
A Logic-Programming Semantics of Services

Ionuţ Ţuţu1,2 and José Luiz Fiadeiro1

1 Dept. Computer Science, Royal Holloway University of London, UK
2 Institute of Mathematics of the Romanian Academy,

Research group of the project ID-3-0439
ittutu@gmail.com, jose.fiadeiro@rhul.ac.uk

Abstract. We develop formal foundations for notions and mechanisms needed to
support service-oriented computing. Our work provides semantics for the service
overlay by abstracting concepts from logic programming. It draws a strong anal-
ogy between the discovery of a service that can be bound to a client application
and the search for a clause that can be used for computing an answer to a query.
In addition, it describes the process of binding services and the reconfiguration
of applications as service-oriented derivatives of unification and resolution.

1 Introduction

Service-Oriented Computing. SOC is a recent paradigm that addresses computation
in ‘global computers’ – computational infrastructures available globally in which soft-
ware applications can discover and bind dynamically, at run time, to services offered by
providers. Whereas the paradigm has been effectively in use for a more than a decade
in the form of Web services [1] or Grid computing [13], research into its formal foun-
dations has lagged somewhat behind, partly because of our lack of understanding of (or
agreement on) what is really new about the paradigm.

It is fair to say that significant advances have been made towards formalising new
forms of distributed computation that have arisen around the notion of service (e.g.
choreography [18]), notably through several variants of the π-calculus. However, SOC
raises more profound challenges at the level of the structure of systems thanks to their
ability to discover and bind dynamically, in a non-programmed way, to other systems.
The structure of the systems we are now creating in the virtual space of computational
networks is intrinsically dynamic, a phenomenon hitherto unknown. Formalisms such
as the π-calculus do not address these structural properties of systems.

Towards that end, we have investigated algebraic structures that account for modu-
larity (e.g. [10,12]) – the way services are orchestrated as composite structures of com-
ponents and how binding is performed through interaction protocols – and the mech-
anisms through which discovery can be formalised in terms of logical specifications
of required/provided services and constraint optimisation for service-level agreements
(e.g. [9,11]). In the present paper, we take further this research to address the oper-
ational aspects behind dynamic discovery and binding, i.e. the mechanisms through
which applications discover and bind, at run time, to services. Our aim is to develop
an abstract, foundational setting – i.e. independent of the specific technologies that are
currently deployed, such as SOAP for message-exchange protocols and the UDDI for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28905165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

description, discovery, and integration – that combines both declarative and dynamic
semantics of services. The challenge here is to develop an integrated algebraic frame-
work that accounts for (a) logical specifications of services, (b) the way models of those
specifications capture orchestrations of components that depend on externally provided
services to be discovered, and (c) the way the discovery of services and the binding of
their orchestrations to client applications can be expressed in logical/algebraic terms.

Logic Programming. The approach that we propose to develop to meet this challenge
builds on (Horn-clause) logic programming (LP) – the paradigm that epitomises the
integration of declarative and operational aspects of logic. In LP, clauses have a declar-
ative semantics as disjunctions of literals that express relationships over a domain (the
Herbrand universe), and an operational semantics that derives from resolution and term
unification: definite clauses (from a program) are used to resolve queries (expressed
as goal clauses) by generating new queries and, through term unification, computing
partial answers as substitutions for the variables of the original query.

In a nutshell, the analogy with SOC that we propose to develop works as follows:

– The Herbrand universe consists of all possible service orchestrations with no de-
pendencies on external services (‘ground services’).

– Variables correspond to requires-points of orchestrations, i.e. dependencies on ex-
ternal services that need to be discovered.

– Terms correspond to services delivered through provides-points of orchestrations.
– Definite clauses express properties of provides-points (head) and requires-points

(body) of service orchestrations – what in [11] we call service modules. Their
declarative semantics is that, when bound to applications that deliver services sat-
isfying the properties of the requires-points, the orchestrations will deliver at the
provides-points services that satisfy the specified properties.

– Goal clauses express properties of orchestrations of services that an application re-
quires in order to fulfil given business goals – what in [11] we call activity modules.

– Programs correspond to service repositories.
– Resolution and term unification account for service discovery by matching required

properties with provided ones and the binding of required with provided services.

Structure of the Paper. In Sect. 2 we propose an algebraic model of service orches-
trations as asynchronous relational networks similar to those used in [8], and we define
the logical framework over which we can express properties of the interaction points
through which such networks can be interconnected. We prove that the resulting logic
constitutes an institution [14], which provides the declarative semantics of our approach
to SOC. In Sect. 3 we show how clauses, unification and resolution can be defined over
that institution, thus providing the corresponding operational semantics of SOC.

2 Asynchronous Relational Networks

Our first contribution is the formulation of an institution of asynchronous relational
networks. This accounts for the service-oriented counterpart of the declarative aspects
of conventional LP within first-order logic, in particular the key role played by variables
– the structures over which the computational aspects of LP operate.

The concepts discussed here depend upon elements of linear temporal logic (LTL).
However, the proposed theory is largely independent of the logical framework of choice,
and can be easily adapted to any institution such that

– the category of signatures is (finitely) co-complete;
– there exist co-free models along any signature morphism, i.e. the reduct functor of

any signature morphism has a right adjoint;
– the category of models of any signature has products;
– any model homomorphism reflects the satisfaction of any sentence.

In order to capture a more operational notion of service orchestration, we work with
a variant MA-LTL of LTL whose models are not traces, but Muller automata [17]; by
definition, an automaton satisfies a sentence if and only if every trace accepted by the
automaton satisfies the considered sentence. A detailed definition of MA-LTL together
with proofs of the four aforementioned properties can be found in Appendices B and C.

2.1 Signatures and Signature Morphisms

We start by defining the category ARN of signatures and signature morphisms of our
institution. These are asynchronous relational networks similar to those defined in [8]
except that we use Muller automata instead of sets of traces as models of behaviour,
and hypergraphs instead of graphs.

Following [8], we regard service components as networks of processes that interact
asynchronously by exchanging messages through communication channels. Messages
are considered to be atomic units of communication. They can be grouped into struc-
tures – ports – through which processes and channels can be interconnected.

Ports are sets of messages with attached polarities. As in [2,3] we distinguish be-
tween outgoing or published messages (labelled with a minus sign) and incoming or
delivered messages (labelled with a plus sign).

Definition 1 (Port). A port M is a pair 〈M−,M+〉 of disjoint finite sets of messages.
The set of all messages of M is given by the union M− ∪M+, usually denoted by M .
Every port M determines the set of actions AM = AM− ∪AM+ , where AM− is the set
{m! | m∈M−} of publications, and AM+ is the set {m¡ | m∈M+} of deliveries.

Processes are defined by sets of interaction points labelled with ports and by Muller
automata that describe process behaviour in terms of observable actions.

Definition 2 (Process). A process ({Mx | x∈X}, Λ) consists of a finite setX of inter-
action points, each point x∈X being labelled with a portMx, and a Muller automaton
Λ over the alphabet P(AM), where M is the port given by

M∓ =
⊎
x∈X

M∓x = {x.m | x∈X,m∈M∓x } .

Example 1. In Fig. 1 we depict a process JourneyPlanner that provides directions from
a source to a target location. The process interacts with the environment through two
ports: JP1 and JP2. The first port is used for communicating with potential client pro-
cesses – the request for directions (including the source and the target locations) is en-
coded into the incoming message planJourney, while the response is represented by the

outgoing message directions. The second port defines messages that JourneyPlanner
exchanges with other processes in order to complete its task – the outgoing message
getRoutes can be seen as a query for all possible routes between the specified source
and target locations, and the incoming messages routes and timetables define the result
of the query and the timetables of the available transport services for the selected routes.

