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Abstract

This thesis is concerned with the study of maximal subgroups of torsion multi-edge

spinal groups. We prove that every torsion multi-edge spinal group has maximal sub-

groups only of finite index. This implies that every such group does not contain dense

proper subgroups with respect to the profinite topology.

Moreover, for a torsion multi-edge spinal group, we show that all its maximal subgroups

are normal of finite index p, where p is the odd prime such that the group acts on the

p-adic regular rooted tree.

Multi-edge spinal groups are modelled after the GGS-groups, named after R. Grig-

orchuk, N. Gupta and S. Sidki. Every group in the class of GGS-groups is generated

by a rooted automorphism and a recursively defined directed automorphism.

In contrast to the GGS-groups, every multi-edge spinal group is generated by a rooted

automorphism and an arbitrary finite number of directed automorphisms.

The thesis follows the work of E. Pervova, who showed that every torsion GGS-group

has maximal subgroups only of finite index. A key ingredient in the description of

maximal subgroups of GGS-groups is the existence of a map ⇥
1

under which the length

of elements in the derived group decreases.

We introduce a length function on elements of multi-edge spinal groups, and also a

second map ⇥
2

to use the recursive structure of the groups more e↵ectively. For a multi-

edge spinal group G, we prove that the length of every element of its derived group of

length greater or equal to 3, decreases under repeated applications of a combination of

the maps ⇥
1

and ⇥
2

. By introducing this second map ⇥
2

we also simplify the methods

developed by E. Pervova.
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Chapter 1

Introduction

1.1 Historical remark

Branch groups were explicitly defined by R. Grigorchuk at the conference Groups St An-

drews 1997 in Bath. Even though they were defined as a class of groups only recently,

examples of what are now called branch groups appeared in the literature significantly

earlier, starting with the article of J. Wilson [34] on just infinite groups. Important

examples within the class of branch groups were produced by R. Grigorchuk [10] and

by N. Gupta and S. Sidki [13] in the early 1980’s. The group constructed in [10] is a

three generated infinite torsion 2-group that was initially defined as a group permuting

the halves of the unit interval and is now known as the first Grigorchuk group. It is the

first example of a finitely generated infinite group of intermediate growth, answering

J. Milnor’s question [20] on the existence of such groups. The first Grigorchuk group

was later realised as a subgroup of the full automorphism group of the binary tree.

A second class of examples was constructed by N. Gupta and S. Sidki and became

known as the Gupta-Sidki groups; see [13]. In contrast to the Grigorchuk group, each

Gupta-Sidki group, one group for every odd prime p, is a two generated infinite torsion

group acting on the p-adic regular rooted tree for every odd prime p.

The class of branch groups is related to the General Burnside Problem on torsion

groups. Even though the first example of a finitely generated infinite torsion group

was constructed by E. Golod [9], the class of branch groups provides many examples of

finitely generated residually finite infinite torsion groups which are considerably easier

to describe; see [10] and [13].

Branch groups play an important role in the theory of just infinite groups (i.e. infinite

groups all of whose proper quotients are finite). In [34], J. Wilson developed a structure
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1.1. Historical remark 1. Introduction

theory for abstract just infinite groups. In that paper J. Wilson showed that the class

of just infinite groups splits into two subclasses, the groups with finite and the groups

with infinite structure lattice. However, J. Wilson’s dichotomy on just infinite groups

[34] was reformulated by R. Grigorchuk [11] in the form of a trichotomy according to

which every finitely generated just infinite group is either a branch group or can easily

be constructed from a simple group or from a hereditarily just infinite group (i.e. an

infinite group all of whose subgroups of finite index are just infinite).

There are two approaches to the definition of branch groups; see [3]. The first one

is purely algebraic, defining branch groups as groups whose lattice of subnormal sub-

groups is similar to the structure of a spherically homogeneous rooted tree. The second

approach is based on a geometric point of view according to which a branch group is

a group acting transitively on a spherically homogeneous rooted tree T and admits

a structure of subnormal subgroups similar to the corresponding structure in the full

automorphism group Aut(T ) of the tree T .

Various generalisations of the two families of groups led to the first distinction within

the class of branch groups; namely the Grigorchuk type of groups and GGS-groups

(named after R. Grigorchuk, N. Gupta and S. Sidki). In [1], S. Alešin found a family

of finitely generated infinite p-groups, arising as groups of automatic transformations.

In [19], Y. Merzlyakov showed that the groups introduced in [1] are very closely related

to the Grigorchuk and the Gupta-Sidki groups. In the Russian literature the groups

introduced in [1] have become known as Alešin type of groups (or AT-groups). In [4],

L. Bartholdi and Z. Šuniḱ proposed a generalisation of the class of branch groups and

initiated a systematic study of the new groups that they named spinal groups.

At the moment of writing this thesis, the theory of spinal groups is a very active area

of research. Of course, it is beyond our scope to report on all recent developments in

this area. Perhaps, the most important recent developments concerning spinal groups

can be found in A. Zugadi-Reizabal’s Ph.D thesis [36]; see also [8] and [32]. The main

subject of study in [36] is the order of congruence quotients of groups in several families

of spinal groups. As a consequence, the author determines the Hausdor↵ dimension of

groups in several families of spinal groups. In particular, the family of GGS-groups.

It is also worth mentioning that in [12], R. Grigorchuk and J. Wilson established some

interesting results concerning abstract commensurability of subgroups for the first Grig-

orchuk group. More precisely, the authors showed that if a group L is commensurable

with the first Grigorchuk group, then all maximal subgroups of L have finite index in L.

Their result applies to GGS-groups, and it would be very interesting to investigate this

property for the class of spinal groups.
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1.2. Motivation 1. Introduction

In this thesis we deal with multi-edge spinal groups, that is with spinal groups for which

the corresponding spines have more than one vertex at every level; see Section 3.1. The

term multi-edge spinal group has been proposed by A. Zugadi-Reizabal; see [36]. The

groups that we study are modelled after the GGS-groups, but in our case each group

is generated by a rooted automorphism and an arbitrary finite number of directed

automorphisms.

1.2 Motivation

In [3], R. Grigorchuk, L. Bartholdi and Z. Šuniḱ asked the following question.

Question 1. Is every maximal subgroup of a finitely generated branch group G nec-

essarily of finite index in G?

In [23] and [26], E. Pervova showed that this is indeed the case for the Grigorchuk

group and torsion GGS-groups respectively. On the other hand, I. Bondarenko [5]

constructed a finitely generated branch group which has maximal subgroups of infinite

index, answering in the negative Question 1.

The main aim of this thesis is to investigate the same question in the context of multi-

edge spinal groups. In particular, we extend and simplify the results obtained in [26]

to the class of torsion multi-edge spinal groups, and we show that these groups have

maximal subgroups only of finite index.

As indicated in [26] by E. Pervova, one motivation for our investigation comes from

a conjecture of Passman concerning the group algebra K[G] of a finitely generated

group G over a field K with char K = p. The conjecture states that, if the Jacobson

radical J (K[G]) coincides with the augmentation ideal A(K[G]) then G is a finite p-

group; see [21, Conjecture 6.1]. In [21], Passman showed that if J (K[G]) = A(K[G])

then G is a p-group and every maximal subgroup of G is normal of index p. Hence

multi-edge spinal groups that are torsion yield natural candidates for testing Passman’s

conjecture. It is important to widen this class of candidates, as even the Gupta-Sidki

group for p = 3 does not satisfy J (K[G]) = A(K[G]); this follows from [31].

10



1.3. Structure of the thesis 1. Introduction

1.3 Structure of the thesis

In Chapter 2 we give a short introduction to branch groups and establish some no-

tation and prerequisites for the rest of the thesis. For a detailed account on abstract

branch groups the reader can consult the survey article [3], by L. Bartholdi, R. Grig-

orchuk and Z. Šuniḱ. For an account on profinite branch groups see the article [11], by

R. Grigorchuk. In this thesis we deal almost exclusively with abstract branch groups.

In Chapter 3 we introduce the class of multi-edge spinal groups acting on the p-adic

regular rooted tree T for the odd prime p. We prove the following.

Lemma A. Every multi-edge spinal group G is fractal.

For a multi-edge spinal group G, this means that the restriction of every vertex sta-

biliser, denoted by StabG(u), to the subtree rooted at the vertex u coincides with the

group G. The above property turns out to be a very useful tool in applying inductive

arguments.

For G a multi-edge spinal group that is not Aut(T )-conjugate to the GGS-group G,

arising from a constant defining vector we prove the following.

Proposition B. Let G be a multi-edge spinal group that is not Aut(T )-conjugate to

the GGS-group G. Then G is a branch group.

Moreover, we show that

Proposition C. Every torsion multi-edge spinal group G is just infinite.

In addition, Chapter 3 contains several technical results that are later used in the rest

of the thesis.

In Chapter 4 we restrict our attention to torsion multi-edge spinal groups for the rest of

the thesis. We describe the abelianisation G/[G, G] of a multi-edge spinal group G, and

define a length function on elements of G. In addition, we introduce the theta maps

⇥
1

, ⇥
2

: [G, G] ! [G, G] and we prove that the length of every element of [G, G] of

length at least 3 decreases down to 0 or 2 under repeated applications of a combination

of these maps; see Theorem 4.2.1. The maps ⇥
1

and ⇥
2

are defined in such a way to

investigate maximal subgroups of torsion multi-edge spinal groups. More precisely, we

are interested in descending to upper companion groups further down in the tree T

in certain coordinates. In this context, the theta maps ⇥
1

and ⇥
2

enable us to use

induction to prove our main results.
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1.3. Structure of the thesis 1. Introduction

Chapter 5 constitutes another important part of this thesis. First we establish several

intermediate propositions, some of which are direct generalisations of respective results

in [26] to the context of torsion multi-edge spinal groups.

Then based on these propositions we establish our main result.

Theorem D. Let G = ha, b
1

, . . . , bri be a just infinite multi-edge spinal group. Suppose

G is not Aut(T )-conjugate to a group in E. Then G does not contain any proper dense

torsion subgroups, with respect to the profinite topology.

As a corollary we obtain the following.

Corollary E. Let G = ha, b
1

, . . . , bri be a torsion multi-edge spinal group. Suppose G is

not Aut(T )-conjugate to a group in E. Then G does not contain any maximal subgroups

of infinite index.

Finally, for G a just infinite multi-edge spinal group, we show that all its maximal

subgroups are normal of index p, where p is the odd prime such that G acts on the

p-adic regulat rooted tree.

Theorem F. Let G = ha, b
1

, . . . , bri be a just infinite multi-edge spinal group. Suppose

G is not Aut(T )-conjugate to a group in E. Then every maximal subgroup of G is

normal of index p, where p is the odd prime such that G acts on the p-adic regulat

rooted tree.

In Appendix A we provide a hands on computation using the theta maps ⇥
1

and

⇥
2

. We “test” Theorem 4.2.1 using a three generated torsion multi-edge spinal group

G = ha, b
1

, b
2

i acting on the p-adic regular rooted tree T for an odd prime p. More

precisely, we show that every element of its derived group of length greater or equal

to 3 decreases under repeated applications of a combination of the maps ⇥
1

and ⇥
2

.

Finally, in Appendix B we provide the code of a MAGMA [6] program we wrote

during the early stages of our research. This program allows to investigate the map ⇥
1

introduced by E. Pervova in [26]. The code is adjusted for the case of the Gupta-Sidki

group for p = 3. We also provide the output of a “small” computation using as an

example the Gupta-Sidki group for p = 3. This example shows that one cannot expect

to reduce the length of elements in the derived group of the Gupta-Sidki group in all

cases, without using the map ⇥
2

we introduce in Section 4.2.

12



Chapter 2

Preliminaries

In this chapter we give a short introduction to (abstract) branch groups and establish

some notation and prerequisites for the rest of the thesis. All definitions in this chapter

are drawn directly from existing published literature; see [3] and [11].

2.1 p-adic trees

A tree is a connected graph with no cycles. There is a type of tree which is of par-

ticular interest due to its rich group-theoretical properties that appear in its group of

automorphisms. That is the regular p-adic rooted tree, for p a prime number; rooted

because it has a distinguished root vertex and regular because every vertex has the

same out-degree p. In this thesis all trees are regular p-adic with distinct root, for p an

odd prime.

Let X be an alphabet on p letters, e.g. X = {1, 2, . . . , p}, and denote by X the asso-

ciated free monoid. A positive word of length n over X is any formal product of the

form w = x
1

x
2

· · · xn, where n 2 N
0

and xi 2 X for all i 2 {1, . . . , n}. The unique word

of length 0, the empty word, is denoted by ;. The length n of the word w is denoted

by |w|.

We introduce a partial order on the set of all words over X by the prefix relation 6.

Namely, u 6 v if u is an initial segment of the sequence v, i.e. if u = u
1

. . . un, v =

v
1

. . . vk, where n 6 k and ui = vi for i 2 {1, . . . , n}. The partially ordered set of words

over X, denoted by TX , is called the regular rooted tree over X. In order to simplify

the notation we denote TX by T .

13



2.1. p-adic trees 2. Preliminaries

�

1 2 p

11 12 1p p1 p2 pp

Figure 2.1: The p-adic regular rooted tree T over the alphabet X = {1, . . . , p}

From the graph-theoretical point of view, every word over X represents a vertex in a

rooted tree. The empty word ; represents the root ; the p one-letter words x
1

, . . . , xp 2

X represent the p children of the root etc. The ordered pairs (u, v), where u and v are

vertices of the form u = x
1

. . . xn and v = x
1

. . . xn+1

, are precisely the (directed) edges

of the tree. The distance of a vertex u from the root vertex is denoted by |u| and is

called the length of u. This is the number of edges in the unique shortest path from ;

to u.

More generally, if u is a word over X, then the words ux for x 2 X of length |u| + 1,

represent the p children of the vertex u (see Figure 2.1). The cardinality of the set

of vertices which are both adjacent to the vertex u and of length |u| + 1 is called the

out-degree of u.

A rooted path in the tree T is a sequence of adjacent vertices which starts at the root

and is such that each vertex occurs at most once. If the tree T is infinite, the set of all

infinite paths is called the boundary of T and is denoted by @T .

The graph structure of the tree T induces a distance function on the set of words by

d(u, v) = |u| + |v|� 2|u ^ v|,

where u^v is the longest common prefix of u and v. In particular, the words of length n

represent the vertices that are at distance n from the root. Such vertices constitute the

level n of the tree.

The subtree of T containing only vertices from levels 0 to n is denoted by T
[n]. We

write Tu for the full subtree of T rooted at the vertex u and consisting of all vertices v

14



2.2. Tree automorphisms 2. Preliminaries

with u  v. Since the tree T is regular, any two subtrees Tu and Tv, where u and v are

words over X of the same length, are “canonically” isomorphic under the isomorphism

that deletes the prefix u and replaces it by the prefix v. Based on this observation, we

denote by T|u| any subtree rooted at a vertex in the same level as the vertex u. Thus we

write Tn for the subtrees rooted at any vertex at level n. This is partly motivated by a

more general setting described in Remark 2.1.1. In fact, it is clear that any subtree Tu,

and hence any Tn, is canonically isomorphic to the tree T via the map uv 7! v.

Remark 2.1.1. There is a more general construction to that of a regular tree; see [11].

The tree T is constructed over a sequence of alphabets X
1

, X
2

, X
3

, . . . with |Xi| =

mi � 2, where m = {mn}

1
n=1

is a sequence of natural numbers. Such a tree is called

spherically homogeneous because vertices of the same length have the same out-degree.

All notions introduced above carry over to this more general situation. The main

di↵erence is that the trees Tn are in general no longer isomorphic to T , but depend

on n.

2.2 Tree automorphisms

As in the previous section, let T be a p-adic regular rooted tree on an alphabet X.

Definition 2.2.1. A tree automorphism of T is a permutation of the words over X

that preserves the prefix relation.

In the language of graph theory an automorphism of T is just a graph automorphism

that fixes the root. We denote the group of automorphisms of T by Aut(T ). The

orbits of the action of Aut(T ) on the vertices of the tree T are precisely its levels. For

any given vertex, a tree automorphism can be regarded as a labelling of the vertices

by elements of the symmetric group which acts on the edges (or vertices) below that

vertex.

Consider an automorphism f of T and a word u over X. We denote the image of u

under the automorphism f by uf . For a letter x in X we have (ux)f = ufx0 where x0 is

a uniquely determined letter in X. Clearly the induced map x 7! x0 is a permutation

of X. We denote this permutation by f(u) and we call it the vertex permutation of f

at u. Denoting the image of x under f(u) by xf(u), we get

(ux)f = ufxf(u), (2.1)

15



2.2. Tree automorphisms 2. Preliminaries

which easily extends to

(x
1

x
2

. . . xn)f = x
f(;)
1

x
f(x1)

2

. . . xf(x1x2...xn�1)
n . (2.2)

By using (2.1), it is clear that

fg(u) = f(u) � g(uf ) and f�1(u) = (f(uf�1
))�1, (2.3)

for all words u over X and f, g 2 Aut(T ).

Definition 2.2.2. Let f be an automorphism of T and u a word over X. The section

of f at u is the unique automorphism fu of T|u| ⇠= T defined by

vfu = w if (uv)f = ufw

for every word v over X.

Definition 2.2.3. Let G be a subgroup of Aut(T ). The set of sections at the vertex u,

denoted by Secu(G) = {gu | g 2 G}, is called the section of G at u.

We now introduce some special classes of automorphisms which will be used in various

constructions.

Definition 2.2.4. An automorphism f 2 Aut(T ) is called rooted, if f(u) = 1 for all

u 6= ;.

f(�) 6= 1

1 1 1

Figure 2.2: A rooted automorphism

Definition 2.2.5. Let f be an automorphism of T . The labelling support

`supp(f) = {u | f(u) 6= 1}

of f , is the set of vertices at which f has non-trivial labelling.

16



2.2. Tree automorphisms 2. Preliminaries

Note that this notion di↵ers from the usual concept of support. For instance, a rooted

automorphism f 6= 1 has `supp = {;}, while it does not move the root ; but other

vertices of the tree T .

Definition 2.2.6. An automorphism f 2 Aut(T ) is called finitary, if the labelling

support `supp(f) = {u | f(u) 6= 1} of its labelling is finite.

1 1 1

non-trivial 
part of the
labelling

Figure 2.3: A finitary automorphism

Recall that if the tree T is infinite, the set of all infinite paths is called the boundary

of T and is denoted by @T .

