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Abstract. It is shown that energy transfer in a homogeneous fully connected
quantum network is assisted by a decohering interaction with environmental
spins. Analytic expressions for the transfer probabilities are obtained for the
zero temperature case, and the effect is shown to persist at physiological
temperatures. This model of decoherence-assisted energy transfer is applied to
the Fenna–Matthews–Olson complex.
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1. Introduction

Recently, evidence of quantum coherence has been detected in biological systems at
physiological temperatures, including the photosynthetic light-harvesting complexes of a
species of green sulphur bacteria [1] and two species of marine cryptophyte algae [2]; organisms
which are well-adapted to photosynthesize under low-light conditions [3, 4]. These results
are interesting both from the perspective of quantum information processing, where a major
challenge is to maintain quantum coherence in systems that unavoidably interact with an
environment, and from the perspective of quantum biology, which investigates whether some
aspects of the functioning of living systems can only be explained quantum mechanically.
Inspired by the surprising phenomenon of quantum coherence in warm, noisy, complex and yet
remarkably efficient energy transfer systems, many models of environment-assisted quantum
transport have been proposed [5], typically within approximate spin-boson models of the
system. However, we show here that interaction with a more structured environment; namely
a spin bath, can also assist quantum efficiency, and moreover, our model is exactly solvable in
suitable limits.

1.1. Modelling the system

All chlorophyll-based photosynthetic organisms contain light-harvesting complexes that act as
antennae, absorbing photons and transferring the resulting excitation energy to the reaction
centre, where the secondary photosynthetic process of charge separation takes place. The
excitation transfer happens on a scale of picoseconds and with a quantum efficiency of over
95% [6].

Light-harvesting antennae consist of a variety of photoactive pigments, most commonly
chlorophylls or bacteriochlorophylls, held in well-defined orientations and configurations by a
scaffold of proteins [7]. These (bacterio)chlorophylls have dominant absorption bands in the
(near UV) blue and (near IR) red regions, hence their green colour, with the transition termed
the Q y transition corresponding to longer wavelength [8]. Due to very fast internal conversion
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of higher energy singlet states [9], individual pigment molecules can be approximated as two-
level systems, formed by the ground state and the lowest excited singlet state, which in the case
of (bacterio)chlorophyll is the Q y state [7].

Electronic excitation energy transfer (EET) is a result of a Coulomb interaction between
molecules; the electrostatic energy of one initially excited molecule can be transferred to
another, initially in the ground state. The excited state is characterized by an electron–hole
pair, due to the promotion of an electron from the highest occupied molecular orbital to
the lowest unoccupied molecular orbital [10]. In the case of strong intermolecular coupling,
superpositions of states of pairs of molecules in the ground and excited state may be formed.
This delocalized state is termed a Frenkel exciton [11], with dynamics characterized by the
absence of charge transfer between molecules. In the case of photosynthetic antennae, where
inter-pigment distances can be as small as 10 Å [8], excitation dynamics are described in terms
of such excitons [12].

Due to the timescales of photon absorption, excitation lifetime, and reaction centre
reopening time in light-harvesting complexes, it is reasonable to describe the transfer dynamics
under the assumption that there is at most one excitation present [13]. The excitonic Hamiltonian
in the single excitation subspace is given by

Hex =

∑
j

E j | j〉〈 j | +
∑
i 6= j

Ji j |i〉〈 j |, (1)

where | j〉 denotes the presence of the excitation on the two-level site j . The site energies of the
pigments are given by E j , and are defined as the optical transition energies at the equilibrium
position of nuclei in the electronic ground state [14], while the EET couplings are given by Ji j .

1.2. Modelling the environment

EET is typically described in the limit of either fast or slow intramolecular relaxation as
compared to intermolecular transitions [10]. Förster theory [15] is a non-radiative resonance
transfer theory applicable to the former case; for weakly coupled molecules in the presence of
strong dissipation. In this regime, the excitation energy is transferred incoherently in a hopping
manner between molecules. In the latter case, the Redfield equation [16] is commonly employed
to solve for the dynamics of the reduced density matrix of the system. In this case, the weak
system–environment interaction is treated perturbatively within a Markovian approximation,
i.e. where the state of the system remains uncorrelated with the environment [17].