Journey
Planner

ΛJP

planJourney +
directions−

JP1

− getRoutes
+ routes
+ timetables

JP2

Fig. 1. The JourneyPlanner process

The behaviour of JourneyPlanner is given by the Muller automaton depicted in
Fig. 2, whose final state sets contain q0 whenever they contain q5. We can describe it
informally as follows: whenever JourneyPlanner receives a request planJourney it im-
mediately initiates the search of the available routes by sending the message getRoutes;
it then waits for the delivery of the routes and of the corresponding timetables; once it
receives both it compiles the directions and replies to the client.

q0 q1 q3

q2

q5

q4

¬planJourney¡

planJourney¡

getRoutes!

¬routes¡ ∧ ¬timetables¡

routes¡ ∧
timetables¡

¬routes¡ ∧ timetables¡routes¡ ∧ ¬timetables¡

routes¡

¬routes¡

timetables¡

¬timetables¡

¬directions!
directions!

Fig. 2. The JourneyPlanner automaton3

Note that every polarity-preserving map θ between ports M and M ′ defines a func-
tion Aθ : AM → AM ′ , often denoted simply by θ, that maps every publication action
m! into θ(m)! and every delivery action m¡ into θ(m)¡.

Fact 1. For any process ({Mx | x∈X}, Λ), the injections {x. : AMx → AM}x∈X
define a co-product in the category of MA-LTL-signatures.

Processes communicate by transmitting messages through channels. As in [3,8], chan-
nels are bidirectional: they may transmit both incoming and outgoing messages.

Definition 3 (Channel). A channel (M,Λ) consists of a finite set M of messages and
a Muller automaton Λ over the alphabet P(AM), where AM is the union A−M ∪A

+
M of

A−M = {m! | m∈M} and A+
M = {m¡ | m∈M}.

3 In the graphical representation the transitions are labelled with propositional sentences; this
means that there exists a transition for any model (set of actions) of the considered sentence.

In order to enable given processes to exchange messages, channels need to be attached
to their ports, thus forming connections.

Definition 4 (Connection). A connection ({µx : M ⇀ Mx | x∈X}, Λ) between the
ports {Mx | x∈X} consists of a channel (M,Λ) and a finite family of partial at-
tachment injections {µx : M ⇀ Mx | x∈X} such that M =

⋃
x∈X dom(µx) and

µ−1x (M∓x) ⊆
⋃
y∈X\{x} µ

−1
y (M±y), for any x∈X .

This notion of connection differs from the one found in [8] in that messages can be
transmitted between more than two ports. The additional condition ensures that mes-
sages are well paired: every published message of Mx, for x∈X , is paired with a
delivered message of My , for y ∈X \ {x}, and vice versa.

Example 2. In order to illustrate how the process JourneyPlanner can send or receive
messages, we consider the connection C depicted in Fig. 3 that moderates the flow of
messages between the port JP2 and two other ports, R1 and R2.

− getRoutes
+ routes
+ timetables

JP2
getRoutes +

routes−

R1

routes +
timetables−

R2

C

ΛC

Fig. 3. The JourneyPlanner’s connection

The underlying channel of C is given by the set of messages M = {g, r, t} together
with the automaton ΛC that specifies the delivery of all published messages without any
delay. ΛC can be built as the product of the automata Λm, for m∈M , whose transition
map is depicted in Fig. 4, and whose sets of states are all marked as final.

The channel is attached to the ports JP2, R1 and R2 through the partial injections:

– µJP2 = {g 7→ getRoutes, r 7→ routes, t 7→ timetables},
– µR1 = {g 7→ getRoutes, r 7→ routes} and
– µR2 = {r 7→ routes, t 7→ timetables}.

Note that the actual senders and receivers of messages are specified through the attach-
ment injections. For example, g is delivered only to the port R1 (because µR2 is not
defined on g), while r is simultaneously delivered to both JP2 and R2.

q0 q1

¬m!
m!

m! ∧m¡

¬m! ∧m¡

Fig. 4. The Λm automaton

As already suggested in Ex. 1 and 2, processes and connections have dual roles
and interpret the polarities of the messages accordingly. In this sense, processes are
responsible for publishing messages (i.e. delivered messages are inputs and published
messages are outputs), while connections are responsible for delivering messages.

We clarify this dual nature of connections ({µx : M ⇀ Mx | x∈X}, Λ) by defin-
ing partial translations {Aµx : AM ⇀ AMx

| x∈X} given by
– dom(Aµx) = {m! | m∈µ−1x (M−x)} ∪ {m¡ | m∈µ−1x (M+

x)},
– Aµx(m!) = µx(m)! for all m∈µ−1x (M−x),
– Aµx(m¡) = µx(m)¡ for all m∈µ−1x (M+

x).
We often designate the partial maps Aµx simply by µx if there is no risk of confusion.

Fact 2. Every connection ({µx : M ⇀ Mx | x∈X}, Λ) defines a family of spans{
AM

⊇←− dom(µx)
µx−−→ AMx

}
x∈X in the category of MA-LTL-signatures.

We can now define asynchronous networks of processes as hypergraphs having vertices
labelled with ports and hyperedges labelled with processes and connections.

Definition 5 (Hypergraph). An (edge-labelled) hypergraph (X,E, γ) consists of a set
X of vertices or nodes, a set E of hyperedges disjoint from X , and an incidence map
γ : E → P(X) defining for every hyperedge e∈E a non-empty set γe ⊆ X of vertices
it is incident with. A hypergraph (X,E, γ) is said to be edge-bipartite ifE is partitioned
into two subsets F andG such that no adjacent hyperedges belong to the same partition,
i.e. for every two hyperedges e1, e2 ∈E such that γe1 ∩ γe2 6= ∅, either e1 ∈F and
e2 ∈G, or e1 ∈G and e2 ∈F .

Hypergraphs have been used extensively in the context of graph-rewriting-based ap-
proaches to concurrency, including SOC (e.g., [4,7]). We use them instead of graphs [8]
because they offer a more flexible mathematical framework for handling the notions of
variable and variable binding that we require in Sect. 3.

Definition 6 (Asynchronous Relational Network – ARN). An asynchronous rela-
tional network α = (X,P,C, γ,M, µ, Λ) consists of a (finite) edge-bipartite hyper-
graph (X,P,C, γ) of points x∈X , computation hyperedges p∈P and communica-
tion hyperedges c∈C, together with

– a port Mx for every point x∈X ,
– a process ({Mx | x∈ γp}, Λp) for every hyperedge p∈P , and
– a connection ({µcx : Mc ⇀Mx | x∈ γc}, Λc) for every hyperedge c∈C.

Example 3. By putting together the process and the connection presented in Ex. 1 and 2,
we obtain the ARN JourneyPlanner depicted in Fig. 5. Its underlying hypergraph
consists of the points JP1, JP2, R1 and R2, the computation hyperedge JP, the com-
munication hyperedge C, and the incidence map γ given by γJP = {JP1, JP2} and
γC = {JP2,R1,R2}.

An interaction-point of an ARN α is a point of α that is not bound to both com-
putation and communication hyperedges. We distinguish between requires-points and
provides-points, as follows.

Journey
Planner

ΛJP

planJourney +
directions−

JP1

− getRoutes
+ routes
+ timetables

JP2
getRoutes+

routes−

R1

routes+
timetables−

R2

C

ΛC

Fig. 5. The JourneyPlanner ARN

Definition 7 (Requires and Provides-point). A requires-point of an ARN α is a point
of α that is incident only with a communication hyperedge. Similarly, a provides-point
of α is a point incident only with a computation hyperedge.

Morphisms of ARNs can be defined as injective homomorphisms between their under-
lying hypergraphs that preserve all labels, except those associated with requires-points.

Definition 8 (Homomorphism of Hypergraphs). A homomorphism h between hyper-
graphs (X,E, γ) and (X ′, E′, γ′) consists of functions hv : X → X ′ and he : E → E′

such that for any x∈X and e∈E, x∈ γe if and only if hv (x)∈ γ′he(e).

