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In this paper, we propose quantum graphs as one-dimensional models with a complex
topology to study Bose-Einstein condensation and phase transitions in a rigorous way.
We first investigate non-interacting many-particle systems on quantum graphs and
provide a complete classification of systems that exhibit Bose-Einstein condensation.
We then consider models of interacting particles that can be regarded as a gener-
alisation of the well-known Tonks-Girardeau gas. Here, our principal result is that
no phase transitions occur in bosonic systems with repulsive hardcore interactions,
indicating an absence of Bose-Einstein condensation. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4879497]

I. INTRODUCTION

Bose-Einstein condensation (BEC) is a well established phenomenon in bosonic many-particle
systems. In its original version, a system of non-interacting particles in a three-dimensional box
was studied and, below a critical temperature, condensation into a joint state (the one-particle
ground state) was found. This is a simple, exactly solvable model for a phase transition. The effect,
however, depends on the spatial dimension and is absent in lower-dimensional, immediate analogues.
Examples of BEC in one dimension were subsequently found when boundary conditions lead to
negative eigenvalues that survive the thermodynamical limit (TL).1

BEC in non-ideal gases is a much harder problem, as the Penrose-Onsager criterion2 requires
a sufficient knowledge not only of the spectrum of the interacting many-particle Hamiltonian, but
also of the eigenstates. As a consequence, results proving condensation in interacting systems and
beyond mean-field approximations remain scarce.3–6

This paper is the third in a series of papers7, 8 devoted to the investigation of many-particle
systems on general compact quantum graphs. Quantum graphs are models describing a quantum
particle moving along the edges of a metric graph. They combine the simplicity of a one-dimensional
model with the complexity of a graph and have become popular models in quantum chaos.9, 10 Their
spectra display correlations that can be well described with random matrix models.

Models of many particles on a compact graph with singular interactions have been developed
in the preceding papers, Refs. 7 and 8. Among them is an extension of the well-known Lieb-Liniger
model,11 which incorporates two-particle δ-interactions, to graphs. In this paper, our aim is to explore
to what extent BEC can or cannot occur in a one-dimensional system with complex structure. In a first
stage, we consider free Bose gases on graphs. Depending on the boundary conditions in the vertices
the one-particle spectrum may or may not contain negative eigenvalues. Relevant for the occurrence
of BEC are negative eigenvalues that remain negative in the thermodynamical limit, which we realise
in terms of increasing edge lengths. We provide a complete classification of free Bose gases that
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display BEC. In a second step, we consider Tonks-Girardeau gases12 on graphs as limits of Lieb-
Liniger models. Our Tonks-Girardeau models describe bosons with repulsive hardcore interactions
on the edges of a graph. We develop a Fermi-Bose map and prove that a Tonks-Girardeau gas is
isospectral to a gas of free Fermions. This then finally proves the absence of BEC when hardcore
interactions are switched on, even when BEC was present before.

The paper is organised as follows: In Sec. II, we review basic facts about BEC, quantum graphs,
and many-particle systems on graphs. Section III is devoted to the classification of free Bose gases
according to whether or not they display BEC. Tonks-Girardeau gases are then studied in Sec. IV
via suitable Fermi-Bose maps, and the absence of a phase transition is proven.

II. PRELIMINARIES

In this section, we briefly summarise relevant concepts of BEC as well as of many-particle
quantum graphs. For more details on BEC see Refs. 2, 13, and 14, on quantum graphs see
Refs. 10 and 15–17 and on many-particle quantum graphs see Refs. 7 and 8.

A. Bose-Einstein condensation

For a gas of non-interacting bosons (a free gas), it is the macroscopic occupation of a one-
particle eigenstate that implies the existence of BEC. This classical definition is meaningful since in
non-interacting systems the eigenstates of the full Hamiltonian are (symmetrised) products of one-
particle eigenstates. However, in the presence of interactions between particles, there is no preferred
set of one-particle states and it is not immediately clear how to generalise this criterion for BEC. A
suitable generalisation, introduced by Penrose and Onsager,2 is based on the reduced one-particle
density matrix ρ1. At inverse temperature β = 1

T and fixed particle number N, the canonical thermal
density matrix ρN of the full system is given by

ρN = 1

Z N (β)

∑
n

e−βEn |�n〉〈�n|, (1)

where �n is the nth eigenvector of the N-particle system with eigenvalue En, and Z N (β) = ∑
n e−βEn

is the canonical partition function. The reduced one-particle density matrix is obtained from (1) by
tracing out N − 1 particles, i.e.,

ρ1 = N Tr2...N (ρN ). (2)

Definition 2.1 (Penrose and Onsager2). Let ρN be the canonical thermal state (1) of an N-particle
system with one-particle reduced density matrix ρ1 as in (2). The system is said to display BEC if
the largest eigenvalue λmax of ρ1 satisfies

c1 <
λmax

N
< c2, ∀N ≥ N0, (3)

where 0 < c1 ≤ c2 and N0 is sufficiently large.
Note that the limit N → ∞ in Definition 2.1 is accompanied by the limit V → ∞, where V

is the volume of the one-particle configuration space, such that the particle density remains fixed.
This is the standard thermodynamical limit of the canonical ensemble.18 Unfortunately, although the
criterion of Penrose and Onsager2 is very general, it is usually difficult to establish BEC rigorously
in the sense of Definition 2.1, since the eigenstates of the full system are hard to construct.13 On the
other hand, it is of fundamental interest to understand how particle-particle interactions affect the
occurrence of BEC.19–21 In this context, a more tractable approach to BEC aims at identifying phase
transitions, which are expected to occur in any condensation process. This method has been used
in Refs. 21–23, and it is this approach that will be used below to show the absence of BEC in the
presence of repulsive hardcore contact interactions on graphs.

