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Abstract

This thesis is divided into two distinct parts. The first part of this thesis studies non-
interactive key exchange schemes in two different settings: the public key setting and
the identity-based setting. Loosely speaking, a non-interactive key exchange (NIKE)
scheme allows two users to compute a unique shared key without any interaction.
Our work is motivated by the scant attention that this primitive has received since
the major contribution in the ground-breaking paper of Diffie and Hellman.

In the public key setting, we assume that any user can compute a public/private
key pair and the public keys are registered with a Certification Authority (CA). A
user A can compute a shared key with user B by using its own private key skA
and B’s public key pkB, along with some public parameters. We provide different
security models for NIKE and explore the relationships between them. Our models
consider the challenging setting where an adversary can introduce arbitrary public
keys in the system. We give constructions for secure NIKE, with respect to those
security models, in the random oracle model based on the hardness of factoring, and
in the standard model based on the hardness of a variant of the Decisional Bilinear
Diffie-Hellman problem for asymmetric pairings. We also study the relationship
between NIKE and public key encryption (PKE), showing that a secure NIKE can
be generically converted into an IND-CCA secure PKE scheme.

In the identity-based setting, there is a Trusted Authority (TA) who holds a mas-
ter secret key and a master public key. The public key of a user is some unique
information that identifies a user, called the identity. The private key for each user
is computed by the TA, who uses its master secret key and master public key to-
gether with the user identity to derive the user’s private key. Using multilinear
maps, we obtain the first identity-based non-interactive key exchange scheme (ID-
NIKE) secure in the standard model. The scheme is a standard-model version of
the Sakai-Ohgishi-Kasahara ID-NIKE scheme. In addition, we derive a fully-secure
hierarchical version of our ID-NIKE scheme. Our hierarchical ID-NIKE scheme is
the first such scheme with full security in either the random oracle model or the
standard model.

The second part of this thesis is concerned with the construction of hierarchical key
assignment schemes. Such schemes can be used to enforce access control policies by
cryptographic means. We present new, enhanced security models for hierarchical
key assignment schemes and give simple, efficient and strongly key indistinguishable
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secure constructions that can be used for arbitrary hierarchies. Our constructions
use pseudorandom functions and forward-secure pseudorandom generators as build-
ing blocks. We compare instantiations of our constructions with state-of-the-art
hierarchical key assignment schemes, demonstrating that our new schemes possess
an attractive trade-off between storage requirements and efficiency of key derivation.
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Notation

We include here a list of symbols and notations that might be useful for reference.
All other symbols and notations will be introduced at their first use.

Z,N,R sets of integers, non-negative integers and real numbers

k ∈ N security parameter (also denoted by 1k, the string of k ones)

Zn set of all integers modulo n

Z∗n subset of Zn formed by all elements which are relatively prime to n

{0, 1}n set of all binary strings of length n

{0, 1}∗ set of all binary strings of unspecified length

x||y concatenation of strings x and y

x⊕ y exlusive-or (XOR) of strings x and y

a | b integer a divides integer b

|X| number of elements in a set X, or order of group if X is a group

||x|| length of bit string x

|a| absolute value of an element a

ord(a) multiplicative order of element a in a specified group

φ : N→ N Euler’s totient function

[n] set of integers 1, . . . , n

bxc largest integer not greater than x

{ni}i∈[q] the set {n1, . . . , nq}
s← S process of selecting s uniformly at random from a set/group S

y ← A(x) process of running an algorithm A on input x and assigning y

the result

x← y process of assigning the value y to a variable x

AF an adversary A with oracle access to F

⊥ error/rejection symbol

¬,∧,∨ negation, logical conjunction, logical disjunction

:= assignment symbol
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Thesis Structure and Summary of Contributions . . . . 18

In this chapter, we give some motivation for our research and present the overall

structure of this thesis with a summary of our contributions.

1.1 Motivation

This thesis addresses two distinct topics in cryptography: non-interactive key ex-

change and hierarchical key assignment schemes.

Part I of this thesis deals with the study of non-interactive key exchange schemes in

two different settings: the public key setting and the identity-based setting.

In 1976, Diffie and Hellman in their ground-breaking paper “New directions in cryp-

tography” [53], proposed a “public key distribution system”. This system, famously

known as the Diffie-Hellman (DH) protocol, is frequently seen as an interactive key

exchange scheme; it allows two users to establish a shared key via communication

over an insecure channel. Loosely, in this view, the DH protocol works as follows.

We assume the existence of a group G of prime order p and with generator g. In

order to agree on a shared key, user Alice randomly chooses an integer a from Zp as

her private key and user Bob similarly chooses a random integer b from Zp. Now,

Alice computes her public key ga (mod p), which she sends to Bob, and Bob com-

putes gb (mod p), which he sends to Alice. After receiving each other’s public keys,

Alice and Bob compute their shared key KAB = gab (mod p), which Alice computes

as KAB = (gb)
a

(mod p) and Bob computes as KAB = (ga)b (mod p). The idea
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1.1 Motivation

behind this protocol is that, unless one can efficiently compute discrete logarithms

in G, it should be computationally infeasible for a potential adversary eavesdrop-

ping the communication between Alice and Bob to compute their shared key KAB.

However, it is well known that the DH protocol has a major shortcoming. Namely,

it is vulnerable to a man-in-the-middle attack; an eavesdropper intercepts Alice’s

public key and sends its own public key to Bob. When Bob sends his public key, the

eavesdropper now intercepts that communication and substitutes Bob’s public key

with its own public key. Alice and Bob, instead of agreeing on a shared key between

themselves, will thus unknowingly each agree on a shared key with the eavesdropper.

Although frequently seen as an interactive key exchange scheme, the DH protocol

was in fact originally proposed as a, what we call, non-interactive key exchange

scheme (NIKE) in the public key setting; users (instead of exchanging public keys)

store their public keys (along with their respective identities) in a public file, or in

more practical terms, they register their public keys with a Certification Authority

(CA). In order to compute a shared key with Bob, Alice first retrieves Bob’s public

key from the public file, while Bob retrieves Alice’s public key. Alice and Bob

compute a shared key as before, but no interaction between them is required. The

DH protocol seen in this way suffers from a similar security problem as before, if we

allow an adversary to register arbitrary public keys against users of its choice. So

for example, the adversary “steals” Bob’s public key and registers it as the public

key of a third, corrupt, user. Now, we see that the shared key between Alice and the

corrupt user, KAC , is identical to KAB. Thus, the adversary can obtain the shared

key between two honest users, Alice and Bob, by simply stealing KAC = KAB.

This security issue can be avoided if Alice and Bob hash that key along with their

identities. In this case we say the scheme is secure in the random oracle model (see

Section 2.2.3 for the random oracle model).

Interestingly, since its appearance in the Diffie-Hellman paper [53], the NIKE prim-

itive has not received much attention. In the public key setting, to the best of our

knowledge, the first work that provided a formal security model for non-interactive

key exchange was a paper due to Cash et al., in 2008 [40]. Then the questions

that arise are: How realistic is this security model? What other options for security

models can we have? Does there exist any NIKE scheme which is secure in the stan-

dard model with respect to a security model that allows an adversary to arbitrarily

register public keys against users of its choice? (One has to consider that in practice
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1.1 Motivation

it is common that CAs do not operate so rigorously and might, for example: not

properly check the identity of a user who wants to register a public key; not require

proof of possession of corresponding private keys; or even not check validity of public

keys.) In this thesis, we systematically study NIKE, addressing all these questions.

On the other hand, as far as we are aware, the first and only efficient and secure

non-interactive key exchange scheme in the identity-based setting (ID-NIKE), was

due to Sakai, Ohgishi and Kasahara, in 2000 [122]. (In the identity-based setting,

publicly known strings identifying users are used as their public keys, and users’

private keys are computed and distributed to the corresponding users by a Trusted

Authority (TA).) The SOK scheme has been proven secure in a security model by

Dupont and Enge [57] and subsequently in a stronger security model by Paterson

and Srinivasan [112]. However, security for the SOK scheme is only achieved in the

random oracle model. In this respect, the goal of this thesis is to provide the first

ID-NIKE scheme with security in the standard model. We go further and examine

the ID-NIKE primitive in the hierarchical setting, i.e. where users are organized in

a hierarchy and every user can derive private keys for all its descendants in the

hierarchy; as before, any user in the system should be able to securely and non-

interactively agree on a shared key with any other user in the system.

Part II of this thesis is devoted to the study of hierarchical key assignment schemes

(HKASs). Such schemes are methods for implementing access control policies by

assigning encryption keys and private information to each class in a hierarchy in

such a way that the private information assigned to a class, along with some public

information, can be used to derive encryption keys to all the descendant classes in the

hierarchy. Our main concern is that previous HKASs either lack any formal security

analysis or have security based on not so realistic security models. Hierarchical key

assignment schemes were first formalized by Akl and Taylor in 1983 [5], but work

to formally analyse the security of such schemes only started in 2005 with Atallah

et al. [8], who proposed two different security models. We argue that their security

models do not capture the broadest range of realistic attacks; they do not allow an

adversary, whose goal is to either compute the encryption key of a target class of its

choice or distinguish that key from random, to gain access to keys for ancestors of

the target class. This is a weakness in their security models as these keys might leak

through usage, and their compromise need not trivially enable the computation of

key for the target class. Therefore, in this thesis we address the issue of constructing

17



1.2 Thesis Structure and Summary of Contributions

provably secure schemes with respect to stronger security models, which provide that

additional compromise capability to the adversary.

Another contribution that we make in Part II of this thesis is to construct secure

hierarchical key assignment schemes for arbitrary hierarchies in a simple manner.

Recently, Crampton et al. [48] proposed an intriguing approach to constructing

HKASs for arbitrary hierarchies using chain partitions. In this approach an arbitrary

hierarchy is partitioned into a collection of chains and the scheme for the arbitrary

hierarchy is built by combining, in a particular way, the schemes for each of the

chains. However, that construction came with no formal security analysis. In this

thesis we analyse the chain partition construction of [48], showing that the security

of the scheme for a single chain implies the security of the scheme for an arbitrary

hierarchy, enabling us to focus on the construction of simple schemes for single

chains. We show how to construct such single chain schemes using pseudorandom

functions and forward-secure pseudorandom generators.

1.2 Thesis Structure and Summary of Contributions

The remainder of this thesis is organised as follows.

Chapter 2: This chapter provides some background material relevant for the un-

derstanding of the subsequent chapters of this thesis. In particular, it gives

an overview of the mathematics and cryptographic primitives required in the

constructions of our cryptographic schemes presented in Parts I and II of this

thesis. As this thesis follows the provable security paradigm, we also provide

in this chapter an introduction to the topic of provable security and its proof

techniques.

The main contributions of this thesis are organized in two separate parts: Part I,

which consists of Chapters 3 and 4, focuses on the study of the non-interactive key

exchange primitive; Part II, which consists of Chapter 5, is concerned with the study

of hierarchical key assignment schemes. We expand on the contributions presented

on each of these chapters next.

Chapter 3: This chapter is on NIKE in the public key setting. We start our contri-

butions in this topic by exploring different security models for NIKE and their
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1.2 Thesis Structure and Summary of Contributions

relationships. Our default security models minimize the assumptions about

the Certification Authority (CA), allowing the adversary to register arbitrary

public keys in the system. We prove that all these models are polynomially

equivalent, enabling us to analyse NIKE schemes in the simplest of the se-

curity models. We then provide two provably secure constructions for NIKE

schemes: the first is based on pairings and is provably secure in the stan-

dard model, while the second is an adaptation of the hashed DH protocol to

the group of signed quadratic residues and has security in the random oracle

model. We continue our contributions on NIKE, showing how to construct an

IND-CCA secure public key encryption scheme from a secure NIKE scheme.

The work presented in this chapter appears in the following publication.

• Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Pa-

terson. Non-interactive key exchange. In Kaoru Kurosawa and Goichiro

Hanaoka, editors, Public Key Cryptography, volume 7778 of Lecture Notes

in Computer Science, pages 254–271. Springer, 2013

In this thesis the proof of equivalence between the NIKE security models is

given in a single theorem (Theorem 3.1) as opposed to three separate theorems

as in [63] (the publication above).

Chapter 4: This chapter presents the first ever provably secure ID-NIKE scheme

with security in the standard model. Our scheme is based on multilinear

maps; we use multilinear maps to construct a new variant of programmable

hash functions (PHFs), which we call multilinear PHFs (MPHFs), and then

use such an MPHF to construct our standard model secure ID-NIKE scheme.

Using MPHFs once again, we construct the first ever hierarchical ID-NIKE

(H-ID-NIKE) scheme to achieve full security either in the random oracle model

or in the standard model.

Most of the results of this chapter were published and presented at CRYPTO

2013 :

• Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph

Striecks. Programmable hash functions in the multilinear setting. In Ran

Canetti and Juan A. Garay, editors, CRYPTO (1), volume 8042 of Lecture

Notes in Computer Science, pages 513–530. Springer, 2013
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1.2 Thesis Structure and Summary of Contributions

Section 4.4 contains a construction towards a standard model secure ID-NIKE

scheme, which is more efficient than the one introduced in the above publi-

cation – it needs only pairings instead of multilinear maps – but only offers

security in a model where the adversary is restricted to make a bounded num-

ber of queries. This part of Chapter 4 is joint work with Dennis Hofheinz.

We now describe our contributions on hierarchical key assignment schemes.

Chapter 5: We start off this chapter by proposing new and stronger security mod-

els for HKASs than the ones proposed by Atallah et al. [8]. We call them S-KR

and S-KI, for strong key-recovery security and strong key-indistinguishability

security, respectively. We give two simple and efficient constructions for HKAS

which we prove secure in our S-KI security model: the first construction

is based on pseudorandom functions (PRFs), while the second is based on

forward-secure pseudorandom generators (FS-PRGs). Both of our construc-

tions are designed for totally ordered hierarchies and can be combined with

the chain partition construction of Crampton et al. [48], which we formally

analyse in this chapter, to produce HKASs for arbitrary hierarchies. In this

chapter, we also provide a comparison between our constructions and some

provably secure HKASs from the literature.

Most of the work presented in this chapter appears in the following publication.

• Eduarda S. V. Freire, Kenneth G. Paterson, and Bertram Poettering. Sim-

ple, efficient and strongly KI-secure hierarchical key assignment schemes.

In Ed Dawson, editor, CT-RSA, volume 7779 of Lecture Notes in Com-

puter Science, pages 101–114. Springer, 2013

The latter publication is in turn an extension of the publication below.

• Eduarda S. V. Freire and Kenneth G. Paterson. Provably secure key

assignment schemes from factoring. In Udaya Parampalli and Philip

Hawkes, editors, ACISP, volume 6812 of Lecture Notes in Computer Sci-

ence, pages 292–309. Springer, 2011

Chapter 6: This is the concluding chapter. We summarize the overall contributions

of this thesis and discuss a number of open problems and possible extensions

of our work.
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In this chapter we give an overview of some relevant concepts and background ma-

terial that help in understanding the remainder of this thesis, making it as self-

contained as possible.
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2.1 Mathematical Background

2.1 Mathematical Background

2.1.1 Computational Complexity Theory

Computational complexity theory is the field of study that classifies computational

problems according to the resources required to solve them. The resources may

include, for example, time, storage space and randomness, with time usually being

the main focus. Typically, computational complexity theory examines how those

resources scale with the size of the problem, say k. For example, the time required

to solve a problem may increase with some polynomial function of k or it may scale

with some exponential function of k. This section provides some basic terminology

and definitions used in this thesis.

An algorithm is a computational procedure that takes a variable input and produces

an output. A deterministic algorithm is an algorithm which, for a given input,

follows the same execution path every time it is executed – hence, for a given input,

the algorithm will always produce the same output (the output is predefined). An

algorithm is said to be probabilistic or randomized if its execution path depends not

only on its input, but also on some random bits – hence, for the same input, the

output of a probabilistic algorithm may differ each time it is executed.

In this thesis we use the term cryptographic primitives, or simply primitives, to

denote basic cryptographic algorithms used in the construction of a more complex

set of algorithms, referred to as a cryptographic scheme, or simply a scheme. So the

term cryptographic primitives will be used when we refer to the basic building blocks

of a cryptographic scheme. Note that the distinction between those two terms is

quite arbitrary; they are often interchangeable in the literature.

The running time of an algorithm on a particular input is the number of “steps”

executed by the algorithm before it terminates. A step is usually interpreted as a bit

operation, but it might also be convenient to see a step as a basic operation such as

an addition, a multiplication, a comparison, a machine clock cycle, etc. The worst-

case running time of an algorithm is an upper bound on its running time for any

input. In contrast, the expected running time of an algorithm is the average running
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2.1 Mathematical Background

time over all inputs of a fixed size. Both worst-case and expected running times are

expressed as functions of the input size. However, these functions are often highly

dependent on the low-level details of the basic operations and thus it is difficult to

calculate the exact running time of an algorithm. To help us simplify the calculation,

we often rely on approximations of the running time. A very useful and well known

notation in this regard is the big-O notation, which is used to express an asymptotic

upper bound (usually in terms of some known function, such as a polynomial, an

exponential function, or a logarithmic function) for a certain function.

Definition 2.1 (Big-O notation). Let f and g be two functions from the positive

integers to the real numbers, then f(k) = O(g(k)) if there is a positive constant c

and a positive integer k0 such that 0 ≤ f(k) ≤ cg(k) for all k ≥ k0.

Definition 2.2 (Polynomial-time algorithm). A polynomial-time algorithm is an

algorithm whose worst-case running time function is of the form O(kc), where k is

the input size and c is a constant.

Any algorithm whose running time is not of the formO(kc) is called a superpolynomial-

time algorithm. This includes exponential-time algorithms, which are algorithms

whose worst-case runnning time functions are of the form O(2k
c
).

Some other useful notations in the framework of complexity theory are the notions

of a negligible function, a noticeable function and an overwhelming function.

Informally, a negligible function is a function that grows slower than any inverse

polynomial.

Definition 2.3 (Negligible function). A function ε(k) is negligible in the parameter

k if for every positive constant c, there exists an integer k0 such that ε(k) ≤ k−c for

all k ≥ k0.

Definition 2.4 (Overwhelming function). A function τ(k) is overwhelming in the

parameter k if 1− τ(k) is negligible.

Definition 2.5 (Noticeable function). A function µ(k) is noticeable in the parame-

ter k if for every positive constant c, there exists an integer k0 such that µ(k) ≥ k−c

for all k ≥ k0.
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2.1 Mathematical Background

In cryptography, it is a common approach to view the complexity of algorithms as

well as their probability of success as functions of the size of the problem, called the

security parameter. The security parameter, k, is usually expressed in unary repre-

sentation 1k (meaning a k-long string of 1’s). Then the notion of efficient algorithms

is equivalent to polynomial-time algorithms, while exponential-time algorithms are

regarded as inefficient algorithms. A problem that cannot be solved in polynomial-

time is called intractable or infeasible. Furthermore, the notion of small success

probability of an algorithm is substituted by negligible probability of success.

Definition 2.6 (Statistically close distributions). Given two distributions D1, D2,

the statistical distance between them is defined as

∆(D1, D2) :=
1

2

∑
x

|Pr[D1 = x]− Pr[D2 = x]|,

where Pr[Di = x] means the probability that a draw from Di lands in x (for i ∈
{1, 2}). We say that D1, D2 are statistically ε-close if ∆(D1, D2) ≤ ε. If ε is

negligible, we simply say that D1, D2 are statistically close.

2.1.2 Abstract Algebra and Some Special Groups

Throughout this thesis we make free use of basic concepts of abstract algebra. For

completeness, we recapitulate here some of these concepts. Further information can

be found in [107, 133].

We denote the set of natural numbers by N, the set of integers by Z and the set of

integers modulo n by Zn. The subset of Zn formed by the elements of Zn which are

relatively prime to n is denoted by Z∗n, that is, Z∗n = {a ∈ Zn | gcd(a, n) = 1}. For

an integer n ≥ 1, the number of integers in the interval {1, . . . , n} that are relatively

prime to n is denoted by φ(n), where the function φ is called the Euler phi function.

We let G denote a group, i.e. G consists of a set with a binary operation satisfying

the group axioms: closure, associativity, identity and invertibility. Henceforth we

will adopt the multiplicative group notation for the group operation.

Definition 2.7 (Order of a group). The order of a group G is the number of

elements in the group, denoted by |G|. A group G is finite if |G| is finite.
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Definition 2.8 (Cyclic group). A group G is cyclic if there is an element g ∈ G
such that for each a ∈ G there is an integer i with a = gi. Such an element g is

called a generator of G. We write G = 〈g〉 = {gi | i ∈ Z}.

We say that a non-empty subset H of a group G is a subgroup of G if H also

forms a group under the operation of G. If G is cyclic, so is any of its subgroups

H. Furthermore, for an element a ∈ G the set of all powers of a forms a cyclic

subgroup of G, denoted by 〈a〉. We say that the order of a, denoted ord(a), is

equal to the order of the cyclic subgroup generated by a, |〈a〉|. Note then that the

order of a generator g of G (if it exists) is equal to the order of the group, that is

ord(g) = |〈g〉| = |G|.

Theorem 2.1 (Lagrange). For any finite group G, the order of every subgroup H of

G divides the order of G. That is, |H| divides |G|. Hence, for any element a ∈ G,

|〈a〉| divides |G|.

Theorem 2.2. Let G be a group. If |G| is prime, then G is cyclic. Moreover, every

element g ∈ G, other than the identity, is a generator of G.

Theorem 2.2 is a direct consequence of Lagrange’s theorem.

Definition 2.9 (Abelian group). An abelian group, also called a commutative

group, is a group that satisfies the axiom of commutativity. That is, for all a, b ∈ G,

we have a · b = b · a.

Proposition 2.1. Every cyclic group is abelian.

An example of an important group used in cryptography is the group Z∗n under the

operation of multiplication modulo n. This group has order φ(n). Moreover, if n is

prime, then Z∗n is cyclic with order φ(n) = n− 1.

Theorem 2.3 (Chinese remainder theorem (CRT)). Let the integers {ni}i∈[λ] be

pairwise relatively prime and let {ai}i∈[λ] be arbitrary integers. Then the system of

simultaneous congruences

a = ai (mod ni) (i = 1, . . . , λ)

has a unique solution modulo n =
∏λ
i=1 ni.
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Let n∗i = n/ni. Now define ti = (n∗i )
−1 (mod ni) and ei = n∗i ti. (Note that since

gcd(ni, n
∗
i ) = 1, we can compute ti.) We see that ei = 1 (mod ni), while for j 6= i,

ni | n∗j and so ej = 0 (mod ni). Thus, we can obtain the unique solution modulo n

as

a =

λ∑
i=1

aiei (mod n).

Definition 2.10 (Quadratic residues). Let a ∈ Z∗n. The element a is said to be a

quadratic residue modulo n if it is congruent to a square modulo n, i.e. if there is

an x ∈ Z∗n such that x2 = a (mod n). (The element x is called a square root of a

modulo n.) If no such x exists, a is called a quadratic non-residue modulo n. We

denote the set of all quadratic residues modulo n by QRn and the set of quadratic

non-residues by QRn.

Note that when n is prime, half of the elements of Z∗n are quadratic residues and

the other half quadratic non-residues. Hence, |QRn| = |QRn| = φ(n)/2 = (n −
1)/2. Furthermore, for n prime, we can determine whether an element a ∈ Z∗n is a

quadratic residue modulo n by using Euler’s criterion.

Theorem 2.4 (Euler’s criterion). Let p be an odd prime and a an integer such that

gcd(a, p) = 1. Then

a
p−1
2 =

{
1 (mod p) if there is x ∈ Z such that x2 = a (mod p),

−1 (mod p) if there is no such integer.

In order to simplify the notation of the computation for Euler’s criterion, we use

the symbol
(
a
p

)
, introduded by Adrien-Marie Legendre. This symbol, called the

Legendre symbol, comes with a number of useful properties which can be used to

speed up the calculations for determining whether an integer is a quadratic-residue

or a quadratic non-residue modulo a prime number.

Definition 2.11 (The Legendre symbol). Let p be an odd prime and a an integer.

The Legendre symbol
(
a
p

)
is defined as

(a
p

)
=


0 if p | a,

1 if a ∈ QRp,

−1 if a ∈ QRp.
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Note that by Definition 2.10, 0 6∈ Z∗p and so 0 6∈ QRp and 0 6∈ QRp.

A useful generalization of the Legendre symbol to odd composite numbers is the

Jacobi symbol. Like the Legendre symbol, the Jacobi symbol also comes with useful

properties, which we omit here.

Definition 2.12 (The Jacobi symbol). Let n be an odd integer with prime factor-

ization n = p1
e1p2

e2 . . . pλ
eλ and a an integer. The Jacobi symbol

(
a
n

)
is defined

as (a
n

)
=
( a
p1

)e1( a
p2

)e2
. . .
( a
pλ

)eλ
.

We stress that
(
a
n

)
can be efficiently computed even without knowing the prime

factorization of n. This can be done by using properties of the Jacobi symbol. By

Jn we denote the subgroup of all elements of Z∗n having Jacobi symbol 1.

An important observation is that when n is a product of two distinct odd primes,

p and q, then an element a ∈ Z∗n is a quadratic residue modulo n if and only if

a ∈ QRp and a ∈ QRq. It follows that |QRn| = |QRp||QRq| = (p− 1)(q − 1)/4 =

φ(n)/4 and |QRn| = 3φ(n)/4. Also, note that a has Jacobi symbol 1 if and only if(
a
p

)
=
(
a
q

)
= 1 or

(
a
p

)
=
(
a
q

)
= −1. This means that |Jn| = φ(n)/2.

Definition 2.13 (Blum integers and safe primes). A composite integer of the form

N = PQ is called a Blum integer if P and Q are distinct primes, each congruent to

3 modulo 4. A special type of Blum integer is when both (P − 1)/2 and (Q − 1)/2

are primes. In this case P and Q are called safe primes.

For a Blum integer N , and an element a ∈ QRN , a has precisely four square roots

modulo N . Moreover, exactly one of these square roots is in QRN .

Let us now recall the definition of the group of signed quadratic residues QR+
N from

[87] (see also [60, 80]).

Definition 2.14 (Signed quadratic residues). Let N = PQ be a k-bit Blum integer.

The group of signed quadratic residues, QR+
N , is defined as the group QR+

N = {|x| :
x ∈ QRN}, where |x| is the absolute value when representing elements of ZN as the

set {−(N−1)/2, . . . , (N−1)/2}. For g, h ∈ QR+
N , the group operation is g◦h = |g ·h

(mod N)|.
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For simplicity of notation we will omit the group operation “◦” when it is obvious

by context which group operation is being used. As an example of the group QR+
N ,

let P = 3 and Q = 7. Then Z∗N = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20} and QRN =

{1, 4, 16}. If we represent the elements of ZN as the set {−(N−1)/2, . . . , (N−1)/2},
we have QRN = {1, 4,−5}. Thus, our set of signed quadratic residues modulo

N = PQ is QR+
N = {1, 4, 5}.

Theorem 2.5 ([87], Lemma 1). Let N be a Blum integer. Then (QR+
N , ◦) is a

group of order φ(N)/4 and is efficiently recognizable given only N , since QR+
N =

J+
N = JN ∩ [(N − 1)/2], where J+

N denotes {|x| : x ∈ JN}. Moreover, if QRN is

cyclic, so is QR+
N .

Ensuring that JN is cyclic. In order to ensure that the group JN is cyclic, and

consequently QRN is cyclic, we will require henceforth that all prime factors of

φ(N)/4 are pairwise distinct. Note that when N = PQ is a Blum integer we can

write P = 2p′ + 1 and Q = 2q′ + 1, where p′ and q′ are odd integers. Under the

assumption that all prime factors of φ(N)/4 are pairwise distinct, this implies that

φ(N)/4 = p′q′, which is odd, and gcd(P−1, Q−1) = gcd(2p′, 2q′) = 2. Now consider

generators gP and gQ of the cyclic groups Z∗P and Z∗Q, respectively. By the Chinese

Remainder Theorem, since gP has order P − 1 in Z∗P and gQ has order Q− 1 in Z∗Q,

the unique element g ∈ Z∗N with gP = g (mod P ) and gQ = g (mod Q) has order

lcm(P − 1, Q− 1) = (P − 1)(Q− 1)/ gcd(P − 1, Q− 1) = (P − 1)(Q− 1)/2 = 2p′q′

in Z∗N . Furthermore, it is easy to see that
(
gP
P

)
=
(
gQ
Q

)
= −1. This means that(

g
P

)
=
(
g
Q

)
= −1 and

(
g
N

)
= 1. Thus, g ∈ JN . As ord(g) = 2p′q′ = φ(N)/2 =

|JN |, g is a generator of JN .

Sampling a generator of QRN . Let N = PQ be a k–bit Blum integer. As

before we write P = 2p′ + 1 and Q = 2q′ + 1, for odd primes p′ and q′. Assume

that the prime factors of φ(N)/4 are pairwise distinct and additionally that they

are at least k′-bit integers, where k′ = δk for some fixed 0 ≤ δ < 1/2. We know

that |QRN | = φ(N)/4 = p′q′. A random generator g of QRN can be obtained,

with overwhelming probability, by simply squaring a random element in Z∗N . We

justify this as follows. Note that any generator g has four square roots in Z∗N

and has order ord(g) = p′q′. Furthermore, the number of generators of QRN is

φ(p′q′). Thus, the probability of picking a random element from Z∗N such that its
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square is a generator of QRN is 4φ(p′q′)/|Z∗N | = 4φ(p′q′)/4p′q′ = 1−O(2−k
′
). The

distribution of generators of QRN obtained this way is statistically close to uniform.

Furthermore, because QRN is cyclic, |g| is a generator of QR+
N .

Generating random elements in QR+
N . In some of the constructions in this

thesis we will need to generate random elements in the groupQR+
N . It is obvious how

to do this when we know the order ofQR+
N , φ(N)/4 (i.e. we know the factorization of

N): uniformly select an integer a ∈ {1, . . . , φ(N)/4} and set A = ga (mod N), where

g is a generator of QR+
N . However, when the factorization of N is not known, we

have to use an approximation: choose a ∈ {1, . . . , bN/4c} and set A = ga (mod N).

Note that if the prime factors of φ(N)/4 have approximately the same size, then

the uniform distributions over {1, . . . , φ(N)/4} and {1, . . . , bN/4c} are statistically

close. The same argument applies for the generation of random elements in QRN .

2.1.3 Bilinear Maps

Bilinear maps have been widely used in the construction of cryptographic schemes

since the work of Joux [93], where he used bilinear maps to construct a one-round

tripartite key exchange scheme. Two other main contributions to the rapid increase

of interest in bilinear maps were the identity-based non-interactive key exchange

(ID-NIKE) scheme by Sakai, Ohgishi and Kasahara [122], and the identity-based

encryption (IBE) scheme by Boneh and Franklin [32]. When using bilinear maps

to construct cryptographic schemes, a commonly used approach is to treat them

as “black-boxes”. In this approach, the mathematical details of how the bilinear

maps are selected or implemented are ignored; bilinear maps are treated as abstract

mappings. This is the approach used in this thesis. We now give a basic introduction

to this topic.

Let G1,G2 and GT be three (multiplicatively-written) cyclic groups of the same

order p. A bilinear map from G1 ×G2 to GT is a function

e : G1 ×G2 → GT

satisfying a special property:
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Bilinearity. ∀g, g′ ∈ G1, h, h
′ ∈ G2, we have

e(g · g′, h) = e(g, h) · e(g′, h) and e(g, h · h′) = e(g, h) · e(g, h′).

Consequently, for any a, b ∈ Z: e(ga, hb) = e(g, h)ab = e(gb, ha).

Bilinear maps are also called pairings, as they associate pairs of elements in G1×G2

with an element in GT . To be of practical use in cryptography, we also require the

map to satisfy two additional properties:

Non-Degeneracy. For G1 = 〈g1〉,G2 = 〈g2〉, we have that GT = 〈e(g1, g2)〉.

Efficiently Computable. There exists an efficient algorithm that computes the

map e for any pair of inputs in G1 ×G2.

We say the map e is an admissible bilinear map if it satisfies the three aforementioned

properties. Henceforth we implicitly mean admissible bilinear map when we say

bilinear map or pairing.

Pairings can be classified into four different types, based on the concrete structures

of the underlying groups [44, 68].

Type 1. G1 = G2 (symmetric pairings).

Type 2. G1 6= G2 and there is an efficiently-computable homomorphism ψ : G2 →
G1. In this situation there is no known way to efficiently hash bit strings

into G2.

Type 3. G1 6= G2 and no efficiently-computable homomorphism is known between

G1 and G2. However here, it is usually possible to hash into G2.

Type 4. G1 6= G2 (exception). This is a new type of pairings where G2 is a

non-cyclic group and it is possible to hash into G2. Furthermore, there is an

efficiently-computable homomorphism ψ : G2 → G1.

Note that for none of Type 2, Type 3 or Type 4 pairings (asymmetric pairings)

does there exist an efficiently-computable homomorphism from G1 to G2. The
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situation where G1 6= G2 and there is an efficiently-computable homomorphism in

both directions (G2 → G1 and G1 → G2) can also be interpreted as Type 1.

The use of symmetric pairings in cryptographic schemes allows relatively simpler

description of the schemes and of their security proofs, when compared to the use of

asymmetric pairings. However, as indicated by [68], Type 1 pairings are expected to

be less efficient as the security parameter grows. Type 2 and Type 3 pairings seem

to be better choices if we take into consideration efficiency of their implementations.

Type 3 is more efficient than Type 2 since the former provides faster pairing compu-

tation, shorter representation for elements in G2, less complex group operations in

G2 and a more efficient membership test in G2. Nevertheless, as mentioned before,

no efficiently-computable homomorphism is known between G1 and G2 for Type 3

pairings. Thus, for schemes that require an homomorphism ψ : G2 → G1 in the

scheme itself or in its security proof, Type 2 pairings seem to be the best choice.

Type 4 pairings, introduced in [125], are an option for schemes that require both

hashing into G2 and the homomorphism ψ. However, the hashing into G2 is not so

cheap. (Though in [43] a new and cheaper method for hashing into G2 is proposed.)

More importantly, with some small probability, the pairing might not satisfy the

non-degeneracy property.

