
Ultra-lightweight Mutual Authentication Protocols : Weaknesses and
Countermeasures

Zeeshan Bilal
Information Security Group

Royal Holloway University of London
Egham, Surrey, TW20 0EX

Zeeshan.Bilal.2010@live.rhul.ac.uk

Keith Martin
Information Security Group

Royal Holloway University of London
Egham, Surrey, TW20 0EX
Keith.Martin@rhul.ac.uk

Abstract—This paper reviews weaknesses highlighted in
existing proposals for a family of mutual authentication
protocols belonging to the ultra-lightweight class, which
are designed for low-cost RFID systems. This family is
suitable for systems where authenticating parties already
share secrets, which are updated in each authentication
round to counter tracking of the tag. We propose a new
ultra-lightweight authentication protocol that builds on the
strengths of existing schemes yet incorporates countermea-
sures to overcome previous weaknesses. Significantly our
protocol uses lower resources than previous proposals.

Keywords-Ultra-lightweight; Mutual Authentication Proto-
col; RFID

I. INTRODUCTION

Radio Frequency Identification (RFID) systems consist
of three main components: server, reader and tag. The
communication channel between server and reader is as-
sumed to be secure while the channel between reader and
tag is insecure. The wide deployment of RFID systems
is being constrained due to many security and privacy
issues [1] concerning the channel between reader and tag.

To secure this channel researchers have proposed var-
ious cryptographic solutions, including mutual authenti-
cation protocols between the two communicating parties.
Based on the computational cost and operations supported
by the tags, these authentication protocols are divided into
four classes: full-fledged, simple, lightweight and ultra-
lightweight [2]. The ultra-lightweight class is proposed for
the low-cost RFID systems that are most widely deployed
and most likely to replace bar-codes. The main limiting
factor in these tags is the various resource constraints.
Since cost has to be kept low, these tags cannot afford
a state-of-the-art CPU, large memory, or to support large
bandwidth. Generally, low-cost RFID tags consist of a few
thousand gates, a simple Arithmetic and Logic Unit (ALU)
performing simple operations, and no active power source.

A. Ultra-lightweight Mutual Authentication Protocols

Ultra-lightweight mutual authentication protocols
(UMAPs) are designed to provide mutual authentication
between a reader and a tag. These schemes are proposed
for low-cost RFID tags having a total of 5,000-10,000
logic gates. Out of this total, less than 3,000 logic gates
can be used to implement the authentication protocol [2].

Many UMAPs have been proposed, but all existing
proposals have significant flaws, as we now outline.

Initial proposals were based only on the use of triangu-
lar functions (T-Functions) [3] including XOR, AND,
OR and addition modulo 2L. These schemes require
fewer logic gates (as low as 3000) and are considered
very efficient [4]–[6]. However, T-functions have very
poor diffusion and use of AND and OR produces biased
results. Weaknesses in these proposals were highlighted
soon after publication [7]–[10].

SASI [2] is the first UMAP to use a lightweight
non-triangular function RotBits (left rotation of bits)
with triangular functions. This protocol was initially ac-
claimed but later weaknesses were highlighted in its design
which resulted in de-synchronization and full-disclosure
attacks [11]–[13]. A full-disclosure attack on SASI
in [11] used the properties of RotBits function. The main
assumption of the attack was that if RotBits does not
rotate the values, SASI can be treated as a scheme with
T-functions only. As a result, the Gossamer [14] UMAP
was proposed which introduced a new non-triangular
lightweight function known as MixBits. However, the
weakness which caused de-synchronization in SASI [12],
[13] was not addressed in Gossamer, resulting in fur-
ther de-synchronization attacks [15]–[17]. This weakness
arises since the reader generates new random numbers
in each authentication round and both reader and tag
use these random numbers to update their values. An
adversary can thus use this property to its advantage by
de-synchronizing the authentication process [18].