When studying condensation it is more natural to drop the requirement of a fixed particle number
and to work in the grand-canonical ensemble. Then the free-energy density at finite volume is given
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by

fV (β,μ) = − 1

βV
log Z (β,μ), (4)

where

Z (β,μ) =
∞∑

N=0

eNμβ Z N (β) (5)

is the grand-canonical partition function, and μ is the chemical potential. In the grand-canonical
ensemble, the thermodynamical limit is performed in terms of the limit V → ∞ alone.18 The
chemical potential is then chosen such that the (fixed) particle density ρ satisfies

ρ = − ∂ f

∂μ
(β,μ), (6)

where f (β,μ) = limV →∞ fV (β,μ). Inverting the relation (6) yields a function μ = μ(ρ) that then
allows to replace the chemical potential by the particle density. It may, however, happen that the
relation (6) is not invertible for all values ρ ∈ R+. This is the case in some well-known examples,
including the three-dimensional free Bose gas and the one-dimensional Bose gas with a gap in the
one-particle spectrum caused by boundary conditions. In such a case, it is necessary to choose a
volume dependent sequence of chemical potentials such that the relation (6), with f(β, μ) replaced
by fV (β,μV ), is fulfilled at any finite volume V , see Ref. 1.

In general, a phase transition manifests itself in terms of points where a suitable thermodynamical
function g(β,μ) = limV →∞ gV (β,μ) is not differentiable.1, 18, 24 In the examples mentioned above,
it is well-known that phase transitions occur in this sense and, independently, that BEC occurs.1 In
fact, the BEC induces the phase transitions. As a consequence, we adopt the point of view that an
absence of a phase transition indicates an absence of BEC.

Below we shall consider systems of bosons on a graph, interacting via repulsive hardcore
interactions. The models are built after the example of N particles in one dimension whose interactions
are described by the Lieb-Liniger Hamiltonian11

Hα
N = −

N∑
j=1

∂2

∂x2
j

+ α
∑
i> j

δ(xi − x j ). (7)

In this example, repulsive hardcore interactions are obtained by taking the limit α → ∞. This
procedure leads to Dirichlet boundary conditions imposed whenever two coordinates coincide, xi

= xj. Note that a Bose gas in one dimension with repulsive hardcore interactions is known as the
Tonks-Girardeau gas.14, 25 The importance of this model lies in the fact that, although being a gas
of bosons, it exhibits fermionic behaviour in various ways.25, 26 The origin of the Tonks-Girardeau
gas is found in the calculation of the classical partition function of a one-dimensional gas of hard
spheres with diameter a > 0 by Tonks.27 Later, Girardeau12 gave a quantum mechanical description
of the gas considered by Tonks27 and found a one-to-one mapping between a one-dimensional gas
of bosons with hardcore interaction and a free gas of fermions. Considering the case where a =
0, Girardeau12 showed that the spectrum of a gas of bosons with hardcore repulsion is the same
as the spectrum of a gas of free fermions, and the eigenfunctions are related by simple algebraic
manipulations. Let, e.g., ψ

(F)
0 (x1, . . . , xN ) be the ground state of the gas of free fermions whose

one-particle configuration space is an interval. The ground state ψ
(B)
0 (x1, . . . , xN ) of a gas of bosons

with hardcore point interactions is then obtained via the relation

ψ
(B)
0 (x1, . . . , xN ) = |ψ (F)

0 (x1, . . . , xN )|. (8)

Despite the close connection between a gas of free fermions and a gas of bosons with hardcore
interactions there are still some subtle differences in the eigenfunctions (8), see Ref. 25 for an
overview of this so-called Fermi-Bose mapping.

For the original Tonks-Girardeau gas, BEC was previously investigated in various papers.25, 28–31

As shown in Ref. 2, the existence of BEC in the sense of Definition 2.1 is equivalent to the existence
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of a long-range order in the position representation ρ1(x, x′) of the reduced one-particle density
matrix. For the Tonks-Girardeau gas at zero temperature, it was shown that

ρ1(x, 0) ∼ K√
x
, x → ∞, (9)

where K > 0 is a constant.25, 31 This in turn implies that the maximal eigenvalue of (2) is of order√
N and, hence, at zero temperature no BEC occurs.25 For finite temperature, however, in Ref. 30

an exponential decay of ρ1(x, x′) was conjectured. This was subsequently established in Ref. 32 at
low temperature.

It is interesting to note that studies of particles in one dimension interacting via repulsive
hardcore interactions have a long history in statistical mechanics.18, 24, 33 Van Hove, e.g., had shown
(see Theorem 5.6.7 in Ref. 34, and Ref. 33) that a classical one-dimensional system with hardcore
two-particle interactions, plus possibly a short-range contribution, shows no phase transitions.

B. Quantum graphs

The classical configuration space for a particle on a graph is a compact metric graph, i.e., a
finite, connected graph 
 = (V, E) with vertex set V = {v1, . . . , vV } and edge set E = {e1, . . . , eE }.
The edges are identified with intervals [0, le], e = 1, . . . , E, thus assigning lengths to intervals; this
then introduces a metric on the graph. Note that we do not exclude multiple edges or loops at this
point.