Known examples of pairings are the Weil and Tate pairings [66, 139], which are

derived from elliptic curves over finite fields. An elliptic curve is a set of pairs (x, y)

satisfying a finite field equation of the form y2 = x3 + ax + b, where a and b are

parameters of the curve. Supersingular elliptic curves are a special class of elliptic

curves with some additional algebraic structure. Symmetric pairings are derived

from supersingular elliptic curves whereas asymmetric pairings can be derived from

ordinary elliptic curves. For further details on pairings and elliptic curves we refer

to [67, 68].

Pairing Parameter Generator. A Type i pairing parameter generator, denoted

by Gi, is a polynomial time algorithm that on input a security parameter 1k, returns

the description of three (multiplicatively-written) cyclic groups G1,G2 and GT of

the same order p, generators g1, g2 (for G1,G2, respectively), and an admissible

pairing e : G1 ×G2 → GT . Depending on the type of pairing (1, 2, 3 or 4), Gi(1k)
also outputs the description of an efficiently computable homomorphism ψ : G2 →
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G1, with g1 = ψ(g2). We write PGi = (G1,G2,GT , g1, g2, p, e, ψ) ← Gi(1k). For

symmetric pairings (Type 1 pairings) e : G ×G → GT we can simply write PG =

(G,GT , g, p, e)← G(1k), where G is a group of order p generated by g.

2.1.4 Multilinear Maps

Multilinear maps and their applications to cryptography were first put forward by

Boneh and Silverberg in [33]. They studied the problem of finding efficiently com-

putable, non-degenerate `-linear maps e : G`
1 → GT , where G1 and GT are groups

of the same prime order and computing the discrete logarithm in G1 is hard. In

[33] the authors motivated the construction of such multilinear maps by discussing

several potential applications to cryptography, such as one-round (` + 1)-user key

exchange schemes (an extension of Joux’s scheme [94]) and efficient broadcast en-

cryption schemes. Asymmetric multilinear maps e : G1 × . . . × G` → GT , for

different groups Gi, were considered by Rothblum in [121], where he considered the

problem of circular security of bit encryption.

In this thesis our framework of multilinear maps is defined so that a user can

run a group generator MG`(1k) to obtain a sequence of leveled multilinear groups

G1, . . . ,G` each of prime order p and a set of bilinear maps {ei,j : Gi×Gj → Gi+j |
i, j ≥ 1, i + j ≤ `}. This can be seen as implementing multilinear maps. We give

more details next.

Multilinear maps. An `-group system consists of ` cyclic groups G1, . . . ,G` of

prime order p, along with bilinear maps ei,j : Gi ×Gj → Gi+j for all i, j ≥ 1 with

i+j ≤ `. Let gi be a canonical generator of Gi (included in the group’s description).

The map ei,j satisfies

ei,j(g
a
i , g

b
j) = gabi+j : ∀a, b ∈ Zp.

When i, j are clear, we will simply write e instead of ei,j . It will also be convenient

to abbreviate e(h1, . . . , hj) := e(h1, e(h2, . . . , e(hj−1, hj) . . . )) for hj ∈ Gij and i =

(i1 + i2 + . . . + ij) ≤ `. By induction, it is easy to see that this map is j-linear.

Additionally, we define e(g) := g. Finally, it can also be useful to define the group

G0 = Z|G1| of exponents to which this pairing family naturally extends; then, we

also consider maps e0,j and ei,0, for i, j ≤ `. We will assume that `-group systems
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MPG` = {{Gi}i∈[`], p, {ei,j}i,j≥1,i+j≤`} can be generated by a multilinear maps

parameter generator MG`, on input a security parameter 1k.

The GGH candidate. We currently do not have multilinear maps between groups

with cryptographically hard problems. However, as we will see in Section 4.2.1,

Garg, Gentry, and Halevi [72] (henceforth GGH) suggest a concrete candidate for

an “approximation” of multilinear maps, named graded encoding systems. For this

chapter, we consider only the framework of multilinear maps described above.

2.1.5 Computational Hardness Assumptions

We describe here the computational assumptions which form the basis of security

of the cryptographic schemes presented in this thesis. For completeness, we also

include some basic related assumptions.

Number Theoretic Assumptions

Factoring Assumption. The most established hardness assumption is the fac-

toring assumption. Informally, it states that given a composite integer N , it is

infeasible to find its factorization N = pq, where p and q are distinct large primes.

The difficulty of finding the prime factors will depend on properties of these num-

bers, like size or special form. Thus, to formalize the factoring assumption, we need

to consider an instance generator of the composite number N .

Definition 2.15. Let n(k) be a function of the security parameter k. We define

RSAgen as a polynomial-time algorithm that on input 1k outputs (N, p, q) such that

N = pq is an n-bit integer, with p and q distinct primes, possibly with additional

constraints (to be specified).

Definition 2.16 (Factoring assumption). For an algorithm A we define its factoring

advantage as

Advfac
A,RSAgen(k) = Pr[{p, q} ← A(N) : (N, p, q)← RSAgen(1k)].

The factoring assumption with respect to RSAgen is that Advfac
A,RSAgen(k) is negligible

for all probabilistic polynomial-time (PPT) algorithms A.
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The Quadratic Residuosity (QR) Assumption. This assumption states that

given an odd composite integer N and a uniformly random element a ∈ JN , it is

infeasible to decide whether or not a ∈ QRN . The QR assumption is believed to be

valid, for example, when N is a Blum integer. In other words, for Blum integers N ,

the group QRN is believed not to be efficiently reconizable. Another important fact

is that computing square roots in this group is equivalent to factoring the modulus

N , as proved by Rabin in [114].

The Discrete Logarithm (DL) Assumption. The security of many crypto-

graphic constructions relies on hardness assumptions related to the discrete loga-

rithm assumption. Let G = 〈g〉 be a cyclic group. The DL problem is: given h ∈ G,

find the discrete logarithm of h to the base g, denoted dloggh. The DL assumption

states that it is infeasible to solve the DL problem. Formally, we consider a discrete

logarithm parameter generator DLgen.

Definition 2.17. We define a discrete logarithm parameter generator as a polynomial-

time algorithm DLgen which on input a security parameter 1k, generates an integer

p along with the description of a cyclic group G = 〈g〉 of order p.

Definition 2.18 (The DL assumption). Consider the following experiment associ-

ated with algorithm A.

Experiment ExpDL
A,DLgen(1k)

(G, g, p)← DLgen(1k)
a← Zp
a′ ← A(1k,G, p, g, ga)
If a = a′ then return 1 else return 0

The advantage of A in the above experiment is defined as

AdvDL
A,DLgen(k) =

∣∣∣Pr
[
ExpDL

A,DLgen(1k) = 1
]∣∣∣ .

The DL assumption with respect to DLgen is that AdvDL
A,DLgen(k) is negligible for all

PPT algorithms A.

Some examples of groups in which the DL problem is believed to be intractable are:

Z∗p for some large prime p, where p − 1 has at least one large prime factor; cyclic

subgroups H ⊂ Z∗p of prime order q; some elliptic curve groups.

The Computational Diffie-Hellman (CDH) Assumption. The CDH prob-

lem with respect to DLgen is: given a random instance (g, ga, gb), for a, b ← Zp,
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compute gab. The CDH assumption states that it is infeasible to solve the CDH

problem.

Definition 2.19 (The CDH assumption). Consider the following experiment asso-

ciated with algorithm A.

Experiment ExpCDH
A,DLgen(1k)

(G, g, p)← DLgen(1k)
a, b← Zp
Z ← A(1k,G, p, g, ga, gb)
If Z = gab then return 1 else return 0

The advantage of A in the above experiment is defined as

AdvCDH
A,DLgen(k) =

∣∣∣Pr
[
ExpCDH

A,DLgen(1k) = 1
]∣∣∣ .

The CDH assumption with respect to DLgen is that AdvCDH
A,DLgen(k) is negligible for

all PPT algorithms A.

This assumption is closely related to the DL assumption; if the DL assumption does

not hold, the CDH problem can be efficiently solved as follows: given (g, ga, gb), solve

the DL problem for ga, finding a, and then compute (gb)
a
. The CDH assumption

only states that gab cannot be efficiently computed, but this does not mean that it

is also infeasible to get some information about gab (e.g. its most significant bit),

given the problem instance.

Shmuely [128] and McCurley [106] proved that over the group of quadratic residues

QRN , where N = PQ is the product of two large primes, the CDH problem is at

least as hard as factoring N .

The Decisional Diffie-Hellman (DDH) Assumption. This is a stronger as-

sumption than the CDH assumption. Roughly, it states that given two distributions

(g, ga, gb, gab) and (g, ga, gb, gc), for a, b, c← Zp, it is infeasible for any algorithm to

tell them apart. This means that now it is infeasible to get any information about

gab, given (g, ga, gb).

Definition 2.20 (The DDH assumption). Consider the following experiment asso-
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ciated with algorithm A.

Experiment ExpDDH,β
A,DLgen(1k)

(G, g, p)← DLgen(1k)
a, b, c← Zp
If β = 1 then T = gab else T = gc

β′ ← A(1k,G, p, g, ga, gb, T )
Return β′

The advantage of A in the above experiment is defined as

AdvDDH
A,DLgen(k) = 2

∣∣∣Pr
[
ExpDDH,β

A,DLgen(1k) = β : β ← {0, 1}
]
− 1/2

∣∣∣ ,
which can also be written as

AdvDDH
A,DLgen(k) =

∣∣∣Pr
[
ExpDDH,1

A,DLgen(1k) = 1
]
− Pr

[
ExpDDH,0

A,DLgen(1k) = 1
]∣∣∣ .

The DDH assumption with respect to DLgen is that AdvDDH
A,DLgen(k) is negligible for

all PPT algorithms A.

It is easy to see that solving the CDH problem enables one to solve the DDH problem.

However, there are groups for which the DDH problem is easy while the CDH prob-

lem is believed to be hard. Groups for which solving the distinguishability problem

is easy but solving the computational problem is hard are called gap groups.

Note for example, that the DDH problem is easy in the group Z∗p, where p is a prime:

given ga, gb, T , a PPT algorithm A can compute
(
ga

p

)
and

(
gb

p

)
and then predict(

gab

p

)
= s. Now A checks whether or not

(
T
p

)
= s. If so it outputs 1, otherwise

0. The advantage of A in solving the DDH problem is |1 − 1/2| = 1/2. However,

DDH is believed to be intractable, e.g. in subgroups of Z∗p of prime order (such as

the subgroup of quadratic residues QRp in Z∗p for a safe prime p); in the cyclic

subgroup QRN in Z∗N , where N is a product of safe primes and its factorization is

unknown; in some elliptic curve groups.

The Strong Diffie-Hellman (SDH) Assumption. The SDH assumption [1] is

that there is no PPT algorithm having non-negligible advantage in solving the CDH

problem on input (g,A,B) when given access to a DDH oracle for fixed g and A,

denoted by DDHg,A(·, ·). Here g is a randomly selected generator of a cyclic group
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G (with order not necessarily known), A and B are uniformly selected from G, and

the solution to the CDH problem is defined as g(dloggA)(dloggB). The DDH oracle

DDHg,A(B̂, Ĉ) returns 1 if B̂dloggA = Ĉ and 0 otherwise, where (B̂, Ĉ) ∈ G×G.

We consider in more detail the definition of the SDH assumption for the group of

signed quadratic residues QR+
N . Since the group is efficiently recognizable, we do

not permit access to the oracle DDHg,A(B̂, Ĉ) for (B̂, Ĉ) 6∈ QR+
N × QR

+
N . We

specify an instance generator RSAgen as follows.

Let n(k) be a function and δ a constant with 0 ≤ δ < 1/2. RSAgen(1k) generates

elements (N,P,Q) such that N = PQ is an n-bit Blum integer and all prime factors

of φ(N)/4 are pairwise distinct and have at least δn bits. As we saw in Section 2.1.2,

these conditions ensure that JN is cyclic and that the square g of a random element

in Z∗N generates QRN (i.e. 〈g〉 = QRN ) with high probability 1−O(2−δn(k)).

Definition 2.21 (The SDH assumption). Consider the following experiment asso-

ciated with algorithm A.

Experiment ExpSDH
A,RSAgen(1k)

(N,P,Q)← RSAgen(1k)
g ← QR+

N , where 〈g〉 = QR+
N

A,B ← QR+
N

Z ← ADDHg,A(·,·)(1k, N, g,A,B)

If Z = g(dloggA)(dloggB) then return 1 else return 0

The advantage of A in the above experiment is defined as

AdvSDH
A,RSAgen(k) =

∣∣∣Pr
[
ExpSDH

A,RSAgen(1k) = 1
]∣∣∣ .

The SDH assumption with respect to RSAgen is that AdvSDH
A,RSAgen(k) is negligible for

all PPT algorithms A.

Theorem 2.6 (Breaking SDH ⇒ Factoring [87]). If the factoring assumption holds

relative to RSAgen, then the SDH assumption holds in the group of signed quadratic

residues QR+
N relative to RSAgen. In particular for every algorithm A solving the

SDH problem, there exists a factoring algorithm B (with roughly the same running

time as A) such that

AdvSDH
A,RSAgen(k) ≤ Advfac

B,RSAgen(k) +O(2−δn(k)).
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Note that the proof of Theorem 2.6 is not valid in the group of quadratic residues

QRN . This is because in the reduction, the factoring algorithm B has to simulate

a DDH oracle and hence has to be able to determine membership in QRN , which

is believed to be infeasible in this group.

The Double-Strong Diffie-Hellman (DSDH) Assumption. We define a vari-

ant of the SDH assumption, where instead of having one DDH oracle, DDHg,A(·, ·)
(for fixed g,A), we also have a second DDH oracle, DDHg,B(·, ·) (for fixed g,B).

Theorem 2.7 (Breaking DSDH ⇒ Factoring). If the factoring assumption holds

relative to RSAgen, then the DSDH assumption also holds in the group of signed

quadratic residues QR+
N relative to RSAgen. In particular, for every algorithm A

solving the DSDH problem, there exists a factoring algorithm B (with roughly the

same running time as A) such that

AdvDSDH
A,RSAgen(k) ≤ Advfac

B,RSAgen(k) +O(2−δn(k)).

Proof. The original proof of Theorem 2.6 in [87] shows how to handle a single DDH

oracle DDHg,A(·, ·). By symmetry of the set-up used in the proof, the same procedure

can also be used to (simultaneously) handle the oracle DDHg,B(·, ·).

Hardness Assumptions based on Bilinear and Multilinear Maps

The Bilinear Diffie-Hellman (BDH) Assumption (Informal). Let PG =

(G,GT , g, p, e) be the output of a symmetric pairing parameter generator, G. The

BDH problem is as follows: Given (g, ga, gb, gc) for a, b, c← Zp and g ∈ G, compute

e(g, g)abc ∈ GT . The BDH assumption states that it is infeasible to solve the BDH

problem.

The Decisional Bilinear Diffie-Hellman (DBDH) Assumption for Sym-

metric Pairings. The DBDH assumption is the decisional counterpart of the

BDH assumption. It states that given two distributions (g, ga, gb, gc, e(g, g)abc) and

(g, ga, gb, gc, e(g, g)z), for a, b, c, z ← Zp and g ∈ G it is infeasible for any algorithm

to tell them apart.
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Definition 2.22 (The DBDH assumption). Consider the following experiment as-

sociated with algorithm A and pairing parameter generator G.

Experiment ExpDBDH,β
A,G (1k)

PG ← G(1k)
a, b, c, z ← Zp
If β = 1 then T ← e(g, g)abc else T ← e(g, g)z

β′ ← A(1k,PG, ga, gb, gc, T )
Return β′

The advantage of A in the above experiment is defined as

AdvDBDH
A,G (k) = 2

∣∣∣Pr
[
ExpDBDH,β

A,G (1k) = β : β ← {0, 1}
]
− 1/2

∣∣∣ .
We say that the DBDH assumption relative to G holds if AdvDBDH

A,G (k) is negligible

for all PPT algorithms A.

The Decisional Bilinear Diffie-Hellman Assumption for Type 2 Pairings

(DBDH-2). Let PG2 = (G1,G2,GT , g1, g2, p, e, ψ) be the output of a Type 2

pairing parameter generator, G2. In this thesis we consider the following version of

the Decisional Bilinear Diffie-Hellman problem for Type 2 pairings, as introduced

by Galindo in [69]: Given (g2, g
a
2 , g

b
2, g

c
1, T ) ∈ G3

2 ×G1 ×GT as input, the problem

is to decide whether or not T = e(g1, g2)abc.

Definition 2.23 (The DBDH-2 assumption). Consider the following experiment

associated with algorithm A and pairing parameter generator G2.

Experiment ExpDBDH-2,β
A,G2 (1k)

PG2 ← G2(1k)
a, b, c, z ← Zp
If β = 1 then T ← e(g1, g2)abc else T ← e(g1, g2)z

β′ ← A(1k,PG2, g
a
2 , g

b
2, g

c
1, T )

Return β′

The advantage of A in the above experiment is defined as

AdvDBDH-2
A,G2 (k) = 2

∣∣∣Pr
[
ExpDBDH-2,β

A,G2 (1k) = β : β ← {0, 1}
]
− 1/2

∣∣∣ .
We say that the DBDH-2 assumption relative to G2 holds if AdvDBDH-2

A,G2 (k) is negli-

gible for all PPT algorithms A.
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Some implications of bilinear maps. The existence of the bilinear map e :

G1 ×G2 → GT as presented in Section 2.1.3 has direct implications for the groups

G1 and G2:

• The MOV reduction [108] – given groups G1, G2 and a pairing e : G1×G2 →
GT , the DL problem in Gi (i ∈ {1, 2}) is not harder than the DL problem in

GT . Suppose we have g1 ∈ G1 and want to calculate the discrete logarithm

of ga1 ∈ G1. If e(g1, g2) = gT ∈ GT then e(ga1 , g2) = e(g1, g2)a = gaT . So we can

find a by calculating the discrete logarithm of gaT ∈ GT . The same argument

is valid for calculating the discrete logarithm of ga2 ∈ G2.

• Given a group G1 equipped with a Type 1 pairing e : G1 ×G1 → GT , DDH

is easy in G1 (pointed out by Joux and Nguyen in [95]). To see this note

that given (g1, g1
a, g1

b, g1
c) ∈ G4

1 we have that c = ab (mod p) if and only if

e(g1
a, g1

b) = e(g1, g1
c).

• Given groups G1,G2 and a Type 2 pairing e : G1 ×G2 → GT , DDH is easy

in G2. This follows because of the existence of the efficiently computable

homomorphism ψ : G2 → G1. Given (g2, g2
a, g2

b, T ) ∈ G4
2, one can decide

whether T = g2
ab or T = g2

c, for a uniform c← Zp, by testing whether or not

e(ψ(T ), g2) = e(ψ(ga2), gb2).

The `-Multilinear Decisional Diffie-Hellman (`-MDDH) Assumption.

Let MPG` = {{Gi}i∈[`], p, {ei,j}i,j≥1,i+j≤`} be an `-group system output by a mul-

tilinear maps parameter generator, MG`, on input a security parameter 1k. The

`-MDDH assumption states that given (g, gx1 , . . . , gx`+1) (for g ← G1 and uniform

exponents xi), the element e(gx1 , . . . , gx`)x`+1 ∈ G` is computationally indistinguish-

able from a uniform G`-element.

Definition 2.24 (The `-MDDH assumption). Consider the following experiment

associated with algorithm A and pairing parameter generator MG`.

Experiment Exp`-MDDH,β
A,MG` (1k)

MPG` ←MG`(1k)
x1, . . . , x`+1 ← Zp ; g ← G1

If β = 1 then T ← e(gx1 , . . . , gx`)x`+1 ∈ G` else T ← G`

β′ ← A(1k,MPG`, g, gx1 , . . . , gx`+1 , T )
Return β′
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The advantage of A in the above experiment is defined as

Adv`-MDDH
A,MG` (k) = 2

∣∣∣Pr
[
Exp`-MDDH,β

A,MG` (1k) = β : β ← {0, 1}
]
− 1/2

∣∣∣ .
We say that the `-MDDH assumption relative to MG` holds if Adv`-MDDH

A,MG` (k) is

negligible for all PPT algorithms A.

The (` + 1)-Power Assumption. Let MPG` = {{Gi}i∈[`], p, {ei,j}i,j≥1,i+j≤`}
be an `-group system output by a multilinear maps parameter generator, MG`, on

input a security parameter 1k. The (`+1)-power assumption states that given (g, gx)

(for g ← G1 and uniform x), the element e(gx, . . . , gx︸ ︷︷ ︸
` times

)x ∈ G` is computationally

indistinguishable from a uniform G`-element.

Definition 2.25 (The (`+1)-power assumption). Consider the following experiment

associated with algorithm A and pairing parameter generator MG`.

Experiment Exp
(`+ 1)-power,β
A,MG` (1k)

MPG` ←MG`(1k)
x← Zp ; g ← G1

If β = 1 then T ← e(gx, . . . , gx)x ∈ G` else T ← G`

β′ ← A(1k,MPG`, g, gx, T )
Return β′

The advantage of A in the above experiment is defined as

Adv
(`+ 1)-power
A,MG` (k) = 2

∣∣∣Pr
[
Exp

(`+ 1)-power,β
A,MG` (1k) = β : β ← {0, 1}

]
− 1/2

∣∣∣ .
We say that the (`+1)-power assumption relative toMG` holds if Adv

(`+ 1)-power
A,MG` (k)

is negligible for all PPT algorithms A.

2.2 Provable Security

2.2.1 History

For many years, cryptographic schemes were designed in an ad hoc way. A crypto-

graphic goal would be recognized and then a solution would be offered. The scheme
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would be considered secure if no attacks against it were found. This means that

cryptographic schemes offered very little security guarantees – security only against

known attacks. If a new attack was found, the scheme would be either repaired

or discarded. If repaired, the scheme would still be subject to possible unknown

attacks.

In 1949, Claude Shannon published a paper entitled “Communication Theory of Se-

crecy Systems” [126], which had a great influence on the rigorous study of cryptogra-

phy. He proved that the one-time pad encryption scheme is information-theoretically

secure as long as the message is encrypted with a randomly generated one-time key

which is as long as the message. However, the practicality of the one-time pad is in

general ruled out given the key management issues.

Provable security is a part of modern cryptography that came to tackle the security

issues where an adversary exploits vulnerabilities overlooked by the scheme designer

in order to break the cryptographic scheme. It provides a rigorous mathematical

framework in which schemes can be designed and their security against compu-

tationally bounded adversaries can be analysed. Essentially, in the framework of

provable security we prove that a reduction exists between the difficulty of breaking

(with respect to a specified adversarial model) the designed scheme and the difficulty

of solving a hard problem (such as factoring large composite integers) or breaking

the security of an underlying cryptographic primitive. The security of the scheme,

the hard problem and possible underlying cryptographic primitives, are parameter-

ized in terms of a security parameter and adversaries are modelled by probabilistic

polynomial-time Turing machines. The latter means that adversaries can be seen

as abstract computational devices that use randomness (for more “efficient” com-

putation) and their running times are bounded by some polynomial in the security

parameter.

As already pointed out by Bellare [15], the term provable security is misleading as

one does not actually prove security of a scheme, but actually provides a reduction

of the security of the scheme to the security of a mathematical hard problem or an

underlying primitive. Hence, a more appropriate term for this genre of work would

be reductionist security.
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The first result in the direction of provable security arose soon after the earliest

papers [53, 119] on public-key cryptography. In 1979 Rabin [114] introduced a

signature scheme with security based on the hardness of finding square roots modulo

a composite number N , and formally related the difficulty of breaking that scheme

to the difficulty of factoring N . Basically, Rabin showed that the ability to extract

square roots modulo N allows one to factor N in polynomial time. The drawback

of Rabin’s signature scheme is that it is insecure against a type of attack called

chosen-message attack [79, 140]. Namely, the adversary could fool the signer into

signing messages of its own choice and then forge a signature. It is true that this

issue was noticed by Rabin and he suggested a way of overcoming this problem, but

then the security reduction to factoring no longer works for the modified scheme.

Provable security emerged in the 1980s when researchers decided to develop precise

definitions for cryptographic schemes and specify appropriate security models for

them. In [77, 78] Goldwasser and Micali formally introduced the notion of a prob-

abilistic public key encryption scheme, along with two strong notions of security

that they called polynomial security and semantic security. Informally speaking,

the former means that no polynomially bounded adversary can find two messages

m1 and m2 whose encryptions are distinguishable. The latter means that whatever

an adversary can compute about the plaintext given the corresponding ciphertext,

it could also compute without the ciphertext. Goldwasser and Micali proved that

every polynomially secure scheme is semantically secure and then reduced the secu-

rity of their scheme, which they proved to be polynomially secure, to the problem

of deciding whether a number is a quadratic residue modulo a composite integer.

The powerful idea of using reduction arguments to “prove” security of cryptographic

primitives is very well known and has become standard in most cryptographic re-

search. In the following we describe in more detail the provable security approach

and discuss its limitations.

2.2.2 The Approach

The provable security paradigm is as follows:
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• Define a cryptographic scheme. It is important to formally define the

functionality of the scheme, specifying the behaviour of each component al-

gorithm: Are the algorithms probabilistic or deterministc? What values are

taken as inputs and what are the outputs? What are the correctness require-

ments?

• Specify a security model. A security model defines what a computationally

bounded adversary is allowed to do and when, and what it means to break

the scheme. The capabilities of an adversary will usually depend on a typical

practical use of the cryptographic scheme and so different security models may

be specified for different security goals for the same scheme. A very common

approach when specifying security models is to use game-based definitions.

Here security models can take the form of a game between an adversary A
and a challenger C, where C answers oracle queries to A, or the form of an

experiment. Experiments are pseudocodes that model what inputs are given

to the adversary and how they are generated. They return 0 or 1 depending

on the output of the adversary. The security of a cryptographic scheme with

respect to a specific security model is measured in terms of the advantage of an

adversary in achieving the security goal specified by the game or experiment.

An alternative approach for specifying security models is to use simulation-

based approaches such as the Universal Composability (UC) framework [36].

Concisely, a cryptographic task is specified through an ideal functionality. A

scheme is said to securely realize the ideal functionality if no environment (an

entity who generates inputs to users, observes their outputs, and is allowed to

interact with an adversary against the scheme) can distinguish the execution of

the real scheme with an adversary and the execution of the ideal functionality

with an ideal adversary (the simulator). The benefit of this framework is that

it guarantees security of the scheme even when it is run concurrently with

other schemes.

• Provide a construction satisfying the formal definition of the cryptographic

scheme.

• Show a reduction from the construction to an underlying primitive or a

computational hardness assumption. This step consists of showing that the

only way the adversary can break the scheme, with respect to a specific security

model, is by breaking the underlying primitive or the hardness assumption.
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In the context of security reductions, there are a few issues that need to be taken

into consideration. The first one is that there exists two approaches used to provide

security reductions: the asymptotic approach and the concrete approach. Tradition-

ally, provable security is asymptotic. It views the running time of the adversary as

well as its advantage as functions of a security parameter k. The notion of efficient

algorithms is equivalent to probabilistic algorithms running in time polynomial in k.

The notion of small advantage is substituted by negligible advantage, meaning that

the advantage is smaller than any inverse polynomial in k. A security reduction is

stated by saying: Assume assumption A holds, then scheme B is secure. We note

that this approach gives no information about the quality of the reduction.

A more practical approach to handling these issues is the concrete approach, or

practice-oriented approach [15]. In this approach we make the parameters of the

reduction explicit, making it clear how good the reduction is in terms of the ad-

vantages and running times of adversaries. Here the reduction is stated by saying:

Assume there exists an algorithm B which can break the security of scheme B with

advantage ε and running time t. Then we can construct an algorithm A that breaks

the hard problem A with advantage ε′ and running time t′. The relation of ε′ and ε

(or t′ and t) may depend for example on the number of queries that the adversaries

make. We say the reduction is tight if (ε′, t′) is approximately equal to (ε, t). A

non-tight reduction means that the cryptographic scheme may need larger key sizes

in order to achieve the same level of security as the underlying assumption.

The second issue concerns on which assumption one bases the security of a crypto-

graphic scheme. There are many mathematical assumptions; some are weaker than

others (for example, the factoring assumption is weaker than the RSA assumption

as factoring allows one to break RSA1). When designing a cryptographic scheme, it

is desirable to base its security on the weakest possible assumption. This is because

if the assumption is shown to be wrong, then the proof is meaningless.

Succinctly, when providing security reductions, one should aim for tight reductions

of the cryptographic scheme to as weak as possible assumptions. Moreover, in order

not to have the security of the scheme compromised, it is important to choose

1Informally, the RSA assumption states that it is hard to compute e-th roots of an arbitrary
integer modulo a composite N which is the product of two unknown large primes.
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an appropriate security model for the practical application in which the scheme is

intended to be used, which might not be an easy task. In [15], Bellare provides a

detailed concrete treatment of security reductions.

We must also be aware that although very useful in providing security guarantees for

complex cryptographic schemes, the provable security approach has its limitations.

Usually it does not cover a class of practical attacks where an adversary can attack

the physical implementation of the cryptographic scheme. This type of attack is

called a side-channel attack. The adversary exploits leakage of information during

or after the execution of the scheme. The information can be gained, for example,

via measurements of power consumption [100], timing of execution [99] or electro-

magnetic radiation [3, 124], or even via cold-boot attacks [82]. The latter exploits

the fact that memory contents of a computer remain readable for several seconds

or minutes after power has been removed. Another type of attack considered as a

side-channel attack is the case where an adversary gets side-information from error-

messages coming from a decryption oracle [25, 135]. Certainly, counter-measures

against side-channel attacks should be taken and so work in the direction of ex-

tending the field of provable security to overcome these attacks has already begun

[4, 7, 58, 97, 110, 111].

This thesis follows the standard (meaning not capturing side-channel attacks) prov-

able security paradigm and endeavours to attain the above desired qualities in our

security reductions. We use game-based security models and our reductions are

quantified in terms of the types and number of queries that adversaries against a

cryptographic scheme or hard assumption can make.

2.2.3 Standard Model versus Random Oracle Model

As mentioned earlier, security models are commonly stated in terms of a game

between an adversary and a challenger. A security reduction then works as follows:

Let B be an adversary against a cryptographic scheme that can break the security

notion specified in a security model, then one can construct a simulator that can

break a hard problem. Usually the simulator will be the adversary, A, against the

hard problem and it must be able to simulate B’s challenger behaviour consistently.
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This means that A must be able to answer B’s queries correctly. Such a reduction,

without any additional assumptions, is said to be a proof in the standard model.

Designing cryptographic schemes which are secure in the standard model is not

easy. Particularly, what makes it difficult to achieve standard model security is

the problem of answering the adversary’s queries correctly. In order to overcome

this difficulty and to simplify the analyses of cryptographic schemes, Bellare and

Rogoway [18] introduced the random oracle model (ROM).2 This model assumes

the existence of a public random oracle H, which is an oracle function, or a “black-

box”, that responds to queries with values chosen uniformly at random from its

output domain, except that for any specific query the oracle always responds with

the same value every time it receives that query. For an input x, the only way to

get H(x) is to explicitly ask the oracle. Furthermore, the inputs x to the oracle are

private, meaning that no adversary can see the inputs x queried by a user.

In practice, the random oracles assumed in security proofs of cryptographic schemes

are instantiated with hash functions. This seems intuitive since it would be desirable

that the outputs of a well-designed hash function appear to be completely indepent

even for related inputs.

The random oracle methodology has been widely employed to prove security of

efficient cryptographic schemes. However, the problem with this methodology is

that, as shown by Canetti, Goldreich and Halevi [38, 39], a scheme proven secure

in the ROM is not necessarily secure when the random oracle is instantiated with

any hash function. But then the question is: why are people still using the ROM

methodology? The point is that proving security in the ROM is better than having

no security proof at all and if there is an attack exploiting some specific properties

of the chosen hash function, the same scheme can still be used by instantiating the

random oracle with a different hash function. Moreover, there is a class of attacks

called generic attacks where the adversary does not exploit any particular structural

property of the hash function. Arguably, in this situation the ROM proofs apply and

do bring some security guarantees. In addition, the best schemes provably secure in

the ROM tend to be more efficient than the best standard model secure schemes.

2The random oracle model was earlier used, but without naming it so, by Fiat and Shamir [59].
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Despite some practicality offered by random oracles, they do not offer security in

general and so proofs in the standard model (i.e. without random oracles) are prefer-

able to proofs in the ROM. Finally, it is important to stress here that not all schemes

that use cryptographic hash functions require random oracles. There are schemes

that require only some properties of the hash functions, such as collision resistance

(see Section 2.3.1), and that can often be proven secure in the standard model. This

will be the case in some of the constructions provided in this thesis.

2.2.4 Proof Techniques

A useful method for proving security of cryptographic schemes is to use game hop-

ping proofs [51, 132]. A game hopping proof is structured as a sequence of games,

instead of a single game. This approach has been extensively used to prove security

of complex cryptographic schemes. In many circumstances it makes proofs clearer

and less error-prone. In this thesis we also make use of this very useful technique in

most of our proofs, and hence we recall it here.

Typically, in a game hopping proof we consider a sequence of games G0, G1, . . . , Gλ

all defined over the same underlying probability space. Depending on the type

of security goal we want to achieve, computational security or indistinguishability,

the games will take different shape. Let us assume for now we want to prove an

indistinguishability-based security notion. Commonly, in this case a challenger uni-

formly chooses a bit b ∈ {0, 1} which the adversary has to guess. We start with

G0, the actual adversarial game. Then we make successive transitions, in such a

way that the adversary’s view is indistinguishable among successive games, until we

reach game Gλ for which the adversary’s probability of success in outputting the

correct bit b is clearly 1/2. Here the adversary’s advantage is the absolute value of

the difference between its success probability in game G0 and 1/2. Note that, as we

will see in security proofs provided in this thesis, this is not the only way to define

a sequence of games.

In the case of a computational-based security goal, G0 is simply the original ad-

versarial game described in the security model. We make slight modifications to

successive games, starting from G0, until we reach game Gλ, where the adversary’s
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success probability can easily be computed.

The transitions between successive games are frequently limited to the following

types. Let Pr[Sι] be the success probability of the adversary in game Gι.

• Transitions based on indistinguishability. The idea here is that if an

adversary can identify the small change between two successive games, then

it is possible to construct an adversary that tells apart two distributions that

were assumed to be indistinguishable.

