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Abstract. One of the major security concerns in outsourced computa-
tion is whether the computation is performed honestly. Although cryp-
tographically verifiable computation promises (almost) certain detection
of dishonest computations, its computational complexity is still a dis-
tance away from practical, and only justifies its use in mission-critical
applications, e.g., where there is suspicion of malicious actors. An alter-
native approach is to provide the right economic incentives for honest
computation, assuming that contractors are lazy rather than malicious.
This assumption finds applications in less critical settings, e.g., most
civil-purpose computations. Previous works on this approach have estab-
lished feasible and optimal (in terms of the outsourcer’s expected costs)
contracts for single and non-colluding multiple contractors. In this paper
we review these results, and take a further step by considering the effect
of side channel information and collusion among contractors. Through
careful design of incentives, we demonstrate that it can still be optimal
to use multiple contractors even if they are able to collude.
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1 Introduction

Outsourcing of computational tasks have appeared in research projects on large-
scale data, such as SETI@Home: Search for Extra-Terrestrial Intelligence, and
Folding@Home: protein folding simulations and computational drug design. Busi-
nesses from different sections ranging from energy infrastructure to life sciences
and healthcare have realized the benefits of outsourcing their data and compu-
tation, and “moving to the cloud” [1]. Cloud-based computing for a fee have
become a reality [2]. This trend is expected to continue with increasing ubiquity
of need for computational power, for instance as Internet of Things (IoT) will
become a reality, where capacity-constrained devices face the needs to becoming
more and more intelligent.

Meanwhile, one of the biggest challenges with outsourcing computational
tasks is to guarantee the honesty of the contractor(s). In mission-critical en-
vironments like in the military, a computation often requires a stringent level
of security against malicious adversaries. With such level of security in mind,
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cryptographic verification methods, such as homomorphic encryption [3] and
Probabilistically Checkable Proofs (PCPs) [4, 5], have been developed (and are
being improved upon) that provide a proof of correctness for each and every
outsourced computation task. In general, these techniques require a heavy and
expensive preparation step, followed by a relatively less expensive computation.
The argument for their efficiency, although not always applicable, is that since
the preparation phase can be “reused” over multiple computations with the same
representation, the time average cost for each result becomes asymptotically af-
fordable. However, the computation overhead of these methods is still an issue
for large scale practicability.

For less critical applications, a more relaxed notion of security may be appli-
cable: that contractors/agents are not necessarily malicious, but are rather just
lazy. That is, they are tempted to return random guesses instead of the result of
honest computation in order to save their computing cost – or equivalently, reap
in more reward by serving more tasks than their computational capacity would
have allowed, were they computing honestly. This applies, for example, when
contractors are cloud providers with no business conflicts with the outsourcer.
For such cases, economic approaches can be used to create incentives for honest
computation, at a possibly much lower cost on the outsourcer than a heavy-
weight cryptographic method. This is especially true when computation cannot
be reused. Specifically, the honesty of contractors can be encouraged through
plausible use of rewards, random auditing (for instance, through occasional re-
computation of the tasks) and penalties for incorrect results, as discussed in [6].

An alternative to the direct random auditing of tasks by the outsourcer is
the simple technique of redundancy as proposed by [7]: (sometimes) the same
task is assigned to multiple agents and the returned results are compared. This
scheme is widely used in large research projects like Folding@Home. Assuming
that the likelihood that guessed results are the same is negligible (by e.g. requir-
ing snapshots of intermediate steps), the redundancy scheme provides a strong
means of verification and lifts the burden of auditing from the outsourcer. This
can be specially helpful as the whole paradigm for outsourcing the computations
in the first place is the computational limitation of the outsourcer.

However, the redundancy scheme is susceptible to two potential threats that
previous research has neglected to address. First, note that irrespective of the
method of auditing (directly or through redundancy), it is critical that the tasks
for which the auditing occurs are not earmarked, or else the contractor would
know when it could get away with cheating. In cases where the contractors
cannot communicate, this is a good assumption. However, the agents may be
able to find a side channel that enables them to find out whether the same
task is outsourced to multiple agents for redundancy check or not. Second, the
contractors may further collude to report the same guessed result and hence
undermine the whole scheme. It is the subject of this paper to examine whether
the outsourcing scheme can still provide any benefit in the face of these two
challenges, and if so, how exactly. Specifically, we consider an outsourcer that can
use a hybrid of direct auditing and auditing through redundancy. The outsourcer
designs a contract comprised on probabilistic auditing, probabilistic redundancy,



rewards and punishments, while being wary of its limitations such as bounded
computation capacity for auditing, cost of auditing, maximum fine that can be
practically levied on a cheater and its maximum budget. We develop the optimal
contracts in closed-form in the presence of a side channel (Proposition 2) and
compare its characteristics with optimal contracts in the absence of such side
information. Moreover, we develop two “bounty” schemes and provide sufficient
conditions to make redundancy scheme a preferred method over direct auditing
even in the presence of collusion (Corollaries 2, 3 and 4). This paper provides
valuable insights in the potentials and limitations of redundancy scheme as a
means of honesty enforcement in outsourced computation.

Literature Review

A line of research is focused on designing reliable verification techniques for
outsourcing of special-purpose computations. For instance, [8] investigates out-
sourcing of linear optimizations. Another notable examples are queries on out-
sourced databases, including typical queries [9, 10] and aggregation [11]. Their
main paradigm is for the querier to rely on trusted information directly given
by the data owner (outsourcer) to verify the results returned by the servers.

Verification methods for general-purpose computing also appear in several
remarkable works. In [12] verification is performed by re-executing parts of the
computation. A variation is presented in [13] in which the authors utilize re-
dundancy over multiple agents, assuming that at least one of them is honest.
Outsourced computation has also caught attraction in cryptographic research: in
a seminal work, the authors of [3] formally define verifiable computation and give
a non-interactive solution. Their solution uses Yao’s garbled circuits to repre-
sent the computation and homomorphic encryption to hide such circuits from the
agents. More efficient but interactive solutions that use probabilistically-checkable
proofs (PCPs) have since been developed such as Pepper [4] and Ginger [5].
Such cryptographic methods, however, usually introduce a large computational
overhead on the prover or the verifier, or both.

Incentive-based solutions such as [6, 7] have studied contracts that the out-
sourcer may offer to the agents and through a combination of auditing, fines and
rewards, honest computation is enforced. These works mostly focus on estab-
lishing feasibility of individually rational honesty-enforcing outsourcing contracts
through direct probabilistic auditing in [6] and redundancy scheme in [7], respec-
tively. In our previous work [14], we investigated the cost of the outsourcer and
developed optimal hybrid contracts that minimize the aggregate cost of the out-
sourcer, as a combination of compensation of the agents and auditing overheads,
while capturing many practical constraints such as boundedness of penalties
in practice, limited computational capacity of the outsourcer, its capped bud-
get, etc. In [14], the agents were assumed to be non-communicating and non-
colluding. In the current paper, we explicitly relax these two assumptions and
re-examine the optimal contracts. We provide provably optimal contracts that
enforce honesty even in the face of side information and collusion.



