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Limited measurement dependence in multiple runs of a Bell test
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The assumption of free will—the ability of an experimentalist to make random choices—is central to proving
the indeterminism of quantum resources, the primary tool in quantum cryptography. Relaxing the assumption in
a Bell test allows violation of the usual classical threshold by correlating the random number generators used to
select measurements with the devices that perform them. In this paper, we examine not only these correlations,
but those across multiple runs of the experiment. This enables an explicit exposition of the optimal cheating
strategy and how the correlations manifest themselves within this strategy. Similar to other recent results, we
prove that there remain Bell violations for a sufficiently high, yet nonmaximal degree of free will which cannot
be simulated by a classical attack, regardless of how many runs of the experiment those choices are correlated
over.
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I. INTRODUCTION

Bell’s theorem [1] provides an experimentally falsifiable
prediction for certain correlations if nature is deterministic.
That these inequalities are found to be violated [2,3] constitutes
proof of the incompatibility of classical, deterministic or
stochastic, theories with the universe, no matter that our
knowledge of theories compatible with nature may be incom-
plete. A definitive Bell test, free of loopholes, is yet to be
realized. Nevertheless, the overwhelming consensus is that the
correlations predicted by quantum theory have been verified
since the common loopholes of locality [1] and detection [4]
have been closed separately [5,6], and nature would be strange
indeed if it conspired to utilize whichever loophole were
available in order to mask its classicality.

This violation of a Bell inequality as a proof technique
has since been elevated to the central tool in proving the
absence of an eavesdropper [7], being so powerful as to
secure cryptographic schemes that need not be reliant on
either the quantum theory that inspired them [8] or complete
knowledge of the devices used to implement them [9]. This
device-independent cryptography seeks security even when
the users’ devices are assumed to be controlled by an adversary,
for tasks such as key distribution (see [9], and references
therein) or randomness expansion [10]. However, this also
elevates the stringent requirements of loophole closure; an
adversary will certainly conspire to use every tool available
to mask the classicality induced by their eavesdropping.
This includes subverting not only the detectors and any
locality weaknesses, but also corrupting any other tools the
cryptographers might import into their laboratory, such as
random number generators (RNGs). This corruption must be
quite specific, since the choices of input to the Bell test made
by the RNGs should still give the experimenters, ignorant
of any adversarial involvement, the impression of perfect
randomness.

Such corruption necessitates the study of “free will” loop-
holes [11–15] in which the random numbers are not perfectly
random, and an eavesdropper can use that knowledge to modify
her strategy. The RNGs are characterized by an appropriate

measure of the experimenters’ free will in choosing their
measurements, also known as measurement independence,
though here we will use the term measurement dependence
(MD) for reasons apparent in the definitions below. While
there is no known way to experimentally determine this value,
it remains important to understand, for a prescribed degree of
MD, how much advantage can be gained by an adversary (or
was gained previously), or how to exclude such influences.
The latter question has recently been addressed in the form
of randomness amplification protocols [16–18] in which a
random input string with a given MD is processed into a new
random string about which any adversary has less information.
These studies have either assumed no correlations between
different runs of the experiment [15,19] or [16–18] restricted
the probability distributions to be of a very specific form known
as a Santha-Vazirani source [20], which requires for a source
of bits zi ∈ {0,1} that for some ε > 0 and any n,

1
2 − ε � p(zn|λ,z1, . . . ,zn−1) � 1

2 + ε,

where λ encapsulates a local variable influencing the source.
Clearly, a positive lower bound on such probabilities prevents
the predetermined exclusion of a measurement choice. Since
this exclusion of a measurement choice is intimately involved
with the optimal cheating strategy, other measures of MD could
exhibit substantially different behavior. Furthermore, while the
users of the devices view the two RNGs as separate entities, and
the Santha-Vazirani specification is for individual RNGs, an
eavesdropper who is preprogramming this has arbitrary access
to program them as she wishes, and so effectively considers
them as one joint entity.