In the case of photosynthetic light-harvesting complexes, however, the reorganization
energies of the protein molecules appear to lie within the range of electronic coupling strengths
between pigments [14, 18]. Thus, the EET dynamics are in the intermediate regime between the
two limits, and should be investigated within the theory of open quantum systems in the non-
Markovian regime, a topic which has recently attracted much attention [19–22]. The quantum
dynamics of excitons within a protein medium are typically treated within a spin-boson model of
the system. Although theoretical developments have led to higher-order approximate solutions
for systems that interact strongly with environmental vibronic modes, including in the non-
Markovian regime [23], such models are generally not exactly solvable. Spin baths, on the
other hand, naturally describe a set of localized environmental modes [24, 25]. Moreover, the
interaction of a central spin with a spin bath often leads to strong non-Markovian behaviour of
the central spin [26].
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Here, we do not attempt to provide a model of energy transfer in real photosynthetic
systems that can explain the lifetime of the observed quantum coherence. A recent article [27]
reviews progress on this question. Rather, we show with analytical expressions that interaction
with a finite spin bath can also assist quantum efficiency, that this effect persists at physiological
temperatures, and therefore that a sufficiently large spin bath could provide a sufficiently
realistic model for environments occurring in photosynthetic light-harvesting complexes and
biological systems in general.

We make the additional simplification of considering a pure dephasing interaction between
the system and the environment, with the aim of an analytical description of the EET dynamics.
Since the transfer efficiencies are so high, it seems reasonable to assume that the decoherent
dynamics do not change the excitation number (although models that can tolerate a changing
excitation number on the system spins do exist [28]).

1.3. Decoherence-assisted transport

In a recent article [29] analytic expressions were derived for the transition probability in a
dimer system under the influence of a decoherent interaction with environmental spins. It was
shown that there exist biologically relevant parameter regimes where such an interaction shifts
the energy levels of the dimer, such that resonance and near-perfect transfer is achieved, and
moreover that these effects persist at physiological temperatures; i.e. transfer probabilities of
over 85% can be achieved at 300 K.

This idea has recently been extended to the study of the noise-induced properties of a two-
level system in a spin bath which undergoes a quantum phase transition [30]. Here, we extend
the model of decoherence-assisted transport to more complex networks.

In section 2 we review the case of the dimer with its levels coupled to spin baths. In
section 3 we analyse the dynamics of a single excitation in a fully-connected N -site network
with sites interacting with environmental spins at zero temperature. We show analytically
that the maximum probability of transfer through the network can be increased as a result of
decoherent coupling to spin environments, and find that there are cases where transfer can be
guaranteed. Furthermore, we show that these effects persist at physiological temperatures. In
section 4 we consider as an example the Fenna–Matthews–Olson (FMO) complex [31], the
antenna complex found in the photosynthetic light-harvesting units of green sulphur bacteria.
The FMO complex is modelled as a fully connected seven-site network with site energies and
EET couplings calculated by Adolphs and Renger [14], and it is demonstrated numerically
that EET is significantly assisted by decoherent interaction between each network site and a
respective spin environment at a physiological temperature of 300 K.

2. Decoherence-assisted transport in a dimer system

For a dimer with Hamiltonian Hd = ε1|1〉〈1| + ε2|2〉〈2| + J (|1〉〈2| + |2〉〈1|), the maximum
transfer probability for a single excitation Max[P1→2(t)] is given by J 2/(J 2 +12) where J
is the amplitude of transition, and the detuning 1 is given in terms of the energy levels of the
dimer as (ε2 − ε1)/2. Certain transfer is achieved when 1= 0 at time t = π/(2J ), i.e. when
there is resonance between the energy levels in the system.