Definition 9 (Morphism of ARNs). Given two ARNs α = (X,P,C, γ,M, µ, Λ) and
α′ = (X ′, P ′, C ′, γ′,M ′, µ′, Λ′), a morphism δ : α→ α′ consists of

– an injective homomorphism δ : (X,P,C, γ)→ (X ′, P ′, C ′, γ′) between the under-
lying hypergraphs of α and α′ such that δe(P) ⊆ P ′ and δe(C) ⊆ C ′, and

– a family of polarity-preserving injections δpt =
{
δptx : Mx →M ′δv (x)

}
x∈X ,

such that

– for every non-requires-point x∈X , δptx = 1Mx
,

– for every computation hyperedge p∈P , Λp = Λ′δe(p), and
– for every communication hyperedge c∈C, Mc = M ′δe(c), Λc = Λ′δe(c) and the

following diagram commutes, for any point x∈ γc.

Mc =M ′δe(c)
µcx //

(µ′)
δe (c)

δv (x) &&

Mx

δptx

��
M ′δv (x)

Proposition 1. The morphisms of ARNs form a category, denoted ARN , in which the
composition is defined component-wise, with left and right identities given by mor-
phisms whose components are set-theoretic identities.

2.2 Sentences and Sentence Translations

We now define the sentence functor of our institution.

Definition 10 (Sentence). For any ARN α, i.e. for any signature α, the set SenSOC(α)
of (atomic) α-sentences is defined as the set of pairs (x, ρ), usually denoted @x ρ, where
x is a point of α and ρ is an MA-LTL-sentence over AMx .

The translation of sentences is straightforward: for every morphism δ : α → α′ of
ARNs, the map SenSOC(δ) : SenSOC(α)→ SenSOC(α′) is given by

SenSOC(δ)(@x ρ) = @δv (x) δ
pt
x (ρ)

for any point x of α and any MA-LTL-sentence ρ over the actions of x.

Proposition 2. SenSOC is a functor ARN → Set .

2.3 Models and Model Reductions

The model functor of our institution assigns ground ARNs to the requires-points of the
considered networks.

Definition 11 (Ground ARN). An ARN is said to be ground if it has no requires-points.
We denote by GARN the full subcategory of ARN determined by ground ARNs.

Definition 12 (Model). For any ARN α, the category ModSOC(α) of α-models or α-
interpretations is the comma category α/GARN .

It follows that α-interpretations are morphisms of ARNs ι : α → β such that β is a
ground network, which can also be seen as collections of ground ARNs that are desig-
nated to the requires-points of α. In order to explain this in more detail let us introduce
the following notions of dependency and ARN defined by a point.

Definition 13 (Dependency). Let x and y be points of an ARN α. x is said to be depen-
dent on y if there exists a path from x to y that begins with a computation hyperedge,
i.e. if there exists an alternating sequence x e1 x1 · · · en y of (distinct) points and hyper-
edges such that x∈ γe1 , y ∈ γen , xi ∈ γei ∩ γei+1 for any 1 ≤ i < n, and e1 ∈P .

Definition 14 (ARN Defined by a Point). The ARN defined by a point x of an ARN α
is the full sub-ARN αx of α determined by x and the points on which x is dependent.

One can now see that any interpretation ι : α→ β of an ARN α assigns to each requires-
point x of α the ground sub-ARN βιv (x) of β defined by ιv (x).

Example 4. Based on the ground ARN depicted in Fig. 6 we can define an interpretation
ι : JourneyPlanner → JourneyPlannerNet that preserves all the labels, points and
hyperedges of JourneyPlanner, with the exception of the points R1 and R2, which
are mapped to MS1 and TS1, respectively. In this case, the point MS1 only depends on
itself, hence the sub-ARN of JourneyPlannerNet defined by MS1, i.e. the ground ARN
assigned to the requires-point R1 of JourneyPlanner, is given by the process MS and its
port MS1. In contrast, the point JP1 depends on all other points of JourneyPlannerNet,
and thus it defines the entire ARN JourneyPlannerNet.

Journey
Planner

ΛJP

planJourney +
directions−

JP1

− getRoutes
+ routes
+ timetables

JP2

Map
Services

ΛMS

getRoutes+
routes−

MS1

Transport
System

ΛTS

routes+
timetables−

TS1

C

ΛC

Fig. 6. The JourneyPlannerNet ARN

The reduction of interpretations is defined as the left composition with the con-
sidered ARN morphism. For every morphism of ARNs δ : α → α′, the reduct func-
tor ModSOC(δ) is just the composition functor δ/GARN : α′/GARN → α/GARN
given by (δ/GARN)(ι′) = δ; ι′ and (δ/GARN)(ζ ′) = ζ ′ for every α′-interpretation
ι′ and every α′-interpretation homomorphism ζ ′.

Proposition 3. ModSOC is a contravariant functor ARN op → Cat .

2.4 The Satisfaction Relation

The evaluation of ARN sentences with respect to ARN interpretations relies on the
concepts of diagram of a network and of automaton defined by a point, whose purpose
is to describe the observable behaviour of a ground ARN through one of its points. We
start by extending Facts 1 and 2 to ARNs.

Fact 3 (Diagram of an ARN). Every ARN α = (X,P,C, γ,M, µ, Λ) defines a diagram
Dα : Jα → SigMA-LTL as follows:

– Jα is the free preordered category given by the set of objects

X ∪ P ∪ C ∪ {〈c, x, α〉 | c∈C, x∈ γc}

and the arrows
• {x→ p | p∈P, x∈ γp} for computation hyperedges, and
• {c← 〈c, x, α〉 → x | c∈C, x∈ γc} for communication hyperedges;

– Dα is the functor that provides the sets of actions of ports, processes and chan-
nels, together with the appropriate mappings between them. For example, given a
communication hyperedge c∈C and a point x∈ γc,
• Dα(c) = AMc

, Dα(〈c, x, α〉) = dom(µcx), Dα(x) = AMx
,

• Dα(〈c, x, α〉 → c) =
(
dom(µcx) ⊆ AMc

)
, and

• Dα(〈c, x, α〉 → x) = µcx.

Because the category SigMA-LTL is finitely co-complete, we can define the signature of
an ARN based on its diagram.

Definition 15 (Signature of an ARN). The signature of an ARN α is the co-limiting
co-cone ξ : Dα ⇒ Aα of the diagram Dα.

The most important construction that allows us to define the satisfaction relation is the
one that defines the observed behaviour of a (ground) network at one of its points.

Definition 16 (Automaton Defined by a Point). Let x be a point of a ground ARN β.
The observed automaton Λx at x is given by the reduct Λβx�ξx , where

– βx = (X,P,C, γ,M, µ, Λ) is the sub-ARN of β defined by x,
– ξ : Dβx ⇒ Aβx is the signature of βx,
– Λβx is the product automaton

∏
e∈P∪C Λ

βx
e , and

– Λβxe is the co-free expansion of Λe along ξe, for any hyperedge e∈P ∪ C.

Example 5. Let us consider the ground ARN outlined in Fig. 6. The automaton defined
by the point MS1 is just ΛMS�AMS1

– this follows from the observation that the ARN
defined by MS1 consists solely of the process MS and the port MS1. On the other hand,
the calculation of the automaton defined by provides-point JP1 involves the product of
the co-free expansions of all four automata ΛJP, ΛMS, ΛTS and ΛC.

We now have all the necessary concepts for defining the satisfaction of ARN sentences
by ARN interpretations. Let us thus consider an ARN α, an α-interpretation ι : α→ β
and an α-sentence @x ρ. Then

ι |=SOC
α @x ρ if and only if Λιv (x)�ιptx |=

MA-LTL ρ ,

where Λιv (x) is the observed automaton at ιv (x) in β.
The construction of the institution of ARNs is completed by the following result,

which states that satisfaction is invariant with respect to changes of ARNs.

Proposition 4. For every ARN morphism δ : α → α′, any α′-interpretation ι′ and any
α-sentence @x ρ,

ι′ |=SOC
α′ SenSOC(δ)(@x ρ) if and only if ModSOC(δ)(ι′) |=SOC

α @x ρ .