In this paper, we assign the experimenters a fixed degree of
MD in making their measurement choices, using a measure not
constrained by the Santha-Vazirani condition, and determine
the maximum value that a classical strategy could possibly
achieve in the Bell test, comparing that to the standard
threshold of a Bell test. This has previously been examined
with regards to attacking single runs of a CHSH test [13],
more general Bell tests [15], and its application to randomness
expansion [19]. We show that an eavesdropper gains an
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advantage by correlating the partially random generation
of measurement choices over many runs of the test. Our
results explicitly describe the optimal correlations between
RNGs and measurement devices that an adversary might
introduce. We compare this strategy to the optimal quantum
strategy, allowing us to prove that when there is a small (yet
nonminimal) amount of MD, a sufficiently high Bell violation
will exclude the possibility of a classical correlated attack. We
outline our methods and analytic bounds for the bipartite Bell
test due to Clauser, Horne, Shimony, and Holt (CHSH) [21],
and discuss other Bell tests which are equally amenable to the
same numerical analysis.

II. MEASURES OF MEASUREMENT DEPENDENCE

The CHSH test consists of two parties, Alice and Bob,
making random choices j,k ∈ {0,1}, corresponding to making
one of two measurements, Aj , Bk and obtaining outcomes,
aj ,bk ∈ {±1}. After recording the result of each measurement,
they communicate in order to calculate

〈S〉 = 〈a0b0〉 + 〈a0b1〉 + 〈a1b0〉 − 〈a1b1〉.
Assuming they have perfect RNGs, each measurement is
equally likely, and the expected value of each measurement
result (independent of what the other party measured) is 0.
In the cryptographic scenario, Alice and Bob are trying to
use this to prove that they have a quantum resource, the
ideal result being 〈S〉 = 2

√
2, although no value |〈S〉| > 2

can be explained by somebody entirely replacing the quantum
functionality of the box with a deterministic protocol. This
changes, however, if the eavesdropper can manipulate the
random measurement choices. Nevertheless, we will constrain
the eavesdropper to strategies which, on average, cause
each measurement choice to be equally likely, and each
measurement outcome to be equally likely, otherwise Alice
and Bob would soon spot that something was going on!

We are interested in assessing the performance of an
eavesdropper when they are allowed to preprogram both the
measurement devices and the RNGs of the two parties. Their
collective strategy is a program, known as a local hidden vari-
able (LHV) model, that the eavesdropper designs: a random
variable x ∈ X specifying how to select the measurement
bases and the corresponding results. The degree of control
that the eavesdropper has over the choice of measurement
basis is contained in the probabilities of making a given
choice, p(Aj ,Bk|x). Numerous different ways have been
proposed to assign a numerical value based on this [13–15,19].
Perhaps the most natural class of measures are those that
can be interpreted as the advantage that is gained by the
eavesdropper’s knowledge of the probability distribution as
compared to that of Alice and Bob’s:

Mp = max
x∈X

⎛
⎝∑

j,k

|p(Aj,Bk|x) − p(Aj,Bk)|p
⎞
⎠

1/p

,

particularly for p = 1. We require that the marginal distri-
butions representing the measurement choices are uniform,
p(Aj,Bk) = ∑

x p(x)p(Aj ,Bk|x) = 1
4 , as is typically the case

in a CHSH test, although there may be advantages to the
cryptographers to lifting this expectation [15]. While the p = 1

norm is amenable to analysis using linear programming [22],
the choice of p = ∞ generalizes to the multiple run case
more readily and seems natural with its prominent ties to the
min-entropy measure that is useful in cryptographic scenarios.
This is seen by

lim
p→∞ Mp = max

x,j,k
|p(Aj,Bk|x) − p(Aj ,Bk)| = P − 1

4 ,

where P is the maximum probability,

P := max
j,k,x

p(Aj,Bk|x),

since the maximum is obtained for p(Aj,Bk|x) > 1/4 (this
will always be true in the large run limit in the parameter
regime that is interesting for operation). This measure was
introduced in [19], with P = 1 representing the possibility
of an entirely deterministic selection with no free will, and
P = 1

4 delivering the uniform measurement selections Alice
and Bob expect to observe. The techniques presented here
can also be applied to the measure introduced by Hall [13],
subject to some minor technical adjustments. In contrast to the
previous terminology, we say that these measures characterize
measurement dependence (rather than independence), since
a model with a higher evaluation displays measurement
selections that are more dependent on the underlying variables.