In a recent article [29], it was shown that there exist well-defined ranges of parameters for
which a pure dephasing interaction with environmental spins in a spin star configuration [26]
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assists energy transfer in the dimer system. For a dimer with each level coupled to a spin bath
at zero temperature, the Hamiltonian of the total system is given by

H = Hd + HB + HI . (2)

Each environment B j consists of n j spin-half particles

HB =

2∑
j=1

HB j =

2∑
j=1

n j∑
k=1

α j
σ k, j

z

2
, (3)

where σz are Pauli matrices, the baths are labelled by j = 1, 2, and the spins in each bath by
k = 1, . . . , n j . The purely decoherent interaction between each site j in the system and the
corresponding spin bath is modelled by

HI =

2∑
j=1

HI j =

2∑
j=1

n j∑
k=1

γ j | j〉〈 j |
σ k, j

z

2
. (4)

We consider the zero temperature case, and therefore the state of each bath is a pure state, the
ground state, described in the collective operator basis by

|ψB j (0)〉 =

∣∣∣n j

2
,−

n j

2

〉
(5)

(see [29] for details). The Hamiltonian of the environment HB commutes with the Hamiltonian
of interaction HI and therefore the state of the total system is always in a product state of the
network and the baths. As a result, the effective Hamiltonian for the total system is given by

H =

2∑
j=1

ε′

j | j〉〈 j | +
2∑

i, j=1
i 6= j

J |i〉〈 j |, (6)

where ε′

j = ε j − γ j n j/2.
For the Hamiltonian H , the maximum transfer probability Max[P1→2(t)] is given by

J 2/(J 2 +1′2) where in this case the detuning is given by 1′
= (ε′

2 − ε′

1)/2. Certain transfer
is similarly achieved when1′

= 0, which in this case is possible for a wide range of parameters
γ j and n j .

At zero temperature, the total state is always a product of the dimer state and bath state.
This means that the dimer is always in a pure state. At non-zero temperature, however, the state
of the dimer is described by the density matrix obtained by tracing out the degrees of freedom
of the bath. The initial state of the bath is given by the canonical distribution

ρB(0)=

2∏
i=1

1

Z i
e−βHB j , (7)

where Z i is the partition function of the corresponding bath

Z i =

ni/2∑
ji =0

ji∑
mi =− ji

ν(ni , ji)〈 ji ,mi |e
−βαiσ

z
i | ji ,mi〉

=

ni/2∑
ji =0

ν(ni , ji)
sinhβαi( ji + 1/2)

sinhβαi/2
, (8)
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where β is the inverse temperature, and ν(ni , ji) denotes the degeneracy of the spin bath [32].
The effect of decoherence-enhanced transport is shown to persist at a physiological temperature
of 300 K, where transfer probabilities of nearly 90% can be achieved in the dimer for
biologically relevant parameters [29].

3. Decoherence-assisted transport in a fully-connected quantum network

3.1. The fully symmetric network

For a fully connected network of N qubits interacting via homogeneous X X coupling with
coupling strength J/2 and with equal site energies ε, the effective Hamiltonian in the single
excitation subspace is given by

HN =

N∑
i=1

ε|i〉〈i | +
N∑

i, j=1
i 6= j

J |i〉〈 j |. (9)

The eigenvalues for the Hamiltonian HN are given by

λ1,...,N−1 = ε− J, (10)

λN = ε + (N − 1)J. (11)

The properties of the constant ω = exp(i2π/N ), including
N∑

j=1

ω j
= 0, (12)

allow the following choice of eigenbasis for the system:

|λm=1,...,N−1〉 =
1

√
N

N∑
j=1

ωmj
| j〉, (13)

|λN 〉 =
1

√
N

N∑
j=1

| j〉. (14)

Each site in the network | j〉 for j = 1, . . . , N can then be written in the eigenbasis as

| j〉 =
1

√
N

(
|λN 〉 +

N−1∑
m=1

ω−mj
|λm〉

)
, (15)

and the probability of transfer of the excitation from some initial site |I 〉 to a final site |F〉, both
of which can be written in the form of (15), is then given by

PI→F(t)= |〈F |e−iHN t
|I 〉|2

=
1

N 2

∣∣∣∣∣e−itλN + e−itλ1

N−1∑
m=1

ωm(F−I )

∣∣∣∣∣
2

=
1

N 2
|1 − e−it N J

|
2. (16)
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In this case the maximum probability of purely coherent transfer through the network is

Max[PI→F(t)] =
4

N 2
, (17)

at time t = π/(N J ) (and subsequent periodic revival times).
Our study will focus on whether a decoherent interaction between a fully-connected

network and environmental spins can enhance energy transport through the network, by
breaking the symmetry properties that prevent distinguishing between one target site and
another.