• Transitions based on small failure events. Two successive games Gι−1, Gι

are identical unless a certain “failure” event F occurs. This leads to the Dif-

ference Lemma [132]: “Let Sι−1, Sι be the events that an adversary is suc-

cessful in games Gι−1, Gι, respectively, and let F be a failure event such that

Sι−1∧¬F⇔ Sι∧¬F. Then |Pr[Sι−1]−Pr[Sι]| ≤ Pr[F].” So if Pr[F] is small (i.e.

negligible), the two games Gι−1 and Gι are computationally indistinguishable.

• Bridging steps. These steps are used to help the next transition so that the

proof is easier to follow. The change made is entirely conceptual and so the

adversary’s success probability remains the same.

• Transitions based on large failure events. This type of transition is

similar to the one based on small failure events, but here it is assumed that

the probability that a failure event F occurs is large (but not overwhelming) and

that F is independent of Sι−1. Is is also assumed that ¬F is non-negligible. The

two types of security goal, computational security and indistinguishability, are

considered separately. For the former case the goal is to directly relate Pr[Sι−1]

and Pr[Sι], in which case the relation Pr[Sι] = Pr[¬F] Pr[Sι−1] can be obtained.

For the latter case, the goal is to show that |Pr[Sι] − 1/2| is negligible if and

only if |Pr[Sι−1] − 1/2| is negligible, which can be demonstrated by showing

that |Pr[Sι]− 1/2| = Pr[¬F]|Pr[Sι−1]− 1/2|.

The first three possible types of transitions were identified by Shoup [132] and the

fourth by Dent [51].

Hybrid arguments. A special type of game-hopping proof is when the proof con-

sists of a sequence of transitions based on indistinguishability. It is commonly called
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a hybrid argument, as the computational indistinguishability of the two extreme

games is proven based on the indistinguishability property of successive hybrids

(modifications of the original games). The distinguishability gap of the extreme

games (also called extreme hybrids) is inversely proportional to the total number of

games. Thus, it is essential that the number of hybrids is small (i.e. polynomial).

We will see an example of a hybrid argument in the proof of Theorem 3.1.

2.3 Cryptographic Primitives

We now review and formally define the cryptographic primitives used in the schemes

presented in this thesis.

2.3.1 Hash Functions

In general, hash functions are polynomial-time functions that take as input strings of

arbitrary length and compress them into shorter strings. Formally, we will deal with

a family of hash functions indexed by a key. So the hash function will be a two-input

function that takes as input a key in the key domain and an arbitrary-length string,

and outputs a hash value. (In practice, hash functions have a maximum input size

and they are non-keyed. The concept of keyed hash functions was introduced to

help the formalization of security properties of hash functions [49].) There are many

different types of hash functions with different security properties. Here we recall

the ones that we will consider in this thesis.

Collision Resistant Hash Functions. Let CRF : F ×M → Y be a family of

keyed hash functions and let AH be an adversary. (For each key f ∈ F , there is a

hash function CRFf : M→ Y.) Here M is the domain, F is the key space and Y
is the range of CRF. For m ∈ M and f ∈ F we write CRFf (m) = CRF(f,m). CRF

is said to be collision resistant if, for a hash function CRFf ∈ CRF (where the hash

key f is chosen at random from F), it is infeasible for any adversary AH to find two

distinct values m and m′ such that CRFf (m) = CRFf (m′). More formally, following

[120], we define

Advcoll
AH,CRF(k) = |Pr[f ← F ; (m,m′)← AH(f) : (m 6= m′)∧(CRFf (m) = CRFf (m′))]|.
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The hash function family is said to be collision resistant if Advcoll
AH,CRF(k) is negligible

for any polynomial-time adversary AH.

Target Collision Resistant Hash Functions. The difference between a target

collision resistant hash function TCRf and a collision resistant hash function CRFf

is that, in the former case, it is infeasible for any adversary, given a value m, to find

a distinct value m′ such that TCRf (m) = TCRf (m′). More formally, we define

AdvTCR
AH,TCR(k) =

∣∣Pr
[
f ← F ,m←M; m′ ← AH(f,m) :

(m 6= m′) ∧ (TCRf (m) = TCRf (m′))
]∣∣ .

The hash function family TCR is said to be target collision resistant if AdvTCR
AH,TCR(k)

is negligible for any polynomial-time adversary AH.

Chameleon Hash Functions. Chameleon hash functions [102] can be thought of

as collision resistant hash functions with a trapdoor for finding collisions. Let k be

a security parameter. A chameleon hash function ChamH : D ×RCham → I, where

D is the domain, RCham the randomness space and I the range, is associated with a

pair of public and private keys (the latter called a trapdoor). These keys are denoted

respectively by hk and ck and are generated by a PPT algorithm Cham.KeyGen(1k).

The public key hk defines a chameleon hash function, denoted ChamHhk (·, ·). On

input a message m ∈ D and a random string r ∈ RCham, this function generates a

hash value ChamHhk (m, r) which satisfies the following properties:

Collision resistance. There is no efficient algorithm that on input the public key

hk can find pairs (m1, r1) and (m2, r2) where m1 6= m2 such that we have

ChamHhk (m1, r1) = ChamHhk (m2, r2), except with some probability that is

negligible in k.

Trapdoor collisions. There is an efficient algorithm Cham.Trap that on input the

private key ck , any pair (m1, r1) and any additional message m2, finds a value

r2 such that ChamHhk (m1, r1) = ChamHhk (m2, r2). Also, for uniformly and

independently chosen m1, r1 and m2, the value of r2 is independently and uni-

formly distributed over RCham.

Uniformity. All mesages m induce the same probability distribution on the output

of ChamHhk (m, r) for r chosen uniformly at random. This property prevents a
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third party, examining the hash value, from deducing any information about

the hashed message.

More formally, we define the advantage of an adversary ACH against ChamH as

Advcoll
ACH,ChamH(k) =

∣∣∣Pr
[
hk ← Cham.KeyGen(1k); (m1, r1,m2, r2)← ACH(hk) :

(m1 6= m2) ∧ (ChamHhk (m1, r1) = ChamHhk (m2, r2))]| .

The composition of a chameleon hash function and a (regular) collision resistant

hash function (where the latter is applied first) results in a chameleon hash func-

tion. In [102], there are chameleon hash function constructions based on standard

assumptions like the DL assumption and the factoring assumption.

2.3.2 Programmable Hash Functions

Programmable hash functions (PHFs) were proposed by Hofheinz and Kiltz [86] as

an abstraction of random oracles that can also be instantiated in the standard model.

In a nutshell, a PHF H is a keyed group hash function that maps a bitstring X (e.g.

a message to be signed) to a group element H(X). The fundamental property of H

is that it can behave in two indistinguishable ways. If the standard key generation

algorithm is used, a key κ is produced and the hash function normally hashes its

inputs into group elements; however, if an alternative trapdoor key generation algo-

rithm is used, then a key κ′ (which is indistinguishable from κ) and a trapdoor t

are generated. This special trapdoor allows H(X) to be decomposed in the form

cαXhβX for previously chosen c, h. In a larger proof, c will usually be a “challenge

element” (e.g. a part of a given Diffie-Hellman challenge), so that H(X) contains a

challenge component if and only if αX 6= 0.

PHFs can be used to employ partitioning strategies: during a security proof a sim-

ulator can, with some non-negligible probability, partition the set of all PHF inputs

into two disjoint sets: the set of inputs for which it hopes to embed the challenge

and the set of inputs for which it hopes to be able to consistently answer adversarial

queries. For example, Waters’ CDH-based signature scheme [138] (implicitly) uses a

PHF to partition the set of all messages into “signable” and “unsignable” messages.

(In his case, a message X is signable if and only if αX 6= 0.) During the proof of
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unforgeability, we hope that all messages for which an adversary requests a signature

are signable, while the adversary’s forgery corresponds to an unsignable message.

Let us now recall the formal definition of PHFs from [86]. Let k be a security

parameter, `(·) a polynomial and GPgen a group generator. A group hash func-

tion H : {0, 1}`(k) → G, with G ← GPgen(1k), consists of two polynomial-time

algorithms: PHF.Gen and PHF.Eval. The key generation algorithm PHF.Gen is

probabilistic and, on input the security parameter, generates a hash key κ. The

evaluation algorithm PHF.Eval is deterministic and uses κ to evaluate H on input a

string X ∈ {0, 1}`(k); we write Hκ(X) := PHF.Eval(κ,X) ∈ G.

Definition 2.26 (PHF). A group hash function H = (PHF.Gen,PHF.Eval) is said to

be (m,n, γ, δ)-programmable if there is a probabilistic polynomial-time trapdoor key

generation algorithm PHF.TrapGen and a deterministic polynomial-time trapdoor

evaluation algorithm PHF.TrapEval with the following properties:

Syntatics. For group elements c, h ∈ G, (κ′, t) ← PHF.TrapGen(1k, c, h). More-

over, on input X ∈ {0, 1}`(k), (αX , βX)← PHF.TrapEval(t,X) with αX , βX ∈ Z.

Correctness. For all generators c, h ∈ G and all possible pair of hash key and trap-

door information (κ′, t) output by PHF.TrapGen(1k, c, h), and for all X ∈ {0, 1}`(k)

and the corresponding pairs of integers (αX , βX) output by PHF.TrapEval(t,X), the

evaluation algorithm satisfies

Hκ′(X) = PHF.Eval(κ′, X) = cαXhβX .

Statistically close trapdoor keys. For all generators c, h ∈ G, the keys κ ←
PHF.Gen(1k) and κ′ ← PHF.TrapGen(1k, c, h) are statistically γ–close: κ

γ
≡ κ′.

Well-distributed logarithms. For all generators c, h ∈ G and all possible (κ′, t)

output by PHF.TrapGen(1k, c, h), for all X1, . . . , Xm, Z1, . . . , Zn ∈ {0, 1}`(k) with

Xi 6= Zj, and for the corresponding integers (αXi , βXi) ← PHF.TrapEval(t,Xi) and

(αZj , βZj )← PHF.TrapEval(t, Zj), we have

Pr [αX1 = . . . = αXm = 0 ∧ αZ1 , . . . , αZn 6= 0] ≥ δ,

where the probability is over the trapdoor t that was produced along with κ′.
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If γ is negligible and δ is noticeable, H is simply called (m,n)-programmable. Fur-

thermore, H is said to be (m,poly)-programmable if it is (m, q)-programmable for

every polynomial q = q(k). Respectively, H is (poly, n)-programmable if the analo-

gous condition holds.

Note that, in the above definition, c and h need not be generators and G need

not be cyclic. However, we also want to be able to substitute PHFs with random

oracles, as we will see in Section 4.5.2. In such an analysis, the images of H should

appear uniformly and independently distributed to an adversary who sees only public

information. This is then guaranteed if G is cyclic and c, h are generators.

A useful variant of the standard definition of a PHF is the concept of a weak

(m,n, γ, δ)-PHF [89], which is essentially an (m,n, γ, δ)-PHF according to Defini-

tion 2.26, except that in the former case the trapdoor key generation algorithm

PHF.TrapGen receives as additional input a list of strings X1, . . . , Xm ∈ {0, 1}`(k),

and the well-distributed logarithms property holds only with respect to this list of

Xi (i ∈ [m]) and any set of strings Z1, . . . , Zn ∈ {0, 1}`(k). Weak programmable

hash functions are usually more efficient than standard PHFs and are very useful

to prove cryptographic schemes to be weakly secure (i.e. when the adversary has to

commit to a list of values to be queried before seeing the public key). Full security

(i.e. when the adversary is fully adaptive) can often be achieved by using weak PHFs

together with chameleon hashes.

Definition 2.27 (Weak PHF). A group hash function H is called a weak (m,n, γ, δ)-

programmable hash function if it is a PHF in the sense of Definition 2.26, but with

the following differences:

• For group elements c, h ∈ G and set of strings X1, . . . , Xm ∈ {0, 1}`(k),

(κ′, t)← PHF.TrapGen(1k, c, h,X1, . . . , Xm).

• The well-distributed logarithms property from Definition 2.26 holds only for the

given set of strings X1, . . . , Xm ∈ {0, 1}`(k) (and any Z1, . . . , Zn ∈ {0, 1}`(k),

with Zj 6= Xi).
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Example of a weak (2,poly)-PHF. 3 Let G ← GPgen(1k) be a group of prime

order p. Define Hweak = (PHF.Gen,PHF.Eval) as follows.

• PHF.Gen(1k) returns κ = (u0, u1, u2)← G.

• On input X ∈ {0, 1}`(k), PHF.Eval(κ,X) returns PHF.Eval(κ,X) = u0u
X
1 u

X2

2 .

(Here the `(k)-bit string X is interpreted as an integer.)

To see that Hweak is a weak (2, poly)-PHF consider the following algorithms:

• PHF.TrapGen(1k, c, h,X1, X2) samples random integers q0, q1, q2 ← Zp and

then computes the coefficients p0, p1, p2 ∈ Zp of the polynomial

p(t) = p0 + p1t+ p2t
2 = (t−X1)(t−X2).

It then sets u′i = cpihqi (i = 0, 1, 2) and outputs κ′ = (u′0, u
′
1, u
′
2) and t =

(p0, p1, p2, q0, q1, q2).

• PHF.TrapEval(t,X) outputs (αX = p(X), βX = q(X)), where q(X) = q0 +

q1X + q2X
2.

Syntactics and correctness are obviously satisfied. Now note that since qi ← Zp,

we have ui ← G. This implies γ = 0. Furthermore from the construction of

PHF.TrapGen we see that αX = 0 if and only if X ∈ {X1, X2} and therefore m = 2,

n = poly(k) and δ = 1.

2.3.3 Pseudorandom Functions

Let F : K × D → R be a function family. Here K is the set of keys, D the domain,

and R the range of F. For all κ ∈ K and x ∈ D we also write Fκ(x) = F(κ, x) and

call Fκ : D → R an instance of F. Informally, a function family F is said to be a

pseudorandom function (PRF) [75, 76] if the input-output behaviour of a random

instance of the family, Fκ, is computationally indistinguishable from that of a truly

random function with the same domain and range. This means that it is infeasible

3This is the same weak-PHF (for m = 2) as the one given in [89, Definition 8]. There the
authors prove Hweak to be a weak (m, 1)-PHF. We stress that a PHF can be programmed with
different parameters.
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for anyone with only black-box access to a function (where no information is gained

about the function, other than its output value for any arbitrarily chosen argument)

to tell Fκ and a truly random function apart.

The term “truly random function” means that the function is chosen at random from

the set of all functions mapping D to R, which we denote Rand(D,R). Note that

if we let D = {0, 1}` and R = {0, 1}L, the cardinality of Rand(D,R) is 2L2` . Thus,

we would need L2` bits to specify a function in Rand(D,R), which is impractical. A

more intuitive way to think of a black-box access to a random function f0 : D → R
is to think that each time the box is given an input x ∈ D, it returns a random

element of R with the constraint that it always returns the same value for the same

input x.

We now provide a formal definition of a PRF.

Definition 2.28 (PRF). Let F : K×D → R be a function family and let AF be an

algorithm that has oracle access to a function fβ : D → R as defined in the following

experiment.4

Experiment ExpPRF,β
AF,F

(1k)

f0 ← Rand(D,R);κ← K, f1 ← Fκ

β′ ← AfβF (1k)
Return β′

The advantage of AF in the above experiment is defined as

AdvPRF
AF,F

(k) =
∣∣∣Pr
[
ExpPRF,1

AF,F
(1k) = 1

]
− Pr

[
ExpPRF,0

AF,F
(1k) = 1

]∣∣∣ ,
where the probability is taken over the random choices made in the experiment.

We say that F is a PRF if AdvPRF
AF,F

(k) is negligible for every polynomial-time adver-

sary AF.

It should be noted that the function family F is public; anyone who knows a key

κ ∈ K can compute Fκ(x) for some x ∈ D – obviously the key κ in the above

experiment is not known to the adversaryAF. Furthermore, F is a family of efficiently

computable functions.

4More precisely, we assume that K,D,R are families of finite sets, indexed by a security pa-
rameter k. That is, we require K = (Kk)k∈N, and similarly for D and R. For the sake of a cleaner
exposition, however, we do not write down the security parameter explicitly.

56



2.3 Cryptographic Primitives

2.3.4 Pseudorandom Generators

A pseudorandom generator (PRG) is a deterministic algorithm that stretches a truly

random binary sequence, called the seed, into a longer (polynomially-bounded) bi-

nary sequence that “looks” random, called the pseudorandom sequence.5 We for-

malize this notion in the following definition.

Definition 2.29 (PRG). Let G : {0, 1}k → {0, 1}p(k) be a deterministic polynomial-

time function and let D be an algorithm. Consider the following experiment.

Experiment ExpPRG,β
D,G (1k)

T0 ← {0, 1}p(k);x← {0, 1}k, T1 ← G(x)
β′ ← D(Tβ)
Return β′

We define D’s advantage in the above experiment as

AdvPRG
D,G (k) =

∣∣∣Pr
[
ExpPRG,1

D,G (1k) = 1
]
− Pr

[
ExpPRG,0

D,G (1k) = 1
]∣∣∣ ,

where the probability is taken over all choices of x and the random choices made

by the distinguisher D. We say G is a pseudorandom generator (PRG) if p(k) > k

and AdvPRG
D,G (k) is negligible for every polynomial-time distinguisher D. Then for

random x ∈ {0, 1}k, G(x) ∈ {0, 1}p(k) is said to be a pseudorandom sequence. By

definition, G(x) is computationally indistinguishable from a random bit sequence of

length p(k).

We now define a particular pseudorandom generator, introduced by Blum, Blum

and Shub [26].

Definition 2.30 (The BBS pseudorandom generator). Let N be a Blum integer,

i.e. N = PQ where P , Q are distinct primes with P = Q = 3 (mod 4). Let x

be a quadratic residue modulo N , i.e. x ∈ QRN . (For consistency with Definition

2.29, we assume that elements in QRN can be viewed as bit strings of length k.)

We establish the following notation: LSBN (x) = (x (mod N)) (mod 2) (the least

significant bit of x (mod N)). The BBS pseudorandom generator BBS applied to x

and modulus N is defined to have output:

BBSN (x) = (LSBN (x), LSBN (x2), . . . , LSBN (x2`−1
)) ∈ {0, 1}`,

5We remark that PRGs are often called PRNGs (pseudorandom number generators) or PRBGs
(pseudorandom bit generators).
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where ` = `(k) > k.

The result below, proved in [88] and based on results from [6, 26, 28] states that any

BBS-distinguisher can be used to factor Blum integers.

Theorem 2.8 (BBS-distinguisher ⇒ factoring algorithm). Let RSAgen be a prob-

abilistic polynomial-time algorithm that on input a security parameter 1k generates

a Blum integer N . Let BBS be the BBS generator as in Definition 2.30. For every

PPT algorithm D that succeeds in breaking BBS with advantage AdvPRG
D,BBS(k) run-

ning in time tBBS, there exists a PPT algorithm A that factors N with advantage

Advfac
A,RSAgen(k)/`, where ` is the size of the BBS generator’s output. Algorithm A

runs in time tfac ≈ k4tBBS/(AdvPRG
D,BBS(k))

2
. This reduction holds even if the modulus

N and the 2`-th power x2` of the BBS seed x are published.

We note that the security of the BBS generator still holds if it simultaneously outputs

up to log2 log2N least significant bits of each x2i (mod N) instead of only the least

significant bit [6, 136]. The downside of this approach is that the tightness of the

concrete security reduction in [6, 136] is compromised.

We stress that Theorem 2.8 is valid not only when inputs for the BBS generator

are taken from QRN as shown in [88], but also when the inputs are taken from the

group QR+
N as shown in [90] (the journal version of [88]).

Forward-secure PRG. A stronger notion of security for PRGs is the notion of

forward security. Forward-secure PRGs (FS-PRGs), introduced by Bellare and Yee

in [19], are stateful/iterated PRGs that deterministically derive sequences of fixed-

length bit strings from an initial (random) seed. More precisely, in each iteration

they output a string of bits, update their internal state, and securely erase the

old state. Like in regular PRGs, the output sequences are required to be indistin-

guishable from sequences of random strings. The pivotal property of FS-PRGs is

forward security, i.e. the adversary has the ability to eventually corrupt the gener-

ator’s internal state, but indistinguishability of output strings is guaranteed to still

hold up to that point. Different constructions of FS-PRGs were proposed in [19],

including highly efficient ones based on symmetric building blocks like block ciphers

or HMAC [20], and also a construction based on a number-theoretic assumption

(specifically, on the Blum-Blum-Shub PRG [26]).
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We recall here the definition and security notion of FS-PRGs. Observe that we

slightly weaken the model from [19] (considering static adversaries instead of adap-

tive ones). The FS-PRG constructions proposed and proved secure in [19] naturally

remain secure in our adapted model.

Definition 2.31 (FS-PRG). Let GFS = (GFS.Setup,GFS.Key,GFS.Next) be a set of

efficient algorithms such that GFS.Setup is a probabilistic algorithm that, on input

a security parameter 1k, outputs a set of system parameters ‘params’; GFS.Key is

a probabilistic key generation algorithm that takes ‘params’ as input and outputs

an initial state St0 ∈ {0, 1}k (the initial seed); and GFS.Next : {0, 1}k → {0, 1}k ×
{0, 1}p(k) is a deterministic algorithm that turns state Sti−1 ∈ {0, 1}k (the ‘seed’ at

iteration i) into a pair (Sti, Outi), where Sti ∈ {0, 1}k is the updated state, and Outi

is a p(k)-bit string.

Let D be an adversary against GFS. The adversary D is fed with a number of output

blocks, Out1, Out2, . . . , Outi, each of length p(k), and is given the then current state

of the generator, Sti. Its job is to decide whether these blocks are the real output of

the generator, or just a sequence of random bits. To formalize this, we consider the

following experiment.

Experiment ExpFS-PRG,β
D,GFS

(1k)

i← D
params ← GFS.Setup(1k)
St0 ← GFS.Key(params)
i′ ← 0
Repeat
i′ ← i′ + 1
(Sti′ , Outi′)← GFS.Next(Sti′−1)

If β = 0, Outi′ ← {0, 1}p(k)

Until i′ = i
Out← Out1, Out2, . . . , Outi
β′ ← D(Sti, Out)
Return β′

The advantage of D is defined as

AdvFS-PRG
D,GFS

(k) =
∣∣∣Pr
[
ExpFS-PRG,1

D,GFS
(1k) = 1

]
− Pr

[
ExpFS-PRG,0

D,GFS
(1k) = 1

]∣∣∣ .
We say that GFS is an FS-PRG if AdvFS-PRG

D,GFS
(k) is negligible for every polynomial-

time adversary D.
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The BBS generator as an FS-PRG. In [19], Bellare and Yee show that number-

theoretic PRGs like the BBS can be modified to be seen as forward secure – in accor-

dance with our FS-PRG definition, GFS.Setup(1k) would generate a Blum integer N;

the random seed x0 ∈ QRN (initial state) would be generated by GFS.Key(N); and

GFS.Next on input a state Sti−1 = x would output the next state Sti = x2 (mod N)

and Outi = LSBN (x). If ` output blocks are produced, this construction gives us

the standard BBS PRG from Definition 2.30.6 We remark that in order to output

larger output blocks, one can adapt this construction in the following way:

Construction 2.1. The algorithms of a forward secure BBS pseudorandom gener-

ator BBS = (GFS.Setup,GFS.Key,GFS.Next) which outputs ` bits per block are as

follows: GFS.Setup(1k) generates a Blum integer N ; GFS.Key(N) outputs a seed

x0 ∈ QRN ; on input a state Sti−1 = x, algorithm GFS.Next(x) outputs the next state

Sti = x2` (mod N) and an `–bit block Outi = BBSN (x) = (LSBN (x), LSBN (x2), . . . ,

LSBN (x2`−1
)).

From Theorem 2.8 it is easy to see that Construction 2.1 is actually an FS-PRG if

factoring Blum integers is hard.

2.3.5 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) is a cryptographic scheme that produces a

symmetric key K and an asymmetric encryption of that key, C. The symmetric key

K can then be used in a symmetric encryption scheme, also called a data encapsula-

tion mechanism (DEM), to encrypt and transmit long messages. This combination

of asymmetric and symmetric encryption is called hybrid encryption and is often

referred to as the KEM-DEM paradigm, first formalized by Cramer and Shoup [46].

In [130], Shoup showed that by combining a CCA-secure KEM (see Definition 2.33)

and a CCA-secure DEM (see [46], Section 7), a hybrid CCA-secure public key en-

cryption scheme (PKE) can be generically obtained. Since CCA-secure DEMs can

be efficiently designed [46], when constructing such hybrid encryption schemes focus

is placed on the construction of CCA-secure KEMs.

6The forward-security property of the BBS generator was first used by Blum and Goldwasser
in [27].
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Definition 2.32 (KEM). A key encapsulation mechanism KEM consists of three

algorithms:

• KEM.KG, a probabilistic polynomial-time key generation algorithm that on

input a security parameter 1k, outputs a pair of public and private keys (pk, sk).

• KEM.Enc, a probabilistic polynomial-time encapsulation algorithm that takes

as input a public key pk and outputs a symmetric key K ∈ K, where K is the

symmetric key space of the KEM, and an encapsulation (also called cipher-

text) C.

• KEM.Dec, a deterministic polynomial-time decapsulation algorithm that takes

as input a private key sk and an encapsulation C, and outputs either a key

K ∈ K or a special symbol ⊥, indicating a failure of decapsulation.

For correctness we require that for all k ∈ N and all (K,C) ← KEM.Enc(pk), we

have

Pr [KEM.Dec(sk, C) = K] = 1.

We see that a KEM allows a sender to generate a symmetric key K which is encap-

sulated under the receiver’s public key pk. The encapsulation, C, is then sent to

the receiver, who can recover K by using its private key sk. This can of course be

achieved with a public key encryption scheme, but KEMs can be constructed also

in different ways.

Chosen-ciphertext security for a KEM is defined in terms of the following IND-CCA

experiment (from [88]7), where an adversary A is allowed to adaptively query a

decapsulation oracle with encapsulations of its choice and obtain the corresponding

keys.

Definition 2.33 (IND-CCA security of a KEM). Let KEM = (KEM.KG,KEM.Enc,

KEM.Dec) be a key encapsulation mechanism. For any PPT algorithm A, we define

7The original definition of IND-CCA security of a KEM is in fact due to [46].
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the following experiments:

Experiment ExpCCA-real
A,KEM (1k) Experiment ExpCCA-rand

A,KEM (1k)

(pk, sk)← KEM.KG(1k) (pk, sk)← KEM.KG(1k)
K ← K

(K∗, C∗)← KEM.Enc(pk) (K∗, C∗)← KEM.Enc(pk)

Return AKEM.Dec(sk,·)(pk,K∗, C∗) Return AKEM.Dec(sk,·)(pk,K,C∗)

In the above experiment, the decapsulation oracle KEM.Dec(sk, ·), when queried

with an encapsulation C 6= C∗, returns either a failure symbol ⊥ or a key K ←
KEM.Dec(sk, C); (KEM.Dec(sk, ·) ignores queries C = C∗). The advantage of A in

breaking the IND-CCA security of KEM is defined as

AdvCCA
A,KEM(k) =

∣∣∣Pr[ExpCCA-real
A,KEM (1k) = 1]− Pr[ExpCCA-rand

A,KEM (1k) = 1]
∣∣∣ .

A KEM scheme is said to be IND-CCA secure if AdvCCA
A,KEM(k) is negligible for all

polynomial-time adversaries A.

2.3.6 Signature Schemes

Definition 2.34 (Signature schemes). A signature scheme SIG consists of three

algorithms:

• SIG.KG, a probabilistic polynomial-time key generation algorithm that on input

1k, outputs a verification/signing key pair (vk , sigk).

• SIG.Sign, a probabilistic polynomial-time signing algorithm that on input a

signing key sigk and a message m, outputs a signature σ.

• SIG.Vfy, a deterministic polynomial-time verification algorithm that takes as

input a verification key vk, a message m and a signature σ, and outputs either

reject or accept.

For correctness we require that for all k ∈ N, all (vk , sigk) ← SIG.KG(1k), all

messages m, and all σ ← SIG.Sign(sigk ,m), we have

Pr [SIG.Vfy(vk ,m, σ) = accept] = 1.
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The standard notion of security for a signature scheme is called existential unforge-

ability under adaptively chosen message attacks (or unforgeability for short) [79],

which is defined in terms of the following experiment.

Definition 2.35 (Unforgeability). Let SIG = (SIG.KG,SIG.Sign, SIG.Vfy) be a sig-

nature scheme. For any PPT algorithm A, we define the following experiment:

Experiment Expforge
A,SIG(1k)

(vk , sigk)← SIG.KG(1k)

(m∗, σ∗)← ASIG.Sign(sigk ,·)(vk)
If (SIG.Vfy(vk ,m∗, σ∗) = accept ∧m∗ 6= mi) return 1 else return 0.

In the above experiment A adaptively issues a polynomial number of queries, q, to a

signing oracle SIG.Sign(sigk , ·). That is, for each i (1 ≤ i ≤ q), A chooses a message

mi, and obtains a signature σi on that message (i.e. σi = SIG.Sign(sigk ,mi)). A

restriction in that experiment is that the forging message m∗ must be new and has

not been signed (i.e. m∗ 6= mi). The advantage of A in breaking SIG’s unforgeability

security is defined as

Advforge
A,SIG(k) = Pr

[
Expforge

A,SIG(1k) = 1
]
.

A signature scheme is said to be unforgeable if Advforge
A,SIG(k) is negligible for all

polynomial-time adversaries A.

A stronger definition of unforgeability can be obtained if we relax Definition 2.35

by allowing the adversary A, in the security experiment, to output a new valid

signature on a message that could have been signed before. That is, A wins the

security experiment if it outputs a pair (m∗, σ∗) such that SIG.Vfy(vk ,m∗, σ∗) =

accept ∧ (m∗, σ∗) 6= (mi, σi)). This notion is called strong existential unforgeability

under adaptively chosen message attacks (or strong unforgeability for short).

In this thesis, one of the cryptographic primitives we use is a strong one-time sig-

nature (strong-OTS) scheme [109]. Informally, a strong-OTS scheme is a signature

scheme that requires each signing key to be used only once for each message to be

signed. The security experiment is just like the one for strong unforgeability, except

that for strong-OTS, given a verification key, the adversary is only allowed to issue

at most one query to the signing oracle before producing a forgery on a message that

could have been signed by the signing oracle. More formally, consider the following

definition.
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Definition 2.36 (Strong-OTS). Let OTS = (OTS.KG,OTS.Sign,OTS.Vfy) be a sig-

nature scheme. For any PPT algorithm A, we define the following experiment:

Experiment ExpS-OTS
A,OTS(1k)

(vk , sigk)← OTS.KG(1k)

(m∗, σ∗)← AOTS.Sign(sigk ,·)(vk)
If (OTS.Vfy(vk ,m∗, σ∗) = accept ∧ (m∗, σ∗) 6= (m,σ)) return 1 else return 0.

In the above experiment A is allowed to issue at most one query to a signing oracle

SIG.Sign(sigk , ·). That is, A can choose a message m, and obtain a signature σ on

that message. Note that A is successful in the above experiment even if the forging

message m∗ that it outputs is the same as the message m that it may have queried

to the signing oracle OTS.Sign(sigk , ·), as long as σ∗ 6= σ. The advantage of A in

breaking OTS’s strong one-time security is defined as

AdvS-OTS
A,OTS(k) = Pr

[
ExpS-OTS

A,OTS(1k) = 1
]
.

A signature scheme is said to be strongly one-time secure if AdvS-OTS
A,OTS(k) is negligible

for all polynomial-time adversaries A.

Similarly, a regular one-time signature (rather than strong) scheme can be defined

by restricting the adversary A in the above definition to output a signature forgery

on a message different from the one (possibly) queried to the signing oracle.
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In this chapter we systematically study non-interactive key exchange schemes in

the public key setting (NIKE). We provide different security models for this cryp-

tographic primitive and explore the relationships between them. We then give con-

structions for secure NIKE in the standard model and in the random oracle model.

Furthermore, we also study the relationship between NIKE and public key encryp-

tion (PKE), showing that a secure NIKE scheme can be generically converted into an

IND-CCA secure PKE scheme. Most of the content of this chapter appears in [63],

which is joint work with Dennis Hofheinz, Eike Kiltz and Kenneth G. Paterson.
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3.1 Introduction

Non-interactive key exchange (NIKE) is a cryptographic primitive which enables

two users, who know each others’ public keys, to agree on a symmetric shared key

without requiring any interaction. The canonical example of a NIKE scheme can be

found in the seminal paper by Diffie and Hellman [53]: let G be a group of prime

order p with generator g, and assume Alice has public key gx ∈ G and private key

x ∈ Zp, while Bob has public key gy ∈ G and private key y ∈ Zp. Then Alice and

Bob can both compute the value gxy ∈ G without exchanging any messages. More

properly, Alice and Bob should hash this key together with their identities in order

to derive a symmetric key H(Alice, Bob, gxy).

This example encapsulates in a nutshell all the basic features required of a NIKE

scheme: users should agree on some common parameters (p, G and g here), then

create their key pairs. Once these are computed and the public keys distributed,

any pair of users can set up a shared key without further exchange of messages. The

security properties desired of NIKE are, informally at least, clear: compromise of

one user’s private key should not affect the security of shared keys between pairs of

uncorrupted users; compromise of a shared key between a pair of users should not

undermine the security of shared keys between other pairs of users. In practice, the

public keys will be certified, and consideration needs to be given to modelling the

key registration process.

NIKE has real-world applications. In wireless and sensor networks, conserving bat-

tery power is a prime concern, and so the energy cost of communication must be

minimised. Thus using key establishment methods that minimise the number of

bits that need to be transmitted is of fundamental importance. In particular, when

faced with a jamming adversary, reducing the total number of rounds of interaction

needed to establish a key is particularly helpful. NIKE is an excellent option in

solving this problem, since a key can be established with minimal communication

and interaction: assuming the public keys are pre-distributed, all that is needed is

an exchange of identifiers for those keys, and often this exchange must take place

anyway, in order to establish communications. A recent paper [42] gives a detailed

evaluation of the energy costs of interactive and non-interactive key exchange pro-

tocols in the ID-based and public-key settings for wireless communications with a
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jamming adversary, demonstrating that significant energy savings can be made by

adopting a non-interactive approach to key establishment. Its non-interactive nature

makes NIKE an abstract building block that is qualitatively different from interac-

tive key exchange: e.g. to achieve deniable authentication, [56] explicitly requires

a non-interactive key exchange. But NIKE can also be used as a basis for inter-

active key exhange [13, 34, 117]: for example, in [34] the authors use the shared

key in a MAC to authenticate an exchange of ephemeral Diffie-Hellman values. The

TLS Handshake Protocol [52], which is the de facto protocol of choice for secure

communication on the Internet, allows as an option a Diffie-Hellman key derived

from static, long-term public keys to be used as its pre-master-secret, from which

all other keys in the protocol are derived.1 Finally, NIKE can be used to build

very simple non-interactive designated verifier signature schemes [91], again using

the shared key in a MAC to authenticate messages. Thus NIKE appears in various

guises throughout the literature.