1. One-particle quantum graphs

Functions on the graph are collections of functions on the edges, i.e.,

F = ( f1, . . . , fE ), with fe : [0, le] → C, (10)

so that spaces of functions on 
 are (finite) direct sums of the respective spaces of functions on the
edges. The most relevant space is the Hilbert space

H1 = L2(
) :=
E⊕

e=1

L2(0, le), (11)

and all other function spaces are constructed in a similar way.
Standard single particle quantum mechanics suggests to choose the one-particle Hilbert space

H1 = L2(
), see (11). One-particle observables are then self-adjoint operators in H1. In the absence
of external forces or gauge fields, the Hamiltonian should be a suitable realisation of a Laplacian.
As a differential operator the Laplacian acts according to

−�1 F = (− f ′′
1 , . . . ,− f ′′

E ) (12)

on F ∈ C2(
). We here use the index to indicate that this is a one-particle Laplacian.
Viewed as an operator in L2(
) with domain C∞

0 (
), this Laplacian is symmetric, but not
(essentially) self-adjoint. Its self-adjoint extensions can be classified, and there are several ways
to parametrise these extensions (see, e.g., Refs. 15 and 16). All of these parametrisations involve
boundary values

Fbv = ( f1(0), . . . , fE (0), f1(l1), . . . , fE (lE )) (13)

of the functions in the domain of the operator, as well of derivatives,

F ′
bv = ( f ′

1(0), . . . , f ′
E (0),− f ′

1(l1), . . . ,− f ′
E (lE )). (14)

One (unique) characterisation of self-adjoint extensions uses quadratic forms,15

Q1[F] =
E∑

e=1

∫ le

0
| f ′(x)|2 dx − 〈Fbv, L1 Fbv〉C2E , (15)
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with domains

DQ1 = {F ∈ H 1(
); P1 Fbv = 0}. (16)

Here, P1 is a projector on the space of boundary values C2E and L1 is a self-adjoint map on ker P1.
(The index indicates that these quantities relate to one-particle quantities.) This form is uniquely
associated with a one-particle Laplacian − �1 on the domain

D1(P1, L1) = {F ∈ H 2(
); P1 Fbv = 0, Q1 F ′
bv + L1 Q1 Fbv = 0}, (17)

where Q1 = 12E − P1.
Any such one-particle Laplacian has a discrete spectrum, with eigenvalues only accumulating

at infinity and following a Weyl asymptotic law (see, e.g., Ref. 17). Potentially, there are finitely
many negative eigenvalues. Their number is bounded by the number of positive eigenvalues of L1 (in
each case including multiplicities).16 Hence, a negative semi-definite map L1 implies a non-negative
Laplacian.

2. Many-particle quantum graphs

An N-particle quantum system on a graph requires the tensor product of one-particle Hilbert
spaces, HN = H1 ⊗ . . . ⊗ H1. For a quantum graph, this means that

HN =
( E⊕

e=1

L2(0, le)
)

⊗ . . . ⊗
( E⊕

e=1

L2(0, le)
)
, (18)

such that vectors � ∈ HN are collections � = (ψe1e2...eN ) of EN functions defined on the hyper-
rectangles De1e2...eN = (0, le1 ) × (0, le2 ) × . . . × (0, leN ). Their disjoint union is denoted as

DN

 =

⋃̇
e1e2...eN

De1e2...eN , (19)

so that one may view HN as

L2(DN

 ) =

⊕
e1e2...eN

L2(De1e2...eN ). (20)

The corresponding Sobolev spaces are introduced in the same way and are denoted as H m(DN

 ).

A free Hamiltonian for N particles is a lift of a one-particle Hamiltonian − �1 to HN , i.e.,

−�
f ree
N =

N∑
j=1

1 ⊗ . . . ⊗ (−�1) ⊗ . . . 1, (21)

where the (one-particle) Laplacian acts on the coordinates of the jth particle. As a differential
expression, this operator is a Laplacian,

(−�N �)e1...eN = −
(

∂2

∂x2
e1

+ . . . + ∂2

∂x2
eN

)
ψe1...eN , (22)

and it can be realised on a suitable domain in (20). Hence, any free Hamiltonian (21) is some
extension of the symmetric operator − �N defined on the domain C∞

0 (DN

 ).

However, there are extensions of (−�N , C∞
0 (DN


 )) that are not of the form (21); these operators
necessarily contain interactions among the particles. These interactions are induced by boundary
conditions imposed on the functions in their domain and hence are of a singular type, acting when a
particle hits a vertex. A certain class of such extensions was introduced in Ref. 7.

Another class of interactions, introduced in Ref. 8, consists of two-particle contact interactions,
acting whenever two particles are in the same position along an edge. They can be constructed as
rigorous versions of the formal Hamiltonian

Hα
N = −�N + α

∑
i< j

δ(xi − x j ). (23)
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This requires to add additional boundaries to the configuration space (19) along diagonal hyperplanes
characterised by xi = xj.

A bosonic many-particle system has to be realised on the symmetric tensor product of N
one-particle Hilbert spaces, HN ,B = �BHN , where

(�B�)e1...eN := 1

N !

∑
π∈SN

ψπ(e1)...π(eN )(xπ(e1), . . . , xπ(eN )) (24)

is the projector onto the totally symmetric states under particle exchange.
In order to realise the contact interactions indicated in (23), one has to introduce jump conditions

across hyperplanes xi = xj on the normal derivatives of the functions in the operator domain.8 To
achieve this one dissects the hyper-rectangles De1e2...eN describing configurations with at least two
particles on the same edge (i.e., with at least a pair i �= j such that ei = ej) into polyhedral sub-domains
by cutting De1e2...eN along the hyperplanes xi = xj. We denote the dissected version of De1e2...eN by
D∗

e1e2...eN
, and the union of all these polyhedral domains by DN∗


 . The corresponding L2-spaces are

L2(DN∗

 ) =

⊕
e1e2...eN

L2(D∗
e1e2...eN

), (25)

and similarly for Sobolev spaces. Given a dissected hyper-rectangle D∗
e1e2...eN

, the union of all
hyperplanes that form the internal boundaries will be denoted as ∂ Dint

e1...eN
, whereas the external

boundaries ∂ Dext
e1e2...eN

are the boundaries of the undissected hyper-rectangle De1e2...eN . We then set

∂ DN ,ext/ int

 =

⋃
e1...eN

∂ Dext/ int
e1...eN

. (26)

Implementing jump conditions across ∂ DN ,int

 will then yield the δ-interactions (23).

