzn) :=B( dz1,� | σ1)B( dz2, σ1 | σ2) · · ·

B( dzn−1, σn−2 | σn−1)B( dzn, σn−1 | σn)

(see [Vovk et al., 2005a], p. 191).

Consider a probability distribution Q on Z∞ and an OCM M = (Σ,�,Z, F, B). For

n = 2, 3, . . . let tn(z1, . . . , zn) be the nth statistic defined by (1.3). We say that Q agrees

withM if for each n = 2, 3, . . . , B(· | σ) is a version of the conditional distribution, w.r. to

Q, of (tn−1(z1, . . . , zn−1), zn) given tn(z1, . . . , zn) = σ and given the values zn+1, zn+2, . . ..

In other words, with probability one

B(A | σ) = P(z1,z2...)∼Q {(tn−1(z1, . . . , zn−1), zn) ∈ A | tn(z1, . . . , zn) = σ, zn+1, zn+2, . . .}

for each A ⊆ Σ×Z. Intuitively, this agreement has a similar sense as the “agreement” of

a sufficient statistic with the statistical model for which it was constructed (in Statistics

it is expressed by saying “a statistic is sufficient with respect to a statistical model”).

For more information about OCMs and the intuition behind them see, e.g., [Vovk

et al., 2005a, Chapter 8.1] and [Shafer and Vovk, 2008, Section 5.1]. In Chapters 3
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and 5 two important classes of OCMs – hypergraphical and the Gauss linear OCMs –

will be described.

Conformal predictors under OCMs

The definition of CPs can be easily extended to OCMs [Vovk et al., 2005a, Chapter 8.2].

A conformity measure for an OCM (Σ,�,Z, F, B) is a measurable function

A : Σ× Z→ R.

The function assigns a conformity score A (σ, z) to an example z w.r. to a summary σ.

Intuitively, the score reflects how typical it is to observe z having the summary σ.

Consider a training sequence (z1, . . . , zl), generated by a distribution that agrees with

an OCM M = (Σ,�,Z, F, B), an object x and a random number τ ∼ U [0, 1]. Let σl be

the summary of the training sequence. For each y ∈ Y denote σ∗ := F (σl, (x, y)) (the

dependence of σ∗ on y is important although not reflected in this notation). For each

y ∈ Y the p-value py is defined by

py :=B ({(σ, z) ∈ Σ× Z : A(σ, z) < A(σl, (x, y))} | σ∗)

+ τ ·B ({(σ, z) ∈ Σ× Z : A(σ, z) = A(σl, (x, y))} | σ∗) .
(1.4)

The CP and the conformal transducer determined by a conformity measure for an

OCM are defined analogously to those under the exchangeability assumption (see Sub-

section 1.2.2) but using (1.4) rather than (1.2) for calculating p-values.

Again, using (1.4) for an OCM we can generate the sequence of p-values under the

OCM and corresponding to a sequence of examples (as explained on page 26 and sub-

stituting (1.4) instead of (1.2)). The following theorem is a generalisation of Theorem 1

(see [Vovk et al., 2005a, Theorem 8.1]).
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Theorem 2. If examples (z1, z2, . . .) (resp. (z1, z2, . . . , zn)) are generated by a probabil-

ity distribution that agrees with an OCM, the corresponding p-values (p1, p2, . . .) (resp.

(p1, p2, . . . , pn)), generated in the on-line mode using (1.4) for the OCM, are independent

and uniformly distributed on [0, 1].

Consider (z1, z2, . . .) generated by a distribution that agrees with an OCM. A CP is

valid w.r. to the OCM if for any significance level ε ∈ (0, 1) at each prediction trial it

makes errors independently and with probability ε. Analogously, a conformal transducer

is valid w.r. to the OCM if the corresponding p-values (p1, p2, . . .) are independent and

uniformly distributed on [0, 1]. Theorem 2 implies a remarkable result of the theory

of conformal prediction, that in the on-line mode CPs and conformal transducers are

automatically valid under their models.

Having reviewed the preceding studies, the motivation for this work was to consider

conformal prediction under different OCMs with a particular focus on their efficiency

properties. The following list summarises the problems that motivates this research:

1. to find useful measures for information efficiency of conformal predictions;

2. to study efficiency of conformal prediction under stronger assumptions;

3. to develop methods for testing assumptions used for prediction.

1.3. Main contributions

The following list summarises the original results that were obtained during the course

of work on this thesis. The corresponding chapters for these findings are given following

each bullet point.

• (Chapter 2) The development of new efficiency criteria for CPs, including the

investigation of empirical counterparts of two optimal conformity measures for the

most interesting criteria.
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• (Chapter 3) Several new CPs under hypergraphical models are described; these

CPs are studied empirically, demonstrating that hypergraphical models are useful

for conformal prediction; for the unconditional case, the best (or almost the best)

performance among these CPs is achieved when hypergraphical models only used

as “soft models”.

• (Chapter 4) Two new techniques for constructing martingales are suggested; plug-

in martingales are constructed by looking at data and it is proved that, under a

stationarity assumption, these plug-in martingales are competitive with previously

introduced martingales.

• (Chapter 5) The extension of on-line testing to the Gauss linear assumption.

1.4. Publications

The following is a list of papers published during work on this thesis:

• A paper [Fedorova et al., 2012b] describing plug-in martingales for testing ex-

changeability.

• A paper [Fedorova et al., 2012a] applying the plug-in martingales for testing the

Gaussian linear assumption and also empirically studying conformal prediction

under this assumption.

• A working paper [Fedorova et al., 2013a] describing CPs under hypergraphical

models and presenting an empirical study of the CPs; the papers [Fedorova et al.,

2013b] and [Fedorova et al., 2013c] are shorter versions of this paper.

• A working paper [Vovk et al., 2014] describing efficiency criteria for conformal

prediction and including an empirical study of their properties.
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1.5. Thesis summary

The remainder of this thesis is organised as follows:

The main part of this thesis starts (in Chapter 2) with a study of efficiency criteria

for conformal prediction. Some of these criteria are used to study the performance of

different CPs in Chapter 3. Chapter 3 defines hypergraphical models and CPs under

these models, and presents an empirical study of the CPs. After this, the problem

of testing assumptions is addressed. Chapter 4 describes the framework for on-line

testing, defines the exchangeability martingales and describes the construction of the

martingales. Then (in Chapter 5) the testing method is applied to the Gauss linear

assumption. Also Chapter 5 presents an empirically study of conformal prediction under

this assumption. Chapter 6 concludes and also outlines some future directions for this

field of research.

There are also two separate appendices: Appendix A describes used data sets and

Appendix B presents an R implementation of conformal prediction and martingales for

on-line testing.
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Efficiency criteria for conformal

prediction

As mentioned for confidence predictors in general, two main desiderata for conformal

predictors (CPs) are their validity and efficiency. Since (as explained in Section 1.2)

CPs are automatically valid under their models, the most important property for CPs is

their efficiency. The efficiency reflects the narrowness, in some sense, of prediction sets

producer by CPs; but there is no precise definition for this notion. This chapter studies

different criteria of efficiency for conformal prediction. It considers the classification

problem only. Section 2.1 outlines four established criteria of efficiency and Section 2.2

introduces six new criteria. Section 2.3 discusses the conformity measures that optimise

each of these ten criteria in an idealised setting when the data-generating distribution is

known. Section 2.4 moves to a more realistic setting and studies empirical behaviour of

two important criteria. Section 2.5 concludes.
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2.1. Introduction

As discussed in the previous chapter CPs have guaranteed validity. However, it is easy

to construct a valid but not useful CP: for each significance level ε the predictor outputs

the whole label set with probability 1 − ε and the empty set with probability ε. Other

non-trivial CPs may differ in their efficiency (which evaluates the narrowness, in some

sense, of their prediction sets). Empirical investigation of the efficiency of various CPs is

becoming a popular area of research: see, e.g., Vovk et al. [2005a], Gammerman [2012],

Balasubramanian et al. [2013], and Papadopoulos et al. [2014]. This chapter points out

that the standard criteria of efficiency used in literature have a serious disadvantage; such

criteria of efficiency will be called “improper”. In two recent papers two proper criteria

have been introduced, and this chapter introduces two more and argues that proper

criteria should be used in place of more standard ones. This chapter is concentrated on

the case of classification only (the label space is finite).

Surprisingly few criteria of efficiency have been used in literature, and even fewer have

been studied theoretically. One can speak of the efficiency of individual predictions or of

the overall efficiency of predictions on a test sequence; the latter is usually (in particular,

in this chapter) defined by averaging the efficiency over the individual test examples,

and so this introductory section only discusses the former.

The two criteria for efficiency of a prediction that have been used most often in

literature (see, e.g., the references given above) are:

• The confidence and credibility of the prediction. This criterion does not depend

on the choice of a significance level ε.

• Whether the prediction is a singleton (the ideal case), multiple (an inefficient

prediction), or empty (a superefficient prediction) at a given significance level ε.

The other two criteria that have been used are the sum of the p-values for all potential
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labels (this does not depend on the significance level) and the size of the prediction set at

a given significance level: see the recent papers by Fedorova et al. [2013a] and Johansson

et al. [2013].

As before, this chapter only considers the case of smoothed CPs: the case of determin-

istic predictors may lead to packing problems without an explicit solution. For example,

this is the case for the N criterion defined below: for this criterion the goal is to form a

valid prediction set (i.e., with coverage probability 1−ε, where ε is the significance level)

containing the minimal number of labels, but in the deterministic case it may happen

that the optimal prediction set for level ε1 includes labels that are not in the optimal

prediction set for level ε2 < ε1, so this problem would require a separate solution for

each ε. This situation is analogous to the Neyman–Pearson lemma: cf. Lehmann [1986],

Section 3.2.

2.2. Criteria of efficiency for conformal predictors and

transducers

This chapter uses the notation introduced in Section 1.2 and the label space Y is finite.

Also the main assumption in this chapter is the exchangeability assumption, but all

discussions will be useful for conformal prediction under other assumptions as well.

The definitions of CPs and conformal transducers, and their validity were discussed in

Subsection 1.2.2 (see page 24). Next we discuss measures of information efficiency for

CPs and conformal transducers. The efficiency of CPs means that the prediction sets

they output tend to be small, and the efficiency of conformal transducers means that

their p-values tend to be small.

Suppose we are given a test sequence (zl+1, . . . , zl+k) and would like to use it to measure

the efficiency of the predictions derived from the training sequence (z1, . . . , zl). For each
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test example zi = (xi, yi), i = l+ 1, . . . , l+ k, we have a nested family (Γεi | ε ∈ (0, 1)) of

subsets of Y and a system of p-values (pyi | y ∈ Y). This chapter will discuss ten criteria

of efficiency for such a family or a system, but some of them will depend, additionally,

on the observed labels yi of the test examples. Let us start from the prior criteria, which

do not depend on the observed test labels.

Basic prior criteria

We will have two kinds of criteria: those applicable to the prediction sets Γεi and so

depending on the significance level ε and those applicable to systems of p-values (pyi |

y ∈ Y) and so independent of ε. The simplest criteria of efficiency are:

• The S criterion (with “S” standing for “sum”) measures efficiency by the average

sum 1
k

∑l+k
i=l+1

∑
y∈Y p

y
i of the p-values. It is ε-free.

• The N criterion uses the average size 1
k

∑l+k
i=l+1 |Γεi | of the prediction sets (“N”

stands for “number”: the size of a prediction set is the number of labels in it).

Under this criterion the efficiency is a function of the significance level ε.

For both these criteria small values are preferable. The S criterion was introduced in

Fedorova et al. [2013a] and the N criterion was introduced independently in Johansson

et al. [2013] and Fedorova et al. [2013a], although the analogue of the N criterion for

regression (where the size of a prediction set is defined to be its Lebesgue measure) had

been used earlier in Lei and Wasserman [2014].

Other prior criteria

A disadvantage of the basic criteria is that they look too stringent. Even for a good

conformal transducer, we cannot expect all p-values py to be small: the p-value corre-

sponding to the true label will not be small with high probability; and even for a good
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CP we cannot expect the size of its prediction set to be zero: with high probability it

will contain the true label. The other prior criteria are less stringent. The ones that do

not depend on the significance level are:

• The U criterion (with “U” standing for “unconfidence”) uses the average uncon-

fidence over the test sequence, where the unconfidence for a test object xi is the

second largest p-value miny maxy′ 6=y p
y′

i ; small values are preferable. The U crite-

rion in this form was introduced in Fedorova et al. [2013a], but it is equivalent

to using the average confidence (one minus unconfidence), which is very common

(used, e.g., in Vovk et al. [2005a]). If two conformal transducers have the same

average unconfidence (which is presumably a rare event), the criterion compares

the average credibilities, where the credibility for a test object xi is the largest

p-value maxy p
y
i ; smaller values are preferable. (Intuitively, a small credibility is a

warning that the test object is unusual, and since such a warning presents useful

information and the number of warnings is guaranteed to be small, we want to be

warned as often as possible.)

• The F criterion uses the average fuzziness, where the fuzziness for a test object xi is

defined as the sum of all p-values apart from a largest one, i.e., as
∑

y p
y
i −maxy p

y
i ;

smaller values are preferable. If two conformal transducers lead to the same aver-

age fuzziness, the criterion compares the average credibilities, with smaller values

preferable.

Their counterparts depending on the significance level are:

• The M criterion uses the percentage of objects xi in the test sequence for which

the prediction set Γεi at level ε is multiple, i.e., contains more than one label.

Smaller values are preferable. When the percentage of multiple predictions is the

same for two CPs (which is a common situation: the percentage can well be zero),
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the M criterion compares the percentages of empty predictions (larger values are

preferable). This is a widely used criterion. In particular, it was used in Vovk

et al. [2005a] and earlier papers by the authors.

• The E criterion (where “E” stands for “excess”) uses the average (over the test

sequence, as usual) amount the size of the prediction set exceeds 1. In other

words, the criterion gives the average number of excess labels in the prediction

sets as compared with the ideal situation of one-element prediction sets. Smaller

values are preferable for this criterion. When these averages coincide for two CPs,

this criterion compares the percentages of empty predictions (larger values are

preferable).

Observed criteria

The prior criteria discussed in the previous subsection treat the largest p-value, or pre-

diction sets of size 1, in a special way. The corresponding criteria of this subsection

attempt to achieve the same goal by using the observed label.

These are the observed counterparts of the non-basic prior ε-free criteria:

• The OU (“observed unconfidence”) criterion uses the average observed unconfi-

dence over the test sequence, where the observed unconfidence for a test example

(xi, yi) is the largest p-value pyi for the false labels y 6= yi.

• The OF criterion uses the average sum of the p-values for the false labels, i.e.,

1
k

∑l+k
i=l+1

∑
y 6=yi p

y
i .

The counterparts of the last group depending on the significance level are:

• The OM criterion uses the percentage of observed multiple predictions in the test

sequence, where an observed multiple prediction is defined to be a prediction set

including a false label.
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Table 2.1.: The ten criteria studied in Chapter 2: the two basic prior ones in the upper
section; the four other prior ones in the middle section; and the four observed
ones in the lower section

ε-free ε-dependent

S (sum of p-values) N (number of labels)
U (unconfidence) M (multiple)

F (fuzziness) E (excess)
OU (observed unconfidence) OM (observed multiple)

OF (observed fuzziness) OE (observed excess)

• The OE criterion (OE standing for “observed excess”) uses the average number

of false labels included in the prediction sets at level ε.

For all these four observed criteria smaller values are preferable.

The ten criteria investigated in this chapter are given in Table 2.1. Half of the criteria

depend on the significance level ε, and the other half are the respective ε-free versions.

In the case of binary classification problems, |Y | = 2, the number of different criteria

of efficiency in Table 2.1 reduces to six: the criteria not separated by a vertical or

horizontal line (namely, U and F, OU and OF, M and E, and OM and OE) coincide.

2.3. Optimal idealised conformity measures

This section considers the limiting case of infinitely long training and test sequences. To

formalise this setting, we assume that the prediction algorithm is directly given the data-

generating probability distribution Q on Z instead of being given a training sequence

and an intuition behind an infinitely long test sequence will be discussed below.

In this setting, instead of conformity measures idealised conformity measures will be

used. These are functions A(z,Q) of z ∈ Z and Q ∈ P(Z) (where P(Z) is the set of

all probability measures on Z). The data-generating distribution Q will be fixed for the
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rest of this section, and so the corresponding conformity scores are written as A(z).

The idealised smoothed conformal predictor corresponding to A outputs the following

prediction set Γε(x) for each object x ∈ X and each significance level ε ∈ (0, 1). For

each potential label y ∈ Y for x define the corresponding p-value as

py = p(x, y) := Q{z ∈ Z | A(z) < A(x, y)}+ τQ{z ∈ Z | A(z) = A(x, y)} (2.1)

(it would be more correct to write A((x, y)), but one pair of parentheses is omitted),

where τ is a random number distributed uniformly on [0, 1]. (The same random number

τ is used in (2.1) for all (x, y)). The prediction set is

Γε(x) := {y ∈ Y | p(x, y) > ε} . (2.2)

The idealised smoothed conformal transducer corresponding to A outputs for each object

x ∈ X the system of p-values (py | y ∈ Y) defined by (2.1); in the idealised case the

alternative notation p(x, y) for py usually will be used.

The standard properties of validity for conformal transducers and predictors (see The-

orem 1 on page 26) simplify in this idealised case as follows:

• If (x, y) is generated from Q, p(x, y) is distributed uniformly on [0, 1].

• Therefore, the idealised smoothed conformal predictor makes an error with prob-

ability ε.