Despite its appearing in the very first paper on public key cryptography, the NIKE

primitive has so far received scant attention as a cryptographic primitive in its own

right. Bernstein [22] proposed an efficient NIKE scheme in the elliptic-curve setting

and sketched a security model for NIKE. Cash, Kiltz and Shoup (CKS) [40] provided

a formal security model for NIKE and analysed the Diffie-Hellman-based scheme

above, as well as a twinned variant of it, in the Random Oracle Model (ROM). In

the ID-based setting, Dupont and Enge [57] introduced a security model for NIKE

and analysed the Sakai-Ohgishi-Kasahara (SOK) scheme [122] in this model. In

a follow-up work, Paterson and Srinivasan [112] provided a more refined security

model and explored the connections between ID-based NIKE and Identity-Based

Encryption (IBE). Gennaro et al. [73] developed NIKE protocols for the hierarchical

ID-based setting. All of these papers use the ROM.

3.1.1 Our Contributions

This chapter is dedicated to a systematic study of NIKE in the public key setting. We

provide: security models for NIKE and their relationships; constructions for secure

1However, the long-term public keys are actually exchanged during the protocol, so strictly
speaking the protocol is interactive even though the key can be seen as arising from a non-interactive
exchange.
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NIKE in the random oracle model and in the standard model in the challenging

setting where the adversary can introduce arbitrary public keys into the system;

and a construction for IND-CCA secure public key encryption (PKE) from any

secure NIKE. Let us expand on each of these contributions in turn.

Models: It would seem that definitions and security models for interactive key

exchange (e.g. [17, 21, 37, 129]) could provide a natural starting point for formalising

NIKE. However, here we take the CKS definition [40] for NIKE as our starting point.

One reason for using a case-tailored NIKE definition is simplicity: existing security

models for interactive key exchange give considerable attention to properties which

are irrelevant in the NIKE setting. (For instance, forward security, multiple sessions,

and in particular the pairing of sessions play no role in a non-interactive setting.)

Another reason for a case-tailored NIKE definition is that we can focus on adversarial

key registration queries; these are usually only implicitly [37] (or not at all [17, 21])

considered in the standard models for interactive key exchange.2 However, in our

setting, adversarial key registration poses the main technical obstacle to achieve

NIKE security, as we will explain below.

The CKS security model for NIKE uses an indistinguishability and game-based ap-

proach to define security, with the adversary being required to distinguish real from

random keys in responses to its test queries. The model does allow the adversary

to register public keys of its choice in the system and then to make queries for

the shared keys between these “corrupted” users and honest (non-adversarially con-

trolled) users, so-called corrupt reveal queries. This translates in the real world

to minimising the assumptions made about certification procedures followed by the

Certification Authority (CA) in the PKI supporting the NIKE: it means that the

CA is not assumed to check that a public key submitted for certification has not

been submitted before, and does not check that the user submitting the public key

knows the corresponding private key. The model for NIKE in [40] is similar to, and

presumably inspired by, the early work of Shoup [129] on interactive key exchange,

where capturing so-called PKI attacks, also known as rogue-key attacks, was intrin-

sic to the security modelling. This modelling approach is referred to elsewhere in

the literature as the plain setting (see [16, 118] and the references therein) or the

2We mention that some security analyses (e.g. [101]) and Shoup’s security model [129] do ex-
plicitly consider adversarial key registration queries.
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bare PKI setting [56]. The CKS model is certainly more challenging than settings

where proofs of knowledge or proofs of possession of private keys are assumed to be

given during registration, or where the adversary must reveal its private key directly

(as with the knowledge of private key assumption used in [30, 103]). However, the

CKS model has some shortcomings: the adversary is not allowed to directly query

for the shared keys held between pairs of honest users, but instead only gets to see

real or random values for these via test queries. Moreover the model does not allow

an adversary to query for the private keys of honestly registered users.

Therefore, as a necessary precursor to the further development of NIKE, we start

by exploring different models for NIKE and their relationships (Section 3.2). In

summary, we introduce three new security models for NIKE and show that they are

all polynomially equivalent to one another and to the original CKS model from [40].

One of our models, the m-CKS-heavy model, augments the CKS model and effec-

tively allows all conceivable queries, without allowing the adversary to win trivially.

Another of our models, CKS-light, allows only two honest users, no corruption of

honest users, and a single test query. Thus it is particularly simple and easy to

use when analysing specific NIKE schemes; moreover our results showing equiva-

lence between the models ensure that security in this model implies security in the

stronger m-CKS-heavy model.

We stress that all these models allow the adversary to register public keys of its

choice in the system, so are in the plain setting, or dishonest key registration (DKR)

setting. However, for completeness, we also briefly consider the honest key regis-

tration (HKR) setting in which the adversary cannot register keys on its own. It

is easy to see that the HKR setting provides strictly weaker security guarantees

than our default security setting with dishonest key registration. For instance, the

already mentioned Diffie-Hellman NIKE scheme without hashing (such that shared

keys are of the form gxy) can be shown secure in the HKR setting under the Deci-

sional Diffie-Hellman assumption, but is easily seen to be completely insecure in our

default setting.3

3Concretely, since shared keys do not depend on user identities in the unhashed DH-NIKE, an
adversary A can (a) register the key gx of an honest user Alice as its own key, and (b) ask for
the shared key between A and another honest user Bob with key gy. This immediately yields the
shared key gxy between Alice and Bob. Because of the homomorphic properties of the DH-NIKE,
a simple modification of this attack also works if A is not allowed to register keys of existing users.
A similar attack applies to the scheme in [22].
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Constructions for NIKE: In Section 3.3, we give two concrete constructions

for NIKE schemes meeting our CKS-light security definition, and hence secure in

our stronger m-CKS-heavy model (with dishonest key registration). Our first NIKE

scheme is provably secure in the standard model and combines a specific weak Pro-

grammable Hash Function [89] (see also Section 2.3.2), whose output lies in a pairing

group, and a Chameleon hash function. This enables the simulation in our security

proof for the scheme to handle the tricky queries for shared keys involving an hon-

estly generated public key and an adversarially chosen public key. We also make

use of the pairing to provide a means of checking that public keys coming from the

adversary are in some sense well-formed. We work with asymmetric pairings for

efficiency at high security levels (and because it does not add any real complexity

to the description of our scheme). The scheme’s security relies on a natural variant

of the Decisional Bilinear Diffie-Hellman (DBDH) assumption for the asymmetric

setting.

Our second scheme is provably secure under the factoring assumption in the Random

Oracle Model (ROM) and uses ideas from [87] to analyse the hashed Diffie-Hellman

scheme, where keys are of the form H(Alice, Bob, gxy), in the group of signed

quadratic residues (see Definition 2.14). We note that closely related schemes were

analysed in [40], but in different groups and under different assumptions. Specifi-

cally, a twinned version of the scheme was proved secure under the CDH assumption,

while it is stated that the hashed Diffie-Hellman scheme is secure under the SDH

assumption. We remark that the latter claim of [40] is problematic. Concretely, the

SDH assumption is not (directly) sufficient to show that the basic Diffie-Hellman

scheme is secure. Namely, the corresponding security reduction requires two DDH

oracles – one for each of the two users sharing the key on which the adversary wants

to be challenged – while the SDH assumption supplies only one. Certainly this prob-

lem could be solved instead by appealing to a suitable gap-DH assumption. We show

how to overcome this problem in the group of signed quadratic residues without the

need to rely on a gap assumption.

From NIKE to PKE: In Section 3.4, we explore the connections between NIKE

and public key encryption (PKE). That such connections exist should not be too

much of a surprise: it is folklore that the ElGamal encryption scheme [71] can be

seen as arising from the Diffie-Hellman NIKE scheme by making the sender’s key
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pair (gx, x) ephemeral and using the receiver’s public key gy to create the basis for

a shared key gxy. In fact, a simple transformation shows that every NIKE that

is secure in the simpler HKR setting can be turned into a public key encryption

scheme that is secure against chosen-plaintext attacks (IND-CPA secure). Similar

connections were explored in the ID-based setting in [112].

In our default setting with dishonest key registration (the DKR setting), we provide

a simple, generic construction for PKE from NIKE that is also in the spirit of the

original Diffie-Hellman–to–ElGamal conversion. The construction takes a NIKE

scheme that is secure in our CKS-light model (with dishonest key registration) and

a strongly one-time secure signature scheme as inputs, and produces from these

components a Key Encapsulation Mechanism (KEM) that we prove to be IND-CCA

secure. A secure PKE from such a KEM can be obtained using standard results.

At a high level, the key pair for the KEM is a randomly generated key pair (pk , sk)

from the NIKE scheme, ciphertexts are also randomly generated public keys pk ′

from the NIKE scheme (together with a one-time signature that binds the public

key to an identity), while the encapsulated key is the shared key computed from sk ′

and pk ; the receiver computes the same key from sk and pk ′, assuming the one-time

signature verifies. In order to prove the KEM to be IND-CCA secure, we exploit the

presence of corrupt reveal queries in the NIKE security model in an essential way

to handle certain decapsulation queries. The resulting KEM is almost as efficient as

the underlying NIKE scheme. In the HKR setting, the same transformation (only

without one-time signatures) shows that CKS-light security of the NIKE scheme

implies IND-CPA security of the resulting PKE scheme.

In Section 3.5, we provide a closely-related conversion that starts with a secure NIKE

scheme satisfying a simplified definition (basically, it omits all consideration of iden-

tities) and produces an IND-CCA secure KEM without using one-time signatures.

This results in more efficient KEMs. We can apply the conversion with a simpli-

fied version of the concrete NIKE scheme from Section 3.3.1 to obtain an attractive

KEM that is IND-CCA secure in the standard model under our asymmetric variant

of the DBDH assumption. This KEM is comparable in performance to the scheme

proposed in [35] and neatly illustrates the utility of NIKE as a primitive, as well as

its connections with other classical public key primitives.
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The fact that secure NIKE implies IND-CCA-secure PKE, one of the most important

primitives in cryptography, illustrates the fundamental role and utility of NIKE. We

believe that this connection should encourage further research on the topic.

3.2 Non-Interactive Key Exchange

Following [40], we formally define a Non-Interactive Key Exchange (NIKE) scheme

in the public key setting, NIKE, as a collection of three algorithms: NIKE.Setup,

NIKE.KeyGen and NIKE.SharedKey, together with an identity space ID and a shared

key space SHK. Note that identities in the scheme and security model are merely

used to track which public keys are associated with which users.

• NIKE.Setup: On input 1k, outputs params, a set of system parameters.

• NIKE.KeyGen: On input params and an identity id ∈ ID, outputs a pub-

lic key/private key pair (pk , sk). This algorithm is probabilistic and can be

executed by any user.

• NIKE.SharedKey: On input an identity id1 ∈ ID and a public key pk1 along

with another identity id2 ∈ ID and a private key sk2, outputs either a shared

key in SHK for the two identities, or a failure symbol ⊥. This algorithm is

assumed to always output ⊥ if id1 = id2.

For correctness, we require that, for any pair of identities id1, id2, and correspond-

ing key pairs (pk1, sk1) and (pk2, sk2), algorithm NIKE.SharedKey satisfies the con-

straint:

NIKE.SharedKey(id1, pk1, id2, sk2) = NIKE.SharedKey(id2, pk2, id1, sk1).

3.2.1 Definitions of Security for NIKE

Cash, Kiltz and Shoup [40] proposed a security model for NIKE schemes in the

public key setting, denoted here by the CKS model. This model abstracts away all

considerations concerning certification and PKI in a particularly nice way. It allows
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an adversary to obtain honestly generated public keys, but also to then associate

such public keys with other identities, and to register dishonestly generated public

keys (for which the adversary need not know the corresponding private keys). This

dishonest key registration (DKR) setting models a PKI where minimal assumptions

are made about the actions of the Certification Authority (CA): the CA is not

assumed to check that a public key has not been previously registered to another

user, and does not demand a proof of knowledge or possession of the private key

when issuing a certificate on a public key. This conservative approach to modelling

is fully appropriate given the great diversity of how CAs operate in the real world.

The model can be seen as a natural adaptation of the approach of Shoup [129] for

modelling interactive key exchange to the NIKE setting and is analogous to the plain

setting studied in [16, 118].

However, there are some obvious omissions from the model in [40], including the

ability of an adversary to learn private keys associated with honestly generated public

keys and the ability of a user to directly learn the key shared between two honest

users in the system (which could be possible, for example, because of cryptanalysis of

a scheme making use of the shared key). Equivalent queries in the ID-based setting

were permitted in the model introduced in [112].

For this reason, we augment the original CKS model with the “missing” queries,

introducing the m-CKS-heavy model. We also introduce two further models, the

CKS-heavy and CKS-light models. These differ from m-CKS-heavy and the original

CKS model only in the numbers and types of query that the adversary is allowed

to make. Next we present in detail the m-CKS-heavy model. Then in Table 3.1 we

summarize the differences between these security models in the DKR setting.

The m-CKS-heavy model: Our model is stated in terms of a game between an

adversary A and a challenger C. In this game, C takes as input the security param-

eter 1k, runs algorithm NIKE.Setup of the NIKE scheme and gives A params. The

challenger takes a random bit b and answers oracle queries for A until A outputs a

bit b̂. The challenger answers the following types of queries for A:

• register honest user: A supplies an identity id ∈ ID. The challenger

C first obtains a pair of public key and private key by running (pk , sk) ←
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NIKE.KeyGen(params, id). It then records the tuple (honest , id , pk , sk) and

returns pk to A.

• register corrupt user: In this type of query, A supplies both an iden-

tity id ∈ ID and a public key pk . The challenger C records the tuple

(corrupt , id , pk ,⊥). We stress that A may make multiple “register corrupt

user” queries for the same id during the experiment. In that case, only the

most recent (corrupt , id , pk ,⊥) entry is kept.

• extract: Here A supplies an identity id that was registered as an honest user.

The challenger looks for a tuple (honest , id , pk , sk) containing id and returns

sk to A.

• reveal: Here A supplies a pair of registered identities id1, id2, subject only to

the restriction that at least one of the two identities was registered as honest.

Without loss of generality, assume id1 was registered as honest. The challenger

C runs NIKE.SharedKey(id2, pk2, id1, sk1) and returns the result to A. Note

that here the adversary is allowed to make reveal queries between two users

that were originally registered as honest users. We denote by honest reveal

the queries involving two honest users and by corrupt reveal the queries

involving an honest user and a corrupt user.

• test: A supplies two distinct identities id1, id2 that were both registered as

honest. The challenger returns ⊥ if id1 = id2. Otherwise, it uses the bit b to

answer the queries. If b = 1, the challenger runs NIKE.SharedKey(id1, pk1, id2,

sk2) and returns the result to A. If b = 0, the challenger generates a random

key from SHK, records it for later, and returns that key to the adversary. In

this case, to keep things consistent, the challenger returns the same random

key for the pair id1, id2 every time A queries for their shared key.

A’s queries may be made adaptively and are arbitrary in number. To prevent trivial

wins for the adversary, no query to the reveal oracle is allowed on any pair of

identities selected for test queries (in either order), and no extract query is allowed

on any of the identities involved in test queries. Also, we demand that no identity

registered as corrupt can later be the subject of a register honest user query,

and vice versa.
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Model
register register

extract
honest corrupt

test
honest corrupt reveal reveal

CKS-light 2 X 7 7 X 1
CKS X X 7 7 X X
CKS-heavy X X X X X 1
m-CKS-heavy X X X X X X

Table 3.1: Types of queries for different security models in the dishonest key regis-
tration (DKR) PKI model (aka plain/bare model). Notation: Xmeans that an ad-
versary is allowed to make an arbitrary number of queries; 7 means that no queries
can be made; integers represent the number of queries allowed to an adversary.

When the adversary finally outputs b̂, it wins the game if b̂ = b. For an adversary

A, we define its advantage in this security game as:

Advm-CKS-heavy
A,NIKE (k, qH , qC , qE , qHR, qCR, qT ) = 2 |Pr[b̂ = b]− 1/2|,

where qH , qC , qE , qHR, qCR and qT are, respectively, the numbers of register

honest user, register corrupt user, extract, honest reveal, corrupt reveal

and test queries made byA. We say that a NIKE scheme is (t, ε, qH , qC , qE , qHR, qCR,

qT )-secure in the m-CKS-heavy model if there is no adversary with advantage at

least ε that runs in time t and makes at most qH register honest user queries,

etc. Informally, we say that a NIKE scheme is m-CKS-heavy secure if there is no

efficient adversary having non-negligible advantage in k, where efficient means that

the running time and numbers of queries made by the adversary are bounded by

polynomials in k. For simplicity we may also use Advm-CKS-heavy
A,NIKE (k) to denote the

advantage of A, in the m-CKS-heavy model, against a NIKE scheme NIKE.

Comparing the models: Table 3.1 outlines the properties of all our security

models in the DKR setting, and the CKS model, in terms of restrictions on the

queries that can be made by the adversary. It is apparent that the m-CKS-heavy

model is the strongest model in that table. It differs from the CKS-heavy model only

in allowing multiple test queries. The m-CKS-heavy model represents a strength-

ening of the original CKS model by allowing extract and honest reveal queries,

whereas the CKS model only allows the adversary to gain information about hon-

estly generated shared keys via test queries. The CKS-light model is the simplest

of all, involving only two honestly registered identities, removing the extract and

honest reveal queries, and allowing only a single test query.
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In Theorem 3.1 we prove our strongest model, the m-CKS-heavy model, to be poly-

nomially equivalent to our weakest model, the CKS-light model. Then, it follows that

all security models are also polynomially equivalent. Thus, while the m-CKS-heavy

is our preferred model, it suffices to analyse schemes in the CKS-light model if one is

not overly concerned about concrete security. (Note that the security reductions are

not tight. It is an interesting open problem to either prove tighter relations between

the models, or to prove that such results are not possible.)

Theorem 3.1 (m-CKS-heavy ⇔ CKS-light). The m-CKS-heavy and CKS-light

security models are polynomially equivalent. More specifically, for any NIKE scheme

NIKE, we have that:

• for any adversary B against NIKE in the CKS-light game, there is an adversary

A that breaks NIKE in the m-CKS-heavy game with

Advm-CKS-heavy
A,NIKE (k, 2, qC , 0, 0, qCR, 1) = AdvCKS-light

B,NIKE (k, qC , qCR),

• for any adversary A against NIKE in the m-CKS-heavy game, there is an

adversary B that breaks NIKE in the CKS-light game with

AdvCKS-light
B,NIKE (k, qC , q

′
CR) ≥ (2/qT q

2
H)·Advm-CKS-heavy

A,NIKE (k, qH , qC , qE , qHR, qCR, qT ),

where q′CR ≤ qCR.

Proof. Clearly, security in the sense of the m-CKS-heavy model implies security in

the sense of the CKS-light model, since the latter model is a limited case of the

former.

Here we prove the second reduction, namely that if a NIKE scheme NIKE is secure in

the CKS-light model, then it is also secure in the m-CKS-heavy model. We assume

that there is an adversary A that breaks a NIKE scheme in the m-CKS-heavy model

with advantage Advm-CKS-heavy
A,NIKE (k, qH , qC , qE , qHR, qCR, qT ).

The hybrid argument technique. We consider a sequence of games G0, G1, . . . , GqT ,

all defined over the same probability space. Starting with the actual adversarial

game G0, with respect to an adversary A in the m-CKS-heavy model when b = 0,

we make slight modifications between successive games, in such a way that A’s view

is indistinguishable among the games.
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Game G0: actual adversarial game when b = 0. This is the original game as

defined in the m-CKS-heavy model when b = 0. All test queries will be answered

with randomly chosen values from the shared key space SHK.

Game Gι (1 ≤ ι ≤ qT −1): hybrid games. This game is identical to game Gι−1,

except that the ι-th test query, say on a pair of honest users id i, id j , is answered

with the actual real shared key, Kidi,idj , between those users.

Game GqT : actual adversarial game when b = 1. This is the original game as

defined in the m-CKS-heavy model when b = 1. All test queries will be answered

with the real shared keys (computed via the NIKE.SharedKey algorithm) associated

with the two users involved in each query.

Let A(Gι) denote adversary A playing game Gι. We see that A can distinguish

games G0 and GqT with advantage

Advm-CKS-heavy
A,NIKE (k, qH , qC , qE , qHR, qCR, qT )

= |Pr[A(GqT ) = 1]− Pr[A(G0) = 1]| .

Note that Gι and Gι+1 (0 ≤ ι < qT ) differ in only one single test query. According

to the hybrid argument, if A can distinguish between G0 and GqT with non-negligible

probability, then for some 0 ≤ ι < qT it can also distinguish Gι and Gι+1 with non-

negligible probability. We show that if this is the case, then we can construct an

adversary B in the CKS-light model with advantage related to A’s advantage by a

polynomial factor.

The idea. In order to simulate the m-CKS-heavy game for A, B picks ι ← {0, . . . ,
qT − 1}, guessing that A can distinguish games Gι and Gι+1. Then it guesses which

users will be involved in the (ι + 1)-st test query made by A (more precisely, B
guesses that these users will be the I-th and J-th users registered as honest).

Adversary B plays the CKS-light security game with challenger C and acts as a

challenger for A. On input the security parameter 1k, C computes params ←
NIKE.Setup(1k) and gives params to B. The challenger C then takes a bit b and

answers oracle queries for B until B outputs a bit b̂.

Let qH be a bound on the number of honest users registered by A in the course of its
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attack and let qT be a bound on the number of test queries made by A. Without

loss of generality, we assume that A does not make the same test query more than

once. The CKS-light adversary B chooses an index ι ← {0, . . . , qT − 1} and two

distinct indices I, J ← {1, . . . , qH}. It then gives params to A and answers queries

to A in the following manner:

• register honest user (id):

If id is the I-th or J-th distinct user involved in such a query, B sets id I = id or

idJ = id as appropriate. It adds id I (resp. idJ) to a list ΛT . Adversary B then

makes the same query to C, which obtains (pk , sk)← NIKE.KeyGen(params, id),

records (honest, id , pk , sk), and returns pk to B. B gives pk to A. Otherwise,

if id is not the I-th or J-th distinct user involved in a register honest user

query made by A, then B computes (pk , sk)← NIKE.KeyGen(params, id) and

sends pk to A. B stores (honest , id , pk , sk) in a list Λhon.

• register corrupt user (id , pk):

Here A supplies a public key pk along with an identity id that has not

been subject to a register honest user query. B forwards the register

corrupt user query to C, which will record (corrupt , id , pk ,⊥). B stores

(corrupt , id , pk ,⊥) in a list Λcor.

• extract (id):

If id /∈ ΛT , B finds (honest , id , pk , sk) in Λhon and gives sk to A. Otherwise,

if id ∈ ΛT , B aborts the simulation.

• corrupt reveal (id i, id j):

Here A supplies two identities id i and id j , where either id i or id j is an honest

user. Without loss of generality, let us assume that id j is the honest user.

B checks if id j ∈ Λhon. If id j /∈ Λhon (this means that id j ∈ ΛT ), B makes

the same query to C, obtaining Kidi,idj , the shared key between id i and id j .

B returns this value to A. Now, if id j ∈ Λhon, B finds sk j , then it finds pk i

in Λcor and computes Kidi,idj ← NIKE.SharedKey(id i, pk i, id j , sk j). B then

returns Kidi,idj to A.

• honest reveal (id i, id j):
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Here A supplies two identities id i and id j , both registered as honest users. If

{id i, id j} ⊆ ΛT , B aborts. Otherwise, at least one of the identities must be in

Λhon. Without loss of generality, assume that id i ∈ Λhon. B finds the private

key sk i in Λhon, then computes Kidi,idj ← NIKE.SharedKey(id j , pk j , id i, sk i)

and returns Kidi,idj to A.

• test (id i, id j):

The way B answers test queries depends on the number of such queries issued

by A.

– the first ι test queries, B answers with the actual shared keys associated

with the corresponding users involved in those queries. In order to do

this, B checks if {id i, id j} ⊆ ΛT . If so, it aborts. Otherwise, at least one

of the identities must be in Λhon. Without loss of generality, assume that

id i ∈ Λhon. Now B retrieves the private key sk i from Λhon, then computes

Kidi,idj ← NIKE.SharedKey(id j , pk j , id i, sk i) and returns Kidi,idj to A.

– if this is the (ι+ 1)-st test query, B checks if {id i, id j} ⊆ ΛT . If not, it

aborts. If {id i, id j} ⊆ ΛT , B makes the same test query to C, receiving

a value α. B gives α to A.

– all other test queries B answers to A with random values from SHK.

This completes the description of B’s simulation. Whenever A outputs a bit b̂,

B outputs the same bit. Now, if α is the actual shared key computed via the

NIKE.SharedKey algorithm and using as inputs the private key of one the users

involved in the (ι + 1)-st test query and the public key of the other user, then A
was playing game Gι+1. Otherwise, if α is a random value, A was playing game Gι.

Let G′0 and G′1 be the CKS-light games played by B when b = 0 and b = 1, respec-

tively. Let F denote the event that B correctly guessed the users involved in the

(ι + 1)-st test query (this would mean that the users are id I and idJ). If F oc-

curs then B simulates the m-CKS-heavy game correctly. Now we assess B’s success

probability. It is easy to see that Pr[F] = 1/
(
qH
2

)
≥ 2/q2

H .

Averaging the probability that B outputs 1 over the random choice of ι, we have:

Pr[B(G′1) = 1] =
1

qT
Pr[F]

qT−1∑
ι=0

Pr[A(Gι+1) = 1]
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Model
register register

extract
honest corrupt

test
honest corrupt reveal reveal

HKR CKS-light 2 7 7 7 7 1
HKR CKS X 7 7 7 7 X
HKR CKS-heavy X 7 X X 7 1
HKR m-CKS-heavy X 7 X X 7 X

Table 3.2: Types of queries for different security models in the honest key registration
(HKR) PKI model.

and

Pr[B(G′0) = 1] =
1

qT
Pr[F]

qT−1∑
ι=0

Pr[A(Gι) = 1].

Therefore it follows that

AdvCKS-light
B,NIKE (k, qC , q

′
CR) =

∣∣Pr[B(G′1) = 1]− Pr[B(G′0) = 1]
∣∣

≥ (2/qT q
2
H)

∣∣∣∣∣
qT−1∑
ι=0

Pr[A(Gι+1) = 1]−
qT−1∑
ι=0

Pr[A(Gι) = 1]

∣∣∣∣∣
= (2/qT q

2
H) |Pr[A(GqT ) = 1]− Pr[A(G0) = 1]|

= (2/qT q
2
H)Advm-CKS-heavy

A,NIKE (k, qH , qC , qE , qHR, qCR, qT ).

This concludes our proof.

Security models in the honest key registration (HKR) setting: For com-

pleteness we also provide NIKE security models in the honest key registration setting

where dishonest key registration queries are disallowed. An overview of the models

is given in Table 3.2. We remark that Theorem 3.1 carries over to the HKR setting

simply by setting qC and qCR to zero in the theorem statement and proof. So all the

security models in the HKR setting are also equivalent to one another. As pointed

out in the introduction, constructing NIKE schemes in the HKR setting is much

easier than in the more realistic DKR setting.
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NIKE.Setup(1k)

PG2 ← G2(1k),where PG2 = (G1,G2,GT , g1, g2, p, e, ψ)

(u0, u1, u2, S)← G1, (hk , ck)← Cham.KeyGen(1k)

params ← (PG2, u0, u1, u2, S, hk)

Return params

NIKE.KeyGen(params, id)

x← Zp, r ← RCham, Z ← gx2 , t← ChamHhk (Z||id , r)
Y ← u0u

t
1u2

t2 , X ← Y x

pk ← (X,Z, r), sk ← x

Return (pk , sk)

NIKE.SharedKey(id1, pk1, id2, sk2)

If id1 = id2 return ⊥
Parse pk1 as (X1, Z1, r1) and sk2 as x2

t1 ← ChamHhk (Z1||id1, r1)

If e(X1, g2) 6= e(u0u
t1
1 u2

t12 , Z1)

then Kid1,id2 ←⊥
else Kid1,id2 ← e(Sx2 , Z1)

Return Kid1,id2

Figure 3.1: The NIKE scheme NIKEDBDH-2.

3.3 Constructions for NIKE

3.3.1 A Construction in the Standard Model from Pairings

We specify how to build a NIKE scheme, NIKEDBDH-2, that is secure in the CKS-light

security model under the DBDH-2 assumption in the standard model. Our construc-

tion makes use of a tuple PG2 = (G1,G2,GT , g1, g2, p, e, ψ), output by a parameter

generator G2, and a chameleon hash function ChamH : {0, 1}∗ ×RCham → Z∗p. This

can be instantiated efficiently using the discrete-log based construction from [102]

(see Section 2.3.1 for further details of chameleon hash functions). The component

algorithms of the scheme NIKEDBDH-2 are defined in Figure 3.1.

The check in the NIKE.SharedKey algorithm for valid public keys can be implemented

by evaluating the bilinear map twice. It is clear that NIKE.SharedKey defined in this
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way satisfies the requirement that entities id1 and id2 are able to compute a common

key. To see this, note that e(Sx2 , Z1) = e(S, g2)x1,x2 . The identity space for this

construction, ID, is {0, 1}∗, while the space of shared keys is SHK = GT . Public

keys and parameters are compact. For example, at the 128-bit security level, using

BN curves [14] and point compression, public keys consist of 768 bits plus an element

from RCham.

As stated before, we can prove NIKEDBDH-2 to be secure under the DBDH-2 assump-

tion in the sense of the CKS-light security model. Interestingly, our scheme can be

generalised to use any weak (2, poly)-PHF [89] in combination with a chameleon

hash function. That is, Y (in the NIKE.KeyGen algorithm) would be the output of

the weak (2,poly)-PHF on input t, where t is the output of the chameleon hash

function. We have given a specific construction here because suitable weak PHFs

are currently rare. A further generalisation of our scheme could use any randomised

(2,poly)-PHF and avoid the chameleon hash, but no constructions for these are

currently known.

Theorem 3.2. Assume ChamH is a family of chameleon hash functions. Then

the NIKE scheme NIKEDBDH-2 is secure under the DBDH-2 assumption relative to

generator G2. In particular, suppose A is an adversary against NIKEDBDH-2 in the

CKS-light security model. Then there exists a DBDH-2 adversary B with:

AdvDBDH-2
B,G2 (k) ≥ AdvCKS-light

A,NIKEDBDH-2
(k)− 2 Advcoll

ACH,ChamH(k).

Proof. We proceed via a sequence of games. Let Sι be the event that A is successful

in Game ι.

Game G0: This is the original attack game as described in the CKS-light security

model. By definition, we have that:

AdvCKS-light
A,NIKEDBDH-2

(k) = 2 |Pr[S0]− 1/2|.

Game G1: Eliminate hash collisions. In this game, the challenger changes

its answers to register corrupt user queries as follows: let id∗1 and id∗2 be the

identities of the two honest users, and let their public keys be pk∗1 = (X∗1 , Z
∗
1 , r
∗
1),

pk∗2 = (X∗2 , Z
∗
2 , r
∗
2), respectively. Let id be the identity of a user that is the subject of
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a register corrupt user query with pk = (X,Z, r). If t = ChamHhk (Z||id , r) =

ChamHhk (Z∗1 ||id∗1, r∗1) or t = ChamHhk (Z||id , r) = ChamHhk (Z∗2 ||id∗2, r∗2), the chal-

lenger aborts (note that in this case we have a collision in ChamHhk ). Otherwise, it

continues as in the previous game.

Let abortChamH be the event that a collision was found. Games G0 and G1 are

identical unless abortChamH occurs. By the difference lemma [131], we have

|Pr[S1]− Pr[S0]| ≤ Pr[abortChamH].

Furthermore,

Pr[abortChamH] ≤ Advcoll
ACH,ChamH(k).

Game G2: In this game a DBDH-2 adversary B on inputs (PG2, g
a
2 , g

b
2, g

c
1, T )

(with ga2 , g
b
2, g

c
1, T ∈ G2

2 ×G1 ×GT ), where a, b, c ∈ Zp, runs adversary A against

NIKEDBDH-2 simulating the challenger’s behaviour as in game G1. B’s job is to de-

termine whether T equals e(g1, g2)abc or a random element from GT , where g2 is a

generator of G2 and g1 = ψ(g2) is a generator of G1.

B runs Cham.KeyGen(1k) to obtain a key pair for a chameleon hash function, (hk , ck)

(here ck is the trapdoor information for the chameleon hash). It then selects

m1,m2 ← {0, 1}∗ and r1, r2 ← RCham, where RCham is the chameleon hash func-

tion’s randomness space. B sets t∗1 := ChamHhk (m1, r1) and t∗2 := ChamHhk (m2, r2).

Let p(t) = p0 + p1t + p2t
2 be a polynomial of degree 2 over Zp such that p(t∗1) =

p(t∗2) = 0. Let q(t) = q0 + q1t + q2t
2 be a random polynomial of degree 2 over Zp.

Then B sets ui = (gc1)pig1
qi (i ∈ {0, 1, 2}) and S = gc1. Since qi ← Zp, we have

ui ← G1. Note that then u0u
t
1u
t2
2 = (gc1)p(t)g1

q(t). In particular, Y ∗1 = g
q(t∗1)
1 and

Y ∗2 = g
q(t∗2)
1 , where q(t∗1) and q(t∗2) are known values.