Structure of the Paper

In Section 2, we set up the problem and introduce the notations used in the
model. In Section 3, we overview our previous results from [14] and describe the
new challenges addressed in the current manuscript. In Section 4, we develop
optimal contracts when the outsourcer suspects that the agents may find out
about whether the same task is sent to another agent. Subsequently in Section 5,
we focus on the case where the agents potentially collude with each other.

2 Problem Set-up

This section explains the general set up of the problem and the basic assumptions
behind the modelling. A summary of the notations is provided in Table 1.

The outsourcer, which we will call the principal, has one (normalized) unit
rate of deterministic computation tasks (jobs). Throughout the paper, we will
use the terms outsourcer and principal interchangeably. Instead of executing the
tasks itself, the principal hires a set of agents (cloud providers) to do them. The
principal has zero tolerance for incorrect computations and aims to enforce fully
honest computation through setting a contract, involving rewards, auditing, job
replication (redundancy) and fines. 1

The principal and the agents are assumed to be rational expected utility
maximizers. We further assume that the parties involved are risk-neutral, i.e.,
they have no strict preference between their expected utility and their utility
of expected reward, and hence [15, ch.2.4], their utilities are linear functions of
costs (with negative sign) and rewards (with positive sign). Moreover, we assume
that agents are “lazy but not malicious”, that is, they do not gain by dishonest
computations other than through saving in their computation cost.2 Generating
a guessed output according to its range and distribution has zero computation
cost. We assume that the range of the output is “expanded” such that a randomly
guessed result is correct with only a negligible probability. Expansion can be done
by requiring the intermediate steps of the computation be part of the returned
output.3 For instance, the computation task of whether a number is prime has
only two possible (yes/no) outputs. But if the intermediate steps of the algorithm
(e.g. the AKS primality test) must be included in the result, then guessing the
correct output is practically impossible. Another consequence of the “expansion”
of the output range is that two “uncoordinated” outputs are the same if and only
if they are honestly computed. The “only if” part means that if the returned
outputs from two independent agents are the same (in the absence of collusion),
then they are correct.

1 The no tolerance for incorrect results can be thought of as a negative infinity in the
utility of the outsourcer for an accepted incorrect result.

2 Or potentially increasing their profit, as they can produce guesses faster than honest
computation, but they do not have a direct interest in sabotaging the outsourcer.

3 A one-way hashing of the intermediate steps can be used to significantly reduce the
“volume” of the data required to be transmitted without tangibly increasing the
correctness probability of a guessed result.



Table 1. List of main notations

parameter definition
α probability of using two agents for the same computation (redundancy)

ρ probability of auditing by the principal when only one agent is assigned

λ probability that only one agent is assigned and audited, i.e., λ = (1− α)ρ

β probability of auditing by the principal if the task is assigned to two agents

and the returned results are different

ν probability of auditing by the principal if the task is assigned to two agents

and the returned results are the same

Λ maximum auditing capacity of the principal

γ cost of an instance of auditing (incurred by the principal)

f fine levied on an agent by the principal

F the maximum enforceable fine

r reward paid to the agent

R the maximum feasible reward (instantaneous budget of the principal)

C the expected cost of the contract to the principal

c cost of honest computation of a task to an agent

To efficiently enforce correctness of the results, the principal has a few op-
tions: (a) it can assign the task to one agent and randomly audits the returned
result independently (i.e., on its own). We will simply refer to this method as
auditing. The most straightforward method of auditing is re-computation of the
task. We assume that auditing is perfect, i.e., the audit always confirms a cor-
rect output (no “false positives”), and definitely detects an incorrect output (no
“false negatives”); (b) it can with some probability assign the task to multiple
agents and compare the returned results (redundancy).4

The contract can involve a hybrid of auditing and redundancy. We consider
the case that the redundancy scheme is done only with two agents, i.e., the
same task is assigned to at most two agents at a time. Let α ∈ [0, 1] be the
probability that the same task is assigned to two agents. With probability 1−α,
the principal employs only one of the agents selected equally likely between
the two.5 When only one agent is assigned, the principal audits the output
with probability ρ ∈ [0, 1]. When two agents are assigned, the principal audits
the output with probability β ∈ [0, 1] when the returned results are different,
and with probability ν ∈ [0, 1] when the returned results are the same (ref.
Table 1). The principal decides on the probability of using redundancy and

4 The outsourcer can also with some probability compute the task itself (partial out-
sourcing). However, we showed in our prequel manuscript that it is never optimal
to do partial outsourcing: it should be “all or nothing”. In particular, it is best for
the outsourcer to use its entire computation capacity for random auditing, except
in trivial cases, e.g., when the computing capacity of the outsourcer is sufficient for
computation of all of the tasks on its own and the cost of honest computation for
the agents is higher than the cost of auditing.

5 We formally show in [14, prop. 5.3] that equal randomization is optimal. Intuitively,
this removes any information that the agents may exploit upon receiving a task.



the (conditional) probabilities of auditing, sets the value of penalty (fine) f for
detected erroneous answers and reward r otherwise.

The assumption is that independent auditing of all of the results is either
infeasible or costly. When independent auditing by the principal is through re-
computation of the tasks, this assumption trivially holds, as otherwise, there is
no point in outsourcing the tasks in the first place. The infeasibility of auditing all
tasks is due to the limited computational capacity of the outsourcer. Specifically,
let Λ be the maximum rate of auditing that the outsourcer can carry out. This
issue is of particular importance, as the main reason behind outsourcing the
tasks by the principal is its limited computational capacity in the first place.
Moreover, auditing may also be costly since it adds a computational burden on
the principal’s machine and slows it down, or it will require obtaining additional
hardware. For simplicity of exposition, we assume a linear relation for auditing
cost and let γ be the per instance audit cost incurred by the principal.