David et al. [19] and Tagra et al. [17] proposed coun-
termeasures to prevent de-synchronization attacks. How-
ever, these countermeasures require additional valuable
resources at the tag end. Hernandez-Castro et al. [20]
presented a passive attack on the scheme in [19] which
can recover a tag’s secret using linear cryptanalysis. Lee et
al. [21] also presented a scheme which requires additional
memory and communication overheads and has some
privacy issues [22]. Yeh et al. [16] suggested reducing the
storage overheads on the tag’s memory, however, it is very
easy to force de-synchronization [18]. Moreover, a passive
adversary can carry out a traceability and a full-disclosure
attack on the Yeh et al. protocol [23]. Similarly a protocol
suggested by Eghdamian et al. [24] is cryptanalyzed by
Avoine in [25]. In most UMAPs, the main vulnerability

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28905081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

exploited by an adversary is the stateless nature of a tag.
The attacker runs many incomplete protocols and gathers
information from each in order to disclose secret values.

Most of the existing proposals for UMAPs thus have
flaws. The existing countermeasures to overcome these
flaws given in [17], [26] have notable overheads. In
this paper, we try to rectify this by proposing a new
ultra-lightweight protocol that builds on the strengths of
previous designs while overcoming their weaknesses using
fewer resources. Our UMAP is explained in detail in
Section II. We then carry out a security and performance
analysis in Section III.

II. PROPOSED PROTOCOL

We now explain our proposed UMAP.

A. Assumptions

We first make the following assumptions that must hold
prior to running our protocol.

• Each tag shares secrets (specifically a key and static
identity) with the server.

• The server holds a database which records details
about a particular tag, including its shared secrets
(key and static identity).

• This database is indexed by a dynamic and publicly
known index-pseudonym unique to each tag.

• The reader is an intermediary which relays the mes-
sages from the tag (prover) to the server (verifier).

• The reader, querying the tag, is connected to the
server and is legitimate (the communication channel
between the reader and server is secured).

B. Adversarial Model

We consider that our scheme is vulnerable to both
passive and active attackers. The abilities and limitations
of our potential adversary are as follows:

• The adversary is capable of listening to both forward
and backwards channels (the reader to the tag and
vice versa).

• We assume that our adversary has two options: either
to jam the conversation between the legitimate server
and tag (active) or to eavesdrop (passive). However
we also assume that our adversary cannot function in
full duplex mode i.e. she cannot transmit and receive
on the same frequency slot, at the same time.

• The adversary cannot take over an ongoing authenti-
cation round because when the tag detects a collision
of readers, it stops responding (we assume the use of
reader collision algorithm, see [27]).

• Defenses against relay attack (man-in-the-middle),
physical capture and tampering are not in the scope
of this paper.

The notation in our scheme is shown in Table I.

C. Goals

A UMAP should achieve the following goals consider-
ing the variety of potential threats (details are given in [1]):

Table I
NOTATION

Notation Description

T The tag participating in an authentication round.
R The reader participating in an authentication round.
S The server holding the database and authenticating a

tag.
Adv Both passive as well as active adversary.
Indexi A dynamic index-pseudonym uniquely associated to

each tag in ith authentication round.
KSi A dynamic secret key shared between the tag and

server in ith authentication round.
ID Tag’s static and unique identity.
L Length of the secret key and static identity.
ri Random number generated by server in ith authen-

tication round.
+ Addition modulo 2L as all values are assumed to be

L-bit long.
A→ B :M A sends to B, public message M .
HW(X) Hamming weight of bit string X .
λ(X) Integer value of L-bit string X reduced modulo L.
LRot(X,µ) Left rotation of argument X by µ.
f(X,Y) A secure lightweight pseudo random function (PRF)

which takes two inputs X , Y and outputs a pseudo-
random value where f(X,Y) 6= f(Y,X) (such as
MixBits specified in [14]).

• Mutual Authentication: Our scheme should provide
mutual (entity) authentication.

• Tag Content Privacy: The secret static identity of
the tag should not be transmitted in the clear as it is
linked to the contents of the item it is attached with.

• Availability: Authenticating parties should stay syn-
chronized and always be available to communicate.

• Tag Anonymity: The adversary should not be able
to track a target tag by listening to the channel.

• Forward Security: If a tag is compromised at any
stage, the adversary should not be able to compromise
any future communication.

• Performance: Since UMAPs are designed for low-
cost RFID systems:

– storage space should be as low as possible,
– cryptographic functions should be extremely

lightweight in nature and efficient to compute,
– the amount of data communicated should be kept

as low as possible.