One can also introduce boundary conditions on ∂ DN ,ext

 that prevent the resulting N-particle

Laplacian from being a free Hamiltonian.7 These boundary conditions cause the interactions men-
tioned above to arise when one particle hits a vertex. In order to implement such interactions, one
needs the boundary values

�bv( y) =
( √

le2 . . . leN ψe1...eN (0, le2 y1, . . . , leN yN−1)√
le2 . . . leN ψe1...eN (le1 , le2 y1, . . . , leN yN−1)

)
, (27)

and

� ′
bv( y) =

⎛
⎝

√
le2 . . . leN ψe1...eN ,x1

e1
(0, le2 y1, . . . , leN yN−1)

−√
le2 . . . leN ψe1...eN ,x1

e1
(le1 , le2 y1, . . . , leN yN−1)

⎞
⎠, (28)

where y = (y1, . . . , yN−1) ∈ [0, 1]N−1, of functions � ∈ H 1
B(DN


 ) and the normal derivatives. Act-
ing on these (vertex related) boundary values are the bounded and measurable maps PN , L N :
[0, 1]N−1 → M(2E N ,C) such that for a.e. y ∈ [0, 1]N−1 the linear map PN ( y) is an orthogonal
projector and L N ( y) is a self-adjoint endomorphism on ker PN ( y). These maps define two bounded,
self-adjoint multiplication operators �N and �N, respectively, on L2(0, 1) ⊗ C2E N

, see Ref. 8.
Note that in Ref. 7 it was shown that actual interactions are obtained whenever PN, LN are not all
independent of y.
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Following Ref. 8, the quadratic form for N bosons on a graph subject to any of the interactions
introduced above is

Q(N )
B [�] = N

∑
e1...eN

∫ le1

0
. . .

∫ leN

0
|ψe1...eN ,xe1

(xe1 , . . . , xeN )|2 dxeN . . . dxe1

− N
∫

[0,1]N−1
〈�bv, L N ( y)�bv〉C2E N d y

+ N (N − 1)

2

∑
e2...eN

∫
[0,1]N−1

α(y1) |√le2 . . . leN ψe2e2...eN (le2 y1, l y)|2 d y,

(29)

where l y = (le2 y1, le3 y2, . . . , leN yN−1), with domain

DQ(N )
B

= {� ∈ H 1
B(DN∗


 ); PN ( y)�bv( y) = 0 for a.e. y ∈ [0, 1]N−1}. (30)

The second line on the right-hand side of (29) implies the vertex-related interactions, whereas the
third line yields contact interactions with (bounded) variable strength α. The latter can be turned into
a repulsive hardcore interaction by taking the limit α → ∞. Taking this limit one has to amend the
domain (30) in that the functions have to vanish on the internal boundaries ∂ DN ,int


 . This subspace
of H 1

B(DN∗

 ) shall be denoted as H 1

0,int,B(DN∗

 ).

Under these conditions it was shown in Ref. 8 that the quadratic form (29) is closed and semi-
bounded. Hence, there exists a unique, self-adjoint, and semi-bounded operator associated with this
form. This operator is a self-adjoint realisation of the N-particle Laplacian which will, in the case
of hardcore interactions, be denoted by (−�N ,Dα=∞

N (PN , L N )). It has a discrete spectrum and the
eigenvalue asymptotics follows a Weyl law.8

III. BEC IN NON-INTERACTING BOSE GASES

As described in (21), a self-adjoint realisation of the free N-particle Laplacian follows from
a tensor product construction based on a given one-particle Laplacian (−�1,D1(P1, L1)). The
eigenfunctions {�n}n∈NN of the N-particle Laplacian are then given as symmetrised products of the
one-particle eigenfunctions {φn}n∈N , i.e.,

�n = �B(φn1 ⊗ . . . ⊗ φnN ), (31)

where n = (n1, . . . , nN). The N-particle eigenvalues are λn = k2
n1

+ . . . + k2
nN

, where {k2
n}n∈N are

the corresponding one-particle eigenvalues.
We shall mainly work in the grand-canonical ensemble where the thermodynamical limit is

taken as the limit of an infinite volume of the one-particle configuration space (see Sec. II). For a
graph the volume of the one-particle configuration space is the total length of the graph,

L =
E∑

e=1

le. (32)

In principle, the infinite-volume limit can be achieved by either increasing the number of edges, or
by scaling the lengths of the edges. As we do not want to change the topology of the graph, we here
choose to leave the number of edges fixed and only increase the edge lengths by a common factor.

Definition 3.1. Let 
 be a compact, metric graph with edge lengths l1, . . . , lE. The TL consists
of the scaling

le �→ ηle, (33)

and taking the limit η → ∞.
We shall also use the notation

lim
T L

F(L) (34)

for the thermodynamical limit of a function F(L).
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According to general folklore, in the absence of disorder a free gas of bosons in one dimension
shows no BEC at finite temperature. This, however, is only true if the one-particle spectrum has
no gap separating a finite number of eigenvalues at the bottom of the spectrum from the (quasi-)
continuum of states above. In order to generate such a gap in a quantum graph, it is necessary for
the Laplacian −�1 to possess negative eigenvalues.

An upper bound for the number n− (−�1(P1, L1)) of negative eigenvalues of the one-particle
Laplacian was proved in Ref. 16. The exact number was later determined in Ref. 35, where the
matrix

M0(l1, . . . , lE ) :=

⎛
⎜⎝

m1(l1) 0
. . .

0 m E (lE )

⎞
⎟⎠, (35)

with

me(le) := 1

le

(−1 1
1 −1

)
, (36)

was introduced. It was then shown in Ref. 35 that

n−(−�1(P1, L1)) = n+(L1 + Q1 M0 Q1), (37)

where the right-hand side denotes the number of positive eigenvalues of the linear map L1 +
Q1M0Q1 on ker P1 ⊆ C2E (and Q1 = 12E − P1). Therefore, when the edge lengths tend to infinity
in the TL, the quantity n− (−�1(P1, L1)) approaches n+ (L1). This, however, does not imply that
there are n+ (L1) negative Laplace-eigenvalues in the TL as some of the negative eigenvalues could
approach zero in the limit. Nevertheless, for the question of BEC the number of positive eigenvalues
of the map L1 is still relevant, as we shall show below.