As we argue in [14], if there is no bound on the fine that can be practically
levied on an agents, then as long as there is even a tiniest probability of detection,
the problem of outsourced computation could become trivial. This is because the
principal then can make the expected utility of the agents negative for even the
smallest likelihood of cheating by setting the fine for erroneous results arbitrar-
ily large. However, in practice, such a fine may be extremely large, becoming an
incredible threat, in that, if the cheating of an agent is indeed caught, the fine
is practically uncollectible.6 Thus, existence (feasibility) results of honesty en-
forcement that rely on choosing a “large enough” fine are rather straightforward
and uninteresting. In particular, such approaches leave unanswered the ques-
tion of whether honest computation is still attainable for a bounded enforceable
fine below their prescriptive threshold. Moreover, such results do not provide a
metric of comparison between alternative incentive schemes, or across different
choice of parameters for a particular scheme for a given level of enforceable fine.
In our model, we will explicitly introduce F ≥ 0 as an exogenous parameter to
represent the maximum enforceable fine and obtain the optimal contracts sub-
ject to f ≤ F . This can be the “security deposit”, prepaid by the agent to the
principal, that is collectible upon a provable detection of an erroneous result.
A special case of interest is F = 0, i.e., when the only means of punishment is
refusal to pay the reward. As with the maximum enforceable fine to make it a
credible threat, the maximum instantaneous “budget” of the principal leads to a
bound on the reward to make it a credible promise. Let the maximum instanta-
neous payable reward by the principal be R. Thus, we require that 2r ≤ R. Note
the multiplicand of 2: for the contract to ever consider the redundancy scheme,
the principal should be able to reward both of the two agents when there is no
indication of wrongdoing. This in turn implies feasibility requirement of R ≥ 2c,
since c is the cost of honest computation by an agent and hence the minimum
compensation for participation.

Let C represent the expected cost of the principal. Due to the intolerance
of the outsourcer to any erroneous results, it needs to ensure that all tasks are

6 There can also be legal bounds on how much fine can be levied for a wrong compu-
tation, protected by liability laws.



computed honestly. Assuming honest computation of agents is established, then
with the parameters introduced in the previous section, C is as follows:

C = [r(1− α) + 2αr] + [γ(1− α)ρ+ γαν] (1)

The first two terms refer to the expected rewards paid and the second two terms
are the expected cost of auditing: with probability 1−α, the task is assigned to
only one agent, hence the expected reward of (1−α)r, and the task is audited at
probability ρ, hence the expected auditing cost of γ(1−α)ρ. The principal assigns
two agents with probability α, hence the reward of 2rα to be paid, and audits
the returned results (that will be the same if honesty is enforced) at probability
ν, which gives the last term of γαν. The principal’s goal is to minimize the
above cost provided that the contract can indeed enforce honest computation
and moreover, is accepted by agent(s).

3 The Benchmark: No Side-Channel and No Collusion

In this section, we overview our previous results in [14], where we developed
optimal contracts assuming (a) no side channel and (b) no collusion between
the agents. The assumption of no side channel information means that none of
the agents can find out whether the same task is being assigned to any other
agent. In other words, the only information state that an agent has is that it has
been assigned the task or not. The no collusion assumption means that not only
the agents know the state of each other with respect to task assignment, they
can further coordinate their reported results so that the returned results can be
the same even when they are just guessed.

Recall that expansion of the range of the output (through requiring a hash
of intermediate steps) implies that the two returned results are the same only if
(a) they are honestly computed; or (b) the agents are colluding and coordinating
to return the same guessed results. Hence, when there is no collusion, sameness
of the returned results is a necessary and sufficient condition for its correctness
and honest computation of the task by both agents. Hence, in this scenario, there
is no gain in further auditing by the principal if (redundancy scheme is used,
and) the returned results are the same. This is while, the cost of such auditing
will enter the total cost of the principal. Hence, ν∗ = 0.

Consider two agents labelled agent 1 and 2. The choice of action for each
agent is between honest computation, which we represent by H , and cheating,
which we denote by C . Since the agents have no information about the state of
the other agent, the set of their (pure) strategies and actions are the same.

The expected utility of each agent depends in part on the action of its own and
of the other agent. Let uA(a1, a2) represent the utility of agent 1 when it chooses
action a1 and agent 2 chooses a2, where a1, a2 ∈ {H ,C }. The principal wants to
enforce honest computation with probability one. If uA(H ,H ) ≥ uA(C ,H ),
then given that agent 2 is going to be computing honestly, agent 1 will prefer
to do the same too, and due to symmetry, likewise for agent 2. In the game
theoretic lingo, this means that (H ,H ) is a (Nash) equilibrium.



When only one agent is selected, the agent is rewarded r if there is no indi-
cation of wrongdoing, and is punished f if audited and caught wrong. When the
redundancy scheme is selected and the returned results are equal, both agents
are rewarded r. If the results are different, the principal fines both of them at f .
Let λ be the probability that only one agent is assigned and the result is audited.
Note that λ is simply (1− α)ρ, but we introduce it for easier formulation. Also
let c denote the cost of honest computation of the task, where c > 0. With the
model so described, the expected utilities are computed as follows:7

uA(H ,H ) =r − c, uA(C ,H ) =(1− α− λ)r/2− (α+ λ/2)f.

The expression for uA(H ,H ) is easy to see: the agent incurs the cost of honest
computation and is rewarded r for it. When the agent cheats given the other
agent is honest, it receives a reward only when it is the only agent assigned and
it is not audited. This happens with probability of (1 − α − λ)/2. The agent
is fined otherwise: either if redundancy scheme is used (probability α) or it is
the only one assigned and audited (probability λ/2), hence the expression for
uA(H ,H ). The condition uA(H ,H ) ≥ uA(C ,H ) therefore becomes:

r ≥ (1 + α)c/(λ+ 2α)− f : Incentive Compatibility Constraint.

Subject to making (H ,H ) an equilibrium, the contract is accepted if the ex-
pected utility of it to the agents is above their reservation utility,8 which we
assume here to be zero for simplicity:

r − c ≥ 0 : Participation (i.e., Individual Rationality) Constraint.

Then the expected cost of the contract to the principal is: C = (1 + α)r + γλ,
which comes from (1) by setting ν = 0. The principal chooses λ, α, f , r such
that honest computation is enforced, the contract is accepted, and the expected
cost of the principal is minimized. λ and α must satisfy the structural condition
0 ≤ α ≤ 1, 0 ≤ λ ≤ Λ and α+ λ ≤ 1. The instantaneous budget of the principal
imposes r ≤ R if α = 0, and 2r ≤ R if α > 0. We assume R ≥ 2c, since
otherwise, as the compensation for each agent should be at least the cost of
honest computation, the principal can never employ both of the agents without
violating its instantaneous budget constraint, and hence, the problem would be
simplified by setting α = 0 a priori. Now, to simplify this “provisional” budget
constraint, we use the following trick: we keep the less restrictive inequality, i.e.,

7 Since the only information state to an agent is whether it receives the task, the
analysis of the incentive of an agent before and after reception of the task becomes
equivalent. We present the viewpoint before reception of the task for simplicity.