Definition 2.2.7. An automorphism f 2 Aut(T ) is called directed, with directing path

l 2 @T , if f(u) = 1 whenever u is not at distance 1 from l and f is not finitary.

Note that a directed automorphism is not necessarily non-trivial at every vertex of

distance 1 from the directing path l.

a = (1, 2, 3)
- a cyclic permutation

1

1

1 1 1 1 1 1

1 1 1 1 1 1

l

a

a

a�1

a�1

Figure 2.4: A directed automorphism “f = (a, a�1, f) ” of the 3-adic regular rooted
tree

17



2.3. Level and rigid stabilisers 2. Preliminaries

2.3 Level and rigid stabilisers

Let T be a p-adic regular rooted tree and G a subgroup of Aut(T ) acting transitively

on every level of the tree. In this section we introduce some important subgroups of G

which are going to be used in later chapters.

Definition 2.3.1. The subgroup StabG(u) consisting of all automorphisms in G that

fix the vertex u, is called the vertex stabiliser of u in G.

Definition 2.3.2. The subgroup StabG(n) =
T

|v|=n StabG(v) consisting of all auto-

morphisms in G that fix all vertices at level n, is called the n-th level stabiliser in G.

More generally, the subgroup Stab(n) of Aut(T ) consisting of the automorphisms that

fix the n-th level is called the n-th level stabiliser.

Note that the elements in Stab(n) fix all vertices of the finite tree T
[n]. Moreover, the

subgroup Stab(n) is the kernel of the natural epimorphism

⇡n : Aut(T )! Aut(T
[n])

obtained by restriction. Hence Stab(n) is normal in Aut(T ) and

Aut(T )/ Stab(n) ⇠= Aut(T
[n]).

Since Aut(T
[n]) is a finite group, it is clear that Stab(n) is of finite index in Aut(T ).

In particular, since StabG(n) = Stab(n) \ G it follows that StabG(n) has finite index

in G.

Recall from Section 2.1 that a positive word of length n over X is any formal product

of the form w = x
1

x
2

· · · xn, where xi 2 X for all i 2 {1, . . . , n}. Note that any

g 2 StabG(n) can be identified in a natural way with the collection (g
1

, . . . , gNn) of

elements of Aut(Tn), where Nn = pn is the number of vertices at level n. Indeed,

gi 2 Aut(Tn) corresponds to the restriction g|Tu of g to the subtree Tu
⇠= Tn where the

root is the i-th vertex u at level n.

Since T is a regular tree, Aut(T ) is isomorphic to Aut(Tn) after the natural identifica-

tion of subtrees. Therefore the decomposition g = (g
1

, . . . , gNn) defines an embedding

 n : StabG(n)! Aut(Tu1)⇥
Nn
· · · ⇥Aut(TuNn

) ⇠= Aut(T )⇥
pn

· · · ⇥Aut(T ).

In the case where n = 1,

 
1

: StabG(1)! Aut(Tu1)⇥
p

· · · ⇥Aut(Tup) ⇠= Aut(T )⇥
p

· · · ⇥Aut(T ).
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2.3. Level and rigid stabilisers 2. Preliminaries

We write UG
u for the restriction of the vertex stabiliser StabG(u) to the subtree Tu

rooted at the vertex u. Clearly UG
u is a subgroup of Aut(Tu). Notice that since G acts

transitively on all levels of the tree T , the vertex stabilisers at every level are conjugate

in G.

We write UG
n ✓ Aut(Tn) for the common isomorphism type of the restrictions of the

n-th level vertex stabilisers, and simply Un when the group G is fixed. We call UG
n

the n-th upper companion group of G. Since T is a regular tree, UG
n is a subgroup of

Aut(T ) under the canonical identification Tn
⇠= T , determined up to conjugation.

In general, the upper companion group UG
n may not be a subgroup of G or may be

a subgroup of infinite index. However, in certain classes of groups acting on regular

rooted trees such as branch groups, the upper companion groups are isomorphic to

finite index subgroups of G under the canonical identification of the original tree with

its subtrees; see Section 2.4 for the definition of branch groups.

In analogy to principal congruence subgroups of arithmetic groups such as SLd(Z),

the level stabilisers can be considered as natural principal congruence subgroups for

Aut(T ); see [17, Ch. 6] for an overview on congruence subgroups in arithmetic groups.

Moreover, if G is a subgroup of Aut(T ) we refer to the quotient G/ StabG(n) as the

n-th congruence quotient of G.

Definition 2.3.3. The subgroup G  Aut(T ) has the congruence subgroup property if

every subgroup of finite index in G contains the group StabG(n) for some n.

Another important class of subgroups of groups acting on regular rooted trees are the

rigid vertex stabilisers and the rigid level stabilisers.

Definition 2.3.4. The subgroup RstabG(u) consisting of all automorphisms in G that

fix all vertices not having u as a prefix, is called the rigid vertex stabiliser of u in G.

T

u

trivial vertex
permutations

possibly some
non-trivial vertex

permutations

Figure 2.5: An automorphism in the rigid stabiliser of u
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2.4. Branch groups 2. Preliminaries

Definition 2.3.5. The group RstabG(n) is the product of the rigid vertex stabilisers

RstabG(u
1

), . . . , RstabG(uNn)

of the vertices u
1

, . . . , uNn at the n-th level, and is called the rigid n-th level stabiliser

in G.

We write LG
n for the common isomorphism type of the n-th level rigid vertex stabilisers

and simply Ln when the group G is fixed. We call LG
n the n-th lower companion group

of G. Notice that the lower companion group LG
u at a vertex u is a subgroup of the

corresponding upper companion group. Because the group G acts transitively on every

level of the tree, we have the inclusion

LG
u ✓ UG

u ✓ Secu(G).

Clearly automorphisms in di↵erent rigid vertex stabilisers on the same level commute.

Since G acts transitively on all levels, it follows that all vertex stabilisers StabG(u)

corresponding to vertices on the same level are conjugate in G. Furthermore, since

the lower companion group LG
u at a vertex u is a subgroup of the upper companion

group UG
u , it follows that all rigid vertex stabilisers RstabG(u) corresponding to vertices

on the same level are also conjugate in G. Thus taking the direct product of the rigid

vertex stabilisers of vertices at the same level, we see that the rigid level stabilisers

RstabG(n) are normal in G. In contrast to the level stabilisers, the rigid level stabilisers

may have infinite index, and may even be trivial.

2.4 Branch groups

Among the families of groups acting on rooted trees, there is a class of groups of

particular importance to group theorists. That is the class of branch groups.

We state the definition of branch groups slightly more generally for spherically homo-

geneous rooted trees.

Recall from Remark 2.1.1 in Section 2.1, that a spherically homogeneous rooted tree T

is constructed over a sequence of alphabets X
1

, X
2

, X
3

, . . . with |Xi| = mi � 2, where

m = {mn}

1
n=1

is a sequence of natural numbers. Our main interest is in the case

X = X
1

= . . . and p = m
1

= . . . an odd prime, leading to a regular p-adic rooted tree.
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2.4. Branch groups 2. Preliminaries

There are two approaches to the definition of branch groups; see [3]. The first one is

purely algebraic, defining branch groups as groups whose lattice of subnormal subgroups

is similar to the structure of a spherically homogeneous rooted tree.

Definition 2.4.1. A group G is said to be a branch group, if it has a descend-

ing sequence of normal subgroups Hn of finite index in G with trivial intersection
T1

n=1

Hn = 1, such that:

(1) Hn admits a factorisation Hn = L
(1)

n ⇥ · · · ⇥ L
(r)
n as a product of finitely many

copies L
(1)

n , . . . , L
(r)
n of a group Ln, where r = r(n).

(2) The factorisation of Hn subdivides the factorisation of Hn�1

for each n 2 {2, 3, . . .}.

(3) The group G acts transitively by conjugation on each set of factors as in (1).

L0

L
(1)
1 L

(m1)
1

L
(1)
2

L2 L
(m2)
2L2⇥ ⇥

⇥

⇥

⇥

⇥

=

=

=

H0

H1

H2

Figure 2.6: Branch structure of a branch group

The second approach is based on a geometric point of view according to which a

branch group is a group acting transitively on a spherically homogeneous rooted tree

T , such that it admits a structure of subnormal subgroups similar to the corresponding

structure in the full automorphism group Aut(T ) of the tree T . In this thesis we use

the geometric definition of branch groups.

Definition 2.4.2. A group G is said to be a branch group, if there is a spherically

homogeneous rooted tree T = Tm, with branching sequence m = (m
1

, m
2

, . . .), and an

embedding G ,! Aut(T ) such that:

(1) The group G acts transitively on each level of the tree.

(2) For each level n there exists a subgroup Ln of the automorphism group Aut(Tn)

of the full subtree Tn rooted at a level n vertex, such that the direct product

Hn = L(1)

n ⇥ · · ·⇥ L(Nn)
n  Stab

Aut(T )

(n), where L(i)
n
⇠= Ln,
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2.5. Profinite groups 2. Preliminaries

of Nn = m
1

m
2

· · · mn copies of Ln is normal and of finite index in G.

Recall from Section 2.3 that the lower companion groups LG
n denote the common iso-

morphism type of the rigid vertex stabilisers RstabG(u), where u 2 T runs through

all vertices at level n. Thus condition (2) of Definition 2.4.2 means that all rigid level

stabilisers RstabG(n) are of finite index in G.

Therefore the question whether a subgroup G of Aut(T ) is branch, with respect to the

given realisation as a group of tree autmorphisms, reduces to checking two properties.

Firstly, that the group in question acts transitively on all levels of the tree. Secondly,

that every rigid level stabiliser RstabG(n) is of finite index in G.

Recall that every lower companion group LG
n is a subgroup of the corresponding upper

companion group UG
n . Thus we have the (geometrical) embedding

LG
n ⇥ · · ·⇥ LG

n
⇠= RstabG(n)  StabG(n) ,! UG

n ⇥ · · ·⇥ UG
n ,

where each product contains Nn factors, corresponding to the number of vertices at

the n-th level of the tree T .

In addition, when the tree T is regular we have the following definition.

Definition 2.4.3. A subgroup G of Aut(T ) is said to be fractal, if every upper com-

panion group UG
u coincides with G, where u runs through all vertices of the tree T .

2.5 Profinite groups

Profinite groups are objects of interest in a variety of mathematical areas. In abstract

group theory, they provide the means for focussing attention on properties of finite

homomorphic images; see [30]. For the number theorist, profinite groups are the groups

which arise as Galois groups of algebraic field extensions; see [35, Ch. 3]. And for the

analyst, they are the quotient groups of compact Hausdor↵ topological groups modulo

the connected component of the identity; see [15] and [14].

There are many characterisations of profinite groups; see [16, Ch. I]. But for our pur-

poses, we introduce the main notions that are most relevant to the current thesis.

Perhaps the most relevant characterisation of profinite groups in the context of branch

groups, is that of profinite groups as inverse limits and profinite completions.

Definition 2.5.1. A directed set is a partially ordered set I = (I,�) such that for all

i, j 2 I there exists k 2 I such that k ⌫ i and k ⌫ j.
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2.5. Profinite groups 2. Preliminaries

Definition 2.5.2. An inverse system (Gi;'ij) of groups (or other mathematical struc-

tures such as sets, rings, etc. . . ) over I consists of a family of groups (or sets, . . . )

Gi, i 2 I, and homomorphisms 'ij : Gi ! Gj whenever i ⌫ j, satisfying the natural

compatibility conditions

'ii = idGi and 'ij'jk = 'ik for all i, j, k 2 I with i ⌫ j ⌫ k.

Definition 2.5.3. The inverse limit of the inverse system (Gi;'ij) is the group

(or set,. . . )

lim
 �

Gi :=
n

(gi)i2I 2
Y

i2I
Gi | gi'ij = gj whenever i ⌫ j

o

together with the natural coordinate maps 'i : G! Gi for i 2 I.

G = lim
 �

Gi

Gi G3 G2 G1
'i+1,i 'i,i�1 '43 '32 '21

'i '3 '2 '1

Figure 2.7: The inverse limit G of an inverse system (Gi;'ij), I = N

If the Gi are finite groups, we give each of them the discrete topology , and
Q

i2I Gi

the product topology. Then lim
 �

Gi with the induced topology becomes a totally dis-

connected, compact, Hausdor↵ topological group.

Another way to look at profinite groups is as profinite completions. Let � be any group.

We write H f � to indicate that H is a subgroup of finite index in �. Note that the

finite quotients of � form a natural inverse system �/N , N Cf �, with 'MN given by

the natural projection �/M ! �/N whenever M ✓ N . The inverse limit of this system

is the profinite completion �̂ := lim
 �

�/N of �. There is a natural map from the original

group into its profinite completion, namely

# : �! �̂, g 7! (gN)NCf�.

If � is residually finite, that is the intersection of all its finite index subgroups is trivial,

then # is injective. Typically, �# is strictly contained in �̂ but it is always a dense

subgroup, that is the closure of �# is equal to �̂.
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2.5. Profinite groups 2. Preliminaries

Profinite groups are also topological groups.

Definition 2.5.4. A profinite group is a compact Hausdor↵ topological group whose

open subgroups form a base for the neighbourhoods of the identity.

Thus a profinite group is a compact Hausdor↵ topological group G, such that every

open neighbourhood of the identity contains an open subgroup. This means that the

open subsets of a profinite group G are precisely those sets which can be written as

unions of cosets gN of open normal subgroups N Eo G.

Let G be a profinite group and X ✓ G. Then X is said to generate G (topologically) if X

generates a dense subgroup of G. Accordingly, G is finitely generated (as topological

group) if it admits a finite (topological) generating set. We denote by d(G) the minimal

cardinality of a (topological) generating set for G. In order to check whether a given

subset X generates a profinite group G, it su�ces to show that X generates G modulo

every open normal subgroup N Eo G. Thus one has d(G) = sup{d(G/N) | N Eo G}.

Definition 2.5.5. An infinite group G is called just infinite if all its non-trivial normal

subgroups have finite index; if G is profinite it means that all non-trivial closed normal

subgroups have finite index. The group is called hereditarily just infinite if each of

its subgroups of finite index is just infinite; if G is profinite it means that every open

subgroup is just infinite.

The Frattini subgroup �(G) of a profinite group G is the intersection of all maximal

proper open subgroups of G. Since every open subgroup is closed, it follows that �(G)

is a closed subgroup of G. Furthermore, one can show that X ✓ G generates G if and

only if X generates G modulo �(G).

A pro-p group is a topological group which is isomorphic to the inverse limit of finite p-

groups. Every group � admits a pro-p completion �̂p, which is the pro-p group arising

from the inverse system of finite quotients �/N where N runs through all normal

subgroups of p-power index in �.

Let G be a pro-p group. Then every closed subgroup of G is a pro-p group and any

quotient of G by a closed normal subgroup is a pro-p group. In particular, the index

of any open subgroup of G is a power of p. The Frattini subgroup of G is equal to the

subgroup Gp[G, G], i.e. �(G) = Gp[G, G], where Gp is the closed subgroup generated by

all p-powers of G and [G, G] is the closed commutator subgroup of G; see [7, Proposition

1.13]. In particular, one has d(G) = dimFpG/�(G).
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2.6. Branch groups as profinite groups 2. Preliminaries

2.6 Branch groups as profinite groups

Let T be a p-adic regular rooted tree on the alphabet X = {1, . . . , p}. Recall that T
[n]

is the subtree of T ending at level n. The fact that Aut(T ) is a profinite group becomes

clear if one observes that the sequence of groups Aut(T
[n]) forms an inverse system.

The homomorphisms

Aut(T
[n+1]

)! Aut(T
[n])

are defined by restricting the action of Aut(T
[n+1]

) to T
[n], and the group Aut(T ) is the

inverse limit of the system

Aut(T ) = lim
 �

n!1
Aut(T

[n]).

Note that the topology of this group is defined by the open subgroups {Stab
Aut(T )

(n)}1n=1

.

A Sylow pro-p subgroup of Aut(T ) is obtained as follows. Fix a cyclic permutation

a = (1 2 · · · p) of the alphabet X, and regard a as an element in the symmetric group

Sym(p).

Define Aut⇤(T )  Aut(T ) to be the set of all elements whose labelling {g(u)} takes

values in hai ⇠= Cp, a cyclic group of order p, where u runs through all vertices of the tree.

Thus for every vertex u 2 T we have g(u) = ai(u) for some i(u) with 0  i(u)  p� 1.

The group Aut⇤(T ) is isomorphic to the infinitely iterated wreath product

lim
 �

n!1
(Cp o Cp o . . . o Cp)n factors

,

and is a Sylow pro-p subgroup of Aut(T ). In the current thesis all groups will be

constructed inside this Sylow pro-p subgroup of Aut(T ). For the finite tree T
[n], ending

at level n, Aut(T
[n]) is isomorphic to the finite iterated wreath product

(Sym(p) o Sym(p) o . . . o Sym(p))n factors

.
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Chapter 3

Multi-Edge Spinal Groups

In this chapter we introduce the class of multi-edge spinal groups. In Section 3.1 we

give the general construction of the groups and establish some definitions for the rest

of the thesis. In Section 3.2 we prove some general properties of such groups.

Again, we work with the p-adic regular rooted tree for an odd prime p. We choose the

spine to be the rightmost infinite path starting at the root vertex of the tree.

3.1 Construction of multi-edge spinal groups

Let T be the p-adic regular rooted tree over the alphabet X = {1, . . . , p} for an odd

prime p.

Definition 3.1.1. Let L = (ln)n�0

be an infinite path in T starting at the root. If we

consider, for every n � 1, immediate descendants sn,k, for k 2 {1, . . . , p}, of ln�1

not

lying in L, we say that the doubly indexed sequence S = (sn,k)n�1,k is a multi-edge

spine of T .
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s1,1 s1,2 s1,3 s1,4

s2,3 s2,4

l0

l1

s2,1 s2,2

Figure 3.1: A multi-edge spine (sn,k)n�1,k in the 5-adic rooted tree, associated to the
right-most path (ln)n�0

, where ln = (x
1

· · · xn)

We denote by a the rooted automorphism corresponding to (1 2 · · · p) 2 Sym(p) which

cyclically permutes the vertices of the first level of the tree T . Clearly a is of order p.

Recall from Section 2.3 the map

 n : StabG(n)! Aut(Tu1)⇥
Nn
· · · ⇥Aut(TuNn

) ⇠= Aut(T )⇥
pn

· · · ⇥Aut(T ),

where Nn = pn. In particular, for n = 1

 
1

: StabG(1)! Aut(Tu1)⇥
p

· · · ⇥Aut(Tup) ⇠= Aut(T )⇥
p

· · · ⇥Aut(T ).

