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Abstract 

Gildersleeve, Haselton, and Fales (2014) present a meta-analysis of the effects of fertility 

on mate preferences in women.  Research in this area has categorized fertility using a great 

variety of methods, chiefly based on self-reported cycle length and time since last menses.  We 

argue that this literature is particularly prone to hidden experimenter degrees of freedom.  

Studies vary greatly in the duration and timing of windows used to define fertile vs. nonfertile 

phases, criteria for excluding subjects, the choice of what moderator variables to include, as well 

as other variables. These issues raise the concern that many or perhaps all results may have been 

created by exploitation of unacknowledged degrees of freedom (“p-hacking”).  Gildersleeve et 

al. sought to dismiss such concerns, but we contend that their arguments rest upon statistical and 

logical errors.  The possibility that positive results in this literature may have been created, or at 

least greatly amplified, by p-hacking receives additional support from the fact that recent 

attempts at exact replication of fertility results have mostly failed. Our concerns are also 

supported by findings of another recent review of the literature (Wood, Kressel, Joshi, & Louie, 

in press.)  We conclude on a positive note, arguing that if fertility-effect researchers take 

advantage of the rapidly emerging opportunities for study pre-registration, the validity of this 

literature can be rapidly clarified. 

Keywords: menstrual cycle, ovulatory cycle, p-hacking, fertility effects, mate 

preferences, researcher degrees of freedom 
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Meta-analysis can often be very useful in allowing the scientific community to rationally 

aggregate the information contained in a complex literature, especially one that contains 

conflicting findings.  However, it has been generally acknowledged that the credibility of a meta-

analysis can be undermined in some situations.  One widely recognized threat arises when 

unpublished studies are omitted.  Another major threat, rarely discussed until the past few years, 

is at least as injurious to the interpretability of literature syntheses and also much harder to 

mitigate.  This threat involves the bias that arises when the data in the studies being surveyed 

were originally analyzed in a tendentious fashion by experimenters wittingly or unwittingly 

exploiting unacknowledged degrees of freedom in order to obtain positive results (Simmons, 

Nelson, & Simonsohn, 2011).  Such biased analyses have come to be referred to as “p-hacking”. 

We recently pointed out that the evolutionary psychology literature on fertility effects 

may be unusually prone to p-hacking partially because of the high degree of variability that 

exists from study to study in the method used to classify different women as fertile or infertile 

(Harris, Chabot, & Mickes, 2013; Harris, 2013).  The idea that positive results in this literature 

may have been created, or at least greatly amplified, by p-hacking receives support from two 

observations: (a) recent attempts at exact replication of fertility results have mostly failed, and 

(b) an examination of just the unpublished studies in the literature finds no effects1 (Wood, 

Kressel, Joshi, & Louie, in press). 

In their review, Gildersleeve, Haselton, & Fales (2014) mention the problem of analytical 

elasticity, but they attempted to dismiss it. The purpose of this commentary is to show why this 

dismissal is unfortunately unpersuasive.  We argue that Gildersleeve have made logical errors in 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  One potential way that p-hacking might explain such null findings would be if investigators 
who failed to p-hack usually found no results, and therefore, did not publish their results, 
whereas those who used p-hacking tended to succeed in getting positive findings, which they 
then published.	
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their analysis of how p-hacking would be expected to manifest itself in the literature.  Our 

comment concludes on a positive note, however, pointing out that even if the current literature is 

inconclusive because of analytical flexibility and the potential for p-hacking, a solution is rapidly 

emerging that will allow future studies to definitively avoid these problems and test existing 

claims. 