The test sequence being infinitely long is formalised by replacing the use of a test

sequence in the criteria of efficiency by averaging with respect to the data-generating

probability distributionQ. In the case of the top two and bottom two criteria in Table 2.1

(the ones set in italics) this is done as follows. Let us write ΓεA(x) for the Γε(x) in (2.2)

and pA(x, y) for the p(x, y) in (2.1) to indicate the dependence on the choice of the

idealised conformity measure A. An idealised conformity measure A is:
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• S-optimal if, for any idealised conformity measure B,

Ex,τ
∑
y∈Y

pA(x, y) ≤ Ex,τ
∑
y∈Y

pB(x, y), (2.3)

where the notation Ex,τ refers to the expected value when x ∼ QX, QX being the

marginal distribution of Q on X, and τ ∼ U [0, 1];

• N-optimal if, for any idealised conformity measure B and any significance level ε,

Ex,τ |ΓεA(x)| ≤ Ex,τ |ΓεB(x)| ;

• OF-optimal if, for any idealised conformity measure B,

E(x,y),τ

∑
y′ 6=y

pA(x, y′) ≤ E(x,y),τ

∑
y′ 6=y

pB(x, y′),

where the lower index (x, y) in E(x,y),τ refers to averaging over (x, y) ∼ Q;

• OE-optimal if, for any idealised conformity measure B and any significance level ε,

E(x,y),τ |ΓεA(x) \ {y}| ≤ E(x,y),τ |ΓεB(x) \ {y}| .

The idealised versions of the other six criteria listed in Table 2.1 will be defined in

Subsection 2.3.2.

2.3.1. Proper criteria of efficiency

The goal in this subsection is to characterise the optimal idealised conformity measures

for the four criteria of efficiency that are set in italics in Table 2.1. In the rest of this

chapter it is assumed that the object space X is finite (from the practical point of view,
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this is not a restriction); since we consider the case of classification, |Y| < ∞, this

implies that the whole example space Z is finite. To avoid trivialities, it is also assumed

that the data-generating probability distribution Q satisfies QX(x) > 0 for all x ∈ X

(often curly braces in expressions such as QX({x}) are omitted).

The conditional probability (CoP) idealised conformity measure is

A(x, y) := Q(y | x). (2.4)

This idealised conformity measure was introduced by an anonymous referee of the con-

ference version of Fedorova et al. [2013b], but its non-idealised analogue in the case of

regression had been used in Lei and Wasserman [2014] (following Lei et al. [2013] and

literature on minimum volume prediction). We say that an idealised conformity measure

A is a refinement of an idealised conformity measure B if

B(z1) < B(z2) =⇒ A(z1) < A(z2) (2.5)

for all z1, z2 ∈ Z. Let R(CoP) be the set of all refinements of the CoP idealised con-

formity measure. If C is a criterion of efficiency (one of the ten criteria in Table 2.1),

O(C) stands for the set of all C-optimal idealised conformity measures. The following

theorem has been proved by Vladimir Vovk [Vovk et al., 2014].

Theorem 3. O(S) = O(OF) = O(N) = O(OE) = R(CoP).

We say that an efficiency criterion is proper if the CoP idealised conformity measure

is optimal for it. Theorem 3 shows that four of the ten outlined criteria are proper,

namely S, N, OF, and OE (they are set in italic in Table 2.1). In the following section

we will see that in general the other six criteria are not proper (or improper, as will be

said). This terminology will be discussed in the next section.
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2.3.2. Improper criteria of efficiency

Next the idealised analogues of the six criteria that are not set in italics in Table 2.1 are

defined. An idealised conformity measure A is:

• U-optimal if, for any idealised conformity measure B, we have either

Ex,τ min
y

max
y′ 6=y

pA(x, y′) < Ex,τ min
y

max
y′ 6=y

pB(x, y′)

or both

Ex,τ min
y

max
y′ 6=y

pA(x, y′) = Ex,τ min
y

max
y′ 6=y

pB(x, y′)

and

Ex,τ max
y
pA(x, y) ≤ Ex,τ max

y
pB(x, y);

• M-optimal if, for any idealised conformity measure B and any significance level ε,

we have either

Px,τ (|ΓεA(x)| > 1) < Px,τ (|ΓεB(x)| > 1) (2.6)

or both

Px,τ (|ΓεA(x)| > 1) = Px,τ (|ΓεB(x)| > 1)

and

Px,τ (|ΓεA(x)| = 0) ≥ Px,τ (|ΓεB(x)| = 0);

• F-optimal if, for any idealised conformity measure B, we have either

Ex,τ
(∑

y

pA(x, y)−max
y
pA(x, y)

)
< Ex,τ

(∑
y

pB(x, y)−max
y
pB(x, y)

)
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or both

Ex,τ
(∑

y

pA(x, y)−max
y
pA(x, y)

)
= Ex,τ

(∑
y

pB(x, y)−max
y
pB(x, y)

)

and

Ex,τ max
y
pA(x, y) ≤ Ex,τ max

y
pB(x, y);

• E-optimal if, for any idealised conformity measure B and any significance level ε,

we have either

Ex,τ
(
(|ΓεA(x)| − 1)+

)
< Ex,τ

(
(|ΓεB(x)| − 1)+

)
or both

Ex,τ
(
(|ΓεA(x)| − 1)+

)
= Ex,τ

(
(|ΓεB(x)| − 1)+

)
and

Px,τ (|ΓεA(x)| = 0) ≥ Px,τ (|ΓεB(x)| = 0);

• OU-optimal if, for any idealised conformity measure B,

E(x,y),τ max
y′ 6=y

pA(x, y′) ≤ E(x,y),τ max
y′ 6=y

pB(x, y′);

• OM-optimal if for any idealised conformity measure B and any significance level ε,

P(x,y),τ (Γ
ε
A(x) \ {y} 6= ∅) ≤ P(x,y),τ (Γ

ε
B(x) \ {y} 6= ∅).

The next three definitions follow Vovk et al. [2005a]. The predictability of x ∈ X is

f(x) := max
y∈Y

Q(y | x).
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A choice function ŷ : X→ Y is defined by the condition

∀x ∈ X : f(x) = Q(ŷ(x) | x).

Define the signed predictability (SP) idealised conformity measure corresponding to ŷ by

A(x, y) :=


f(x) if y = ŷ(x)

−f(x) if not;

(2.7)

an SP idealised conformity measure is the SP idealised conformity measure corresponding

to some choice function.

To state the following two theorems, the notion of refinement needs to be modified.

Let R′(SP) be the set of all idealised conformity measures A such that there exists an

SP idealised conformity measure B that satisfies both (2.5) and

B(x, y1) = B(x, y2) =⇒ A(x, y1) = A(x, y2) (2.8)

for all x ∈ X and y1, y2 ∈ Y.

Theorems 4–6 have been proved by Vladimir Vovk [Vovk et al., 2014].

Theorem 4. O(U) = O(M) = R′(SP).

Define the modified conditional probability (MCoP) idealised conformity measure cor-

responding to a choice function ŷ by

A(x, y) :=


P (y | x) if y = ŷ(x)

P (y | x)− 1 if not;

(2.9)

an MCoP idealised conformity measure is an idealised conformity measure corresponding

to some choice function; R′(MCoP) is defined analogously toR′(SP) but using the MCoP
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rather than SP idealised conformity measure.

Theorem 5. O(F) = O(E) = R′(MCoP).

The modified signed predictability (MSP) idealised conformity measure is defined by

A(x, y) :=


f(x) if f(x) > 1/2 and y = ŷ(x)

0 if f(x) ≤ 1/2

−f(x) if f(x) > 1/2 and y 6= ŷ(x),

where f is the predictability function; notice that this definition is unaffected by the

choice of the choice function. (When the predictability f(x) > 1/2, the value ŷ(x) is

defined unambiguously.)

Define a set R′′(MSP) in the same way as R′(SP) but using the MSP idealised confor-

mity measure and except that for A ∈ R′′(MSP), f(x) = 1/2, and y 6= ŷ(x) it is allowed

A(x, y) < A(x, ŷ(x)).

Theorem 6. If |Y| > 2, O(OU) = O(OM) = R′′(MSP).

Let us show that from Theorems 4–6 it follows that the six criteria that are not set

in italics in Table 2.1 are improper (except for OU and OM when |Y| = 2, of course),

i.e. that the CoP idealised conformity measure is not optimal for them.

First, show that the CoP idealised conformity measure is not in the set R′(SP).

Proof. Assume that |X| > 1 and |Y| > 2. Let the data-generating probability distribu-

tion Q on Z be concentrated on the set

{(x, y(1)), (x, y(2)), (x, y(3))} ⊆ Z,

for some arbitrary fixed x ∈ X and y(1), y(2), y(3) ∈ Y. Therefore, without loss of
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generality, it may be assumed that Z = {1, 2, 3}. And also let

Q(1) < Q(2) < Q(3).

Let A(z) denote the CoP idealised conformity measure for Q. According to (2.4) this

conformity measure specifies the following order on Z:

A(1) < A(2) < A(3).

For chosen distribution Q the predictability is Q(3), and it is attained only at label

3. Therefore the choice function is unique and the SP idealised conformity measure is

defined unambiguously. Denote this conformity measure as B(z); according to (2.7) it

specifies the following order on Z:

B(1) = B(2) < B(3).

Then condition (2.8) implies that for all refinements B′ ∈ R′(SP) we should have B′(1) =

B′(2), but A(1) < A(2), hence A 6∈ R′(SP).

Let us show that the CoP idealised conformity measure is not in the set R′(MCoP).

Proof. As explained above, it may be assumed that Z = {1, 2, 3}. Also let

Q(1) < Q(2) = Q(3).

As before, A(z) is the CoP idealised conformity measure for Q, and it specifies the

following order on Z:

A(1) < A(2) = A(3).

In this case, the predictability is attained at labels 2 and 3, therefore we have two
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different MCoP idealised conformity measures for this Q (the first is corresponding to

the choice function ŷ = 2, and the second is corresponding to ŷ = 3). Denote these

conformity measures as B1(z) and B2(z); according to (2.9) the first one (for ŷ = 2)

specifies the ordering:

B1(1) < B1(3) < B1(2),

and the second one (for ŷ = 3) specifies the ordering:

B2(1) < B2(2) < B2(3),

Then condition (2.5) implies that for all refinements B′ ∈ R′(MCoP) we have B′(2) 6=

B′(3), but A(2) = A(3), hence A 6∈ R′(MCoP).

Finally, to show that the CoP idealised conformity measure is not in the set R′′(MSP)

we can use the same example as for R′(SP) additionally assuming that Q(1) > 1/2.

Therefore the six criteria that are not set in italics in Table 2.1 are improper as the CoP

idealised conformity measure is not optimal for them. This disparaging terminology (in

analogy with “improper scoring rules”: see, e.g., Gneiting and Raftery 2004) is used since

the optimal idealised conformity measures for those criteria have clear disadvantages,

such as:

• They may depend on the arbitrary choice of a choice function. In many cases there

is a unique choice function, but the possibility of non-uniqueness is still awkward.

• They may encourage “strategic behaviour” (such as ignoring the differences, which

may be very substantial, between potential labels other than ŷ(x) for a test object

x when using the M criterion).
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2.4. Empirical Study

This section considers CPs in the realistic setting when the data-generating distribution

is unknown. Behaviour of two of the outlined ε-free criteria – OF (proper) and U (stan-

dard but improper) – is studied empirically. Namely, we define empirical counterparts

(based on the KNN method) for the optimal idealised conformity measures for these two

criteria, and evaluate their performance using these criteria.

This empirical study uses the benchmark USPS data set described in Appendix A.1

and the original division of this data set into the training and test sequences. The

programs implementing prediction methods are written in R, and the results presented

in the figures below are for the seed 0 of the R random number generator; however,

similar results have been observed in experiments with other seeds.

Based on the KNN method, three conformity measures are derived. Fix a metric on

the object space R256; in these experiments two metrics are used – tangent distance (im-

plementation by Daniel Keyser) and Euclidean distance. Given a sequence of examples

(z1, . . . , zn), zi = (xi, yi), the following three ways of computing conformity scores are

considered: for i = 1, . . . , n,

• the KNN-ratio conformity scores are

αi :=

∑K
j=1 d

6=
j∑K

j=1 d
=
j

, (2.10)

where d 6=j are the distances to the objects in (z1, . . . , zn) with labels different from

yi and sorted in the increasing order (so that d 6=1 is the smallest distance from

xi to an object xj with yj 6= yi), and d=i are the distances to the objects in

(z1, . . . , zi−1, zi+1, . . . , zn) labelled as yi (so that d=1 is the smallest distance from

xi to an object xj with j 6= i and yj = yi). This conformity measure has one

parameter, K, whose range is {1, . . . , 50} in the experiments.
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• the KNN-CoP conformity scores are

αi :=
Ni

K
, (2.11)

where Ni is the number of objects labelled as yi among the K nearest neighbours of

xi. This conformity measure is a KNN counterpart of the CoP idealised conformity

measure (cf. (2.4)), its parameter K is in the range {2, . . . , 50} in the experiments.

• finally, define

fi := max
y

(Ny
i /K),

where Ny
i is the number of objects labelled as y among the K nearest neighbours

of xi, fix some

ŷi ∈ arg max
y

(Ny
i /K)

(chosen randomly if |arg maxy(N
y
i /K)| > 1), and define the KNN-SP conformity

scores by

αi :=


fi if y = ŷi

−fi otherwise.

(2.12)

This conformity measure is a KNN counterpart of the SP idealised conformity

measure (cf. (2.7)), its parameter K is in the range {2, . . . , 50} in the experiments.

These three kinds of conformity measures combined with the two metrics give six CPs.

The top panel in Figure 2.1 gives the average unconfidence

unconfidence(K) :=
1

k

l+k∑
i=l+1

min
y∈Y

max
y′ 6=y

py
′

i

over the test sequence (so that k = 2007) for a range of the values of the parameter K.
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The bottom panel in this figure is for the average observed fuzziness

observed fuzziness(K) :=
1

k

l+k∑
i=l+1

∑
y∈Y\{yi}

pyi

over the test sequence for a range of K. The best results in this figure are for KNN-

ratio combined with tangent distance for small values of parameter K. For the two

other kinds of conformity measures – KNN-CoP and KNN-SP – their relative evaluation

changes depending on the kind of a criterion used to measure efficiency. As expected,

the KNN-CoP CPs are better under the OF criterion, whereas the KNN-SP CPs are

better under the U criterion (cf. Theorems 3 and 4), if we ignore small values of K (when

the probability estimates Ny
i /K are very unreliable).

2.5. Conclusion

This chapter has discussed ten criteria of efficiency for conformal prediction. Idealised

conformity measures that optimise each of the criteria have been described when the

data-generating distribution is known. This sheds light upon the kind of behaviour

implicitly encouraged by the criteria even in the realistic case where the data-generating

distribution is unknown. Following these ideas, empirical counterparts for the CoP and

SP conformity measures have been constructed. Experiments with a benchmark data

set have shown that different criteria rank these conformity measures differently. In

addition, the results confirm the statements of Theorems 3 and 4 for the non-idealised

setting.
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Figure 2.1.: Top plot: average unconfidence for the USPS data set (for different values
of parameters). Bottom plot: average observed fuzziness for the USPS data
set.
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Chapter 3.

Conformal prediction under

hypergraphical models

Usually conformal prediction is studied under the exchangeability assumption, since this

is one of the weakest assumptions on data. Conversely, other statistical models are use-

ful to describe certain knowledge about the nature of data. The general definition of

conformal predictors (CPs) given in Subsection 1.2.3 allows us to construct valid pre-

dictors under different models represented as on-line compression models (OCMs). This

chapter studies CPs under special OCMs – hypergraphical models. These models are

more specific than the exchangeability model and represent assumptions about relation-

ships between data features. Section 3.1 summarises previous similar studies. Section 3.2

formally defines hypergraphical models and reviews their basic properties. Section 3.3 de-

scribes conformal prediction in the context of hypergraphical models and introduces two

conformity measures for these models. Section 3.4 empirically studies the performance of

several CPs defined by these two conformity measures. Section 3.5 describes label condi-

tional CPs under hypergraphical models and also empirically studies their performance.

Section 3.6 concludes.
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3.1. Introduction

To the best of my knowledge, conformal prediction has been studied, apart from the

exchangeability model and its variations, only for the Gauss linear model and Markov

model (see [Vovk et al., 2005a, Chapter 8] and [Fedorova et al., 2012a], which is similar

to Chapter 5 in this thesis). Hypergraphical OCMs have been used only in the context

of Venn rather than conformal prediction (see [Vovk et al., 2005a, Chapter 9]).

This chapter studies conformal prediction under the OCMs known as hypergraphical

models (Vovk et al. [2005a], Section 9.2). Such models describe relationships between

data features. In the case where every feature is allowed to depend in any way on the

rest of the features, the hypergraphical model becomes the exchangeability model. More

specific hypergraphical models restrict the dependence in some way. Such restrictions

are typical of many real-world problems: for example, different symptoms can be condi-

tionally independent given the disease. A popular approach to such problems is to use

Bayesian networks (see, e.g., Cowell et al. [1999]). The definition of Bayesian networks

requires a specification of both the pattern of dependence between features and the dis-

tribution of the features. Usual methods guarantee a valid probabilistic outcome if the

used distributions of features are correct. Several algorithms (see, e.g., Cowell et al.

[1999], Chapter 9) are known for estimating the distribution of features; however, the

accuracy of such approximations is a major concern in applying Bayesian networks. CPs

constructed from hypergraphical OCMs use only the pattern of dependence between the

features but do not involve their distribution. This makes conformal prediction based on

hypergraphical models more robust and realistic than Bayesian networks. (The notion of

a hypergraphical model can be regarded as more general than that of a Bayesian network:

the standard algorithms in this area transform Bayesian networks into hypergraphical

models by “marrying parents”, forgetting the direction of the arrows, triangulation, and

regarding the cliques of the resulting graph as the hyperedges; see, e.g., Cowell et al.
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[1999], Section 3.2.)