Given a finite set E of (Z/pZ)-linearly independent vectors

e

1

= (e
1,1, e1,2, . . . , e1,p�1

)

e

2

= (e
2,1, e2,2, . . . , e2,p�1

)

e

3

= (e
3,1, e3,2, . . . , e3,p�1

)

...

er = (er,1, er,2, . . . , er,p�1

)

where r 2 {1, 2, . . . , p�1} and each ei = (ei,1, . . . , ei,p�1

) 2 (Z/pZ)p�1 for i 2 {1, . . . , r},

we define recursively a finite set B = {b
1

, . . . , br} ✓ Stab(1) of directed automorphisms
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via

 
1

(b
1

) = (ae1,1 , ae1,2 , . . . , ae1,p�1 , b
1

)

 
1

(b
2

) = (ae2,1 , ae2,2 , . . . , ae2,p�1 , b
2

)

 
1

(b
3

) = (ae3,1 , ae3,2 , . . . , ae3,p�1 , b
3

)

...

 
1

(br) = (aer,1 , aer,2 , . . . , aer,p�1 , br).

Definition 3.1.2. We say that the subgroup GE = h{a} [ Bi of Aut(T ) is the multi-

edge spinal group corresponding to the set of defining vectors E.

Remark 3.1.3. We observe that B = hb
1

, . . . , bri is an elementary abelian p-group of

rank r. Indeed, the map

he
1

, . . . , eri �! hb1, . . . , bri

given by
r
X

i=1

jiei 7�!
r
Y

i=1

bjii

is an isomorphism of groups, and he
1

, . . . , eri ⇠= Cr
p .

Remark 3.1.4. By choosing the defining vectors ei 2 E linearly independent, we

avoid that one of the directed automorphisms b
1

, . . . , br of a multi-edge spinal group is

redundant. To see this, assume the contrary. That is there exist constants c
1

, . . . , cr 2

(Z/pZ)p�1, not all zero, such that

c
1

e

1

+ · · · + crer ⌘ 0 (mod p).

Without loss of generality assume that cr ⌘ �1 (mod p). Then br = bc1
1

· · · b
cr�1
r�1

2

hb
1

, . . . , br�1

i. Therefore we can find a set Ẽ ✓ E of linearly independent defining

vectors ẽ

1

, . . . , ẽr�1

, giving rise to directed automorphisms b̃
1

, . . . , b̃r�1

such that the

set {a}[ {b̃
1

, . . . , b̃r�1

} generates the same multi-edge spinal group. Observe that, the

assertion above is an immediate consequence of part (3) of Lemma 4.1.9.

Definition 3.1.5. A defining vector ei 2 E is said to be symmetric, if ei,j = ei,p�j for

all j 2 {1, . . . , p�1

2

}. Otherwise, ei is said to be non-symmetric.

Definition 3.1.6. A multi-edge spinal group GE is said to be symmetric with respect

to E if every defining vector ei 2 E giving rise to a generating directed automorphism

is symmetric. Otherwise, GE is said to be non-symmetric with respect to E.
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Remark 3.1.7. By choosing only one defining vector

e = (e
1

, . . . , ep�1

) 2 (Z/pZ)p�1,

for p an odd prime, and defining an automorphism b of Aut(T ) via

 
1

(b) = (ae1 , . . . , aep�1 , b),

we obtain the GGS-group Ge = ha, bi corresponding to the defining vector e. For in-

stance, the Gupta-Sidki group arises by choosing p an odd prime and e = (1,�1, 0, . . . , 0).

Thus the GGS-groups form a subclass of all multi-edge spinal groups. As a refer-

ence for the GGS-groups, the reader can consult Section 2.3 of the monograph [3] by

L. Bartholdi, R. Grigorchuk and Z. Šuniḱ, or the papers [33] by T. Vovkivsky and

[22, 27] by E. Pervova.

The next theorem, adapted to the context of multi-edge spinal groups, gives the con-

dition for a group in the class of multi-edge spinal groups to be an infinite p-group.

Theorem 3.1.8 (Grigorchuk [11], Vovkivsky [33]). Let G = h{a}[Bi be a multi-edge

spinal group corresponding to a set of defining vectors E. Then G is an infinite p-group

if and only if for every ei 2 E

p�1

X

j=1

ei,j ⌘ 0 (mod p).

We do not know a proof that the GGS-group G in (3.7) is not branch. From properties

that were established in [36] we derive the following result.

3.2 General properties of multi-edge spinal groups

We continue to work with the p-adic regular rooted tree T for an odd prime p. We fix

a multi-edge spinal group G = ha, b
1

, . . . , bri as defined in Section 3.1.

Recall from Definition 2.4.3 that a subgroup G of Aut(T ) is fractal, if every upper

companion group UG
u coincides with G. This means that for every vertex u 2 T , the

restriction of its stabiliser to the subtree rooted at u, denoted by StabG(u)u, coincides

with G.
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Lemma 3.2.1. Every multi-edge spinal group G is fractal.

Proof. Clearly StabG(u)u ✓ G for every vertex u 2 T . To show that G ✓ StabG(u)u,

we induct on the length n of the vertex u. Firstly, assume that n = 0. That is, u is

the root vertex of the tree T and hence the result is trivial.

Let u be a vertex of length n > 0. Writing u as u = vk, where k 2 {1, . . . , p} and v a

vertex of length n�1, we can conclude by the induction hypothesis that StabG(v)v = G.

Therefore there exist elements ã, b̃i 2 StabG(v)v for all i 2 {1, . . . , r}, acting as a and bi

on the subtree Tv rooted at the vertex v.

Fix i 2 {1, . . . , r}. If k = p, then the directed automorphism b̃i 2 StabG(v)v is acting

as bi on the subtree Tu. Otherwise, conjugating b̃i by a suitable power ãj of ã, we can

get bi at the k-th coordinate of the decomposition vector of b̃ã
j

i . Furthermore, choosing

suitable j 2 {1, . . . , p} we can get a power of the rooted automorphism at the k-th

coordinate in the decomposition vector of b̃ã
j

i . In addition, we can choose a suitable

l 2 {1, . . . , p � 1} such that (b̃ã
j

i )l produces the rooted automorphism a at the k-th

coordinate in the decomposition vector of (b̃ã
j

i )l. Thus (b̃ã
j

i )l 2 StabG(u)u is acting

as the rooted automorphism a on the subtree Tu. Therefore G = ha, b
1

, . . . , bri ✓

StabG(u)u.

Proposition 3.2.2. Every multi-edge spinal group G acts transitively on every level

of the tree T .

Proof. Let u, v 2 T be two vertices at level n. We induct on the length |u| = |v| = n.

For n = 1, it is clear that uak = v for some k 2 {1, . . . , p}, where a is the rooted

automorphism permuting the p vertices of the first level.

Next suppose that n > 1 and the result is true for all vertices up to level n� 1. There

are two cases. Suppose that the vertices u and v begin with same letter j 2 {1, . . . , p}.

That is, u = ju0 and v = jv0. Then by the induction hypothesis there exists an element

f 2 G such that f(u0) = v0. By Lemma 3.2.1 StabG(w)w = G for every w 2 T .

Therefore there exists an element g 2 StabG(1) having the decomposition

 
1

(g) = (⇤, . . . , ⇤, f, ⇤, . . . , ⇤)

with the automorphism f located at the j-th coordinate in the decomposition vector

of the automorphism g. Then ug = v.

Finally, suppose that u and v begin with di↵erent letters. Acting by a suitable power

of the rooted automorphism a on u, we can arrange that uak , for k 2 {1, . . . , p � 1},
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and v begin with the same letter. Thus we have reduced the argument to the previous

case.

In the next lemma we show that our group remains essentially unchanged when we

reorder the p labellings of the branches in the p-adic regular rooted tree T .

Lemma 3.2.3. Let G = ha, b
1

, . . . , bri be a multi-edge spinal group. Then there

exists an automorphism f 2 Aut(T ) of the form f = f
0

(f, . . . , f) = (f, . . . , f)f
0

,

where f
0

is a rooted automorphism corresponding to a permutation ⇡ 2 Sym(p), such

that G ⇠= Gf = hã, b̃
1

, . . . , b̃ri. The group Gf is a multi-edge spinal group generated

by the rooted automorphism ã = a and directed automorphisms b̃
1

, . . . , b̃r of the form

b̃i = (ãẽi,1 , . . . , ãẽi,p�1 , b̃i) for all i 2 {1, . . . , r}, and such that ẽ
1,1 = 1.

Proof. Since the defining vectors {e

1

, . . . , er} have been chosen to be linearly indepen-

dent over Z/pZ, each defining vector ei 2 {e

1

, . . . , er} satisfies

ei = (ei,1, . . . , ei,p�1

) 6⌘ 0 (mod p).

In particular, e
1

6⌘ 0 (mod p). Without loss of generality, assume that e
1,k = k for

some k 2 {1, . . . , p � 1} (otherwise we can replace b
1

by a power of b
1

). There exists

some l 2 {1, . . . , p� 1} such that kl ⌘ 1 (mod p).

Let X = {1, . . . , p} be the alphabet on p-letters over Z/pZ. We consider a permuta-

tion ⇡ 2 Sym(p) defined by x⇡ = lx, where x 2 {1, . . . , p} is a vertex in the first level

of the tree T . Observe that x⇡�1 = kx for all x 2 {1, . . . , p}. We proceed to construct

an automorphism f 2 Aut(T ) of the form f = f
0

(f, . . . , f) = (f, . . . , f)f
0

, where f
0

is

a rooted automorphism corresponding to the permutation ⇡ 2 Sym(p).

Set ã = (ak)f = (ak)f0 , a rooted automorphism. Then

xã = xf�1

0

akf
0

= (kx)akf
0

= (kx + k)f
0

= (kx + k)l

= x + 1

= xa

for every x 2 X. Hence ã = a. It follows that a = (ak)f = (af )k which implies al = af .
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Now let b̃i = (bi)f for i 2 {1, . . . , r}. Then

b̃i = (bi)
f

= f�1bif

= (f�1, . . . , f�1)f�1

0

bif0(f, . . . , f)

= (f�1, . . . , f�1)(aei,k , . . . , aei,1
|{z}

lth

, aei,k+1
| {z }

(l+1)

st

, . . . , aei,p�k , bi)(f, . . . , f)

= (alei,k , . . . , alei,p�k , bfi )

= (ãlei,k , . . . , ãlei,p�k , b̃i)

where the intermediate values represented by the dots denote unspecified powers of

the rooted automorphism a. In particular, choosing i = 1 we conclude that  
1

(b̃
1

) =

(alk, . . . , b̃
1

) = (a, . . . , b̃
1

) which implies that ẽ
1,1 = 1.

Lemma 3.2.4. Let GE = ha, b
1

, . . . , bri be a multi-edge spinal group associated to an

r-tuple E with r � 2. Then there exists an r-tuple of defining vectors Ẽ such that G
˜E

is conjugate to GE by an element f 2 Aut(T ) as in Lemma 3.2.3 and the following

hold:

(1) ẽi,1 ⌘ 1 (mod p) for each i 2 {1, . . . , r} ,

(2) if r = 2 and p = 3, then ẽ

1

= (1, 0), ẽ
2

= (1, 1),

(3) if r = 2 and p > 3, then either

(a) for each i 2 {1, 2} there exists k 2 {2, . . . , p�2} such that ẽi,k�1

ẽi,k+1

6⌘ ẽ2i,k
(mod p), or

(b) ẽ

1

= (1, 0, . . . , 0, 0), ẽ
2

= (1, 0, . . . , 0, 1),

(4) if r � 3 then for each i 2 {1, . . . , r} there exists k 2 {2, . . . , p � 2} such that

ẽi,k�1

ẽi,k+1

6⌘ ẽ2i,k (mod p).

Proof. We split the proof into two cases: r � 3 and r = 2.

Case 1: r � 3. Observe that p � 5 and consider the r ⇥ (p� 1)-matrix

M(E) =

0

B

B

B

B

@

e
1,1 · · · e

1,p�1

e
2,1 · · · e

2,p�1

...
. . .

...

er,1 · · · er,p�1

1

C

C

C

C

A
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encoding the defining vectors for the group GE. By Lemma 3.2.3, we may assume that

e
1,1 6⌘ 0 (mod p). Using elementary row operations, we transform M(E) into reduced

row-echelon form:

0

B

B

B

B

@

1 a
1

· · · am 0 ⇤ · · · ⇤ 0 ⇤ · · · ⇤

0 0 · · · 0 1 ⇤ · · · ⇤ 0 ⇤ · · · ⇤

...
...

...
...

...
. . .

...
...

...
...

...

0 0 · · · 0 0 0 · · · 0 1 ⇤ · · · ⇤

1

C

C

C

C

A

,

where m � 0, a
1

, . . . , am 2 Z/pZ and the symbols ⇤ denote other, unspecified elements.

Adding the 1st row to every other row, we obtain

M(Ẽ) =

0

B

B

B

B

@

1 a
1

· · · am 0 ⇤ · · · ⇤ 0 ⇤ · · · ⇤

1 a
1

· · · am 1 ⇤ · · · ⇤ 0 ⇤ · · · ⇤

...
...

...
...

...
. . .

...
...

...
...

...

1 a
1

· · · am 0 ⇤ · · · ⇤ 1 ⇤ · · · ⇤

1

C

C

C

C

A

(3.1)

The row operations that we carried out yield a new set of generators for hb
1

, . . . , bri,

corresponding to an r-tuple Ẽ of defining vectors that are encoded in the rows of M(Ẽ).

Let i 2 {1, . . . , r} and consider the ith row of M(Ẽ). We identify two patterns which

guarantee that the ith row satisfies the condition in (4):

(A) (⇤ . . . ⇤ x y 0 ⇤ . . . ⇤),

(B) (⇤ . . . ⇤ 0 y x ⇤ . . . ⇤),

where x, y 2 Z/pZ with y 6⌘ 0 and the symbols ⇤ again denote unspecified elements.

Observe that, if the patterns (A) and (B) do not appear in the ith row, then the row

does not have any zero entries at all or must be of the form (⇤ 0 . . . 0 ⇤).

Suppose first that 2  i  r � 1. In this case the ith row contains at least one zero

entry and cannot be of the form (⇤ 0 . . . 0 ⇤). Hence the pattern (A) or (B) occurs.

Next suppose that i = r and assume that patterns (A) or (B) do not appear. As r � 3

the rth row contains at least one zero entry and consequently has the form (1 0 . . . 0 1).

Changing generators, we may replace the rth row by the rth row minus the 2nd row

plus the 1st row, yielding

( 1 0 . . . 0 � 1 ⇤ . . . ⇤ 1 ) (3.2)
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with m zeros between the entries 1 and �1. If m > 0 then pattern (B) occurs in this

new row. Suppose that m = 0. Then the row takes the form

( 1 � 1 ⇤ . . . ⇤ 1 ). (3.3)

For the condition in (4) to fail, we would need the row to be equal to

(1 � 1 1 � 1 . . . 1 � 1)

with the final entry being �1 as p� 1 is even. This contradicts (3.3).

Finally, suppose that i = 1. Similarly as above, we assume that patterns (A) and (B)

do not occur. Since it contains at least one zero entry, the 1st row is of the form

( 1 0 . . . 0 ⇤ ) (3.4)

and we change generators as follows. Generically, we replace the 1st row by the 1st

row plus the 2nd row minus the 3rd row. Only if r = 3 and we already changed the

rth row as described above, we replace the 1st row by 2 times the 1st row minus the

3rd row. In any case, this gives a new 1st row:

( 1 0 . . . 0 1 ⇤ . . . ⇤ �1 ⇤ . . . ⇤ )

with m zeros between the entries 1 and 1. If m > 0 then pattern (B) occurs. Suppose

that m = 0 so that the new row takes the form

( 1 1 ⇤ . . . ⇤ �1 ⇤ . . . ⇤ ). (3.5)

For the condition in (4) to fail, the row would have to be of the form (1 1 . . . 1)

contradicting (3.5).

Case 2: r = 2. The statement in (2) for p = 3 can clearly be achieved by a simple

change of generators. Now we suppose that p > 3. By Lemma 3.2.3, we may assume

that e
1,1 6⌘ 0 (mod p). Using elementary row operations, we transform the 2⇥ (p� 1)-

matrix M(E) encoding the defining vectors into reduced row-echelon form:

 

1 a 0 b

0 0 1 c

!

,

where at most one of

 

a

0

!

or

 

b

c

!

could be the empty matrix. Further row operations,
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corresponding to multiplication on the left by

 

1 y

1 z

!

, where y, z 2 Z/pZ with y 6⌘ z

are to be specified below, yield

M(Ẽ) =

 

1 a y b + yc

1 a z b + zc

!

(3.6)

encoding an r-tuple Ẽ of defining vectors for a new set of generators.

First suppose that a = 0 is not empty and zero. If b = () then

M(Ẽ) =

 

1 0 . . . 0 y

1 0 . . . 0 z

!

leads to (3)(b). Otherwise, if b 6= (), we choose y ⌘ 1 and z ⌘ �1 (mod p), yielding

pattern (B) in both rows so that the condition in (3)(a) holds.

Next suppose that a = (a
1

. . . am) 6= 0 is not empty and non-zero. Suppose further

that the truncated rows (1 a y), (1 a z) do not yet satisfy the condition in (3)(a). Then

pattern (B) does not occur in these and a cannot have any zero entries. Consequently,

there exists � 2 Z/pZ \ {0} such that M(Ẽ) is of the form

M(Ẽ) =

 

1 � �2 . . . �m y ⇤ . . . ⇤

1 � �2 . . . �m z ⇤ . . . ⇤

!

.

As p > 3, we can choose y, z 2 Z/pZ with y 6⌘ z and y, z 6⌘ �m+1 (mod p) so that the

condition in (3)(a) is satisfied.

Finally suppose that a = (). Then

M(Ẽ) =

 

1 y b
1

+ yc
1

⇤ . . . ⇤

1 z b
1

+ zc
1

⇤ . . . ⇤

!

for suitable b
1

, c
1

2 Z/pZ. We can choose y, z 2 Z/pZ with y 6⌘ z such that

y2 6⌘ b
1

+ yc
1

and z2 6⌘ b
1

+ zc
1

(mod p),

because quadratic equations have at most two solutions and p > 3. Once more, the

condition in (3)(a) is fulfilled.