D. Design Features

Our protocol has the following design features, intended
to overcome flaws as outlined in Section I-A:

1) Combination of Functions: The protocol uses a
combination of lightweight non-triangular functions
and triangular functions. We use LRot(X,λ(Y))
as left rotation of bit string X by λ(Y) positions,
where λ(Y) is computed by first converting the L-
bit string Y into an integer and then reducing it
modulo L. Some of the existing schemes have used
Rot(X,HW (Y)) as left rotation of bit string X by

the hamming weight of bit string Y . Since HW(Y)
does not follow a uniform distribution, this weakens
the security property given by the rotation function,
whereas λ(Y) follows a uniform distribution.

2) Use of Random Nonce: In our protocol, the server
generates a random nonce for data freshness. In
existing schemes random nonces change on every
communication attempt even in event of a failed
authentication. Avoine et al. [18] mention this as
a potential vulnerability which can lead to de-
synchronization attacks. Our scheme overcomes this
vulnerability by recording each random nonce in a
database for a particular tag’s Index. It then uses the
random value to calculate internal secret values for
updating tuple (KS, Index). The server generates
a new random nonce only after a successful authen-
tication. This resists de-synchronization attacks and
provide tag anonymity and forward security.

3) Provision for Re-synchronization: In event of a
failed authentication attempt either due to com-
munication error or intentional interference by an
adversary, both server and tag may become de-
synchronized. Our scheme re-synchronizes as the tag
does not update its values in a failed authentication
attempt and the server keeps a copy of older values.
In some existing schemes [2], [14], [17], [19], [24],
[26], [28], re-synchronization is attempted using
older values of Index and shared secrets stored in
the tag’s memory. This not only causes additional
overheads on the tag’s valuable memory but also
leads to a potential weakness which allows the
server to ask for older values of Index of the tag if
the updated Index is not recognized. This weakness
leads to denial-of-service attacks as mentioned in
[15], [18]. In our scheme, if the server asks for older
values, this will be an indication of a replay attack
carried out by an impersonating server.

4) Cost, Performance and Security Trade-offs: Our
scheme provides a trade-off between cost, perfor-
mance and level of security. It uses lightweight
functions which can be easily incorporated in the
simple ALU of low-cost RFID tags. Our protocol
consumes a small amount of storage on these tags
and completes the protocol using two messages.
The schemes mentioned in [17], [19], [24], [26],
[28], [29] require additional messages and memory
requirements in order to overcome existing weak-
nesses. Moreover, many of these schemes are still
vulnerable and have been analyzed to highlight
weaknesses in the design [18], [20], [23], [25], [30].

E. The Protocol

We now propose a new UMAP that provides the secu-
rity goals mentioned in Section II-C and has the design
features identified in Section II-D.

1) Identification Stage: A compatible T in the vicinity
of a compatible R is identified as follows:

• Step 1. R→ T : Hello

• Step 2. T → R : Indexi

• Step 3. R→ S : Indexi

• Step 4. S now searches for this Indexi in its
database. If it matches an existing entry, S proceeds
to the next stage, otherwise it does not respond to T .

2) Server Authentication and Update Stage: On suc-
cessful identification, S is authenticated as follows:

• Step 1. S uses Indexi sent by T to extract KSi

associated with this particular T .
• Step 2. S now generates a random value ri and

calculates the internal secret values ni1,ni2 using tuple
(KSi, ri) as follows:

ni1 = f(KSi, ri),

ni2 = f(ri,KSi).
(1)

• Step 3. S now generates public message Ai using
tuple (n1i, n2i, Indexi,KSi, ID) as follows:

Ai = LRot(LRot(n2i + Indexi +KSi + ID, n1i) + n1i, n2i).

(2)

• Step 4. S → R : Ai‖ri
• Step 5. R→ T : Ai‖ri
• Step 6. T calculates internal secrets n1i and n2i as

in (1) and uses these to calculate a local copy Ai′ of
Ai using (2).

• Step 7. T now checks:
if Ai′ = Ai then

S is authenticated; proceed to next stage;
else

Protocol is abandoned;
end if

• Step 8. S after sending Ai‖ri also updates its tuple
(Indexi,KSi) as follows:

Indexi+1 = LRot(LRot(n1i + Indexi, n1i) + n2i, n2i),

KSi+1 = LRot(LRot(n2i +KSi, n1i) + n1i, n2i).

(3)

• Step 9. In addition, S keeps a copy of tuple
(Indexi,KSi, ri) in its memory.