3.2. Definitions

This chapter uses the notation introduced in Section 1.2, and focuses on the case where

both an object space X and a label space Y are finite. Also, it is assumed that examples

are structured, consisting of variables. Hypergraphical structures describe relationships

between the variables. Next the hypergraphical structures are defined and after this the

definition of hypergraphical models is given.

Hypergraphical structures

A hypergraphical structure1 consists of three elements (V, E ,Ξ):

1. V is a finite set; its elements are called variables.

2. E is a finite collection of subsets of V whose union covers all variables:
⋃
E∈E E = V .

Elements of E are called clusters.

3. Ξ is a function that maps each variable v ∈ V into a finite set (of the values that

v can take).

A configuration on a set E ⊆ V (we are usually interested in the case where E is a

cluster) is an assignment of values to the variables from E; let Ξ(E) be the set of all

configurations on E. A table2 on a set E is an assignment of natural numbers or zero

to the configurations on E. The size of the table is the sum of values that it assigns to

different configurations. A table set is a collection of tables on the clusters E , one for

1The name reflects the fact that the components (V, E) form a hypergraph, where a hyperedge E ∈ E
can connect more than two vertices.

2Generally, a table assigns real numbers to configurations. This thesis only considers natural tables,
which assign natural numbers or zero to configurations, and “natural” is omitted for brevity.
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each cluster E ∈ E . The number assigned by a table set σ to a configuration on E is

called its σ-count.

3.2.1. Hypergraphical OCMs

The example space Z associated with the hypergraphical structure is the set of all

configurations on V . One of the variables in V is singled out as the label variable,

and the configurations on the label variable are denoted Y. All other variables are

object variables, and the configurations on the object variables are denoted X. Since

Z = X×Y, this is a special case of the prediction setting described at the beginning of

Section 1.2.

An example z ∈ Z agrees with a configuration on a set E ⊆ V (or the configuration

agrees with the example) if the restriction z|E of z to the variables in E coincides with

the configuration. A table set σ generated by a sequence of examples (z1, . . . , zn) assigns

to each configuration on each cluster the number of examples in the sequence that agree

with the configuration; the size of each table in σ will be equal to the number of examples

in the sequence, and this number is called the size of the table set. Different sequences

of examples can generate the same table set σ, and #σ denotes the number of different

sequences generating σ.

Next a special class of OCMs is defined (the definition of an OCM was given on

page 28). The hypergraphical on-line compression model (HOCM) associated with the

hypergraphical structure (V, E ,Ξ) consists of five elements (Σ,�,Z, F, B), where:

1. The empty table set � is the table set assigning 0 to each configuration.

2. The set Σ is defined by the conditions that � ∈ Σ and Σ \ {�} is the set of all

table sets σ with #σ > 0. The elements σ ∈ Σ are called summaries.

3. The forward function F (σ, z), where σ ranges over Σ and z over Z, updates σ by
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adding 1 to the σ-count of each configuration which agrees with z.

4. The backward kernel B maps each σ ∈ Σ \ {�} to a probability distribution B(σ)

on Σ×Z. Example z agrees with summary σ if the σ-count for each configuration

which agrees with z is positive; if so, obtain a table set, denoted σ ↓ z, from σ by

subtracting 1 from the σ-count of any configuration that agrees with z. B(σ) is

defined by

B({(σ ↓ z, z) | σ}) :=
#(σ ↓ z)

#σ
.

Notice that B(σ) is indeed a probability distribution, and it is concentrated on the

pairs (σ ↓ z, z) such that F (σ ↓ z, z) = σ.

For the rest of this chapter “hypergraphical models” will be used as a general term for

hypergraphical structures and HOCMs when no precision is required.

When discussing hypergraphical models it will be always assumed that the distribution

generating examples agrees with the HOCM (as defined on page 30 for an arbitrary

OCM). For this special class of OCMs, it is equivalent to assuming that the examples

z1, z2, . . . are produced independently by a probability distribution Q on Z that has a

decomposition

Q({z}) =
∏
E∈E

fE(z|E) (3.1)

for some functions fE : Ξ(E) → [0, 1], E ∈ E , where z is an example and z|E its

restriction to the variables in E. (For proof see [Vovk et al., 2005a, Corollary 9.6].)

Junction tree structures

An important type of hypergraphical structures is where clusters can be arranged into

a “junction tree”. For the corresponding HOCMs it will be possible to describe efficient

calculations of the backward kernels. If a hypergraphical structure is not of this type it
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can be replaced by a more general junction-tree structure (each cluster in the former is

a subset of a cluster in the latter) before defining the HOCM.

Let (U, S) denote an undirected tree with U the set of vertices and S the set of

edges. Then (U, S) is a junction tree for a hypergraphical structure (V, E ,Ξ) if there

exists a bijective mapping C from the set of vertices U of the tree to the set E of

clusters of the hypergraphical structure that has the following property: Cu ∩ Cw ⊆ Cv

whenever a vertex v lies on the path from a vertex u to a vertex w in the tree (let Cx

stand for C(x)). Not every hypergraphical structure has a junction tree, of course: an

example is a hypergraphical structure with three clusters whose intersection is empty

but whose pairwise intersections are not. See, e.g., [Cowell et al., 1999, Section 4.3], for

further information on junction trees; intuitive examples of junction trees will be given

in Section 3.4.

If s = {u, v} ∈ S is an edge of the junction tree connecting vertices u and v then Cs

stands for Cu ∩ Cv. It is convenient to identify vertices u and edges s of the junction

tree with the corresponding clusters Cu and sets Cs, respectively.

If E1 ⊆ E2 ⊆ V and f is a table on E2, the marginalisation of f to E1 is the table

f ∗ on E1 assigning to each a ∈ Ξ(E1) the number f ∗(a) =
∑

b f(b), where b ranges over

the configurations on E2 such that b|E1 = a. If σ is a summary then for u ∈ U denote

σu the table that σ assigns to Cu, and for s = {u, v} ∈ S denote σs the marginalisation

of σu (or σv) to Cs. The shorthand σu(z) will be used for the number assigned to the

restriction z|Cu by the table for the vertex u and σs(z) for the number assigned to z|Cs

by the marginal table for the edge s. Consider the HOCM corresponding to the junction

tree (U, S). Denote the weight assigned by B(σ) to (σ ↓ z, z) as Pσ(z):

Pσ(z) := B({(σ ↓ z, z) | σ}).
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It has been proved (Vovk et al. [2005a], Lemma 9.5) that

Pσ(z) =

∏
u∈U σu(z)

n
∏

s∈S σs(z)
, (3.2)

where n is the size of σ. If any of the factors in (3.2) is zero then the whole ratio is set

to zero.

3.3. Conformal prediction under HOCMs

Consider a training sequence (z1, . . . , zl) generated by a distribution that agrees with an

HOCM M = (Σ,�,Z, F, B). The goal is to predict the label for a new object x.

The definition of a conformity measure for an HOCMs is the same as that for an

arbitrary OCM (see page 31). Next the definition of the CP determined by such a

conformity measure is restated in the context of HOCMs.

Consider a conformity measure A for the HOCM M . For each y ∈ Y denote σ∗ ∈ Σ

the table set generated by the sequence (z1, . . . , zl, (x, y)). For z ∈ Z such that σ∗ ↓ z is

defined denote the conformity scores as

αz := A (σ∗ ↓ z, z) (3.3)

(notice that α(x,y) is always defined). The p-value for y, denoted py, can be written as

py =
∑

z:αz<α(x,y)

Pσ∗(z) + τ
∑

z:αz=α(x,y)

Pσ∗(z) (3.4)

(cf. (1.4) on page 31), where τ ∼ U[0, 1] is a random number from the uniform distri-

bution on [0, 1], Pσ∗(z) is the backward kernel, as defined above, and the sums involve

only those z ∈ Z for which αz is defined. Then for a significance level ε the conformal
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predictor Γ based on A outputs the prediction set

Γε(z1, . . . , zl, x, τ) := {y ∈ Y : py > ε}. (3.5)

Next two examples of conformity measures for HOCMs will be described.

3.3.1. Conformity measures for HOCMs

Earlier (in Section 2.3) idealised conformity measures that optimise different criteria

of efficiency for conformal prediction were discussed. This section defines conformity

measures for HOCMs that are hypergraphical counterparts of two of those idealised

conformity measures. (In the current setting, the empirical distribution can be estimated

using a hypergraphical model, and there is no need to involve the KNN approximation

as it was done on page 52.)

Consider a summary σ and an example (x, y). The hypergraphical conditional proba-

bility conformity measure is defined by

A(σ, (x, y)) := Pσ∗(y | x) :=
Pσ∗ ((x, y))∑

y′∈Y Pσ∗ ((x, y′))
, (3.6)

where σ∗ := F (σ, (x, y)) and Pσ∗ ((x, y)) is the backward kernel. In other words,

A(σ, (x, y)) is the conditional probability Pσ∗(y | x) of y given x under Pσ∗ . The condi-

tional probability Pσ∗(y | x) can be easily computed using (3.2).

Define the predictability of an object x ∈ X as

f(x) := max
y∈Y

Pσ∗(y | x), (3.7)

the maximum of conditional probabilities. (If the predictability of an object is close to

1 then the object is “easily predictable”.) Fix a choice function ŷ : X → Y defined by
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the condition

∀x ∈ X : f(x) = Pσ∗(ŷ(x) | x).

(The function maps each object x to one of the labels at which the maximum in (3.7) is

attained.) The hypergraphical signed predictability conformity measure is defined by

A(σ, (x, y)) :=


f(x) if y = ŷ(x)

−f(x) otherwise.

(3.8)

3.4. Empirical study

This section empirically studies the performance of CPs corresponding to conformity

measures (3.6) and (3.8) using LED data sets. First the experimental setting is dis-

cussed, then hypergraphical structures for the data sets are described, and after that

the experimental results are presented.

Set-up for experiments

Let us consider conformal prediction in the on-line mode (Protocol 1.1 on page 24).

Reality generates examples (xn, yn) from a probability distribution Q satisfying (3.1)

for some hypergraphical structure. Predictor uses a CP Γ under the corresponding

hypergraphical model to output the prediction set

Γεn := Γε(x1, y1, . . . , xn−1, yn−1, xn, τn)

at each significance level ε.

Considerations in this section are restricted to the problems where the hypergraphical

model used for computing the p-values is known to be correct; therefore, the predictions

will always be valid, and there is no need to test validity experimentally.

63



Chapter 3. Conformal prediction under hypergraphical models

In Chapter 2 we discussed ten different criteria of efficiency for conformal prediction.

For this chapter two ε-free and two ε-dependent criteria are considered.

The ε-free criteria are: the cumulative observed fuzziness OFn over the first n steps

OFn :=
n∑
i=1

∑
y∈Y
y 6=yi

pyi

(see page 40), and the cumulative unconfidence Un over the first n steps

Un :=
n∑
i=1

min
y∈Y

max
y∈Y
y 6=yi

pyi

(see page 39). As discussed before, the criteria work in the same direction: the smaller

the better.

The ε-dependent criteria are: the average observed excess over the first n steps defined

by

OEε
n :=

1

n

n∑
i=1

|Γεi \ {yi}|

at each significance level ε ∈ (0, 1) (see page 41), and the percentage of multiple predic-

tions defined by

multεn :=

 1 if |Γεn| > 1

0 otherwise
and Mε

n :=
1

n

n∑
i=1

multεi

at each significance level ε ∈ (0, 1) (see page 39). It is desirable for both these values to

be close to 0.

Chapter 2 pointed out that if the data distribution is known:

• the idealised conditional probability conformity measure (2.4) is optimal in the

sense of OEε
n and in the sense of OFn (see Theorem 3 on page 44);
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• the idealised signed predictability conformity measure (2.7) is optimal in the sense

of Mε
n and in the sense of Un (see Theorem 4 on page 47).

This empirical study will demonstrate that the conclusions hold for the hypergraphical

counterparts of the two idealised conformity measures.

LED data

LED data sets used for the experiments are described in Appendix A.2. First the data-

generating distribution is discussed and then hypergraphical structures used for the data

are defined.

Following the notation in Appendix A.2, let (S0, . . . , S6, C) be the vector of random

variables corresponding to the seven LED segments and the label, and let (s0, . . . , s6, c)

be an example. Denote the probability of noise for each LED as pnoise (it is the same for

all LEDs). According to the data-generating mechanism the probability of the example

decomposes as

Q ({(s0, . . . , s6, c)}) = Q7 (C = c) ·
6∏
i=0

Qi (Si = si | C = c) , (3.9)

where Q7 is the uniform distribution on the decimal digits and

Qi (Si = si | C = c) :=


1− pnoise if si = sci

pnoise otherwise,

i = 0, . . . , 6, (3.10)

(sc0, . . . , s
c
6, c) representing the ideal image for the label c.

Hypergraphical assumptions for LED data

Consider two hypergraphical models that agree with the decomposition (3.9). These

models make different assumptions about the pattern of dependence between the features
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and the label; they do not depend on a particular probability of noise pnoise or the fact

that the same value of pnoise is used for all LEDs. For both hypergraphical structures

the set of variables is V := {s0, . . . , s6, c}.

Nontrivial hypergraphical model. Consider the hypergraphical structure with the

clusters E := {{si, c} : i = 0, . . . , 6}. A junction tree for this hypergraphical struc-

ture can be defined as a chain with vertices U := {ui : i = 0, . . . , 6} and the bijection

Cui := {si, c}. By saying that U is a chain it is implied that there are edges connecting

vertices u0 and u1, u1 and u2, u2 and u3, u3 and u4, u4 and u5, and u5 and u6 (and these

are the only edges). It is clear that this is a junction tree and that Cs = {c} for each

edge s. It is also clear from (3.9) that the assumption (3.1) is satisfied; e.g., one can set

f{s0,c} (s0, c) := Q7 (C = c) ·Q0 (S0 = s0 | C = c) ;

f{si,c} (si, c) := Qi (Si = si | C = c) , i = 1, . . . , 6.

Exchangeability model. The hypergraphical model with no information about the

pattern of dependence between the attributes and the label is the exchangeability model.

The corresponding hypergraphical structure has one cluster, E := {V }. The junction

tree is the one vertex associated with V and no edges.

Experiments

Each LED data set for the experiments consists of 10, 000 examples generated with the

probability of noise pnoise = 1% in the data-generating program (see Appendix A.2).

The text below assumes that the reader can see Figures 3.1–3.4 in colour (the web-links

for coloured pictures are available); the colours become different shades of grey in black-

and-white. Hopefully, the descriptions will be detailed enough for the reader to identify

the most important graphs unambiguously.
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Each of the figures corresponds to an efficiency criterion for conformal prediction;

namely, Figure 3.1 3 plots the cumulative observed fuzziness OFn versus n = 1, . . . , 10000

in the on-line prediction protocol, Figure 3.2 4 plots the cumulative unconfidence Un

versus n = 1, . . . , 10000, Figure 3.3 5 plots the final average observed excess of predic-

tions OEε
10000 versus ε ∈ [0, 0.05] and Figure 3.4 6 plots the final percentage of multiple

predictions Mε
10000 versus ε ∈ [0, 0.05]. Two conformity measures are considered: the

hypergraphical conditional probability (CoP) conformity measure (3.6) and the hyper-

graphical signed predictability (SP) conformity measure (3.8). The graphs corresponding

to the former are represented in the plots as solid lines, and the graphs corresponding

to the latter are represented as dashed lines.

Two of the graphs in each figure correspond to idealised predictors and are drawn

only for comparison, representing an unachievable ideal goal. In the idealised case we

know the true distribution for the data (given by (3.9), (3.10), and pnoise = 1%). The

true distribution is used instead of the backward kernel Pσ∗ in both (3.4) and (3.6)

for the hypergraphical CoP conformity measure and in both (3.4) and (3.8) for the

hypergraphical SP conformity measure. It yields the ideal results (the two red lines in

the plots) for the two conformity measures, CoP and SP. At least one of them gives the

best results in each of the figures (remember that for these four criteria the lower the

better).

In addition, for each of the two conformity measures four realistic predictors are

constructed (which are CPs, unlike the idealised ones). The pure hypergraphical CP

(represented by blue lines in the plots) is obtained using the nontrivial hypergraphical

model both when computing p-values (see (3.4)) and when computing the conformity

measure ((3.6) in the case of hypergraphical CoP and (3.8) in the case of hypergraphical

3http://www.cs.rhul.ac.uk/~valentina/thesis_pics/of_hm.pdf
4http://www.cs.rhul.ac.uk/~valentina/thesis_pics/u_hm.pdf
5http://www.cs.rhul.ac.uk/~valentina/thesis_pics/oe_hm.pdf
6http://www.cs.rhul.ac.uk/~valentina/thesis_pics/m_hm.pdf
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SP). Analogously the exchangeability model is used to obtain the pure exchangeability

CP (green lines in the plots). The two mixed CPs (black and yellow lines) are obtained

when different models are used to compute the p-values and the conformity scores.

The intuition behind the pure and mixed CPs can be explained using the distinction

between hard and soft models made in Vovk et al. [2005b]. The model used when

computing the p-values (see (3.4)) is the hard model; the validity of the CP depends

on it. The model used when computing conformity scores (see (3.6) and (3.8)) is the

soft model (as mentioned on page 24); when it is violated, validity is not affected,

although efficiency can suffer. The true probability distribution (3.9) conforms to both

the exchangeability model and the nontrivial hypergraphical model; therefore, all four

CPs are automatically valid, and only their efficiency is investigated. (In the current

context, it is obvious that the exchangeability model is more general than the nontrivial

hypergraphical model, but we can also apply the criterion given in Vovk et al. [2005a],

Proposition 9.2.)

In the legends of Figures 3.1–3.4, the hard model used is indicated after “pv” (the

way of computing the p-values), and the soft model used is indicated after “CM” (the

conformity measure); “exch” refers to the exchangeability model, and “hgr” refers to

the nontrivial hypergraphical model.