Definition 3.2.5. The lower central series of a group � is the series of characteristic

subgroups of �

� = �
1

(�) > �
2

(�) > �
3

(�) > . . . ,
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where �i(�) = [�i�1

(�), �] for all i > 1. The sections �i(�)/�i+1

(�) are the lower central

factors of �.

The next result mimicks [36, Lemma 3.3.1], which applies to GGS-groups. We remark

that there are no new exceptions, in addition to the GGS-group

G = ha, bi with  
1

(b) = (a, a, . . . , a, b), (3.7)

arising from a constant defining vector (1, . . . , 1).

Lemma 3.2.6. Let G = ha, b
1

, . . . , bri be a multi-edge spinal group that is not conjugate

to G in Aut(T ). Then

 
1

(�
3

(StabG(1))) = �
3

(G)⇥
p

· · · ⇥�
3

(G).

In particular,

�
3

(G)⇥
p

· · · ⇥�
3

(G) ✓  
1

(�
3

(G)).

Proof. Since  
1

(StabG(1)) is contained in G⇥
p

· · · ⇥G by Lemma 3.2.1, it su�ces to

prove the inclusion ◆. When r = 1, the result follows by [36, Lemma 3.3.1], so we may

assume that r � 2. Without loss of generality, we perform a suitable automorphism

f 2 Aut(T ) of the form f
0

(f, . . . , f) on G as in Lemma 3.2.3 (here �
3

(G) remains

unchanged). That is

 
1

(�
3

(StabG(1)))f0(f,...,f) =  
1

(�
3

(StabG(1)f ) =  
1

(StabGf (1)).

Thus

(�
3

(G)⇥
p

· · · ⇥�
3

(G)) = �
3

(Gf )⇥
p

· · · ⇥�
3

(Gf ).

So we may assume that  
1

(b
1

) = (ae1,1 , . . . , ae1,p�1 , b
1

) with e
1,1 6⌘ 0 (mod p). For

(r, p) 6= (2, 3), we further apply Lemma 3.2.4, and so assume here that our set E

satisfies the conditions (1) and (2) of Lemma 3.2.4.

By Proposition 3.2.2, G is acting transitively on all levels of the tree T , and hence it

su�ces to show

�
3

(G)⇥ 1⇥ · · ·⇥ 1 ✓  
1

(�
3

(StabG(1))).

We divide the proof into two cases.

Case 1: Suppose (r, p) 6= (2, 3).
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If ei,p�1

⌘ 0 (mod p) for some i 2 {1, . . . , r}, then

 
1

(bi) = (a, aei,2 , . . . , aei,p�2 , 1, bi),

(the intermediate values represented by the dots denote powers of the rooted automor-

phism) and consequently

 
1

([bi, b
a
i , bi]) = ([a, bi, a], 1, . . . , 1),

 
1

([bi, b
a
i , b

a
i ]) = ([a, bi, bi], 1, . . . , 1),

and for j 2 {1, . . . , r} with j 6= i,

 
1

([bi, b
a
i , b

a
j ]) = ([a, bi, bj ], 1, . . . , 1),

 
1

([bi, b
a
j , b

a
i ]) = ([a, bj , bi], 1, . . . , 1),

where the intermediate values represented by the dots are all 1 in this case.

Suppose ei,p�1

6⌘ 0 (mod p) for some i 2 {1, . . . , r}. By Lemma 3.2.4, there exists

k 2 {2, . . . , p � 2} such that (ei,k�1

, ei,k) and (ei,k, ei,k+1

) are not proportional, i.e.

ei,k�1

· ei,k+1

6= e2i,k.

Let us set

gi,k = (ba
p�k+1

i )ei,k (ba
p�k

i )�ei,k�1

for k 2 {2, . . . , p� 2}, so that

 
1

(gi,k) = (ae
2
i,k�ei,k�1ei,k+1 , . . . , 1),

where the intermediate values represented by the dots are not necessarily 1 in this case.

In the exceptional case, as in part (3) of Lemma 3.2.4, in which ẽ
1

= (1, 0, . . . , 0)

and ẽ
2

= (1, 0, . . . , 0, 1), giving b̃
1

= (a, 1, . . . , 1, b̃
1

) and b̃
2

= (a, 1, . . . , a, b̃
2

), we can

replace g
2,k by b̃a

2

2

= (a, b̃
2

, a, 1, . . . , 1).

Since (ei,k�1

, ei,k) and (ei,k, ei,k+1

) are not proportional, we have

e2i,k � ei,k�1

ei,k+1

6⌘ 0 (mod p).

Hence there is a power gi of gi,k such that

 
1

(gi) = (a, . . . , 1),
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where the intermediate values represented by the dots are not necessarily 1 in this case.

Additionally, since

 
1

(bai (b
ap�1

i )�ei,p�1) = (bia
�ei,2ei,p�1 , . . . , 1),

with the help of gi we can get an element hi 2 StabG(1) such that

 
1

(hi) = (bi, . . . , 1),

where the intermediate values represented by the dots are not necessarily 1 in this case.

Consequently,

 
1

([bi, b
a
i , gi]) = ([a, bi, a], 1, . . . , 1),

 
1

([bi, b
a
i , hi]) = ([a, bi, bi], 1, . . . , 1),

and for j 2 {1, . . . , r} with j 6= i,

 
1

([bi, b
a
j , hi]) = ([a, bj , bi], 1, . . . , 1),

 
1

([bi, b
a
i , hj ]) = ([a, bi, bj ], 1, . . . , 1),

or

 
1

([bi, b
a
i , b

a
j ]) = ([a, bi, bj ], 1, . . . , 1),

if ej,p�1

⌘ 0 (mod p), where the intermediate values represented by the dots are all 1

in this case.

If ej,p�1

6⌘ 0 (mod p) as in the previous case. For u a level one vertex, we note that

StabG(u)u = StabG(1)u. Since

�
3

(G) = h[a, bi, a], [a, bi, bj ] | i, j 2 {1, . . . , r}iG,

using Lemma 3.2.1, we have

�
3

(G)⇥ 1⇥ · · ·⇥ 1 ✓  
1

(�
3

(StabG(1))).

Case 2: Suppose (r, p) = (2, 3).

Without loss of generality, by Lemma 3.2.4, we may assume that e

1

= (1, 0) and

e

2

= (1,�1). Note that  
1

(b
2

) = (a, a�1, b
2

).

Then

 
1

(b
2

ba
2

) = (ab
2

, 1, b
2

a�1)
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and

 
1

(ba
2

ba
2

2

) = (b
2

a�1, ab
2

, 1).

Hence

 
1

([b
2

, ba
2

, ba
2

ba
2

2

]) = ([a, b
2

, b
2

a�1], 1, 1)

and

 
1

([b�a2

2

, ba
2

, b
2

ba
2

]) = ([a, b
2

, ab
2

], 1, 1).

Now, since G0 = h[a, b
1

], [a, b
2

]iG and hab
2

, b
2

a�1

i = hb2
2

, b
2

a�1

i = ha, b
2

i, we have

�
3

(G) = h[a, b
1

, a], [a, b
1

, b
1

], [a, b
1

, b
2

], [a, b
2

, b
1

], [a, b
2

, ab
2

], [a, b
2

, b
2

a�1]iG.

Hence

�
3

(G)⇥ 1⇥ · · ·⇥ 1 ✓  
1

(�
3

(StabG(1))).

Recall from Section 2.3 that the rigid vertex stabiliser, denoted by RstabG(u), of a

vertex u 2 T , is the subgroup consisting of all automorphisms in G that fix all vertices

not having u as a prefix. Again, for a vertex u 2 T , we write RstabG(u)u for the

restriction of this rigid vertex stabiliser to the subtree Tu rooted at the vertex u.

Proposition 3.2.7. Let G be a multi-edge spinal group that is not Aut(T )-conjugate

to the GGS-group G in (3.7). Then �
3

(G) ✓ RstabG(u)u for every vertex u of T , after

the natural identification of subtrees.

Proof. Let u 2 T be a vertex of length n. We induct on n. Firstly, assume that n = 0.

That is u = ; is the root vertex of the tree T and hence RstabG(;); = G. Therefore

�
3

(G) ✓ RstabG(;);.

Now suppose that n > 0. Writing u as u = vk, where k 2 {1, . . . , p} and v a vertex of

length n � 1, we can conclude by the induction hypothesis that �
3

(G) ✓ RstabG(v)v.

By Lemma 3.2.6

�
3

(G)⇥
p

· · · ⇥�
3

(G) ✓  
1

(RstabG(v)v).

In particular,

1⇥ · · ·⇥ 1⇥ �
3

(G)⇥ 1⇥ · · ·⇥ 1 ✓  
1

(RstabG(v)v)
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where �
3

(G) is located at position u in the subtree Tv rooted at the vertex v. Hence

�
3

(G) ✓ RstabG(u)u.

Proposition 3.2.8. Let G be a multi-edge spinal group that is not Aut(T )-conjugate

to the GGS-group G in (3.7). Then G is a branch group.

Proof. We show that every rigid level stabiliser RstabG(n) is of finite index in G. Since

G is a finitely generated group, every quotient of G is also finitely generated. The

abelianisation G/�
2

(G) is a finitely generated abelian group, and since each generator

of G is of finite order, �
2

(G) is of finite index in G. Using the surjective bi-additive

map G/�
2

(G) ⇥ G/�
2

(G) ! �
2

(G)/�
3

(G), given by (x�
2

(G), y�
2

(G)) 7! [x, y]�
3

(G),

we further have that �
3

(G) is of finite index in G. By Proposition 3.2.7, the image of

RstabG(n) under the maps  n contains the direct product of pn copies of �
3

(G). Since

the image of any level stabiliser StabG(n) under the map  n is contained in the direct

product of pn copies of G, we have  n(RstabG(n)) is of finite index in  n(StabG(n)).

Therefore RstabG(n) is of finite index in StabG(n) and hence in G.

Recall from Definition 2.4.1 that a group K is branch with respect to a branch structure

({Ln}, {Hn}). Recall also that by LK
n we denote the common isomorphism type of the

rigid level stabilisers RstabK(n); see Section 2.3. When the group K is fixed we simply

write Ln. The next theorem gives a criterion for a branch group to be just infinite.

Theorem 3.2.9 (see [11], Theorem 4). A branch group K is just infinite if and only if

for each n � 1, the index of the commutator subgroup [Ln, Ln] in Ln is finite. Moreover,

if this condition holds, then every non-trivial normal subgroup N of K contains the

subgroup [Hn, Hn] = [Ln, Ln]⇥ · · ·⇥ [Ln, Ln] for some n = n(N).

For the next result, we require our group to be torsion.

Proposition 3.2.10. Let G = ha, b
1

, . . . , bri be a torsion multi-edge spinal group.

Then G is just infinite.

Proof. By Proposition 3.2.8, G is a branch group. Hence LG
n = Ln is of finite index

in G. Since G is a finitely generated torsion group, it follows that Ln is also finitely

generated and torsion. Therefore its abelianisation Ln/[Ln, Ln] is a finitely generated

abelian torsion group. Therefore, by Theorem 3.2.9, G is just infinite.

We do not know a proof that the GGS-group G in (3.7) is not branch. From properties

that were established in [36] we derive the following result.
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Proposition 3.2.11 (see [2], Proposition 3.10). The GGS-group G in (3.7) is not just

infinite.

Proof. Write G = G = ha, bi with  
1

(b) = (a, . . . , a, b), and put K = hba�1

i

G. From [36,

Section 3.4] we have that

(1) |G : K| = p and K 0 = h[(ba�1)a, ba�1]iG  StabG(1);

(2) |G/K 0 StabG(n)| = pn+1 for every n 2 N with n � 2.

Hence K 0 is a non-trivial normal subgroup of infinite index in G.

What about just infinite multi-edge spinal groups that are not torsion? For p � 5,

it is shown in [11, Example 7.1] that the non-torsion group G = ha, bi with  
1

(b) =

(a, 1, . . . , 1, b) is just infinite, and more generally in [11, Example 10.2] that G = ha, bi

with  
1

(b) = (ae1 , ae2 , . . . , aep�4 , 1, 1, 1, b) where e
1

6⌘ 0 is just infinite. For the latter

example, when
Pp�4

i=1

ei 6⌘ 0 (mod p), then the group is non-torsion.

Let G be the multi-edge spinal group with defining vectors ei of the form

(ei,1, ei,2, . . . , ei,p�2

, ei,p�1

)

satisfying ei,1 6⌘ 0 (mod p) and ei,p�3

⌘ ei,p�2

⌘ ei,p�1

⌘ 0 (mod p) for every i 2

{1, . . . , r}. In similar spirit, it can be shown that G is just infinite, and furthermore

when
Pp�4

j=1

ei,j 6⌘ 0 (mod p) for at least one i 2 {1, . . . , r}, then G is non-torsion. It is

not always the case that the last three elements of the defining vectors are to be zero.

For example, the non-torsion multi-edge spinal group G with ei,1 ⌘ ei,p�2

⌘ ei,p�1

⌘ 0

(mod p) and ei,2 6⌘ 0 (mod p) is likewise just infinite.
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Chapter 4

Theta Maps

Let T be the p-adic regular rooted tree over the alphabet X = {1, . . . , p} for an odd

prime p. We fix a multi-edge spinal group GE = ha, b
1

, . . . , bri with respect to E as

defined in Section 3.1.

We assume that the group GE is torsion. According to Theorem 3.1.8, we require for

every defining vector ei 2 E, i 2 {1, . . . , r}, that

p�1

X

j=1

ei,j ⌘ 0 (mod p).

In Section 4.1 we describe the abelianisation G/[G, G] of the group G. In addition, we

define a natural length function on elements of the commutator subgroup [G, G]. In

Section 4.2 we introduce the theta maps

⇥
1

, ⇥
2

: [G, G]! [G, G]

and we prove that the length of every element of the commutator subgroup of length

at least 3 decreases under repeated applications of a combination of these maps.

4.1 Abelianisation of multi-edge spinal groups

We recall some elementary facts about free products of groups; for a detailed account

see [28, Ch. 6].

Definition 4.1.1. Let {�� | � 2 ⇤} be a non-empty family of groups over an index

set ⇤. By a free product of the groups ��, � 2 ⇤, we mean a group � and a family of
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4.1. Abelianisation of multi-edge spinal groups 4. Theta Maps

homomorphisms ◆� : �� ! �, � 2 ⇤, with the following universal property. Given a

family of homomorphisms '� : �� ! W , � 2 ⇤, into some group W , there is a unique

homomorphism ' : � ! W such that ◆�' = '�, for all � 2 ⇤. That is the following

diagram commutes.

�� �

W

◆�

'�

'

Figure 4.1: Universal property of free products

Proposition 4.1.2 (see [28], Propositions 6.2.1 and 6.2.2). For every non-empty family

of groups {�� | � 2 ⇤} there corresponds a free product. If � and � are free products

of a family of groups {�� | � 2 ⇤}, then � is isomorphic to �.

Definition 4.1.3. Let � = Fr�2⇤ �� be the free product of a non-empty family of

groups {�� | � 2 ⇤}. A word in
S

�2⇤ �� is called reduced (or in normal form) if

none of its symbols is an identity and no two consecutive symbols belong to the same

group ��.

Theorem 4.1.4 (see [18], Theorem 1.2). Every element g 2 Fr�2⇤ �� can be uniquely

represented as a reduced word of the form

g = g
1

g
2

· · · gr for r � 0

where 1 6= gi 2 ��i, �i 6= �i+1

, and r the length of g as an element of the free product.

Before we turn our attention to multi-edge spinal groups, it is worth mentioning that

in 1972 S. Alešin [1] found a family of finitely generated infinite p-groups, arising as

groups of automatic transformations. In [19], Y. Merzlyakov showed that the groups

introduced in [1] are very closely related to the Grigorchuk and the Gupta-Sidki groups.

In the Russian literature the groups introduced in [1] have become known as Alešin

type of groups (or AT-groups). A closer look in the literature shows that the class
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4.1. Abelianisation of multi-edge spinal groups 4. Theta Maps

of AT-groups is essentially the class of special groups that was described in [11, §8]

by R. Grigorchuk. It is therefore clear that the class of multi-edge spinal groups is a

subclass of AT-groups. As a reference for AT-groups, the reader can consult the papers

[24, 25] by E. Pervova, or [29] by A. Rozhkov.

The following proposition due to A. Rozhkov plays a crucial role in proving Proposi-

tion 4.1.10, in which we describe the abelianisation of multi-edge spinal groups.

Proposition 4.1.5 (see [29], Proposition 1). Any relation in an Alešin type group , is

a relation of some finite rank.

Remark 4.1.6. Before we proceed, let’s try to understand Proposition 4.1.5 in the

context of multi-edge spinal groups.

Let G = ha, b
1

, . . . , bri be a multi-edge spinal group acting on the p-adic regular rooted

treet T for an odd prime p. Denote by A = hai the subgroup of G generated by the

rooted automorphism, and by B = hb
1

, . . . , bri the subgroup of G generated by the

directed automorphisms. Let RA be the set of relators in the subgroup A , and RB the

set of relators in the subgroup B.

Relations of rank 0 in the group G are elements of the normal subgroup generated by

RA and RB, i.e. ap = 1, bpi = 1 for all i 2 {1, . . . , r}, and [bi, bj ] = 1 for i, j 2 {1, . . . , r}

with i 6= j. If the relations of rank m�1 are already defined, then a relation of rank m

is any relation in the group G such that any u-section of it, where u is a first level

vertex, is a relation of rank m� 1 in the group StabG(u)u.

Loosely speaking, what A. Rozhkov means by finite rank, is that given a relation in

the group, its sections, descending in the tree, reduce/restrict to just elements from

the normal subgroup generated by RA and RB.

So by Proposition 4.1.5, all relators of G lie in a subgroup K = [n�0

Kn, where K
0

are

the relators of rank 0, K
1

are the relators of rank 1 (so you have to go down to the

sections of just one level below, to get to the stage where the relators reduce/restrict

to just relators of A and relators of B, in each such section), etc.

Let G = GE = ha, b
1

, . . . , bri be a multi-edge spinal group acting on the regular p-

adic rooted tree T , for an odd prime p. Here E is the r-tuple of defining vectors

ei = (ei,1, . . . , ei,p�1

), for i 2 {1, . . . , r}.