B then gives params = (PG2, u0, u1, u2, S, hk) toA and answers the following queries:

• register honest user: When B receives a register honest user query

for identity id∗1 from adversary A, it uses the trapdoor information ck of the

chameleon hash function to obtain r∗1 ∈ RCham such that ChamHhk (ga2 ||id∗1, r∗1) =

ChamHhk (m1, r1) = t∗1. Notice that, according to the definition of chameleon
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hash functions (see Section 2.3.1), r∗1 is uniformly distributed over RCham

and independent from r1. Similarly, when B receives a second register

honest user query for identity id∗2 from A, it obtains r∗2 ∈ RCham such that

ChamHhk (gb2||id∗2, r∗2) = ChamHhk (m2, r2) = t∗2. Then r∗2 is also uniformly dis-

tributed over RCham. Now B sets:

pk∗1 = ((ψ(ga2)q(t
∗
1), ga2 , r

∗
1) and pk∗2 = ((ψ(gb2)

q(t∗2)
, gb2, r

∗
2).

These are correct public keys since p(t∗1) = p(t∗2) = 0. Note that implicitly

sk∗1 = a and sk∗2 = b.

• register corrupt user: Here, B receives a public key pk and a string id

from A, and registers them. As in the original attack game, B aborts if id

equals one of the honest identities, id∗1 or id∗2.

• corrupt reveal: In order to output the shared key between one of the two

honest users, say id∗1, and a corrupt user, say id , B first checks if pk = (X,Z, r)

is a valid public key using the pairing. If not, it rejects the query. This

makes sure that pk is of the form (Y d, gd2 , r) for some d ∈ Zp, where Y =

(gc1)p(t)g
q(t)
1 , for t = ChamHhk (Z||id , r), and r ∈ RCham. This means that

X = (gcd1 )
p(t)

g
dq(t)
1 . Thus, gcd1 can be computed from X and Z = gd2 by:

gcd1 = (X/ψ(Z)q(t))
1/p(t) mod p

,

where we use the property that p(t) 6= 0 mod p, which follows from the facts

that p is a polynomial of degree 2 with roots t∗1, t∗2 and that t 6= t∗1, t
∗
2 (because

we have eliminated hash collisions already in Game G1).

Now writing pk∗1 = (X∗1 , Z
∗
1 , r
∗
1) for the public key of the honest user id∗1, the

shared key between id∗1 and id can be correctly computed as:

Kid∗1,id
= e(gcd1 , Z

∗
1 ).

• test: Return T .

This completes our description of B’s simulation. Note that distinguishing the

real case from the random case for A in Game G2 is equivalent to solving the

DBDH-2 problem. To see this, note that for user id∗1, we have Z∗1 = ga2 and

X∗1 = ψ(Z∗1 )q(t
∗
1), while for user id∗2, we have Z∗2 = gb2 and X∗2 = ψ(Z∗2 )q(t

∗
2). Hence

Kid∗1,id
∗
2

= e((gc1)b, Z∗1 ) = e((gc1)a, Z∗2 ) = e(g1, g2)abc.
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Now, since B’s simulation properly handles all of A’s queries and sets up all values

with the correct distributions, we have: Pr[S2] = Pr[S1]. Let SB be the event

that B is successful in outputting the correct bit in the DBDH-2 experiment of

Definition 2.23. If B outputs the same bit as A, we have that Pr[SB] = Pr[S2].

By collecting the probabilities relating the different games, we have

AdvCKS-light
A,NIKEDBDH-2

= 2 |Pr[S0]− 1/2|

≤ 2 |Pr[S1] + Advcoll
ACH,ChamH(k)− 1/2|

≤ 2 |Pr[S2] + Advcoll
ACH,ChamH(k)− 1/2|

= 2 |Pr[SB] + Advcoll
ACH,ChamH(k)− 1/2|.

Thus,

AdvDBDH-2
B,G2 (k) = 2 |Pr[SB]− 1/2| ≥ AdvCKS-light

A,NIKEDBDH-2
(k)− 2 Advcoll

ACH,ChamH(k).

This concludes our proof.

Remark: We note that the map ψ in PG2 is only used in the security proof for

the NIKE scheme NIKEDBDH-2 and not in the scheme itself.

3.3.2 A Construction in the Random Oracle Model from Factoring

Let n(k) be a function and δ a constant with 0 ≤ δ < 1/2. Let RSAgen be an

algorithm with input 1k that generates elements (N,P,Q) such that N = PQ is an

n-bit Blum integer and all prime factors of φ(N)/4 are pairwise distinct and have

at least δn bits. We specify how to build a NIKE scheme, NIKEfac, that is secure

in the CKS-light security model under the factoring assumption relative to RSAgen

in the ROM. Our scheme makes use of a hash function H : {0, 1}∗ → {0, 1}k which

is modelled as a random oracle in the security proof. We assume that identities id

come from a space with a natural ordering <. The component algorithms of the

scheme NIKEfac are defined in Figure 3.2.

Theorem 3.3. The scheme NIKEfac is secure in the ROM under the factoring as-

sumption relative to RSAgen. In particular, suppose A is an adversary against
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NIKE.Setup(1k)

(N,P,Q)← RSAgen(1k), g ← QR+
N , where 〈g〉 = QR+

N

params ← (H, N, g)

Return params

NIKE.KeyGen(params, id)

x← ZbN/4c, X ← gx

pk ← X, sk ← x

Return (pk , sk)

NIKE.SharedKey(id1, pk1, id2, sk2)

If (id1 = id2) or pk1 6∈ QR+
N or pk2 6∈ QR+

N return ⊥

else if

{
id1 < id2 return H(id1, id2, pk1

sk2)

id2 < id1 return H(id2, id1, pk1
sk2)

Figure 3.2: The NIKE scheme NIKEfac.

NIKEfac in the CKS-light security model. Then there exists a factoring adversary

C with:

Advfac
C,RSAgen(k) ≥ AdvCKS-light

A,NIKEfac
(k)−O(2−δn(k)).

Proof. Suppose A is an adversary against NIKEfac in the CKS-light security model.

We first show how to construct an adversary B that uses A to solve the Double

Strong Diffie-Hellman (DSDH) problem (see the DSDH assumption in Section 2.1.5)

in the group of Signed Quadratic Residues (QR+
N ), where N is generated by RSAgen,

and then use Theorem 2.7 (Breaking DSDH ⇒ Factoring) to construct a factoring

adversary C. B’s input is (N, g,X = gx, Y = gy), where g is a generator of QR+
N

and (gx, gy) is an instance of the CDH problem in QR+
N . B’s task is to compute

gxy, given access to two decisional oracles DDHg,X(·, ·) and DDHg,Y (·, ·). B acts as

a challenger for A.

B gives A the tuple (H, N, g), where H is a random oracle controlled by B. B
maintains a list L, initially empty, to store random oracle responses or responses to

shared keys. A makes a series of queries which B answers as follows.

• register honest user: When B receives register honest user queries for

identities id∗1 and id∗2, B sets pk∗1 = X and pk∗2 = Y .
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• register corrupt user: Here, B receives a public key pk and a string id

from A, and registers them. As in the original attack game, B aborts if id

equals one of the honest identities, id∗1 or id∗2.

• corrupt reveal: In order to output the shared key between one of the two

honest users, say id∗1, and a corrupt user, say id , B checks if id∗1 and id already

appears in an entry of the form (id∗1, id , h,R) on the list L, for correct h

(without loss of generality, assume id∗1 < id). If so, then B returns Kid∗1,id
= R

in response to A’s query. Otherwise, B replies with R ← {0, 1}k and adds

(id∗1, id ,⊥, R) to L. Notice that by setup sk∗1 = x = dloggX (unknown to B), so

the ‘correct’ key would be Kid∗1,id
= H(id∗1, id , pk

x
id ). (We assume pk id ∈ QR+

N ,

otherwise B returns ⊥.)

• test: At some point during the simulation, A makes a single test query

on the pair of identities (id∗1, id
∗
2). B outputs a randomly generated value

R ∈ {0, 1}k. Notice that the ‘correct’ key Kid∗1,id
∗
2

that would be computed

by B in responding to this query is equal to H(id∗1, id
∗
2, g

xy) (w.l.o.g. assuming

id∗1 < id∗2).

• H queries: On input (id1, id2, h), w.l.o.g. id1, id2 ∈ {0, 1}∗, id1 < id2, and

h ∈ QR+
N , B answers A’s H queries as follows. B checks if (id1, id2, h,R) is

already on the list for some R; If so, it outputs R. Otherwise, B checks if

an entry of the form (id1, id2,⊥, R) is on the list for id1 or id2 equals one of

the two honest identities id∗1 or id∗2 (say id1 = id∗1 (resp. id1 = id∗2), that

is, pk1 = X (resp. pk1 = Y )). If so, B checks if h is the ‘correct’ DH value

for (id1, id2) using one of the DDH oracles. (Note that B does not know the

private key x = dloggX (resp. y = dloggY ).) That is, if DDHg,X(pk2, h) = 1

(resp. DDHg,Y (pk2, h) = 1), then h = pkx2 (resp. h = pky2) and B updates

the entry (id1, id2,⊥, R) with (id1, id2, h,R) to the list and returns R. Note

that entries of the form (id1, id2,⊥, R) are only added to the list when one

of the strings, id1 or id2, is id∗1 or id∗2 and the other is registered. Finally, if

no entry of either of the above forms already appears on the list, that is, no

(id1, id2, h,R) and no (id1, id2,⊥, R), then B picks a random value R ∈ {0, 1}k,
returns R and adds (id1, id2, h,R) to L.

This completes our description of B’s simulation. If A queries the random oracle

H with (id∗1, id
∗
2, h) or (id∗2, id

∗
1, h) for h = gxy, then it efficiently solved B’s own
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CDH challenge. This can be noticed by B (with the help of oracle DDHg,X(·, ·)
or DDHg,Y (·, ·)) and B can return gxy to its challenger. Note that if A does not

query H on (id∗1, id
∗
2, g

xy) or (id∗2, id
∗
1, g

xy), then A’s advantage is zero because it

cannot distinguish real from random answers to test queries. Hence, if A has non-

negligible success probability, then this query must be made by A. We then see that

AdvDSDH
B,RSAgen(k) ≥ AdvCKS-light

A,NIKEfac
(k)−O(2−δn(k)), where the O(2−δn(k)) term accounts

for the statistical difference between the distribution of gx and gy in the real game

(where x, y ∈ ZbN/4c) and the simulation (where x, y ∈ Zφ(N)/4). Combining these

facts with Theorem 2.7, we have that Advfac
C,RSAgen(k) ≥ AdvCKS-light

A,NIKEfac
(k)−O(2−δn(k)),

concluding the proof.

3.4 From Non-Interactive Key Exchange to Public Key En-
cryption

In this section we give a conversion that takes a NIKE scheme that is secure in the

CKS-light security model plus a strongly one-time secure signature scheme (strong-

OTS), and produces a KEM that is IND-CCA secure. From such a KEM, it is

easy to construct an IND-CCA secure public key encryption scheme [46]. (We

refer to Secions 2.3.5 and 2.3.6 for formal definitions of an IND-CCA KEM and a

strong-OTS scheme.) Let NIKE = (NIKE.Setup,NIKE.KeyGen,NIKE.SharedKey) be

a NIKE scheme and OTS = (OTS.KG,OTS.Sign,OTS.Vfy) be a signature scheme.

The components of our KEM, KEM(NIKE,OTS), are defined in Figure 3.3.

Notice that the ciphertexts in this scheme consist of a verification key from the

strong-OTS scheme, a public key from the NIKE scheme, and a one-time signature,

while the encapsulated keys are elements of the shared key space, SHK, of the NIKE

scheme.

Theorem 3.4. Suppose the NIKE scheme NIKE is secure in the CKS-light se-

curity model and OTS is a strongly one-time secure signature scheme. Then

KEM(NIKE,OTS) is an IND-CCA secure KEM. More precisely, for any adversary

A against the IND-CCA security of KEM(NIKE,OTS), there exists an adversary

B against NIKE in the CKS-light security model or an adversary C against OTS

having the same advantage as A. Moreover, if A makes qD decapsulation queries,
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KEM.KG(1k)

params ← NIKE.Setup(1k)

id ← ID, (pk , sk)← NIKE.KeyGen(params, id)

pkKEM := (params, id , pk), skKEM := (id , sk)

Return (pkKEM, skKEM)

KEM.Enc(pkKEM)

Parse pkKEM as (params, id , pk)

Repeat: (vk , sigk)← OTS.KG(1k), until vk 6= id

(pk ′, sk ′)← NIKE.KeyGen(params, id ′ = vk)

σ ← OTS.Sign(sigk , pk ′)

K ← NIKE.SharedKey(id , pk , id ′ = vk , sk ′)

Return (K,C = (vk , pk ′, σ))

KEM.Dec(skKEM, C)

Parse C as (vk , pk ′, σ) and skKEM as (id , sk)

V ← OTS.Vfy(vk , pk ′, σ)

If (vk = id) or Y = reject return ⊥, else

Return NIKE.SharedKey(id ′ = vk , pk ′, id , sk)

Figure 3.3: The KEM KEM(NIKE,OTS).

Note. We assume that params contains the security parameter 1k.

then B makes at most qD register corrupt user queries and at most qD corrupt

reveal queries, while B’s running time is roughly the same as that of A.

Proof. Let A be an adversary against the IND-CCA security of KEM(NIKE,OTS)

(see Definition 2.33). We build B, an adversary against the NIKE scheme in the

CKS-light security model (or C, an adversary against the strong one-time security

of OTS).

B, on input params, a set of system parameters, picks one identity id1 uniformly

at random from the identity space of NIKE, ID, and runs OTS.KG(1k) to obtain

(vk , sigk). It sets id2 := vk and makes two register honest user queries on id1

and id2 receiving public keys pk1, pk2. B then sets pkKEM := (params, id1, pk1). B
also makes a test query on id1, id2. It receives in reply a value K̂, which is either the

real key, K∗ = NIKE.SharedKey(id1, pk1, id2, sk2), or a random key K from SHK. B
sets C∗ := (id2, pk2, σ

∗), where σ∗ ← OTS.Sign(sigk , pk2) and gives (pkKEM, K̂, C
∗)
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to A.

A now makes KEM.Dec queries which B handles as follows. For each such query

with input C, B parses C as (id ′, pk ′, σ′) and checks if id ′ 6= id1 and if σ′ is a

valid signature on pk ′ under the verification key vk ′ = id ′. If the signature is

not valid or id ′ = id1, B outputs ⊥. Otherwise, if id ′ = id2 (i.e. vk = vk ′) and

(pk ′, σ′) 6= (pk2, σ
∗), then we can build another adversary C against the strong one-

time security of OTS. (This is done using the same simulation as above with the

difference that sk1 and sk2 are known but vk comes from the OTS experiment. The

signing oracle is used to generate σ∗ for the challenge ciphertext.) If id ′ = id2 and

(pk ′, σ′) = (pk2, σ
∗), C is not a valid query. Assuming id ′ 6∈ {id1, id2}, B makes a

register corrupt user query on input (id ′, pk ′). B then makes a corrupt reveal

query on (id1, id
′) and forwards the result to A.

This completes our description of B’s simulation. A’s view is identical when playing

either against B in this simulation or against its real KEM challenger. Note that in

the KEM real game, KEM.Dec(skKEM, C), where C = (vk ′ = id ′, pk ′, σ′), should re-

turn NIKE.SharedKey(id ′, pk ′, id1, sk1) or ⊥ if the signature does not verify or if id ′ =

id1. Note also that in the KEM real game, the challenge query should be answered

with either KEM.Enc(pkKEM) = (K∗, C∗), whereK∗ = NIKE.SharedKey(id1, pk1, id2,

sk2) and C∗ = (id2, pk2, σ
∗), or a pair (K,C∗), with K chosen at random from SHK.

This is exactly what is done in B’s simulation.

Whenever A outputs a bit b̂, B outputs the same bit. Then we have that B’s

advantage in breaking the NIKE scheme is the same as A’s advantage in breaking

the KEM. Counting queries made by B in response to A’s queries completes the

proof.

Applying the above construction to the pairing-based NIKE scheme from Section 3.3.1

results in an IND-CCA secure KEM with public keys (id , pk) that consist of an iden-

tity string, two group elements (one in G1 and one in G2), and a random value from

the randomness space of the Chameleon hash function. Ciphertexts are slightly

longer, containing in addition a signature from the one-time signature scheme.4

4Arguably, one might also include the public parameters params when evaluating the public
key size.
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In the next section we explain how a simplified notion for NIKE and its security

lead to a more efficient KEM that is competitive with the BMW scheme from [35],

for example.

3.5 Simplified NIKE and Public Key Encryption

Here we show how simplified versions of the NIKE definition and the CKS-light se-

curity model can be used to build an IND-CCA secure KEM. The essential difference

from our previous definitions is that we eliminate all identities from the algorithms

in a NIKE scheme, and assume that the adversary works only with distinct public

keys, i.e. the adversary is not allowed to register the same public key more than once.

(We stress that this simplified version of the NIKE definition and security model

do not capture well how real CAs typically operate.) Thus we show that a simpler

notion of NIKE than the one we have considered so far suffices for constructing an

IND-CCA PKE.

We begin by giving our simplified NIKE definition and security model, and finally

the simplified conversion itself. We then illustrate the conversion using a simplified

version of the NIKE scheme from Section 3.3.1.

3.5.1 Simplified NIKE and Simplified CKS-light Security Model

We define a simplified NIKE (S-NIKE) scheme, S-NIKE, as a collection of three

algorithms S-NIKE.Setup, S-NIKE.KeyGen and S-NIKE.SharedKey, together with a

shared key space SHK.

• S-NIKE.Setup: As for NIKE.

• S-NIKE.KeyGen: On input params, this probabilistic algorithm outputs a key

pair (pk , sk).

• S-NIKE.SharedKey: On input a public key pk1 and a private key sk2 (with

corresponding public key pk2), this algorithm outputs either a shared key
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K1,2 ∈ SHK, or a failure symbol ⊥. This algorithm is assumed to always

output ⊥ if pk1 = pk2.

For correctness, we require that, for any key pairs (pk1, sk1) and (pk2, sk2), algorithm

S-NIKE.SharedKey satisfies the constraint

S-NIKE.SharedKey(pk1, sk2) = S-NIKE.SharedKey(pk2, sk1).

Our simplified CKS-light (S-CKS-light) security model for S-NIKE is stated in terms

of a game between an adversary A and a challenger C. In this game, C takes as input

the security parameter 1k, runs params ← S-NIKE.Setup(1k) and gives A params.

The challenger takes a random bit b and answers oracle queries for A until A outputs

a bit b̂. The challenger answers the following types of queries for A:

• register honest user: The challenger C obtains a public/private key pair by

running (pk , sk)← S-NIKE.KeyGen(params) and records the tuple (honest , pk ,

sk). C returns pk to A. A is allowed to make at most 2 such queries; we refer

to the components in the responses as being honest keys.

• register corrupt user: In this type of query, A supplies a public key pk .

The challenger C records the tuple (corrupt , pk ,⊥).

• corrupt reveal: Here A supplies a pair of public keys pk1, pk2, such that one

of the keys was registered as honest and the other as corrupt . The challenger

runs S-NIKE.SharedKey using as input the corrupt public key and the private

key corresponding to the honest public key and returns the result to A.

• test: Here A supplies two honest public keys pk1, pk2. If b = 1, the challenger

runs S-NIKE.SharedKey(pk1, sk2) = S-NIKE.SharedKey(pk2, sk1) and returns

the result to A. If b = 0, the challenger generates a random key from SHK,

records it for later, and returns that to the adversary. A makes a single test

query.

A’s queries may be made adaptively and are arbitrary in number. We demand that

all the public keys involved in the register corrupt user queries made by A are
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distinct from one another and also distinct from any honest public key received by

the time of the register corrupt user query. When the adversary finally outputs

b̂, it wins the game if b̂ = b. For an adversary A, we define its advantage in this

security game as:

AdvS-CKS-light
A,S-NIKE (k, qC , qCR) = 2 |Pr[b̂ = b]− 1/2|,

where qC , qCR are the numbers of register corrupt user queries and corrupt

reveal queries made by A, respectively. Then we say that an S-NIKE scheme is

(t, ε, qC , qCR)-secure in the S-CKS-light model for S-NIKE if there is no adversary

with advantage at least ε that runs in time t and makes at most qC register

corrupt user queries and at most qCR corrupt reveal queries. Informally, we

say that an S-NIKE scheme is S-CKS-light secure if there is no efficient adversary

having non-negligible advantage in k, where efficient means that the running time

and numbers of queries made by the adversary are bounded by polynomials in k.

For simplicity we may also use AdvS-CKS-light
A,S-NIKE (k) to denote the advantage of A, in

the S-CKS-light model, against a NIKE scheme.

3.5.2 The Conversion from S-NIKE to KEM

We now present our conversion from an S-NIKE scheme to a KEM. Let S-NIKE =

(S-NIKE.Setup, S-NIKE.KeyGen, S-NIKE.SharedKey) be an S-NIKE scheme. The com-

ponents of our KEM, KEM KEM(S-NIKE), are defined in Figure 3.4.

Notice that the ciphertexts in this scheme just consist of public keys from the S-

NIKE scheme, while the encapsulated keys are elements of SHK. As we show in

Theorem 3.5, the resulting KEM is automatically IND-CCA secure if the S-NIKE

scheme is secure in the S-CKS-light security model.

Theorem 3.5. Suppose the S-NIKE scheme S-NIKE is secure in the S-CKS-light se-

curity model. Then KEM(S-NIKE) is an IND-CCA secure KEM. More precisely, for

any adversary A against KEM(S-NIKE), there exists an adversary B against S-NIKE

in the S-CKS-light security model having the same advantage as A. Moreover, if A
makes qD decapsulation queries, then B makes at most qD register corrupt user

queries and at most qD corrupt reveal queries, while B’s running time is roughly

the same as that of A.
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3.5 Simplified NIKE and Public Key Encryption

KEM.KG(1k)

params ← S-NIKE.Setup(1k)

(pk , sk)← S-NIKE.KeyGen(params)

Return (pkKEM := pk , skKEM := sk)

KEM.Enc(pkKEM)

(pk ′, sk ′)← S-NIKE.KeyGen(params)

K ← S-NIKE.SharedKey(pkKEM, sk ′)

Return (K,C := pk ′)

KEM.Dec(skKEM, C)

Return S-NIKE.SharedKey(C := pk ′, skKEM)

Figure 3.4: The KEM KEM(S-NIKE).

Proof. Let A be an adversary against KEM(S-NIKE). We build B, an adversary

against S-NIKE in the S-CKS-light security model.

B, on input params, a set of system parameters, makes two register honest user

queries and receives public keys pk1, pk2. B then sets pkKEM := pk1. B also makes

a test query on pk1, pk2. It receives in reply a value K̂, which is either the real

key, K∗ = S-NIKE.SharedKey(pk1, sk2) (where sk2 is the private key associated with

pk2), or a random key K from SHK. B sets C∗ := pk2 and gives (pkKEM, K̂, C
∗) to

A.

A now makes KEM.Dec queries which B handles as follows. For each such query with

input C, B parses C as pk ′. Since C 6= C∗, we have pk ′ 6= pk2. If pk ′ = pk1, then

B outputs ⊥, which is consistent with the output of the decapsulation algorithm

in the scheme KEM(S-NIKE) (S-NIKE.SharedKey(pk ′, skKEM) always outputs ⊥ if

pk ′ = pkKEM) . Otherwise, B makes a register corrupt user query on input pk ′

(here we assume, without loss of generality, that all KEM.Dec queries made by A
are distinct). B then makes a corrupt reveal query on (pk1, pk ′) and returns the

result to A.

This completes our description of B’s simulation. A’s view is identical when playing

either against B in this simulation or against its real KEM challenger. Note that

in the KEM real game KEM.Dec(skKEM, C), where C = pk ′, should return the

output of S-NIKE.SharedKey(pk ′, sk1). Note also that in the KEM real game, the
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S-NIKE.Setup(1k)

PG2 = (G1,G2,GT , g1, g2, p, e, ψ)← G2(1k)

(u0, u1, u2, S)← G1,TCRf ← TCR

params ← (PG2, u0, u1, u2, S,TCRf )

Return params

S-NIKE.KeyGen(params)

x← Zp, Z ← gx2 , t← TCRf (Z), Y ← u0u
t
1u2

t2 , X ← Y x

pk ← (X,Z), sk ← x

Return (pk , sk)

S-NIKE.SharedKey(pk1, sk2)

Parse pk1 as (X1, Z1) and sk2 as x2

t1 ← TCRf (Z1)

If e(X1, g2) 6= e(u0u
t1
1 u2

t12 , Z1)

then K1,2 ←⊥
else K1,2 ← e(Sx2 , Z1)

Return K1,2

Figure 3.5: The S-NIKE scheme SNIKEDBDH-2.

challenge query should be answered with either KEM.Enc(pkKEM) = (K∗, C∗), where

K∗ = NIKE.SharedKey(pk1, sk2) and C∗ = pk2, or a pair (K,C∗), with K chosen at

random from SHK. This is exactly what is done in B’s simulation.

Whenever A outputs a bit b̂, B outputs the same bit. We have that B’s advantage

in breaking the S-NIKE scheme is the same as A’s advantage in breaking the KEM.

Counting queries made by B in response to A’s queries completes the proof.

3.5.3 Applying the Conversion

In Figure 3.5 we consider a simplified version of the NIKE scheme NIKEDBDH-2 of

Section 3.3.1, which we denote by SNIKEDBDH-2. The scheme makes use of a target

collision resistant hash function TCRf : G2 → Zp chosen uniformly from a family

of target collision resistant hash functions TCR (see Section 2.3 for definition of a

TCR), instead of a collision resistant hash function.
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Theorem 3.6. Assume TCR is a family of target collision resistant hash functions.

Then SNIKEDBDH-2 is secure under the DBDH-2 assumption relative to generator G2.

In particular, suppose A is an adversary against SNIKEDBDH-2 in the S-CKS-light

security model. Then there exists a DBDH-2 adversary B with:

AdvDBDH-2
B,G2 (k) ≥ AdvS-CKS-light

A,SNIKEDBDH-2
(k)− 2 AdvTCR

AH,TCR(k).

Proof. We omit the proof as it is similar to that of Theorem 3.2.

When applying our conversion of Figure 3.4 for the S-NIKE scheme SNIKEDBDH-2,

we obtain a KEM that benefits from short public keys and private keys (just the

public keys and private keys of SNIKEDBDH-2) and short ciphertexts (just the public

keys of SNIKEDBDH-2). This KEM is comparable to the one proposed in [35]: both

schemes have the same size of ciphertext, two group elements, and for both, decap-

sulation requires a ciphertext check and the evaluation of a bilinear map twice. The

encapsulation key consists of only one group element. Also, the public keys and

private keys generated by our KEM.KG algorithm are shorter than the ones in the

KEM proposed in [35] (two group elements and one element in Zp, respectively).

3.6 Chapter Summary

In this chapter we provided different security models for NIKE and explored the

relationships between them. We then gave constructions for secure NIKE in the

standard model and in the ROM. We also studied the relationship between NIKE

and PKE, showing that a secure NIKE implies an IND-CCA secure PKE scheme.

There are several interesting open problems that arise from our work. One is to

construct pairing-free NIKE schemes in the standard model. A challenge to doing

so is that our pairing-based construction uses the pairing in a fundamental way in

order to provide a publicly computable check on the validity of public keys. The

RSA/factoring setting seems particularly challenging in this respect.

Another open problem is to construct three-user (or even multi-user) NIKE schemes
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3.6 Chapter Summary

based on Joux’s protocol [93]. Currently, there is no security model for such schemes,

and no constructions which can handle adversarially-generated public keys.

Finally, a very interesting problem is to construct ID-based NIKE schemes that are

provably secure in the standard model, moving beyond the ROM schemes analysed

in [57, 112]. We will see how to construct such schemes in the next chapter.
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Chapter 4

Identity-based Non-Interactive Key
Exchange (ID-NIKE)
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In this chapter we construct the first identity-based non-interactive key exchange (ID-

NIKE) scheme with security in the standard model. Additionally, we also construct

the first fully secure hierarchical ID-NIKE scheme with security either in the random

oracle model or in the standard model. Our constructions are based on multilinear

maps and use a variant of a PHF, which we call MPHF. Most of the content of

this chapter appears in [64], which is joint work with Dennis Hofheinz, Kenneth G.

Paterson and Christoph Striecks.
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4.1 Introduction

In Chapter 3 we studied non-interactive key exchange in the public key setting,

where, using some common parameters, any user can compute a public/private key

pair on its own. The public key should be registered with a Certification Authority

(CA), who keeps a directory of all registered public keys where users can look up

other users’ public keys. Then any pair of users who know each other’s public keys

can generate a shared key without exchanging any information. In identity-based

non-interactive key exchange (ID-NIKE), an arbitrary string that uniquely identifies

a user (such as an e-mail address or an IP address) can serve as the user’s public

key. We call this string an identity or identifier and denote it by id . In this setting,

the private key corresponding to id cannot be computed by the user itself anymore.

A Trusted Authority (TA), who holds a master public key mpk and a master secret

key msk , is responsible for generating and distributing private keys to the right

users. Now, any pair of users who have each received a private key from the TA and

who know each other’s identities can compute a shared key without exchanging any

information.

ID-NIKE has important applications in managing keys and enabling secure commu-

nications in mobile ad hoc and sensor networks where the energy cost of communi-

cation is at a premium [42, 70, 73]. In the hierarchical setting, H-ID-NIKE allows

the same functionality, but also allows the TA’s operations to be distributed over a

hierarchy, which is well-suited to military and emergency response scenarios. The

advantages of ID-NIKE, in terms of reducing communication costs and latency in a

realistic adversarial environment, are demonstrated in [42].

However, ID-NIKE has proven surprisingly hard to instantiate in the standard

model, even more so in a hierarchical setting. Currently, to the best of our knowl-

edge, there is precisely one efficient, secure ID-NIKE scheme with a proof of security

in the random oracle model, namely the SOK scheme [122] (with security models

and analyses in [57, 112]). There are no schemes secure in the standard model.

In the hierarchical setting, Gennaro et al. [73] constructed H-ID-NIKE schemes that

are secure under certain classes of key exposure, but which do not offer full security,

the desirable and natural generalisation of the existing ID-NIKE security notion
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from [112] to the hierarchical setting. Moreover, their schemes do not scale well to

large numbers of levels as the amount of secret information held by the TA grows

exponentially with the depth of the hierarchy. The same criticisms apply to earlier

schemes [29, 115] on which the schemes of Gennaro et al. [73] are based. Indeed, one

of the open problems left in [73] is to construct an H-ID-NIKE scheme with security

against not only compromise of any number of leaves, but also against any number

of nodes at higher levels of the hierarchy.1

4.1.1 Our Contributions

This chapter is aimed at constructing the first ID-NIKE scheme in the literature

with provable security in the standard model and additionally, the first H-ID-NIKE

scheme with full security in either the random oracle model or the standard model.

As a warm-up we start by giving a pairing-based construction towards the first

ID-NIKE scheme with security in the standard model. However, this scheme does

not achieve the desired level of security, as in the security proof the number of

oracle queries that an adversary against the scheme can make is upper bounded

by a constant q. This happens due to the main components of our scheme (apart

from a pairing) being (q, 1)-PHFs for fixed q. Having a (poly, 1)-PHF would give us

the desired level of security for our ID-NIKE construction. Unfortunately, a recent

result [84] shows that no black-box construction of (poly, n)-PHFs, for constant n,

exists.

We circumvent the black-box impossibility result of [84] by slightly adapting the

PHF definition to a setting with multilinear maps to obtain what we call MPHFs.

We construct (poly, n)-MPHFs and show how our (standard model) (poly, 2)-MPHF

can replace the random oracle in the SOK ID-NIKE scheme to obtain a standard

model version of that scheme. Our scheme is the first ID-NIKE scheme with provable

security in the standard model. Our MPHF constructions also allow us to derive

a hierarchical version of the SOK scheme in settings with multilinear maps. Our

H-ID-NIKE scheme is the first such scheme with full security in either the random

oracle model or the standard model. The analyses of our schemes are completely

modular: we prove the security of the MPHF-based schemes solely from generic

1We note that there are other papers claiming to solve this open problem (eg. [81]), but these
can be easily shown to provide insecure schemes.
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MPHF properties. In particular, we can also view (programmable) random oracles

as MPHFs. So we can either instantiate our schemes with random oracles to obtain

reasonably efficient schemes, or with our new MPHFs to obtain (somewhat less effi-

cient) standard-model secure schemes. In this chapter, we also show how multilinear

maps can be used to achieve security in the broader scenario of multiple TAs, and

for shared keys among whole groups of users.

While our constructions are formulated with respect to a generic multilinear map,

we also outline the necessary adaptations required for the recent “noisy” multilinear

map candidate due to Garg, Gentry, and Halevi [72].

4.2 Preliminaries

4.2.1 The GGH Candidate Multilinear Maps

Recently, Garg, Gentry, and Halevi [72] have announced a candidate for a family

of cryptographically interesting multilinear maps, named graded encoding systems.

Their candidate is lattice-based, heavily relies on the notion of noise, and thus does

not provide groups in the usual sense. With the GGH candidate, group elements

have a randomized (and thus non-unique) representation dubbed an “encoding”.

While it is possible to extract a unique “canonical bitstring” from an encoding, it

is not possible to perform further computations with this extracted bitstring. An

encoding can be re-randomized (e.g. to hide the sequence of operations that were

performed), but only at the cost of introducing an artificial “noise” term in the

encoding. Further operations (and re-randomizations) on this group element cause

the noise to grow; once this noise grows beyond a certain bound, encodings can no

longer be worked with.

4.2.2 Our Abstraction of the GGH Candidate

For readability and universality, in this thesis we will generally use the notation from

the abstract notion of multilinear maps described in Section 2.1.4. When instanti-

ated with the GGH candidate, operations are meant to occur on encodings, without
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implicit re-randomizations. In particular, e.g. g now denotes an encoding (not a

group element). Additionally, we will employ the following notation to indicate

necessary re-randomizations, extractions, and comparisons when using encodings

instead of group elements.

• g ← Gi means choosing a random encoding g at level i. (This corresponds to

uniformly choosing a group element from Gi.) We assume that encodings g

chosen in such a way have a low noise level, say, 1.

• g enc
= h holds if and only if the encodings g and h match.

• g grp
= h holds if and only if the group elements encoded by g and h match,

that is, if and only if the GGH isZero procedure identifies g−1h as the neutral

element.2

• reRandj(g) is the re-randomization of encoding g. This re-randomization in-

creases the noise level to a certain, a-priori fixed bound j. For simplicity, and

abstracting, we only consider noise levels j ∈ N. If g’s noise level is already at

least j (e.g. because g is the output of reRandj), then re-randomization fails.