3.2. Adding environmental spins

By coupling sites in the fully connected network to independent spin environments in symmetric
star configurations, the Hamiltonian of the total system is given by

H = HN + HB + HI , (18)

with HB and HI defined as previously in section 2, but with j = 1, . . . , N . We can then write
the effective Hamiltonian for the total system, with arbitrary coupling of the zero temperature
spin baths as

H =

N∑
j=1

ε j | j〉〈 j | +
N∑

i, j=1
i 6= j

J |i〉〈 j |, (19)

where ε j = ε− γ j n j/2.
If we select that k sites are not coupled to any baths (or the same number of baths),

then the resultant Hamiltonian Hk has k − 1 degenerate eigenvalues λ1,...,k−1 = ε− J , while the
remaining eigenvalues are given by solutions to the polynomial of order N − k + 1 generated
by the Hamiltonian. The orthonormal eigenvectors corresponding to the degenerate eigenvalues
λ1,...,k−1 are given by

|λm〉 =
1

√
k

k∑
j=1

ωmj
| j〉 (20)

for m = 1, . . . , k − 1, where ω = exp(i2π/k).
The symmetry of Hk and the resulting form of the eigenvectors (20) make it possible to

concentrate on the essential dynamics through a partial diagonalization H̃k = Uk HkU †
k . The

unitary transformation Uk is given by

Uk = |1〉〈φ| +
N−k∑
n=1

|n + 1〉〈n + k| +
k−1∑
m=1

|N − k + m + 1〉〈λm|, (21)

where |φ〉 is defined as

|φ〉 =
1

√
k

k∑
j=1

| j〉. (22)

An equivalent transformation can be applied to each set of spins with the same energies ε j .
Using the above general formalism, we now derive expressions for the transfer probabilities for
some particular cases.
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3.2.1. Adding one spin bath. In the case where just one spin bath is coupled to a network site,
the Hamiltonian HN−1 is given by (19) with k = N − 1. In this case there are N − 2 degenerate
eigenvalues of energy ε− J , while the remaining eigenvalues satisfy

λN−1 + λN = ε + ε1 + (N − 2)J. (23)

If the bath is coupled to either the initial site |I 〉 or the final site |F〉, the dynamics are
constrained to a two-dimensional subspace which is independent from the degenerate subspace
of dimension N − 2 in the effective Hamiltonian picture. In this case, where the energy of the
site coupled to the bath is ε1, the rotated Hamiltonian H̃N−1 = UN−1 HN−1U †

N−1 is given by

H̃N−1 =



ε + (N − 2)J
√

N − 1J 0 0 . . . 0
√

N − 1J ε1 0 0 . . . 0

0 0 ε− J 0 . . . 0

0 0 0 ε− J 0
...

...
...

. . .

0 0 0 0 ε− J


. (24)

As in the case of the dimer, transfer is optimized by inducing resonances; setting the energy
level of the bath site to ε1 = ε + (N − 2)J realizes the maximum probability of transfer

Max[PI→F(t, ε)] =
1

N − 1
, (25)

at time t = π/(N J ) (and subsequent periodic revival times). The situation where the bath is
coupled to neither site |I 〉 nor |F〉 is a special case of the model analysed in section 3.2.3.

3.2.2. Adding two spin baths. In the case where two network sites are coupled to spin baths,
the Hamiltonian HN−2 is given by (19). In this instance, there are N − 3 degenerate eigenvalues
of energy ε− J , while λN−2 = ε1 − J and the remaining eigenvalues satisfy

λN−1 + λN = ε + ε1 + (N − 2)J. (26)

If the baths are coupled to the initial and final sites, |I 〉 and |F〉, the dynamics are constrained to a
three-dimensional subspace which is independent from the degenerate subspace of the effective
Hamiltonian H̃N−2 = UN−2 HN−2U †

N−2

H̃N−2 =



ε + (N − 3)J
√

N − 2J
√

N − 2J 0 . . . 0
√

N − 2J ε1 J 0 . . . 0
√

N − 2J J ε2 0 . . . 0

0 0 0 ε− J 0
...