III. OPTIMAL ONE-SHOT ATTACK

We focus on maximizing the score of a CHSH game subject
to a fixed MD P . The measurement settings are Aj ,Bk with
j,k ∈ {0,1} and the outcomes are deterministically specified
by underlying variables x, i.e., aj (x),bk(x) ∈ {±1}, such that
the game evaluates

S = 4
∑

x

p(x)
∑

j,k∈{0,1}
p(Aj,Bk|x)(−1)jkaj (x)bk(x). (1)

This score is related to the probability of winning a single
round of the CHSH game by pwin = (1 + S/4)/2. A single
run of the experiment is said to give a “correct answer” to
the CHSH game if either (j,k) �= (1,1) and the outcomes are
equal, or (j,k) = (1,1) and the outcomes are different. From a
choice of 16 distinct outcome sets, half achieve the maximum
local CHSH score, giving only one incorrect answer for the
four possible query pairs. These are given by the four variables
in Table I, along with their conjugates that specify the negative
outcomes (these should be used half of the time to avoid
suspicion of fixed outcomes, but do not affect correlations and
have been suppressed from the calculations for simplicity).

The adversarial strategy selects each x ∈ {0,1,2,3} with
probability 1/4, uniquely defining a set of predetermined
outcomes, followed by the measurement choices j ,k to be
used, represented by y = 2j + k ∈ {0,1,2,3} so that the

TABLE I. Outcomes specified by an underlying variable x.

x a0 a1 b0 b1

0 1 1 1 1
1 1 −1 1 1
2 1 1 1 −1
3 1 −1 −1 1
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conditional probabilities may be rewritten as p(y|x), and the
definition of MD as P = maxx,y p(y|x). We seek to maximize
the CHSH score (1),

S = 4 − 2
∑

x+y=3

p(y|x), (2)

subject to a fixed degree of MD P and Bayes’ theorem∑
x

p(x)p(y|x) = p(y), ∀y, (3)

which reduces to
∑

x p(y|x) = 1 by the assertion that p(x) =
p(y) = 1/4. The optimal strategy has been derived using both
Hall’s measure [13,23] and P [19]. The latter takes P ∈
[1/4,1/3] such that p(y|x) = P if x + y �= 3 (i.e., correct an-
swer) and p(y|x) = 1 − 3P otherwise, yielding S = 24P − 4
up to the threshold value P = 1/3 that achieves maximum
S = 4. Optimality derives directly from the reasoning outlined
below for the general case.

IV. MULTIPLE RUNS

A. Classical adversary

Under the usual assumption of perfect measurement in-
dependence, the best classical eavesdropping strategy acts
independently on each run of the experiment [24]. A limited
MD scenario necessitates re-investigation of the possible types
of attack, since Eve may use her extra knowledge of the
underlying system’s imperfections to correlate her strategy
appropriately. This is similar to LHV models which exploit
imperfect photon detection rates by simulating a detection
failure and changing the output strategy accordingly [25].

Assume, as before, that Eve has written a program that
tells Alice’s and Bob’s devices what to do (using the local
measurement settings as inputs), now encoding instructions for
blocks of N runs together. If Eve seeks to optimize the CHSH
score, the outcomes for each run must still be drawn from
Table I. The N -run system is fully characterized by the strings
x, y ∈ {0,1,2,3}N such that xn and yn denote respectively
the outcome assignments and pair of measurement settings
for the nth run. The definition of P intuitively extends to
an N -run model by considering all possible combinations of
measurement settings and underlying outcome specifications,

P(N) := max
x, y

p( y|x). (4)

It is clear that the optimal single-shot strategy above, when
repeated independently for N runs, has MD P(N) = P N ∈
[4−N,3−N ]. The optimal correlated attack will obviously
perform as well or better than this, and comparison can be made
with the repeated single-shot strategy over varying N by taking
the N th root, thus a fixed MD P requires that p( y|x) � P N

for all x, y.
The one-shot attack distinguishes which (xn,yn) pairs give

a correct answer; the extension to N runs asks how many
answers for a pair (x, y) are correct, k(x, y) := ∑N

n=1 δxn+yn �=3.
The average CHSH score is then

S = −4 + 8
∑

x

p(x)Sx, Sx := 1

N

∑
y

p( y|x)k(x, y). (5)