8 The reservation utility (also referred to as the fall-back utility or aspiration wage) is
the minimum utility that the agent aspires to attain or can obtain from other offers.
Note that an implicit assumption here is that the agent is replaceable by any other
agent with the same fall-back utility, i.e., there are many agents available with the
same reservation utility. Without this assumption, the agent has negotiation power
by refusing the contract knowing that it cannot be replaced.



r ≤ R irrespective of the value of α and solve the optimization. We will check
later whether the more restrictive constraint is also met.9 Therefore, the optimal
contracts for two agents that make (H ,H ) a Nash equilibrium are solutions of
the following optimization problem:

min
r,f,α,λ

r(1 + α) + γλ subject to: (2a)

r ≤ R, f ≤ F, 0 ≤ λ ≤ Λ, λ ≤ 1− α, α ≥ 0, r ≥ c, r ≥ c(1 + α)

λ+ 2α
− f. (2b)

The solution of the above (non-convex) optimization is (Proposition 5.1 in [14]):

Proposition 1. Let F0 = c/Λ− c and F1 = c[c− γ]+/[2γ − c]+,10 the optimal
two-agent contract that makes (H ,H ) a Nash equilibrium chooses f∗ = F and:

F1 ≤ F : α∗ =
c

2F + c
, λ∗ = 0, r∗ = c, C∗ = c(1 +

c

2F + c
)

F0 ≤ F < F1 : α∗ = 0, λ∗ =
c

c+ F
, r∗ = c, C∗ = c(1 +

γ

F + c
)

F < min(F0, F1) : α∗ =
c− Λ(c+ F )

c+ 2F
, λ∗ = Λ, r∗ = c, C∗ =

c(c+ F )(2− Λ)

c+ 2F
+ γΛ

Note that the solution always picks r∗ = c, hence the more restrictive constraint
of 2r ≤ R for α > 0 is also satisfied.

We have the following observation (Corollary 5.2 in [14]):
If auditing is more expensive than the cost of honest computation (γ ≥ c), the
optimal contract only uses the redundancy scheme. When γ ≤ c/2, either there is
no redundancy scheme (α = 0) or the whole auditing capacity is used (λ∗ = Λ).
The first part of this corollary is quite intuitive: when γ > c, any instance
of outsourcing to a single agent and performing independent auditing can be
replaced by the redundancy scheme and strictly lower the cost by γ − c.

Note that in our optimal two-agent contract, as long as R ≥ 2c, there is no
infeasible region: for any level of enforceable fines and auditing capacity, there
is always a contract that makes (H ,H ) a Nash equilibrium. Both incentive
compatibility and the participation constraints are binding, in particular, the
payment to any of the agents is never more than the cost of honest computation.

When the enforceable fine is large, the redundancy scheme is preferable. This
is despite the fact that the redundancy scheme is more expensive than auditing:
it costs an extra c as opposed to γ < c, however. In other words, for high values
of fine, the redundancy scheme is a more effective threat against cheating than
independent auditing. When F is less than F1, the independent auditing becomes
the preferred method. For lower values of F , when the auditing capacity is all
used up, the redundancy scheme is added to compensate the low value of fine to
maintain incentive compatibility. When Λ = 0, redundancy scheme is the only

9 In fact, as long as R ≥ 2c, the budget constraint is never binding since the optimal
r turns out to be always c, irrespective of the other parameters (ref. Proposition 1).

10 The notation x+ := max{0, x}. Also, we take x/0 = +∞ for x > 0.



means to enforce honest computation. If furthermore no fine can be enforced
(F = 0), then α must be one: the job must be always duplicated.

Note that the incentive compatibility constraint of uA(H ,H ) ≥ uA(C ,H )
only makes (C ,H ) a Nash Equilibrium: each agent prefers to be honest if the
other agent is honest. In particular, (C ,C ) is also another Nash equilibrium. If,
however, uA(H ,H ) ≥ uA(C ,C ), then one can argue that if the agents indeed
sign up for the contract, they would rather follow the better Nash Equilibrium.
This is indeed the case: uA(H ,H ) = r − c and uA(C ,C ) = (1 − α − λ)r/2 −
(α + λ/2)f , and hence the uA(H ,H ) ≥ uA(C ,C ) condition becomes exactly
the incentive compatibility constraint.11

Now consider the case that the principal is restricted to assigning only one
agent. Note that when c ≤ R < 2c, this is the only feasible option, since if
the principal assigns more than one agent with any positive probability, then
each agent needs to be compensated at least equal to the the cost of honest
computation, c.12 Then α∗ = 0, and the optimal contract will be obtained from
the following optimization:

min
r,f,λ
C := r + γλ (3a)

s.t. r ≤ R, 0 ≤ f ≤ F, 0 ≤ λ ≤ Λ, (3b)

r ≥ c, rλ+ fλ ≥ c (3c)

The solution ( [14, Prop. 4.1]) is given by setting f∗ = F and:

γ ≤ c

Λ2
:


[
c

Λ
− c]+ ≤ F : λ∗ =

c

c+ F
, r∗ = c, C∗ = c+

γc

c+ F

[
c

Λ
−R]+ ≤ F < [

c

Λ
− c]+ : λ∗ = Λ, r∗ =

c

Λ
− F, C∗ =

c

Λ
+ γΛ− F

γ >
c

Λ2
:



[
√
cγ − c]+ ≤ F : λ∗ =

c

c+ F
, r∗ = c, C∗ = c+

γc

c+ F

[
√
cγ −R]+ ≤ F < [

√
cγ − c]+ : λ∗ =

√
c

γ
, r∗ =

√
cγ − F, C∗ = 2

√
cγ − F

[
c

Λ
−R]+ ≤ F < [

√
cγ −R]+ : λ∗ =

c

R+ F
, r∗ = R, C∗ = R+

γc

R+ F
(4)

For F < [c/Λ − R]+, the optimization is infeasible, i.e., there is no honesty-
enforcing contract that is also accepted by the agent.

Note that the optimal contracts fully utilize the maximum enforceable fine
and punish at no less than F . When auditing is cheap (γ ≤ c/Λ2), increasing the
auditing rate is the better option to compensate for lower values of F to maintain
incentive compatibility (honest computation). This is unless the auditing rate
is at its maximum Λ, in which case, reward must increase above c (unlike the
two-agent case) to maintain incentive compatibility and compensate for the low

11 A more strict notion of implementation is the following: if uA(H ,C ) ≥ uA(C ,C ),
then (H ,H ) will be the dominant (Nash) equilibrium, i.e., honest computation is
the preferred action irrespective of the action of the other agent.

12 Note that for R < c, there is no feasible contract.



value of F . Note that in this case, the participation constraint is not binding and
is satisfied with a slack, while the incentive compatibility constraint is binding
(satisfied tightly). For yet lower values of enforceable fine F , even maximum
reward r = R and auditing rate λ = Λ might not impose a strong enough threat
against cheating, hence the infeasibility region. When auditing is expensive (γ >
c/Λ2), in order to retain incentive compatibility in the situation of very low
fine F , the principal should increase reward, and only consider more frequent
auditing if the reward budget R has been reached.