...
...

. . .

0 0 0 0 ε− J


. (27)
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Figure 1. Graph of the maximum of the probability of transition Max[PI→F(t)]
at 300 K in a ten-site fully connected homogeneous network, with equal isolated
site energies, intersite coupling J = 10 ps−1, and spin baths coupled to each
of the initial and final sites, with n1 = n2 = 10 and bath energy parameter
α1 = α2 = 150 ps−1.

The probability of transfer between sites |I 〉 and |F〉 (with effective site energies ε1 and ε2) is
given by

PI→F(t)=

∣∣∣∣∣∣
N∑

j=N−2

c j e
−itλ j

∣∣∣∣∣∣
2

6 (|cN | + |cN−1| + |cN−2|)
2. (28)

The constants c j = 〈F |λ j〉〈λ j |I 〉 are given by

c1,...,N−3 = 0, (29)

cN−1 + cN = −cN−2 =
J (J − ε2 + λN−2)

(λN−2 − λN−1)(λN−2 − λN )
. (30)

Clearly, perfect transfer can only be achieved if |cN−2| = 1/2. Setting ε1 = ε2 enables this, and
from the resulting form of the eigenvector |λN−2〉 = 1/

√
2(|I 〉 − |F〉), the existence of times for

which perfect transfer is achieved follows readily.
We now show that such an effect persists at physiological temperature by considering the

Hamiltonian HN−2 with spin baths at a temperature of 300 K coupled to the initial and final
sites. In this case the initial state of the bath is given by the canonical distribution defined in (7),
with corresponding partition function defined in (8), and the density matrix describing the state
of the network is obtained by tracing out the degrees of freedom of the bath.

In figure 1 the maximum of the probability of transition Max[PI→F(t)] for such a system
is plotted as a function of the coupling constants γ1 and γ2 with spin baths coupled to each of
the initial and final sites. It can be seen that in regions where ε1 = ε2 6= ε, transfer probabilities
of up to 86% are achieved, and the breadth of the region indicates the effect’s robustness against
imperfections.
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3.2.3. Spin baths on intermediate network sites. We now consider the case where N − k of
the fully connected network sites, sites |k + 1〉, . . . , |N 〉, are coupled to spin baths, but now the
initial and final sites are chosen from any of the sites |1〉, . . . , |k〉. The initial and final sites |I 〉
and |F〉 can then be written in the form of (15), where j ∈ {1, . . . , k}, as

| j〉 =
1

√
k

(
|φ〉 +

k−1∑
m=1

ω−mj
|λm〉

)
. (31)

Note that the state |φ〉 defined in (22) is not an eigenstate of the system. The probability of
transfer of the excitation from the initial to final site is then given by

PI→F(t)= |〈F |e−it Hk |I 〉|2

=
1

k2

∣∣∣∣∣〈φ|e−it Hk |φ〉 + e−it (ε−J )
k−1∑
m=1

ωm(F−I )

∣∣∣∣∣
2

=
1

k2
|1 − eit (ε−J )

〈φ|e−it Hk |φ〉|
2

=
1

k2
|1 − eit (ε−J )

〈1|e−it H̃k |1〉|
2. (32)

The maximum possible value of the above expression for the transfer probability is

Max[PI→F(t)] =
4

k2
, (33)

and this value is approximately achieved for almost all systems with Hamiltonian Hk

independent of the details of the {ε j} after sufficiently long times (see the appendix for further
details). The motivation for this statement is that any system always exhibits perfect revivals,
i.e. there always exists a time such that e−it Hk |φ〉 returns |φ〉.

This is an increase in the maximum probability of transfer over time which is given by
4/N 2 in the fully symmetric case. In the case where k = 2, when all but the initial and final sites
are coupled to spin baths, it can be seen that perfect transfer is achieved.

We now show that such an effect persists at physiological temperature by considering the
Hamiltonian H2 with spin baths at a temperature of 300 K coupled to intermediate sites, i.e. all
but the initial and final sites. The initial states of the baths are defined as previously.