3) Tag Authentication and Update Stage: Once S is
authenticated, T is now authenticated as follows:

• Step 1. T generates the public message Bi using
tuple (n1i, n2i, Indexi,KSi, ID) as follows:

Bi = LRot(LRot(n1i + Indexi +KSi + ID, n2i) + n2i, n1i).

(4)

• Step 2. T → R : Bi

• Step 3. R→ S : Bi

• Step 4. S calculates a local copy Bi′ of Bi using (4).
• Step 5. S now checks:

if Bi′ = Bi then
T is authenticated;

else

Protocol is abandoned;
end if

• Step 6. T after sending Bi updates its values of tuple
(Indexi,KSi) only after authenticating S using (3).

The message Bi can only be verified by a legitimate S.
Successful mutual authentication concludes the protocol
and S grants access to T . Both T and S have updated their
values as shown in (3). S, after successfully authenticating
T , deletes the old values of the tuple (Indexi,KSi, ri) in
its database to avoid tag impersonation.

III. SECURITY AND PERFORMANCE ANALYSIS

We now conduct a security analysis to show how our
UMAP meets the goals of Section II-C, as well as a
performance analysis which demonstrates that our scheme
uses fewer resources than schemes given in [17], [26].

A. Mutual Authentication

We first show that our scheme provides mutual authen-
tication by demonstrating that only a valid pair of S and T
(in possession of KS) can generate public messages A and
B, respectively, that will be accepted by the other party.
The freshness of these public messages is ensured by the
use of a random nonce in every authentication round.

1) Authentication of the server: S is authenticated by
checking the authenticity of public message A. This
message is generated using shared secrets known
only to legitimate authenticating parties. Therefore,
only a legitimate T can check the legitimacy of the
message. The correctness of public message A thus
determines the authenticity of S.

2) Authentication of the tag: Once T authenticates
S successfully, it transmits its shared secrets in
the form of a public message B. S can check
the legitimacy and correctness of this message and
hence authenticates T .

We consider whether an Adv without shared secrets
can generate the public messages. To do so, Adv has
to take over the authentication round after disrupting
message A||r and replaying it later by impersonating a
genuine S, or Adv has to eavesdrop Index and message
A||r and then take over the authentication round after
disrupting and eavesdropping message B to replay it
for T ’s impersonation. However, this is infeasible due
to these reasons: 1) Adv cannot take over an ongoing
authentication round (see Section II-B), 2) Adv cannot
disrupt and eavesdrop at the same time (see Section II-B),
3) Adv has to perform a relay attack (see Section II-B).
So, server and tag impersonation attacks are not feasible.

B. Tag Content Privacy

Each T has a unique static identity ID and is linked
to the content of the particular tagged item. We want to
transmit this ID confidentially so that an Adv is unable
to read, copy or track it. In our scheme, S and T share a
secret dynamic KS. Our scheme uses this KS to calculate
two internal secret values n1 and n2 using a secure PRF
f . We then use the tuple of (n1,n2,KS) to generate public

messages which are used for transmitting the secret ID
confidentially. Recall from Section II-E that each of the
two public messages has the following form:

P = LRot(LRot(s2 + p+K + S, s1) + s1, s2). (5)

where P and p are public values, s1, s2 are dynamic secret
values, K is a shared secret key and S is a static secret
(ID of T). The goal of the Adv is to disclose S. The
complexity of recovering S is as follows:

1) The outer rotation from (5) is undone with complex-
ity O(log2 s2):

Q = LRot−1(P, s2),

= LRot(s2 + p+K + S, s1) + s1.
(6)

2) It requires a complexity O(2s1× log2 s2) to subtract
all possible values of s1 from R.H.S of (6):

R = Q− s1,
= LRot(s2 + p+K + S, s1).

(7)

3) Further inner rotation is undone from (7) from all
corresponding 2s1× log2 s2 values (this doubles the
complexity as O(2× 2s1 × log2 s2)):

T = LRot−1(R, s1),

= s2 + p+K + S.
(8)

4) We now subtract public value p from (8) (this
doubles the overall complexity as O(2× 2× 2s1 ×
log2 s2) = O(22×2s1×log2 s2) ≈ O(2s1×log2 s2):

U = T − p,
= s2 +K + S.

(9)

5) Subtracting corresponding values of s2 from (9)
requires an overall complexity of O(2s1× log2 s2×

2s2

log2 s2) = O(2s1 × 2s2):

V = U − s2,
= K + S.