The most interesting graphs in Figures 3.1–3.4 are the black ones, corresponding to

the exchangeability model as the hard model and the nontrivial hypergraphical model as

the soft model. The performance of the corresponding CPs is typically better than, or

at least close to, the performance of any of the remaining realistic predictors. The fact

that the validity of these CPs only depends on the exchangeability assumption makes

them particularly valuable. The yellow graphs correspond to the nontrivial hypergraph-

ical model as the hard model and the exchangeability model as the soft model; the

performance of the corresponding CPs is very poor in these experiments.
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Figure 3.1.: Cumulative observed fuzziness for on-line predictions. The results are for
the LED data set with 1% of noise and 10, 000 examples. (In the legend
“pv” stands for the model for calculating p-values, “CM” stands for the
model for constructing conformity measure.)

The data-generating program is written in C, and the data-processing programs are

written in R. For results presented in the figures, in both cases the seed of the pseudo-

random number generator is set to 0, but the corresponding tables and experiments not

included in this chapter confirm that conclusions given below apply to other seeds as

well. Now each of the figures and the corresponding tables will be discussed separately.

Table 3.1.: The final values of the cumulative observed fuzziness in Figure 3.1 for the
black and blue graphs.

Seed (104) 0 1 . . . 99 Average St. dev.

pv: exch; CM: hgr CoP 409.6 422.2 . . . 402.7 407.0 24.75
pv: hgr; CM: hgr CoP 393.6 402.2 . . . 385.2 384.4 23.99
pv: exch; CM: hgr SP 675.4 747.0 . . . 717.1 676.1 55.87
pv: hgr; CM: hgr SP 666.1 729.8 . . . 701.2 657.2 53.90
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Figure 3.2.: Cumulative unconfidence for on-line predictions. The results are for the
LED data set with 1% of noise and 10, 000 examples. (In the legend “pv”
stands for the model for calculating p-values, “CM” stands for the model
for constructing conformity measure.)

Figure 3.1 shows the cumulative observed fuzziness OFn. As mentioned earlier, the

optimal conformity measure to use is CoP. Indeed, for this criterion the predictors based

on the CoP conformity measure outperform the predictors based on the SP conformity

measure (the solid lines are below the dashed lines of the same colour), as expected. The

bottom graph corresponds to the idealised CoP predictor; the idealised SP predictor is

Table 3.2.: The final values of the cumulative unconfidence in Figure 3.2 for the black
and blue graphs.

Seed (104) 0 1 . . . 99 Average St. dev.

pv: exch; CM: hgr CoP 107.69 108.03 . . . 106.96 106.23 9.852
pv: hgr; CM: hgr CoP 109.68 107.80 . . . 107.80 105.83 9.821
pv: exch; CM: hgr SP 83.40 90.26 . . . 89.09 82.19 7.066
pv: hgr; CM: hgr SP 84.89 90.56 . . . 89.45 82.39 6.809
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Figure 3.3.: The final average observed excess for significance levels between 0% and 5%.
The results are for the LED data set with 1% of noise and 10, 000 examples.
(In the legend “pv” stands for the model for calculating p-values, “CM”
stands for the model for constructing conformity measure.)

the second best most of the time, but at the end it is overtaken by the black and

blue graphs corresponding to the CPs based on the CoP conformity measure using the

nontrivial hypergraphical model. The black and blue graphs are very close; the blue one

is slightly lower but the CP corresponding to the black one still appears preferable as

its validity only depends on the weaker exchangeability assumption.

Table 3.3.: The final average observed excess in Figure 3.3 for the significance level 1%
and for the black and blue graphs.

Seed (104) 0 1 . . . 99 Average St. dev.

pv: exch; CM: hgr CoP 0.5218 0.5115 . . . 0.5197 0.5451 0.1237
pv: hgr; CM: hgr CoP 0.5299 0.4868 . . . 0.5025 0.5228 0.1216
pv: exch; CM: hgr SP 1.4870 1.7030 . . . 1.6648 1.4147 0.3598
pv: hgr; CM: hgr SP 1.4959 1.6327 . . . 1.6359 1.3806 0.3432
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Figure 3.4.: The final percentage of multiple predictions for significance levels between
0% and 5%. The results are for the LED data set with 1% of noise and
10, 000 examples. (In the legend “pv” stands for the model for calculating
p-values, “CM” stands for the model for constructing conformity measure.)

Table 3.1 shows the final values of the cumulative observed fuzziness in Figure 3.1 for

the four most important graphs (two black and two blue) for several seeds. The values

of the seed are given in the units of 10, 000 (so that 0 stands for 0, 1 for 10, 000, 2 for

20, 000, etc.), which is the minimal step to ensure that different experiments are based

on completely different pseudorandom numbers (when the seed is initialised to n, the

Table 3.4.: The final percentage of multiple predictions in Figure 3.4 for the significance
level 1% and for the black and blue graphs.

Seed (104) 0 1 . . . 99 Average St. dev.

pv: exch; CM: hgr CoP 0.3720 0.4046 . . . 0.4109 0.3812 0.0905
pv: hgr; CM: hgr CoP 0.3920 0.4047 . . . 0.4128 0.3815 0.0896
pv: exch; CM: hgr SP 0.1972 0.2425 . . . 0.2478 0.1918 0.0515
pv: hgr; CM: hgr SP 0.2034 0.2437 . . . 0.2502 0.1962 0.0489
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successive calls to the R pseudorandom number generator produce the pseudorandom

numbers corresponding to the seeds n, n+1, n+2, etc.); the “104” in parentheses serves

as a reminder of this. The last two columns of this and other tables give aggregate

values: column “Average” gives the average of all the 100 values for the seeds 0–99,

and column “St. dev.” gives the standard estimate of the standard deviation computed

from those 100 values (namely, the square root of the standard unbiased estimate of the

variance). The table confirms that the black and blue graphs are close to each other on

average (see the penultimate column), although there is a clear tendency for the blue

ones to be lower: see the last column (to obtain an estimate of the standard deviation

of the average, the value given in the last column should be divided by 10).

Figure 3.2 shows the cumulative unconfidence Un, and so the right conformity measure

to use is SP; and indeed, all SP graphs lie below their CoP counterparts. The two bottom

graphs are the ones corresponding to idealised predictors; the graph corresponding to

the CoP idealised predictor, however, has a suboptimal slope. Of the realistic predictors,

the lowest graph is the black SP one (but the blue SP graph, corresponding to the pure

hypergraphical CP, is very close). Table 3.2 confirms that each black graph is very

close to the corresponding blue graph on average, but the accuracy of the experiments

is insufficient to say which tends to be lower.

Figure 3.3 shows the average observed excess of predictions after 10, 000 prediction

steps as function of the significance level. For small significance levels the predictors

based on the CoP conformity measure perform better, again confirming the theoretical

results mentioned earlier. The black CoP graph is very close to the blue CoP graph,

corresponding to the pure hypergraphical predictor, except for very low significance

levels when the average excess exceeds 1. According to Table 3.3, the accuracy of the

experiments is insufficient to tell whether the two blue graphs tend to be lower than the

corresponding black ones at the significance level 1% for these data.
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Figure 3.4 shows the percentage of multiple predictions after observing 10, 000 exam-

ples as function of the significance level. For small significance levels the percentage

of the multiple predictions is smaller for the predictors based on the SP conformity

measure, again as expected. The performance of the CP corresponding to the black

SP graph is again remarkably good, better than that of any other realistic predictor,

although very close to the blue SP graph. The closeness at the significance level 1% is

confirmed by Table 3.4.

To summarise, the experiments have shown that the best performance of the realistic

predictors is achieved when the soft model is the nontrivial hypergraphical model; the

choice of the stronger hard model does not change the performance too much, therefore

one can continue to use the exchangeability model as the hard model. In the presented

experiments both the exchangeability and hypergraphical models are correct for data,

therefore using any of the models for computing p-values results in valid predictions.

However, in practice (for example, in medical applications) it is often the situation

when exchangeability is satisfied but a hypergraphical model is “almost correct”. In

this case, if the hypergraphical model is used for computing p-values, predictions may

be not valid. To avoid such problems it is suggested to use the weaker exchangeabil-

ity assumption for computing p-values and the stronger hypergraphical assumption for

constructing conformity measures. In addition, in the experiments we have seen the

examples confirming the results of Theorem 3 (page 44) and Theorem 4 (page 47) in

the non-idealised setting: the hypergraphical conditional probability conformity mea-

sure (3.6) is optimal in terms of OF and OE criteria (Figures 3.1 and 3.3), and the

hypergraphical signed predictability conformity measure (3.8) is optimal in terms of U

and M criteria (Figures 3.2 and 3.4).
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3.5. Label conditional conformal prediction under

HOCMs

The usual notion of validity for CPs (see page 32) is unconditional; the overall probability

of error being equal to the significance level ε does not prevent the probability of error for

different classes (such as 0s, 1s, etc. in the case of LED data sets) being different from ε,

as long as the average probability over all classes remains ε. This section describes label

conditional conformal prediction under hypergraphical models, which achieves class-wise

validity. It starts with the formal definition of the method and follows by an empirical

study of these CPs using LED data sets.

3.5.1. Definition and properties of label conditional conformal

prediction

In general, examples can be divided in a natural way into a finite number of categories

(for example, each category corresponds to a label, or to a kind of objects). We say that

a CP is category-wise valid if for any significance level ε ∈ (0, 1) the probability of errors

within each category is ε. And analogously, a conformal transducer is category-wise valid

if p-values (calculated in the on-line mode and corresponding to the true labels) are in-

dependent and distributed uniformly on [0, 1] for each of the categories. The automatic

validity of CPs (Theorem 2 on page 31) does not guarantee their validity within individ-

ual categories: for some categories error rates can be higher than the significance level

and it is balanced by lower error rates for other categories. For conformal transducers it

means that p-values corresponding to different labels are concentrated in different parts

of the unit interval, but altogether their distribution is uniform. A modification of CPs

that achieve the category-wise validity, called Mondrian CPs, were introduced in [Vovk

et al., 2005a, Section 4.5 ] under the exchangeability assumption. This section studies
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Mondrian CPs and transducers under hypergraphical models focusing on the categories

corresponding to labels; the corresponding categories are called classes, as usual, and

the corresponding Mondrian CPs are called label conditional CPs.

Formally, hypergraphical label conditional conformal predictors are defined in the same

way as hypergraphical CPs in Section 3.3 (see (3.3) – (3.5)) except that the definition

of p-values (3.4) is modified as follows:

py :=

∑
(x′,y′)∈Z:y′=y,
α(x′,y′)<α(x,y)

Pσ∗((x
′, y′)) + τ

∑
(x′,y′)∈Z:y′=y,
α(x′,y′)=α(x,y)

Pσ∗((x
′, y′))∑

(x′,y′)∈Z:y′=y Pσ∗((x
′, y′))

, (3.11)

where, as usual, the sums involve only those (x′, y′) ∈ Z for which α(x′,y′) is defined. In

this thesis sometimes CPs defined in Section 3.3 will be referred to as “unconditional”

CPs. To summarise, for the hypergraphical label conditional CP the conformity scores

are defined by (3.3), the p-values are defined by (3.11), and the prediction sets are

defined by (3.5).

As in the unconditional case, one can use both the hypergraphical conditional prob-

ability (CoP) conformity measure (3.6) and the hypergraphical signed predictability

conformity measure (3.8) when computing the conformity scores (3.3).

3.5.2. Empirical study

This subsection studies the performance of unconditional and label conditional CPs un-

der hypergraphical models. First we look at the category-wise validity of these predictors

and then we compare their efficiency.

As before, the used LED data set consists of 10000 examples generated with pnoise =

1%. (The results presented in this section are for the seed 0 of the pseudorandom

generator, for both the data-generating and data-processing programs.) The two hyper-

graphical models have been described in Section 3.4. Predictors for these experiments

are based on the hypergraphical CoP conformity measure (3.6).
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Figure 3.5.: The final percentage of errors for categories for (unconditional) conformal
prediction under hypergraphical models; colours are for categories corre-
sponding to labels. The predictions are not category-wise valid. The left
plot is for the pure exchangeability conformal predictor and the right plot
is for the pure hypergraphical conformal predictor. The results are for the
LED data set of 10000 examples with 1% of noise.

Category-wise validity

In the first experiment the final percentage of errors within different categories is as-

sessed. For each of ten categories corresponding to labels y ∈ {0, . . . , 9} and at each

significance level ε ∈ (0, 1) the final percentage of errors is calculated by

Erry,ε :=
|{i = 1, . . . , 10000 : yi = y, yi 6∈ Γεi}|
|{i = 1, . . . , 10000 : yi = y}|

. (3.12)

Four CPs are constructed: the pure exchangeability CP (the exchangeability model

is used for p-values (3.4) and for conformity scores (3.6)), the pure hypergraphical CP

(the nontrivial hypergraphical model is used in (3.4) and (3.6)), the pure exchangeability

label conditional CP (the exchangeability model is used for (3.11) and for (3.6)), and the

pure hypergraphical label conditional CP (the nontrivial hypergraphical model is used in
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Figure 3.6.: The same as Figure 3.5 for label conditional conformal prediction under

hypergraphical models. The predictions are category-wise valid.

(3.11) and (3.6)).

All these four predictors make predictions in the on-line mode, and the final percentage

of errors (3.12) is calculated for these predictions and significance levels between 0% and

100%. The percentage of errors plotted against the significance level will be called the

calibration graph. For valid predictions the calibration graph is the diagonal extending

from the bottom left corner (no errors at the significance level 0%, which is achieved

when all prediction sets are the whole label set) to the top right corner (errors on each

prediction trial at the significance level 100%, which is the result of all predictions being

the empty predictions).

Figure 3.5 shows the calibration graphs for the two unconditional CPs. The horizontal

axis is for the significance level from 0% to 100%, and the vertical axis is for the final

percentage of errors. In each plot, ten calibration graphs of different colours correspond

to labels {0, 1, . . . , 9}. As expected, these unconditional conformal predictions are not

category-wise valid. In these plots, calibration graphs that are below the diagonal cor-

respond to easy labels that have been predicted better (the number of errors for these
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Figure 3.7.: Observed fuzziness for (unconditional) conformal prediction and label con-
ditional (lc) conformal prediction. The results are for the LED data set of
10000 examples with 1% of noise. (In the legend “pv”(or “lc pv”) stands
for the model for calculating unconditional (or label conditional) p-values,
“CM” stands for the model for constructing conformity measure.)

labels is less than expected), and calibration graphs above the diagonal are for difficult

labels (the number of errors is greater than expected).

Figure 3.6 shows the results for the two label conditional CPs under hypergraphi-

cal models. These predictors are constructed in order to produce category-wise valid

predictions, and the experiments just confirm that this property is true for these label

conditional predictors.

Efficiency

Let us compare the efficiency of conformal prediction and label conditional conformal

prediction under hypergraphical models. This is done by calculating the cumulative

observed fuzziness OFn (defined earlier on page 64) for these predictions.
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Figure 3.7 7 shows the cumulative observed fuzziness for on-line predictions. The

solid lines are for unconditional predictors whose p-values are defined by (3.4); the

dot-dashed lines show performance for label conditional predictors whose p-values are

defined by (3.11). Again, two assumptions are considered: the exchangeability model

and the nontrivial hypergraphical model; each model can be used for calculating the

hypergraphical CoP conformity scores (3.6) or for p-values ((3.4) and (3.11)). These

combinations give four unconditional CPs and four label conditional CPs. Also, as

before, two idealised predictors are constructed: the unconditional idealised predictor is

obtained using the true distribution for the data instead of the backward kernel Pσ∗ in

both (3.4) and (3.6), and analogously the label conditional idealised predictor is obtained

using the true distribution in both (3.11) and (3.6).

The notation in the legend is similar to that in the previous set of experiments (see

page 68), except that “lc” stands for “label conditional”.

As expected, the price to pay for the category-wise validity of the label conditional

CPs is that they are less efficient than the corresponding unconditional CPs. But the

performance of the pure hypergraphical label conditional CP (the blue dot-dashed line)

is almost as good as that for the corresponding unconditional one. The performance

of other label conditional predictors (including the predictor corresponding to the black

line, which was recommended in the unconditional setting of the previous section) is

noticeably worse than that for the corresponding unconditional ones.

From the computational point of view, the label conditional version of computing

p-values (3.11) is cheaper: for the label conditional p-values one only needs to look at

the conformity scores of configurations with the same label, that is several times less

(depending on the number of possible labels) than the whole set of configurations.

7http://www.cs.rhul.ac.uk/~valentina/thesis_pics/of_hm_lc.pdf

80

http://www.cs.rhul.ac.uk/~valentina/thesis_pics/of_hm_lc.pdf


Chapter 3. Conformal prediction under hypergraphical models

3.6. Conclusion

This chapter has discussed conformal prediction under hypergraphical models. Perfor-

mance of several hypergraphical CPs has been studied as well as the performance of

similar label conditional CPs.

The first finding of this chapter is that nontrivial hypergraphical models can be useful

for conformal prediction when they are true. In the experiments with usual (uncondi-

tional) CPs these models only need to be used as soft models; the performance does not

suffer much if the exchangeability model continues to be used as the hard model. This

interesting phenomenon deserves a further theoretical investigation. First, this result

can be empirically checked for other data sets. Second, it would be of interest to inves-

tigate it theoretically and in general describe the expected difference in the performance

of CPs based on different hard and soft models.

The empirical study of label conditional CPs under hypergraphical models has demon-

strated that they are essential for the category-wise validity. Finally, we have seen that

the performance of label conditional CPs is close to that for unconditional ones if the

hypergraphical models are used as both the hard and soft models.
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Chapter 4.