In the following proposition, we first prove absence of BEC when the domain of the one-particle
Laplacian is defined in terms of a negative semi-definite map L1, and therefore the Laplacian has no
negative eigenvalues.

Proposition 3.2. Let − �N be a bosonic, self-adjoint realisation of the free N-particle Laplacian.
If the corresponding one-particle Laplacian (−�1,D1(P1, L1)) is such that L1 is negative semi-
definite, no Bose-Einstein condensation occurs at finite temperature in the thermodynamical limit.

Proof. It is well known that there is no BEC in a gas of free bosons on an interval of finite length
with either Dirichlet or Neumann boundary conditions. In both cases, the eigenvalues are known
explicitly and the standard argument applies. The same is true for a compact quantum graph with
Dirichlet or Neumann boundary conditions: the eigenvalue equations on the edges decouple and,
again, the eigenvalues are known explicitly. The spectrum, therefore, is the union of the spectra for
each edge.

Let

N (K ) = #{n; k2
n ≤ K 2} (38)

be the eigenvalue counting function for (−�1,D1(P1, L1)), where the eigenvalues k2
n are counted

with their multiplicities, and denote by ND/N (K ) the respective counting functions for the Dirichlet-
and Neumann-Laplacian. A bracketing argument then implies

ND(K ) ≤ N (K ) ≤ NN (K ). (39)

This follows, e.g., from the proof of Proposition 4.2 in Ref. 17, taking into account that L1 is negative
semi-definite.

In the grand-canonical ensemble, the expected number of particles can be expressed as

N (β,μ) =
∞∑

n=0

1

eβ(k2
n−μ) − 1

=
∫ ∞

0

1

eβ(k2−μ) − 1
dN (k). (40)
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The relation (39) hence implies that

ND(β,μ) ≤ N (β,μ) ≤ NN (β,μ). (41)

In the TL, the expected particle density is

ρ(β,μ) = lim
T L

N (β,μ)

L , (42)

and (41) implies

ρD(β,μ) ≤ ρ(β,μ) ≤ ρN (β,μ). (43)

Due to the explicit knowledge of the eigenvalues it is known that ρD(β, μ) = ρN(β, μ). Thus, (42)
yields

ρ(β,μ) = ρD/N (β,μ). (44)

Therefore, as the Dirichlet- and Neumann case shows no BEC, the same holds for any gas of free
bosons satisfying the conditions of the proposition. �

It is known1 that in dimension less than three, despite the general folklore a free Bose gas may
show BEC, if the spectrum of the one-particle Hamiltonian has a gap below zero. More precisely,
if the one-particle spectrum is such that there are infinitely many positive eigenvalues and, say,
one negative eigenvalue that remains negative after having taken the TL, infinitely many particles
will occupy the eigenstate corresponding to the negative eigenvalue (the ground state). An example
for this mechanism is given by an attractive delta-potential on the real axis. This has exactly one
negative eigenvalue and undergoes BEC at low temperatures.36 Furthermore, the condensate is
spatially localised around the location of the delta-potential. It is worth mentioning that in the
current context the real axis with a delta-potential at the origin is a quantum graph with two edges
of infinite length and one vertex, at which appropriate boundary conditions are imposed.

We now determine a class of quantum graphs that maintain a spectral gap below zero in the
thermodynamical limit. Our main tool will be a Rayleigh quotient,

R[�] = Q1[�]

‖�‖2
L2(
)

, � ∈ DQ1 , (45)

which is an upper bound for the ground state eigenvalue.

Proposition 3.3. Let 
 be a compact, metric graph with a self-adjoint one-particle Laplacian
(−�1,D1(P1, L1)). Assume that L1 has at least one positive eigenvalue and denote the largest
eigenvalue by Lmax . Then the ground state eigenvalue −κ2

min < 0 of the one-particle Laplacian
converges to −L2

max < 0 in the thermodynamical limit.

Proof. As L1 is assumed to possess at least one positive eigenvalue, n+ (L1) ≥ 1, the relation
(37) implies that the Laplacian has at least one negative eigenvalue as long as the edge lengths are
finite and sufficiently large. Hence, for any � ∈ DQ1 ,

−s2 ≤ −κ2
min ≤ R[�]. (46)

Here, − s2 is the lower bound for the spectrum of the one-particle Laplacian proved in Ref. 16,
where s a solution of

s tanh

(
slmin

2

)
= Lmax, (47)

and is lmin the shortest edge-length. In the TL, where lmin → ∞, the lower bound in (46) converges
to −L2

max. To find an upper bound in (46), we need to determine the Rayleigh quotient of a suitable
trial function.

We assume that P1 �= 12E as this would correspond to Dirichlet boundary conditions in the
vertices, where it is known that there are no negative eigenvalues. Hence, there exists a non-trivial
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vector

v := (c1, . . . , cE , cE+1, . . . , c2E )T ∈ ker P1. (48)

Using the components of such a vector, we now define a trial function � with components

φe(x) =
⎧⎨
⎩

ce
(
1 − x

λ

)α
, x ≤ λ

0, λ ≤ x ≤ le − λ

ce+E
(

x
λ

+ 1 − le
λ

)α
, x ≥ le − λ

, α ≥ 1. (49)

As we shall take the TL, given any value for λ we can arrange that le ≥ 2λ for all e = 1, . . . , E. The
boundary values of this function, therefore, are

�bv = (c1, . . . , cE , cE+1, . . . , c2E )T = v ∈ ker P1, (50)

hence this function is in the domain (16) of the quadratic form.
We now intend to estimate the Rayleigh quotient of �, noting that we are free to choose v ∈

ker P1. The optimal choice for our purpose is to let v = �bv be an eigenvector of L1 corresponding
to its maximal eigenvalue Lmax > 0. Then,

Q1[�] =
E∑

e=1

∫ le

0
|φ′

e(x)|2 dx − 〈�bv, L1�bv〉

= α2

(2α − 1)λ

E∑
e=1

(|ce|2 + |ce+E |2) − Lmax‖�bv‖2
C2E

=
(

α2

(2α − 1)λ
− Lmax

)
‖�bv‖2

C2E .