(10)

Concluding we shall have a total of 23K (considering
s1, s2 and K are of same length) possible values of
S. Since s1, s2 and K change in every authentication
round (and s1,s2 are output of a secure PRF), our protocol
provides privacy to T content.

C. Availability

In our scheme, both S and T update their shared secret
KS and Index after every successful authentication round
in synchronization with each other. This synchronization
is based on the receipt and authenticity of public messages
A and B. Since update only takes place after a successful
authentication and public messages A and B can only be
generated by legitimate parties, we consider the following
threats which can break the synchronization:

1) Adversary disrupts message A||r: Since T does
not receive message A||r sent by S, it will not
update its values and keep the tuple (Indexi,KSi)
in its memory. Though S updates to new tuple
(Indexi+1,KSi+1), it still has an entry for old tuple
(Indexi,KSi, ri) in its database. In this case, S
identifies T with Indexi which is still not updated
and both remain synchronized.

2) Adversary disrupts message B: Since S does not
receive message B, it has both old and new values
as ((Indexi, KSi, ri),(Indexi+1, KSi+1)) stored
in its database. Whereas T , on sending message B,
has already updated its tuple to (Indexi+1, KSi+1).
This avoids de-synchronization as T is identified by
S using Indexi+1.

3) Adversary tampers with A||r or B: If an Adv
tampers with the public messages A or random
number r, a genuine T shall calculate a different
value of A

′
which indicates that the message has

been altered. Similarly, a genuine S can check the
integrity of public message B.

D. Tag Anonymity

Two of the main privacy concerns in RFID systems are
tracking and content privacy [1]. In our scheme, the Index
and public messages (A,B) change in every authentication
round. This avoids tracking the location of a T .

E. Forward Security

In our UMAP, S generates a random value to calculate
internal secrets using f . These internal secrets are used
to update the Index and KS after every successful
authentication round. Therefore, if a T is compromised, it
does not reveal any of its past and future communications.

F. Performance Analysis

We now briefly carry out a comparative analysis of
performance parameters compared with the UMAPs given
in [17], [26] which are the only existing ones that appear
to meet the security goals detailed in Section II-C.

1) Storage Overhead: S stores the next potential and
old values of the tuple (Index,KS). Since S is
considered to have less resource constraints, this lifts
the burden on T ’s memory. Moreover, on successful
completion of the protocol, S deletes the old entry
thus saving storage space. T requires 2L bits storage
on RAM for tuple (Index,KS) and L bits of ROM
to store its ID, which is less compared to other
protocols of the same family as shown in Table II.

2) Computation Overhead: We have used lightweight
functions (Addition modulo, left rotation and
lightweight PRF) similar to other members of
UMAP family. In our scheme, T has to verify one
public message and calculate another message using
lightweight functions that can be easily implemented
in the ALU (Arithmetic and Logic Unit) processor
of T . Therefore it computes two public messages,
which are fewer compared to other schemes (which

use the same functions i.e., a lightweight PRF to
generate internal secrets and then adding, XOR-ing
and left rotating these with other secret and public
values) as shown in Table II. Moreover, we have also
reduced the call to f to two as compared to three in
other protocols and do not require XOR.

3) Communication Overhead: Our scheme commu-
nicates 2L bits during authentication round (consid-
ering each public message to be L bits) which is
less than other schemes in Table II.

Table II
COMPARATIVE ANALYSIS OF DIFFERENT PROTOCOLS

Protocol Storage Computation Communication

The Tagra et al.
Protocol [17] 6L 4 4L

The SULMA
Protocol [26] 6L 4 4L

Our Protocol
(this paper) 2L 2 2L

Chien [2] categorized the RFID tags into four classes
depending on the resources, cost and application. Ultra-
lightweight class is considered to be very scarce in its
resources. We consider that achieving security goals as
mentioned in Section II-C using fewer resources is im-
portant in this class. UMAPs are designed using a trade-
off between cost, performance and level of security. Thus
our protocol reduces the cost (in terms of storage) and
enhances the performance (in terms of computation and
communication) without degrading the level of security.