The arguments offered by Gildersleeve et al. (2014) to dismiss the role of p-hacking 

involve several misleading sets of claims, which we discuss and rebut below.  First, they 

downplay the actual amount of variation in fertility definitions found in the literature. We point 

out that the flexibility is quite dramatic—sometimes even enough to reverse the direction of 

effects.  Second, they argue that this potential flexibility is not actually leading to biased effects 

because investigators decide in advance how they will analyze their data.  We acknowledge that 

the frequency of “fishing expeditions” in this literature is obviously not directly observable, but 

we argue that the fact that fertile periods often vary from one paper to another within the same 

lab strongly suggests that p-hacking is more than a theoretical possibility (see Figure 1, Harris et 

al., 2013).  Third, they maintain that the use of continuous fertility methods (as in a relatively 

small subset of the studies that they review) gets around the problem of flexibility; we explain 

why it does not solve the problem.  Finally, Gildersleeve et al. contend that specific quantitative 

findings from their meta-analysis argue against the idea that results are being inadvertently 

manufactured through p-hacking.  We show that these arguments rest on logical and statistical 

confusions.  We turn now to the first issue. 

How much flexibility is there in the literature? 

 In attempting to argue that p-hacking is not a problem in this literature, Gildersleeve and 

colleagues (2014) play down the amount of flexibility in analyses that a typical menstrual cycle 
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study has.  They write, “Most aspects of study design are determined in advance of data 

collection, thereby eliminating concerns about researcher degrees of freedom” (p. 52) and while 

they note that definition of high and low fertility windows is not always determined in advance 

they repeatedly claim that they are “usually defined in advance of data collection” (p. 147).  In a 

contemporaneous piece, Gildersleeve et al. (2013) boldly state, “It is implausible that these 

findings are a mere artifact of ‘researcher degrees of freedom.’” (p. 520). 

In this literature, there are an unusual number of analytical choices that investigators must 

make. Ironically, Gildersleeve and colleagues’ (2014) own figures illustrate some of these 

choices (see Figure 3).2  For example, consider the assignment of women into the high and low 

fertile groups. The experimenter chooses 1) the number of days to be counted as fertile, 2) the 

specific days considered fertile, 3) the number of days to be counted as infertile, 4) the specific 

days considered infertile, 5) which days will be thrown out of analyses all together (for example, 

exclude all women who have cycle days longer than 28 days), and 6) whether to assess fertility 

with a forward method, backward method, or some mixture of the two. Together, these decisions 

can dramatically alter fertility classifications. 

 For example, based on the numbers in Gildersleeve and colleagues’ Figure 3, the number 

of days considered as fertile ranges from 3 to 15 days and the number of days considered 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2Perusal of this figure may actually leave the reader with an overestimation of the consistency in 
the literature given that a single study often has multiple separate entries. It also should be noted 
that their figure has errors, of which we note just two: Little, Jones, Burt & Perrett (2007) are 
listed as having excluded women who were on day 15 or higher in their cycle when in fact these 
women were included in the nonfertile group. Rupp et al. (2009) are listed as having used a 
continuous fertility method when they actually placed participants in low fertility (days 1-5 and 
17-35) and high fertility (days 6-16) groups. 
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infertile ranges from 3 to 22 days.3  Thus, if experimenters simply chose from the range of 

options that already exist in the field, they would have at least 13 options for the number of days 

to include as high fertility and 20 options for low fertility days.  The total number of options 

available explodes when one considers all of the choices created by different combinations of 

these variables, along with the many options for the specific placement of these windows.  

The flexibility in analyses, however, does not end with determining the fertile and 

infertile windows. Researchers often commonly make additional decisions about which subjects 

to exclude (e.g., women over a particular age, single women) and which moderators to examine 

(e.g., relationship status; primary mate’s characteristics). Another avenue for flexibility comes 

from using different transformations of dependent variables.  