On-line testing

As pointed out in the introductory chapter, it is traditional in machine learning to im-

pose certain assumptions on data in order to state and prove useful properties of learning

algorithms. Therefore it is important to test these assumptions in applications, other-

wise results of the algorithms may be misleading. This chapter particulary focuses on

testing the exchangeability assumption, although this approach to testing can be used for

a more general assumption that the data-generating distribution agrees with an on-line

compression model (such an example will be studied in Chapter 5). The main tools for

testing exchangeability are exchangeability martingales. Section 4.1 summarises previ-

ous works that used exchangeability martingales and motivates this study. Section 4.2

formally defines exchangeability martingales and explains the theory behind their con-

struction. Section 4.3 outlines established techniques for constructing exchangeability

martingales and proposes two new types of martingales: mixtures of stepped martingales

and plug-in martingales. Also it is proved that, under a stationarity assumption, the

plug-in martingales are competitive with the power martingales that have been used in

previous studies. Section 4.4 presents testing exchangeability for two benchmark data

sets. Section 4.5 summarises this chapter.
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4.1. Introduction

It follows from Theorem 1 on page 26 (and its generalisation Theorem 2 on page 31)

that under certain assumptions on the data-generating distribution conformal predic-

tors (CPs) achieve validity automatically. Therefore when applying the algorithms to

real data it is important to check that these assumptions hold for the data, otherwise

the validity of the algorithms may be violated. As mentioned in Section 1.2, a usual

assumption for conformal prediction is exchangeability of data.

Exchangeability and i.i.d. It is important to note that the assumption that data is

independent and identically distributed (i.i.d.) has the same meaning for testing as the

exchangeability assumption. A joint distribution of a sequence of examples is exchange-

able if it is invariant w.r. to any permutation of examples. Hence, if the data is i.i.d.,

its distribution is exchangeable. On the other hand, assuming that examples are from

a Borel space (which is a weak assumption and correct for practical settings), by de

Finetti’s theorem [see, e.g., Schervish, 1995, p. 28] any exchangeable distribution on

the data (a potentially infinite sequence of examples) is a mixture of distributions under

which the data is i.i.d. Therefore, testing for exchangeability is equivalent to testing for

being i.i.d.

In Statistics several distribution-free tests are designed to test the hypothesis that

data is i.i.d. Often in these tests data is split into two samples and an attempt is made

to detect differences between them. For example, one can compare the medians of the

samples, or the distance between the cumulative distribution functions of the samples.

And when the differences are above a certain threshold, the hypothesis that data is i.i.d.

is rejected. (See, for example, [Cox and Hinkley, 1974, Chapter 6].) Unfortunately,

such batch two-sample methods are not suitable for the purpose of this chapter. In the

current context, the goal is to test the assumption for a single sequence of data, and it is
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not clear how to split the data into two samples in order to obtain the most significant

result.

This chapter discusses methods for on-line testing exchangeability. The first pro-

cedure of testing exchangeability on-line is described in Vovk et al. [2003]. The core

testing mechanism is an exchangeability martingale. Exchangeability martingales are

constructed using a sequence of p-values. The algorithm for generating p-values assigns

small p-values to unusual examples. It implies the idea of designing martingales that

would have a large value if too many small p-values were generated, and suggests cor-

responding power martingales. Other martingales (simple mixture and sleepy jumper)

implement more complicated strategies, but follow the same idea of scoring on small

p-values.

Ho [2005] applies power martingales to the problem of change detection in time-varying

data streams. The author shows that small p-values inflate the martingale values and

suggests to use the martingale difference as another test for the problem.

To the best of my knowledge, no study has aimed to find any other ways of translating

p-values into a martingale value. This chapter describes two new more flexible methods

of constructing exchangeability martingales for a given sequence of p-values.

4.2. Exchangeability martingales

This section outlines necessary definitions and results of previous studies.

4.2.1. Martingales for testing

The main tool for testing exchangeability on-line suggested by Vovk et al. [2003] is

a martingale. The value of the martingale reflects the strength of evidence against the

exchangeability assumption. An exchangeability martingale is a sequence of non-negative
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random variables S0, S1, . . . that keep the conditional expectation:

Sn ≥ 0

Sn = E(Sn+1 | S1, . . . , Sn),

where E refers to the expected value with respect to any exchangeable distribution on

examples. It is also assumed that S0 = 1. Note that, under a weak assumption that

examples are from a Borel space, we will obtain an equivalent definition if we replace “any

exchangeable distribution on examples” by “any distribution under which the examples

are i.i.d.” (remember the discussion of de Finetti’s theorem in Section 4.1).

To understand the idea behind testing with martingale, we can imagine a coin tossing

game. A gambler places bets on heads or tails: he does not bet more than the current

capital and never risks bankruptcy. The gambler would like to test the coin on fairness.

One way to do this is to place bets according to some strategy against the fairness of

the coin. Suppose he decides to bet on heads. If the chosen strategy leads to a large

growth of his initial capital then either the coin is biased or the coin is fair, but a freak

coincidence has taken place. In this game, the strategy of the gambler can be thought of

as a martingale and its value reflects the acquired capital. According to Ville’s inequality

(see Ville [1939], p. 100)

P {∃n : Sn ≥ C} ≤ 1/C, ∀C > 0. (4.1)

In other words, it is unlikely for any Sn to have a large value. For the problem of testing

exchangeability, if the final value M of a martingale is large (20 and 100 are convenient

rules of thumb), then the exchangeability assumption for the data can be rejected at

any significance level δ > 1/M .
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4.2.2. On-line calculation of p-values

This chapter follows the notation of Section 1.2 and focuses on the classification problem,

i.e., Y is finite. Consider a sequence of examples (z1, z2, . . .) that is assumed to be drawn

from an exchangeable distribution. The goal is to test whether the assumption is correct.

The first part of the on-line testing is generating a sequence of p-values for the given

sequence of examples. Conformal transducers are used to generate the sequence of p-

values. The process was briefly discussed in Section 1.2 (see page 26), and for the purpose

of this chapter it will be described explicitly. The 1-Nearest Neighbour (1NN) algorithm

is used as the underlying method to compute the conformity scores. The algorithm is

simple but it works well enough in many cases (see, e.g., Hastie et al. [2013], pp. 463–

475). A natural way to define the conformity score of an example is by comparing its

distance to the examples with the same label to its distance to the examples with a

different label:

αi = A
(
*z1, . . . , zi+, zj

)
:=

minj 6=i:yi 6=yj d(xi, xj)

minj 6=i:yi=yj d(xi, xj)
, (4.2)

where d(xi, xj) is the Euclidean distance (it is the KNN-ratio conformity measure defined

on page 51 for K = 1). According to the chosen conformity measure, αi is low if the

example is close to another example with a different label and far from any examples

with the same label. Using the calculated conformity scores of all observed examples,

the p-value pn corresponding to the last example is calculate by (1.2) (on page 25).

To make it more precise, Protocol 4.2 summarises the process of on-line calculation of

p-values (it is clear that it can also be applied to a finite sequence (z1, . . . , zn) producing

a finite sequence (p1, . . . , pn) of p-values).

Theorem 1 (page 26) states that examples generated by an exchangeable distribu-

tion provide independent and uniformly distributed p-values. This allows us to test

exchangeability by calculating martingales as functions of the p-values.
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Protocol 4.2 Generating p-values on-line

Input: (z1, z2, . . .) sequence of examples
(τ1, τ2, . . .) sequence of independent random numbers in [0, 1]

Output: (p1, p2, . . .) sequence of p-values
for i = 1, 2, . . . do

observe a new example zi
for j = 1 to i do

αj := A
(
*z1, . . . , zi+, zj

)
end for
pi :=

|{j:αj<αi}|+τi|{j:αj=αi}|
i

end for

4.3. Martingales based on p-values

This section focuses on the second part of on-line testing: given a sequence of p-values

a martingale is calculated as a function of the p-values.

For each i ∈ {1, 2, . . .}, let fi : [0, 1]i → [0,∞). Let (p1, p2, . . .) be the sequence of

p-values generated by Protocol 4.2. We consider martingales Sn of the form

Sn =
n∏
i=1

fi(pi), n = 1, 2, . . . , (4.3)

where we denote fi(p) = fi(p1, . . . , pi−1, p) and call the function fi(p) a betting function.

To be sure that (4.3) is indeed a martingale the following constraint on the betting

functions fi are needed: ∫ 1

0

fi(p) dp = 1, i = 1, 2, . . .

Then we can check:

E(Sn+1 | S0, . . . , Sn) =

∫ 1

0

n∏
i=1

(
fi(pi)

)
fn+1(p) dp =

n∏
i=1

(
fi(pi)

)∫ 1

0

fn+1(p) dp =
n∏
i=1

fi(pi) = Sn.

Note that if for any p-value p ∈ [0, 1] we have fi(p) = 0 then the martingale can
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become zero and will never change after that. Therefore, it is reasonable to consider

positive fi(p).

Using representation (4.3) one can update the martingale on-line: having calculated

the p-value pi for a new example in Protocol 4.2 the current martingale value becomes

Si = Si−1·fi(pi). To complete the definition of martingales 4.3, next the betting functions

fi are described.

4.3.1. Previous results: power martingales and their mixtures

Previous studies have proposed to use a power betting function

∀i : fi(p) = εpε−1,

where ε ∈ [0, 1]. Several martingales were constructed based on this function. The power

martingale for some ε, denoted as M ε
n, uses the fixed betting function and defined as

M ε
n =

n∏
i=1

εpε−1i .

The simple mixture martingale, denoted as Mn, is the mixture of power martingales over

different ε ∈ [0, 1]:

Mn =

∫ 1

0

M ε
ndε.

Another martingale used in previous works is the sleepy jumper martingale. To con-

struct this martingale generalised power martingales are defined by

M (ε)
n =

n∏
i=1

εip
(εi−1)
i ,

where (ε) = (ε1, . . . , εn) and all εi ∈ [0, 1]. The sleepy jumper martingale a mixture

of the generalised power martingales with respect to the distribution called the sleepy
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Figure 4.1.: The betting functions that are used to construct the power, simple mixture
and sleepy jumper martingales.

jumper distribution (see p. 176 [Vovk et al., 2005a]). Intuitively, the martingale tries to

track the best power martingale by switching between different ε.

Since all the previous martingales were constructed using the family of power betting

functions, such a martingale will grow only if the sequence of p-values contains many

small p-values. This follows from the shape of the power betting functions: see Figure

4.1. If the generated p-values concentrate in any other part of the unit interval, we

cannot expect the martingale to grow. This is, however, a situation where lack of

exchangeability makes the p-values cluster around 1: we observe examples that are ideal

shapes of several kinds distorted by random noise, and the amount of noise decreases

with time. Predicting the kind of a new example using the conformity measure (4.2) will

then tend to produce large p-values. Therefore the main weak point of the martingales

introduced before is that they are based on the family of power betting functions. Next

two new martingales are described, and the main goal in their construction is to avoid

any assumptions about the mechanism of generating p-values.
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4.3.2. Mixtures of stepped martingales

We consider the second part of on-line testing: given a sequence of p-values, the goal

is to test it for uniformity in [0, 1]. Martingales used in this chapter are defined by

their betting functions. Betting functions from the power family (introduced before)

score only on low p-values, and therefore any other deviation from uniformity in p-

values cannot be detected. If the distribution of p-values is not uniform, the p-values

are concentrated in certain parts of the unit interval; then one could construct a betting

function that scores on those values. But again the martingale based on this betting

function could not detect other violations. To find a martingale that can grow for any

kind of deviations from uniformity, it would be natural to consider the family of all

positive continuous betting functions (each of them scores on a certain violation) and,

as any type of violations is allowed, construct mixtures of martingales corresponding to

this family. But it is not clear if this mixture can be calculated efficiently. As a feasible

approximation of this idea, this subsection introduces families of positive stepped betting

functions and then martingales based on them. Such a family of betting functions is an

approximation for the family of positive continuous betting functions; each of the betting

functions scores on a different deviation from uniformity in a sequence of p-values. And

it is shown that mixtures of such martingales can be calculated efficiently.

Consider the family of positive stepped betting functions with k breakpoints:

f(p) :=

 0, p = 0

di,
i−1
k
< p ≤ i

k
, i = 1, . . . , k

,

1

k

k∑
i=1

di = 1,

di > 0, i = 1 . . . k.

(4.4)

(These are functions of the type [0, 1]→ [0,∞).)
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Denote ρi := di
k
, i = 1, . . . , k, and let E :=

{
ρ = (ρ1, . . . , ρk) ∈ (0;∞)k :

∑k
i=1 ρi = 1

}
.

Then each positive stepped betting function corresponds to a sequence in E.

Let us rewrite martingale (4.3) for a positive stepped betting function f(p). For a

sequence of p-values (p1, . . . , pn) define the vector of k counts m := (m1, . . . ,mk), where

mi :=

∣∣∣∣{pj, j = 1 . . . , n :
i− 1

k
< pj ≤

i

k

}∣∣∣∣ , i = 1, . . . , k, (4.5)

is the number of p-values in the sequence that belong to
(
i−1
k

; i
k

]
. Then the stepped

martingale S
(ρ)
n corresponding to a stepped betting function defined by ρ = (ρ1, . . . , ρk)

can be written as

S(ρ)
n =

n∏
j=1

f(pj) =
k∏
i=1

(di)
mi =

k∏
i=1

(kρi)
mi = k

∑k
i=1mi

k∏
i=1

ρmii = kn
k∏
i=1

ρmii . (4.6)

To eliminate the dependency on ρ let us define a measure on E and then construct

mixtures of martingales S
(ρ)
n using the measure. The Dirichlet measure on E is defined

by

µb(ρ1, . . . , ρk) :=
ρb1−11 · · · ρbk−1k

B(b1, . . . , bk)
,

where b := (b1, . . . , bk) is a vector of parameters and

B(b1, . . . , bk) :=
Γ(b1) · · ·Γ(bk)

Γ(b1 + · · ·+ bk)

is the beta function of k variables.

Let us calculate the mixture of stepped martingales S
(ρ)
n with respect to the Dirichlet

91



Chapter 4. On-line testing

measure:

U b
n :=

∫
E

S(ρ)
n dµb(ρ) =

∫
E

kn ·
k∏
i=1

ρmii ·
∏k

i=1 ρ
bi−1
i

B(b1, . . . , bk)
dρ =∫

E

kn · B(b1 +m1, . . . , bk +mk)

B(b1, . . . , bk)
·

∏k
i=1 ρ

bi+mi−1
i

B(b1 +m1, . . . , bk +mk)
dρ =∫

E

kn · B(b1 +m1, . . . , bk +mk)

B(b1, . . . , bk)
· dµb+m(ρ) =

kn · B(b1 +m1, . . . , bk +mk)

B(b1, . . . , bk)
= kn ·

∏k
i=1 Γ(bi +mi)

Γ(
∑k

i=1 bi + n)
· Γ(

∑k
i=1 bi)∏k

i=1 Γ(bi)
=

kn ·
k∏
i=1

Γ(bi +mi)

Γ(bi)
· Γ(

∑k
i=1 bi)

Γ(
∑k

i=1 bi + n)
.

(4.7)

Using the fact that Γ(z + t) = z · (z + 1) · · · (z + t− 1) · Γ(z) we have

U b
n = kn ·

∏
i=1,...k
mi>0

[bi(bi + 1) · · · (bi +mi − 1)] /
n−1∏
j=0

(
k∑
i=1

bi + j

)
.

For each vector of parameters b = (b1, . . . , bk) we can calculate the corresponding mar-

tingale U b
n. The Dirichlet measure corresponding to b : bi := 1, i = 1, . . . , k, is equivalent

to the uniform distribution over E. For our purposes it would be natural to choose the

uniform distribution over betting functions and in this case U b
n can be rewritten as

U1
n = kn ·

∏
i=1,...k

mi!/
n−1∏
j=0

(k + j) , (4.8)

where mi are given by (4.5). Such a martingale will be called the mixture of stepped

martingales.

The martingale parameter k is the number of breakpoints for stepped betting functions

(4.4). Intuition behind the choice of k is similar to choosing the number of bins for the

histogram of data. There are various useful guidelines for choosing the number of bins,

for example, to set k ∝ n1/3 (see, e.g., Devroye and Györfi [1985, pp. 97–100]).
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Another way of looking at the mixture of stepped martingales is the Bayesian point

of view. The Bayesian approach in the present context involves defining a family of

betting functions, choosing a prior distribution on the betting functions, and integrating

the martingales corresponding to these betting functions with respect to the prior distri-

bution. In our case, the prior distribution over the family of stepped betting functions

is the Dirichlet distribution defined by measure µb. This is a popular choice of prior

distribution which makes the calculation of the posterior distribution easy (see, e.g.,

[Cox and Hinkley, 1974, pp. 371–372]). Initially, the prior is the uniform distribution,

which corresponds to the vector of parameters b : bi := 1, i = 1, . . . , k. Once a p-value

arrives the posterior distribution can be found by updating the vector of parameters to

b + m, where m is the vector of counts (4.5). (Intuitively, the prior is shifted towards

betting functions that provide better growth for the current sequence of p-values.) The

posterior distribution then is used as the basis for calculating the mixture of stepped

martingales. In our calculations these steps happen implicitly, but the result can be seen

in the third line in equation (4.7): the mixture is calculated using the Dirichlet measure

µb+m.

The performance of martingale (4.8) on two benchmark data sets will be presented in

Section 4.4.

4.3.3. Plug-in martingales

Stepped martingales discussed in the previous subsection used the same betting function

at each step, which is the reason why each single martingale is able to detect only certain

deviations from uniformity. Instead of mixing such martingales with fixed betting func-

tions, this subsection follows another approach – the plug-in approach. The martingale

constructed below uses different betting functions for each step. The main idea is to use

past p-values to learn the type of deviation from uniformity, and then adjust the betting
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function to grow for this deviation.