We wish to maximize S subject to p(x) = p( y) = 4−N , Bayes’
rule condition,∑

x

p(x)p( y|x) = p( y), ∀ y, (6)

and the limited MD constraint p( y|x) � P N for all x, y. Sx

may be rewritten as

Sx = 1

N

N∑
k=0

kpx
k , px

k :=
∑

y:k(x, y)=k

p( y|x).

Since p( y|x) can be individually varied, the optimization can
be made on each Sx separately. The outcome specifications
obtained from extending Table I to N runs exhibit the following
relation for any k,x,x′:

#{ y : k(x, y) = k} = #{ y : k(x′, y) = k} =
(

N

k

)
3k.

Thus, redistribution of the probabilities p( y|x) over any y for
which k(x, y) = k will have no effect on the maximization.
Optimization of S corresponds to independent optimization
over each of the Sx . Since these quantities are the same for all
x,x′, it is evident that they have the same optimum, px

k = px′
k ,

so we may remove the x dependence, defining pk such that
px

k = pk

(
N

k

)
3k , thus (5) becomes

S = 8

N

N∑
k=0

kpk3k

(
N

k

)
− 4. (7)

The probabilities are also subject to Bayes’ rule, condition (6)
which, by the assertion that p(x) = p( y) = 4−N , reduces to

N∑
k=0

pk3k

(
N

k

)
= 1, (8)

while fixed MD P requires that pk � P N for all k. This
problem can be solved by linear programming, which confirms
the following argument.

Intuitively for a CHSH test, obtaining the maximum S value
requires more weight to be given to the pairs of measurement
settings that answer a larger proportion of the N queries
correctly. Therefore we assign pN = P N . If the normalization
(8) allows, set pN−1 = P N , and so on. All remaining pk are
set to 0. The curve of maximum S against P N is piecewise
linear, connected by the N + 1 points defined by a parameter
l′ such that

P =
[

N∑
k=l′

3k

(
N

k

)]−1/N

, (9)

S = 8P N

N

N∑
k=l′

k3k

(
N

k

)
− 4. (10)

The curve is linearly interpolated for P N , where P ∈
[1/4,1/3], between these points by assigning pk = 0 for
k < l′ − 1, pk = P N for k � l′, and letting pl′−1 fulfill the
normalization (8). Figure 1 shows such plots for various finite
values of N . We see immediately that the eavesdropper gains
an advantage with increasing N , outperforming the single-shot
attack. For certain sequences of measurement choices in the
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FIG. 1. The maximal CHSH expectation value S for given
MD parameter P with varying numbers of runs N across which
measurement basis choices are correlated. Strategies are classical
(solid lines) or quantum (dashed lines). The black lines are the
correlated strategies in the limit N → ∞, therefore upper bounds
for all finite N -run strategies. The shaded region indicates achievable
CHSH violations using quantum technology and perfect measurement
independence.

optimal strategy, such as those that have already given N − l′
wrong answers, the impossibility of certain measurement
choices is perfectly predictable. Nevertheless, knowledge
of the hidden variable x makes knowledge of previous
measurement choices irrelevant to the cheating strategy.

The optimal strategy’s behavior in the large N limit is less
clear. Is the limiting curve simply the S = 4 line, making
perfect measurement independence the singular point at which
the CHSH test functions? The following theorem answers this
in the negative.