If changes in fertility definitions are large, one might still wonder whether they are large 

enough to alter results.  Although this question could benefit from detailed study applying 

simulated classifications to real datasets, there is little doubt that changing fertility windows can 

transform the results of a study. For example, Harris (2011) attempted to replicate Penton-Voak 

and colleagues’ findings that women in the fertile phase prefer more masculine faced men than 

women in nonfertile phases (Penton-Voak et al., 1999; Penton-Voak & Perrett, 2000), using 

stimuli obtained from Penton-Voak. Harris’ primary analyses were performed exactly as Penton-

Voak and Perrett (2000): Women who had cycle days more than 28 days were excluded, women 

who were on cycle days 6-14 were placed in the high fertility group and all others were placed in 

the low fertility group. Harris found a significant effect (p < .03), but in the opposite direction to 

that reported by Penton-Voak and colleagues: women in the fertile phase preferred less 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 This number is actually greater since some studies include cycle lengths as long as 40 days, but 
the Gildersleeve et al. figure only displays data for 28 days. Extreme variability also has been 
documented in other reviews (Harris et al., 2013; Wood et al., in press).  	
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masculine faces relative to women in the nonfertile phase. In subsequent analyses, Harris showed 

how this effect could be changed by relatively small shifts in the fertile window. When days 8-16 

were considered the fertile days (a shift of only two days from the previous analysis) and all 

remaining days were counted as not fertile, the effect disappeared (p >.56). Interestingly, 

Gildersleeve and colleagues (2014) chose to include the latter analysis, rather than the former, in 

their meta-analysis4. In other work, Wood and colleagues reanalyzed data from Frost (1994) and 

showed that reducing the fertile phase window by one day could make a previously significant 

result no longer significant (p = .283).  Thus, even slight variations in analytic strategies 

sometimes have drastic effects on whether an analysis produces significant effects. 

Is potential analytical flexibility being exploited to seek positive results? 

We contend that when analytical flexibility is present, it is only sensible to assume that 

some experimenters (whether consciously or unconsciously) will be exploiting this flexibility in 

order to find positive publishable effects, and more specifically to arrive at findings they find 

theoretically agreeable.  In a series of simulations, Simmons et al. (2011) examined the 

consequences of a number of research practices such as excluding subsets of participants, 

exploring different transformations of dependent measures, not reporting all analyses or 
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  Gildersleeve et al. justify their selection by claiming that they chose to include the Harris 
analysis that was based on the high-fertility window with the highest estimated average 
conception probability according to the values reported by Wilcox and colleagues (2001). 
Previously, Gildersleeve et al. (2013) have claimed “the backward counting method is generally 
regarded as a more accurate method of estimating cycle position and fertility” (pp. 519). 
Therefore, it is odd that they did not choose to use the analyses in which Harris used a backward 
fertility estimate, especially since this is the analysis for which the high-fertility window had the 
highest estimated average conception probability (contrary to Gildersleeve and colleagues’ 
claims in footnote 9).  
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conditions, etc.  They showed that such tactics, especially when adopted in combination, can 

increase false alarm rates far above the nominal 5% that is assumed to exist in published 

research.  For example, Simmons et al. found that performing four such practices in combination 

resulted in a 60% likelihood of finding an effect that was significant at p = .05 in the absence of 

any real effect.   

The clearest evidence for exploitation of analytical flexibility arises when the same 

researchers adopt and then discard various transformations of the same dependent variables from 

one study to the next, without any justification being provided for these shifts. For example, both 

Pillsworth and Haselton (2006) and Haselton and Gangestad (2006) examined a mate’s sexual 

and investment attractiveness. In Pillsworth and Haselton (2006) the types of attractiveness were 

analyzed separately, but in Haselton and Gangestad (2006) a difference score of sexual vs. 

investment attractiveness was calculated and then used in analyses.   

Of course, it should go without saying that many investigators undoubtedly do not engage 

in p-hacking, even if common practices would have allowed them to. To produce the slight 

preponderance of positive findings that Gildersleeve et al. (2014) contend the literature shows, it 

would probably only take a fairly modest number of biased analyses.  Moreover, such behaviors 

may be undertaken in good faith, related to ignorance of their consequences.  The outpouring of 

interest that the Simmons et al. (2011) paper has drawn within the scientific community probably 

shows that many investigators have been unaware of how small choices can cumulate to easily 

produce statistically significant findings built out of sampling error. 

Does using continuous calculations for fertility solve the p-hacking issue? 