Corollary 1. SOC =
(
ARN ,SenSOC,ModSOC, |=SOC

)
is an institution.

3 A Logical View on Service Discovery and Binding

Building on the results of Sect. 2, we now investigate how the semantics of the ser-
vice overlay can be characterised using fundamental computational aspects of the LP
paradigm such as unification and resolution.

Our approach is built upon a simple and intuitive analogy between the SOC con-
cepts of service module and client application [11] and the LP concepts of clause and
query [16]. In order to clarify this analogy we rely on the institution FOL of first-order
logic [6] and also on the studies on internal logic developed in [19] and [5].

We begin by briefly describing the structure that provides the basic elements in-
volved in defining the denotational and operational semantics of relational LP – the
institution of (sets of) variables and substitutions over a first-order signature (S, F, P).

The signatures of this institution are finite sets (or blocks) of variables, i.e. finite
sets of pairs (x, s), where x is the name of the variable (distinct from the names of

other variables) and s∈S is its sort. The models, sentences, and the satisfaction rela-
tion are inherited from FOL. In this sense, for every set of variables X , we consider
the corresponding category of models, set of sentences and satisfaction relation of the
extended first-order signature (S, F ∪X,P).

The morphisms of signatures X → Y are substitutions, i.e. mappings of the vari-
ables of X into terms over Y . Based on the evaluation of terms in models and on the
canonical extension of substitutions from variables to terms, the substitutions define
appropriate reductions of models and translations of sentences, about which it has been
shown in [5] that the satisfaction condition holds.

3.1 The Clausal Structure of Services

Given the above constructions, we can describe definite first-order clauses as structures

C←−−
X

H

such that X is a block of variables, C is a relational atom over X , i.e. a relational atom
of the extended signature (S, F ∪X,P), andH is a finite set of relational atoms overX .
Their semantics is given by the class of (S, F, P)-algebras whose expansions to (S, F ∪
X,P) satisfy C whenever they satisfy every sentence in H . Note that in traditional LP
the symbols of variables are often distinguished from other symbols through notational
conventions. For this reason, the block X of variables is at times omitted.

Service clauses can be defined in a similar manner, essentially by replacing the in-
stitution of first-order substitutions with the institution of ARNs. Intuitively, this means
that we replace blocks of variables with ARNs, variables with requires-points, and terms
(over variables) with provides-points.

Definition 17 (Clause). A SOC-clause is a structure (P, α,R), also written

P ←−−
α
R

such that α is an ARN, P is an α-sentence referring to a provides-point of α and R is a
finite set of α-sentences referring to distinct requires-points of α.

The semantics of service clauses is defined just as the semantics of first-order clauses,
except that they are evaluated over the class G of ground ARNs instead of (S, F, P)
ground terms. In this sense, G (which may be intuitively regarded as the Herbrand uni-
verse) satisfies a clause (P, α,R) if and only if any interpretation of α that satisfies all
sentences in R satisfies P as well.

Example 6. The ARN JourneyPlanner introduced in Ex. 3 can orchestrate a service
module that consistently delivers the requested directions, provided that the routes and
the timetables can always be obtained. We specify this through the service clause

@JP1 ρ
JP←−−−−−−−−−−−

JourneyPlanner

{
@R1 ρ

JP
1 ,@R2 ρ

JP
2

}
where ρJP, ρJP1 , ρJP2 are the MA-LTL-sentences � (planJourney¡ ⊃ ♦ directions!),
� (getRoutes¡ ⊃ ♦ routes!) and � (routes¡ ⊃ ♦ timetables!), respectively.

Client applications are captured in the present setting by service queries. They are
defined in a similar manner to service clauses and their semantics are, as expected,
existential rather than universal.

Definition 18 (Query). A SOC-query is a structure (α,Q), also denoted

7−−−
α
Q

such that α is an ARN and Q is a finite set of α-sentences referring to distinct requires-
points of α. With respect to semantics, G satisfies (α,Q) if and only if there exists an
interpretation of α satisfying all sentences in Q.

Example 7. Figure 7 outlines the ARN of a possible client for the Journey Planner
service. We specify the actual client through the service query

7−−−−−−
Client

{
@R1 ρ

C
1

}
given by the MA-LTL-sentence � (getRoute¡ ⊃ ♦ route!).

Client

ΛClient

− getRoute
+ route

Client1

getRoute +
route−

R1

C

ΛC

Fig. 7. The Client ARN

3.2 Resolution as Service Discovery and Binding

Service discovery represents, as in conventional LP, the search for a clause that could
take the current goal one step closer to a possible solution. The solutions to service
queries are defined in the same way as the solutions to first-order queries, but with
ARN morphisms in the role of term substitutions.

Definition 19 (Solution). A solution to (α,Q) consists of a morphism θ : α→ α′ such
that any interpretation of α′ satisfies the θ-translation of any sentence in Q.

The following result relates satisfiable queries and queries that have solutions, and may
be regarded as a service-oriented correspondent of Herbrand’s theorem.

Proposition 5. A service query (α,Q) is satisfiable if and only if it admits a solution
θ : α→ α′ such that the category ModSOC(α′) is not empty.

The procedure that ultimately decides whether or not a service can be bound to an
application is unification.

Definition 20 (Unifier). Let @x1
ρ1 and @x2

ρ2 be two sentences of ARNs α1 and α2,
respectively. A unifier of @x1

ρ1 and @x2
ρ2 consists of a pair 〈θ1, θ2〉 of morphisms

θ1 : α1 → α and θ2 : α2 → α such that θv1 (x1) = θv2 (x2) and

θpt2,x2
(ρ2) |=MA-LTL θpt1,x1

(ρ1) .

In conventional LP the resolution process simplifies the current goal and at the same
time, through unification, yields computed substitutions that could eventually deliver a
solution to the initial query. This process is accurately reflected in the case of SOC by
service binding.

Definition 21 (Resolution). A service query (α,Q) is said to be derived by resolution
from (α1, Q1) and (P2, α2, R2) using the computed morphism θ1 : α1 → α when

7−−−
α1

Q1 P2←−−α2
R2

(θ1)

7−−−
α

SenSOC(θ1)(Q1 \ {R1}) ∪ SenSOC(θ2)(R2)

– there exists a unifier 〈θ1, θ2〉 of a sentence R1 ∈Q1 and P2, and
– Q is the set of sentences given by the translation along θ1 and θ2 of the sentences

in Q1 \ {R1} and R2.

Example 8. Let us consider the query and the clause detailed in the Ex. 7 and 6. One can
easily see that the Client-sentence @R1 ρ

C
1 and the JourneyPlanner-sentence @JP1 ρ

JP

are unifiable. They admit the unifier 〈θ1, θ2〉 given by

Client
θ1 // Client‖JourneyPlanner JourneyPlanner

θ2oo

– the ARN Client‖JourneyPlanner depicted in Fig.8,
– the ARN morphism θ1 that maps the point R1 into JP1, the communication hyper-

edge C into CJP and the messages getRoute and route ofMR1 into planJourney and
directions, respectively (while preserving all the remaining elements of Client),

– the ARN inclusion morphism θ2.

It follows that we can derive by resolution a new service query, defined by the network
Client‖JourneyPlanner and the set of sentences

{
@R1 ρ

JP
1 ,@R2 ρ

JP
2

}
.