In figure 2, the probability of transition PI→F(t) for such a system is plotted as a function of
the coupling constant γ , with different spin baths coupled to each of the intermediate sites, and
isolated site energies all equal. It can be seen that for all γ 6= 0, i.e. for all effective intermediate
site energies not equal to the energy of the initial and final sites, there exist times where transfer
probabilities of up to 94% are achieved.

4. Decoherence-assisted transport in the Fenna–Matthews–Olson complex

The first evidence of quantum coherence in photosynthetic antennae at physiological
temperature was detected in green sulphur bacteria and cryptophyte algae [1, 2] which are
both organisms able to photosynthesize efficiently at low light intensities [4]; a species of
green sulphur bacteria has even been found living at a depth of 2500 m in the Pacific Ocean
near a thermal vent [3]. Green sulphur bacteria uniquely contain a complex called the FMO
complex [31]. The FMO pigment–protein complex mediates EET from the large main antenna
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Figure 2. Graph of the probability of transition PI→F(γ, t) at 300 K in a four-
site fully connected homogeneous network, with equal isolated site energies,
intersite coupling J = 10 ps−1, and spin baths coupled to the intermediate sites,
with n1 = 2, n2 = 8, γ1 = γ2 = γ and bath energy parameter α1 = α2 = 150 ps−1.

system of green sulphur bacteria, the chlorosome, to the reaction centre. The structure of
the FMO complex was first resolved in three-dimensions using x-ray crystallography in
1975 [31], where it was shown to consist of three identical subunits each containing seven
bacteriochlorophyll a (BChl a) pigments and enclosed within an envelope of protein. Due to
the weakness of electronic coupling between pigments in different subunits, it is reasonable to
consider the EET dynamics within one seven-site subunit [14].

The site energies and optical transition energies (defined in section 1.1) for the FMO
complex of Chlorobium tepidum, a model organism of green sulphur bacteria, were calculated
by Adolphs and Renger [14]

H FMO
ex =



200 −96 5 −4.4 4.7 −12.6 −6.2

−96 320 33.1 6.8 4.5 7.4 −0.3

5 33.1 0 −51.1 0.8 −8.4 7.6

−4.4 6.8 −51.1 110 −76.6 −14.2 −67

4.7 4.5 0.8 −76.6 270 78.3 −0.1

−12.6 7.4 −8.4 −14.2 78.3 420 38.3

−6.2 −0.3 7.6 −67 −0.1 38.3 230


, (34)

in units of cm−1, where the zero of energy has been shifted by 12 210 cm−1. Energy transfer
through the FMO complex is estimated to take place over a maximum of 5 ps [14].

The efficiency with which the FMO complex transfers excitation energy to the
reaction centre plays a crucial role in the organism’s survival under extremely low light
conditions. However, quantum coherent EET through the bare excitonic system without adding
environmental contributions to the Hamiltonian H FMO

ex happens with a low probability: for the
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Figure 3. The probability of transfer P1→3(γ, t) for the FMO complex with sites
coupled to a spin baths at 300 K with numbers of spins at each site n1 = 2, n4 = 8
and n2,3,5,6,7 = 0 and spin bath energy constant α = 150 ps−1, which is the best
spin distribution for a total of ten spins.

transfer of the excitation to site 3 from an initial position at site 1(6) [14], the probability
of transfer is just 5.0(1.3)%. We now investigate the effect of a decoherent interaction with
environmental spins at 300 K on the process of EET in the FMO complex.

Distributing a total of ten environmental spins amongst the seven sites, with the
simplification that there are only even numbers of spins on each site (see [32]), gives a total
of 462 different spin distributions. With the spin baths at a temperature of 300 K, we calculate
the maximum probability of transfer to site 3 during the first picosecond (a time we found
sufficient to find the maximum), for equal environmental couplings γ ranging between 0 and
200 ps−1 at each site. Note that here h̄ ∼ 5.3 cm−1 ps.