Gildersleeve et al. (2014) argue that restricting their analysis to just those studies that 

employ continuous fertility calculations (rather than dividing women into high and low fertility 
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groups) can resolve concerns about p-hacking, because such studies do not require the 

investigator to specify windows. They suggest that some effects are still present in this subgroup 

of studies, and therefore experimenter degrees of freedom are not an issue. 

However, while continuous fertility calculation methods generally reduce the number of 

choices to be made relative to the categorical classification methods, they are not necessarily as 

straightforward as Gildersleeve et al. (2014) suggest, and many such studies still report making 

complex and idiosyncratic analysis decisions.  Most investigations cite Wilcox et al. (2001) as 

the source of their continuous fertility numbers. Wilcox et al. provided a table for estimated 

probability of pregnancy following a single act of unprotected intercourse, which provides a risk 

estimate for each day in a woman’s cycle up to day 40 (separately for women whose cycle 

lengths are consistent vs. irregular). The most straightforward way to use this table is to assign a 

woman a probability value based on the day in her cycle (as done by Morrison, Clark, Gralewski, 

Campbell, & Penton-Voak, 2010).  However, other researchers take into account a woman’s 

predicted cycle length and perform transformations to force the woman on a 28/29-day cycle 

(regardless of what her natural cycle length is) and then try to apply Wilcox et al. table to these 

transformed numbers (e.g., Thornhill, Chapman, & Gangestad, 2013)5. Other studies combine 

the 28/29-day conversions with additional transformations such as averaging forward and 

backward fertility calculations (e.g., Gangestad, Garver-Apgar, Simpson, & Cousins, 2007).  

Although such analytic strategies may be individually defensible, the fact that such a range of 

choices exists undercuts Gildersleeve and colleagues’ argument. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 This procedure could alter the data quite substantially.  Take, for example, a woman who has a 
30 day-cycle and is tested on day 14. A straightforward application of Wilcox et al. would give 
her a pregnancy risk estimate of .085. However, transformations using her cycle length and 
assumptions that she is fertile 15 days prior to the start of her next cycle would produce a risk 
estimate of .059.	
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Quantitative evidence about p-hacking 

Gildersleeve et al. (2014) also describe some specific analyses they undertook to shed 

light on the possible role of p-hacking (pp. 52-55).  One such analysis takes all the studies that 

placed women in discrete low or high fertility categories, and attempts (using a continuous 

estimator of fertility) to estimate the fertility difference expected from this choice of window.  

That amounts to a grade of how successfully the study sorted high from low-fertile women.  

Having graded studies in this way, they look at whether there is a detectable correlation across 

studies between this grade and the effect size that the study reports for the outcome variable.  

They report that there is no sign that studies that made a “good choice” of window produce any 

bigger effects.   

The results of this analysis are problematic for the view that this literature reveals real 

fertility effects.  If it does, then studies that better measure fertility should tend to show stronger 

effects.  On the other hand, if fertility effects in the literature were all produced by Type-1 errors 

based upon sampling error, then the windows that are graded high and those graded low by 

Gildersleeve and colleagues’ procedure should not differ in the size of reported effects.  This is 

what their analysis showed. (The failure of better “quality” studies to show effects also has been 

reported by Wood et al., in press; e.g., studies that used hormonal assessments did not find more 

robust effects.)  

Having failed to find confirmation for real effects from their analysis, Gildersleeve and 

colleagues (2014) then display a figure with effect sizes for a subset of studies along with 

information specifying which days each study counted as fertile or infertile and which were 

excluded altogether.  According to Gildersleeve et al., the reader should be able to see by eye 

that there are no interesting correlations between larger effect sizes and any of three things,  
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“a) more variable high- and low-fertility window definitions, b) more poorly placed high- and 

low-fertility windows (high-fertility windows that included true low-fertility days of the cycle 

and/or low-fertility windows that included true high-fertility days of the cycle), and c) less 

frequent use of a continuous fertility variable…” (p. 53). Thus, Gildersleeve et al. conclude:  

“we used multiple procedures to assess and adjust for various forms of potential bias. The results 

of these procedures do not suggest that these sources of bias account for the robust cycle shifts 

observed in this meta-analysis.”  (p. 53). 