Note that even when c ≤ R < 2c, the infeasible region does not have to exist.
Specifically, when the principal’s instantaneous budget R is larger than c/Λ, then
there is always a feasible contract. Then even for F = 0, i.e., no enforceable fine,
a contract that enforces honest computing is feasible, albeit by using high values
of reward and/or auditing rate. In such cases, the principal “punishes” audited
erroneous computations only through not rewarding the agent. However, here,
honesty cannot be enforced with zero auditing rate, and consequently, when
R < 2c the case of Λ = 0 leads to infeasibility.

4 Side-Channel (Information Leakage)

One of the important assumptions we made in developing our optimal hybrid
contract was that the two agents do not communicate, and hence, upon receiving
a task, an agent is not aware whether the same task is assigned to another agent
or not. The principal uses this ambiguity in its favour to enhance the threat of
auditing through redundancy. However, if agents somehow gain access to this
information, the threat loses its efficacy. Specifically, if redundancy scheme is
used, an agent can selectively be honest if it finds out that the task is outsourced
to another agent (hence the name side channel), and be lax when it knows it
is the only recipient of the task. If the principal supposes such “information
leakage”, then the contract optimization problem must be modified. Note that
the agents now have two distinct information states: one in which they are the
only assignee and another in which, both of them have received the task. We
refer to them as lone recipient and redundancy information states, respectively.
The new incentive compatibility constraint (preferring honest computation over
cheating) for an agent in the lone recipient information state is:

r − c ≥ r(1− ρ)− fρ⇔ rλ ≥ c(1− α)− fλ (5)

For the redundancy information state, the incentive compatibility is: r − c ≥
−f , because if the agent cheats, the results will be different and the agent will
definitely be punished.13 This constraint is redundant, because the participation
constraint is still r − c ≥ 0, which also implies r − c ≥ −f . Here, we assume
R ≥ 2c. This will allow us to ignore the budget constraint, which is: r ≤ R if
α = 0, and 2r ≤ R if α > 0. This is because the optimal contract turns out

13 Note that even when the agents know that the redundancy scheme is being used,
unless they coordinate their reported results, guessed results will be the same only
with negligible probability. We will consider the case of collusion in the next section.



to choose r∗ = c and hence, for R ≥ 2c, the budget constraint is automatically
satisfied. 14 Hence, the new optimization problem is the following:

min
r,f,α,λ

r(1 + α) + γλ subject to: (6a)

f ≤ F, 0 ≤ λ ≤ Λ, λ ≤ 1− α, α ≥ 0, r ≥ c, rλ+ fλ ≥ c(1− α). (6b)

The solution is given as the following proposition:

Proposition 2. The optimal two-agent contract with information leakage, i.e.,
where the agents have access to the information of whether the same task is
outsourced to the other agent or not, enforces honesty in that makes (H ,H ) a
Nash equilibrium sets f∗ = F , r∗ = c, and:

γ ≥ c

Λ
:

F ≥ [γ − c]+ : λ∗ =
c

c+ F
, α∗ = 0, C∗ = c+

γc

c+ F

F < [γ − c]+ : λ∗ = 0, α∗ = 1, C∗ = 2c

γ<
c

Λ
:


F ≥ [c/Λ− c]+ : λ∗ =

c

c+ F
, α∗ = 0, C∗ = c+

γc

c+ F

[γ − c]+≤F < [c/Λ− c]+: λ∗ =Λ, α∗ =1−Λ(1+
F

c
), C∗ =c(2−Λ(1+

F

c
))+γΛ

F < [γ − c]+ : λ∗ = 0, α∗ = 1, C∗ = 2c

The proof is provided in Appendix A.

Discussion Firstly, note that the cost of the above contract is clearly higher
than that of the contract with no information leakage, but lower than the cost
of single-agent contract. The latter is because the single-agent contract in (3) is
a feasible solution of the above optimization by setting α = 0. In fact, the cost
of the contract is capped at 2c: when both agents are hired at all times (i.e.,
with probability one), the incentive compatibility constraint and participation
constraint are clearly satisfied with r = c, giving the contract cost of 2c. This
makes the redundancy scheme still an appealing option specially when the cost
of auditing is high or there is little (or zero) capacity for auditing. Secondly, note
that for γ < c, the redundancy scheme is never used for any value of maximum
enforceable fine. When the cost of independent auditing γ is higher than the
cost of honest computation c, if the enforceable fine is below the threshold of
γ − c, it is best to only use the redundancy scheme, but it has to be done with
certainty, i.e., α∗ = 1. Note that with information leakage, never probabilistic
usage of redundancy scheme alone is optimal, because the agents will choose to
be lazy when they know they are not audited. Also like the two-agent contract
with no information leakage (but unlike the single-agent), the optimal reward
r∗ is never higher than the cost of honest computation c, irrespective of the
value of the maximum enforceable fine. Moreover, we observe that for large
values of enforceable fine, in contrast to the no information leakage case, it is
the independent auditing mechanism that is now the preferred method.

14 Recall that for R < 2c, the outsourcer can never assign more than one agent with
any positive probability, and hence, the issue of information leakage is irrelevant.



5 Colluding Agents

Suppose the agents not only know the state of the other agents with respect to
the task assignment, but they can also coordinate their response to report the
same guessed result. This can save them from the cost of honest computation
and at the same time, go undetected. Hence, unlike before, returned results from
multiple agents that are the same may not be correct. The principal can audit
the returned results (through re-computation of the task) when they are the
same. Consider two agents. As in the information leakage setting, each agent
has two distinct information state: being the sole recipient, and being one of the
two recipients. The difference is that in the second information state, the set of
(pure) actions for the agents is computing honestly, denoted by H as before,
and colluding with the other agent, which we represent by C (to differentiate it
from just cheating, which we denoted by C ).

Note that similar to the case of information leakage, the principal still has to
enforce honesty in the information state of an agent in which it knows it is the
lone recipient of the task. This implies (ref. (5)):

r ≥ c

ρ
− f (7)

One way to dissuade the agents from colluding is to make collusion a less at-
tractive equilibrium than honesty. For non-colluding agents with no information
leakage, this meant the same as the incentive compatibility constraint, because
there, uA(C ,H ) = uA(C ,C ). For non-colluding agents with information leakage
in the information state of the redundancy scheme, this translated to r−c ≥ −f ,
which is trivially satisfied following the participation constraint, i.e., r − c ≥ 0.
Here, though, this constraint is not automatically satisfied, since the redundancy
scheme “alone” is fundamentally susceptible to collusion as coordinated guessed
results will be indistinguishable from honestly computed ones. Hence – unless
the tasks are sufficiently obfuscated so that the colluding agents cannot (eco-
nomically) tell whether they have received the same task or not – the principal
must add another threat: the returned results from the two agents are audited by
the principal with probability ν, (even) when they are the same. Note that the
value of ν enters the cost of the principal even if honest computation is indeed
enforced. This is because when honest computation is enforced, the returned
results are the same too. Specifically, there will be an additional term of γαν.