Construction of plug-in martingales

Let us use an estimated probability density function as the betting function fi(p). At

each step the probability density function is estimated using the accumulated p-values:

ρi(p) = ρ̂(p1, . . . , pi−1, p), (4.9)

where ρ̂(p1, . . . , pi−1, p) is the estimate of the probability density function using the p-

values p1, . . . , pi−1 output by Protocol 4.2.

Substituting these betting functions into (4.3) we get a new martingale that is called

a plug-in martingale. The martingale avoids betting if the p-values are distributed

uniformly, but if there is any peak it will be used for betting.

Estimating a probability density function. For the experiments presented in this

chapter the statistical environment and language R was used. The density function in

its Stats package implements kernel density estimation with different parameters. But

since p-values always lie in the unit interval, the standard methods of kernel density

estimation lead to poor results for the points that are near the boundary. To get better

results for the boundary points the sequence of p-values is reflected to the left from

zero and to the right from one. Then the kernel density estimate is calculated using

the extended sample ∪ni=1

{
−pi, pi, 2 − pi

}
. The estimated density function is set to

zero outside the unit interval and then normalised to integrate to one. For the results

presented in this chapter the parameters used are the Gaussian kernel and Silverman’s

“rule of thumb” for bandwidth selection. Other settings have been tried as well, but the

results are comparable and lead to the same conclusions.

The values Sn of the plug-in martingale can be updated recursively. Suppose comput-
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ing the conformity scores (α1, . . . , αn) from (z1, . . . , zn) takes time g(n) and evaluating

(4.9) takes time h(n). Then updating Sn−1 to Sn takes time O(g(n) +n+h(n)): indeed,

it is easy to see that calculating the rank of αn in the multiset {α1, . . . , αn} takes time

Θ(n).

The performance of the plug-in martingale on benchmark data sets will be presented

in Section 4.4. The rest of the current section proves that the plug-in martingale provides

asymptotically a better growth rate than any martingale with a fixed betting function.

To prove this asymptotical property of the plug-in martingale the following assumptions

are needed.

Assumptions

Consider an infinite sequence of p-values (p1, p2, . . .). (This is simply a deterministic

sequence.) For its finite prefix (p1, . . . , pn) define the corresponding empirical probability

measure Pn: for a Borel set A in R,

Pn(A) =
|{i = 1, . . . , n : pi ∈ A}|

n
.

We say that the sequence (p1, p2, . . .) is stable if there exists a probability measure P on

R such that:

1. Pn
weak−−−−→
n→∞

P;

2. there exists a positive continuous density function ρ(p) for P: for any Borel set A

in R, P(A) =
∫
A
ρ(p)dp.

Intuitively, the stability means that asymptotically the sequence of p-values can be

described well by a probability distribution.

Consider a sequence (f1(p), f2(p), . . .) of betting functions. (This is simply a determin-

istic sequence of functions fi : [0, 1]→ [0,∞), although we are particularly interested in
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the functions fi(p) = ρi(p), as defined in (4.9).) We say that this sequence is consistent

for (p1, p2, . . .) if

log
(
fn(p)

) uniformly in p−−−−−−−−−−−→
n→∞

log
(
ρ(p)).

Intuitively, consistency is an assumption about the algorithm that is use to estimate the

function ρ(p); in the limit it is desirable to get a good approximation.

Growth rate of plug-in martingale

The following result says that, under the assumptions described above, the logarithmic

growth rate of the plug-in martingale is better than that of any martingale with a fixed

betting function (remember that by a betting function is implied any function mapping

[0, 1] to [0,∞)).

Theorem 7. If a sequence (p1, p2, . . .) ∈ [0, 1]∞ is stable and a sequence of betting

functions
(
f1(p), f2(p), . . .

)
is consistent for it then, for any positive continuous betting

function f ,

lim inf
n→∞

(
1

n

n∑
i=1

log
(
fi(pi)

)
− 1

n

n∑
i=1

log
(
f(pi)

))
≥ 0.

First the meaning of Theorem 7 is explained and then it is proved. According to

representation (4.3) after n steps the martingale grows to

n∏
i=1

fi(pi). (4.10)

As mentioned earlier (see page 87), it is reasonable to restrict considerations to fi(p) > 0.

Then we can rewrite product (4.10) as sum of logarithms, which gives us the logarithmic

growth of the martingale:
n∑
i=1

log
(
fi(pi)

)
.

We assume that the sequence of p-values is stable and the sequence of estimated prob-
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ability density functions that is used to construct the plug-in martingale is consistent.

Then the limit inequality in Theorem 7 states that the logarithmic growth rate of the

plug-in martingale is asymptotically at least as high as that of any martingale with a

fixed betting function (which have been suggested in previous studies).

To prove Theorem 7 the following lemma will be used.

Lemma 1. For any probability density functions ρ and f (so that
∫ 1

0
ρ(p)dp = 1 and∫ 1

0
f(p)dp = 1), ∫ 1

0

log
(
ρ(p)

)
ρ(p)dp ≥

∫ 1

0

log
(
f(p)

)
ρ(p)dp.

Proof of Lemma 1. It is well known [Kullback, 1959, p. 14] that the Kullback–Leibler

divergence is always non-negative:

∫ 1

0

log
(ρ(p)

f(p)

)
ρ(p)dp ≥ 0.

This is equivalent to the inequality asserted by Lemma 1.

Proof of Theorem 7. Suppose that, contrary to the statement of Theorem 7, there exists

δ > 0 such that

lim inf
n→∞

(
1

n

n∑
i=1

log
(
fi(pi)

)
− 1

n

n∑
i=1

log
(
f(pi)

))
< −δ. (4.11)

Then choose an ε satisfying 0 < ε < δ/4.

Substituting the definition of ρ(p) into Lemma 1 we obtain

∫ 1

0

log
(
ρ(p)

)
dP ≥

∫ 1

0

log
(
f(p)

)
dP. (4.12)

From the stability of (p1, p2, . . .) it follows that there exists a number N1 = N1(ε) such
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that, for all n > N1,

∣∣∣∣∫ 1

0

log
(
f(p)

)
dPn −

∫ 1

0

log
(
f(p)

)
dP

∣∣∣∣ < ε

and ∣∣∣∣∫ 1

0

log
(
ρ(p)

)
dPn −

∫ 1

0

log
(
ρ(p)

)
dP

∣∣∣∣ < ε.

Then inequality (4.12) implies that, for all n ≥ N1,

∫ 1

0

log
(
ρ(p)

)
dPn ≥

∫ 1

0

log
(
f(p)

)
dPn − 2ε.

By the definition of the probability measure Pn, the last inequality is the same thing as

1

n

n∑
i=1

log
(
ρ(pi)

)
≥ 1

n

n∑
i=1

log
(
f(pi)

)
− 2ε. (4.13)

By the consistency of
(
f1(p), f2(p), . . .

)
there exists a number N2 = N2(ε) such that, for

all i > N2 and all p ∈ [0, 1],

∣∣∣log
(
fi(p)

)
− log

(
ρ(p)

)∣∣∣ < ε. (4.14)

Let us define the number

M = max
i,p

∣∣log
(
fi(p)

)
− log

(
ρ(p)

)∣∣. (4.15)

From (4.14) and (4.15) we have

∣∣log
(
fi(p)

)
− log

(
ρ(p)

)∣∣ ≤
 M, i ≤ N2

ε, i > N2.
(4.16)

98



Chapter 4. On-line testing

Denote N3 = max(N1, N2). Then, using (4.16) and (4.13), we obtain, for all n > N3,

1

n

n∑
i=1

log
(
fi(pi)

)
≥ 1

n

n∑
i=1

log
(
f(pi)

)
− 3ε− MN3

n
.

Denoting N4 = max(N3,
MN3

ε
), we can rewrite the last inequality as

1

n

n∑
i=1

log
(
fi(pi)

)
≥ 1

n

n∑
i=1

log
(
f(pi)

)
− 4ε,

for all n > N4. Finally, recalling that ε < δ
4
, we have, for all n > N4,

1

n

n∑
i=1

log
(
fi(pi)

)
− 1

n

n∑
i=1

log
(
f(pi)

)
≥ −δ.

This contradicts (4.11) and therefore completes the proof of Theorem 7.

4.4. Empirical study

This section investigates the performance of mixtures of stepped martingales and plug-

in martingales, and compares them with that of the simple mixture martingale. Two

benchmark data sets have been tested for exchangeability: the USPS data set and the

Statlog Satellite data set. (Presented results are for the seed 0 of the R pseudorandom

number generator: the seed was set to 0 to generate the sequence (τ1, τ2, . . .) for cal-

culating p-values, and also the seed was set to 0 before generating the permutation for

shuffling data. Similar results were observed in experiments with other random seeds.)

USPS data set

For the first set of experiments the benchmark USPS data set (see Appendix A.1) is

used. Testing is performed for the whole data set of 9298 examples. It is well known
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that the examples in this data set are not perfectly exchangeable [Vovk et al., 2003], and

any reasonable test should reject exchangeability there.

The top plot in Figure 4.2 shows the typical performance of the martingales when

the exchangeability assumption is satisfied for sure: all examples have been randomly

shuffled before the testing. The bottom plot in Figure 4.2 shows the performance of the

martingales when the examples arrive in the original order: first 7291 of the training

sequence and then 2007 of the test sequence. The p-values are generated on-line by

Protocol 4.2 and three martingales are calculated from the same sequence of p-values.

The final value for the simple mixture martingale is 6.9 × 109, the final value for the

mixture of stepped martingales for k = 3 (explained below) is about 2.3 × 105 and the

final value for the plug-in martingale is 1.4× 108.

For the mixture of stepped martingales parameter k = 3 was chosen by looking at the

corresponding final values for 1 ≤ k ≤ 30. These final values are shown in the left plot

of Figure 4.4. For this data set of 9298 examples the best performance of the mixture

of stepped martingales is for k = 3.

The left plot in Figure 4.5 shows the betting functions that correspond to the plug-in

martingale and the “best” power martingale. For the plug-in martingale, the function

is the estimated probability density function calculated using the whole sequence of p-

values. The betting function for the family of power martingales corresponds to the

parameter ε∗ that provides the largest final value among all power martingales. It

explains why we could not see advantages of the new approaches for this data set: all

the martingales grew up to approximately the same level. There is not much difference

between the best betting functions for the old and new methods, and the new methods

suffer because of their greater flexibility.

The results presented in Figure 4.2 can be also explained in terms of rejecting or

not rejecting the hypothesis of exchangeability for the data. Let us find the maximal
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martingale value for each of the martingales: for the simple mixture martingale it is

7.6 × 109, for the mixture of stepped martingales it is 4.9 × 105, and for the plug-in

martingale it is 1.5×108. Using Ville’s inequality (4.1) these values can be converted into

significance levels for rejecting the hypothesis of exchangeability. It gives us the following

conclusions – all three martingales reject exchangeability for the data: the simple mixture

martingale at the significance level of 10−9, the mixture of stepped martingales at the

significance level of 10−5, and the plug-in at the significance level of 10−8.

Statlog Satellite data set

The second set of experiments uses the Statlog Satellite data set (described in Ap-

pendix A.3). Testing is preformed for the whole data set of 6435 examples.

The top plot in Figure 4.3 shows the performance of martingales for randomly shuffled

examples of this data set. As expected, the martingales do not reject the exchangeability

assumption there. The bottom plot in Figure 4.3 presents the performance of the mar-

tingales when the examples arrive in the original order. The final value for the simple

mixture martingale is 3.0 × 102, the final value of the mixture of stepped martingales

for k = 10 is 2.3× 1030 and the final value for the plug-in martingale is 8.0× 1016. For

the Statlog Satellite data set of 6435 examples the best performance of the mixture of

stepped martingales is for k = 10 (see the right plot in Figure 4.4).

The corresponding betting functions for the plug-in martingale and the “best” power

martingale are presented in the right plot in Figure 4.5. For this data set the generated

p-values have a tricky distribution. The family of power betting functions εpε−1 cannot

provide a good approximation. The power martingales lose on p-values close to the

second peak of the p-values distribution. But the two new martingales are more flexible

and ended up with much higher final values.

Again, let us use Ville’s inequality (4.1) to find the significance level for rejecting
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exchangeability for the data. The maximal martingale values are following: for the

simple mixture martingale it is 2.27 × 1011, for the mixture of stepped martingales it

is 1.82 × 1051, and for the plug-in martingale it is 7.75 × 1020. Therefore all three

martingales reject exchangeability for the data: the simple mixture martingale at the

significance level of 10−11, the mixture of stepped martingales at the significance level

of 10−51, at the plug-in at the significance level of 10−20.

It can be argued that the old method as well as the two new methods work for the

Statlog Satellite data set in the sense of rejecting the exchangeability assumption at any

of the commonly used thresholds (such as 20 or 100, corresponding to the significance

levels of 0.05 and 0.01). However, the situation would have been different had the data

set consisted of only the first 1000 examples: the final value of the simple mixture

martingale would have been 0.013 whereas the final value of the mixture of stepped

martingales for k = 10 would have been 1.3 × 1013 and the final value of the plug-

in martingale would have been 4.6 × 1015. Or, in terms of rejecting or not rejecting

the hypothesis of exchangeability: the maximal value of the simple mixture martingale

for the first 1000 examples is less than 1 and therefore the hypothesis can be accepted,

whereas the two new martingales reject exchangeability at the significance level of 10−13.

4.5. Discussions and conclusion

This chapter has discussed on-line testing exchangeability. The method is based on the

calculation of exchangeability martingales. Previous studies followed the natural idea

that lack of exchangeability leads to new examples looking strange as compared to the

old ones and therefore to small p-values (for example, if the data-generating mechanism

changes its regime and starts producing a different kind of examples). However, it is not

always true for all kinds of deviations from exchangeability (see the example on page 89).

The goal of this chapter has been to find exchangeability martingales that does not
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need any assumptions about the p-values generated by the method of conformal predic-

tion. The studied martingales are defined by a betting function, that translates a p-value

into a positive value. Two approaches – Bayesian and plug-in – have been considered

in order to construct two new types of martingales. (It is generally believed that the

Bayesian approach is more efficient than the plug-in approach [see, e.g., Bernardo and

Smith, 2000, p. 483].)

Following the Bayesian approach, the mixtures of stepped martingales have been con-

structed. An efficient way of calculating these martingales has been described.

Following the plug-in approach, the plug-in martingale has been constructed. This

martingale adapts to the unknown distribution of p-values by estimating a good betting

function from the past data. It has been proved that for stable sequences of p-values

the more adaptive plug-in martingale provides asymptotically the best result compared

with any other martingale with a fixed betting function.

The performance of the two new martingales and the simple mixture martingale has

been studied empirically for two benchmark data sets. For the first data set the perfor-

mance of these three martingales is similar, but for the second data set the flexibility of

the two new martingales becomes essential. The results of the experiments confirm that

calculated from the same sequence of p-values the plug-in martingale extracts approxi-

mately the same amount or more information about the data-generating distribution as

compared to the previously introduced power martingales. Secondly, we have seen that

the performance of the mixture of stepped martingales depends on the choice of param-

eter k; for certain values of k this mixture of stepped martingales can grow to a much

higher value than the plug-in martingale (see the final values for the Statlog Satellite

data set in the original order). On the other hand, we have seen situations where the

mixture of stepped martingales is less sensitive than the plug-in martingale (see testing

for the USPS data set in the original order, or the first 500 steps of testing the Statlog
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Satellite data set in the original order). Therefore both of the new martingales are useful

for testing and deserve further investigation.
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Figure 4.2.: The growth of the martingales for the USPS data set. Top plot: the data
set randomly shuffled before on-line testing; the exchangeability assumption
is satisfied (the final martingale values are lower than 0.03). Bottom plot:
the data in the original order; the exchangeability assumption is rejected
(the final martingale values are greater than 2.2× 105).
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Figure 4.3.: The growth of the martingales for the Statlog Satellite data set. Top plot:
the data set randomly shuffled before on-line testing; the exchangeability
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Bottom plot: data in the original order; the exchangeability assumption
is rejected (the final value of the simple mixture martingale is 3.0 × 102,
the final value of the mixture of stepped martingales (for k = 10) is about
2.3× 1030, and the final value of the plug-in martingale is 8.0× 1016).
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Chapter 5.

Gauss linear assumption: testing and

prediction

This chapter focuses on the Gauss linear assumption. More specifically, it applies on-

line testing described in Chapter 4 to this assumption, and empirically studies the per-

formance of both on-line testing and conformal prediction under this assumption. Sec-

tion 5.1 outlines related results. Section 5.2 reiterates necessary terminology and de-

scribes the on-line compression model (OCM) for the Gauss linear assumption. Sec-

tion 5.3 empirically studies conformal prediction under this OCM for synthetic data

sets. Section 5.4 applies the idea of on-line testing to the Gauss linear assumption.

Then the performance of testing is empirically studied for both synthetic data sets and

the benchmark Abalone data set. In the case of the Abalone data set, the testing results

are used to select a more realistic model for the data, and finally this model is used to

obtain conformal prediction for the data. Section 5.5 summarises the chapter.
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5.1. Introduction

Conformal prediction for the regression problem has been studied before, e.g.: [Vovk

et al., 2005a, Section 2.3] describe efficient solutions for the regression problem under

the exchangeability assumption; in [Vovk et al., 2005b] the regression problem is studied

under several important models, including the Gauss linear model.

In [Lei and Wasserman, 2014] the regression problem is studied under the assumption

that data is i.i.d. The authors combine the idea of conformal prediction with density

estimation to construct distribution-free prediction sets and study their finite sample

coverage guaranties.

This chapter empirically studies CPs under the Gauss linear assumption described in

[Vovk et al., 2005b, Section 8.5]. In addition, this efficient algorithm for prediction is

adapted for being used in on-line testing the Gauss linear assumption.