In order to study G/G0 we consider

H = hâ, b̂
1

, . . . , b̂r |

âp = b̂p
1

= . . . = b̂pr = 1, and [b̂i, b̂j ] = 1 for 1  i, j  ri, (4.1)
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4.1. Abelianisation of multi-edge spinal groups 4. Theta Maps

the free product hâi ⇤ hb̂
1

, . . . , b̂ri of a cyclic group hâi ⇠= Cp and an elementary abelian

group hb̂
1

, . . . , b̂ri ⇠= Cr
p . There is a unique epimorphism ⇡ : H ! G such that â 7! a and

b̂i 7! bi for i 2 {1, . . . , r}, inducing an epimorphism from H/H 0
⇠= hâi ⇥ hb̂

1

, . . . , b̂ri ⇠=

Cr+1

p onto G/G0. We want to show that the latter is an isomorphism; see Proposi-

tion 4.1.10 below.

Let h 2 H. As discussed, each h can be uniquely represented in the form

h = âs1 · (b̂
�1,1

1

· · · b̂
�r,1
r ) · âs2 · . . . · âsm · (b̂

�1,m

1

. . . b̂
�r,m
r ) · âsm+1 , (4.2)

where m 2 N [ {0} and s
1

, . . . , sm+1

,�
1,1, . . . ,�r,m 2 Z/pZ with

si 6⌘ 0 (mod p) for i 2 {2, . . . , m},

and for each j 2 {1, . . . , m},

�i,j 6⌘ 0 (mod p) for at least one i 2 {1, . . . , r}.

We denote by @(h) = m the length of h, with respect to the factor hb
1

, . . . , bri. Clearly,

for h
1

, h
2

2 H we have

@(h
1

h
2

)  @(h
1

) + @(h
2

). (4.3)

In addition, we define exponent maps

"â(h) =
Xm+1

j=1

sj 2 Z/pZ and

"
ˆbi

(h) =
Xm

j=1

�i,j 2 Z/pZ for i 2 {1, . . . , r}
(4.4)

with respect to the generating set â, b̂
1

, . . . , b̂r.

The surjective homomorphism

H ! (Z/pZ)⇥ (Z/pZ)r, h 7! ("â(h), "
ˆb1

(h), . . . , "
ˆbr

(h)) (4.5)

has kernel H 0 and provides an explicit model for the abelianisation H/H 0. The group

L(H) = hb̂
1

, . . . , b̂ri
H is the kernel of the surjective homomorphism

H ! Z/pZ, h 7! "â(h).

Each element h 2 L(H) can be uniquely represented by a word of the form

h = (ĉ
1

)â
t1

· · · (ĉm)â
tm

, (4.6)
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4.1. Abelianisation of multi-edge spinal groups 4. Theta Maps

where m 2 N[{0} and t
1

, . . . , tm 2 Z/pZ with tj 6⌘ tj+1

(mod p) for j 2 {1, . . . , m�1},

and for each j 2 {1, . . . , m},

ĉj = b̂
�1,j

1

· · · b̂
�r,j
r 2 hb̂

1

, . . . , b̂ri \ {1}. (4.7)

Let ↵ denote the cyclic permutation of the factors of H ⇥ p. . .⇥H corresponding to the

p-cycle (1 2 . . . p). We consider the homomorphism

� : L(H)! H ⇥ p. . .⇥H

defined by

�(b̂â
k

i ) = (âei,1 , . . . , âei,p�1 , b̂i)
↵k

for i 2 {1, . . . , r}, k 2 Z/pZ.

We have the following commutative diagram:

H
⇡

G

[ [

L(H) StabG(1)
⇡|L(H)

H ⇥ · · · ⇥ H G ⇥ · · · ⇥ G

�

⇡ ⇥ · · · ⇥ ⇡

Figure 4.2: A commutative diagram

For completion, we give a self-contained interpretation of Proposition 4.1.5 in the con-

text of multi-edge spinal groups.

Lemma 4.1.7. Let G = ha, b
1

, . . . , bri be a multi-edge spinal group acting on the p-adic

regular rooted tree T , for an odd prime p. Let

H = hâ, b̂
1

, . . . , b̂r | âp = b̂p
1

= · · · = b̂pr = 1, [b̂i, b̂j ] = 1, i, j 2 {1, . . . , r} with i 6= ji

be the free product hâi ⇤ hb̂
1

, . . . , b̂ri of the cyclic group hâi ⇠= Cp and the elementary

abelian group hb̂
1

, . . . , b̂ri ⇠= Cr
p for the odd prime p. Then there is a unique epimorphism

⇡ : H ⇣ G such that â 7! a and b̂i 7! bi for all i 2 {1, . . . , r}. We also have

H ! H/[H, H] ⇠= Cp ⇥ Cr
p .
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Proof. It follows immediately from Definition 4.1.1 of free products of groups, and the

fact that H is generated by r + 1 elements each one of prime order p.

Lemma 4.1.8. Let H be as above, and h 2 L(H) with �(h) = (h
1

, . . . , hp). Then
Pp

i=1

@(hi)  @(h), and @(hi)  d
@(h)
2

e for each i 2 {1, . . . , p}.

Proof. Let h 2 L(H) and consider

�(h) = (h
1

, . . . , hp). (4.8)

Every h 2 L(H) of length @(h) = m can be written in the form

h = ĉâ
⇤

1

· ĉâ
⇤

2

· · · ĉâ
⇤

m�1

· ĉâ
⇤

m (4.9)

where the symbols â⇤ represent unspecified powers of â.

Each factor ĉâ
⇤

i in (4.9) contributes to the i-th coordinate of the vector (4.8), either a

power â⇤ of â or an element of hb̂
1

, . . . , b̂ri. Therefore there are at most
l

@(h)
2

m

factors

of ĉi in each section hi in (4.8). It is also clear that @(h) �
Pp

i=1

@(hi).

Lemma 4.1.9. Let G = ha, b
1

, . . . , bri be a multi-edge spinal group acting on the p-adic

regular rooted tree T , for an odd prime p. Let

H = hâ, b̂
1

, . . . , b̂r | âp = b̂p
1

= · · · = b̂pr = 1, [b̂i, b̂j ] = 1, i, j 2 {1, . . . , r} with i 6= ji

be the free product hâi ⇤ hb̂
1

, . . . , b̂ri of the cyclic group hâi ⇠= Cp and the elementary

abelian group hb̂
1

, . . . , b̂ri ⇠= Cr
p for the odd prime p.

Consider the subgroup K =
S1

n=1

Kn of H obtained from the sequence of subgroups

K
0

= {1} and Kn = ��1(Kn�1

⇥

p
· · · ⇥Kn�1

), . . . for n � 1.

For L(H) = hb̂
1

, . . . , b̂ri
H E H, we have that

(1) Kn E L(H) and Kn E H,

(2) Kn�1

✓ Kn,

(3) Ker(⇡) = K, where ⇡ : H ⇣ G. In particular, G ⇠= H/K.

Proof. (1) We induct on n. For n = 0, K
0

= {1} and hence the result holds.
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Suppose that n � 1. By the induction hypothesis Kn�1

E H which implies that

Kn�1

⇥

p
· · · ⇥Kn�1

E H⇥
p

· · · ⇥H.

Therefore

Kn = ��1(Kn�1

⇥

p
· · · ⇥Kn�1

)

E ��1(H⇥
p

· · · ⇥H)

= L(H).

Since H is generated by {â} [ L(H), it su�ces to show that K â
n ✓ Kn. The definition

of the map � gives that for all h 2 L(H)

�(h) = (h
1

, . . . , hp)

if and only if

�(hâ) = (hp, h1

, . . . , hp�1

).

Therefore

K â
n = (��1(Kn�1

⇥

p
· · · ⇥Kn�1

))â

= ��1(Kn�1

⇥

p
· · · ⇥Kn�1

)â

= ��1(Kn�1

⇥

p
· · · ⇥Kn�1

)

= Kn.

(2) Again we induct on n. For n = 1, K
0

= {1} ✓ K
1

because K
1

 L(H).

Suppose that n � 2. By the induction hypothesis we have that Kn�2

✓ Kn�1

, which

implies that

Kn�2

⇥

p
· · · ⇥Kn�2

✓ Kn�1

⇥

p
· · · ⇥Kn�1

.

Therefore

Kn�1

= ��1(Kn�2

⇥

p
· · · ⇥Kn�2

) ✓ ��1(Kn�1

⇥

p
· · · ⇥Kn�1

) = Kn

as required.

(3) Recall that the epimorphism ⇡ : H ⇣ G is given by â 7! a and b̂i 7! bi for all

i 2 {1, . . . , r}. Hence ⇡ induces an isomorphism H/L(H) ⇠= G/ StabG(1) of cyclic

groups of order p. By the definition of K, it follows that K ✓ L(H) and hence we need
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to show that for all h 2 L(H), ⇡(h) = 1 if and only if h 2 K.

Suppose that h 2 K. Then h 2 Kn for some n � 0. We induct on n. If n = 0, then

h 2 K
0

and hence h = 1. Therefore ⇡(h) = 1.

Suppose that n � 1. From the commutative diagram in Figure 4.2 it follows that

�(h) = (h
1

, . . . , hp) 2 Kn�1

⇥

p
· · · ⇥Kn�1

,

and

(⇡(h
1

), . . . ,⇡(hp)) 2 ⇡(Kn�1

)⇥
p

· · · ⇥⇡(Kn�1

)

= {1}⇥

p
· · · ⇥{1} (by induction on n)

= {1}

in G⇥
p

· · · ⇥G. Therefore ⇡(h) = 1.

Now suppose that h 2 L(H) with ⇡(h) = 1. We induct on the length @(h) of h 2 L(H).

Suppose that @(h) 2 {0, 1}. If @(h) = 0, then h = 1 and hence h 2 K.

Suppose @(h) = 1, so that h = â�s
· ĉ · âs with ĉ a non-trivial element of hb̂

1

, . . . , b̂ri.

Writing c = ⇡(ĉ) 2 hb
1

, . . . , bri \ {1}, we see that ⇡(h) = a�s
· c ·as 6= 1, contrary to our

assumption, and hence the case @(h) = 1 does not arise.

Now suppose that @(h) � 2. Using again the commutative diagram in Figure 4.2, from

⇡(h) = 1 we deduce that �(h) = (h
1

, . . . , hp) with ⇡(hi) = 1 for all i 2 {1, . . . , p}. In

particular, hi 2 L(H) for all i 2 {1, . . . , p}.

By Lemma 4.1.8, we have that @(hi) < @(h) for all i 2 {1, . . . , p}. Hence, by induction,

there exists m 2 N
0

such that

(h
1

, . . . , hp) 2 Km⇥
p

· · · ⇥Km.

Consequently,

h 2 ��1(Km⇥
p

· · · ⇥Km) = Km+1

✓ K.
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In the following proposition we describe the abelianisation of multi-edge spinal groups.

Proposition 4.1.10. Let G = ha, b
1

, . . . , bri be a multi-edge spinal group, and H

as in (4.1). Then the map H ! (Z/pZ) ⇥ (Z/pZ)r in (4.5) factors through G/G0.

Consequently,

G/G0
⇠= H/H 0

⇠= Cr+1

p .

Proof. Below we prove that

��1(H 0
⇥

p. . .⇥H 0)  H 0. (4.10)

Let K =
S1

n=0

Kn  L(H) be as in Proposition 4.1.9 so that the natural epimorphism

⇡ : H ! G has ker(⇡) = K, and G ⇠= H/K. From (4.10), we deduce by induction that

Kn  H 0 for all n 2 N [ {0}, hence K  H 0 and G/G0
⇠= H/H 0K = H/H 0.

It remains to justify (4.10). Consider an arbitrary element h 2 L(H) as in (4.6) and

(4.7). We write �(h) = (h
1

, . . . , hp). For i 2 {1, . . . , r} and k 2 {1, . . . , p}, let "
ˆbi,k

(h)

be the sum of exponents �i,j , j 2 {1, . . . , m} with tj = k, so that "
ˆbi

(hk) = "
ˆbi,k

(h). It

follows that for each i 2 {1, . . . , r},

"
ˆbi

(h) =
Xm

j=1

�i,j =
Xp

k=1

"
ˆbi,k

(h) =
Xp

k=1

"
ˆbi

(hk). (4.11)

Now suppose that h 62 H 0. From (4.5) and "â(H) = 0 we deduce that "
ˆbi

(h) 6⌘ 0 for at

least one i 2 {1, . . . , r}. Thus (4.11) implies that "
ˆbi

(hk) 6⌘ 0 for some k 2 {1, . . . , p}

and �(h) 62 H 0
⇥

p. . .⇥H 0. Therefore (4.10) holds.

We now define a length function on elements of multi-edge spinal groups.

Definition 4.1.11. Let G = ha, b
1

, . . . , bri be a multi-edge spinal group, and ⇡ : H ! G

the natural epimorphism with H as in (4.1). The length of g 2 G is

@(g) = min{@(h) | h 2 ⇡�1(g)}.

Based on (4.3), one easily shows that for g
1

, g
2

2 G,

@(g
1

g
2

)  @(g
1

) + @(g
2

). (4.12)

Moreover, using Proposition 4.1.10 we may define "a(g), "b1(g), . . . , "br(g) 2 Z/pZ via

any pre-image h 2 ⇡�1(g):

("a(g), "b1(g), . . . , "br(g)) = ("â(h), "
ˆb1

(h), . . . , "
ˆbr

(h)). (4.13)
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Lemma 4.1.12. Let G be a multi-edge spinal group as above, and g 2 StabG(1)

with  
1

(g) = (g
1

, . . . , gp). Then
Pp

i=1

@(gi)  @(g), and @(gi)  d
@(g)
2

e for each

i 2 {1, . . . , p}.

In particular, if @(g) > 1 then @(gi) < @(g) for every i 2 {1, . . . , p}.

Proof. It follows immediately from Lemma 4.1.8.

4.2 Length reduction

We continue to consider a multi-edge spinal group GE = G = ha, b
1

, . . . , bri with respect

to a set of defining vectors E; see Section 3.1. Again, we work with the p-adic regular

rooted tree T for an odd prime p.

In this section we introduce the theta maps

⇥
1

, ⇥
2

: [G, G]! [G, G]

and we prove that the length of every element of the commutator subgroup of length

at least 3 decreases under repeated applications of a combination of these maps.

The maps ⇥
1

and ⇥
2

are defined in such a way to investigate maximal subgroups of

multi-edge spinal groups. More precisely, in Chapter 5, we are interested in looking to

upper companion groups further down in the tree T in certain coordinates.

Let g 2 StabG(1) be an element in the first level stabiliser. Recall from Section 2.3

that every such element has a decomposition

 
1

(g) = (g
1

, . . . , gp)

where each gi for i 2 {1, . . . , p} is acting on the corresponding subtree rooted at a first

level vertex u
1

, . . . , up.

For i 2 {1, . . . , p} we define the map

'i(g) : StabG(1) �! Aut(Tui), 'i(g) = gi 2 UG
ui

(4.14)

where UG
ui

is the upper companion group acting on the subtree rooted at the i-th vertex

of the first level.

Let

 
1

(bi) = (aei,1 , . . . , aei,p�1 , bi)
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be a directed automorphism where the last non-trivial power of the rooted automor-

phism a is positioned at the n-th coordinate, with n 2 {2, . . . , p� 1}. While the value

of n does not feature, n is fixed throughout.

By Lemma 3.2.3, we may assume that

 
1

(b
1

) = (ae1,1 , . . . , ae1,p�1 , b
1

)

with the last non-trivial power of the rooted automorphism a positioned at the n-th

coordinate, where n 2 {2, . . . , p�1}, and also that e
1,1 ⌘ 1 (mod p). We construct the

maps ⇥
1

and ⇥
2

as follows:

Conjugating b
1

by (az)�1, for z 2 [G, G], we have that

 
1

(b(az)
�1

1

) = (z · (a, ae1,2 , . . . , ae1,p�1 , b
1

) · z�1)a
�1

= ((z
1

, . . . , zp) · (a, ae1,2 , . . . , ae1,p�1 , b
1

) · (z�1

1

, . . . , z�1

p ))a
�1

= (az
�1
1 , (ae1,2)z

�1
2 , . . . , (ae1,p�1)z

�1
p�1 , b

z�1
p

1

)a
�1

= ((ae1,2)z
�1
2 , . . . , (ae1,p�1)z

�1
p�1 , b

z�1
p

1

, az
�1
1 )

Therefore

'p((b1)
(az)�1

) = az
�1
1 = a[a, z�1

1

].

We define

⇥
1

: [G, G]! [G, G]

by

⇥
1

(z) = [a, z�1

1

].

Similarly, as with ⇥
1

, by considering b
(az)p�n

1

we get

 
1

(b(az)
p�n

1

) = ((az)�1

· (a, ae1,2 , . . . , ae1,p�1 , b
1

) · az)(az)
p�n�1

= (z�1a�1

· (a, ae1,2 , . . . , ae1,p�1 , b
1

) · az)(az)
p�n�1

= ((z�1

1

, . . . , z�1

p ) · (b
1

, a, ae1,2 , . . . , ae1,p�1) · (z
1

, . . . , zp))
(az)p�n�1

= (bz1
1

, az2 , (ae1,2)z3 , . . . , (ae1,p�1)zp)(az)
p�n�1

...

= (⇤, ⇤, . . . , ⇤, (ae1,n�1)zn+1···zp),

where the symbols ⇤ denote unspecified powers of the rooted automorphism a and b
1

’s.
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4.2. Length reduction 4. Theta Maps

Therefore

'p((b1)
(az)p�n

) = a(zn+1···zp) = a[a, zn+1

· · · zp].

So we define

⇥
2

: [G, G]! [G, G]

by

⇥
2

(z) = [a, zn+1

· · · zp].

To deal with the case n = 1, we define E to be the family of all multi-edge spinal groups

G = ha, b
1

, . . . , bri that satisfy

8

>

>

>

<

>

>

>

:

 
1

(b
1

) = (a, 1, . . . , 1, b
1

)

ei,1 ⌘ 1 (mod p) for every i 2 {1, . . . , r}

ei,p�1

6⌘ 0 (mod p) for at least one i 2 {1, . . . , r}.

(4.15)

We remark that, by Theorem 3.1.8, there are no torsion groups in E .

The next Theorem is one of the main results in this thesis. In Appendix A, we “test”

Theorem 4.2.1, using a three generated multi-edge spinal group.

Theorem 4.2.1. Let G = ha, b
1

, . . . , bri be a multi-edge spinal group acting on the

regular p-adic rooted tree T , for an odd prime p. Suppose G is not Aut(T )-conjugate

to a group in E. Then the length @(z) of an element z 2 G0 decreases under repeated

applications of a suitable combination of the maps ⇥
1

and ⇥
2

down to length 0 or 2.