IV. CONCLUSION

This paper proposes a new UMAP designed for use
in RFID devices with limited resources. These schemes
provide security and privacy properties by updating the
secret values and indexes in every authentication round.
Synchronization between reader and tag is considered to
be of prime importance. We have shown why our protocol
overcomes weaknesses in previous UMAP designs and
demonstrated that our protocol involves lower overheads.

REFERENCES

[1] A. Juels, “RFID security and privacy: a research survey,”
in Journal on Selected Areas in Communications, vol. 24,
no. 2. IEEE, 2006, pp. 381–394.

[2] H.-Y. Chien, “SASI: A New Ultralightweight RFID Au-
thentication Protocol Providing Strong Authentication and
Strong Integrity,” in Transactions on Dependable and Se-
cure Computing, vol. 4, no. 4. IEEE CS, pp. 337–340.

[3] A. Klimov and A. Shamir, “Cryptographic Applications
of T-Functions,” in Selected Areas in Cryptography, ser.
Lecture Notes in Computer Science, vol. 3006. Canada:
Springer, 2004, pp. 248–261.

[4] P. Peris-Lopez, J. C. H. Castro, J. M. Estévez-Tapiador,
and A. Ribagorda, “M2AP: A Minimalist Mutual-
Authentication Protocol for Low-Cost RFID Tags,” in
Ubiquitous Intelligence and Computing, ser. Lecture Notes
in Computer Science, vol. 4159. Springer, 2006, pp. 912–
923.

[5] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-
Tapiador, and A. Ribagorda, “LMAP: A Real Lightweight
Mutual Authentication Protocol for Low-cost RFID tags,”
in Workshop on RFID Security, ser. Lecture Notes in
Computer Science. Springer.

[6] P. Peris-Lopez, J. C. H. Castro, J. M. Estévez-Tapiador, and
A. Ribagorda, “EMAP: An Efficient Mutual-Authentication
Protocol for Low-Cost RFID Tags,” in On the Move to
Meaningful Internet Systems, ser. Lecture Notes in Com-
puter Science, vol. 4277. Springer, pp. 352–361.

[7] T. Li and G. Wang, “Security Analysis of Two Ultra-
Lightweight RFID Authentication Protocols,” in Interna-
tional Information Security Conference, ser. IFIP, vol. 232,
South Africa, 2007, pp. 109–120.

[8] M. Bárász, B. Boros, P. Ligeti, K. Lója, and D. Nagy,
“Passive Attack Against the M2AP Mutual Authentication
Protocol for RFID Tags,” in EURASIP Workshop on RFID
Technology, Austria, 2007.

[9] ——, “Breaking LMAP,” in Conference on RFID Security,
Malaga, Spain, July 2007.

[10] T. Li and R. H. Deng, “Vulnerability Analysis of EMAP-An
Efficient RFID Mutual Authentication Protocol,” in Pro-
ceedings of the International Conference on Availability,
Reliability and Security, Austria, 2007, pp. 238–245.

[11] J. C. H. Castro, J. M. Estévez-Tapiador, P. Peris-Lopez,
and J.-J. Quisquater, “Cryptanalysis of the SASI Ultra-
lightweight RFID Authentication Protocol with Modular
Rotations,” in CoRR, vol. abs/0811.4257, 2008.

[12] T. Cao, E. Bertino, and H. Lei, “Security Analysis of the
SASI Protocol,” in Transactions on Dependable Secure
Computing. IEEE.

[13] H.-M. Sun, W.-C. Ting, and K.-H. Wang, “On the security
of chien’s ultralightweight rfid authentication protocol,” in
Transactions on Dependable Secure Computing. IEEE.

[14] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-
Tapiador, and A. Ribagorda, “Advances in Ultralightweight
Cryptography for Low-cost RFID Tags: Gossamer Proto-
col,” in Workshop on Information Security Applications,
ser. Lecture Notes in Computer Science, vol. 5379, Korea,
2008, pp. 56–68.

[15] Z. Bilal, A. Masood, and F. Kausar, “Security Analysis
of Ultra-lightweight Cryptographic Protocol for Low-cost
RFID Tags: Gossamer Protocol,” in NBiS. IEEE CS, 2009,
pp. 260–267.

[16] K.-H. Yeh and N. Lo, “Improvement of Two Lightweight
RFID Authentication Protocols,” in Information Assurance
and Security Letters, vol. 1. Dynamic Publishers Inc.,
2010, pp. 6–11.