We find it odd that Gildersleeve et al. would suggest that readers can rely on “eyeball” 

judgments of complex multidimensional data—especially when the data are presented in tabular 

fashion.  Clearly, this provides no reliable information about whether any relationships exist.  

But even if they had demonstrated the lack of any such relationships, the implications for 

possible p-hacking would not be self-evident.  The patterns produced by p-hacking would 

depend upon how the p-hacking was carried out.  For example, if there is no true effect of 

fertility on the outcome variables being measured, and investigators tried multiple different 

candidate windows selected at random until a significant result was obtained (if at all), one 

should not expect to see any relation between choice of a fertile window and the strength of the 

positive effects.  In a universe composed exclusively of type-1 errors, any measurement of the 

independent variable is as good (or bad) as any other. 

The most reasonable way to see whether p-hacking could result in a correlation between 

window duration and effect size would be if the following conditions happen to hold: (a) 

researchers who p-hack begin their analyses with small windows, and then try progressively 

larger windows until they get an effect, and (b) researchers vary in how much they persevere in 

p-hacking. Interestingly, another recent meta-analysis of this literature (Wood et al., in press) 
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found that larger fertility windows were more likely to show effects. This effect is exactly what 

one would predict if investigators tend to start with relatively narrow fertility windows, and then 

some investigators (i.e., those engaging in more energetic “p-hacking”) expand the window in 

search of effects.  We are unable to think of any completely benign explanation for this pattern, 

and it would seem to trump Gildersleeve and colleagues’ failure to observe any relationships 

from looking at a figure. 

Looking Forward to Better Research: How to Prevent such Problems in the Future   

The general point of the current comment is to say that excess analytical flexibility makes 

the literature less conclusive than it could and should be.  Supporting this interpretation is that 

those few studies in which we can be sure that analytical flexibility was not present--namely, 

recent papers that attempted to perform direct replications—have generally reported negative 

results.  For example, as described above, Harris (2011) carried out a fairly direct replication of 

Penton-Voak and colleagues, using the same choices as the original investigators, and found no 

evidence whatsoever for the predicted cycle shift in facial masculinity preferences (with the 

effect running in the opposite direction). Two additional investigations that also used these same 

methods, fertility classifications, etc. failed to find any effect of cycle phase on masculinity 

preferences, even when the relationship context was specified as short-term (Mickes & Harris, 

2014). Another direct replication of shifts in religiosity, political attitudes, and voting 

preferences (Harris & Mickes, in press) failed to support most of the effects of fertility reported 

by Durante, Rae, & Griskevicius (2013).   

Looking beyond these direct replications, what methodological improvements can help 

avoid the kinds of problems discussed here?  Fortunately, the problem of flexibility and potential 

for “p-hacking” which bedevils the fertility effect literature can be prevented in a simple and 
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decisive fashion. What is needed is for investigators to conduct future studies using pre-

registration (Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 2012) of their 

definition of fertile periods and all other analytical methods, including plans for excluding 

subjects and potential moderator variables to be included in analyses. Pre-registration is now 

possible and convenient through the Open Science Framework (OSF.io). (The use of biological 

measures of fertility may also increase reliability, but the use of these tests does not eliminate 

many of the forms of elasticity described above, so when used, should be combined with pre-

registration.)  Pre-registration became the norm some years ago in clinical trials, and there is 

rapidly increasing awareness of its potential to advance basic research as multiple journals and 

organizations embrace it.  New studies should routinely utilize pre-registration, and key studies 

in the literature need to be replicated with pre-specified procedures as well.  If this plan is 

adopted, we will soon have a good idea of whether the findings in this literature are solid but 

relatively small (as Gildersleeve et al., 2014, contend) or whether many effects have been 

invented out of the whole cloth (as the Wood et al., in press, meta-analysis would seem to 

suggest). 
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