Theorem 1. The measurement dependence P required
to simulate a CHSH score S with a deterministic strategy
correlated over N runs, in the N → ∞ limit, has the lower
bound

P �
(

4 + S

24

)(4+S)/8 (
4 − S

8

)(4−S)/8

. (11)

Proof. It is enough to consider the N + 1 points defined
by (9) and (10) and find a lower bound for P and an upper
bound for S as functions of the rescaled parameter l = l′/N ∈
[3/4,1]. To bound P , observe that P = 1

4 Pr(X � l′)−1/N

where X is a binomial distribution with N trials and success
probability 3/4. The additive form of the Chernoff bound
easily recovers

P � (l/3)l(1 − l)1−l . (12)

We aim to bound S by dividing the region k = l′ . . . N into
two runs, split at αN , such that

R1 :=
αN−1∑
k=l′

3k

(
N

k

)
� 3lN

(
N

lN

)
� 3lN eNH (l),

R2 :=
N∑
αN

3k

(
N

k

)
� 4Ne−ND(α‖3/4),

where we have used Stirling’s approximation and a Chernoff
bound respectively. H (l) = −l log2 l − (1 − l) log2(1 − l) is

the binary entropy while

D(α‖β) = α ln

(
α

β

)
+ (1 − α) ln

(
1 − α

1 − β

)
is the Kullback-Leibler divergence between Bernoulli
distributed random variables with parameters α and β. For
any α = l + ε with finite (but small) ε,

R2

R1
� 4Ne−ND(α‖3/4)

3lN eNH (l)

is exponentially small in εN . For increasing R2
R1

,

S � 8
αR1 + R2

R1 + R2
− 4

is increasing. In the large N limit this yields

S � 8(l + ε) − 4. (13)

The bound is tight since a lower bound for (10) is given by

S � 8
P Nl′

N

N∑
k=l′

3k

(
N

k

)
− 4 = 8l − 4, (14)

substituting the definition of P in (9). Substitution for l in the
bounds (12) and (13) yields the result. �

The bound may alternatively be expressed in terms of the
CHSH winning probability pwin as

P �
(

pwin

3

)pwin

(1 − pwin)1−pwin . (15)

The regime of allowable correlated LHV attacks described by
Theorem 1 is depicted by the solid lines in Fig. 1. The points
P∞ ≈ 0.258 and P1 ≈ 0.285 are where a CHSH value of
S = 2

√
2 can be achieved with (infinitely) correlated strategies

and single shot attacks respectively. In the shaded region (for
P < P∞), the S values are below 2

√
2 and therefore achievable

with quantum technologies, and yet can never be simulated by
any arbitrarily correlated attack without detection from Alice
and Bob in their observed measurement choices.

B. Quantum adversary

Tsirelson’s bound proves that a test of the CHSH inequality
with perfect measurement independence has a maximum
possible value of 2

√
2, for instance when the experimenters

perform quantum measurements on a singlet state [26]. Such
quantum strategies are known to be vulnerable to a limited-
free-will attack in the single shot case by optimizing over
both the measurement input distribution and the measurement
operators themselves [19]. Further correlating over N runs of
the experiment can also enhance this quantum strategy.

We make the common assumption that each run is causally
disconnected [27,28], which ensures that the measurement
choices for each CHSH test, given knowledge of the hidden
variable, are otherwise independent, i.e., measurement choices
at distant locations are not known beyond the extent to which
it is implied by knowledge of the hidden variable. The causal
independence also enforces that the effective CHSH operator
being optimized has the local form

SN := S ⊗ 1⊗ 1 · · · + 1⊗S ⊗ 1 · · · + 1 ⊗ 1 ⊗ S · · · + · · · .
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Alice and Bob can only perform local measurements, thus use
of an entangled state between the devices over multiple runs
does not provide an advantage. The state that optimizes this
operator is separable, corresponding to a tensor product of the
states that optimize 〈S〉 in (16), such that |〈SN 〉| = N |〈S〉|, so
it is enough to optimize over the single-shot operator S.

For a specified value of P , determining the optimal quantum
strategy (which will typically correspond to no eavesdropping)
will yield the maximum realizable CHSH value, which is
important in bounding an eavesdropper’s knowledge for a
given CHSH value.