5.2. Definitions

As usual, this chapter follows the notation of Section 1.2; in particular, it considers

the object space X := RK (objects are vectors of K real numbers) and the label space

Y := R.

5.2.1. Gauss linear model

Denote zn := (1, xn), then the linear regression model has the form

yn = γ · zn + ξn, (5.1)

where γ = (γ1, . . . , γK+1) is a vector of K + 1 unknown coefficients and ξn, n = 1, 2, . . . ,

are random variables. For the Gauss linear model the random variables ξn are assumed
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to be independent of each other and normally distributed with zero mean and variance

σ2 > 0 (the same for all the variables). (Note that there is no assumption on the

distribution generating objects xn.)

Protocol

This chapter discusses prediction in the on-line mode (Protocol 1.1 on page 24). In

the case of regression under the Gauss linear assumption, a prediction set is an interval

of values and the information efficiency of such a prediction naturally measured as the

length of the interval (see [Vovk et al., 2005b] and [Lei and Wasserman, 2014]). To study

properties of such predictions two variables will be calculated: the number of errors

during the first n steps, denoted Errεn, and the median length of prediction intervals

after the first n steps, denoted Lεn. Protocol 5.3 summarises the calculations of the

variables.

Protocol 5.3 On-line protocol for regression

Errε0 := 0 for all ε ∈ (0, 1);
for n = 1, 2, . . . do

Reality outputs xn ∈ RK

Predictor outputs Γεn ⊆ R for all ε ∈ (0, 1)
Reality outputs yn ∈ R

errεn :=

{
1, if yn ∈ Γεn
0, otherwise

for all ε ∈ (0, 1);

Errεn := Errεn−1 + errεn for all ε ∈ (0, 1);
lεn := |Γεn| for all ε ∈ (0, 1);
Lεn := Median(lε1, . . . , l

ε
n) for all ε ∈ (0, 1)

end for

It is known that prediction intervals produced by the Gauss linear model (5.1) are

uninformative before the number of observed examples reaches K+3. This chapter uses

an extended notion of validity. We say that a confidence predictor valid in the Gauss

linear model if for any significance level ε ∈ (0, 1) and for any step n ≥ K + 3 it makes

an error with probability ε, w.r. to the model, and the errors are independent (cf. with
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the definition of validity on page 32). Practically, the validity of predictions under the

model means that for any step n ≥ K+3 the ratio Errεn/n is about ε for any significance

level ε ∈ (0, 1).

Statistical fluctuations. The validity of predictions at a significance level ε can be

checked by comparing the expected number of errors for the level with the observed

value Errεn. Often in practice these two numbers are close but not perfectly equal. To

verify that the difference between the observed and expected numbers of errors can be

explained due to statistical fluctuations one can apply statistical testing. It follows from

Theorem 2 that values Errεn are distributed according to binomial distribution B(n, ε)

with parameters n (number of trials) and ε (probability of success), and therefore it can

be used to find the probability of observing the actual number of errors. The probability

to have more than k errors after n trials is

PErrεn∼B(n,ε)(Errεn ≥ k) = F (n− k, n, 1− ε),

where F (x, n, p) is the value of the distribution function for binomial distribution B(n, p)

at point x. Having found this probability one can report a significance level to accept

the hypothesis that Errεn ∼ B(n, ε), i.e. the predictions are valid.

5.2.2. OCM for the Gauss linear assumption

Let us restate the definition of an OCM (page 28) in the context of the Gauss linear

model (5.1).

First, the summary in the context of the Gauss linear model is constructed as follows.

The statistics for the Gauss linear model are

Sn(x1, y1, . . . , xn, yn) :=

{
x1, . . . , xn,

n∑
i=1

yixi,
n∑
i=1

yi,
n∑
i=1

y2i

}
.
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Under the Gauss linear model these are the sufficient statistics, and therefore such

summaries contain all information about the distribution of (x1, y1), . . . , (xn, yn) (see

further details, e.g., in [Shafer and Vovk, 2008] on p. 412).

The OCM for the Gauss linear model, called the Gauss linear OCM, consists of five

elements (Σ,�,Z, F, B), where:

1. Z := RK × R.

2. Σ is the set of elements Sn, such that for each integer n and for each sequence

((x1, y1), . . . , (xn, yn)) the summary Sn is defined by

Sn = Sn (x1, y1, . . . , xn, yn) :=

{
x1, . . . , xn,

n∑
i=1

yixi,

n∑
i=1

yi,

n∑
i=1

y2i

}
;

(as usual,
∑0

i=1 yixi and
∑0

i=1 yi are 0 and the empty summary � := {0, 0, 0}).

3. The forward function F updates a summary Sn after observing a new example

(xn+1, yn+1) as follows

Sn+1 = F (Sn, (xn+1, yn+1)) :=

{
x1, . . . , xn, xn+1,

n+1∑
i=1

yixi,
n+1∑
i=1

yi,
n+1∑
i=1

y2i

}
.

4. For each summary Sn ∈ Σ the backward kernel B(Sn) defines the joint probability

distribution over pairs (S, (x, y)) ∈ Σ× Z as described below.

Backward kernel distribution for the Gauss linear OCM. According to the definition

of the summary for the Gauss linear assumption, Sn contains all the observed objects

xi, i = 1 . . . , n. Therefore for given Sn the backward kernel B(Sn) actually describes

a distribution of sequences (ỹ1, . . . ỹn) that are consistent with the summary Sn. Such

sequences have to agree with K + 1 linear equations (for each of K + 1 coordinates

of zn) and the sum
∑n

i=1 y
2
i is fixed. Consider a sphere which is an intersection of
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the n-dimensional sphere of radius
∑n

i=1 y
2
i centred at the origin and the hyperplane

(c1, . . . , cn) defined by

n∑
i=1

ci =
n∑
i=1

yi;

n∑
i=1

ci · xi,p =
n∑
i=1

yixi,p, p = 1, . . . , K.

Then the sequences (ỹ1, . . . ỹn) distribute uniformly over the sphere of intersection. These

sequences specify corresponding values for S̃n−1 and ỹn such that F (S̃n−1, ỹn) = Sn, that

gives us the distribution of (S, (x, y)) ∈ Σ× Z conditional on Sn.

5.3. Conformal prediction under the Gauss linear OCM

This section discusses conformal prediction under the Gauss linear assumption. It begins

with the description of efficient calculations for prediction intervals introduced in [Vovk

et al., 2005b, Section 8.5], and follows by an empirical study of predictions for synthetic

data sets.

5.3.1. Efficient calculations of prediction intervals

The number of examples that are used to obtain a prediction interval under the Gauss

linear model needs to be greater than K + 2, otherwise the prediction is the real line

R. For each l = K + 3, K + 4, . . ., define Zl the matrix of size l × (K + 1) whose

rows are z′i, i = 1, . . . , l, and yl the column vector of length l whose elements are labels

yi, i = 1, . . . , l. Protocol 5.4 summarises efficient calculations of prediction intervals

under the Gauss linear OCM.

Let us comment on the calculations in Protocol 5.4 for n ≥ K + 3. The least squares

estimate for the regression coefficients γ̂n−1 is calculated using previous examples; ŷn is
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Protocol 5.4 Efficient calculations of prediction intervals under the Gauss linear OCM

Input: ((x1, y1), (x2, y2), . . .) sequence of examples
ε significance level

Output: (Γε1,Γ
ε
2, . . .) prediction intervals for the label

for n = 1, 2, . . . do
observe a new object xn;
if n < K + 3 then

Γεn := R;
else
γ̂n−1 := (Z′n−1Zn−1)

−1Z′n−1yn−1;
ŷn := γ̂n−1zn;
σ̂2
n−1 := 1

n−K−2(yn−1 − Zn−1γ̂n−1)
′(yn−1 − Zn−1γ̂n−1);

∆n := t
ε/2
n−K−2σ̂n−1

√
1 + z′n(Z′n−1Zn−1)

−1zn, where t
ε/2
n−K−2 is the upper ε/2-

quantile of the t-distribution with n−K − 2 degrees of freedom;
Γεn := (ŷn −∆n; ŷn + ∆n);

end if
observe the label yn;

end for

the least squares prediction for object xn; and σ̂2
n−1 is the standard estimate of σ2 from

Zn−1 and yn−1. The calculation of the prediction interval is based on a well-known fact

that the ratio

tn =
yn − ŷn

σ̂n−1
√

1 + z′n(Z′n−1Zn−1)
−1zn

(5.2)

has the t-distribution with n − K − 2 degrees of freedom [Gosset (Student), 1908].

The prediction interval Γεn is obtained using quantiles of the t-distribution. From the

definition of a quantile, follows that the true label yn ∈ Γεn with probability 1 − ε,

therefore it is a valid prediction interval. The intervals are precisely the predictions by

the CP corresponding to the conformity measure

A (Sn−1(x1, y1, . . . , xn−1, yn−1), (xn, yn)) :=
− |yn − ŷn|

σ̂n−1
√

1 + z′n(Z′n−1Zn−1)
−1zn

. (5.3)

For further details see [Vovk et al., 2005a, Section 8.5].
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5.3.2. Empirical study

This section empirically studies predictions for randomly generated synthetic data sets.

The validity of these predictions is evaluated for both cases – when data is generated

according to the Gauss linear model as well as when the assumption is violated. In the

case when data is generated according to the model, the efficiency of the predictions will

be also assessed.

Synthetic data sets. For the experiments four data sets are generated. The data-

generating program is written in R; for the results presented in this chapter the R

random number generator is set to 0 before generating each of the four data sets. Each

of these data sets consists of N = 2000 examples. Each example is described by K = 100

features and a label. Values for the features are generated independently from the normal

distribution with zero mean and variance one. The label is calculated using (5.1) with

the vector of coefficients γ = (γ1, . . . , γ101) defined by

γk =


100, k = 1;

(−1)k+1 · 10, k = 2, . . . , 11;

(−1)k+1, k = 12, . . . , 101.

(According to this setting the first ten features of an object make a bigger contribution

in the label value than the rest.) For the Gauss data set the noise variables ξi are gen-

erated from the normal distribution with zero mean and variance one. For the Laplace,

Exponential and Uniform data sets ξi are drawn respectively from the Laplace distribu-

tion with location parameter zero and scale parameter 1√
2
, the exponential distribution

with rate parameter one and the uniform distribution on [−
√

3,
√

3]. The parameters

of these three distributions have been chosen to result in standard deviation one and

mean zero (except for the exponentially distributed noise where mean is one). Figure 5.1
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Figure 5.1.: Density functions for different types of noise used for synthetic data sets.

shows the density functions for corresponding noise variables.

Figure 5.2 shows error rates (Err0.01n and Err0.05n defined in Protocol 5.3) at the sig-

nificance levels 1% (the left panel) and 5% (the right panel). This is an illustration of

the validity property. As it was discussed in Section 5.2, the error rates are considered

starting from step K + 3 = 103 (Algorithm 5.4 produces informative on-line predictions

starting from this step). The validity for predictions at the significance levels means that

after 1897 successive on-line predictions (starting from the step 103) the total number

of errors is about 1897 · 0.01 ≈ 19 for the level 1% and it is 1897 · 0.05 ≈ 95 for the level

5%. The dashed line in each of the plots shows the expected number of errors for each

step of the on-line predictions. Let us check that for the Gauss data set the observed

number of 121 errors for predictions at the significance level of 5% is within some allowed

deviation. Using the approach described on page 111

PErr0.052000∼B(2000,0.05)(Err0.052000 ≥ 121) ≈ 0.02,
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Figure 5.2.: Error rates for on-line prediction at the significance levels 1% (left) and 5%
(right) are plotted for four synthetic data sets.

therefore the hypothesis that Err0.052000 ∼ B(2000, 0.05) is accepted at the standard signif-

icance level of 0.01. The graphs support theoretical expectations: when the assumption

is satisfied for data (the Gauss data set) the error rate (the solid line) is about the ex-

pected number of errors (up to statistical fluctuation). Next the efficiency of predictions

for the Gauss data set is presented, and then the error rates for the rest of the data sets

will be discussed.

Figure 5.3 shows the median length of prediction intervals (L0.01
n and L0.05

n defined in

Protocol 5.3) at the significance levels 1% and 5% for the Gauss data set. It is known

that if a distribution is approximately Gaussian then to cover about 99% of values one

needs an interval of 2.5 standard deviation away from its mean value and to cover about

95% of values one needs an interval of two standard deviations away from its mean

value. For the synthetic data (the standard deviation for noise in data is 1) it would

give intervals of width 5 at 1% and intervals of width 4 at 5%. For the Gauss data set

the CP generates intervals of width 5.4 at 1% and 4.2 at 5% (as soon as the sufficient

number of examples has been observed).
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Figure 5.3.: Median length of prediction intervals for on-line prediction at the significance
levels 1% and 5% are plotted for the synthetic Gauss data set.

In Figure 5.2 we can see different error rates when the assumption of the CP is violated

(Laplace, Exponential and Uniform data sets). Each of these data sets corresponds

to different deviations from the Gauss linear assumptions. The differences between

the normal distribution and exponential or Laplace distributions result in non-valid

prediction intervals at the level 1%, but at the level of 5% we can not see the non-

validity for these two data sets. These two results show that when the assumption

is violated predictions at certain significance levels (e.g., 5% in this experiment) may

seem valid but they are non-valid at other levels (e.g., 1% in this experiment). For the

Uniform data sets the results are non-valid but in another way: the number of errors

are too low. Let us explain why the prediction quality (the number of errors) at 1% and

5% for the Uniform data set is better than that for the Gauss data set. Both of the data

sets were generated with mean 0 and standard deviation 1. Consider the distributions

of their noise variables. The uniform distribution is symmetric and has zero tails, and

therefore it puts stronger bounds on possible values than the normal distribution does

(see Figure 5.1). At small significance levels this results in a fewer number of errors for
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data with uniform noise than it is expected for data with normal noise. But, of course,

there is no guarantee that at other significance levels the corresponding number of errors

will not exceed the levels.

Before applying this prediction method to real data we need to discuss the problem

of testing the Gauss linear assumption. As Figure 5.2 shows, results of testing are

important to be sure that at any significance level predictions under the OCM will be

valid.

5.4. On-line testing the Gauss linear assumption

This section uses testing methods described in Chapter 4 for on-line testing the Gauss

linear assumption. The main difference from testing exchangeability is that for the Gauss

linear assumption p-values are output by conformal transducer under the Gauss linear

OCM. Next the calculation of p-values under the Gauss linear OCM is described, and it

follows by an empirical study of the performance of plug-in martingales for testing the

Gauss linear assumption.

5.4.1. On-line calculation of p-values under the Gauss linear OCM

Consider a sequence of examples ((x1, y1), (x2, y2) . . .); the goal is to generate the corre-

sponding sequence of p-values under the Gauss linear assumption. Based on the same

idea as for obtaining prediction intervals by Protocol 5.4, p-values for the true labels of

the examples can be calculated efficiently. Consider calculations of p-value pn for step n:

the estimate for the regression coefficients γ̂n−1, the least squares prediction ŷn, and the

estimate for the standard deviation σ̂n−1 are calculated using the sequence of previously

observed examples ((x1, y1), . . . , (xn−1, yn−1)). The p-value pn corresponding to a new

example (xn, yn) is calculated using the value tn of the random variable (5.2). Denote

t
|tn|
n−K−2 for the |tn|-th quantile of the t-distribution with n−K − 2 degrees of freedom.
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Then the p-value is

pn := 2(1− t|tn|n−K−1).

Using the notation introduced in the previous section, Protocol 5.5 summarises on-line

calculations of p-values under the Gauss linear OCM. (These p-values are computed

using matrix operations, so complexity of this algorithm is polynomial in the number of

examples n.)

Protocol 5.5 Generating p-values on-line under the Gauss linear OCM

Input: ((x1, y1), (x2, y2), . . .) sequence of examples
Output: (p1, p2, . . .) sequence of p-values
for n = 1, 2, . . . do

observe an example (xn, yn);
if n < K + 3 then
pn ∼ U [0, 1];

else
γ̂n−1 := (Z′n−1Zn−1)

−1Z′n−1yn−1;
ŷn := γ̂n−1zn;
σ̂2
n−1 := 1

n−K−2(yn−1 − Zn−1γ̂n−1)
′(yn−1 − Zn−1γ̂n−1);

tn := yn−ŷn
σ̂n−1

√
1+z′n(Z

′
n−1Zn−1)−1zn

t
|tn|
n−K−2 is the |tn|-quantile of the t-distribution with n−K−2 degrees of freedom;

pn := 2(1− t|tn|n−K−2);
end if

end for

The standard results of the theory of conformal prediction can be restated in the

context of this chapter as follows: if examples are generated by a distribution that agrees

with the Gauss linear OCM then p-values produced by Protocol 5.5 are independent and

distributed uniformly in [0, 1] (Theorem 2 on page 31).

Using the sequence of p-values plug-in martingales are calculated as it was described

on page 94. In the current context, a high value of the martingales reflects a deviation

from the Gauss linear assumption.
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5.4.2. Empirical study

This section presents testing of the Gauss linear assumption for several data sets. The

first set of experiments with the four synthetic data sets described (see Section 5.3.2)

demonstrates that the procedure leads to reasonable results. The second set of experi-

ments uses the benchmark Abalone data set: first on-line testing is applied to test two

Gauss linear assumptions for this data, and then conformal predictions are obtained.

Synthetic data set

According to the way of generating the synthetic data sets, the Gauss data set agrees

with the Gauss linear assumption and the assumption is violated for the rest of the

data sets (Laplace, Exponential and Uniform). We expect the martingales to keep small

values for the Gauss data set and to grow significantly for the rest of the data sets.