(51)

Moreover,

‖�‖2 =
E∑

e=1

∫ le

0
|φe(x)|2 dx = λ

2α + 1

E∑
e=1

(|ce|2 + |ce+E |2) = λ

2α + 1
‖�bv‖2

C2E , (52)

so that

R[�] =
(

α2

(2α − 1)λ
− Lmax

)
2α + 1

λ
. (53)

The right-hand side is negative when λ > α2

(2α−1)Lmax
and has a minimum at λmin = 2α2

(2α−1)Lmax
. With

this optimal choice we find that

R[�] = −4α2 − 1

4α2
L2

max. (54)

As α ≥ 1 can be chosen arbitrarily large in the TL, the optimal upper bound in (46) approaches
−L2

max. Hence, −κ2
min converges to −L2

max in the TL. �
We are now in a position to state our main result of this section.

Theorem 3.4. Let a free Bose gas be given on a quantum graph with a one-particle Laplacian
(−�1,D1(P1, L1)) such that L1 has at least one positive eigenvalue. Then, in the thermodynamical
limit, there is a critical temperature Tc > 0 such that Bose-Einstein condensation occurs below Tc.

Proof. We denote the non-negative eigenvalues of the one-particle Laplacian (counted with their
multiplicities) as k2

0 ≤ k2
1 ≤ k2

2 ≤ k2
3 ≤ · · · . In the grand-canonical ensemble, the expected particle

number occupying states of non-negative energy is

N+(β,μ) =
∞∑

n=0

1

eβ(k2
n−μ) − 1

. (55)
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Recall that by Proposition 3.3 the one-particle ground state eigenvalue is a distance L2
max > 0 below

zero. Hence, the chemical potential μ has to satisfy μ ≤ −L2
max. The density of particles in states of

non-negative energy in the TL then is

ρ+(β,μ) = lim
T L

N+(β,μ)

L . (56)

In order to evaluate this expression, we employ Proposition 5.2 of Ref. 17, which provides a
preliminary form of the trace formula and can be rearranged as

∞∑
n=0

h(kn) = L
2π

∫ ∞

−∞
h(k) dk + γ h(0) − 1

4π

∫ ∞

−∞
h(k) s(k) dk

+
∑
l �=0

1

4π i

∫ ∞

−∞
Tr[�(k)Ul(k)] h(k) dk.

(57)

Here, γ is a constant related to the multiplicity of the eigenvalue zero, �, U are matrix-valued
functions involving the boundary conditions, and s is another function related to the boundary
conditions. In this trace formula, h is a test function from a suitable test function space.17

Now, choosing h(k) = 1
eβ(k2−μ)−1

, the left-hand side of (57) is N+ (β, μ), and the right-hand side
provides four separate contributions to N+ (β, μ). It is obvious that the second and the third terms
give no contributions to ρ + (β, μ). An estimate of the fourth term can be found in the proof of
Theorem 5.4 in Ref. 17, ∑

l �=0

∣∣∣∣
∫ ∞

−∞
Tr[�(k)Ul(k)] h(k) dk

∣∣∣∣ = O
(
e−σ lmin

)
, (58)

where lmin is the shortest edge-length and σ > 0. Hence, as in the thermodynamical limit lmin → ∞,
this term, too, gives no contribution to ρ + (β, μ). Therefore, the only non-vanishing contribution
comes from the first term (which also provides the Weyl term in the asymptotics of the eigenvalue
count),

ρ+(β,μ) = 1

π

∫ ∞

0

1

eβ(k2−μ) − 1
dk = 1√

4πβ
g 1

2
(eβμ). (59)

Here,

gν(z) = 1


(ν)

∫ ∞

0

xν−1

z−1ex − 1
dx =

∞∑
k=1

zk

kν
(60)

is the well-known Bose-Einstein function (a polylogarithm). The series converges for |z| < 1 and has
a finite limit as z → 1 when ν > 1. Here, however, z = eβμ ≤ e−βL2

max < 1 as μ ≤ −L2
max. Hence,

ρ + (β, μ) is finite for all β > 0 and tends to zero as β → ∞ (i.e., T → 0).
The total particle density, ρ(β, μ), also has a contribution from particles occupying states with

negative energy,

ρ(β,μ) = ρ(β,μ)− + ρ+(β,μ). (61)

Given that the limiting particle density has a fixed value, ρ0, below a certain critical temperature
Tc = 1

βc
the negative energy states must be populated because ρ + (β, μ) < ρ0 when β > βc. This

critical temperature is implicitly defined by

ρ0 = 1√
4πβc

g 1
2
(e−βc L2

max ). (62)

More explicitly, when T ≤ Tc,

ρ− = ρ0 − ρ+ = ρ0

(
1 − 1

ρ0

1√
4πβ

g 1
2
(e−βL2

max )

)
. (63)
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Hence, below the critical temperature the relative occupation of the negative energy states is

ρ−
ρ0

= 1 −
√

βc

β

g 1
2
(e−βL2

max )

g 1
2
(e−βc L2

max )
> 0. (64)

Thus, BEC occurs for T < TC, with the relative occupation of the negative energy states approaching
one as T → 0. �
IV. BEC IN BOSE GASES WITH CONTACT INTERACTIONS

We now consider bosons on a graph with many-particle interactions described by the quadratic
form (29). As explained in Sec. II B 2, these interactions consists of two types: they are either
located in the vertices of the graph, or they are contact interactions. Introducing the latter type
of interactions amounts to generalising the original Lieb-Liniger model11 to graphs. In the limit
of an infinite strength such a model turns into a gas with hardcore repulsion and can be viewed
as a generalisation of a Tonks-Girardeau gas to the graph setting. We shall now investigate under
what circumstances BEC on graphs may or may not occur in the presence of repulsive hardcore
interactions.