We note that the distributions reRandj(g) and reRandj(h) are statistically close

for any two encodings g, h with g
grp
= h and noise level less than j.

• ext(g) denotes the canonical bitstring extracted from encoding g. We have

ext(g) = ext(h) for any g, h with g
grp
= h of sufficiently small noise level.

Like [72], we omit parameters (such as noise bounds) to computations; asymptotic

parameters can be derived from the suggestions in [72, Section 4.2].

4.3 (Hierarchical) Identity-based Non-Interactive Key Ex-
change

Hierarchical identity-based non-interactive key exchange (H-ID-NIKE) is the natural

generalisation of ID-NIKE [57, 112, 122] to the hierarchical setting: a root authority

2Technically, the GGH isZero procedure only allows to compare two encodings on the “highest
level” `. To compare two level-i encodings (for i < `), we can first “lift” both to level ` by pairing
them with a nonzero level-(`− i) element.
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calculates and distributes private keys to sub-authorities, who in turn do the same for

sub-sub-authorities, and so on, until leaf nodes are reached. Each node is identified

by a vector of identities, and any pair of nodes in the tree should be able to non-

interactively compute a common key based on their private keys and identities.3 We

recall from the introduction that H-ID-NIKE schemes are rare, and, to the best of

our knowledge, there are not even any ROM constructions that meet all the desirable

criteria (efficiency, scalability, and full security in the sense of resilience to arbitrary

node compromises).

Formally, an H-ID-NIKE scheme H-ID-NIKE consists of three PPT algorithms (see

below), an identity space ID and shared-key space SHK. The users are organized in

a tree of depth L whose root (at level 0) is the trusted authority (TA). The identity

of a user at level d ∈ [L] is represented by a vector id = (id1, . . . , idd) ∈ IDd.

Setup. The setup algorithm Setup(1k, L) is run by the TA. Given the security

parameter 1k and a parameter L ∈ N, it outputs a master public key mpk and

a master secret key msk . We also interpret msk as the user private key usk ε

for the empty identity ε.

Key delegation. The key delegation algorithm Del(mpk , usk id, id
′) can be run by

any user to generate a private key for any of its children. Given the master

public key mpk , the user private key usk id for an identity id = (id1, . . . , idd) ∈
IDd, the algorithm outputs a user private key usk id′ for any of its children

id′ = (id1, . . . , idd, idd+1) ∈ IDd+1 (for 0 ≤ d < L).

Shared key generation. Given the master public key mpk , a user private key

usk id1 for an identity id1 ∈ ID≤L, and an identity id2 ∈ ID≤L,

ShK(mpk , usk id1 , id2) outputs either a shared key Kid1,id2 ∈ SHK or a failure

symbol ⊥. (If id1 is an ancestor of id2 (or vice-versa) the algorithm is assumed

to always output ⊥ 4; here, id is in particular considered to be an ancestor of

itself. Otherwise the output is assumed to be in SHK.)

For correctness, we require that for any k, L ∈ N, for any (mpk ,msk)← Setup(1k, L),

3We remark that sometimes H-ID-NIKE schemes are more restricted and shared keys can only
be computed, for example, between pairs of leaf nodes. This is the case of the schemes of [73].

4If id1 is an ancestor of id2, it can always compute the user private key usk id2 ; a key derived
from usk id2 can be used as a shared key between the two users.
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for any pair of identities (id1, id2) ∈ IDd1 × IDd2 , such that neither is an ancestor

of the other, and corresponding user private keys usk id1 and usk id2 generated by

repeated applications of Del from usk ε = msk , we have ShK(mpk , usk id1 , id2) =

ShK(mpk , usk id2 , id1).

A (non-hierarchical) ID-NIKE scheme is an H-ID-NIKE scheme in which the depth

L of the tree is fixed to L = 1. (Note that in this case, Del gets as input usk ε = msk

and outputs user private keys for identities at level 1. We may thus also speak of

extraction of user private keys.)

4.3.1 Security Definition for (H-)ID-NIKE

We present a security model for H-ID-NIKE that is the natural generalisation of

the PS (Paterson and Srinivasan) model for ID-NIKE from [112] to the hierarchical

setting. The model significantly strengthens the previous model of Gennaro et al.

[73] by being fully adaptive, allowing arbitrary numbers of node corruptions, and

allowing the adversary access to shared keys as well as user private keys of inner

(i.e. non-leaf) nodes.

The model is defined in terms of a game between an adversary A and a challenger C.
C takes as input the security parameter 1k and a depth L, runs algorithm Setup of

the H-ID-NIKE scheme and gives A the master public key mpk . It keeps the master

secret key, msk , to itself. A then makes queries of the following three types:

Extract . A supplies an identity id = (id1, . . . , idd) ∈ IDd (for d ∈ [L]). C uses Del

repeatedly, starting from msk , to derive usk id and hands usk id to A.

Reveal . Here A supplies a pair (id1, id2) ∈ IDd1 × IDd2 . C extracts usk id1 as

above, runs Kid1,id2 ← ShK(mpk , usk id1 , id2), and hands Kid1,id2 to A.

Test . A supplies two challenge identities (id∗1, id
∗
2) ∈ IDd∗1×IDd∗2 such that neither

is an ancestor of the other. C computes Kid∗1,id
∗
2

as above, and tosses a coin

b ← {0, 1}. If b = 1 then C gives Kid∗1,id
∗
2

to A; otherwise, if b = 0, then C
gives A a uniform element from SHK.
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Finally, A outputs a guess b̂ for b. In our security model, the adversary is allowed

to make an arbitrary (but polynomial) number of Extract and Reveal queries,

and a single Test query. Furthermore, the adversary is fully adaptive, in the sense

that it can compromise nodes (by making Extract and/or Reveal queries) in any

order. In order to prevent the adversary from trivially winning, we require that the

adversary is not allowed to make any Extract queries on an ancestor of id∗1 or id∗2,

and no Reveal query on the pairs (id∗1, id
∗
2) and (id∗2, id

∗
1). The advantage of an

adversary A against an H-ID-NIKE scheme H-ID-NIKE is defined as:

AdvIND-SK
A,H-ID-NIKE(k) = 2

∣∣∣Pr[b̂ = b]− 1/2
∣∣∣ =

∣∣∣Pr
[
b̂ = 1 | b = 1

]
− Pr

[
b̂ = 1 | b = 0

]∣∣∣ .
We say that a scheme H-ID-NIKE is IND-SK secure if and only if AdvIND-SK

A,H-ID-NIKE(k)

is negligible for all PPT adversaries A.

In the non-hierarchical case (i.e. L = 1), we recover the definition and security model

for (non-hierarchical) ID-NIKE from [112]. Note also that versions of these models

in which multiple Test queries are permitted for a single bit b can be shown to

be polynomially equivalent to the versions with a single Test query using standard

hybrid arguments.

4.4 Towards a Secure ID-NIKE Scheme in the Standard
Model

We specify how to obtain an ID-NIKE scheme, TIDNIKEPHF, that is secure in a

variant of the PS security model under the DBDH assumption in the standard

model; we consider a weaker security model where the total number of non-challenge

identities involved in Extract and Reveal queries made by an adversary against

the scheme is limited by a constant q (and the usual restrictions on the adversary to

prevent trivial wins still apply). We will refer to this security model as the q-bounded

PS security model. TIDNIKEPHF is the result of joint work with Dennis Hofheinz.

Our construction is based on the well-known ID-NIKE scheme of Sakai, Ohgishi and

Kasahara (SOK) [122]. It makes use of a tuple PG = (G,GT , g, p, e), output by a

pairing parameter generator G on input a security parameter 1k, and two instances

of a (q + 1, 1)-PHF H = (PHF.Gen,PHF.Eval) with input in {0, 1}k and output
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Algorithm Setup(1k)

PG = (G,GT , p, g, e)← G(1k)

x← Zp, κi ← PHF.Gen(1k) (i = 1, 2)

mpk := (PG, κ1, κ2),msk := x

Return (mpk ,msk)

Algorithm Ext(mpk ,msk , id)

Yid ← Hκ1(id)Hκ2(id)

usk id ← Y x
id

Return usk id

Algorithm ShK(mpk , usk id1 , id2)

If id1 = id2 return ⊥
Yid2 ← Hκ1(id2)Hκ2(id2)

Kid1,id2 := e(usk id1 , Yid2)

Return Kid1,id2

Figure 4.1: The ID-NIKE scheme TIDNIKEPHF.

in G. The component algorithms of our ID-NIKE scheme TIDNIKEPHF are defined

in Figure 4.1. (For compatibility with existing notation, we present an extraction

algorithm Ext instead of an equivalent delegation algorithm.)

It is clear that our ShK algorithm satisfies the correctness requirement that guaran-

tees that id1 and id2 are able to compute a common key. To see this, note that

e(usk id1 , Yid2) = e(Yid1 , Yid2)x = e(Yid2 , Yid1)x = e(usk id2 , Yid1).

Theorem 4.1. Let H be a (q+1, 1, γ, δ)-PHF into G. Then TIDNIKEPHF is secure in

the q-bounded PS security model under the DBDH assumption relative to generator

G. In particular, suppose A is an adversary against TIDNIKEPHF in the q-bounded

PS security model. Then there exists a DBDH adversary B with

AdvDBDH
B,G (k) ≥ (AdvIND-SK

A,TIDNIKEPHF
(k) + 1− 4γ)δ − 1.

Proof. We proceed with a sequence of games. Let Sι be the event that A is successful

in Game Gι.

Game G0. Let G0 be the original attack game as described in the PS security
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model. By definition, we have that

AdvIND-SK
A,TIDNIKEPHF

(k) = 2 |Pr[S0]− 1/2| .

Game G1. In this game, instead of obtainning κ1, κ2 from the key generation

algorithm PHF.Gen, the challenger runs the trapdoor key generation algorithm twice,

(κ′i, ti)← PHF.TrapGen(1k, h1, h2) (i = 1, 2) for generators h1 and h2 ∈ G, to obtain

a pair of keys and trapdoors (κ′1, t1), (κ′2, t2). Since H is (q+1, 1, γ, δ)-programmable,

we have

|Pr[S1]− Pr[S0]| ≤ 2γ.

Game G2. In this game we replace the challenger with a DBDH adversary B.

Assume B gets a tuple PG = (G,GT , p, g, e) and group elements (ga, gb, gc, T ) ∈
G3 ×GT as input, where 〈g〉 = G, |G| = |GT | = p and a, b, c ∈ Zp. B’s job is to

determine whether T equals e(g, g)abc or a random element fromGT . B simulates the

challenger’s behaviour in Game G1. First it runs (κ′1, t1)← PHF.TrapGen(1k, gb, g),

(κ′2, t2)← PHF.TrapGen(1k, gc, g), and then it sets mpk := (PG, κ′1, κ′2).

During the simulation, B, based on the (q+1, 1)-programmability of the PHF H, will

hope that for all non-challenge identities id i (1 ≤ i ≤ t ≤ q) involved in A’s Extract

and Reveal queries and for challenge identities id∗1, id
∗
2 subject to A’s Test query,

we have that:

α1,id1 = . . . = α1,idt = 0, α1,id∗2
= 0, α1,id∗1

6= 0

and

α2,id1 = . . . = α2,idt = 0, α2,id∗1
= 0, α2,id∗2

6= 0.

Here, for an identity id , α1,id and α2,id are output by PHF.TrapEval(t1, id) and

PHF.TrapEval(t2, id), respectively. We denote the event that B’s hope is satisfied by

good.

In order to answer an Extract(id) query made by A, B computes (α1,id , β1,id ) ←
PHF.TrapEval(t1, id), (α2,id , β2,id )← PHF.TrapEval(t2, id) and aborts if α1,id 6= 0 or

α2,id 6= 0. Assuming that B did not abort, we should have

Yid = Hκ′1(id)Hκ′2(id) = (gb)
α1,id

gβ1,id (gc)α2,idgβ2,id = gβ1,id+β2,id .

Using knowledge of ga, B can compute usk id = (ga)β1,id+β2,id = Y a
id . B gives usk id

to A. Note that implicitly, B is setting msk := a.
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Additionally, if it is the case that α1,id = α2,id = 0 for all non-challenge identities

id , then B can answer not only all Extract , but also all Reveal queries made by

A. For the latter, B first computes usk id for a non-challenge identity id involved in

the Reveal query, and then computes the shared key.

For the Test(id∗1, id
∗
2) query, if α1,id∗1

, α2,id∗2
6= 0 and α1,id∗2

= α2,id∗1
= 0, we have

that

Yid∗1 = Hκ′1(id∗1)Hκ′2(id∗1)

= (gb)
α1,id∗1 g

β1,id∗1 (gc)
α2,id∗1 g

β2,id∗1

= g
bα1,id∗1

+(β1,id∗1
+β2,id∗1

)

= g
bα1,id∗1

+βid∗1

and

Yid∗2 = Hκ′1(id∗2)Hκ′2(id∗2)

= (gb)
α1,id∗2 g

β1,id∗2 (gc)
α2,id∗2 g

β2,id∗2

= g
cα2,id∗2

+(β1,id∗2
+β2,id∗2

)

= g
cα2,id∗2

+βid∗2 .

(To simplify the above equation, for an identity id , we have denoted βid = β1,id +

β2,id .)

Now, with msk = a, the correct shared key between id∗1 and id∗2 should be

Kid∗1,id
∗
2

= e(Yid∗1 , Yid∗2)a

= e(g
bα1,id∗1

+βid∗1 , g
cα2,id∗2

+βid∗2 )a

= e(g, g)
a(bα1,id∗1

+βid∗1
)(cα2,id∗2

+βid∗2
)

= e(g, g)
abc(α1,id∗1

α2,id∗2
) · C,

where C = e(ga, gb)
α1,id∗1

βid∗2 e(ga, gc)
α2,id∗2

βid∗1 e(ga, g)
βid∗1

βid∗2 can be computed by B.

B responds to A’s Test query with T
α1,id∗1

α2,id∗2C. When T = e(g, g)abc, this corre-

sponds to the real shared key Kid∗1,id
∗
2
, while when T is random in GT , B’s response

corresponds to a random value in SHK. Thus B’s response to A’s Test query is

properly distributed in Game G2 (because T = e(g, g)abc or T is random, each with

probability 1/2).
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B will abort its simulation at any point if it realizes that good did not occur. Let

abortPHF be the event that B aborts during simulation. Due to the programmability

of H we have that

Pr[S2] = Pr[S1 ∧ ¬abortPHF] ≥ δ Pr[S1].

Finally, B outputs the same bit that A outputs. Let SB be the event that B is

successul in outputting the correct bit in the DBDH experiment of Definition 2.22.

It is clear that Pr[SB] = Pr[S2].

By collecting the probabilities relating the different games, we have

AdvIND-SK
A,TIDNIKEPHF

(k) = 2|Pr[S0]− 1/2|

≤ 2|Pr[S1] + 2γ − 1/2|

≤ 2|Pr[S2]/δ + 2γ − 1/2|

= 2|Pr[SB]/δ + 2γ − 1/2|.

Thus,

AdvDBDH
B,G (k) = 2|Pr[SB]− 1/2| ≥ (AdvIND-SK

A,TIDNIKEPHF
(k) + 1− 4γ)δ − 1.

This concludes our proof.

Remark: While this would seem to be the first ID-NIKE scheme with security

in the standard model, we stress that TIDNIKEPHF is not secure in the sense of a

full security model like the PS security model, but it is only secure in a weaker

version of that model (the q-bounded PS security model) where an adversary has

more limited power. Moreover, another downside of that scheme is the large mpk

needed to describe each instance of the (q+ 1, 1)-PHF; known (q+ 1, 1)-PHFs need

O(q2) group elements [89]. Also, note that our TIDNIKEPHF construction is based on

bilinear maps. In the next sections we will see how to use multilinear maps and the

abstraction of the GGH candidate (see Section 4.2.2) to construct ID-NIKE schemes

with the desired level of security.
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4.5 Programmable Hash Functions in the Multilinear Set-
ting

For our purposes, we will strive to construct efficient (poly, n)-PHFs for constant

n (i.e. group hash functions which are (q(k), n)-PHFs for any polynomial q). How-

ever, there are indications that such PHFs do not exist [84], at least according to

the original definition from [86]. Thus, we will adapt the definition of PHFs to

the multilinear setting, and construct a “multilinear analogue” of a (poly, n)-PHF.

Concretely, an (m,n)-PHF maps to a “target” group G`. Here instead of explaining

H(X) as a product caXhbX for c, h in the target group G` (as the case of PHFs),

we will explain H(X) as a product e(c1, . . . , c`)
aXe(BX , h), for externally given chal-

lenges ci ∈ G1 (which means c = e(c1, . . . , c`) ∈ G`) and controlled h ∈ G1. Note

that the coefficient bX in the usual definition of a PHF now becomes a preimage

BX ∈ G`−1 under a pairing operation.

4.5.1 Definitions

Definition 4.1 (Group hash function). A group hash function H into G consists of

two polynomial-time algorithms: the probabilistic algorithm HGen(1k) outputs a key

hk, and HEval(hk , X) (for a key hk and X ∈ {0, 1}k) deterministically outputs an

image Hhk (X) ∈ G.

Definition 4.2 (MPHF). Assume an `′-group system MPG`′ = {{Gi}i∈[`′], p,

{ei,j}i,j≥1,i+j≤`′} as generated by a multilinear maps parameter generator MG`′(1k)
(see Section 2.1.4). Let H = (HGen,HEval) be a group hash function into G` (` ≤ `′),

and let m,n ∈ N. We say that H is an (m,n)-programmable hash function in the

multilinear setting ((m,n)-MPHF) if there are polynomial-time algorithms TGen and

TEval as follows.

• TGen(1k, c1, . . . , c`, h) (for ci, h ∈ G1 and h
grp

6= 1) outputs a key hk and a

trapdoor td. We require that for all ci, h, the distribution of hk is statistically

close to the output of HGen.5

5There is a subtlety here: in case of encoded group elements, the output of TGen may consist
of group elements whose noise level depends on the noise level of the ci or h. Hence, we will assume
a known a-priori bound on the noise level of the ci and h.
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• TEval(td , X) (for a trapdoor td and X ∈ {0, 1}k) deterministically outputs

aX ∈ Z and BX ∈ G`−1 with Hhk (X)
grp
= e(c1, . . . , c`)

aX · e(BX , h). We require

that there is a polynomial p(k) such that for all hk and X1, . . . , Xm, Z1, . . . , Zn ∈
{0, 1}k with {Xi}i ∩ {Zj}j = ∅,

Phk ,{Xi},{Zj} := Pr [aX1 = · · · = aXm = 0 ∧ aZ1 , . . . , aZn 6= 0] ≥ 1/p(k), (4.1)

where the probability is over possible trapdoors td output by TGen along with

the given hk. Furthermore, we require that Phk ,{Xi},{Zj} is close to being sta-

tistically independent of hk. (Formally, |Phk ,{Xi},{Zj} − Phk ′,{Xi},{Zj}| ≤ ν(k)

for all hk , hk ′ in the range of TGen, all {Xi}, {Zj}, and negligible ν(k).)

We say that H is a (poly, n)-MPHF if it is a (q(k), n)-MPHF for every polynomial

q(k), analogously for (m, poly)-MPHFs.

Note that the TEval algorithm of an MPHF into G1 yields BX ∈ G0, i.e. exponents

BX . In fact, in this case, the MPHF definition coincides with the original PHF

definition from [86].

The remainder of this section is dedicated to the construction of MPHFs.

4.5.2 Programmable Random Oracles as (M)PHFs

A programmable random oracle H with images in G` can be interpreted as a group

hash function in the obvious way. (By “programmable”, we mean that during a

security proof, we can freely and adaptively determine images of H, even depending

on the inputs of TGen. The only restriction of this programming is that images

should appear uniformly and independently distributed to an adversary who sees

only public information.) However, note for this modeling to make sense in the first

place, we should require that we can hash into G`.

Theorem 4.2 (PROs as (poly, n)-(M)PHFs). A programmable random oracle H (in

the above sense) with images in G` can be programmed to act as a (poly, n)-(M)PHF

for any constant n.

Proof. Fix a polynomial q = q(k). We show that H is a (q, n)-(M)PHF (with empty
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hk). For each new preimage X, we program H(X) := e(c1, . . . , c`)
aXe(BX , h) for

the inputs c1, . . . , c` and h to TGen, and uniformly chosen BX ∈ G`−1. We choose

aX 6= 0 with probability 1/2q, and aX = 0 otherwise. TEval outputs these aX , BX ,

assigning them as necessary for previously unqueried inputs X. For any pairwise

different X1, . . . , Xq, Z1, . . . , Zn, we thus have

Pr
[
∀i : aXi = 0 ∧ ∀j : aZj 6= 0

]
=

(
1− 1

2q

)q
·
(

1

2q

)n
≥ 1

2
·
(

1

2q

)n
,

which is significant for polynomial q and constant n.

4.5.3 Ingredient: Efficient Admissible Hash Functions

At the heart of our construction for MPHFs lies a primitive dubbed “admissible hash

function” (AHF) [31]. Unfortunately, the AHFs from Boneh and Boyen [31] are not

very efficient (and in fact only achieve a weaker AHF definition, see [41]). However,

an earlier work by Lysyanskaya [104] already contains an implicit and much more

efficient AHF.

Intuitively, an AHF can be thought of as a combinatorial counterpart of a (poly, 1)-

(M)PHF. An AHF input X is mapped to an image AHF(X) in such a way that

in a security proof, X can fall in the set of controlled, CO, inputs (meaning that

we know a trapdoor that allows to answer adversarial queries for that input) or

uncontrolled, UN, inputs (meaning that we do not know any trapdoor but hope

to embed a challenge element). Unlike with (M)PHFs, however, this is a purely

combinatorial property. An AHF guarantees that for any distinct X1, . . . , Xq, Z,

with significant probability, all Xi are controlled, and Z is uncontrolled.

We now give a definition that is a somewhat simpler variant of the AHF definitions

from [2, 41], and then show a result implicit in [104].

Definition 4.3 (AHF). Let R be a finite set and ` = `(k) a polynomial in k.

Let AHF = {AHF : {0, 1}k → R`} be a family of functions. For AHF ∈ AHF ,

K ∈ (R ∪ {⊥})`, define the function FK : {0, 1}k → {CO, UN} through

FK(X) =

{
UN ⇐⇒ ∀i ∈ [`] : Ki = AHF(X)i ∨Ki = ⊥
CO ⇐⇒ ∃i ∈ [`] : Ki 6= AHF(X)i ∧Ki 6= ⊥,
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where AHF(X)i and Ki denote the i-th component of AHF(X) and K, respectively.

We say that AHF is q-admissible if for every AHF ∈ AHF , there exists a PPT

algorithm KGen and a polynomial p(k), such that for all X1, . . . , Xq, Z ∈ {0, 1}k

with Z 6∈ {Xi},

Pr [FK(X1) = · · · = FK(Xq) = CO ∧ FK(Z) = UN] ≥ 1/p(k), (4.2)

where the probability is over K ← KGen(1k). We say that AHF is a family of

admissible hash functions if AHF is q-admissible for all polynomials q = q(k).

Next, we consider a family of codes over a finite alphabet R as a family of admissible

hash functions. A code over R is simply a mapping C : Rk
′ → R`, where k′ is the

message length and ` is the code length. The rate of a code is defined as k′/`. For a

message X, a vector C(X) is called a codeword. The minimum distance of a code,

dmin, is the minimum number of positions in which any two codewords differ. This

distance always satisfies dmin ≤ `− k′+ 1, the Singleton bound, and codes that meet

this bound are called Maximum Distance Separable (MDS) codes. We let a code C

be represented by its parameters (`, k′, dmin)|R|. For more details on codes we refer

to [23].

Theorem 4.3 ([104]). Assume a family of codes {Ck} with Ck : Rk/ log2|R| → R`

(also interpreted as Ck : {0, 1}k → R`) denoting both the code and its encoding

function. Suppose that Ck has minimum distance at least c · ` for a fixed constant

c > 0. (That is, X1 6= X2 implies that the vectors Ck(X1) and Ck(X2) differ in at

least c · ` positions.) Then {Ck} is a family of AHFs.

Proof. Let q = q(k) be a polynomial. We need to devise a PPT algorithm KGen

such that (4.2) holds. KGen(1k) sets d :=
⌈

ln (1/2q)
ln (1−c)

⌉
(so d is the smallest integer such

that (1− c)d ≤ 1/2q), and picks K uniformly among all elements from (R ∪ {⊥})`

with exactly d non-⊥ components. Hence, the set I := {i | Ki 6= ⊥} is of size d.

Now fix X1, . . . , Xq, Z ∈ {0, 1}k with Z 6∈ {Xi}. Our choice of K implies that

Pr [FK(Z) = UN] = |R|−d. (Notice that K has d non-⊥ elements and so this is

the probability that Ki = AHF(Z)i for d positions.) For any fixed i, we want

to upper bound the probability Pr [FK(Xi) = UN | FK(Z) = UN]. (This step loosely
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corresponds to [104, Lemma 4].) Hence, assume FK(Z) = UN. Now Ck(Xi) and

Ck(Z) differ in a set ∆ ⊆ [`] of positions with |∆| ≥ c · `. Hence, FK(Xi) = UN is

equivalent to I ∩ ∆ = ∅. (Note that in this case AHF(Z)j and AHF(Xi)j do not

differ for j ∈ I.) Thus,

Pr [FK(Xi) = UN | FK(Z) = UN] = Pr [I ∩∆ = ∅ | FK(Z) = UN]

≤ (1− c)d ≤ 1

2q
.

A union bound over i gives Pr [∀i : FK(Xi) = UN | FK(Z) = UN] ≤ 1/2, so that

Pr [FK(Z) = UN ∧ ∀i : FK(Xi) = CO] ≥ 1

2
· |R|−d ≥ 1

2
·
(

1

2q

) −1
log|R|(1−c)

= 1/p(k),

(4.3)

for p(k) = 2 · (2q)
−1

log|R|(1−c) . Note that 1/p(k) grows with c. Therefore, the larger

the minimum distance of the code Ck the better.

4.5.4 Construction: MPHFs from Multilinear Maps

Our main result in this section is a simple construction of a (poly, n)-MPHF from

an AHF.

Construction 4.1 (MM). Let AHF : {0, 1}k → R` be an admissible hash function

and assume an `′-group system MPG`′. The group hash function MM from {0, 1}k

into G` (` ≤ `′) is given by the following algorithms:

• HGen(1k) picks h̃i,j ← G1 \ {1} (for (i, j) ∈ [`]×R), sets hi,j := reRand2(h̃i,j),

and outputs hk := {hi,j}i∈[`],j∈R.6

• HEval(hk , X) computes (t1, . . . , t`) := AHF(X) and outputs MMhk (X) := e(h1,t1 ,

. . . , h`,t`).

Theorem 4.4. The group hash function MM above is a (poly, 1)-MPHF.

Proof. Fix a polynomial q = q(k). We need to exhibit TGen and TEval algorithms

as in Definition 4.2. TGen(1k, c1, . . . , c`, h) invokes K ← KGen(1k) (see Definition

6The additional re-randomization step guarantees that the noise levels in scheme and simulation
are the same. The concrete noise level of re-randomized elements depends on the maximal noise
considered in the arguments of TGen.
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4.3 for KGen) and, for all (i, j) ∈ [`]×R and uniform exponents ri,j 6= 0, it sets:

hi,j :=

{
reRand2(hri,j ) if Ki 6= j and Ki 6= ⊥,
reRand2(c

ri,j
i ) if Ki = j or Ki = ⊥.

(4.4)

For now, assume ci
grp

6= 1 for all i, so our set up yields a perfectly distributed key hk :=

{hi,j}i,j that is in fact independent of K.7 The trapdoor is td := ((ci), h,K, (ri,j)).

TEval(td , X) computes (t1, . . . , t`) := AHF(X) and distinguishes two cases:

• Case FK(X) = CO, i.e. there is at least an i∗ with Ki∗ 6= ti∗ and Ki∗ 6= ⊥. If

we set aX = 0 and

BX := e(h1,t1 , . . . , hi∗−1,ti∗−1
, hi∗+1,ti∗+1

, . . . , h`,t`)
ri∗,ti∗ ,

for any chosen i∗, we can decompose MMhk (X)
grp
= e(c1, . . . , c`)

aXe(BX , h).

• Case FK(X) = UN, i.e.Ki = ti orKi = ⊥ for all i. This means that hi,ti
grp
= c

ri,ti
i

for all i, so MMhk (X)
grp
= e(c1, . . . , c`)

aXe(BX , h) for aX =
∏
i ri,ti and BX := 1.

The AHF property (4.2) implies (4.1), for the same p(k). (Note that Phk ,{Xi},{Z}

only depends on K but not on hk .)

Finally, in case ci
grp
= 1 for some i, we have e(c1, . . . , c`)

grp
= 1. If we replace all

ci in (4.4) with h, we can explain any image MMhk (X)
grp
= e(h, . . . , h)

∏
i ri,ti as

MMhk
grp
= e(c1, . . . , c`)

aXe(BX , h) with arbitrary aX . Adjusting the probability for

aX 6= 0 in the order of 1/2q (as in the proof of Theorem 4.2) allow us to prove (4.1)

for p(k) = 4q.

Remark: The parameters of our MPHFs depend on the size of the alphabet R.

If we use binary codes, that is R = {0, 1}, with large minimum distance, we get the

AHF implicit in [104]. We can obtain MPHFs that use ` = O(k) groups Gi and

have keys consisting of 2` group elements. For security parameter k = 128, consider

for example, the binary BCH code (255, 128, 65)2.

Larger R give new AHFs that yield MPHFs that use fewer groups, which means

7In case of randomized encodings, the distribution of hk in the simulation may (e.g. with the
GGH candidate) only be statistically close to the one in the scheme.
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slightly less pairing-intensive constructions of MPHFs. On the other hand, larger R

also implies larger keys. If we consider the AHF construction of Theorem 4.3 with

MDS codes over R, we have dmin = `− k/ log2 |R|+ 1 which means our MPHFs use

` = O(k/log2 |R|) groups Gi and keys of ` · |R| = O(k · |R|/log2 |R|) group elements.

Also, note that large dmin = c · ` implies 1/p(k) is significant (see (4.3)). Our

constructions can then be instantiated with, for example, Reed-Solomon (RS) codes.

For security parameter k ≈ 128, consider for example the RS code (31, 25, 7)32. (We

note that for RS codes, in general, the size of the alphabet, |R|, grows with the size

of the code length `.) For details about about RS and BCH codes we refer to [23].

Theorem 4.5. Let n be a constant, q = q(k) be a polynomial, and let H = (HGen,

HEval) be a (q + n − 1, 1)-MPHF into G`. Then the group hash function H′ =

(HGen′,HEval′) with

• HGen′(1k) that outputs hk ′ = (hkν)ν∈[n] for hkν ← HGen(1k), and

• HEval′(hk ′, X) that outputs H′
hk ′

(X) :=
∏
ν∈[n] Hhkν (X)

is a (q, n)-MPHF into G`.

Combining Theorems 4.4 and 4.5 yields a (poly, n)-MPHF for any constant n.

Proof of Theorem 4.5. We construct suitable TGen′ and TEval′ algorithms from the

respective TGen and TEval algorithms for H:

• TGen′(1k, c1, . . . , c`, h) runs (hkν , tdν) ← TGen(1k, c1, . . . , c`, h) for ν ∈ [n],

and outputs hk ′ := (hkν)ν∈[n] and td ′ := (tdν)ν∈[n].

• TEval′(hk ′, X) invokes (aν,X , Bν,X) ← TEval(tdν , X) for ν ∈ [n] and outputs

aX :=
∑

ν∈[n] aν,X and BX :=
∏
ν∈[n]Bν,X . This output can be justified with

H′hk ′(X)
grp
=
∏
ν∈[n]

Hhkν (X)
grp
=

∏
ν∈[n]

e(c1, . . . , c`)
aν,Xe(Bν,X , h)

grp
= e(c1, . . . , c`)

aXe(BX , h).
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Now fix X1, . . . , Xq, Z1, . . . , Zn with {Xi} ∩ {Zj} = ∅. For each ν, we hope for

the following event: aν,Xi = 0 for all i, and aν,Zj = 0 exactly for j 6= ν. For

fixed ν, due to the (q + n − 1, 1) programmability of the MPHF H, this event

happens with probability at least 1/p(k) (over tdν) for some polynomial p(k). Since

aX =
∑

ν aν,X , we get that with probability at least (1/p(k))n, we have aXi = 0 for

all i and aZj = aj,Zj 6= 0 for all j (remember that for j 6= ν, aν,Zj = 0), which gives

us a (poly, n)-MPHF with p′(k) = p(k)n.

4.6 Fully-Secure ID-NIKE Scheme from MPHFs

In this section we revisit the ID-NIKE scheme of Sakai, Ohgishi and Kasahara

(SOK) [122]. We effectively replace the random oracles with (poly, 2)-MPHFs in

their scheme and prove the security of the generalized scheme. Using our standard-

model MPHFs, this yields the first standard-model ID-NIKE scheme.8 We then

consider a hierarchical generalisation.

We assume a 2`-group system MPG2` = {{Gi}i∈[2`], p, {ei,j}i,j≥1,i+j≤2`}, gener-

ated by a multilinear maps parameter generator MG2`(1
k), and a (poly, 2)-MPHF

H = (HGen,HEval) with input length in {0, 1}k and output in G`. The component

algorithms of our ID-NIKE scheme IDNIKEMPHF are defined in Figure 4.2. (Again,

for compatibility with existing notation, we present an extraction algorithm Ext in-

stead of an equivalent delegation algorithm.) Correctness of the scheme is easy to

verify.9 We now prove security.

Theorem 4.6 (Security of the MPHF-based ID-NIKE scheme). Assume H is a

(poly, 2)-MPHF into G`. Then IDNIKEMPHF is IND-SK secure under the (2` + 1)-

power assumption relative to generator MG2`.

Proof. Assume an IND-SK adversary A against IDNIKEMPHF. We construct a

8If we instantiate the MPHFs again with random oracles (using Theorem 4.2), we retrieve the
original SOK scheme in pairing-friendly groups, along with a security proof. However, we note that
our security proof uses a different, seemingly stronger computational assumption.