With the introduction of ν, we have: uA(C ,C ) = r(1− ν)− Fν. Therefore,
to make honesty a more attractive equilibrium than collusion, in the redundancy
scheme information state, we must have:

r − c ≥ r(1− ν)− Fν ⇔ r ≥ c

ν
− f (8)

Hence, the corresponding optimal contract is given by the following optimization:

min
r,f,α,λ,ν

r(1 + α) + γλ+ γαν, s. t. : r ≤ R, f ≤ F, 0 ≤ ρ ≤ 1, 0 ≤ ν ≤ 1 (9a)



and: ρ(1− α) + αν ≤ Λ, α ≥ 0, r ≥ c, r ≥ c

ρ
− f, r ≥ c

ν
− f. (9b)

We have the following proposition:

Proposition 3. The optimal contract that enforces honesty in lone information
state and makes collusion a less attractive equilibrium than honest computation
in the redundancy information state sets α∗ = 0, i.e., never uses the redundancy
scheme at all. The rest of the parameters of the contract are also according to
the optimal contract for a single agent provided in (4).

The result can be derived directly by examining the KKT conditions of the
optimization problem in (9) after establishing that KKT conditions are indeed
applicable. However, we provide a simpler proof that delivers more intuition.

Proof. Consider a claimed optimal contract that selects an α > 0. We will con-
struct an alternative feasible contract that employs only one agent (αalt = 0)
and strictly improves the cost, hence reaching a contradiction.

The claimed contract has to satisfy inequalities (7) and (8) to be feasible.
Now consider an alternative contract alt that only selects one agent and audits
it with probability λalt = ρ(1 − α) + αν. The values of the reward and fine
are the same. Fist we examine the change in the contract cost: Calt − C =
[r + γ (ρ(1− α) + να)] − [r(1 + α) + γρ(1 − α) + γνα] = αr, which is strictly
positive based on the assumption that α > 0. Now if we show that this alternative
contract is feasible, then we have reached the contradiction we are after.

The only non-trivial constraint that we need to verify to establish the feasi-
bility of the alternative contract is the incentive compatibility: we must have:

r − c ≥ r(1− λalt)− fλalt ⇒ r ≥ c

λalt
− f that is: r ≥ c

ρ(1− α) + να
− f

The last inequality can be inferred from (7) and (8) and the fact that for any
α ≥ 0, we have: ρ(1− α) + να ≤ min(ρ, ν). This completes the proof. ut

Intuitively, whenever the two agents are to be assigned, the principal can save
the reward to the second agent by assigning the task to only one of them. The
principal will audit the only agent as it would have audited the two agents. This
works since two colluding agents (so far) act as though a single agent anyway.

The above proposition is a negative result: the benefits of redundancy scheme
seem to be all lost if the principal suspects collusion between the agents. How-
ever, in what follows, we introduce two schemes based on the idea of offering
“bounties” that, at least partially, save the redundancy scheme. These bounty
schemes better utilize the incentive of the agents against each other, creating
a prisoner’s dilemma-like situation to undermine collusion. That is, instead of
trying to make collusion a less attractive equilibrium, which we observed is futile
in Proposition 3, these schemes make collusion a non-equilibrium. The idea is
as follows: when the returned results are different, the principal can randomly
audit the task and reward the bounty in such cases to the agent with the correct
result (if any). The value of the bounty should be the largest credible promise,
i.e., R. The difference between the two schemes is how they treat the unaudited



cases when the returned results are different: in bounty scheme one, when the
results are different and auditing does not occur, both agents are punished at f .
In contrast, in bounty scheme two, when the returned results are different and
the task is not audited, both agents are rewarded at r. A nice feature of both
schemes is that, if they indeed succeed to enforce honesty, the bounties will never
in fact be paid: All that is necessary is the credible promise of the bounties. In
what follows we analyse these two schemes.

For both schemes, we have:

u(C ,C ) = r(1− ν)− fν, u(H ,H ) = r − c

In bounty scheme one:

u(H ,C ) = −c+Rβ − f(1− β) u(C ,H ) = −f

In bounty scheme two:

u(H ,C ) = −c+Rβ + r(1− β), u(C ,H ) = r(1− β)− fβ

Making (H ,H ) an equilibrium is automatic in scheme one: r − c ≥ −f for
any f ≥ 0, following the participation constraint r − c ≥ 0. Making (C ,C ) a
non-equilibrium requires the following:

−c+Rβ − f(1− β) ≥ r(1− ν)− fν (10)

Similarly, making (C ,C ) a non-equilibrium for scheme two requires:

−c+Rβ + r(1− β) ≥ r(1− ν)− fν. (11)

Moreover, to have (H ,H ) an equilibrium in scheme two, one must ensure:

r − c ≥ r(1− β)− fβ (12)

In both cases, the value of β does not directly enter the cost of the contract
to the principal if honesty is indeed enforced. Hence, the principal can choose
the maximum possible value. In order to make it credible, the principal must
have enough auditing capacity. Specifically, λ + αβ ≤ Λ. Hence the maximum
value of β is given as (Λ−λ)/α. Replacing in (10) we obtain the following extra
(incentive compatibility) constraint for scheme one:

(R+ f)(Λ− λ) + (r + f)αν − (c+ r + f)α ≥ 0. (13)

Similarly, replacing β = (Λ − λ)/α in (11) and (12) yields the following for
scheme two:

(r + f)(Λ− λ)− αc ≥ 0, (R− r)(Λ− λ) + ν(r + f)α− cα ≥ 0 (14)

Hence, the contract optimization for bounty schemes one and two are the same
as in (9) except that the last constraint in (9b), i.e., r ≥ c/ν − f , is replaced



with (13) and (14), respectively. It turns out, however, that these two innocuous-
looking optimization problems do not lend easily to closed-form solutions.

In what follows we obtain partial solutions of these optimizations, which
provide insight on the applicability of redundancy scheme in the presence of
collusion. First, note that for any given set of parameters c, F , R, Λ, the best
contract for the information leakage setting yields a better cost than any feasible
contract in the collusion scenario (both bounty schemes). This is because, com-
pared to (6), the optimization problem of finding the best contract for bounty
schemes one and two each have: (A) an additional non-negative term in the
cost: γαν; and (B) an extra incentive compatibility constraint, (13) in scheme
one and (14) in scheme two. Therefore, in particular, if a solution of the opti-
mization in (6) is a feasible solution for the optimization of schemes one and
two, then it is also optimal for them as well. This happens for example when the
optimal information leakage contract chooses α = 0, as then, the extra incentive
compatibility constraint in (13) and (14) are trivially satisfied. Hence, in the
light of Proposition 2, we have the following result:

Corollary 1. For both schemes one and two, the optimal contract chooses α∗ =
0 for F ≥ [max(γ, c/Λ) − c]+. The rest of the parameters for such cases are
f∗ = F , r∗ = c and λ∗ = c/(c+ F ).