A. Fermi-Bose mapping on general quantum graphs

Our first goal is to generalise the Fermi-Bose mapping introduced by Girardeau12, 25 to general
quantum graphs. This requires us to introduce systems of N free fermions, and to relate them to
systems of N bosons interacting via repulsive hardcore interactions. The fermionic states are vectors
in the fermionic N-particle Hilbert space L2

F (DN

 ) = �F L2(DN


 ), where

(�F�)e1...eN := 1

N !

∑
π∈SN

(−1)sgn πψπ(e1)...π(eN )(xπ(e1), . . . , xπ(eN )). (65)

An analogous notation is used for Sobolev spaces. Interactions will be described in terms of a
quadratic form

Q(N )
F [�] = N

∑
e1...eN

∫ le1

0
. . .

∫ leN

0
|ψe1...eN ,xe1

(xe1 , . . . , xeN )|2 dxeN . . . dxe1

− N
∫

[0,1]N−1
〈�bv, L F,N ( y)�bv〉C2E N d y

(66)

with domain

DQ(N )
F

= {� ∈ H 1
F (DN


 ); PF,N ( y)�bv( y) = 0 for a.e. y ∈ [0, 1]N−1}. (67)

Here, we use the same notation as in Sec. II B 2, however with an additional index F indicating
the fermionic nature of the form. Using the methods of Ref. 8, one can readily show that the
form (66) is closed and semi-bounded, hence it corresponds to a unique self-adjoint operator,
(−�N ,DN

F (PF,N , L F,N )). Furthermore, a standard bracketing argument implies the discreteness of
the spectrum of this self-adjoint operator as well as a Weyl law for its eigenvalue asymptotics. We
denote the set of all such fermionic N-particle Laplacians by MF,N .

On the other hand, N Bosons with repulsive hardcore interactions are described in terms of a
quadratic form

Q(N )
B [�] = N

∑
e1...eN

∫ le1

0
. . .

∫ leN

0
|ψe1...eN ,xe1

(xe1 , . . . , xeN )|2 dxeN . . . dxe1

− N
∫

[0,1]N−1
〈�bv, L B,N ( y)�bv〉C2E N d y

(68)
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on the domain

DQ(N )
B

= {� ∈ H 1
0,int,B(DN∗


 ); PB,N ( y)�bv( y) = 0 for a.e. y ∈ [0, 1]N−1}, (69)

see the paragraph below (30). We recall that H 1
0,int,B(DN∗


 ) ⊂ H 1
B(DN∗


 ) consists of the functions

vanishing along the internal boundary ∂ DN ,int

 of the dissected configuration space. Again, we added

an index B to reflect the bosonic nature of the form. Consequently, we denote the associated operator
by (−�N ,Dα=∞

B,N (PB,N , L B,N )), and the set of all such operators by Mα=∞
B,N .

Theorem 4.1. There exists a bijective map

σ : MF,N → Mα=∞
B,N , (70)

such that the operators (−�N ,DN
F (PF,N , L F,N )) and σ [(−�N ,DN

F (PF,N , L F,N ))] are isospectral.
This map can be constructed explicitly.

Proof. In order to introduce the Fermi-Bose map (70), we first note that the fermionic symmetry
implies the vanishing of functions in H 1

F (DN

 ) along the internal boundary ∂ DN ,int


 , see (26).
Therefore, we seek to relate H 1

F (DN

 ) to the bosonic Sobolev space H 1

0,int,B(DN∗

 ). More explicitly,

we define a bijective map

Tσ : H 1
F (DN


 ) → H 1
0,int,B(DN∗


 ) (71)

as follows: Let �F = (ϕF
e1...eN

) ∈ H 1
F (DN


 ), and divide the components into classes such that rep-
resentatives have the same set of edge indices e1, . . . , eN, up to permutations. Given a fixed
representative ϕF

e1...eN
, let n(e) be the number of times an edge e ∈ E occurs among the edge indices

and introduce (particle) labels ζ (1), . . . , ζ (n(e)). Then define a subdomain � ⊂ De1...eN such that all
x = (xζ (1)

e , . . . , xζ (n(e))
e ) ∈ � fulfil

xζ (1)
e < . . . < xζ (n(e))

e . (72)

This is used to define the component ϕB
e1...eN

of a bosonic state by setting

ϕB
e1...eN

(x) := ϕF
e1...eN

(x) (73)

for x ∈ �, and extending this to all of De1...eN using the bosonic symmetry. Finally, by permuting the
edge indices of ϕB

e1...eN
and assigning the same values (73) to each representative we obtain all other

components, defining a symmetric function �B = Tσ (�F ) ∈ H 1
0,int,B(DN∗


 ). This construction can
be reversed in an obvious way so that the map Tσ is invertible.

Based on the map Tσ we introduce a diagonal matrix �( y) with non-vanishing entries �ee( y) ∈
{1,−1} that take account of the possible sign changes introduced by σ . Note that this matrix is such
that �( y)2 = 1. More explicitly, if � ∈ DQ(N )

F
is a function with boundary values �bv , the function

Tσ (�) ∈ H 1
0,int,B(DN∗


 ) has boundary values

[Tσ (�)]bv( y) = �( y)�bv( y). (74)

Furthermore, we set

Pσ
N ( y) = �( y)PN ( y)�( y) and Lσ

N ( y) = �( y)L N ( y)�( y), (75)

which are, for every y ∈ [0, 1]N−1, projectors and self-adjoint maps on ker Pσ
N , respectively. Hence,

given a fermionic quadratic form (Q(N )
F ,DQ(N )

F
) as in (66) and (67), we can associate to it a unique
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bosonic form via

Q(N )
F [�] =

∑
e1...eN

∫ le1

0
. . .