7−−−−−−
Client

{
@R1 ρ

C
1

}
@JP1 ρ

JP←−−−−−−−−−−−
JourneyPlanner

{
@R1 ρ

JP
1 ,@R2 ρ

JP
2

}
(θ1)

7−−−−−−−−−−−−−−−−
Client‖JourneyPlanner

{
@R1 ρ

JP
1 ,@R2 ρ

JP
2

}

Client

ΛClient

− getRoute
+ route

C1 Journey
Planner

ΛJP

planJourney +
directions−

JP1

− getRoutes
+ routes
+ timetables

JP2
getRoutes+

routes−

R1

routes+
timetables−

R2

CJP

ΛCJP

C

ΛC

Fig. 8. The Client‖JourneyPlanner ARN

Computed Solutions. The process of service discovery and binding allows us to search
for solutions to arbitrary queries. The search is triggered by a query (α,Q) and consists
in the iterated application of resolution until the derived service query is empty, i.e.
a query of the form (α′, ∅). Whenever the search procedure successfully terminates
we obtain a computed solution of the original query by sequentially composing the
resulting computed morphisms.

The correctness of the search procedure relies on the correctness of resolution.

Proposition 6. Let (α,Q) be a service query derived by resolution from (α1, Q1) and
(P2, α2, R2) using the computed morphism θ1. If (P2, α2, R2) is satisfiable then for any
solution θ of (α,Q), θ1; θ is a solution of (α1, Q1).

It is easy to see that any empty query admits a trivial solution, namely the solution given
by the identity morphism of its underlying ARN. By applying Prop. 6 backwards, for
each resolution step, we deduce that the composition of any terminating sequence of
computed morphisms, and thus any computed solution, is a solution.

4 Conclusions

In this paper, we showed how the integration of declarative and operational semantics
as provided by Logic Programming can be generalised to Service-Oriented Computing
to offer an integrated semantics for the static and dynamic aspects of this paradigm, i.e.
to provide, for the first time, an algebraic framework that accounts for the mechanisms
through which service interfaces can be orchestrated and for those that allow applica-
tions to discover and bind to services. The analogy that we established is based on the
identification of the binding of terms to variables in LP with the binding of orchestra-
tions of services to requires-points of software applications in SOC. The answer to a
service query – the request for external services – is obtained through resolution using
the service clauses (orchestrated service interfaces) available from a repository. This
departs from other works on the logic-programming semantics of services such as [15]
that considered implementations of the service discovery and binding mechanisms us-
ing constraint logic programming.

The analogy is grounded on a declarative semantics of service clauses defined over
a novel institution whose models are asynchronous networks of Muller automata (ser-
vice orchestrations) and whose sentences are linear temporal logic sentences expressing
properties that can be observed at given interaction points of a network. Other logics
could have been used instead of linear temporal logic, more specifically any institution
such that (a) the category of signatures is (finitely) co-complete; (b) there exist co-free
models along any signature morphism; (c) the category of models of any signature has
products; (d) any model homomorphism reflects the satisfaction of any sentence.

These results encourage us to further develop a unifying framework for the founda-
tions of LP that incorporates ideas from existing concrete variants of the phenomena,
not necessarily restricted to relational or service-oriented programming. One possible
course of action would be to isolate the principles of the LP paradigm in an institutional
setting. This assumes institution-independent versions of LP concepts such as Herbrand
model, clause, substitution, unifier and resolution, some of which have already been
considered in the literature (e.g. [5]).

Acknowledgements. The work of the first author has been supported by a grant of
the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project
number PN-II-ID-PCE-2011-3-0439. The authors also wish to thank Fernando Orejas
for suggesting the use of hypergraphs and Antónia Lopes for many useful discussions
that led to the present form of this paper.

References
1. G. Alonso, F. Casati, H. A. Kuno, and V. Machiraju. Web Services – Concepts, Architectures

and Applications. Springer, 2004.
2. B. Benatallah, F. Casati, and F. Toumani. Representing, analysing and managing web service

protocols. Data Knowl. Eng., 58(3):327–357, 2006.
3. D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323–

342, 1983.
4. R. Bruni, F. Gadducci, and A. Lluch-Lafuente. A graph syntax for processes and services. In

C. Laneve and J. Su, editors, WS-FM, volume 6194 of LNCS, pages 46–60. Springer, 2009.
5. R. Diaconescu. Herbrand theorems in arbitrary institutions. Inf. Process. Lett., 90(1):29–37,

2004.
6. R. Diaconescu. Institution-Independent Model Theory. Studies in Universal Logic.

Birkhäuser, 2008.
7. G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, and E. Tuosto. Synchronised hyperedge

replacement as a model for service oriented computing. In F. de Boer, M. Bonsangue, S. Graf,
and W. de Roever, editors, FMCO, volume 4111 of LNCS, pages 22–43. Springer, 2005.

8. J. L. Fiadeiro and A. Lopes. An interface theory for service-oriented design. In D. Gi-
annakopoulou and F. Orejas, editors, FASE, volume 6603 of LNCS, pages 18–33. Springer,
2011.

9. J. L. Fiadeiro and A. Lopes. A model for dynamic reconfiguration in service-oriented archi-
tectures. Software and Systems Modeling, pages 1–19, 2012.

10. J. L. Fiadeiro, A. Lopes, and L. Bocchi. Algebraic semantics of service component modules.
In J. L. Fiadeiro and P.-Y. Schobbens, editors, WADT, volume 4409 of LNCS, pages 37–55.
Springer, 2006.

11. J. L. Fiadeiro, A. Lopes, and L. Bocchi. An abstract model of service discovery and binding.
Formal Asp. Comput., 23(4):433–463, 2011.

12. J. L. Fiadeiro and V. Schmitt. Structured co-spans: An algebra of interaction protocols. In
T. Mossakowski, U. Montanari, and M. Haveraaen, editors, CALCO, volume 4624 of LNCS,
pages 194–208. Springer, 2007.

13. I. T. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, 2004.

14. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specification and
programming. J. ACM, 39(1):95–146, 1992.

15. S. Kona, A. Bansal, and G. Gupta. Automatic composition of semantic web services. In
ICWS, pages 150–158. IEEE Computer Society, 2007.

16. J. W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987.
17. D. Perrin and J. Éric Pin. Infinite Words: Automata, Semigroups, Logic and Games. Pure

and Applied Mathematics. Elsevier Science, 2004.
18. J. Su, T. Bultan, X. Fu, and X. Zhao. Towards a theory of web service choreographies. In

M. Dumas and R. Heckel, editors, WS-FM, volume 4937 of LNCS, pages 1–16. Springer,
2007.

19. A. Tarlecki. Quasi-varieties in abstract algebraic institutions. J. Comput. Syst. Sci.,
33(3):333–360, 1986.

A First-Order Logic

(Many-Sorted) First-Order Logic (FOL) was first presented as an institution in [14].
Here we only briefly recall a number of definitions, mainly for fixing the context in
which traditional LP is discussed. More detailed presentations can be found in the recent
works on institution theory such as [6].

Signatures. A many-sorted first-order signature (S, F, P) consists of
– a set S of sorts,
– a family F = {Fw→s | w∈S∗, s∈S} of sets of operation symbols, indexed by

arities and sorts, and
– a family P = {Pw | w∈S∗} of sets of relation symbols, indexed by arities.

A signature morphism ϕ : (S, F, P)→ (S′, F ′, P ′) is defined by
– a map ϕst : S → S′ between the sets of sorts,
– a family of maps ϕop =

{
ϕop
w→s : Fw→s → F ′ϕst (w)→ϕst (s) | w∈S

∗, s∈S
}

be-
tween the sets of operation symbols, and

– a family of maps ϕrel =
{
ϕrel
w : Pw → P ′ϕst (w) | w∈S

∗} between the sets of
relation symbols.

Models. Given a first-order signature (S, F, P), a model M interprets
– each sort s∈S as a set Ms,
– each operation symbol σ ∈Fw→s as a function Mσ : Mw → Ms, where Mw de-

notes the Cartesian product Ms1 × · · · ×Msn , for w = s1 · · · sn, and
– each relation symbol π ∈Pw as a subset Mπ ⊆Mw.

For two (S, F, P)-models M and N , a model homomorphism h : M → N consists of
a family of functions {hs : Ms → Ns | s∈S} such that

– hs
(
Mσ(m)

)
= Nσ

(
hw(m)

)
for each operation symbol σ ∈Fw→s and each ele-

ment m∈Mw, where hw : Mw → Nw is the component-wise extension of h,
– hw(Mπ) ⊆ Nπ for each relation symbol π ∈Pw.