Proof. Let z 2 G0. We observe that @(z) 6= 1; see Proposition 4.1.10. Suppose that

@(z) = m � 3. Then z 2 G0
✓ StabG(1) has a decomposition

 
1

(z) = (z
1

, . . . , zp).

From Lemma 4.1.12 and (4.12) we obtain @(zj)  d
m
2

e for j 2 {1, . . . , p} and

@(z
1

) + @(zn+1

· · · zp)  m.

If @(z
1

) < m
2

then @(⇥
1

(z)) < m, and likewise if @(zn+1

· · · zp) < m
2

then @(⇥
2

(z)) < m.

Hence we may suppose that m = 2µ is even and

@(z
1

) = @(zn+1

· · · zp) = µ.
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4.2. Length reduction 4. Theta Maps

We write zn+1

· · · zp as

as1 · c
1

· as2 · . . . · asµ · cµ · asµ+1 ,

where s
1

, . . . , sµ+1

2 Z/pZ with si 6⌘ 0 (mod p) for i 2 {2, . . . , µ} and c
1

, . . . , cµ 2

hb
1

, . . . , bri \ {1}, and distinguish two cases. To increase the readability of exponents

we use at times also the notation s(i) = si.

Case 1: sµ+1

⌘ 0 (mod p). Expressing

⇥
2

(z) = [a, zn+1

· · · zp] = [a, as1c
1

as2 · · · asµcµ]

as a product of conjugates of the c±1

i by powers of a and relabelling the c±1

i as cj for

j 2 {1, . . . , m}, we get

⇥
2

(z) = c a
1

· c a1+s(µ)

2

· . . . · c a1+s(µ)+...+s(2)

µ · c as(µ)+...+s(2)

µ+1

· . . . · c as(µ)

m�1

· cm. (4.16)

Consider now

 
1

(⇥
2

(z)) = ((⇥
2

(z))
1

, . . . , (⇥
2

(z))p).

If @((⇥
2

(z))
1

) < µ then ⇥
1

(⇥
2

(z)) has length less than m. Hence we suppose

@((⇥
2

(z))
1

) = µ.

Using the symbol ⇤ for unspecified exponents, we deduce from (4.16) that the first com-

ponents (c a⇤
j )

1

for odd j 2 {1, . . . , m� 1} must be non-trivial elements of hb
1

, . . . , bri,

and the (c a⇤
j )

1

for even j 2 {2, . . . , m� 2} must be non-trivial powers of a. In partic-

ular, looking at the (m� 1)th term we require sµ ⌘ 1 (mod p). This implies that the

second factor in (4.16) is c a2
2

.

In the special case n = 1, ei,p�1

⌘ 0 (mod p) for every i 2 {1, . . . , r} and so we

immediately get a contradiction, because (c a2
2

)
1

contributes a trivial factor 1 to (⇥
2

(z))
1

instead of a non-trivial power of a.

In the generic case n � 2 we claim @((⇥
2

(z))n+1

· · · (⇥
2

(z))p) < µ, leading to

@(⇥
2

(⇥
2

(z))) < m.

Indeed, only factors c a⇤
j in (4.16) for even j 2 {2, . . . , m} can contribute non-trivial

elements of hb
1

, . . . , bri to the product (⇥
2

(z))n+1

· · · (⇥
2

(z))p. But since n � 2, the

second factor c a2
2

in (4.16) contributes only a power of a.
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4.2. Length reduction 4. Theta Maps

Case 2: sµ+1

6⌘ 0 (mod p). Similarly as in Case 1, we write

⇥
2

(z) = c a1+s(µ+1)

1

· c a1+s(µ+1)+s(µ)

2

· . . . · c as(µ+1)+s(µ)

m�1

· c as(µ+1)

m , (4.17)

where the c±1

i are relabeled as cj for j 2 {1, . . . , m}. As before, it su�ces to show that

@((⇥
2

(z))
1

) < µ or @((⇥
2

(z))n+1

· · · (⇥
2

(z))p) < µ.

Suppose @((⇥
2

(z))
1

) = µ. Then either:

(i) (c a⇤
j )

1

for odd j 2 {1, . . . , m� 1} is a non-trivial element of hb
1

, . . . , bri, and (c a⇤
j )

1

for even j 2 {2, . . . , m� 2} is a non-trivial power of a; or

(ii) (c a⇤
j )

1

for even j 2 {2, . . . , m} is a non-trivial element of hb
1

, . . . , bri, and (c a⇤
j )

1

for

odd j 2 {3, . . . , m� 1} is a non-trivial power of a.

In case (i), we deduce from the (m� 1)th term in (4.17) that

sµ+1

+ sµ ⌘ 1 (mod p),

and the second term in (4.17) is equal to c a2
2

. We may argue as in Case 1 that

@((⇥
2

(z))n+1

· · · (⇥
2

(z))p) < µ so that @(⇥
2

(⇥
2

(z))) < m.

In case (ii), we deduce from the mth term in (4.17) that

sµ+1

⌘ 1 (mod p),

and the first term in (4.16) is ca
2

1

. In the generic situation n � 2 we argue similarly as

in Case 1 that @((⇥
2

(z))n+1

· · · (⇥
2

(z))p) < µ so that @(⇥
2

(⇥
2

(z))) < m. It remains

to deal with the special situation n = 1, which makes use of the fact that the defining

vectors satisfy ei,p�1

⌘ 0 for every i 2 {1, . . . , r}. For m � 6 the argument follows as

before. For m = 4, proceeding similarly, we obtain ⇥
2

(z) = c a2
1

c a
2

c
3

c a
4

, so (⇥
2

(z))
1

=

bawc for some b, c 2 hb
1

, . . . , bri and w 2 Z/pZ. Thus subject to relabelling,

⇥
1

(⇥
2

(z)) = c a
1

c a1+w

2

c aw

3

c
4

. (4.18)

As before, for @(⇥
1

(⇥
2

(z))) = 2, we need (c a⇤
3

)
1

to be a non-trivial element of hb
1

, . . . , bri

and (c a⇤
2

)
1

to be a non-trivial power of a. Looking at the third term of (4.18), we re-

quire w = 1. However, then c a2
2

contributes a trivial factor 1 to ⇥
1

(⇥
2

(z))
1

instead of

a non-trivial power of a. So we see that the length decreases, as required.
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Chapter 5

Maximal Subgroups

In this chapter we extend the methods developed in [26] to the class of torsion multi-

edge spinal groups which are known to be just infinite. In particular, we prove that no

torsion multi-edge spinal group contains proper dense subgroups with respect to the

profinite topology. As a corollary, we obtain that such a group has maximal subgroups

only of finite index. Moreover, we show that for G a torsion multi-edge spinal group,

all its maximal subgroups are normal of index p, where p is the odd prime such that G

acts on the p-adic regular rooted tree.

5.1 Dense subgroups

Definition 5.1.1. Let G be a group and M an arbitrary subgroup. For every normal

subgroup N of finite index in G, denote by "N the natural projection G! G/N . Then

M is dense in G with respect to the profinite topology, if for every normal subgroup N

of finite index in G

"N (M) = "N (G).

Lemma 5.1.2. Every dense subgroup M of a multi-edge spinal group G is necessarily

infinite.

Proof. Let M be a finite dense subgroup of a multi-edge spinal group G. Then there

exists n
0

2 N such that M \ StabG(n) = 1 for n � n
0

. Then since M is dense, we have

|G : StabG(n)| = |M : StabM (n)| = |M |, for every n � n
0

,

which is impossible, since |G : StabG(n)| goes to infinity as n!1.
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Lemma 5.1.3 (see [26], Lemma 3.1). Let G be a group. Then every proper dense

subgroup M of G with respect to the profinite topology has infinite index.

Proposition 5.1.4 (see [26], Proposition 3.2). Let T be a spherically homogeneous

rooted tree and let G  Aut(T ) be a just infinite group acting transitively on each level

of T . Let M be a dense subgroup of G with respect to the profinite topology. Then

(1) the subgroup M acts transitively on each level of the tree T ,

(2) for every vertex u 2 T , StabM (u)u is dense in StabG(u)u.

Proposition 5.1.5 (see [26], Proposition 4.1). Every maximal subgroup M of infinite

index in a group G is dense with respect to the profinite topology.

Assumption 5.1.6. For the rest of this chapter we fix a just infinite multi-edge spinal

group G = ha, b
1

, . . . , bri acting on the p-adic regular rooted tree T for an odd prime p.

Let u be any vertex of the p-adic regular rooted tree T . We write Gu for StabG(u)u, i.e.

the restriction of this vertex stabiliser in G, acting on the subtree rooted at the vertex

u; see Section 2.3. Similarly, for a subgroup M of G, we write Mu for StabM (u)u.

Recall from Section 4.2, that for i 2 {1, . . . , p} the map

'i : StabG(1) �! Aut(Tui)

is defined by

'i(g) = gi 2 UG
ui

where  
1

(g) = (g
1

, . . . , gp) and UG
ui

is the upper companion group acting on the subtree

rooted at the i-th vertex ui of the first level.

The next result extends [26, Lemma 3.3], which addresses just infinite GGS-groups.

Here we give a di↵erent and shorter proof for just infinite multi-edge spinal groups.

Theorem 5.1.7. Let M be a proper dense subgroup of G with respect to the profinite

topology. Then Mu is a proper subgroup of Gu for all u 2 T .

Proof. Assume on the contrary, that there exists a vertex u of T such that Mu = Gu.

Let u be a vertex of minimal length n with the specified property, and suppose u = wx

where |w| = n�1. By Proposition 5.1.4 and induction, Mw is a proper dense subgroup

of Gw. Since Gw is isomorphic to G, we have |u| = 1, say u = u
1

among the vertices

u
1

, . . . , up at level 1.
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Let R = RstabM (u)u. By our assumption, we have R E Mu = Gu. Since Gu
⇠= G is

just infinite, either R has finite index in Gu, or R is trivial.

Suppose first that R has finite index in Gu. Then

|G : M |  |G : RstabM (1)| = |G : StabG(1)| | StabG(1) : RstabM (1)|

 |G : StabG(1)|
�

�

�

Yp

i=1

Gui :
Yp

i=1

RstabM (ui)ui

�

�

�

 |G : StabG(1)| |Gu : R|

p

is finite. But, being a proper dense subgroup, M has infinite index in G.

Hence R is trivial, and so RstabM (1) is trivial. By Lemma 5.1.2 M is infinite, and thus

|G/ RstabG(1)| � |M/RstabM (1)| = |M |

is infinite.

By Proposition 3.2.11, G is not Aut(T )-conjugate to the GGS-group G in (3.7). Hence

Proposition 3.2.8 shows that G is a branch group. Thus RstabG(1) has finite index

in G, a contradiction.

We remark that by Mg
u we mean that we first take the restriction of the subgroup M

to the subtree rooted at the vertex u 2 T and then we conjugate by an element g 2 G.

Theorem 5.1.8. Let G = ha, b
1

, . . . , bri be a just infinite multi-edge spinal group

and M a dense torsion subgroup of G, with respect to the profinite topology. For each

i 2 {1, . . . , r}, there is a vertex u of T such that, under the natural identification of Tu

and T , the following holds: there exist g 2 G and b 2 hb
1

, . . . , bri with "bi(b) 6= 0 such

that (Mg)u is a dense subgroup of Gu
⇠= G and b 2 (Mg)u. Furthermore there exists

k 2 Z/pZ such that (Mg)u = (Mu)a
k
.

Proof. Clearly, it su�ces to prove the claim for i = 1. Since |G : G0
| is finite, G0 is

open in the profinite topology. Thus we find x 2M \ b
1

G0. In particular, x 2 StabG(1)

with "b1(x) 6⌘ 0 (mod p). We argue by induction on @(x) � 1.

First suppose that @(x) = 1. Then x has the form x = ba
k
, where b 2 hb

1

, . . . , bri with

"b1(b) 6⌘ 0 (mod p) and k 2 {0, 1, . . . , p�1}. Thus choosing the vertex u to be the root

of the tree T and g = a�k, we have b 2Mg
u .
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Now suppose that @(x) � 2. Recall from (4.4) and (4.13) the definition of "b1(x), and

from (4.14) the definition of the maps 'j : StabG(1) ! Guj , where u
1

, . . . , up denote

the first level vertices of T . For any vertex u of T , the subtree Tu has a natural

identification with T and Gu
⇠= G. We freely use the symbols a, b

1

, . . . , br to denote

also automorphisms of Tu under this identification. We claim that

"b1('1

(x)) + . . . + "b1('p(x)) ⌘ "b1(x) 6⌘ 0 (mod p). (5.1)

To see this, write x as a product of conjugates ba
⇤

i of the directed generators bi, i 2

{1, . . . , r}, by powers a⇤, where the symbol ⇤ represents unspecified exponents. Then

"b1(x) is the number of factors of the form ba
⇤

1

. Each of these factors contributes

a directed automorphism b
1

in a unique coordinate, and none of the other factors

ba
⇤

2

, . . . , ba
⇤

r contributes a b
1

in any of the coordinates. Hence (5.1) holds.

By (5.1), there exists j 2 {1, . . . , p} such that "b1('j(x)) 6⌘ 0 (mod p). Moreover,

Lemma 4.1.12 shows that

@('j(x))  d@(x)/2e  (@(x) + 1)/2 < @(x). (5.2)

Suppose that x̃ = 'j(x) 2 Muj belongs to StabGu(j)
(1), where we write u(j) = uj

for readability. By Proposition 5.1.4, the subgroup Muj is dense in Guj
⇠= G. Since

"b1(x̃) 6⌘ 0 (mod p) and @(x̃) < @(x), the result follows by induction.

Now suppose that 'j(x) 62 StabGu(j)
(1). For ` 2 {1, . . . , p} we claim that

"b1('`('j(x)p)) ⌘ "b1('j(x)) 6⌘ 0 (mod p). (5.3)

To see this, observe that 'j(x) is of the form

'j(x) = akh,

for k 6⌘ 0 (mod p) and h 2 StabGu(j)
(1) with  

1

(h) = (h
1

, . . . , hp), say. Hence raising

'j(x) to the prime power p, we get

'j(x)p = (akh)p = ha(p�1)k
ha(p�2)k

· · · hakh,

and thus for ` 2 {1, . . . , p},

'`('j(x)p) ⌘ h
1

h
2

· · · hp (mod G0
uj`

).
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Here uj` denotes the `th descendant of uj . Arguing similarly as for (5.1), this yields

"b1('`('j(x)p)) ⌘ "b1(h1

) + . . . + "b1(hp) ⌘ "b1(h) ⌘ "b1('j(x)) (mod p)

and (5.3) holds.

Furthermore, we claim that

@('`('j(x)p))  @('j(x)) < @(x). (5.4)

The second inequality comes from (5.2). To see that the first inequality holds, we note

that

'`('j(x)p) = '`(h
a(p�1)k

) · · ·'`(h
ak)'`(h),

and @('j(x)) = @(h). We write h as a product of @(h) conjugates ca
⇤

j of directed

automorphisms cj 2 hb1, . . . , bri, where the symbol ⇤ represents unspecified exponents.

Each factor ca
⇤

j contributes a directed automorphism cj in a unique coordinate and

powers of a in all other coordinates. Focusing on the `th coordinate, we can write

'`('j(x)p) as a product of powers of a and the @(h) directed automorphisms cj 2

hb
1

, . . . , bri. Hence (5.4) holds.

If x̃ = '`('j(x)p) 2 Muj` belongs to StabGu(j`)
(1), we argue as follows. By Proposi-

tion 5.1.4, the subgroup Muj` is dense in Guj`
⇠= G. Since "b1(x̃) 6⌘ 0 (mod p) and

@(x̃) < @(x), the result follows by induction.

In general, we apply the operation y 7! '`(yp) more than once. Since M is a torsion

group, x 2 StabM (1) and 'j(x) have finite order. Clearly, if y 2 G has finite order

then '`(yp) has order strictly smaller than y. Thus after finitely many iterations, we

inevitably reach an element

x̃ = '`('`(· · ·'`('`('j(x)p)p)p · · · )p) 2Muj`···`

which in addition to the inherited properties "b1(x̃) 6⌘ 0 (mod p) and @(x̃) < @(x)

satisfies x̃ 2 StabGu(j`···`)(1). As before, the proof concludes by induction.

Recall the definition of the family E of groups by means of (4.15).

Proposition 5.1.9. Let G = ha, b
1

, . . . , bri be a multi-edge spinal group. Suppose G is

not Aut(T )-conjugate to a group in E. Let M be a dense subgroup of G, with respect

to the profinite topology, and suppose that b
1

2 M . Then there exist a vertex u of T

and g 2 G such that a, b
1

2 (Mg)u. Furthermore there exists b 2 hb
1

, . . . , bri such that

(Mg)u = (Mu)b.
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Proof. Observe that G0 is open in G. Since M is dense in G, there is z 2 G0 such that

az 2M . Write  
1

(z) = (z
1

, . . . , zp).

Let up denote the pth vertex at level 1. The coordinate map 'p allows us to restrict

StabM (1) to Mup . Clearly, b
1

2M implies b
1

= 'p(b1) 2Mup . Based on Lemma 3.2.3,

we assume that the defining vector e

1

for b
1

has first coordinate e
1,1 = 1. Consider

the theta maps ⇥
1

, ⇥
2

defined in Section 4.2, with reference to b
1

. By their definition,

a ⇥
1

(z) and a ⇥
2

(z) belong to Mup . Moreover, repeated application of 'p corresponds

to repeated applications of ⇥
1

and ⇥
2

. By Proposition 5.1.4 and Theorem 4.2.1, we

may assume that @(z) 2 {0, 2}. If @(z) = 0 we are done.

Thus we may assume that @(z) = 2 and we write z = b�amca
k

for b, c 2 hb
1

, . . . , bri\{1}

and m, k 2 Z/pZ with m 6= k.

Case 1: m, k 6= 1. Here z
1

= aw for some w 2 Z/pZ. Thus ⇥
1

(z) = [a, z�1

1

] =

[a, a�w] = 1, and a 2Mup .

Case 2: m = 1, k 6= 1. Here

 
1

(b�a) = (b�1, ⇤, . . . , ⇤) and  
1

(ca
k
) = (aw, ⇤, . . . , ⇤),

where w 2 Z/pZ and the symbols ⇤ denote unspecified entries. Hence z
1

= b�1aw so

that ⇥
1

(z) = [a, z�1

1

] = [a, b]. This gives a ⇥
1

(z) = b�1ab. Remembering that b
1

and b

commute, we obtain a, b
1

2M b�1

up
.