When the excitation is initialized at site 1, the best spin distribution is n1 = 2, n4 = 8 and
n2,3,5,6,7 = 0 (see figure 3), while for the initial site 6, the best spin distribution is n6 = 4, n4 = 6
and n1,2,3,5,7 = 0, with the following maximum probabilities:

Max[P1→3] = 90%, (35)

Max[P6→3] = 80%. (36)

For 69%(60%) of the spin distributions in the case of site 1(6) as the initial site, there is an
increase in the transfer probability from the case with no spin baths, where the probability is
5.0%(1.3%) (see figure 4). Therefore, in the vast majority of cases, decoherence assists the
efficiency of quantum coherent EET in the FMO complex.

It has been noted that by neglecting the weakest couplings in the FMO Hamiltonian,
transport in an individual monomer of FMO can be mapped to a one-dimensional path between
chromophores [33]. We find in our simulations that features of both a uniformly coupled
network and a chain contribute to the optimal transfer probabilities for the Hamiltonian H FMO

ex .
This can be seen by examining the optimal spin distributions for transfer through the complex.
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Figure 4. Cumulative distributions of the maximum probability of transfer for
the FMO complex coupled to the 462 different spin distributions with a total of
n = 10 spins at 300 K. In the figure on the left (right), the transfer is from site 1 to
site 3(6), where the upper curve represents distributions where the initial and final
site energies are shifted towards equality, i.e. n1 = 2, n3 = 0 (n6 = 4, n3 = 0),
while the lower curve is for the total distribution set.

We have found by studying the properties of fully connected networks that transfer is
achieved with high probability when only the initial and final sites have comparable energies,
i.e. when εI = εF 6= ε j 6=I,F . For H FMO

ex , we find that the distributions that achieve this; namely
n1 = 2, n3 = 0(n6 = 4, n3 = 0) for transfer from site 1(6), do well for all positions of the
remaining spins relative to the total set of distributions, see figure 4.

At the same time, having the majority of the environmental spins positioned so as to
energetically block further transfer beyond the final site in the effective chain also contributes
to optimality. For example, for transfer from site 1 to site 3, the spin distributions and
corresponding transfer probabilities that have the three highest transfer probabilities are the
following:

n1 = 2, n4 = 8 (90%), (37)

n1 = 2, n4 = 6, n6 = 2 (85%), (38)

n1 = 2, n4 = 6, n7 = 2 (85%), (39)

where the maximum energy shift associated with two spins at the optimal coupling strength of
γopt ≈ 170 ps−1 is then approximately 900 cm−1.

In our model, the value of the bath energy parameter α as compared with kBT determines
the influence of thermal fluctuations on the dynamics; when α/kBT is small, the effect of the
decoherent interaction with the environmental spins is reduced, while when α/kBT is big, the
effect is maximized (see figure 5).

For transfer between sites 1 and 3 of the FMO complex, with sites coupled to the optimal
spin distribution, n1 = 2, n4 = 8, we find the optimal values of γ and α common to both T = 77
and 300 K to be γopt = 170 ps−1 and αopt = 460 ps−1. At these values, we find that the coherence
between sites 1 and 3, defined as

c1,3(t)=
|ρ1,3(t)|2

ρ1,1(t)ρ3,3(t)
, (40)

where ρ(t) is the reduced density matrix of the FMO system, is unity for all times and for both
temperatures, while ultrafast two-dimensional spectroscopy performed on the FMO complex
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Figure 5. Maximum transfer probability from site 1 to 3 in the FMO complex
during the first picosecond as a function of α/kBT with T = 300 K. The coupling
constant and spin configuration are chosen to be optimal; γopt = 170 ps−1 and
n1 = 2, n4 = 8. When α/kBT is small, the maximum transfer probability is not
dramatically increased from the case with no bath (the lower dashed line at 5%),
while the value of 90% is attained when α/kBT is increased to 3.82 (the upper
dashed line), and beyond that, the optimal value of 94% is reached.

reveals that the rate of decoherence has a strong dependence on temperature [1]. We have
therefore set α = 150 ps−1 < αopt throughout this work, such that the rates of decoherence show
a strong temperature dependence, but at the same time the extent of the effect can be observed.