With respect to model reducts, if ϕ : (S, F, P) → (S′, F ′, P ′) is a signature morphism
and M ′ is a (S′, F ′, P ′)-model, then M ′�ϕ is defined as the (S, F, P)-model M given
by Mx =M ′ϕ(x), for every sort, operation symbol or relation symbol x of (S, F, P).

Sentences. The set of sentences of a signature (S, F, P) is the least set that contains
– the equational atoms, i.e. equalities t = t′ of F -terms t = σ(t1, . . . , tn) and
t′ = σ′(t′1, . . . , t

′
n′), where σ and σ′ are operation symbols of the same sort and

t1, . . . , tn and t′1, . . . , t
′
n′ are sub-terms,

– the relational atoms, i.e. expressions π(t1, . . . , tn), where π is a relation symbol
and t1, . . . , tn are F -terms whose sorts correspond to the arity of π,

and is closed under Boolean connectives and quantification over first-order variables.
For example, if X is a block of (S, F, P)-variables and ρ is an (S, F ∪X,P)-sentence
then (∀X)ρ is a (S, F, P)-sentence.

The translation of sentences along a signature morphism ϕ : (S, F, P) → (S′, F ′, P ′)
is defined inductively on the structure of the (S, F, P)-sentences and naturally renames
the sorts, operation symbols and relations symbols of (S, F, P) according to ϕ.

The Satisfaction Relation. The satisfaction between models and sentences is the usual
Tarskian satisfaction defined inductively on the structure of the sentences. For instance,
given a modelM and a universal sentence (∀X)ρ of a signature (S, F, P),M |=(S,F,P)

(∀X)ρ if and only if M ′ |=(S,F∪X,P) ρ for all (S, F ∪X,P)-expansions M ′ of M .

B Temporal Logic

The logical system that is used in the paper in defining service clauses, denoted MA-LTL,
is a variation of Linear Temporal Logic whose semantics is based on Muller automata
instead of conventional temporal models. We begin by recalling the institution of Linear
Temporal Logic, which will later be used in defining the institution MA-LTL.

Linear Temporal Logic

Signatures. The signatures are arbitrary sets of actions. Signature morphisms are just
functions, hence the category of signatures is Set .

Models. LetA be a set of actions. AnA-model is a trace of actions ofA, i.e. an infinite
sequence λ∈P(A)ω . For every i∈ω, we denote by λ(i) the i-th element of λ and by
λi the suffix of λ that starts at i. Given two traces λ and λ′, a trace homomorphism
h : λ→ λ′ consists of an infinite sequence of inclusions λ(i) ⊆ λ′(i), for i∈ω.
For any signature morphism σ : A→ A′ and any A′-trace λ′, the reduct trace λ = λ′�σ
is defined in terms of its elements by λ(i) = σ−1

(
λ′(i)

)
, for any i∈ω.

Sentences. For any set of actions A, the set of A-sentences is defined as the least set
that contains the constants true and false , the actions inA, and is closed under negation
(¬), disjunction (∨), conjunction (∧), implication (⊃), next (©) and until (U). The
following well-known notations have been used extensively in the examples discussed
in the paper: ♦ ρ stands for true U ρ, and � ρ stands for ¬(true U ¬ρ).
Given two sets of actions A and A′, the translation of A-sentences along a signature
morphism σ : A → A′ is defined by induction on the structure of the sentences. For
example, for any action a∈A, σ(¬a) = ¬σ(a), and for any sentences ρ1 and ρ2,
σ(ρ1 U ρ2) = σ(ρ1) U σ(ρ2).

The Satisfaction Relation. For any set of actions A, the interpretation of A-sentences
over traces λ∈P(A)ω is defined by

– λ |=A true ,
– λ 6|=A false ,
– λ |=A a if and only if a∈λ(0),

– λ |=A ¬ρ if and only if λ 6|=A ρ,
– λ |=A ρ1 ∨ ρ2 if and only if λ |=A ρ1 or λ |=A ρ2,
– λ |=A ρ1 ∧ ρ2 if and only if λ |=A ρ1 and λ |=A ρ2,
– λ |=A © ρ if and only if λ1 |=A ρ,
– λ |=A ρ1 U ρ2 if and only if there exists i∈ω such that λi |=A ρ2 and λj |=A ρ1

for all j < i,
where a is an action in A and ρ, ρ1 and ρ2 are A-sentences.

MA-LTL

The institution MA-LTL has the same category of signatures and the same sentence
functor as LTL; therefore, we will only focus here on its model functor.

Models. For any set of actions A, the models are (non-deterministic) Muller automata
over the alphabet P(A), i.e. tuples Λ =

(
Q,P(A), T, I,F

)
, where

– Q is a finite non-empty set of states,
– T ⊆ Q× P(A)×Q is the transition relation,
– I ⊆ Q is the subset of initial states, and
– F ⊆ P(Q) is the set of final state sets.

Given two automata Λ =
(
Q,P(A), T, I,F

)
and Λ′ =

(
Q′,P(A), T ′, I ′,F ′

)
over

P(A), a homomorphism h : Λ → Λ′ consists of a function h : Q → Q′ such that
h(I) ⊆ I ′,

(
h(q1), X, h(q2)

)
∈T ′ whenever (q1, X, q2)∈T , and h(F) ⊆ F ′.

Concerning the model reducts, for any map σ : A→ A′ and any Muller automatonΛ′ =(
Q′,P(A′), T ′, I ′,F ′

)
, the reduct Λ′�σ=

(
Q′,P(A), T ′�σ, I ′,F ′

)
is the automaton

with the same states, initial states and final states as Λ′, and with the transition relation
given by

T ′�σ=
{(
q1, σ

−1(X ′), q2
)
| (q1, X ′, q2)∈T ′

}
.

The Satisfaction Relation. A run of an automaton Λ =
(
Q,P(A), T, I,F

)
on a trace

λ over A is an infinite sequence r∈Qω such that
(
r(i), λ(i), r(i+1)

)
∈T for all i∈ω.

A run r is said to be accepting if r(0)∈ I and Inf(r)∈F , where Inf(r) ⊆ Q is the set
of states that appear infinitely often in r.

A Muller automaton Λ =
(
Q,P(A), T, I,F

)
accepts a trace λ if and only if it

admits an accepting run on λ. Furthermore, Λ satisfies an LTL sentence ρ over A if and
only if any trace λ accepted by Λ satisfies ρ.

Λ |=MA-LTL
A ρ if and only if λ |=LTL

A ρ for all λ accepted by Λ

C Proofs

Let us recall that the construction of the institution of ARNs presented in Sect. 2 relies
on a base institution that satisfies the following properties:

– the category of signatures is finitely co-complete,

– there exist co-free models along any signature morphism,
– the category of models of any signature has products, and
– any model homomorphism reflects any sentence.

All these hypotheses hold for the institution MA-LTL as follows: the first is a well-
known result about the existence of small co-limits in Set , the second is provided by
Prop. 7 below, the third is ensured by the closure of Muller automata under intersection,
which is detailed categorically in Prop. 8, and the fourth is given by Prop. 9.

Proposition 7. For any morphism of MA-LTL-signatures σ : A→ A′, the model func-
tor �σ has a right adjoint, denoted ()

σ .

Proof. According to a general result about adjoints, it suffices to show that for any
automaton Λ over P(A) there exists an universal arrow from �σ to Λ.

Let us consider an automaton Λ =
(
Q,P(A), T, I,F

)
over P(A). We define the

automaton Λσ =
(
Q,P(A′), Tσ, I,F

)
over P(A′) by

Tσ =
{
(q1, X

′, q2) |
(
q1, σ

−1(X ′), q2
)
∈T
}
.