Case 3: m 6= 1, k = 1. Here

 
1

(b�am) = (aw, ⇤, . . . , ⇤) and  
1

(ca) = (c, ⇤, . . . , ⇤),

where w 2 Z/pZ and the symbols ⇤ denote unspecified entries. Hence z
1

= awc so that

⇥
1

(z) = [a, z�1

1

] = ca
1�w

c�a�w
. If w 6⌘ �1 (mod p), we are back in Case 1 or Case 2.

Suppose that w ⌘ �1 (mod p). Then ⇥
1

(z) = ca
2
c�a, where

ca
2

= (⇤, c, ⇤, . . . , ⇤) and c�a = (c�1, ⇤, . . . , ⇤)

and the symbols ⇤ denote unspecified power of a. We recall from the definition of ⇥
2

that in the generic case n � 2 this gives ⇥
2

(⇥
1

(z)) = 1, hence a, b
1

2 M̃upp , where upp

is the p2th vertex at level 2. In the special case n = 1 we have ⇥
1

(⇥
1

(z)) = [a, c]. In

this case we proceed similarly as in Case 2.
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Proposition 5.1.10. Let G be a just infinite multi-edge spinal group. Suppose G is not

Aut(T )-conjugate to a group in E. Let M be a dense torsion subgroup of G, with respect

to the profinite topology. Then there exists a vertex u of T such that Mu = Gu
⇠= G.

Proof. By Theorem 5.1.8, there exist g 2 G, a vector u
1

of T and k 2 Z/pZ such

that x
1

2 (Mg)u1 = (Mu1)
ak with x

1

2 hb
1

, . . . , bri and "b1(x1

) 6= 0. We modify our

generating set of directed automorphisms, by taking b̃
1

= x
1

instead of b
1

. Denote

(Mg)u1 by M
1

. By Proposition 5.1.9, we have a, b̃
1

2 ((M
1

)
ˆh)v for ĥ 2 Gu1 and a

vertex v of T . We denote ((M
1

)
ˆh)v by M

2

.

Applying Theorem 5.1.8 again, we see that there exist l 2 Z/pZ and a vertex u
2

of T such that x
2

2 ((M
2

)u2)
al with x

2

2 hb̃
1

, b
2

, . . . , bri and "b2(x2

) 6= 0. Note

that "b2 is now defined with respect to the new generating set {b̃
1

, b
2

, . . . , br} of directed

automorphisms. Since a, b̃
1

2M
2

, it follows that:

(i) a, b̃
1

2 (M
2

)w for all vertices w in T (recall Lemma 3.2.1 and Proposition 3.2.2 with

respect to the multi-edge spinal group ha, b̃
1

i);

(ii) ((M
2

)w)a
l
= (M

2

)w as a 2 (M
2

)w.

Hence a, b̃
1

, x
2

2 ((M
2

)u2)
al = (M

2

)u2 . Again we replace b
2

by b̃
2

= x
2

. So a, b̃
1

, b̃
2

2

(M
2

)u2 .

Continuing in this manner, we obtain a, b̃
1

, . . . , b̃r 2 (M
2

)u2...ur , where {b̃
1

, . . . , b̃r} is a

generating set of directed automorphisms.

Now M
2

= (((Mg)u1)
ˆh)v. There exists an element h 2 G such that (Gh)u1 = (Gu1)

ˆh.

Therefore M
2

= (Mgh)u1v. Setting u = u
1

vu
2

. . . ur, we have (Mgh)u = Gu
⇠= G.

Lastly, there exists f 2 Gu such that (Mgh)u = (Mu)f . Then Mu = (Gu)f
�1

= Gu
⇠= G.

Theorem 5.1.11. Let G = ha, b
1

, . . . , bri be a just infinite multi-edge spinal group.

Then G does not contain any proper dense torsion subgroups, with respect to the profi-

nite topology.

Proof. Suppose on the contrary that M is a proper dense subgroup of G with respect

to the profinite topology. By Theorem 5.1.7, for every vertex u 2 T we have Mu is

properly contained in Gu. However, by Proposition 5.1.10, the subgroup Mu is all of

G ⇠= Gu. This gives us our required contradiction.

As a corollary, we obtain the following.
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Corollary 5.1.12. Let G = ha, b
1

, . . . , bri be a torsion multi-edge spinal group. Then G

does not contain any maximal subgroups of infinite index.

Proof. Suppose, for a contradiction, that M is a maximal subgroup of infinite index

in G. By definition, M is dense in G with respect to the profinite topology. By

Theorem 5.1.11, the group G does not contain dense proper subgroups with respect to

the profinite topology, a contradiction and hence the result follows.

5.2 Normal subgroups

Let G = ha, b
1

, . . . , bri be a torsion just infinite multi-edge spinal group acting on the

p-adic regular rooted tree T , for an odd prime p. In this section we show that for

such G, all its maximal subgroups are normal of index p.

Proposition 5.2.1 (see [28], Proposition 5.2.4). Let � be a finite group. Then the

following are equivalent:

(1) The group � is nilpotent.

(2) The maximal subgroups of � are normal of prime index.

(3) Every subgroup of � is subnormal.

(4) The group � satisfies the normaliser condition.

The normaliser condition in Proposition 5.2.1, means that every proper subgroup is

properly contained in its normaliser.

Corollary 5.2.2. Let G = ha, b
1

, . . . , bri be a just infinite multi-edge spinal group.

Suppose G is not Aut(T )-conjugate to a group in E. Then every maximal subgroup

of G is normal of index p, where p is the odd prime such that G acts on the p-adic

regulat rooted tree.

Proof. Let M be any maximal subgroup of finite index in G. By Theorem 3.2.10,

the group G is just infinite. That is every non-trivial normal subgroup N of G is of

finite index in G. Hence M being maximal and of finite index in G, it contains a

normal subgroup N of finite index in G. By Theorem 3.1.8 G is also a p-group. It

follows that the quotient G/N is a finite p-group. It is clear that the image of M/N in

G/N is a maximal subgroup. By part (2) of Proposition 5.2.1, it follows that M/N is
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normal of index p in G/N . Therefore M is of index p in G. By part (4) of Proposition

5.2.1, M/N is properly contained in its normaliser. Since M/N is a finite group, its

normaliser is strictly bigger than M/N . Since M/N is of index p in G/N , it follows

that its normaliser is G/N . Therefore M is normal in G.
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Appendix A

A three generated multi-edge

spinal group

The aim of this Appendix is to demonstrate a hands on computation using the theta

maps ⇥
1

and ⇥
2

introduced in Section 4.2.

More precisely, we “test” Theorem 4.2.1 using the multi-edge spinal group G = ha, b
1

, b
2

i,

generated by the rooted automorphism a and two directed automorphisms b
1

and b
2

of the form

 
1

(b
1

) = (a, a�1, 1, . . . , 1, b
1

)

 
1

(b
2

) = (1, a, a�1, 1, . . . , 1, b
2

).

Again, we work with the p-adic regular rooted tree T for an odd prime p.

Let z 2 [G, G] be an arbitrary element in the derived group of G. Since the derived

group [G, G] of G is a subgroup of StabG(1), every z 2 [G, G] has a decomposition

 
1

(z) = (z
1

, . . . , zp) (A.1)

where every zi for i 2 {1, . . . , p} is acting on the subtree rooted at the i-th first level

vertex; see Section 2.3.

Let z 2 [G, G] be an element of length @(z) = r, and p an odd prime. We define

by D(z) the matrix with row entries zi,j for i 2 {1, . . . , p}, j 2 {1, . . . , r}. We call D(z)

the decomposition matrix of z.

For example, if z 2 [G, G] is an arbitrary element of length @(z) = r, its decomposition

matrix is the (p⇥ r)-matrix of the form:
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A. A three generated multi-edge spinal group

D(z) =

0

B

B

B

B

B

B

B

@

z
1,1 z

1,2 · · · · · · z
1,r�1

z
1,r

z
2,1 z

2,2 · · · · · · z
2,r�1

z
2,r

...
...

...
...

...
...

zp�1,1 zp�1,2 · · · · · · zp�1,r�1

zp�1,r

zp,1 zp,2 · · · · · · zp,r�1

zp,r

1

C

C

C

C

C

C

C

A

Consider the maps

⇥
1

, ⇥
2

: [G, G]! [G, G]

defined by

⇥
1

:= z 7! [a, z�1

1

]

⇥
2

:= z 7! [a, z
3

· · · zp].

Proposition A.0.3. Let G = ha, b
1

, b
2

i be the multi-edge spinal group defined above.

The group G is acting on the p-adic regular rooted tree T for an odd prime p. Let z

be an element of the derived group [G, G] of length at least 3. Then the length @(z)

decreases under repeated applications of a combination of the maps ⇥
1

and ⇥
2

.

Proof. As in Theorem 4.2.1, for every z = (z
1

, . . . , zp) 2 [G, G] of length @(z) = m, the

length @(zi) for i 2 {1, . . . , p} of each section is less than or equal to m/2. If @(z
1

) or

@(z
3

z
4

· · · zp) is strictly less than m/2, then @([a, z�1

1

]) < m and @([a, z
3

z
4

· · · zp]) < m

respectively.

Suppose that @(z
1

) = @(z
3

z
4

· · · zp) = m
2

. Clearly m must be an even number.

For such an element z 2 [G, G] we have that zn+1

· · · zp is of the form:

zn+1

· · · zp = aw(1)b⇤aw(2)b⇤aw(3)b⇤ · · · aw(m/2)b⇤ (A.2)

or

zn+1

· · · zp = aw(1)b⇤aw(2)b⇤aw(3)b⇤ · · · aw(m/2)b⇤aw((m/2)+1), (A.3)

where w(i) 6⌘ 0 (mod p) for i 2 {2, . . . , m
2

+1} and the symbols b⇤ represent non-trivial

elements of hb
1

, b
2

i.

We need to examine four cases. We write bij for non-trivial elements of hb
1

, b
2

i which

appear in the decomposition matrix D(z) of z 2 G0. Also, the exponents of the rooted

automorphism are to be taken modulo p, for an odd prime p.
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A. A three generated multi-edge spinal group

Case 1: We consider an element z 2 [G, G] of length @(z) = 4. In this case the

decomposition matrix D(z) is of the form:

D(z) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

bi1 ad1 bi3 af3

ac1 ad2 ae1 1

ac2 ad3 ae2 1

ac3 1 ae3 1

1 1 1 1
...

...
...

...

1 1 1 bi4

1 1 1 af1

1 bi2 1 af2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

It is clear that @(z
1

) = 2. Note that in order to have @(z
3

z
4

· · · zp) = 2, the directed

automorphism bi4 cannot be in the first two and the last two rows. Thus we have in

total p� 4 matrices arising in this case. We need to consider two subcases.

Case 1.1: In this case z
3

· · · zp is of the form:

z
3

z
4

· · · zp = aw1b⇤aw2b⇤aw3

where wi 6⌘ 0 (mod p) for i 2 {1, 2, 3} and the symbols b⇤ represent elements in hb
1

, b
2

i.

For example, the decomposition matrix is of the form:

D(z) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

bi1 ad1 bi3 af3

ac1 ad2 ae1 1

ac2 ad3 ae2 1

ac3 1 ae3 1

1 1 1 1
...

...
...

...

1 1 1 bi4

1 1 1 aw2

1 bi2 1 aw3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Thus

z
3

z
4

· · · zp = ac2ad3ae2ac3ae3bi4a
w2bi2a

w3 .

Setting

w
1

= c
2

+ d
3

+ e
2

+ c
3

+ e
3

,
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A. A three generated multi-edge spinal group

we get

z
3

z
4

· · · zp = aw1b⇤aw2b⇤aw3 .

Applying the map ⇥
2

on the element z 2 [G, G] we get

⇥
2

(z) = [a, z
3

z
4

· · · zp] = a�1a�w3b�1

i2
a�w2b�1

i4
a�w1aaw1bi4a

w2bi2a
w3

= a�(1+w3)b�1

i2
a�w2b�1

i4
abi4a

w2bi2a
w3

= a�(1+w3)b�1

i2
a�w2b�1

i4
abi4a

(w2+w3)ba
w3

i2

= a�(1+w3)b�1

i2
a�w2b�1

i4
a(1+w2+w3)ba

(w2+w3)

i4 ba
w3

i2

= a�(1+w3)b�1

i2
a�w2a(1+w2+w3)(b�1

i4
)a

(1+w2+w3)
ba

(w2+w3)

i4 ba
w3

i2

= a�(1+w3)b�1

i1
a(1+w3)(b�1

i4
)a

(1+w2+w3)
ba

(w2+w3)

i4 ba
w3

i2

= (b�1

i2
)a

(1+w3)(b�1

i4
)a

(1+w2+w3)
ba

(w2+w3)

i4 ba
w3

i2 .

It is not hard to see that for (b�1

i2
)a

(1+w3) to contribute a b�1

i1
in the first section of the

decomposition we need w
3

⌘ 0 (mod p). Hence ba
w3

i2
contributes a rooted automor-

phism in the first section of the decomposition. Since w
3

⌘ 0 (mod p), for ba
(w2+w3)

i4

to contribute bi4 we need w
2

= 1. Therefore (b�1

i4
)a

(1+w2+w3) contributes the identity

element in the first section of the decomposition. As a result

z
11

([a, z
3

z
4

· · · zp]) = (b�1

i2
bi4a, ⇤, . . . , ⇤).

Therefore, applying the map ⇥
1

on z
11

([a, z
3

z
4

· · · zp]) we see that the length of its

image is equal to two.

On the other hand, for ba
w3

i2
to contribute a directed automorphism in the first section

of the decomposition we need w
3

= 1. For (b�1

i4
)a

(1+w2+w3) to contribute a directed

automorphism we need w
2

= �1. Then (bi4)
a(w2+w3) gives a rooted automorphism and

we see that the length is equal to two. But in this case

(b�1

i2
)a

(1+w3) = (1, b�1

i2
, a⇤, a⇤, a⇤, 1, . . . , 1)

(b�1

i4
)a

(1+w2+w3) = (b�1

i4
, a⇤, a⇤, a⇤, 1, . . . , 1)

(bi4)
a(w2+w3) = (a⇤, a⇤, a⇤, 1 . . . , 1, bi4)

ba
w3

i2 = (bi2 , a
⇤, a⇤, a⇤, 1, . . . , 1).

Therefore the length of z
3

z
4

· · · zp in the product of the directed automorphisms above

is equal to one. Hence applying the map ⇥
2

again we see that the length of its image
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is equal to two.

Case 1.2: In this case z
3

· · · zp is of the form:

z
3

z
4

· · · zp = aw1b⇤aw2b⇤

where wi 6⌘ 0 (mod p) for i 2 {1, 2} and the symbols b⇤ represent elements in hb
1

, b
2

i.

For example, the decomposition matrix is of the form:

D(z) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

bi1 ad1 bi3 1

ac1 ad2 ae1 1

ac2 ad3 ae2 1

ac3 1 ae3 1

1 1 1 1
...

...
...

...

1 1 1 bi4

1 1 1 af1

1 1 1 af2

1 1 1 af3

1 bi2 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Thus

z
3

z
4

· · · zp = ac2ad3ae2ac3ae3bi4a
f1af2af3bi2 .

Setting

w
1

= c
2

+ d
3

+ e
2

+ c
3

+ e
3

,

and

w
2

= f
1

+ f
2

+ f
3

we get

z
3

z
4

· · · zp = aw1bi4a
w2bi2 .
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Applying the map ⇥
2

on z we get

⇥
2

(z) = [a, z
3

z
4

· · · zp] = a�1b�1

i2
a�w2b�1

i4
a�w1aaw1bi4a

w2bi2

= a�1b�1

i2
a�w2b�1

i4
abi4a

w2bi2

= a�1b�1

i2
a�w2b�1

i4
a(1+w2)ba

w2

i4 bi2

= a�1b�1

i2
a(�w2+1+w2)(b�1

i4
)a

(1+w2)
ba

w2

i4 bi2

= (b�1

i2
)a(b�1

i4
)a

(1+w2)
ba

w2

i4 bi2 .

It is not hard to see that (b�1

i2
)a and bi2 contribute a directed and a rooted automorphism

in the first section of the decomposition respectively. Also for ba
w2

i4
to contribute a

directed automorphism we need w
2

= 1. Then (b�1

i4
)a

(1+w2) contributes the identity and

hence applying the map ⇥
1

on z
11

([a, z
3

z
4

· · · zp]) we see that the length of its image is

equal to two. The remaining cases are identical.

Case 2: We consider elements z 2 [G, G] of length @(z) = 6. As before, we need to

consider two subcases.

Case 2.1: In this case z
3

· · · zp is of the form:

z
3

z
4

· · · zp = aw1b⇤aw2b⇤aw3b⇤aw4

where wi 6⌘ 0 (mod p) for i 2 {1, 2, 3, 4} and the symbols b⇤ represent elements in

hb
1

, b
2

i.

For example, the decomposition matrix is of the form:

D(z) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

bi1 ad1 bi3 af2 bi5 1

ac1 ad2 ae1 af3 ah1 1

ac2 ad3 ae2 1 ah2 1

ac3 1 ae3 1 ah3 1

1 1 1 1 1 1
...

...
...

...
...

...

1 1 1 1 1 bi6

1 1 1 1 1 aw2

1 1 1 bi4 1 aw3

1 bi2 1 af1 1 ak3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Thus

z
3

z
4

· · · zp = ac2ad3ae2ah2ac3ae3ah3bi6a
w2bi4a

w3bi2a
f1ak3 .
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Setting

w
1

= c
2

+ d
3

+ e
2

+ h
2

+ c
3

+ e
3

+ h
3

and

w
4

= f
1

+ k
3

we get

z
3

z
4

· · · zp = aw1b⇤aw2b⇤aw3b⇤aw4 .

Applying the map ⇥
2

on the commutator z we get

⇥
2

(z) = [a, z
3

z
4

· · · zp]

= (b�1

i2
)a

(1+w4)(b�1

i4
)a

(1+w3+w4)(b�1

i6
)a

(1+w2+w3+w2)

(bi6)
a(w2+w2+w4)(bi4)

a(w3+w4)(bi2)
aw4

.

For (bi2)
aw4 to contribute a directed automorphism in the first section of the decom-

position we need w
4

= 1. For (bi6)
a(w2+w3+w4) to contribute a directed automorphism

we need w
2

+ w
3

6⌘ 0 (mod p). But then (b�1

i6
)a

(1+w2+w3+w4) contributes the identity in

the first section of the decomposition. Therefore applying the map ⇥
1

we see that the

length of its image is at most four.