The corollary shows that for large values of the enforceable fine F , assigning a
single agent is the preferred method of outsourcing. However, the corollary leaves
out the question of whether redundancy scheme is ever the preferred method in
the presence of collusion with the introduction of the bounty schemes. The next
result provides a positive answer. In particular, we derive sufficient conditions
under which, the redundancy scheme is the preferred method even in the presence
of collusion:

Corollary 2. In bounty scheme two, for F < [γ−c]+, if Λ ≥ c/min(c+ F,R− c),
the optimal contract chooses redundancy α∗ = 1. The rest of the parameters for
such a case are: r∗ = c, λ∗ = ν∗ = 0, f∗ = F .

The corollary is intuitive: the auditing capacity should be large enough to make
the promise of checking for bounty when the results are different a credible one.

Proof. The corollary follows from a similar logic as in the previous corollary:
we will find cases that the optimal solution of the information leakage contract
optimization in (6) are feasible solutions of the optimization problem for scheme
two. An alternative to α = 0 is α = 1: if ν = 0 is a feasible choice for scheme two
with the parameters that make α = 1 an optimal solution for the information
leakage setting, then the corresponding contract is optimal for scheme two. From
Proposition 2, α∗ = 1 when F < [γ − c]+. The rest of the parameters are
λ∗ = 0, r∗ = c and f∗ = F . We should investigate whether these parameters
and ν = 0 satisfy (14), which becomes: (c + F )Λ ≥ c & (R − c)Λ ≥ c ⇔ Λ ≥
c/min(c+ F,R− c), hence the corollary. ut

The following corollary provides a sufficient condition for scheme one to use
the redundancy scheme.



Corollary 3. In bounty scheme one, for F < [γ− c]+, if Λ ≥ 2c/R, the optimal
contract chooses redundancy α∗ = 1. The rest of the parameters for such a case
are: r∗ = c, λ∗ = ν∗ = 0, and notably f∗ = 0.

Proof. The proof is similar to that of Corollary 2, with the following exception:
Note from (13) that f plays a double edge sword role, and it is no more a priori
clear that maximum fine is the best option. In fact for this case it turns out to
be exactly the opposite. From Proposition 2, for F ≤ [γ − c]+, optimal contract
is given by r∗ = c, λ∗ = 0, α∗ = 1 and f∗ = F . However, the value of f ≥ 0
for this region does not affect the cost and feasibility of the contract, and hence,
any f ≥ 0 is in fact also optimal. Replacing these parameters with a general f
and along with ν = 0 in (13), we obtain: (R + f)Λ ≥ 2c+ f . Hence a sufficient
condition for feasibility (and hence optimality) is (R+ f)Λ ≥ 2c+ f . The value
of f is arbitrarily, the best result is obtained for f = 0, that is Λ ≥ 2c/R. ut

5.1 Generalizing the two bounty schemes

In this subsection, we propose a way to unite (and strengthen) the two previous
bounty schemes. The distinction between the two schemes were in treatment
of un-matching returned results from the two agents that are not audited by
the principal: scheme one penalizes the two at f , while scheme two rewards
them both at r. A new approach that can capture both of these schemes as
special cases is to define a new variable x to represent the amount that is “paid”
to each one of the two agents when the returned results are different and are
not audited by the principal. The maximum enforceable fine and instantaneous
budget constraints must be applied to this new variable: −F ≤ x ≤ R/2. Note
that x = −f and x = r retrieves the previous schemes respectively.

With this new variable defined, the agent utilities are modified as follows:

u(H ,C ) = −c+Rβ + x(1− β) u(C ,H ) = −fβ + x(1− β)

Ensuring (C ,C ) is a non-equilibrium, replacing β = (Λ− λ)/α, translates to:

(R− x)(Λ− λ) + (r + f)αν − (r + c− x)α ≥ 0.

which captures both (10) and (11) as special cases. Moreover, to ensure that
(H ,H ) is an equilibrium, we must have (with β = (Λ− λ)/α replaced):

(x+ f)(Λ− λ)− (x+ c− r)α ≥ 0.

Note that Corollary 1 still holds as before. Introduction of the new variable x
allows us to generalize the results of Corollaries 2 and 3 as follows:

Corollary 4. In the generalized bounty scheme, for F < [γ − c]+, if Λ ≥
max{2c/(R+ F ), (4c−R)/R}, the optimal contract chooses redundancy α∗ = 1.
The rest of the parameters for such a case are: r∗ = c, λ∗ = ν∗ = 0, and notably
f∗ = F and x∗ = min{2cF/(R+ F − 2c), R/2}.



The proof is similar to those of Corollaries 2 and 3, and is omitted for brevity.
Note that unlike bounty scheme one, the penalty is always at the maximum
value and the two agents are paid a positive amount for those results that are
returned different but are not audited by the principal. The condition given for
Λ is looser (and hence better) than either one of Corollaries 2 and 3.

Corollaries 2, 3 and 4 show that the bounty scheme can make the redundancy
scheme the preferred method, even in the face of colluding agents, specially when
the value of the enforceable fines are low, and the cost of auditing is high.

6 Conclusion

In this paper, we designed and analysed incentive schemes that an outsourcer of
computation tasks can utilize to enforce honest computation and participation
of the agents. The focus of the paper was on the effect of side information and
collusion on the optimal contracts involving a hybrid of direct computation and
redundancy scheme (duplication of the same task to two agents and comparing
the returned results). In particular, we explicitly developed conditions in which
the redundancy scheme fails to be the preferred method (Propositions 2 and 3)
and conditions in which it will be the preferred method (Proposition 2 and
Corollaries 2, 3 and 4) even under such adverse conditions. Notably, we showed
that that making collusion a less attractive equilibrium is not an effective way
at all to save the redundancy scheme in the face of collusion (Proposition 3).
Instead, an effective way is bounty-like schemes that attempt to make collusion
a dis-equilibrium (Corollaries 2, 3 and 4). Overall, we noted that preference for
redundancy in the presence of side information or collusion occurs for high values
of auditing cost (expected), and low values of maximum enforceable fines, where
the latter is in sharp contrast with the cases that collusion or side information
is absent. This work in part provided insights on potentials and limitations of
redundancy scheme as a method of auditing.