It is easy to see that the identity map 1Q forms a homomorphism of automataΛσ�σ→ Λ:
for any transition (q1, X, q2)∈Tσ�σ , by the definition of the reduct functor, we know
there exists a set X ′ ⊆ A′ such that σ−1(X ′) = X and (q1, X

′, q2)∈Tσ; by the
definition of Tσ it follows that

(
q1, σ

−1(X ′), q2
)
∈T , hence (q1, X, q2)∈T .

Λ Λσ�σ
1Qoo Λσ

Λ′�σ

h

OO

h

aa

Λ′

h

OO

Let us now assume that h : Λ′�σ→ Λ is another homomorphism of automata, with
Λ′ = (Q′,P(A′), T ′, I ′,F ′). Then for any transition (q1, X

′, q2)∈T ′, by the definition
of the model functor, we have

(
q1, σ

−1(X ′), q2
)
∈T ′�σ . Since h is a homomorphism,

it follows that
(
h(q1), σ

−1(X ′), h(q2)
)
∈T , which further implies, by the definition

of Tσ , that
(
h(q1), X

′, h(q2)
)
∈Tσ . As a result, the map h is also a homomorphism

of automata Λ′ → Λσ . Even more, it is the unique homomorphism Λ′ → Λσ (in the
category of automata over P(A′)) such that h; 1Q = h in the category of automata over
P(A). This concludes the proof. ut

Proposition 8. For any MA-LTL-signature A, the category of Muller automata over
P(A) has products.

Proof. Let {Λi | i∈ J} be a family of Muller automata over P(A), with Λi given by(
Qi,P(A), Ti, Ii,Fi

)
, for i∈ J . We define the automaton Λ =

(
Q,P(A), T, I,F

)
by

– Q =
∏
i∈ J Qi,

– T =
{
(q1, X, q2) |

(
q1(i), X, q2(i)

)
∈Ti for all i∈ J

}
,

– I =
∏
i∈ J Ii, and

– F = {S ⊆ Q | πi(S)∈Fi for all i∈ J},

where {πi : Q → Qi}i∈ J are the projections given by Cartesian product
∏
i∈ J Qi. It

immediately follows from the construction of Λ that πi is a homomorphism of automata
Λ→ Λi, for any i∈ J .

Let us now consider another family of homomorphisms {hi : Λ′ → Λi}i∈ J , with
Λ′ = (Q′,P(A′), T ′, I ′,F ′). One can easily see that the map h : Q′ → Q given by
h(q′)(i) = hi(q

′), for any q′ ∈Q′ and i∈ J , defines a homomorphism Λ′ → Λ. For
instance, given any transition (q′1, X, q

′
2)∈T ′, it holds that

(
hi(q

′
1), X, hi(q

′
2)
)
∈Ti,

for any i∈ J (because hi is a homomorphism). Therefore
(
h(q′1), X, h(q

′
2)
)
∈T . In

addition, by the properties of the product
∏
i∈ J Qi, h is the unique homomorphism

satisfying h;πi = hi, for all i∈ J . ut

Proposition 9. In MA-LTL every model homomorphism reflects any sentence, i.e. for
any MA-LTL-signatureA, anyA-model homomorphism h : Λ→ Λ′ and anyA-sentence
ρ, Λ satisfies ρ whenever Λ′ satisfies ρ.

Proof. Let us assume that Λ =
(
Q,P(A), T, I,F

)
and Λ′ =

(
Q′,P(A), T ′, I ′,F ′

)
.

According to the definition of the satisfaction relation we need to prove that any trace
λ accepted by Λ satisfies ρ.

We know that a trace λ is accepted by Λ if and only if there exists a run r∈Qω
of Λ on λ such that r(0)∈ I and Inf(r)∈F . By the definition of the homomorphisms
of automata, it follows that r;h∈Q′ω is a run of the automaton Λ′ on λ that verifies
(r;h)(0) = h(r(0))∈ I ′ and Inf(r;h) = h(Inf(r))∈F ′. Therefore, the trace λ is also
accepted by Λ′, thus implying (by hypothesis), that λ satisfies ρ.

The remaining part of the paper is dedicated to the proofs of the properties presented
in Sect. 2 and 3 that have been omitted due to lack of space.

Proof (of Prop. 4). Let δ : α → α′ be a morphism of ARNs, ι′ : α′ → β′ an α′-
interpretation and @x ρ an α-sentence. Assuming that Λ′ι′v (δv (x)) = Λ′(δ;ι′)v (x) is the
observed automaton at ι′v (δv (x)) in β′, we obtain the following equivalences.

ι′ |=SOC
α′ SenSOC(δ)(@x ρ)

iff ι′ |=SOC
α′ @δv (x) δ

pt
x (ρ)

(
by the definition of SenSOC

)
iff Λ′ι′v (δv (x))�ι′pt

δv (x)
|=MA-LTL δptx (ρ)

(
by the definition of |=SOC

)
iff Λ′ι′v (δv (x))�ι′pt

δv (x)
�δptx |=

MA-LTL ρ (by the sat. cond. of MA-LTL)

iff Λ′ι′v (δv (x))�δptx ;ι′pt
δv (x)
|=MA-LTL ρ (because ModMA-LTL is a functor)

iff Λ′(δ;ι′)v (x)�(δ;ι′)ptx |=
MA-LTL ρ (by the definition of ‘;’ in ARN)

iff δ; ι′ |=SOC
α @x ρ

(
by the definition of |=SOC

)
iff ModSOC(δ)(ι′) |=SOC

α @x ρ
(
by the definition of ModSOC

)
ut

Lemma 1. In SOC the satisfaction of any sentence is preserved along any model ho-
momorphism, i.e. for any ARN α, any α-sentence @x ρ and any α-model homomor-
phism ζ : ι1 → ι2, if ι1 satisfies @x ρ then ι2 satisfies @x ρ as well.

Proof. Let ζ : ι1 → ι2 be a homomorphism between two α-models ι1 : α → β1 and
ι2 : α→ β2, and let @x ρ be an α-sentence satisfied by ι1. With respect to the notations,
we assume that the sub-ARN of βi determined by ιvi (x) (for i∈{1, 2}) is the ground
ARN βxi =

(
Xi, Pi, Ci, γ

i,M i, µi, Λi
)
, with the signature given by the co-limiting

co-cone ξi : Dβxi
⇒ Aβxi .

By the definition of the satisfaction relation of SOC we know that

ιi |=SOC
α @x ρ if and only if Λiιvi (x)

�ιpti,x |=
MA-LTL ρ ,

where Λiιvi (x) is the observed automaton at ιvi (x) in βi. By hypothesis, we have that
Λ1
ιv1(x)

�ιpt1,x |=
MA-LTL ρ. Since we know that every MA-LTL-model homomorphism re-

flects sentences (by Prop. 9), we deduce that Λ2
ιv2(x)

�ιpt2,x |=
MA-LTL ρ whenever there

exists a homomorphism Λ2
ιv2(x)

�ιpt2,x→ Λ1
ιv1(x)

�ιpt1,x .

We know by hypothesis that ζ is a morphism between the ARNs β1 and β2 that
satisfies ι1; ζ = ι2. Moreover, because β1 is ground, we infer that ζptz is an identity, for
every point z of β1, which implies that ιpt2,y = (ι1; ζ)

pt
y = ιpt1,y; ζ

pt
ιv1(y)

= ιpt1,y for every
point y of α. As a result, Λ2

ιv2(x)
�ιpt2,x= Λ2

ιv2(x)
�ιpt1,x . This means that in order to obtain a

morphism Λ2
ιv2(x)

�ιpt2,x→ Λ1
ιv1(x)

�ιpt1,x , it suffices to obtain one Λ2
ιv2(x)

→ Λ1
ιv1(x)

.