On the other hand, for (b�1

i2
)a

(1+w4) to contribute a directed automorphism in the first

section of the decomposition we need w
4

6⌘ 0 (mod p). But then for (bi4)
a(k2+w4) to

contribute a directed automorphism we need w
3

= 1. Hence (b�1

i4
)a

(1+w3+w4) gives the

identity in the first section of the decomposition and therefore applying the map ⇥
1

we see that the length of its image is at most four.

Case 2.2: In this case z
3

· · · zp is of the form:

z
3

z
4

· · · zp = aw1b⇤aw2b⇤aw3b⇤

where wi 6⌘ 0 (mod p) for i 2 {1, 2, 3} and the symbols b⇤ represent elements in hb
1

, b
2

i.

For example, the decomposition matrix is of the form:
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D(z) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

bi1 ad2 bi3 af1 bi5 1

ac1 ad3 ae1 af2 ah1 1

ac2 1 ae2 af3 ah2 1

ac3 1 ae3 1 ah3 1

1 1 1 1 1 1
...

...
...

...
...

...

1 1 1 1 1 bi6

1 1 1 1 1 ak1

1 1 1 1 1 ak2

1 bi2 1 1 1 ak3

1 ad1 1 bi4 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Thus

z
3

z
4

· · · zp = aw1bi6a
w2bi2a

w3bi4 .

Applying the map ⇥
2

on z we get

⇥
2

(z) = [a, z
3

z
4

· · · zp] = (b�1

i4
)a(b�1

i2
)a

(1+w3)(b�1

i6
)a

(1+w2+w3)(bi6)
a(w2+w3)(bi2)

aw3
bi4 .

Now, (b�1

i4
)a gives a directed automorphism is the first section of the decomposition.

For (bi2)
aw3 to give a directed automorphism we need w

3

= 1. But then (b�1

i2
)a

(1+w3)

contributes the identity and hence the length of the first section of the decomposition

is at most two. Therefore applying the map ⇥
1

we see that the length of its image is

at most four.

On the other hand, bi4 gives a rooted automorphism in the first section of the decom-

position and hence the length of the first section of the decomposition is at most two.

Therefore applying the map ⇥
1

we see that the length of its image is at most four. The

remaining cases are identical.

Case 3: We consider elements z 2 [G, G] of length @(z) = 8. In this case it is not hard

to see that in order to have @(z
1

) = @(z
3

z
4

· · · zp) = 4, the decomposition matrix is of
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A. A three generated multi-edge spinal group

the form:

D(z) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

bi1 ad3 bi3 af1 bi5 ak1 bi7 1

ac1 1 ae1 af3 ah1 ak1 al1 1

ac2 1 ae2 1 ah2 ak3 al2 1

ac3 1 ae3 1 ah3 1 al3 1

1 1 1 1 1 1 1 1
...

...
...

...
...

...
...

...

1 1 1 1 1 1 1 bi8

1 1 1 1 1 1 1 an1

1 bi2 1 1 1 1 an2

1 ad1 1 bi4 1 1 1 an3

1 ad2 1 af1 1 bi6 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Thus

z
3

z
4

· · · zp = aw1bi8a
w2bi2a

w3bi4a
w4bi6 ,

where

w
1

= c
2

+ e
2

+ h
2

+ k
3

+ l
2

+ c
3

+ e
3

+ h
3

+ l
3

w
2

= n
1

w
3

= n
2

+ d
1

w
4

= n
3

+ d
2

+ f
1

.

Applying the map ⇥
2

on the commutator z we get

⇥
2

(z) = [a, z
3

z
4

· · · zp]

= (b�1

i6
)a (b�1

i4
)a

1+w4 (b�1

i2
)a

1+w3+w4 (b�1

i8
)a

1+w2+w3+w4

(bi8)
aw2+w3+w4 (bi2)

aw3+w4 (bi4)
aw4

bi6 .

Now, (b�1

i6
)a contributes a directed automorphism in the first section of the decompo-

sition. For (bi4)
aw4 to contribute a directed automorphism we need w

4

= 1. But then

(b�1

i4
)a

(1+w4) gives the identity and hence the length of the first section of the decom-

position is at most three. Therefore applying the map ⇥
1

we see that the length its

image is at most six.

On the other hand, bi6 contributes a rooted automorphism in the first section of the

decomposition. Hence its length is at most three and the result yields.

Case 4: We consider commutator words of length greater or equal to ten. Firstly note

that in order to have @(z
1

) � 5, the directed automorphisms in columns 2, 4, 6, . . . , m�2
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A. A three generated multi-edge spinal group

can only be positioned in the last three rows. Thus the decomposition matrix is of the

form:

D(z) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

bi1 a⇤ bi3 a⇤ bi5 a⇤ bi7 a⇤ · · · a⇤

a⇤ 1 a⇤ 1 a⇤ 1 a⇤ a⇤ · · · a⇤

a⇤ 1 a⇤ 1 a⇤ 1 a⇤ a⇤ · · · a⇤

a⇤ 1 a⇤ 1 a⇤ 1 a⇤ a⇤ · · · 1

1 1 1 1 1 1 1 1 · · · 1
...

...
...

...
...

...
...

...
. . .

...

1 1 1 1 1 1 1 1 · · · 1

1 bi2 1 1 1 bi6 1 1 · · · 1

1 a⇤ 1 bi4 1 a⇤ 1 bi8 · · · 1

1 a⇤ 1 a⇤ 1 a⇤ 1 a⇤ · · · bim

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Note that there is at most one directed automorphism either in position (p, m) or in

position (p� 4, m). Also there is at most one directed automorphism in row p� 2 and

at most m�5

2

in row p� 1. In total

@(z
3

z
4

· · · zp)  1 + 1 +
m� 5

2
=

m� 1

2
.

Therefore applying the map ⇥
2

we see that the length of its image is at most

m� 1

2
⇥ 2 = m� 1  m = @(z).

The remaining cases for elements z 2 [G, G] of length @(z) � 12 are identical and the

result yields.
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Appendix B

A MAGMA program

In [26], E. Pervova showed that the GGS-groups have maximal subgroups only of finite

index. A key ingredient in the proof for the GGS-groups relies on a single theta map

⇥
1

: [G, G] 7! [G, G]

defined by

z 7! [a, z�1

1

].

Recall from Section 4.2, that in the current thesis we have introduced a second theta

map

⇥
2

: [G, G] 7! [G, G]

defined by

z 7! [a, zn+1

· · · zp].

During the early stages of our research, we wrote a program in MAGMA [6] in our

e↵orts to get a better insight of the theta map used in [26].

It turned out that introducing the second map ⇥
2

allowed us to extend our result in

the class of torsion just infinite multi-edge spinal groups. It is worth mentioning, that

even in the case of the GGS-groups, by using the second map ⇥
2

one can simplify to

a great extent the methods used in [26].

We present a MAGMA [6] program which allows to investigate the map ⇥
1

for the

Gupta-Sidki group for p = 3. Recall from Remark 3.1.7, that the Gupta-Sidki group

G = ha, bi is generated by the rooted automorphism a and the directed automorphism

 
1

(b) = (a, a�1, 1, . . . , 1, b).
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B. A MAGMA program

The text after // denotes some comments for making the code more readable.

// ——————————————– basic parameters

// Magma program to i n v e s t i g a t e the map

//

// Theta 1 : G’ ��> G’ , z = ( z 1 , z 2 , z 3 ) �> [ a , z 1 ˆ{�1}]

//

// f o r the Gupta�S idk i group G f o r p=3

// with gene ra to r s

// a : rooted automorphism

// b : d i r e c t ed automorphism (a , aˆ{�1} ,b )

//

// The program sea r che s f o r f i x ed po in t s under Theta 1 among elements

// o f bounded length in G.

//

// September 2013

c l e a r ;

// �������������������������������������������� bas i c parameters

p := 3 ;

r := 10 ; // maximal l ength o f e lements that are t e s t ed

// Candidates g in G are wr i t t en as

//

// aˆ{ e 1 } bˆ{d 1} aˆ{ e 2 } . . . aˆ{ e r } bˆ{ d r }

//

// with e i , d j in {0 , 1 , 2} .

// The exponents are recorded as ve c t o r s

//

// ( e 1 , e 2 , . . . , e r , d 1 , d 2 , . . . , d r )

//

// in a vec to r space U \cong W \ op lus W

// aux i l i a r y vec to r spaces

// U \cong W \ op lus W
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B. A MAGMA program

V := VectorSpace ( F i n i t eF i e l d (p ) , r ) ;

W := sub<V | [V. i � V. ( i +1) : i in [ 1 . . r�1]] > ;

// �������������������������������������������� f un c t i on s

func t i on reduced ( a ) // reduces e lements o f W x W to standard form

e := a [ 1 ] ; // e = ( e 1 , . . . , e r ) exponents o f a ’ s

d := a [ 2 ] ; // d = ( d 1 , . . . , d r ) exponents o f b ’ s

r epeat

f i n i s h e d := true ;

// t e s t s f o r 0 s in the vec to r e and s h i f t s them to the r i g h t

f o r i in [ 2 . . r ] do

i f e [ i ] eq 0 and d [ i ] ne 0 then

d [ i �1] := d [ i �1] + d [ i ] ;

f o r j in [ i . . r�1] do

e [ j ] := e [ j +1] ;

d [ j ] := d [ j +1] ;

end f o r ;

e [ r ] := 0 ;

d [ r ] := 0 ;

f i n i s h e d := f a l s e ;

break i ;

end i f ;

end f o r ;

// t e s t s f o r 0 s in the vec to r d and s h i f t s them to the r i g h t

f o r i in [ 1 . . r�1] do

i f e [ i +1] ne 0 and d [ i ] eq 0 then

e [ i ] := e [ i ] + e [ i +1] ;

d [ i ] := d [ i +1] ;

f o r j in [ i +1. . r�1] do

e [ j ] := e [ j +1] ;

d [ j ] := d [ j +1] ;

end f o r ;

e [ r ] := 0 ;

d [ r ] := 0 ;

f i n i s h e d := f a l s e ;

break i ;
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B. A MAGMA program

end i f ;

end f o r ;

u n t i l f i n i s h e d ;

r e turn [ e , d ] ;

end func t i on ;

// ���

f unc t i on theta ( a ) // theta map from W x W to W x W

// vec to r s e = ( e 1 , . . . , e r ) , d = ( d 1 , . . . , d r )

// and e s eq : e as a sequence [ e 1 , . . . , e r , 0 ]

e := a [ 1 ] ;

e s eq := ElementToSequence ( e ) cat [ F i n i t eF i e l d (p ) ! 0 ] ;

d := a [ 2 ] ;

// index s e t f o r non�zero d i ’ s

I d := { i : i in [ 1 . . r ] | d [ i ] ne 0} ;

// work out f i r s t coo rd ina te z 1 o f element z cor re spond ing to e , d

m := [ ] ; // sequence to encode f a c t o r s o f z 1

sum e := F in i t eF i e l d (p ) ! 0 ;

f o r j in [ i+1 : i in I d ] do

sum e := sum e + e s eq [ j ] ;

end f o r ;

f o r i in I d do

i f sum e eq 0 then // s h i f t by 0 �> ( a , aˆ�1,b)ˆ{ d i }

entry := [ 1 , d [ i ] ] ; // endcodes f a c t o r aˆ{ d i }

e l s e

i f sum e eq 1 then // s h i f t by 1 �> (b , a , aˆ�1)ˆ{ d i }

entry := [ 2 , d [ i ] ] ; // encodes f a c t o r bˆ{ d i }

e l s e // s h i f t by 2 �> ( aˆ�1,b , a )ˆ{ d i }

entry := [1 ,�d [ i ] ] ; // encodes f a c t o r aˆ{ d i }

end i f ;

end i f ;

Append(˜m, entry ) ;

sum e := sum e � e s eq [ i +1] ;

end f o r ;
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B. A MAGMA program

// form commutator [ a , z 1 ˆ�1] o f a with z 1ˆ�1

m rev := Reverse (m) ;

// sequence c encodes commutator

c s eq := [ [ 1 , �1 ] ] cat // aˆ�1

m cat // z 1

[ [ 1 , 1 ] ] cat // a

[ [ entry [1 ] ,� entry [ 2 ] ] : entry in m rev ] ; // z 1ˆ�1

// bu i ld exponents e ’ , d ’ as e lements o f W x W correspond ing to commutator

c := [W!0 ,W! 0 ] ;

i := [ 1 , 0 ] ; // s t a r t by determining e ’ 1

type := 1 ; // search 1 s t f o r a ’ s ( a has type 1 , b has type 2)

f o r entry in c s eq do

i f entry [ 1 ] eq type then // c o l l e c t i n g the same generator as p r ev i ou s l y

new vec := c [ type ] ;

new vec [ i [ type ] ] := new vec [ i [ type ] ] + entry [ 2 ] ;

i f type eq 1 then

c := [ new vec , c [ 2 ] ] ; // update e ’ i

e l s e

c := [ c [ 1 ] , new vec ] ; // update d ’ j

end i f ;

e l s e // s t a r t c o l l e c t i n g the other genera to r now

type := In t e g e r s ( ) ! entry [ 1 ] ; // update type ( a : 1 , b : 2)

i [ type ] := i [ type ]+1; // move to the next p o s i t i o n

new vec := c [ type ] ;

new vec [ i [ type ] ] := new vec [ i [ type ] ] + entry [ 2 ] ;

i f type eq 1 then

c := [ new vec , c [ 2 ] ] ; // update e ’ i

e l s e

c := [ c [ 1 ] , new vec ] ; // update d ’ j

end i f ;

end i f ;

end f o r ;

c := reduced ( c ) ; // reduce to normal form

return c ;

end func t i on ;

79



B. A MAGMA program

f unc t i on UtoWxW(u) // trans forms u in to (w1 ,w2)

w1 := W! [ ElementToSequence (u ) [ i ] : i in [ 1 . . r ] ] ;

w2 := W! [ ElementToSequence (u ) [ i ] : i in [ r +1. .2⇤ r ] ] ;

r e turn [w1 ,w2 ] ;

end func t i on ;

//����������������������������������������� MAIN

// s u c c e s s i v e l y bu i ld supply o f ‘ reduced ’ p a i r s o f v e c t o r s

// and search f o r f i x ed po in t s

p r i n t ”” ;

p r i n t ” Bui ld ing s e t o f cand idate s . P lease wait . . . ” ;

WxW red := [ ] ;

U1 := [W! ( [ 0 , 0 ] cat [ 0 : i in [ 3 . . r ] ] ) ,

W! ( [ 1 , 2 ] cat [ 0 : i in [ 3 . . r ] ] ) ,

W! ( [ 2 , 1 ] cat [ 0 : i in [ 3 . . r ] ] ) ] ;

U2 := [W! ( [ 1 , 2 ] cat [ 0 : i in [ 3 . . r ] ] ) ,

W! ( [ 2 , 1 ] cat [ 0 : i in [ 3 . . r ] ] ) ] ;

f o r k in [ 2 . . r�1] do

U1 old := U1 ;

U1 := [ ] ;

f o r u o ld in U1 old do

f o r x in F i n i t eF i e l d (p) do

i f u o ld [ k ] ne �x then

u := u o ld + x⇤W. k ;

Append(˜U1 , u ) ;

f o r u2 in U2 do

Append(˜WxW red , [ u , u2 ] ) ;

end f o r ;

end i f ;

end f o r ;
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B. A MAGMA program

end f o r ;

U2 := [ ] ;

f o r u in U1 do

i f u [ 1 ] ne 0 and u [ k+1] ne 0 then

Append(˜U2 , u ) ;

end i f ;

end f o r ;

end f o r ;

Number := #WxW red ;

p r i n t ”There are ” ,Number , ” cand idate s to t e s t . ” ;

p r i n t ”” ;

// s t a r t search among candidate s e t

p r i n t ”Now sea r ch ing in the Gupta�Sidki�group G (p=3) f o r ” ;

p r i n t ” f i x ed po in t s o f the map Theta 1 : G’ ��> G’ de f in ed by ” ;

p r i n t ” z = ( z 1 , z 2 , z 3 ) maps to [ a , z 1 ˆ{ �1} ] . ” ;

p r i n t ”” ;

count := 1 ;

Step := Number div 10 ;

f o r u in WxW red do

i f count mod Step eq 0 then

pr in t Number � count , ” cand idate s remain . . . ” ;

end i f ;

i f theta (u) eq u then

pr in t ”Found one : ” ;

p r i n t u ;

end i f ;

count := count + 1 ;

end f o r ;
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B. A MAGMA program

The following example shows that one cannot expect to reduce the length in all cases,

without using ⇥
2

; see Section 4.2.

/⇤ OUTPUT

> load ”MAGMA�Sep2013 . txt ” ;

Loading ”MAGMA�Sep2013 . txt ”

Bui ld ing s e t o f cand idate s . P lease wait . . .

There are 174420 cand idate s to t e s t .

Now sea r ch ing in the Gupta�Sidki�group G (p=3) f o r

f i x e d po in t s o f the map Theta 1 : G’ ��> G’ de f in ed by

z = ( z 1 , z 2 , z 3 ) maps to [ a , z 1 ˆ{�1} ] .

Found one :

[

(2 1 0 0 0 0 0 0 0 0) ,

(1 2 0 0 0 0 0 0 0 0)

]

Found one :

[

(2 1 0 0 0 0 0 0 0 0) ,

(2 1 0 0 0 0 0 0 0 0)

]

Found one :

[

(1 1 2 1 1 2 1 0 0 0) ,

(1 1 2 1 2 2 0 0 0 0)

]

156978 cand idate s remain . . .

139536 cand idate s remain . . .

Found one :

[

(2 2 1 2 1 1 2 1 0 0) ,

(1 1 1 2 1 2 2 2 0 0)

]
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Found one :

[

(2 2 1 2 1 1 2 1 0 0) ,

(2 1 1 2 1 2 2 1 0 0)

]

122094 cand idate s remain . . .

104652 cand idate s remain . . .

87210 cand idate s remain . . .

69768 cand idate s remain . . .

52326 cand idate s remain . . .

34884 cand idate s remain . . .

17442 cand idate s remain . . .

0 cand idate s remain . . .

>

⇤/

Problem. Study the dynamical system ([G, G], ⇥
1

). What are the fixed points (or

periodic points)? Are there infinitely many? How do the answers depend on the multi-

edge spinal group G?
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