Using the notation p y for the probabilities of a given set of
N measurement settings described by a string y ∈ {0,1,2,3}N ,
the aim is to maximize the expectation

〈S〉 = 4

N

N∑
n=1

〈
pn

0A0B0 + pn
1A0B1 + pn

2A1B0 − pn
3A1B1

〉
(16)

where, by our causality assumption, pn
m = ∑

y:yn=m p y are the
marginal probabilities for a given setting m being chosen
on run n, and the measurement operators Aj and Bk are
two-valued operators. Bounds on 〈S〉 subject to fixed P have
been derived for an individual run in [19]. Using the same
symmetry arguments as above, we reduce the set {p y} to
{pk} according to the number of correct answers each set
y gives. This leaves pn

0 = pn
1 = pn

2 = R and pn
3 = 1 − 3R

where, through the symmetry-based reduction, R is simply

R =
N∑

k=1

3k−1 k

N

(
N

k

)
pk

which is equivalent to (7) up to constant factors. Therefore, for
a fixed degree of MD requiring pk � P N ∀k, R is optimized
by the same input distribution [see Eq. (9)]. The achievable
expectation values are then

|〈S〉| � 4(1 − 2R)3/2

√
1 − 3R

,

provided R < 3/10 [19]. This maximal value SQ can be
compared with the value SC = 4(6R − 1) obtained by the
optimal classical, deterministic strategy as

SQ = 2(8 − SC)3/2

3
√

6(4 − SC)
(17)

when SC < 16/5. For R � 3/10, hence SC � 16/5, the two
strategies coincide. The quantum strategies are compared with
their classical equivalents in Fig. 1.

V. NUMERICAL APPROACH TO OTHER
BELL INEQUALITIES

The analytical results for correlated strategies to the CHSH
test above are not easily replicable for more complex Bell
tests, since there are complications when a Bell test does
not require the correlations produced by every possible
measurement pair to evaluate the score. Nevertheless, as
alluded to in the definitions, optimal finite N -run strategies
can be determined numerically for a given measure of MD

using linear programming. We briefly outline the approach for
the measure M1 (since P is simpler), for both the CHSH test
and its well-known generalization to the class of m setting,
two outcome tests, Imm22 [29].

For the CHSH test, the aim is to maximize S as in (7)
subject to normalization (8) and fixed MD M1. By assuming
p(x) = 4−N , the normalization ensures

∑
x p( y|x) = 1 for

each y, while M1 is given by

M1 = max
x

Mx, Mx :=
∑

y

∣∣∣∣p( y|x) − 1

4N

∣∣∣∣ . (18)

We may again reduce the conditional probabilities to the
N + 1-element vector p = (pk) by considering the following
symmetry argument. Observe that to maximize S for fixed M1,
all the Sx will be equal, which in turn means that all Mx will
be equal. Equation (18) reduces to

M1 =
N∑

k=0

(
N

k

)
3k

∣∣∣∣pk − 1

4N

∣∣∣∣ . (19)

Introducing new non-negative variables w such that

wk � pk − 4−N, wk � 4−N − pk (20)

allows removal of the modulus to create a standard linear
programming problem by converting all inequalities to a
statement on non-negative variables, i.e., introduce variables a,
b defined by ak := wk − pk + 4−N and bk := wk + pk − 4−N

and set a � 0, b � 0 to represent (20). The measurement
independence condition (19) is then expressed as

M1 =
N∑

k=0

(
N

k

)
3kwk. (21)

We have now reduced to the linear problem

minimize c · z

subject to B · z = v,z � 0,

where z is a 4(N + 1)-element vector with the block structure
zT = ( p w a b ) and cT = ( −s 0 0 0 ), where sk := 3k

(
N−1
k−1

)
,

is used to maximize S = −4 − 8c · z. The normalization
constraint, the definitions of a and b, and the measurement
independence constraint (21) are found within

B =

⎛
⎜⎝

n 0 0 0
1 −1 1 0

−1 −1 0 1
0 n 0 0

⎞
⎟⎠ , v =

⎛
⎜⎜⎝

1
4−N

−4−N

1
N1

MK

⎞
⎟⎟⎠ ,

where nk := (
N

k

)
3k .