9When instantiated with the GGH candidate, the pairing e is just a multiplication. We can
think of usk id1 = reRand3(Hhk (id1)x) as usk id1 = xA + δ1 and usk id2 = reRand3(Hhk (id2)x) as
usk id2 = xB + δ2, for small noise values δ1 and δ2. We see that id1 and id2 are able to compute
the same key: Kid1,id2 := ext((xA+ δ1)B) = xAB = ext((xB + δ2)A) =: Kid2,id1 .
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4.6 Fully-Secure ID-NIKE Scheme from MPHFs

Algorithm Setup(1k)

MPG2` ←MG2`(1
k)

x← Zp, hk ← HGen(1k)

mpk := (MPG2`, hk),msk := x

Return (mpk ,msk)

Algorithm Ext(mpk ,msk , id)

usk id ← reRand3(Hhk (id)msk )

Return usk id

Algorithm ShK(mpk , usk id1 , id2)

Kid1,id2 := ext(e(usk id1 ,Hhk (id2)))

Return Kid1,id2

Figure 4.2: The ID-NIKE scheme IDNIKEMPHF.

(2` + 1)-power distinguisher B that, given a 2`-group system MPG2`, and group

elements g, gx ∈ G1 and S ∈ G2`, distinguishes between S
grp
= e(g, . . . , g)x

2`+1
(i.e. S

is real), and random S.

Concretely, B will internally simulate A, together with the IND-SK experiment.

Let id∗1, id
∗
2 be the identities from A’s Test query (which are not known to B yet).

Furthermore, let q = q(k) be a polynomial upper bound on the total number of

identities id i 6∈ {id∗1, id∗2} that appear in A’s Extract and Reveal queries.10 In

the following, we will use the (q, 2)-MPHF property of H (and the corresponding

algorithms TGen and TEval). B first runs (hk , td) ← TGen(1k, gx, . . . , gx︸ ︷︷ ︸
` times

, g) and

sets mpk := (MPG2`, hk). Implicitly, we will have msk := x.

We will first describe how B answers an Extract(id) query of A. If aid = 0 (for

(aid , Bid ) := TEval(td , id)), then B can compute usk id ← reRand3(e(Bid , g
x))

grp
=

Hhk (id)msk . Otherwise, B aborts with output 0. We will hope for the event that

aidi = 0 for all q identities id i 6∈ {id∗1, id∗2} from B’s Extract and Reveal queries.

In that case, B can answer not only all Extract queries from A, but also all Reveal

queries (by first computing the user private key usk id of one of the two involved

identities, and then using usk id to compute the shared key).

10Note that B does not need to know q in advance in order to set up its simulation.
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4.6 Fully-Secure ID-NIKE Scheme from MPHFs

We will additionally hope for aid∗1 , aid∗2 6= 0; in this case, B can embed its own

challenge into the reply K∗ to A’s Test query as

K∗ := ext(S
aid∗1

aid∗2 · e(Bid∗1
, Bid∗2

, g, gx)

· e(Bid∗1
, gx, . . . , gx︸ ︷︷ ︸
`+1 times

)
aid∗2 · e(Bid∗2

, gx, . . . , gx︸ ︷︷ ︸
`+1 times

)
aid∗1 ). (4.5)

By using Hhk (id∗i )
grp
= e(

` times︷ ︸︸ ︷
gx, . . . , gx)

aid∗
i e(Bid∗i

, g), we see that K∗ = ext(e(Hhk (id∗1)x,

Hhk (id∗2))) = Kid∗1,id
∗
2

whenever S
grp
= e(gx, . . . , gx︸ ︷︷ ︸

2` times

)x. Conversely, if S is random,

then so is K∗. (If aid∗i = 0 for some i ∈ {1, 2}, then B aborts with output 0.)

Finally, B outputs b̂ (i.e. A’s guess for the bit b in the IND-SK experiment). If the

event that B aborts is independent of the queried identities id i and id∗i (as is the

case for the RO-based MPHF from Theorem 4.2), we have

|Pr [B = 1 | S real]− Pr [B = 1 | S random]| = Pr [¬abort] ·AdvIND-SK
A,IDNIKEMPHF

(k).

Hence, B breaks the (2`+ 1)-power assumption if and only if A breaks the IND-SK

security of IDNIKEMPHF.

However, in the general case, abort might not be independent of the id i and id∗i .

This is because Pr [abort] is upper bounded by 1− 1/p(k) (for the polynomial p(k)

from (4.2)) and this means that different sets of identities id i, id
∗
i may cause the

simulator to abort with different probabilities (smaller than 1 − 1/p(k) of course).

Hence, in order to make Pr [abort] independent of the adversary’s queries, we will

have to resort to an “artificial abort” strategy as in [138]. The artificial abort step

consists of, at the end of a successful simulation a) estimating the probability that the

queries made by A cause B to abort, and then b) if necessary “artificially aborting”

so that B aborts with maximum probability, 1−1/p(k). That is, even if aidi = 0 and

aid∗i 6= 0 for all i, B will “artificially” abort with probability 1− 1/(P(idi),(id
∗
i ) · p(k))

for P(idi),(id
∗
i ) := Pr [¬abort | (id i), (id∗i )]. This keeps the (new) abort probability

at 1 − 1/p(k), independently of the id i and id∗i , and enables an analysis as above.

Unfortunately, in the general case, we can only approximate P(idi),(id
∗
i ) (up to an

inverse polynomial error, by running TEval with freshly generated keys sufficiently

often), which introduces an additional error term in the analysis. We refer to [138]

for details on the artificial abort technique.
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4.6 Fully-Secure ID-NIKE Scheme from MPHFs

A variant secure under a weaker assumption. We can also construct an ID-

NIKE scheme in the standard model using two instances (with keys hk1, hk2) of a

(poly, 1)-MPHF instead of a single instance of a (poly, 2)-MPHF. Shared keys are

computed as K := ext(e(Hhk1(id1)msk ,Hhk2(id2))); user private keys are of the form

usk id = (reRand3(Hhk1(id)msk ), reRand3(Hhk2(id)msk )). The benefit of this variant

is that it is possible to prove security under the 2`-MDDH assumption (as opposed

to the potentially stronger (2` + 1)-power assumption we use above). The proof

is similar to the one above; however, we will hope that a1,idi = a2,idi = 0 for all

non-challenge queries id i, and that a1,id∗1
, a2,id∗2

6= 0 and a1,id∗2
= a2,id∗1

= 0, where

(aj,id , Bj,id ) = TEval(td j , id) (j ∈ {1, 2}).

4.6.1 Extension to Hierarchical ID-NIKE (H-ID-NIKE)

We can extend our ID-NIKE scheme to an H-ID-NIKE scheme of constant depth

L. To this end, we work in a 2`L-group system MPG2`L, and use L instances of a

(poly, 2)-MPHF H into G`.

The resulting H-ID-NIKE scheme, denoted by HIDNIKEMPHF, is given in Figure 4.3.

In that description, and in the following, we write iddi := (id1, . . . , id i) for an identity

id = (id1, . . . , idd) and i ≤ d. We assume that all involved identities (including

“shortened identities” iddi) can be uniquely encoded as k-bit strings. (If this is not

the case, we can always first apply a collision-resistant hash function.) In general,

for identities id, idj we let d, dj denote their depth in the hierarchy, respectively.

Theorem 4.7 (Security of the MPHF-based H-ID-NIKE scheme). Let H be a

(poly, 2)-MPHF into G`. For fixed depth L ∈ N, HIDNIKEMPHF is secure under

the (2`L+ 1)-power assumption relative to generator MG2`L.

Proof. The proof is very similar to the proof of Theorem 4.6; we focus on the

necessary adaptations. We construct a (2`L + 1)-power distinguisher B from an

IND-SK adversary A. Assume B gets a 2`L-group system MPG2`L and group ele-

ments g, gx ∈ G1 and S ∈ G2`L as input, and is supposed to distinguish the cases

S
grp
= e(gx, . . . , gx)x and random S.

B simulates the IND-SK experiment for A. First, B runs (hk i, td i) ← TGen(1k,
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4.6 Fully-Secure ID-NIKE Scheme from MPHFs

Algorithm Setup(1k, L)

MPG2`L ←MG2`L(1k)

x← Zp, ũ← G`, u← reRand2(ũ), hk i ← HGen(1k) (i ∈ [L])

mpk := (MPG2`L, {hk i}i∈[L], u),msk := x

Return (mpk ,msk)

Algorithm Del(mpk , usk id, id
′)

Parse id′ =: (id1, . . . , idd+1)

If id 6= (id1, . . . , idd) return ⊥
usk id′ ← reRandd+3(e(usk id,Hhkd+1

(id′)))

Return usk id′

Algorithm ShK(mpk , usk id1 , id2)

Yid2 := e(Hhk1(id2,d1), . . . ,Hhkd2
(id2,dd2)), u := u, . . . , u︸ ︷︷ ︸

2L−d1−d2 timesKid1,id2 := ext(e(usk id1 , Yid2 ,u))

Return Kid1,id2

Figure 4.3: The H-ID-NIKE scheme HIDNIKEMPHF.

Note. msk = usk ε = x ∈ Zp = G0, so Del can be used to derive level-1 user
private keys from msk . (Recall that our definition of e is consistent with the implicit
exponent group G0 = Zp; e.g. e(x, g) = gx for x ∈ G0.)

gx, . . . , gx︸ ︷︷ ︸
` times

, g) (i ∈ [L]) and then for u ← reRand2(e(gx, . . . , gx︸ ︷︷ ︸
` times

)), it sets mpk :=

(MPG2`L, {hk i}i∈[L], u). Implicitly we will have msk := x. To answer an Extract

query for identity id = (id1, . . . , idd), B will hope for aid :=
∏
i∈[d] ai,iddi = 0, where

(ai,iddi , Bi,iddi) := TEval(td i, iddi). In that case, we must have ai∗,iddi∗ = 0 for some

i∗, and thus B can compute usk id using

usk id ← reRandd+2(e(Hhk1(idd1), . . . ,Hhk i∗−1
(iddi∗−1), e(Bi∗,iddi∗ , g

x),

Hhk i∗+1
(iddi∗+1), . . . ,Hhkd(iddd)))

grp
= e(Hhk1(idd1), . . . ,Hhkd(iddd))

msk .

Conversely, B can embed its own challenge S into the challenge key K∗ whenever

the challenge identities id∗1 = (id∗1,1, . . . , id
∗
1,d∗1

) and id∗2 = (id∗2,1, . . . , id
∗
2,d∗2

) satisfy

aid∗1 , aid∗2 6= 0. Namely, in that case, the group element

e(Hhk1(id∗1,d1), . . . ,Hhkd∗1
(id∗1,dd∗1

),Hhk1(id∗2,d1), . . . ,Hhkd∗2
(id∗2,dd∗2

),

u, . . . , u︸ ︷︷ ︸
2L−d∗1−d∗2 times

)msk , (4.6)
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from which the shared key is computed, contains a factor of the form e(

2`L times︷ ︸︸ ︷
gx, . . . , gx)x,

which can be replaced by B’s own challenge S; the remaining 2d
∗
1+d∗2 − 1 factors of

(4.6) can be computed as in (4.5).

Hence, B’s simulation requires that aid = 0 for all non-challenge queried identities

id, and aid∗1 , aid∗2 6= 0 for challenge identities id∗1, id
∗
2. It will be sufficient to hope for

aid∗j,di 6= 0 (j ∈ {1, 2}) for all prefixes of the challenge identities, and aiddi = 0 for all

other involved prefixes. (Since no prefixes of the challenge identities will need to be

extracted, these requirements are not contradictory.) These requirements translate

to requirements on the L individual MPHF instances. Hence, with probability at

least (1/p(k))L (for the polynomial p(k) from (4.1)), the simulation will not abort.

The remaining analysis (including a necessary artificial abort step) can be performed

as in the proof of Theorem 4.6.

A more efficient variant in the random oracle model. We can replace the

2`L-group system with a 2L-group system and the L different MPHFs with a random

oracle hashing into G1 in the above scheme HIDNIKEMPHF to obtain a second H-

ID-NIKE scheme which can be proven secure in the random oracle model. In this

case, the 2L-group system can be instantiated with smaller parameters than the

2`L-group system required in our standard model scheme.

4.7 Final Notes

In this chapter, we focused on the construction of ID-NIKE schemes. We started

our contributions in the area by giving a construction towards the first ID-NIKE

scheme with security proof in the standard model. Our construction, TIDNIKEPHF,

is very simple: it only uses a pairing and two instantiations of a (q + 1, 1)-PHF.

However, the security of TIDNIKEPHF relies on the assumption that an adversary

uses at most q non-challenge identities in its oracle queries. (Achieving full security

using a (q + 1, 1)-PHF was not possible due to the inexistence of (poly, 1)-PHFs

[84].)
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Then, we adapted the definition of a PHF, working in a setting where multilin-

ear maps are available, and constructed analogues of (poly, n)-PHFs, which we

called (poly, n)-MPHFs. Using our (poly, n)-MPHFs we were then able to con-

struct the first fully secure ID-NIKE scheme with security in the standard model,

IDNIKEMPHF. Additionally, we were able to construct the first fully secure hierar-

chical ID-NIKE with security either in the standard model or in the random oracle

model, HIDNIKEMPHF.

As future work, it would be very interesting to formally extend our constructions to

the more general setting of multiple and independent trusted authorities as well as

to the setting where shared keys can be computed by groups of users instead of just

pairs of users. In the next subsection we expand more on these ideas.

4.7.1 (H-)ID-NIKE with Multiple TAs and Group (H-)ID-NIKE

Consider a scenario where we have multiple, independent TAs (sharing some common

system parameters) each issuing private keys to users, and we wish to enable any

pair of users with private keys issued by possibly different TAs to be able to compute

a shared key. Our Setup algorithm from Section 4.3 would now be divided into two

algorithms: one that generates a set of common parameters params, and is run by

a large organization which then makes these parameters public; and another, run

independently by any TA, that on input params outputs a master public key mpk

and a master secret key msk . Note that ID-NIKE with multiple TAs is different

from H-ID-NIKE. In the latter a single root TA generates the public parameters

and a master secret key from which the private keys (master secret keys) of the

sub-TAs are obtained. In the scenario of ID-NIKE with multiple independent TAs,

there is no root TA and each TA independently generates its pair of master public

key and master secret key. This scenario would also be possible in the hierarchical

setting, H-ID-NIKE, which would involve multiple independent root TAs.

Going further, we may wish to enable groups of users (rather than just pairs of

users) in the “forest” of hierarchies to compute shared keys. All of this is enabled in

the multilinear setting by generalisation of our ID-NIKE and H-ID-NIKE schemes.

For simplicity, we sketch just one such scheme here, leaving detailed development of
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these ideas to future work.

Suppose we have a 3-group system and let H be a random oracle with outputs in

G1. Then we can instantiate our ID-NIKE scheme with the MPHF being replaced

by H and with private keys of the form usk id ,i ← reRand3(H(id)msk i) ∈ G1. Now

assume we have two trusted authorities TA1, TA2 with master secrets msk1, msk2.

We augment mpk i to include the element hi = reRand2(gmsk i). Consider the chain

of equalities:

e(usk id1,1,H(id2), h2)
grp
= e(H(id1)msk1 ,H(id2), gmsk2)

grp
= . . .

grp
= e(usk id2,2,H(id1), h1).

The first computation in the chain can be carried out by user id1 using its private key

issued by TA1, while the last can be done by id2 using its private key issued by TA2;

thus the output can be used as the basis of a shared key (by applying ext in the usual

way). Hence two users with private keys issued by different and possibly independent

TAs can still compute a shared key non-interactively. We leave the generalization

of this simple scheme a) to the standard model, b) to greater numbers of users and

TAs, and c) to the hierarchical setting, to future work.
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Chapter 5

Hierarchical Key Assignment Schemes
(HKAS)
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Hierarchical key assignment schemes can be used to enforce access control policies

by cryptographic means. In this chapter, we present new enhanced security models

for such schemes. We also give simple, efficient, and strongly-secure constructions

for hierarchical key assignment schemes for arbitrary hierarchies using PRFs and

FS-PRGs. We compare instantiations of our constructions with state-of-the-art hi-

erarchical key assignment schemes, demonstrating that our new schemes possess an

attractive trade-off between storage requirements and efficiency of key derivation.

Most of the content of this chapter appears in [65], which is joint work with Ken-

neth G. Paterson and Bertram Poettering. Some of the results generalize part of

[62], which is joint work with Kenneth G. Paterson.
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5.1 Introduction

A hierarchical key assignment scheme (HKAS) is a method for implementing access

control policies by assigning encryption keys and private information to each class in

a hierarchy in such a way that the private information assigned to a class, along with

some public information, can be used to derive encryption keys to all classes lower

down in the hierarchy. Formally, the hierarchy is modelled as a partially ordered set

(poset), each data item is labelled by a class u in the hierarchy, and is encrypted

using the encryption key κu corresponding to that class. Now a user, given access

to the private information Su, can derive the relevant encryption key κv for any

descendant class v, and hence gain access to the data of class v.

Such hierarchical key assignment schemes can be used in many applications where

it is desirable to provide differentiated access to data according to an access control

policy. As an illustration, consider the management of a database containing sensi-

tive information, such as medical records in a hospital; doctors, depending on their

seniority, are assigned access permission to a set of files in a patient’s medical record,

while nurses, being at a lower level in the hierarchy, have more restricted access to

that information. Other application domains include government communication,

protection of industrial secrets, and broadcast services such as cable TV.

The use of cryptographic techniques to solve the problem of key management in

hierarchical structures was first proposed in 1983, by Akl and Taylor [5], who put

forward the concept of a hierarchical key assignment scheme. Since then, a large

number of different schemes have been proposed, offering different trade-offs in terms

of the amount of public and private storage required and the complexity of key

derivation – see for example [8–11, 45, 48, 50, 85, 105, 123, 127, 134, 137, 141, 142].

Many additional issues are addressed in these works: time-dependent constraints,

dynamic addition and removal of classes, and revocation, for example. A recent

survey of this area by Crampton et al. [47] provides a detailed classification and

analyses of many of the schemes proposed in the last decades.

Many of the early hierarchical key assignment schemes lacked any formal security

analysis, but this shortcoming has been gradually addressed beginning with the work

of Atallah et al. [8], who proposed two different security notions: security against key
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recovery attacks (KR-security) and security with respect to key indistinguishability

(KI-security). Informally, KR-security captures the notion that an adversary should

not be able to compute a key to which it should not have access; whereas in the

notion of KI-security, the adversary should not even be able to distinguish between

the real key and a random string of the same length. The stronger KI-security

notion is important in enabling secure composability for hierarchical key assignment

schemes, that is, in achieving the property that any secure key assignment scheme

can be safely used alongside any suitably secure encryption scheme.

5.1.1 Our Contributions

We argue that the security notions for hierarchical key assignment schemes intro-

duced in [8] need to be strengthened in order to capture the widest possible range

of realistic attacks. In particular, the KR and KI security notions by Atallah et al.

do not allow an adversary to gain access to encryption keys κv for classes above

the target class u, even though these encryption keys might leak through usage and

their compromise need not directly lead to a compromise of the private information

Su or encryption key κu for the target class. Thus, as an initial contribution in

the area, we first define strengthened security models that provide this additional

compromise capability to the adversary, and show that our new models are strictly

stronger than the corresponding KR and KI security notions. Section 5.2.1 contains

the details.

We next propose two very simple and efficient hierarchical key assignment schemes

for arbitrary posets, and prove them to be secure in the sense of our strengthened

KI-security notion. Both of our schemes exploit the chain partition idea recently

introduced by Crampton et al. [48]. This gives a method of constructing an HKAS

for an arbitrary access structure, modelled as a poset P , from an HKAS for a simple

chain C (i.e. an HKAS for a totally ordered set). This is done by partitioning the

poset into chains and building the keys for the more complex scheme in a particular

way from the keys of the simpler chains. This interesting approach was proposed

without any formal security analysis in [48]. We provide in Section 5.3 a generic

security analysis of the chain partition construction, showing that the security of the

resulting scheme for a poset P in our strengthened KI security model is equivalent
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to the security (also in our strengthened KI security model) of the scheme for a

single chain. (It will be evident that our security analysis can be slightly modified

to also show the equivalence of security of the two schemes in other security models.)

It is worth noting that this construction can support different levels of security or

efficiency of key derivation for different subgroups in a hierarchy, by using different

schemes in each chain.

The chain partition construction enables us to focus on constructing efficient HKAS

for totally ordered sets in our strengthened KI security model. Our first construction,

presented in Section 5.4.1, is based only on pseudorandom functions (PRFs), which

can be efficiently implemented using, for example, HMAC [20] built using only a

cryptographic hash function. Our second construction, presented in Section 5.4.2, is

based on any forward-secure pseudorandom generator (FS-PRG). The instantiation

of our latter construction with the BBS FS-PRG from Construction 2.1 yields an

HKAS with security under the factoring assumption. We note that an FS-PRG can

also be obtained cheaply and generically from any PRG using the constructions of

Bellare and Yee [19].

In Section 5.5 we provide a comparison of instantations of our new constructions

with a variety of proven-secure HKASs from the literature.

5.2 Hierarchical Key Assignment Schemes

A partially ordered set (poset) is a pair (V,�) where V is a finite set of pairwise

disjoint classes, called security classes, and ‘�’ is a partial order on V , i.e. is a re-

flexive, antisymmetric, and transitive binary relation. A security class can represent

a person, a department, or a user group in an organisation. The relation � is defined

in accordance with authority for each class in V : for any two classes u, v ∈ V we

write v � u or u � v to indicate that users in class u can access the data of users in

class v. We say that u covers v, denoted vl u or um v, if v ≺ u and there does not

exist c ∈ V such that v ≺ c ≺ u. (V,�) is a totally ordered set (or chain) if for all

u, v ∈ V , either v ≺ u or u ≺ v or u = v. We say that A ⊆ V is an antichain in V

if for all u, v ∈ A, u 6= v, we have v � u and v � u. Any poset (V,�) can be repre-

sented by a specific directed acyclic graph G = (V,E), called the access graph, where
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the vertices coincide with the security classes and there is an edge from class u to

class v if and only if u � v. A partition of a set V is a collection of sets {V1, . . . , Vs}
such that (i) Vi ⊆ V ∀i, (ii) V1 ∪ . . . ∪ Vs = V , and (iii) i 6= j ⇒ Vi ∩ Vj = ∅.

The problem of key management for such posets consists of assigning private infor-

mation and encryption keys (e.g. to be used in a symmetric encryption scheme) to

each class in the poset in such a way that the encryption keys can be used to protect

or access data, whereas the private information can be used to efficiently derive the

keys for any descendant class in the poset. The cryptographic primitive that solves

this challenge is called a hierarchical key assignment scheme [5], and is defined as

follows.

Definition 5.1 (Hierarchical Key Assignment Scheme). Let Γ denote a set of ac-

cess graphs, i.e. of graphs that correspond to posets. A hierarchical key assignment

scheme (HKAS) for Γ is a pair of algorithms (Gen,Der) satisfying the following

conditions:

• Gen(1k, G) is a probabilistic polynomial-time algorithm that takes as input a

security parameter 1k and a graph G = (V,E) ∈ Γ and outputs

– for all classes u ∈ V : private information Su and key κu ∈ {0, 1}p(k), for

a fixed polynomial p;

– public information pub.

We denote by (S, κ, pub) the output of Gen(1k, G), where S = (Su)u∈V and

κ = (κu)u∈V are the vectors of private information and keys, respectively.

• Der(G, u, v, Su, pub) is a deterministic polynomial-time algorithm that takes as

input a graph G, classes u, v ∈ V such that v � u, private information Su, and

public information pub, and outputs a key κv ∈ {0, 1}p(k) assigned to class v.

For correctness we require that for all k ∈ N, all G ∈ Γ, all (S, κ, pub) output by

Gen(1k, G), and all u, v ∈ V, v � u, we have Der(G, u, v, Su, pub) = κv.

Remark: Observe that hierarchical key assignment schemes are essentially sym-

metric in nature, i.e. a separation of entities holding secret keys and entities holding
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public keys is not assumed. As a consequence, Gen’s output pub does not have to be

public in the classical sense, but could also be folded into the private information Su,

for all u ∈ V . We point out that we left pub in Definition 5.1 to keep it consistent

with prior work. However, the schemes that we propose in this thesis will not make

use of pub, i.e. they will assign an empty value to it.

5.2.1 Definitions of Security for HKAS

As mentioned earlier, formal security modelling for hierarchical key assignment

schemes began with [8]. However, as we will argue, these models are inadequate

for practical application in the most challenging of security environments. In the

following, we describe our new, strengthened models, and then discuss the differences

with respect to the established ones.

We consider strengthened versions of the key indistinguishability (KI) and key re-

covery (KR) security goals proposed by Atallah et al. [8], which we name strong key

indistinguishability (S-KI) and strong key recovery (S-KR) respectively. For each

security notion we consider both static and dynamic adversaries. It will shortly be-

come clear, however, that security against static adversaries is polynomially equiva-

lent to security against dynamic adversaries. We begin with informal statements of

our security models, and then give formal models in terms of security experiments

involving an adversary.

Strong key indistinguishability. We consider two types of adversaries:

• Static adversaries: A static adversary Astat , given an access graph G =

(V,E), first chooses a security class u ∈ V to attack. Using algorithm

Gen on graph G, the experiment generates (S, κ, pub). The adversary is

then provided with private information Sv assigned to all classes v ∈ V
such that v � u (i.e. the adversary is given all private information Sv

that should not enable the computation of key κu) along with the set of

all keys κv associated with classes v ∈ V such that v � u, and the public

information pub. Precisely, the adversary gets pub and the two sets:

CorruptG,S,u = {Sv ∈ S | v � u} and KeysG,u = {κv | v � u} .
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Notice that, given CorruptG,S,u, the adversary can compute for itself

all keys κv for classes v ∈ V such that v � u. So, from the obtained

information, the adversary can gain access to κv for any v ∈ V \ {u}. As

a challenge, the adversary additionally gets either key κu or a random

string of the same length, and it has to distinguish these two cases. We

refer to Definition 5.2 for the formal specification of this experiment.

• Dynamic adversaries: In contrast to a static adversary, a dynamic (also

called adaptive) adversary Adyn first gets access to all public information

pub and then may request keys κv and private information Sv in an

adaptive manner before eventually committing to a security class u ∈ V
that it wants to attack. After receiving a challenge based on key κu,

it continues to request keys and private information until terminating

and outputting a bit. The adversary wins the security experiment if it

successfully distinguishes the key κu from random, under the restriction

that (i) u � v for all classes v for which the adversary requested private

information, and (ii) key κu has not been requested.

Strong key recovery. Again, we consider two types of adversaries:

• Static adversaries: The difference between security in the sense of strong

key recovery with respect to static adversaries (S-KR-ST) and strong key

indistinguishability with respect to static adversaries (S-KI-ST) is that

in the former the adversary receives no challenge key, and the adversary

is required to recover the key κu corresponding to the attacked class u

rather than to distinguish it from a random key. We refer to Definition 5.3

for the formal specification of this experiment.

• Dynamic adversaries: Same as above; here the adversary never receives

a challenge key. Instead, the adversary is required to recover the key κu

corresponding to the chosen class to attack, u.

It is not difficult to see that, both in the S-KI notion and in the S-KR notion,

security against static adversaries is actually polynomially equivalent to security

against dynamic adversaries. Indeed, in the corresponding reduction, the static

adversary simply guesses which class will be the subject of the dynamic adversary’s

query, and aborts if the guess turns out to be incorrect; this reduction succeeds

with probability 1/|V |. A similar proof was used in [10] (and implicitly in [8]).
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So schemes proven secure against static adversaries are automatically also secure

against dynamic adversaries (albeit with a less tight overall security reduction). In

the remainder of this chapter, we focus on the static case.

We next give our definitions for security in the sense of strong key indistinguishability

with respect to static adversaries (S-KI-ST-security) and strong key recovery with

respect to static adversaries (S-KR-ST-security), formalising the above discussion.

Definition 5.2 (S-KI-ST). Let Γ be a set of access graphs and let (Gen,Der) be a

hierarchical key assignment scheme for Γ. Consider the following experiment asso-

ciated with adversary A:

Experiment ExpS-KI-ST, d
A,Γ (1k) :

u← A(1k, G)
(S, κ, pub)← Gen(1k, G)

If d = 1 then T ← κu else T ← {0, 1}p(k)

d′ ← A(pub,CorruptG,S,u,KeysG,u, T )

Return d′

For any G ∈ Γ, the advantage of A in the above experiment is defined as

AdvS-KI-ST
A,Γ (k) = 2

∣∣∣Pr
[
ExpS-KI-ST, d

A,Γ (1k) = d : d← {0, 1}
]
− 1/2

∣∣∣ ,
which can also be written as

AdvS-KI-ST
A,Γ (k) =

∣∣∣Pr[ExpS-KI-ST,1
A,Γ (1k) = 1]− Pr[ExpS-KI-ST,0

A,Γ (1k) = 1]
∣∣∣ .

The key assignment scheme is said to be secure in the sense of strong key indistin-

guishability with respect to static adversaries (S-KI-ST-secure) if AdvS-KI-ST
A,Γ (k) is

negligible for every polynomial-time adversary A and any graph G ∈ Γ.

Definition 5.3 (S-KR-ST). Let Γ be a set of access graphs and let (Gen,Der) be a

hierarchical key assignment scheme for Γ. Consider the following experiment asso-

ciated with adversary A:

Experiment ExpS-KR-ST
A,Γ (1k) :

u← A(1k, G)
(S, κ, pub)← Gen(1k, G)
κ′u ← A(pub,CorruptG,S,u,KeysG,u)

If κ′u = κu return 1 else return 0

For any G ∈ Γ, the advantage of A in the above experiment is defined as

AdvS-KR-ST
A,Γ (k) =

∣∣∣Pr
[
ExpS-KR-ST

A,Γ (1k) = 1
]∣∣∣ .
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The key assignment scheme is said to be secure in the sense of strong key recovery

with respect to static adversaries (S-KR-ST-secure) if AdvS-KR-ST
A,Γ (k) is negligible

for every polynomial-time adversary A and any graph G ∈ Γ.

We now explain why our security models are stronger than the ones introduced by

Atallah et al. [8]. While an adversary in our S-KI-ST or S-KR-ST security model

receives both the set CorruptG,S,u ⊆ S of private information and the set KeysG,u ⊆
{0, 1}p(k) of (symmetric) keys, in the KI-ST and KR-ST security models from [8] the

adversary receives only the former set when performing its attack. In our dynamic

settings, the strong adversary has access to keys κv for which v � u, where u is the

challenge security class, whereas in the dynamic models of [8], the adversary has no

access to such keys. Now in a real deployment of a scheme, some of the cryptographic

keys κv used in the scheme may leak, perhaps through cryptanalysis or misuse. In

this case, we would like our selected security model to provide the strongest possible

guarantees about the security of other keys that have not been leaked. But note

that the previous security models from [8] provide no such guarantees, whereas our

models provide the strongest possible guarantee, in that all keys κv with v � u are

given to the adversary. Indeed, as the next example makes clear, it is quite feasible

that leakage of a key κv for which v � u can damage the security of the key κu.

A separating example: Consider a graph G = (V,E) having linear structure,

i.e. V = {u0, . . . , un−1} with ui+1 l ui for all i. Let H be a one-way function, which

we model as a random oracle. We select Su0 at random from the domain of H and

set κui = Sui and Sui+1 = H(Sui) for all i. It is clear how the Gen and Der algorithms

should be defined, and that the resulting scheme satisfies the correctness property.

It is also easy to see that the scheme is KR-ST-secure in the random oracle model,

in the sense of [8]. However, it is also clear that with knowledge of key κu0 = Su0 , all

keys in the hierarchy can be efficiently determined (including the challenge key κu)

and hence the scheme is insecure in the S-KR-ST model.

We note that this separation is for key recovery security notions. It is an open prob-

lem to construct a separating example for the corresponding key indistinguishability

notions.
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(b) A partition of V into chains

Figure 5.1: Example of a Chain Partition.

5.3 The Chain Partition Construction: A Security Analysis

We begin by reviewing the Chain Partition Construction for key assignment schemes

from [48]. Given a partially ordered set (V,�), represented by the directed acyclic

graph P = (V,E), we select a particular partition of V into chains {C0, . . . , Cw−1}.
(Dilworth’s Theorem [54] asserts that every partially ordered set (V,�) can be par-

titioned into w chains, where w is the width of V , that is, the cardinality of the

largest antichain in V .) The partition need not be unique. The length of Ci is

denoted by li, for 0 ≤ i ≤ w− 1. We let lmax denote maxi{li}. The maximum class

of Ci is regarded as the first class in Ci and the minimum class as the last class.

Since {C0, . . . , Cw−1} is a partition of V , each u ∈ V belongs to precisely one chain.

Let C = u0m. . .mul−1 be any chain in V . Then any chain of the form ujm. . .mul−1,

0 < j ≤ l − 1 is said to be a suffix of C. Now, for any u ∈ V , the set ↓ u := {v ∈
V : v � u} has non-empty intersection with one or more chains C0, . . . , Cw−1. It is

proved in [48] that the intersection of ↓ u and the chain Ci is a suffix of Ci or the

empty set. Following [48], this will enable us to define the private information that

should be given to a user in class u.

Since {C0, . . . , Cw−1} is a partition of V into chains, {↓ u ∩ C0, . . . , ↓ u ∩ Cw−1}
is a disjoint collection of chain suffixes. Additionally, the private information for

each class in V should be chosen so that the private information for the j-th class

of a chain can be used to compute keys for all lower classes in that chain. Hence,

we can see that a user in class u should be given the private information for the
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maximal classes in the non-empty suffixes ↓ u ∩ C0, . . . , ↓ u ∩ Cw−1. Given u ∈ V ,

let û0, . . . , ûw−1 denote these maximal classes, with the convention that ûi =⊥ if

↓ u ∩ Ci = ∅. Let uij denote the j-th class in the chain Ci, where 0 ≤ j ≤ li − 1.

Figure 5.1 illustrates a poset (V,�) and a possible partition of V into four chains:

C0, C1, C2, C3. Note that after the poset is partitioned into chains, each u ∈ V in

Figure 5.1(a) is relabelled with uij in Figure 5.1(b), depending on which chain the

class is located and on the position of the class in the chain.

The Chain Partition Construction: Let (V,�) be a poset, P = (V,E) the cor-

responding directed acyclic graph, and k a security parameter. Select a chain par-

tition of V into w chains C0, . . . , Cw−1, so that Ci contains classes ui0, u
i
1, . . . , u

i
li−1,

with uij+1 l uij , 0 ≤ j < li − 1. Let lmax denote maxi{li}. Additionally, let

HKASchain = (Genchain,Derchain) be an HKAS for single chains of length exactly

lmax. Then the chain partition scheme HKASposet(HKASchain) = (Genposet,Derposet)

(relative to the particular partition selected) is defined as follows.