Let us recall that Λiιvi (x) (for i∈{1, 2}) is the reduct Λβxi �ξiιv
i
(x)

, where

– Λβxi is the product
∏
e∈Pi∪Ci Λ

βxi
e , with projections denoted πie : Λβxi → Λ

βxi
e , and

– Λ
βxi
e (for e∈Pi ∪ Ci) is the co-free expansion of Λie along ξie, with the universal

morphism denoted εie : Λ
βxi
e �ξie→ Λie.

By the description of ARNs defined by a point we have that ζ can be restricted to a
morphism of ARNs βx1 → βx2 . Since βx1 is ground, it follows that

– Dβx1
(z) = Dβx2

(ζv (z)) for every point z ∈X1,

– Dβx1
(e) = Dβx2

(ζe(e)) for every hyperedge e∈P1 ∪ C1, and

– Dβx1
(〈c, z, βx1 〉) = Dβx2

(〈ζe(c), ζv (z), βx2 〉) for every c∈C1 and z ∈ γ1c .

This allows us to define a co-cone ξ : Dβx1
⇒ Aβx2 by

– ξz = ξ2ζv (z) for z ∈X1,

– ξe = ξ2ζe(e) for e∈P1 ∪ C1, and

– ξ〈c,z,βx1 〉 = ξ2〈ζe(c),ζv (z),βx2 〉
for c∈C1 and z ∈ γ1c .

Since ξ1 is the co-limit of Dβx1
it follows that there exists a (unique) morphism of co-

cones σ : ξ1 → ξ, i.e. an MA-LTL-signature morphism σ : Aβx1 → Aβx2 that satisfies, in
particular, ξ1e ;σ = ξe for every hyperedge e∈P1 ∪ C1.

We obtain in this way, for every hyperedge e∈P1 ∪ C1, the composite morphism
π2
ζ(e)�ξ2ζ(e) ; ε

2
ζ(e) from Λβx2�ξ2ζ(e)= Λβx2�ξe= Λβx2�σ�ξ1e to Λ1

e = Λ2
ζ(e).

Λ1
e = Λ2

ζ(e) Λ
βx1
e �ξ1e

ε1eoo Λ
βx1
e

Λ
βx2
ζ(e)�ξ2ζ(e)

ε2ζ(e)

OO

Λβx2�ξ2ζ(e)= Λβx2�σ�ξ1e

he�ξ1e

OO

π2
ζ(e)�ξ2

ζ(e)

oo Λβx2�σ

he

OO

SinceΛβ
x
1
e is the co-free expansion ofΛ1

e along ξ1e , we deduce that there exists a (unique)
morphism he : Λβx2�σ→ Λ

βx1
e such that the above diagram is commutative. This implies,

by the universality property of the product Λβx1 , the existence of a (unique) morphism
h : Λβx2�σ→ Λβx1 such that h;π1

e = he for every e∈P1 ∪ C1.

Λ1
e Λβx1

π1
eoo

Λβx2�σ

h

OO

he

aa

It follows that the reduct h�ξ1
ιv1(x)

is a morphism Λβx2�σ�ξ1ιv1(x)
→ Λβx1 �ξ1ιv1(x)

. The argu-

ment is completed by noticing that
– Λβx2�σ�ξ1ιv1(x)

= Λβx2�ξιv1(x)
= Λβx2�ξ2ζv (ιv1(x))

= Λβx2�ξ2ιv2(x)
= Λ2

ιv2(x)
and

– Λβx1�ξ1ιv1(x)
= Λ1

ιv1(x)
.

ut

Proof (of Prop. 5). Let us first focus on the direct implication and assume that (α,Q)
is a satisfiable query. According to the semantics of service queries it follows that there
exists an α-interpretation ι : α → β that satisfies every sentence in Q. We argue that
ι is a solution for (α,Q). In order to check this property we consider an arbitrary β-
interpretation κ : β → β′ and an α-sentence @x ρ∈Q. Since κ defines an α-model
homomorphism ι→ ι;κ and ι satisfies @x ρ, we deduce by Lemma 1 that ι;κ satisfies
@x ρ as well. But ι;κ is just the reduct ModSOC(ι)(κ); therefore, by Prop. 4, it follows
that κ satisfies SenSOC(ι)(@x ρ). We conclude the first part of the proof by noticing
that β has at least one interpretation, namely the identity 1β .

For the reverse implication let us consider that θ : α → α′ is a solution of the
query (α,Q) such that ModSOC(α′) is not empty. We fix an interpretation ι′ : α′ → β′

(which exists by hypothesis). Since θ is a solution of (α,Q) it follows that ι′ satis-
fies SenSOC(θ)(@x ρ), for every sentence @x ρ∈Q. As a result, by Prop. 4, the α-
interpretation ModSOC(θ)(ι′) satisfies every sentence @x ρ∈Q. ut

Lemma 2. If 〈θ1, θ2〉 is a unifier of an α1-sentence @x1
ρ1 and an α2-sentence @x2

ρ2,
with θ1 : α1 → α and θ2 : α2 → α, then

SenSOC(θ2)(@x2 ρ2) |=SOC
α SenSOC(θ1)(@x1 ρ1) .

Proof. Let ι : α→ β be an α-interpretation that satisfies SenSOC(θ2)(@x2
ρ2). Assum-

ing that Λιv (θv2(x2)) is the observed automaton at ιv (θv2 (x2)) in β, we obtain

ι |=SOC
α SenSOC(θ2)(@x2

ρ2)

iff ι |=SOC
α @θv2(x2) θ

pt
2,x2

(ρ2)
(
by the definition of SenSOC

)
iff Λιv (θv2(x2))�ιpt

θv2(x2)
|=MA-LTL θpt2,x2

(ρ2)
(
by the definition of |=SOC

)
iff Λιv (θv1(x1))�ιpt

θv1(x1)
|=MA-LTL θpt2,x2

(ρ2)
(
because θv1 (x1) = θv2 (x2)

)
.

Since by hypothesis θpt2,x2
(ρ2) |=MA-LTL θpt1,x1

(ρ1), we deduce that the following rela-
tions hold as well, thus completing the proof.

Λιv (θv1(x1))�ιpt
θv1(x1)

|=MA-LTL θpt1,x1
(ρ1)

iff ι |=SOC
α @θv1(x1) θ

pt
1,x1

(ρ1)
(
by the definition of |=SOC

)
iff ι |=SOC

α SenSOC(θ1)(@x1 ρ1)
(
by the definition of SenSOC

)
ut

Proof (of Prop. 6). Let θ : α → α′ be a solution of the query (α,Q) and ι′ : α′ → β′

an interpretation of α′. We prove that ι′ satisfies SenSOC(θ1; θ)(@x ρ), for any sentence
@x ρ∈Q1, by case analysis.

If the sentence @x ρ is distinct from R1 then by the construction of Q we have that
SenSOC(θ1)(@x ρ)∈Q, which further implies, because θ is a solution of (α,Q), that ι′

satisfies SenSOC(θ)
(
SenSOC(θ1)(@x ρ)

)
= SenSOC(θ1; θ)(@x ρ).

Let us now assume that @x ρ is the sentence R1. Since the morphism θ is a solu-
tion of (α,Q) and SenSOC(θ2)(R2) ⊆ Q, it follows that ι′ satisfies every sentence
in SenSOC(θ)

(
SenSOC(θ2)(R2)

)
= SenSOC(θ2; θ)(R2). Therefore, by Prop. 4, the

interpretation ModSOC(θ2; θ)(ι
′) satisfies R2. By the satisfiability of

(
P2, α2, R2

)
,

we further deduce that ModSOC(θ2; θ)(ι
′) also satisfies P2, which is equivalent with

the fact that ModSOC(θ)(ι′) satisfies SenSOC(θ2)(P2). Furthermore, since R1 and P2

are unifiable (by hypothesis), it follows by Lemma 2 that ModSOC(θ)(ι′) satisfies
SenSOC(θ1)(R1) as well. Hence, by applying Prop. 4 one last time, we conclude that ι′

satisfies the sentence SenSOC(θ1; θ)(R1). ut

	A Logic-Programming Semantics of Services