The optimal single-shot attack (N = 1) under the measure
M1 is in fact the same model as before with parameter P ∈
[1/4,1/3], where M1 = 3(P − 1/4) and thus S = 2 + 8M1.
We compare the optimal correlated N -run attack with N

repetitions of the one-shot attack. As with the analysis for
P , both strategies coincide at the limits S = 2 and S = 4, the
latter being achieved with MD of Mmax(N ) := 2(1 − (3/4)N ),
again with pN = 3−N and otherwise pk = 0. The comparison
for N = 100 is shown in Fig. 2. Unfortunately, the complexity
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FIG. 2. Comparison of the optimal correlated attack (solid line)
with N repetitions of the optimal one-shot attack (dashed line) for
N = 100, using the CHSH inequality. The maximum score S = 4
can be simulated classically with a measurement dependence of
M1 = Mmax := 2[1 − (3/4)N ].

of the M1 measure compared to P makes the derivation of a
general bound for all N difficult.

In principle, any Bell test (linear function of the underlying
probability distribution) can be expressed in this way. The
family of Imm22 Bell tests [29], which are two party, m setting,
two outcome (±1) tests, benefit from a similar symmetry
reduction to that of the CHSH test, corresponding to m = 2.
As an extension of (1), these tests can similarly be assigned a
score

Smm22 = m2
∑

x

p(x)
m−1∑
j,k=0

p(Aj,Bk|x)αm
jkaj (x)bk(x), (22)

where αm
jk takes the value +1 if j + k < m, −1 if j + k = m,

and 0 if j + k > m.
There are additional complications for m � 3, however.

First, not every pair of correlations is assigned the same
weight; some pairs are not used at all, i.e., (j,k) for which
αm

jk = 0. Nevertheless, an eavesdropper needs to ensure that
such correlations still arise so as not to be suspicious. This
means that, upon enumerating the measurement settings with
strings y ∈ {0, . . . ,m2 − 1}N and determining the optimal
outcome sets x, the symmetry structure of p( y|x) has two
parameters—k, the number of “correct” answers (as before)
to correlation pairs that are used, and l, the number of
unused correlation pairs in the string y. Hence, we have a
set of probabilities {pk,l} to optimize over. However, this also
means that the constraints (3) only reduce to a set of N + 1
conditions dependent on how many unused correlation pairs
are present for given settings y rather than a single condition,
and depending on the choice of distribution p(x), it may never
be possible to satisfy all these conditions. Nevertheless, this
choice does not affect optimality; provided a distribution of
p(x) is selected such that the constraints (3) are all fulfilled,
that is equally as good as any other satisfying assignment, and
the same optimal values can be achieved. Figure 3 shows a
comparative plot for the I3322 inequality in which an advantage
to the correlated attack is found.
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FIG. 3. Comparison of the optimal correlated attack (solid line)
with N repetitions of the optimal one-shot attack (dashed line) for
N = 10, using the I3322 inequality. The maximum score S3322 = 8
can be simulated classically with a measurement dependence of
M1 = Mmax := 2[1 − (7/9)N ].

VI. CONCLUSIONS

By manipulating the RNGs used to select measurements
in a Bell test in tandem with the devices performing them,
an adversary may simulate a Bell violation. The degree of
violation can be bounded above in terms of an appropriate
measure of MD. Crucially, while the adversary gains a sig-
nificant advantage in employing attacks correlated over many
runs of an experiment, as opposed to single-shot attacks, there
are still violations which cannot be reproduced by such attacks
if the experimenters’ degree of MD is sufficiently low. In light
of this, existing analyses of the working regimes for device-
independent randomness expansion [19] and key distribution
protocols could be revised, although the problem of performing
privacy amplification without trusted randomness would need
addressing. Since many of these utilize the CHSH test, our
focus on this test is immediately applicable, while application
to other tests is a simple linear programming problem. How to
experimentally assess the value of P (or another measure) in
a pair of RNGs remains an open question.

While our analysis does not require the RNGs to be
Santha-Vazirani sources [20], as in proposed randomness
amplification protocols [16–18], our results can be interpreted
in the context of randomness amplification. For a given
MD P , the optimal quantum strategy, in the regime where
quantum beats classical (i.e., SC < 16/5), gives perfectly
random measurement outcomes on one side. If the players
could know the value of the hidden variable in a run, and
therefore the measurement selection bias, they can implement
the optimal quantum strategy, which has the potential to allow
perfect amplification (i.e., procuring perfectly random bits
from partially random bits) in this regime. However, there
is no obvious reason why honest players would have such
knowledge of the hidden variables.
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