Algorithm Genposet(1
k, P ):

1. For 0 ≤ i ≤ w−1, run Genchain on inputs 1k and a chain of length lmax to obtain

(T i, κi, pubi). Discard the last lmax − li elements of T i and κi to obtain the

private information and keys for a chain of length li. Note that this chain has

the same Der algorithm as the starting chain. For ease of notation, we continue

to denote the reduced sets by T i and κi, and we write T i = {Tui0 , . . . , Tuili−1
}

and κi = {κui0 , . . . , κuili−1
}.

2. For each u ∈ V , define the private information Su to be {Tûi : ûi 6=⊥, 0 ≤ i ≤
w − 1} and the encryption key κu to be κu = κuij

, where we assume that u is

the j-th class of chain Ci, that is, u = uij .

3. Let S and κ be the sets of private information and keys, respectively, in the

above construction, and let pubposet = (pub0, . . . , pubw−1).

4. Output (S, κ, pubposet).

Figure 5.2 illustrates the assignment of private information and encryption keys

for an arbitrary poset (V,�). Figure 5.2(a) shows a class e and its descendants
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Figure 5.2: The Chain Partition Construction – Assignment of Private Keys and
Encryption Keys.

inside a dashed shape. In Figure 5.2(b) we can see that after the poset (V,�) is

partitioned into chains, class e is represented by class u2
1. The highlighted classes

u0
3, u

1
1, u

2
1, u

3
0 correspond, respectively, to the maximal classes û0, û1, û2, û3 in the

suffixes ↓ e ∩ C0, . . . , ↓ e ∩ C3. This gives us Se = Tu03 , Tu11 , Tu21 , Tu30 and κe = κu21 .

Algorithm Derposet(P, u, v, Su, pubposet):

1. Assume that after the chain partition, classes u and v are identified, respec-

tively, as classes uij and ugh. For u � v, find ûg, the maximal class in ↓ u∩Cg.
This class is in chain Cg and we denote it by ugr , where 0 ≤ r ≤ h. Note that,

by construction, Tugr ∈ Su.

2. Set κv = κugh
← Derchain(Cg, u

g
r , u

g
h, Tugr , pubg).

3. Output κv.

To illustrate the key derivation process, consider Figure 5.2(b) and suppose we have

Se = Su21 and wish to derive the encryption key κk for class k, labelled as u1
2 after the

chain partition. As u1
2 is in chain C1, we need to find the maximal class in ↓ e∩C1,

which is û1 = u1
1. Now as u1

1 is an ascendant class of u1
2, which is also in chain C1,

and as Tu11 ∈ Su21 we can use Derchain on input Tu11 to obtain κk = κu12 .

Theorem 5.1 (Security of the Chain Partition Construction). Let Γ be a set of di-

rected acyclic graphs P = (V,E) and lmax be the maximum length of the chains in a
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chain partition of V . Let HKASchain be an S-KI-ST-secure scheme for single chains of

length lmax. Then the scheme HKASposet(HKASchain) = (Genposet,Derposet) for Γ ob-

tained from the above chain partition construction is also S-KI-ST-secure. More pre-

cisely, for every S-KI-ST adversary Aposet that breaks HKASposet(HKASchain) with ad-

vantage AdvS-KI-ST
Aposet,Γ (k), there exists an S-KI-ST adversary Achain that breaks HKASchain

with the same advantage. Moreover, the two adversaries run in roughly the same

time.

Proof. Assume Aposet attacks a class uij of graph P ∈ Γ. If Aposet is able to distin-

guish between the real key κuij
associated with class uij , and a random string having

the same length, we show that we can construct an S-KI-ST adversary Achain against

the scheme HKASchain that, using Aposet as a black box, is able to distinguish be-

tween real or random keys. Algorithm Achain plays the S-KI-ST security experiment

described in Definition 5.2, receiving as initial input a security parameter 1k and

a chain with lmax classes. Adversary Achain simulates the environment of Aposet in

such a way that Aposet’s view is indistinguishable from its view when playing the

S-KI-ST security experiment.

Algorithm Achain:

1. Receive from the S-KI-ST experiment a chain C with lmax classes v0, . . . ,

vlmax−1.

2. Pick P = (V,E) ∈ Γ and run Aposet with input (1k, P ) to get Aposet’s choice

of target class u.

3. Generate a chain partition of P containing chains C0, . . . , Cw−1. In this parti-

tion, class u is identified as some class uij in some chain Ci of length li ≤ lmax.

For 0 ≤ t ≤ w − 1, t 6= i, run Genchain on inputs 1k and a chain of length lmax

to obtain (St, κt, pubt), the set of private information, the set of keys and the

public information for that chain. Note that, as in the chain partition con-

struction, these sets can be truncated to obtain the set of private information,

the set of keys and the public information for a chain of length exactly lt. We

abuse notation and continue to use (St, κt, pubt) to denote this data.

4. Output vj in chain C as Achain’s choice of target class. Achain now receives
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as input the public information, pub, output by Genchain, along with private

information Svt for all classes vt ≺ vj in C, and all keys κvt in C such that

vt � vj . Achain also receives as input a value T which is either the real key κvj

or a random key of the same length. In what follows, Achain will identify the

first li classes in C with the chain Ci in the chain partition construction.

5. Set pubposet = (pub0, . . . , pubi−1, pub, pubi+1, . . . , pubw−1). Use the private

information Svt for classes vt ≺ vj in C together with the private information

in the sets St for 0 ≤ t ≤ w − 1, t 6= i, to build the set CorruptP,S,u. Use

keys κvt in C such that vt � vj and the keys from the sets κt to build the set

KeysP,u.

6. Run Aposet with inputs (pubposet,CorruptP,S,u,KeysP,u, T ). It is easy to see

that Achain has the information required to properly construct the two sets

CorruptP,S,u and KeysP,u in such a way that Aposet’s input here is valid in

Aposet’s experiment against the scheme HKASposet(HKASchain), and such that

T is the real key (resp. the random key) in Aposet’s experiment if and only if

T is the real key (resp. the random key) in Achain’s experiment.

7. When Aposet outputs a bit, output the same bit.

Now as Achain’s simulation is perfect, we see that the advantage of Achain in winning

its S-KI-ST indistinguishability game for the chain C of length lmax is the same

as the advantage of Aposet in playing the S-KI-ST indistinguishability game against

HKASposet(HKASchain). The theorem now follows.

Note that, in the above theorem, HKASchain need only be an S-KI-ST-secure scheme

for chains of length exactly lmax. Because of the truncation trick, this is equivalent

to HKASchain being an S-KI-ST-secure scheme for the set of graphs consisting of

chains of lengths up to lmax.

Remark: We stress that Theorem 5.1 and its security proof can be slightly modi-

fied for different HKAS security notions, such as S-KR-ST-security, KI-security and

KR-security.
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5.4 Srongly KI-Secure Constructions

In this section we construct two very simple and efficient S-KI-ST-secure key assign-

ment schemes for totally ordered hierarchical access structures (chains) of arbitrary

depth. The first construction, shown in Section 5.4.1, uses a pseudorandom func-

tion, while the second, shown in Section 5.4.2, uses a forward-secure pseudorandom

generator. General key assignment schemes for arbitrary posets can be obtained by

combining our constructions with the result of Section 5.3.

5.4.1 A PRF-based HKAS for Totally Ordered Hierarchies

Here we use PRFs to construct an S-KI-ST-secure hierarchical key assignment

scheme for totally ordered hierarchies, HKASPRF = (GenPRF,DerPRF).

Let Γ be the family of graphs corresponding to totally ordered hierarchies, and let

G = (V,E) ∈ Γ be a graph, where V = {u0, . . . , un−1} for some n, and ui+1l ui for

all i. For better exposition, we abuse notation writing Si and κi (instead of Sui and

κui) for the private information and key assigned to each security class ui ∈ V . (We

can do this because we are in the chain setting.)

Let k be a security parameter and let F : {0, 1}k × D → {0, 1}k be a PRF (see

Section 2.3.3). Let c0 and c1 be two different elements in D. The GenPRF and

DerPRF algorithms are defined in Figure 5.3. Observe that computing key κj from

secret information Si requires exactly j − i+ 1 evaluations of the underlying PRF.

Note that we use special PRFs where K = R and D is any set.1 For concrete-

ness, we propose to deploy the (hash-based) HMAC primitive [20] as a PRF (see

also analysis in [55]). In addition, it might be possible to find suitable construc-

tions based on number-theoretic assumptions, e.g. derived from the PRF obtained

by converting the BBS PRG [26] into a PRF via the Goldreich-Goldwasser-Micali

(GGM) construction [76].

1We remark that this special restriction applies not only to our PRF-based HKAS, but also to
other PRF-based key assignment schemes; Attallah et al. [8], for example, provide some PRF-based
constructions which also require similar restrictions on the keyspace and range of the PRFs.
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Algorithm GenPRF(1k, G)

S0 ← {0, 1}k, κ0 ← FS0(c1)

For each class ui ∈ V (i > 0), set Si ← FSi−1(c0), κi ← FSi(c1)

S ← (S0, . . . , Sn−1), κ← (κ0, . . . , κn−1), pub ← ∅
Output (S, κ, pub)

Algorithm DerPRF(G, ui, uj , Si, pub) (note that we may assume j ≥ i)
If i = j, return κj = FSi(c1)

For h = i+ 1 to j

Sh ← FSh−1
(c0)

Return κj = FSj (c1)

Figure 5.3: The Hierarchical Key Assignment Scheme HKASPRF.

Theorem 5.2 (Security of the PRF-based HKAS). Assume F is a PRF and Γ is

a family of graphs corresponding to totally ordered hierarchies. Then HKASPRF is

S-KI-ST-secure for any graph G ∈ Γ.

Proof. Fix any totally ordered graph G = (V,E) ∈ Γ. Proving the theorem amounts

to showing that the only way to break the S-KI-ST-security of HKASPRF is by break-

ing the pseudorandom function F. To this end, we need to show how to turn an

S-KI-ST adversary A attacking HKASPRF into an adversary AF attacking F. Assume

A attacks a class ui ∈ V . We define a sequence of computationally indistinguishable

games G0, G1, . . . , Gi+1. We start with G0, defined to be the original experiment

ExpS-KI-ST, d
A,Γ (1k) as described in Definition 5.2. Then we make successive transitions

until we reach Gi+1, for which A’s probability of success in outputting the correct

bit d′ = d, for d← {0, 1}, is only 1/2.

Let Succι be the event that A is successful in Game Gι.

Game G0. Let G0 be the original experiment ExpS-KI-ST, d
A,Γ (1k) as described in

Definition 5.2.

Game Gι (1 ≤ ι ≤ i+ 1). This game is identical to Gι−1, except that here the as-

signment of private information and keys is modified in such a way that key κι−1 and

private information Sι are substituted with values randomly selected from {0, 1}k.
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This modification amounts to substituting the occurrences of FSι−1 in Gι−1 with a

truly random function, which is warranted by the security of the PRF, as we will

see in Lemma 5.1. Hence,

|Pr[Succι]− Pr[Succι−1]| ≤ εPRF(k) ,

where εPRF(k) is a bound on the advantage AdvPRF
AF,F

(k) for any polynomial-time

adversary AF.

Now, we see that in Gi+1 the adversary’s view is independent of bit d; in both cases

it gets as challenge a random value in {0, 1}k. Thus,

Pr[Succi+1] = 1/2 .

Therefore, we have

AdvS-KI-ST
A,Γ (k) = 2 |Pr[Succ0]− 1/2| ≤ 2(i+ 1)εPRF(k) .

By assumption εPRF(k) is negligible, concluding the proof.

Lemma 5.1. |Pr[Succι]− Pr[Succι−1]| ≤ εPRF(k).

Proof. Assume we have an S-KI-ST adversary A against HKASPRF that attacks a

class ui and is able to distinguish between games Gι−1 and Gι. We describe below

how to construct an algorithm AF that, using A as a black-box, is able to distinguish

between pseudorandom and truly random functions.

Algorithm AF plays the PRF experiment described in Definition 2.28 and is thus

given access to a function fβ that is either an instance of a pseudorandom function

Fκ : D → {0, 1}k, keyed with a random key κ← {0, 1}k (if β = 1), or a truly random

function into {0, 1}k (if β = 0). In order to use algorithm A, AF simulates the

environment of A in such a way that interpolates between games Gι−1 and Gι. This

means that if AF is interacting with a pseudorandom function, then the simulation

proceeds as in Gι−1. Otherwise, if AF is interacting with a random function, then

the simulation proceeds as in Gι. More formally, algorithm AF works as follows.

Algorithm AF:

1. Run A with input (1k, G) to get A’s choice of target class ui.
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2. Set up the access hierarchy for graph G by running GenPRF(1k, G) with the

following modifications:

(a) Private information Sι and key κι−1 are computed via oracle fβ as follows:

Sι ← fβ(c0), κι−1 ← fβ(c1).

(b) For all ι′ < ι, set Sι′ ← {0, 1}k.

(c) For all ι′ < ι− 1, set κι′ ← {0, 1}k.

So far, this is almost equivalent to the actions of Gι−1 when β = 1 and equiv-

alent to Gι when β = 0. The only difference is that, in case β = 1 (i.e. AF has

oracle acess to a PRF Fκ for unknown κ ← {0, 1}k), the private information

Sι−1 is not equal to κ. This is completely indistinguishable from A’s view

since both Sι−1 and κ are uniformly chosen from {0, 1}k and A is not allowed

to ask for private information Si′ , i
′ < i+ 1. Note that as ι ≤ i+ 1, A is not

allowed to ask for Sι′ , ι
′ < ι.

3. Pick a random bit d. If d = 1, AF sets A’s challenge, denoted here by T , to

be the real key κi. If d = 0, AF sets T to be a random key of the same length

as κi.

4. Run A with inputs (pub,CorruptG,S,ui ,KeysG,ui , T ), where CorruptG,S,ui =

{Si+1, . . . , Sn−1} and KeysG,ui = {κ0, . . . , κi−1}, to obtain a bit d′. (Note

that according to AF’s set-up of the access hierarchy, it can compute all this

information.) Here d′ is A’s guess as to whether it was given the real key

associated with class ui or a random string having the same length.

5. If d′ = d, output β′ = 1, guessing for a pseudorandom function; otherwise,

output β′ = 0, guessing for a truly random function.

Now we have

εPRF(k) ≥ AdvPRF
AF,F

(k)

=
∣∣∣Pr[ExpPRF,1

AF,F
(1k) = 1]− Pr[ExpPRF,0

AF,F
(1k) = 1]

∣∣∣
= |Pr[1← AF | β = 1]− Pr[1← AF | β = 0]|

=
∣∣Pr[d′ = d | β = 1]− Pr[d′ = d | β = 0]

∣∣
= |Pr[Succι−1]− Pr[Succι]| .
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Algorithm GenFS-PRG(1k, G)

params ← GFS.Setup(1k), S0 ← GFS.Key(params)

For all 0 ≤ i < n, compute (Si+1, κi)← GFS.Next(Si)

S ← (S0, . . . , Sn−1), κ← (κ0, . . . , κn−1), pub ← ∅
Output (S, κ, pub)

Algorithm DerFS-PRG(G, ui, uj , Si, pub) (note that we may assume j ≥ i)
For h = i to j

(Sh+1, κh)← GFS.Next(Sh)

Return κj

Figure 5.4: The Hierarchical Key Assignment Scheme HKASFS-PRG.

5.4.2 An FS-PRG-based HKAS for Totally Ordered Hierarchies

Here, building on generic FS-PRGs, we construct an S-KI-ST secure hierarchical key

assignment scheme for totally ordered access graphs, HKASFS-PRG = (GenFS-PRG,

DerFS-PRG). When combined with the result from Section 5.3, our construction

widely generalizes our construction for arbitrary posets from [62], which implicitly

exploits the property of forward security of the BBS pseudorandom generator (see

Construction 2.1 in Section 2.3.4). As our construction generically builds on FS-

PRGs, it is amenable to the efficiency gain obtained by replacing the BBS-based

FS-PRG by, for instance, an HMAC-based one. In the following we describe our

scheme for totally ordered hierarchies HKASFS-PRG.

Let Γ be the family of graphs corresponding to totally ordered hierarchies, and let

G = (V,E) ∈ Γ be a graph, where V = {u0, . . . , un−1} for some n, and ui+1l ui for

all i. As in Section 5.4.1, we write Si for private information Sui , and κi for key κui .

Let k be a security parameter, and let GFS = (GFS.Setup,GFS.Key,GFS.Next) be an

FS-PRG with output blocks of length p(k) (see Definition 2.31). The GenFS-PRG and

DerFS-PRG algorithms are defined in Figure 5.4. Note that we identify the FS-PRG’s

state Sti with the private information Si stored for class ui, while key κi is set to

the FS-PRG’s output Outi+1.

Theorem 5.3 (Security of the FS-PRG-based HKAS). Assume GFS is an FS-PRG

and Γ is a family of graphs corresponding to totally ordered hierarchies. Then
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HKASFS-PRG is S-KI-ST-secure for any graph G ∈ Γ.

Proof. Fix any totally ordered graph G = (V,E) ∈ Γ. This proof amounts to

showing that for every S-KI-ST adversary A that breaks our FS-PRG-based scheme

HKASFS-PRG with advantage AdvS-KI-ST
A,Γ (k), there exists an algorithm D that breaks

the forward-security of GFS with advantage AdvFS-PRG
D,GFS

(k) ≥ AdvS-KI-ST
A,Γ (k)/2. More-

over, D has roughly the same running time as A. Assume we have an S-KI-ST

adversary A that attacks a class ui and is able to distinguish between the real key κi

assigned to that class, and a random string of the same length. Then, we can con-

struct an algorithm D that, using A as a black box, is able to tell apart output

blocks generated by GFS, up to some iteration t, from a sequence of purely random

blocks.

Algorithm D initially outputs an iteration number, say t. Then it is given access to a

sequence of t output blocks Out = Out1, . . . , Outt, and the current state, Stt, of the

FS-PRG. D has to distinguish if Out is a sequence of the first t output blocks of GFS

or a sequence of random blocks each of length p(k). (See the security experiment of

Definition 2.31.) Given all that information, D simulates the environment of A in a

way thatA’s view is indistinguishable from the S-KI-ST experiment of Definition 5.2.

We want to prove that

AdvS-KI-ST
A,Γ (k) =

∣∣∣Pr[ExpS-KI-ST,1
A,Γ (1k) = 1]− Pr[ExpS-KI-ST,0

A,Γ (1k) = 1]
∣∣∣

≤ 2 εFS−PRG(k),

where εFS−PRG is an upper bound on the advantage AdvFS-PRG
D,GFS

(k) for any polynomial-

time distinguisher D. We define a sequence of games and analyse it.

Game G0. Define Game G0 to be identical to ExpS-KI-ST,d
A,Γ (1k) for d = 0. In

particular, the challenge key T is chosen to be random in {0, 1}p(k).

Game G1. This game is like Game G0, except that all elements in KeysG,u are

replaced by random strings of length p(k). Challenge key T remains as before, that

is, it is a random value in {0, 1}p(k).

Game G2. This game is identical to ExpS-KI-ST,d
A,Γ (1k) for d = 1. In particular, the

challenge key T is the real key κi assigned to class ui, as computed via GenFS-PRG.
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In the analysis, let A(Gι) denote adversary A playing game Gι. First we show

that |Pr[A(G0) = 1]− Pr[A(G1) = 1]| ≤ εFS−PRG(k). Consider the following distin-

guisher D against the FS-PRG GFS.

D runs A with input (1k, G) to get ui, the class that A is aiming to attack.

D chooses an integer t = i and sends it to its own challenger. It receives Sti

and Out = Out1, . . . , Outi, where the latter is either the first i output blocks

generated by GFS.Next, or a collection of random strings in {0, 1}p(k). D sets

KeysG,ui = Out1, . . . , Outi and uses Sti to compute the private information col-

lected in CorruptG,S,ui . Then D sets CorruptG,S,ui = {Sti+1, . . . , Stn−1}, pub ← ∅,
T ← {0, 1}p(k) and, finally runs A on input (pub,KeysG,ui ,CorruptG,S,ui , T ). When-

ever D receives a bit d′ from A, D forwards the same bit to its own challenger. We

see that if Out is the sequence of first i output blocks generated by GFS.Next, then

A’s view is exactly as in game G0. On the other hand, if the values are random

strings, then A’s view is exactly as in game G1. Now we have

εFS−PRG(k) ≥ AdvFS-PRG
D,GFS

(k)

=
∣∣∣Pr
[
ExpFS-PRG,1

D,GFS
(1k) = 1

]
− Pr

[
ExpFS-PRG,0

D,GFS
(1k) = 1

]∣∣∣
= |Pr[A(G0) = 1]− Pr[A(G1) = 1]| .

Next we bound |Pr[A(G1) = 1]− Pr[A(G2) = 1]|. The reduction is similar to the one

above, the difference is that this time the FS-PRG distinguisher D specifies t = i+1

instead of t = i, and assigns κj ← Outj+1 for all 0 ≤ j ≤ i. This means that

not only the keys in KeysG,ui are taken from Out, but also the ‘challenge key’ κi.

Notice that here, D has access to the value Sti+1 and thus is able to compute the

set of private information CorruptG,S,ui = {Sti+1, . . . , Stn−1}. Similarly to above,

this establishes |Pr[A(G1) = 1]− Pr[A(G2) = 1]| ≤ εFS−PRG(k).

All in all, this proves that

AdvS-KI-ST
A,Γ (k) =

∣∣∣Pr[ExpS-KI-ST,1
A,Γ (1k) = 1]− Pr[ExpS-KI-ST,0

A,Γ (1k) = 1]
∣∣∣

= |Pr[A(G2) = 1]− Pr[A(G0) = 1]|

≤ 2 εFS−PRG(k).

The theorem now follows.
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5.5 Comparison with Previous Schemes

In this section, we compare instantiations of our constructions with other provably

secure schemes from the literature. Note that all these previous schemes have proofs

only in weaker security models than our strong security models. (However, in some

cases, these schemes can also be proven secure in our strong security models.)

In [8, 9], Atallah et al. proposed a first construction based on pseudorandom func-

tions, which they prove to be KR-secure; and a second construction which they prove

to be KI-secure, but which requires the additional use of a symmetric encryption

scheme secure under chosen plaintext attack (SE-CPA). In both constructions the

private information of a class consists of a single symmetric key associated with that

class. In the first construction, the amount of public information grows with the

number of edges in the directed acyclic graph (each edge has an associated PRF

output). In the second construction, the amount of public information grows with

the number of classes (each class has an associated ciphertext). In both construc-

tions, key derivation uses only symmetric operations and its cost grows linearly with

the number of levels between the classes.

De Santis et al. [123] proposed a construction which is based on symmetric encryp-

tion schemes only, achieves KI-security and is simpler than the KI-secure scheme

proposed in [8]. The construction uses only a chosen plaintext secure symmetric

encryption scheme and the required private key storage is small at one key per class.

The amount of public storage needed grows linearly with the number of classes and

the number of edges in the graph. Key derivation requires roughly h symmetric

decryptions, where h is the number of levels between the classes.

Ateniese et al. [10, 11] proposed two different constructions for time-bound key

assignment schemes, which achieve KI-security. Their first construction is based

on symmetric encryption schemes and the second makes use of bilinear maps. The

security of the latter construction is based on the Decisional Bilinear Diffie-Hellman

(DBDH) assumption. The advantage of these constructions is that they provide very

efficient procedures for key derivation, requiring only one decryption or one pairing

evaluation, no matter the number of levels between the classes. However, the public

information for a scheme obtained from the first construction can be very large since
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it depends not only on the number of classes, but also on the number of time periods.

The downside of the second construction is that the private information could be

as large as the number of time periods (and the public information is already very

large). These constructions are not directly comparable to normal (i.e. non-time-

bound) schemes, but we include them in the comparison to get an idea of their

efficiency compared to normal schemes.

D’Arco et al. [50] proposed a generic construction yielding a key assignment scheme

offering KI-security, using as components a KR-secure scheme and the Goldreich-

Levin hard-core bit (GL bit) [74]. They instantiated their construction with an Akl-

Taylor scheme [5], which they proved to be KR-secure under the RSA assumption,

therefore achieving KI-security under the same assumption. Their construction can

also be instantiated, for example, with the KR-secure scheme from Atallah et al. [8],

yielding a KI-secure scheme based on PRFs. However, their construction involves a

significant “blow up” when going from KR-security to KI-security, since it requires

the use of a KR-secure scheme for a poset having ` classes for each class in the poset

for the final KI-secure scheme, where ` is the length of keys. Typically, we would

desire ` = 128 bits in applications. Their construction also consumes a large amount

of public storage, requiring roughly ` times as many public values as in the starting

KR-secure scheme. Key derivation also involves an increase by a factor of ` relative

to the starting scheme.

Our constructions provide stronger security guarantees (i.e. key indistinguishability

in our strengthened model) than all the above schemes and indeed all other hierar-

chical key assignment schemes in the literature. Our constructions provide schemes

having a trade-off between storage of private information and efficiency of key deriva-

tion, depending on how the poset is partitioned into chains. The overall efficiency

of key derivation is bounded by the length of the longest chain in the partition, and

the amount of private information depends on w, the poset width (which is equal to

the number of chains in the partition). Moreover, due to the cryptographic compo-

nents used in our constructions (PRFs and FS-PRGs), key derivation is relatively

efficient, growing linearly in h, the number of levels between classes. In addition,

our constructions require no public storage.

Table 5.1 gives us a comparison of our schemes and other provably secure schemes
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Scheme
Private Public

Key derivation
Type of Security

storage storage security based on

Atallah et al. [8, 9]
k k(|E|+ |V |) (cH + cXOR)h KR PRF

k k1(2|E|+ |V |) cH(h+ 1) + cDh KI PRF+SE-CPA

De Santis et al. [123] k k1(|E|+ |V |) cD(h+ 1) KI SE-CPA

Ateniese et al. [10, 11]
k k1O(|V |2 · |T |3) cD KI SE-CPA

k4O(|T |) k3O(|V |2) cP KI DBDH

D’Arco et al. [50] (+[5]) k2 k2(|V |(1 + `) + 2) cE · ` KI Random exp. RSA

Ours (PRF-based) w · k 0 cPRF(h+ 1) S-KI PRF

Ours (FS-PRG-based) w · k2 0 cFS-PRG(h+ 1) S-KI FS-PRG

Table 5.1: Comparison with previous schemes.

in the literature. Private storage is measured per class in the access graph, public

storage is measured for the entire hierarchy, and key derivation shows the maximum

amount of computation that is needed to traverse h levels down in the hierarchy. We

also include the type of security that the scheme achieves, key recovery (KR), key

indistinguishability (KI) or our strengthened version, S-KI, and the basic compo-

nents of the scheme. In the table, k is a security parameter that corresponds to the

size of the keys for a PRF or for a symmetric encryption scheme E ; k1 represents the

size of ciphertexts for a semantically secure symmetric encryption scheme; k2 is a

security parameter for a pseudorandom generator; k3 represents the size of pairing-

friendly group elements (which is typically a little larger than twice the security

parameter, e.g. 171 bits at the 80-bit security level); k4 is the size of the order q of a

pairing-friendly group (which can usually be taken as twice the security parameter);

cH denotes the computation required to compute the output of a hash function; cD

is the computation needed for a symmetric key decryption; cP is the computation

needed for one pairing evaluation; cE is the cost of exponentiation modulo an inte-

ger N of size k2; cPRF is the computation needed to compute the output of a PRF;

cFS-PRG is the computation needed to compute the output of an FS-PRG; ` is the

bit-size of the scheme’s keys; and w is the width of a poset. Finally, |T | represents

the number of distinct time periods in the time-bound schemes of [10, 11].
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Chapter 6

Concluding Remarks

In this chapter, we highlight the contributions of this thesis to the area of cryptogra-

phy and discuss a number of possible research directions.

In this thesis we have addressed two distinct topics. In Part I we exploited the non-

interactive key exchange (NIKE) primitive in two settings. First we systematically

studied NIKE in the public key setting. We argued that NIKE has received scant

attention since the 1976 paper by Diffie and Hellman [53] – prior to our work, the

only existing formal security model for NIKE was the one by Cash, Kiltz and Shoup

(CKS) [40], who analysed the Diffie-Hellman NIKE scheme, as well as a variant of

it, in the random oracle model. We therefore provided different security models

for NIKE and explored the relationships between them and also the CKS security

model; we focused on the challenging scenario where an adversary can register arbi-

trary public keys into the system, what we call the dishonest key registration (DKR)

model. Having proven that those models are all polynomially equivalent, we were

then able to construct and analyse NIKE schemes in the simplest security model,

which we called the CKS-light model. We constructed a pairing-based scheme with

security in the standard model, and a variant of the Diffie-Hellman scheme with

security in the random oracle model, under the factoring assumption. Furthermore,

we also showed that a secure NIKE scheme can be converted into an IND-CCA PKE

scheme, thus illustrating the fundamental nature of NIKE in public key cryptogra-

phy.

We then considered NIKE in the identity-based setting (ID-NIKE). Using multilinear

maps, we constructed the first ever ID-NIKE scheme with security in the standard

model. Not only that, we also constructed the first ever fully-secure hierarchical ID-
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NIKE (H-ID-NIKE) scheme with security either in the random oracle model or in

the standard model. Although not very efficient, our constructions demonstrate that

it is possible to construct (H-)ID-NIKE schemes which are secure in the standard

model, moving away from the ROM-secure SOK scheme [122].

In Part II of this thesis, we first proposed enhanced security notions for hier-

archical key assignment schemes (HKASs). Our notions, which we call strong

key-indistinguishability (S-KI) and strong key recovery (S-KR), are, respectively,

strengthened versions of the KI and KR security notions of Atallah et al. [8]. They

provide the adversary against an HKAS with the additional capability of obtaining

keys for classes above the target class. We then provided a general security analysis

for the chain partition construction of Crampton et al. [48]; we proved that the se-

curity of an HKAS for arbitrary posets, built using the chain partition construction

along with an HKAS for chains, is equivalent to the security of the HKAS for chains.

We gave simple and efficient constructions for HKASs and proved them to be secure

in our S-KI security notion. Our constructions offer an attractive trade-off between

storage requirements and efficiency of key derivation.

6.1 Directions for Future Research

The work presented in this thesis has identified several research directions. We

discuss these and a few additional ones below.

1. Factoring-based NIKE scheme in the standard model. In Chapter 3,

we provided a pairing-based NIKE scheme and proved it to be secure in the

standard model, in the DKR setting, under the DBDH-2 assumption. An

apparently difficult open problem is to construct a NIKE scheme which is

secure under the factoring assumption in the standard model, in the DKR

setting; as far as we are aware, the only NIKE schemes with security under

the factoring assumption in the DKR setting use the random oracle model.

The main obstacle for us to solve this goal is to be able to non-interactively

check the validity of arbitrary public keys registered by the adversary.

2. Multi-user NIKE. In 2000 Joux [93] proposed a 3-user NIKE scheme which
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unfortunately suffers from the same security issue as the original Diffie-Hellman

NIKE scheme (as discussed in Chapter 1); its hashed version, however, is secure

in the random oracle model. For the case of n ≥ 3, Boneh and Silverberg [33]

showed how to generalize Joux’s protocol to an n-user NIKE scheme if multilin-

ear maps existed. Garg, Gentry and Halevi [72] in turn, using their candidate

multilinear maps, adapted the construction of [33], providing an instantiation

of an n-user NIKE scheme. However, like Joux’s protocol, the constructions

of [33] and [72] are not secure in the setting where the adversary is allowed

to arbitrarily register public keys against users of its choice, i.e. they are not

secure in our DKR setting. An interesting open problem is to construct an

n-user NIKE scheme (for any constant n ≥ 3) which is secure in the standard

model, in the DKR setting. However, a requirement, as a first step towards

this goal, would be to extend our security models for (2-user) NIKE to the

n-user setting.

3. Multi-user (H-)ID-NIKE. As we mentioned in Chapter 4, it would be very

interesting to formally extend our work on (H-)ID-NIKE to the setting where

shared keys can be computed by groups of users instead of only two users.

Research in this direction would yield the first secure multi-user (H-)ID-NIKE

schemes in the literature.

4. Multi-TA (H-)ID-NIKE. Again, as we discussed in Chapter 4, our work

on (H-)ID-NIKE can be extended to the setting with multiple independent

TAs. This is a more practical scenario since, for example, a pair of users

who obtained keys from independent TAs may still want to compute a shared

key between themselves. It would also be very interesting to go further and

construct a multi-TA, multi-user (H-)ID-NIKE scheme.

5. Multilinear map-free (H-)ID-NIKE in the standard model. As men-

tioned earlier, due to the use of multilinear maps, our (H-)ID-NIKE construc-

tions are not very efficient. In order for (H-)ID-NIKE schemes to be of more

practical use, we encourage the search for such constructions which are secure

in our security models, but do not require the use of multilinear maps.

6. Construction of other cryptographic primitives from NIKE or ID-

NIKE. In this thesis we demonstrated that the NIKE primitive is so funda-

mental that it can even be used to construct IND-CCA PKE schemes. Also,
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in [112], Paterson and Srinivasan showed that certain ID-NIKE schemes can

be converted into IBE schemes. We propose to further investigate the rela-

tionships between (ID-)NIKE schemes and other cryptographic primitives.

7. “Tree” partition construction for HKAS. The chain partition construc-

tion of Crampton et al. [48] that we analysed in Chapter 5 provides an attrac-

tive trade-off between storage requirement and efficiency of key derivation. It

would be interesting to formally introduce and analyse a construction in which

instead of partitioning the access graph into a collection of chains, we partition

it into a collection of trees. This construction would benefit from smaller stor-

age requirement and more efficient key derivation. As an example, one could

use PRFs to efficiently build schemes for trees and then use the tree partition

construction to generalize these schemes to arbitrary hierarchies.

8. Separating example for HKAS key indistinguishability security no-

tions. In Chapter 5 we illustrated an HKAS which is secure in the KR model

but insecure in the S-KR model. It is an open problem to either find an HKAS

which is secure in the KI model but insecure in the S-KI model, or to show

that the KI and S-KI notions are (polynomially) equivalent.
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