[17] D. Tagra, M. Rahman, and S. Sampalli, “Technique for Pre-
venting DoS Attacks on RFID Systems,” in International
Conference on Software Telecommunications and Computer
Networks, Croatia, 2010.

[18] G. Avoine, X. Carpent, and B. Martin, “Privacy-friendly
synchronized ultralightweight authentication protocols in
the storm,” in Journal of Network and Computer Appli-
cations, vol. 35, no. 2, 2012, pp. 826–843.

[19] M. David and N. R. Prasad, “Providing Strong Security and
High Privacy in Low-Cost RFID Networks,” in Security
and Privacy in Mobile Information and Communication
Systems, ser. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications En-
gineering, vol. 17, Turin, Italy, 2009, pp. 172–179.

[20] J. C. Hernandez-Castro, P. Peris-Lopez, R. C. Phan, and
J. M. Estevez-Tapiador, “Cryptanalysis of the David-Prasad
RFID Ultralightweight Authentication Protocol,” in Work-
shop on RFID Security, ser. Lecture Notes in Computer
Science, vol. 6370, Turkey, 2010, pp. 22–34.

[21] Y.-C. Lee, Y.-C. Hsieh, P.-S. You, and T.-C. Chen, “A New
Ultralightweight RFID Protocol with Mutual Authentica-
tion,” in WASE International Conference on Information
Engineering, vol. 2, Taiyuan, Shanxi, 2009, pp. 58–61.

[22] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-
Tapiador, and J. C. A. van der Lubbe, “Security Flaws in
a Recent Ultralightweight RFID Protocol,” in Workshop on
RFID Security, ser. Cryptology and Information Security,
vol. 4, Singapore, 2010, pp. 83–93.

[23] P. Peris-Lopez, J. C. H. Castro, R. C.-W. Phan, J. M.
Estévez-Tapiador, and T. Li, “Quasi-Linear Cryptanalysis
of a Secure RFID Ultralightweight Authentication Proto-
col,” in Information Security and Cryptology - 6th Interna-
tional Conference, pp. 427–442.

[24] A. Eghdamian and A. Samsudin, “A Secure Protocol for
Ultralightweight Radio Frequency Identification (RFID)
Tags,” in Informatics Engineering and Information Science,
ser. Communications in Computer and Information Science,
vol. 251, Malaysia, 2011, pp. 200–213.

[25] G. Avoine and X. Carpent, “Yet Another Ultralightweight
Authentication Protocol that is Broken,” in Workshop on
RFID Security, ser. Lecture Notes in Computer Science,
Netherlands, 2012.

[26] M. Kianersi, M. Gardeshi, and M. Arjmand, “SULMA: A
Secure Ultra Light-Weight Mutual Authentication Protocol
for Lowcost RFID Tags,” in International Journal of Ubi-
Comp, vol. 2. India: AIRCC, 2011, pp. 17–24.

[27] G. E. Standards, “EPC Radio-Frequency Identity Protocols
Class-1 Generation-2 UHF RFID Protocol for Communi-
cations at 860 MHz-960 MHz,” in Specification for RFID
Air Interface, 2008.

[28] Y.-C. Lee, Y.-C. Hsieh, P.-S. You, and T.-C. Chen, “A New
Ultralightweight RFID Protocol with Mutual Authentica-
tion,” in WASE International Conference on Information
Engineering, Taiyuan, Shanxi, 2009, pp. 58–61.

[29] K.-H. Yeh, N. Lo, and E. Winata, “An Efficient Ultra-
lightweight Authentication Protocol for RFID Systems,” in
Workshop on RFID Security, ser. Cryptology and Informa-
tion Security, vol. 4, Singapore, 2010.

[30] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estévez-
Tapiador, and J. C. A. van der Lubbe, “Security Flaws in
a Recent Ultralightweight RFID Protocol,” in CoRR, vol.
abs/0910.2115, 2009.

	Introduction
	Ultra-lightweight Mutual Authentication Protocols

	Proposed Protocol
	Assumptions
	Adversarial Model
	Goals
	Design Features
	The Protocol
	Identification Stage
	Server Authentication and Update Stage
	Tag Authentication and Update Stage

	Security and Performance Analysis
	Mutual Authentication
	Tag Content Privacy
	Availability
	Tag Anonymity
	Forward Security
	Performance Analysis

	Conclusion
	References