Our work opens a number of potential avenues for future investigation. One
of the major scenarios which we have simplified in this paper is the possible
interactions among the agents. Here we assumed that agents share accurate
information about their state with respect to the job assignments to each others,
and then each individually and independently decides its action. However, the
agents may be able to deceive their peers by giving them wrong signals about
their state with the objective of winning the bounty. Also, we assumed cheating
agents, although able to collude, cannot have a means of commitment among
themselves. If enforceable commitments among colluding agents are assumed, the
analysis can become more complicated: the agents may agree to pass the honest
result to one another, or intentionally plan for one of them to get the bounty,
only to share it among themselves later. In addition, we have not considered
global optimality, i.e., optimality among all possible contract designs. In [14],
we established that when agents are non-colluding and non-communicating, the
optimal contracts developed assuming at most two agents per each task are in
fact globally optimal among all contracts involving any number of agents per
task. In the presence of information leakage and collusion, this becomes more



challenging, as more parameters (e.g., the bounty) can be involved to build
contracts. We leave this investigation for future research.

A Appendix: Proof of Proposition 2

We first argue that we can safely assume that the fine is at its maximum value,
i.e., f∗ = F : the principal can manipulate r, λ, α or f in order to enforce the
incentive compatibility constraint in the lone recipient information state. Among
these variables, only increasing the fine is costless to the principal. Moreover, the
only two constraints that f appears in is f ≤ F and the incentive compatibil-
ity constraint. Hence, any optimal contract can be transformed to one in which
f = F , keeping all other parameters fixed. We use the Karush-Kuhn-Tucker
(KKT) conditions [16] to solve the above non-linear (non-convex) programming.
The non-convexity arises due to the incentive compatibility constraint (the last
constraint in (6b)). Note that our cost and constraint functions are all continu-
ously differentiable. We first use the Mangasarian–Fromovitz constraint qualifi-
cation (MFCQ) to establish that any minimum must satisfy the KKT conditions,
i.e., KKT are necessary conditions of optimality. In the absence of equality con-
straints, the MFCQ condition means that the gradients of the active inequality
constraints are positive-linearly independent at optimum points.

As we mentioned before, we assume R ≥ 2c, since otherwise, never more
than one agent can be hired. It will turn out that the optimal contract will
always choose r∗ = c, hence the budget constraint of r ≤ R for α = 0 and
r ≤ 2R for α > 0 is automatically satisfied. The remaining inequalities (written
in standard form) are −λ ≤ 0, λ − Λ ≤ 0, λ + α − 1 ≤ 0, −α ≤ 0, c − r ≤ 0,
c(1 − α) − Fλ − rλ ≤ 0. The gradients of these inequality constraints with the
order of variables as (λ, α, r) are: (−1, 0, 0), (1, 0, 0), (1, 1, 0), (0,−1, 0), (0, 0,−1)
and (−F − r,−c,−λ). We will consider the cases of α = 1 and α < 1 separately.

If α = 1, we must have λ = 0, which means the only possible active inequal-
ities are −λ ≤ 0, λ + α ≤ 1 and c − r ≤ 0, with gradients (−1, 0, 0), (1, 1, 0)
and (0, 0,−1). These gradients are clearly linearly independent and the MFCQ
condition holds. If α < 1, from the last constraint, we must have λ > 0. Now
consider two cases: Λ = 1 or Λ < 1. When Λ = 1, then the constraint of λ ≤ Λ
is implied by λ + α ≤ 1 and α ≥ 0, and can be removed. Now, if α = 0, then
the last inequality c(1 − α) − Fλ − rλ is implied by c − r ≥ 0 and hence can
be removed. The standing inequalities will therefore be λ + α ≤ 1, c − r ≤ 0,
along with the active inequality of −α ≤ 0. The gradients of these inequalities
are respectively (1, 1, 0), (0, 0,−1) and (0,−1, 0), and are clearly linearly inde-
pendent. If, on the other hand, 0 < α < 1, then the standing constraints are:
λ+α− 1 ≤ 0, c− r ≤ 0 and c(1−α)−Fλ− rλ ≤ 0, with the gradients: (1, 1, 0),
(0, 0,−1) and (−F − r,−c,−λ). The last three vectors are linearly independent
because all the elements of the last vector are non-zero given λ > 0. When Λ < 1,
first suppose α = 0. Then, the constraint of λ + α ≤ 1 is inferred from λ ≤ Λ,
and hence can be removed. The standing constraints are λ − Λ ≤ 0, c − r ≤ 0,
c(1−α)−Fλ−rλ ≤ 0, along with the active constraint of −α < 0. The gradients
of these constraints are (1, 0, 0), (0, 0,−1), (−F − r,−c,−λ) and (0,−1, 0). Note



that except for the singleton point of F = c(1/Λ − 1), never all four of these
constraints are active.15 Now note that any three of the gradients are linearly
independent given λ > 0. Finally, when Λ < 1 and 0 < α < 1, the standing
constraints are λ−Λ ≤ 0, λ+ α− 1 ≤ 0, c− r ≤ 0 and c(1 + α)− Fλ− rλ ≤ 0,
with gradients (1, 0, 0), (1, 1, 0), (0, 0,−1) and (−F − r,−c,−λ), respectively. As
before, the only case that all four of these constraints can be active is the single
point of F = c− r. For all other values of F , at most three of these constraints
are active, whose gradients are linearly independent given λ > 0. In summary,
the MFCQ normality condition holds.

To systematically obtain the KKT conditions, we introduce the dual multi-
pliers µ1 to µ6, and transform the problem in (6) as follows:

min
r,α,λ,µi

C̄ = r(1 + α) + γλ− µ1λ+ µ2(λ− Λ) + µ3(λ+ α− 1)

− µ4α+ µ5(c− r) + µ6 (c(1− α)− Fλ− rλ) (15)

subject to:

primal feasibility: 0 ≤ λ ≤ Λ, λ ≤ 1− α,
α ≥ 0, r ≥ c, rλ+ Fλ ≥ c(1− α) (16a)

dual feasibility: µ1, µ2, µ3, µ4, µ5, µ6 ≥ 0, (16b)

complementary slackness: µ1λ = 0, µ2(λ− Λ) = 0, (16c)

µ3(λ+ α− 1) = 0, µ4α = 0, (16d)

µ5(c− r) = 0, µ6 (c(1− α)− Fλ− rλ) = 0. (16e)

The first order conditions of optimality are:

∂C̄
∂λ

= 0⇔ γ − µ1 + µ2 + µ3 − µ6(F + r) = 0, (17)

∂C̄
∂α

= 0⇔ r + µ3 − µ4 − cµ6 = 0, (18)

∂C̄
∂r

= 0⇔ (1 + α)− µ5 − λµ6 = 0. (19)

The full solution is now derived as in the statement of the proposition by straight-
forward investigation of the conditions (16) through (19). ut
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