∫ leN

0
|∇ϕe1...eN |2 dx1

e1
. . . dx N

eN

− N
∫

[0,1]N−1
〈�bv, L N ( y)�bv〉C2E N d y

=
∑

e1...eN

∫ le1

0
. . .

∫ leN

0
|∇Tσ (ϕ)e1...eN |2 dx1

e1
. . . dx N

eN

− N
∫

[0,1]N−1
〈[Tσ (�)]bv, Lσ

N ( y)[Tσ (�)]bv〉C2E N d y

= Q(N )
B [Tσ (�)]

(76)

on the domain

Tσ (DQ(N )
F

) = {� ∈ H 1
0,int,B(DN∗


 ); Pσ
N ( y)�bv( y) = 0 for a.e. y ∈ [0, 1]N−1}. (77)

The associated self-adjoint operator is of hardcore type, see (68) and (69).
The above explicit construction defines the Fermi-Bose map (70) through

σ [(−�N ,DN
F (PF,N , L F,N ))] = (−�N ,Dα=∞

B,N (Pσ
N , Lσ

N )). (78)

By construction it is bijective, and due to (76) the operators are isospectral. �

B. Bose-Einstein condensation in a gas of bosons interacting via repulsive
hardcore interactions

In a second step, we use the Fermi-Bose mapping established in Theorem 4.1 in order to study
BEC in a system of particles interacting via repulsive hardcore interactions. With this goal in mind
we first consider the fermionic realisations of the N-particle Laplacian described in Subsection IV A
and compare their free-energy densities (4) with those of free fermion gases. For the latter, we choose
two comparison operators.

The first reference model is that of free fermions with Dirichlet boundary conditions in the
vertices. For every N ∈ N we hence choose P D

F,N = 12E N and L D
F,N = 0 with corresponding operator

(−�N ,DN
F (12E N , 0)). This is a textbook example (see, e.g., Ref. 37) for which the free-energy density

(4) is well known to be

fF,D(β,μ) = − lim
T L

1

βL

∞∑
n=0

log
(

1 + e−β(k2
n−μ)

)

= − 1

πβ

∫ ∞

0
log

(
1 + e−β(k2−μ)

)
dk.

(79)

Here, {k2
n}n∈N0 are the one-particle eigenvalues. Note that this function is smooth, fF,D ∈

C∞ ((0,∞) × R), hence there is no phase transition in a gas of free fermions.
The second reference model also describes free fermions, however with standard Robin bound-

ary conditions in the vertices. Here, P R
F,N = 0 and L R

F,N = M12E N , and the corresponding operator
is (−�N ,DN

F (0, M12E N )), where M > 0 is a suitable constant.

Proposition 4.2. Let (−�N ,DN
F (PF,N , L F,N ))N∈N be a family of fermionic Laplacians indexed

by the particle number N as introduced above. Assume that for this family there exists M > 0 such
that

‖�F,N ‖op ≤ M, ∀N . (80)
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Then the grand-canonical free-energy density fF(β, μ) coincides with the free-energy density (79)
of free fermions with Dirichlet boundary conditions in the vertices.

Proof. Using the min-max principle38 in the same way is in Proposition 3.2, we conclude that

f LF,R(β,μ) ≤ f LF (β,μ) ≤ f LF,D(β,μ) (81)

holds for any family of the fermionic Laplacians that we allow. Since f LF,R(β,μ) is the free-energy
density of a free fermion gas, it can be reduced to

f LF,R(β,μ) = − 1

βL
∑
K 2

n ≤0

log
(

1 + e−β(K 2
n −μ)

)
− 1

βL
∑
K 2

n >0

log
(

1 + e−β(K 2
n −μ)

)
, (82)

where {K 2
n }n∈N0 are the one-particle eigenvalues.

The number of negative eigenvalues of the one-particle Laplacian is finite so that the first term
on the right-hand side of (82) does not contribute in the TL. The second term can be evaluated using
the trace formula in the same way as in the proof of Theorem 3.4. This then gives

lim
T L

f LF,R(β,μ) = fF,D(β,μ). (83)

Together with the bracketing (81) this completes the proof. �
Remark 4.3. Note that condition (80) can be understood as a stability condition for the interaction

potential similar to what is often required in statistical mechanics.34, 39 More precisely, one requires
a self-adjoint N-particle Hamiltonian ĤN to be bounded from below by − NB where B ≥ 0 is some
constant.

Finally, we can state the main results of this section.

Theorem 4.4. Let (−�N ,Dα=∞
N (PB,N , L B,N ))N∈N be a family of bosonic Laplacians with

repulsive hardcore interactions, indexed by the particle number N. Assume that for this family there
exists M > 0 such that

‖�B,N ‖op ≤ M, ∀N . (84)

Then the associated bosonic grand-canonical free-energy density fB(β, μ) coincides with the free-
energy density (79) of free fermions with Dirichlet boundary conditions in the vertices,

fB(β,μ) = − 1

πβ

∫ ∞

0
log

(
1 + e−β(k2−μ)

)
dk. (85)

This function is smooth and, hence, there occurs no phase transition.

Proof. Using the inverse Fermi-Bose map as described in Theorem 4.1, we associate to the
family (−�N ,Dα=∞

N (PB,N , L B,N ))N∈N of bosonic Laplacians an isospectral family of fermionic
Laplacians. According to Proposition 4.2 the resulting family of fermionic Laplacians has a free-
energy density fF(β, μ) = fF, D(β, μ), and due to the isospectrality with the bosonic family one
immediately finds that fB(β, μ) = fF, D(β, μ). �

Remark 4.5. Theorem 4.4 can be regarded as a quantum statistical version of the theorem by
van Hove.33
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