The first step of testing is calculating the sequence of p-values by Protocol 5.5. Then

the p-values are observed one after another and the plug-in martingale (page 94) is

calculated. Figure 5.4 shows the martingale growth for the data sets. The vertical axis

is for the logarithm of martingale and the horizontal one is for the step (number of

observed examples so far). The solid line with no characters on it shows the martingale

for the Gauss data set: the logarithm of the martingale values is negative, i.e., the

martingale values are about zero, meaning that the Gauss linear assumption is accepted

(see Ville’s inequality (4.1) on page 85). For the rest of the data sets (lines with different

characters) the final values of the martingale are higher than 109, meaning that the Gauss

linear assumption can be rejected at the significance level of 10−9. This performance of

the plug-in martingale demonstrates that the testing is valid (does not reject the model

when it is true) and sensitive (detects different kinds of departure from the assumption).
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Figure 5.4.: The growth of the plug-in martingales for four synthetic data sets. The
Gauss linear assumption is not rejected for the Gauss data set and can be
rejected for the rest of these data sets at the significance level of 10−9.

Abalone data set

The benchmark Abalone data set is described in Appendix A.4.

Testing. Snelson et al. [2004] studied predictions for the data using so-called warped

gaussian process, and following their results it would be of interest to test two models:

1. The age of abalone depends on the rest of features according to model (5.1) with

normally distributed noise.

2. The same as 1 but the logarithm of abalone age is used instead of the age.

Figure 5.5 shows the martingale growth for the data set when p-values are calculated

according to models 1 (age) and 2 (log10 age). The vertical axis is for the logarithm of

martingale values and the horizontal one is for the step. The final martingale value is

1037 for the first assumption and it is 103.4 for the second one. In other words, using

Ville’s inequality (4.1) on page 85, at the significance level of 10−37 model 1 is rejected,
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Figure 5.5.: The growth of the plug-in martingales for testing the Gauss linear assump-
tion for (1) the abalone age or (2) the logarithm of abalone age. At the
significance level of 10−37 the Gauss linear assumption for (1) is rejected,
and at the significance level of 10−4 the assumption can be accepted for (2).

and at the significance level of 10−4 model 2 can be accepted. Therefore model 2 seems

to be more realistic. (This agrees with the results for this data set in [Snelson et al.,

2004].)

Prediction. Using the second model (log10 age) prediction intervals are computed for

the logarithm of abalone age. The prediction intervals are calculated in the on-line mode

(by Protocol 5.4). Figure 5.6 shows properties of the predictions at the significance

levels 5% and 1%. The left plot is for the cumulative number of errors. The vertical

axis is for the number of errors and the horizontal one is for the step. The black lines

show observed errors (Err0.01n and Err0.05n defined in Protocol 5.3) and the grey lines are

for the expected number of errors for each step at the chosen significance levels. The

predictions are practically valid (in the sense mentioned in the end of Section 5.2.1).

The right plot shows the median length of prediction intervals on the abalone age. The

vertical axis is for the length of intervals on abalone age and the horizontal one is for the
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Figure 5.6.: On-line conformal prediction under the Gauss linear assumption for the
logarithm of abalone age. Left plot: error rates at the significance levels 1%
and 5%. Right plot: the median length of prediction intervals (on abalone
age) at these significance levels.

step. Prediction intervals are obtained on the logarithm of abalone age, and then the

corresponding values for the age are calculated. The final median length of the prediction

intervals is 8.5 for the significance level of 5% and it is 11.5 for the significance level of

1%. Papadopoulos et al. [2011] used the Abalone data set and reported results for

batch conformal prediction under the exchangeability assumption: the median length of

prediction intervals is about 8 at the significance level of 5% and it is about 14 at 1%.

In the current experiments the settings are different, yet it can be seen that these results

on the median length of prediction intervals are typical for this data set.

5.5. Conclusion

This chapter has studied both conformal prediction under the Gauss linear assumption

and testing this assumption. Efficient calculation of prediction intervals under this

assumption has been discussed and studied empirically. The experiments on synthetic
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data sets have illustrated properties of predictions for both cases when a data-generating

mechanism agrees with the model as well as when this assumption is violated.

Plug-in martingales described in Chapter 4 have been applied for testing the Gauss

linear assumption. The results for synthetic data sets support theoretical expectations:

even for small departures from the assumption the final martingale values are large (it

is more than 109 for the data sets of 2000 examples, meaning that the assumption is

rejected at the significance level of 1%) and the martingale value is close to zero when

the assumption is satisfied. To see the benefit of martingale testing let us compare

Figure 5.4 and Figure 5.2: the martingale extracts information about agreement of data

with the Gauss linear assumption that can not be seen clearly from tracking numbers of

errors in predictions.

In addition, testing the Gauss linear assumption has been presented for the bench-

mark Abalone data set. The results suggest to use the Gauss linear assumption for the

logarithm of abalone age. Finally, predictions on abalone age have been obtained by the

CP under the Gauss linear model for the logarithm of abalone age. Again, the validity

and efficiency of the predictions have been shown.

Though this chapter mainly discusses predictions and testing for the Gauss linear

assumption, this approach is wider in the sense that OCMs for other assumptions and

CPs under these OCMs can be constructed in order to test these assumptions or obtain

predictions under them.
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Conclusion

This thesis has studied conformal prediction under assumptions of certain on-line com-

pression models and testing these assumptions. Based on the results of previous studies

the following needs were identified in order to further research in this area:

1. the need for useful measures of information efficiency for conformal prediction;

2. the need to study efficiency of conformal predictors (CPs) under stronger assump-

tions and compare them to that of CPs under the traditional assumption of ex-

changeability;

3. the need to study and develop methods to test assumptions of on-line compression

models, as the automatic validity of conformal predictions is proved under these

models.

Next it is expounded how each of these needs was approached in this work.

It is known that CPs are automatically valid under their models. But there has

previously been no systematic way of measuring the efficiency of conformal prediction.

This work started by studying the different criteria of efficiency for conformal prediction.

In the idealised setting, when a data-generating distribution is known, the idealised

126



Chapter 6. Conclusion

conformity measures that optimise the criteria were described; as a result, some of

the criteria were called “proper”. The main advantage of proper criteria is that they

encourage to use the conditional probability P (y | x) as the conformity score for an

example (x, y), whereas for other “improper” criteria optimal conformity measure may

depend on the arbitrary choice of a “choice function” and encourage certain “strategic

behaviour” (for example, for the M criterion, not assessing the differences, which may

be important, between potential labels other than the value of a choice function ŷ(x) for

an object x). The experiments with empirical counterparts of the idealised conformity

measures confirmed that the conclusions about the kind of behaviour encouraged by

different criteria hold in the realistic setting. Hence it was suggested to use the proper

criteria of efficiency in place of commonly used (improper) ones.

Conformal prediction was studied under hypergraphical models. These models rep-

resent specific assumptions about the structure of data. Several new CPs under these

models were constructed and their performance was studied under the exchangeability

model and under a non-trivial hypergraphical model. For the predictors, the model that

is used for calculating p-values is called the “hard model” (the validity of the predictions

depends on the correctness of the model), and the model that is used for calculating con-

formity scores is called the “soft model” (only efficiency may suffer if the assumption

of the model is violated). The first empirical result is that hypergraphical models are

useful for conformal prediction: predictions under more specific hypergraphical models

are more efficient than those under the exchangeability model. The second observation

is that for usual (unconditional) CPs hypergraphical models only need to be used as soft

models; the performance of unconditional CPs does not suffer much if the exchangeabil-

ity model continues to be used as the hard model. Finally, label conditional conformal

prediction was studied under hypergraphical models. The experiments showed that the

performance of label conditional CPs can be close to that of unconditional CPs when
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hypergraphical models are used as both the hard and soft models.

The method of on-line testing assumptions was studied and extended. This testing is

based on calculations of special martingales; the main goal is to construct martingales

that can grow to larger values when the tested assumption is falsified. The martingales

are functions of the sequence of p-values generated in the on-line mode by a conformal

transducer. (Sequences of data that agree with assumptions of conformal transducers

provide the corresponding sequences of p-values distributed uniformly in [0, 1]; therefore

martingales for data can be functions of the p-values aiming to detect deviations from

uniformity for the later.) All previously suggested martingales are constructed to grow

if too many small p-values are in the sequence. This makes them unable to detect other

possible deviations from uniformity in p-values (which corresponds to violations of the

tested assumptions for data). This work introduced two new methods for constructing

martingales from the sequence of p-values that do not require any assumptions about

the p-values. The first method – mixtures of stepped martingales – is an example of the

Bayesian approach in the context of martingale testing: families of stepped martingales

were defined (with each of them constructed to grow for a different deviation from

uniformity in p-values), and the uniform prior is used to integrate martingales from

these families. The second method – plug-in martingales – is an example of the plug-

in approach: a plug-in martingale learns the distribution of p-values from past data

and adapts itself to grow if the distribution is not uniform. It was proved that, under

a stationarity assumption, these plug-in martingales grow at least as high as any of

previously introduced martingales. The empirical study showed that both of the new

martingales are useful for on-line testing.

Finally, conformal prediction and on-line testing were studied under the Gauss linear

assumption. The experiments demonstrated that the plug-in martingale detects different

types of deviation from the Gauss linear assumption and is useful for this testing. In
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addition, conformal prediction under this assumption was reported for a benchmark data

set.

Future research

The following directions would be of interest for future study:

• Criteria of efficiency for conformal predictions as suggested in this thesis are for

the classification problem, where the label space is finite. It would therefore be

of interest to define similar criteria in the case of regression (the label space is

R), anomaly detection (the label space can be multi-dimensional and objects are

absent) and clustering (labels are absent), and to describe idealised conformity

measures that might be optimal for them.

• CPs whose hard model is the exchangeability model and the soft model is a hyper-

graphical model are very valuable, as their validity only requires the exchangeabil-

ity assumption. The phenomenon that their performance does not greatly suffer

in comparison to pure hypergraphical CPs deserves further investigation. This

can be done in two ways: check it empirically for other data sets, and theoreti-

cally describe the expected difference in the performance of CPs based on different

models.

• The performance of the mixtures of stepped martingales and the plug-in martin-

gales were similar in the experiments presented in this thesis. It would therefore be

of further interest to describe the situations when one of the martingales performs

better than another and possible limitations of the martingales.

• This thesis discussed testing exchangeability and testing the Gauss linear assump-

tion. This idea of testing can be applied to other statistical models, especially to

hypergraphical models, in order to test different structures for data.
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Data sets

This appendix describes benchmark data sets used in the thesis.

A.1. USPS data set

The US Postal Service (USPS) data set is a collection of handwritten digits from real-life

postal codes. The sizes of the training and test sequences are 7291 and 2007, respectively.

Each example is described by 256 features representing the brightness of pixels on the

16×16 gray-scaled image displaying a digit and its label (the digit). The brightness takes

values in the interval (−1, 1) and the label is a decimal digit from 0 to 9. Figure A.1

shows several examples from the data set.

yl
im

Figure A.1.: Examples of the USPS data set.
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s1 s2

s0

Figure A.2.: The seven-segment display.

Figure A.3.: Ideal LED images.

For experiments in Chapter 2 each example is normalised as described in Appendix B.3

in Vovk et al. [2005a], so that the mean brightness of pixels in each picture is 0 and its

standard deviation is 1.

For experiments in Chapter 4 the training and test sequences are merged and this

is referred as the “USPS data set in the original order”. A known fact is that the

training and test sequences seem to have different distributions [Vovk et al., 2005a,

Appendix B.1]. In order to satisfy the exchangeability assumption, the examples in the

original USPS data set are randomly permuted, this is always stated in the experiments

by saying “USPS data set randomly shuffled”.

A.2. LED data sets

LED data sets are generated by a program from [Bache and Lichman, 2013]. The problem

is to predict a digit from an image in the seven-segment display shown in Figure A.2.

Figure A.3 shows examples of objects in the data sets (these are the ten “ideal im-
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ages” of digits; there are also digits corrupted by noise). The seven LEDs (light emitting

diodes) can be lit in different combinations to represent a digit from 0 to 9. The pro-

gram generates examples with noise. There is an ideal image for each digit, as shown

in Figure A.3. An example has seven binary features s0, . . . , s6 (si is 1 if the ith LED

is lit) and the label c, which is a decimal digit. The program randomly chooses a label

(0 to 9 with equal probabilities), inverts each feature in its ideal image with probabil-

ity pnoise (pnoise = 1% for the experiments presented in this thesis) independently, and

adds the noisy image and the label to the data set. As usual, examples are generated

independently.

A.3. Statlog Satellite data set

The Statlog Satellite data set is available from [Bache and Lichman, 2013]. The data set

consists of 6435 examples (divided into 4435 training examples and 2000 test examples).

The data were generated from a section (82 × 100 pixels) of an image of the earth

surface taken by the Landsat satellite. The pictures are taken in four different spectral

bands and so each pixel is described by four frequency values (each between 0 and 255).

Each example is represented by 36 multi-spectral values of pixels in 3×3 neighbourhoods

in the satellite image, and the label indicates the classification of the central pixel in

each neighbourhood. Labels are integers from 1 to 7, excluding 6: class 1 is for red soil,

class 2 is for cotton crop, class 3 is for grey soil, class 4 is for damp grey soil, class 5 is

for soil with vegetation stubble, and class 7 is for very damp grey soil. Originally there

was also a mixture class, where all types are present (class 6), but there are no instances

of it in the data set.

For experiments in this thesis the whole Statlog Satellite data set is used, and in

this case it is said “Statlog Satellite data set in the original order”. In order to satisfy

the exchangeability assumption, examples of the Statlog original data set are randomly
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Table A.1.: The summary of features in the Abalone data set.

Name Type Description

Sex nominal M,F , and I (infant)
Length continuous longest shell measurement

Diameter continuous perpendicular to length
Height continuous with meat in shell

Whole weight continuous whole abalone
Shucked weight continuous weight of meat
Viscera weight continuous gut weight (after bleeding)

Shell weight continuous after being dried
Rings integer +1.5 gives the age in years

permuted, this is always stated in the experiments.

A.4. Abalone data set

The Abalone data set is available from [Bache and Lichman, 2013]. The usual process

of determining the age of abalone is boring and time consuming. This data set aims to

predict the age of abalone from various physical measurements that are easy to obtain.

The data set consists of 4177 examples. Each example is represented by 7 features

and the label. Table A.1 describes the features and the label, which is named Rings.

The label takes integer values from 1 to 29.

In this thesis the problem is considered as the regression problem and predictions

are continuous numbers. To use the standard linear regression model (see Section 5.2),

values of feature “Sex” are represented as integer numbers: 1 for M , 2 for I, and 3 for

F .

133



Appendix B.

Implementation in R

R implementations of the most interesting methods studied in this thesis are available as

several R packages. Each package is accompanied by its manual describing implemented

methods and giving examples of use. The following list summaries the packages:

• (CP package) For Section 1.2 and some results of Chapter 2 the general framework

for conformal prediction under the exchangeability assumption is available1. The

package contains functions for on-line, batch and inductive conformal prediction.

The implementation allows users to write new nonconformity functions (the “non-

conformity” is the opposite to “conformity”, i.e., for any conformity function A

the corresponding nonconformity function B := −A [Vovk et al., 2005a, see p. 23–

24]) and plug them into the framework. The KNN-ratio conformal predictors (see

(2.10) on page 51) are implemented for on-line, batch and inductive settings. The

manual2 describes the functions and shows examples of prediction for the USPS

data set. The examples include experiments with the tangent distance. For this

purpose the additional package3 is used and its manual is available4.

1http://www.cs.rhul.ac.uk/~valentina/R-packages/CP_1.0.tar.gz
2http://www.cs.rhul.ac.uk/~valentina/R-packages/CP-manual.pdf
3http://www.cs.rhul.ac.uk/~valentina/R-packages/TangentDistance_1.0.tar.gz
4http://www.cs.rhul.ac.uk/~valentina/R-packages/TangentDistance-manual.pdf
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• (CriteriaForCP package) For Chapter 2 the package5 implements criteria of effi-

ciency for conformal prediction, and KNN-CoP and KNN-SP conformal predictors

(for batch and inductive settings) (see (2.11) and (2.12) on page 52). The manual6

gives examples of use the functions with the standard Iris data set, as well as shows

some experiments from Chapter 2 for the USPS data set.

• (HCP package) For Chapter 3 the package7 implements hypergraphical CoP and

hypergraphical SP conformal predictors for the on-line settings. Also the calcula-

tion of idealised predictions for a given distribution is implemented. The manual8

shows some experiments from Chapter 3 using the LED data set.

• (OnlineTesting package) For Chapter 4 an implementation of martingales is avail-

able9. The package contains the plug-in, mixtures of stepped martingales, simple

mixture, sleepy jumper and power martingales. The manual10 shows examples of

calculating the martingales for randomly generated sequences of p-values, as well

as it describes testing for the USPS data set.

Installation packages in R. The standard R function install.packages can be used

to install package <pkg-name> from the downloaded archive <pkg-name>.tar.gz as it

is shown in the script below.

# this is my path to <pkg -name >.tar.gz

path <- normalizePath("C://Downloads//<pkg -name >.tar.gz")

# install the package

install.packages(path , repos = NULL , type = "source")

# use the package

library(<pkg -name >)

5http://www.cs.rhul.ac.uk/~valentina/R-packages/CriteriaForCP_1.0.tar.gz
6http://www.cs.rhul.ac.uk/~valentina/R-packages/CriteriaForCP-manual.pdf
7http://www.cs.rhul.ac.uk/~valentina/R-packages/HCP_1.0.tar.gz
8http://www.cs.rhul.ac.uk/~valentina/R-packages/HCP-manual.pdf
9http://www.cs.rhul.ac.uk/~valentina/R-packages/OnlineTesting_1.0.tar.gz

10http://www.cs.rhul.ac.uk/~valentina/R-packages/OnlineTesting-manual.pdf
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