5. Conclusion

The recent detection of quantum coherence in biological systems that are remarkably efficient in
transferring excitation energy at physiological temperatures, has led to the proposal of a number
of environment-assisted quantum transport models. Here, we have investigated the influence of
environmental spins on quantum coherent transfer through a network. We have shown through
the derivation of analytic expressions that the transfer probabilities through a fully connected
quantum network are improved as a result of decoherent interaction with environmental spins,
and that in some cases certain transfer can be achieved. Moreover, this effect is shown to persist
at physiological temperatures. We apply this model to the FMO complex, and find that coupling
the network sites with environmental spins at physiological temperature improves transport
through the network for a vast majority of considered cases. Our results show that features
associated with uniformly coupled networks as well as chain-like characteristics of the FMO
complex contribute to the optimal transfer efficiencies. These promising results motivate further
study of biological transport systems where a spin bath could provide a sufficiently realistic
model of the environment and play a fundamental role in the dynamics.
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Appendix

For the Hamiltonian Hk where N − k of the fully connected network sites, sites |k + 1〉, . . . , |N 〉,
are coupled to spin baths, and with the initial and final sites chosen from any of the sites
|1〉, . . . , |k〉, the transfer probability is given by

PI→F(t)=
1

k2
|1 − 〈φ|e−it Hk |φ〉|

2. (A.1)

The maximum of the above expression is 4/k2; attained when the state |φ〉 evolves over time t to
the state with the opposite phase, i.e. −|φ〉. Motivated by the existence of recurrence properties,
we might expect that this maximum can always be achieved. Here, we construct an example
of a system which never achieves it, and outline the conditions under which the bound can be
approximately reached in the general case.

The quantum recurrence theorem states that the state vector for any quantum system with
discrete energy eigenstates evolves arbitrarily closely to the initial state, infinitely often [34]. On
the other hand, there exist quantum systems where the initial state never evolves into the same
state but with opposite phase, as required here. For example, the initial state |I 〉 = (1, 0, 0)T will
never evolve under the Hamiltonian

H =

0 J1 0

J1 0 J2

0 J2 0

 (A.2)

into the state −|I 〉, since

〈I |e−it H
|I 〉 =

J 2
2 + J 2

1 cos
√

J 2
1 + J 2

2 t

J 2
1 + J 2

2

6= −1, (A.3)

as long as J2 6= 0.
This specific example can be used to construct instances that coincide with our model.

Consider a fully connected network HFCN with intersite coupling J , and where equal site
energies ε j are grouped into three blocks of size k j :

HFCN =

k1∑
j=1

ε1| j〉〈 j | +
k1+k2∑

j=k1+1

ε2| j〉〈 j | +
k1+k2+k3∑

j=k1+k2+1

ε3| j〉〈 j |. (A.4)

Using a unitary operation of the form defined in section 3.2, the Hamiltonian HFCN can be
transformed into an effective Hamiltonian of dimension 3, H̃FCN, which when compared with
Hamiltonian H ′ via a unitary that satisfies V |I 〉 = |I 〉, yields conditions on the constants k j and
ε j such that 〈I |e−it H̃FCN I 〉 6= −1 for all times t .

One such choice of variables is the following: k1 = 21 with ε1 = 0, k2 = 6 with ε2 =

63J/5, and k3 = 1 with ε3 = 112J/5 (figure A.1). Scaling out the factor J from the time for
convenience, the transfer probability PI→F(t) between a pair of sites in the first block is then
given by the expression

PI→F(t)=
1

642978

[
2091 − 1350 cos

(
42t

5

)
+ 200 cos

(
63t

5

)
−216 cos(21t)+ 625 cos

(
126t

5

)
− 1350 cos

(
168t

5

)]
. (A.5)
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Figure A.1. Graph of k2
1/4 times the transfer probability, 441/4PI→F(t), for

Hamiltonian HFCN with the initial and final sites both from block 1 and with
parameters k1 = 21, ε1 = 0, k2 = 6, ε2 = 63J/5, and k3 = 1 with ε3 = 112J/5. It
can be seen that the probability never reaches 1, and therefore that the bound of
4/k2

1 is not achieved for this Hamiltonian HFCN.

In figure 5, k2
1/4 times the transfer probability, 441/4PI→F(t), is plotted as a function of time. It

can be seen here, and in (A.5), that the function is periodic, and also that the value of 1 is never
reached. This example proves that not every network can exactly achieve the optimal transfer,
or even get arbitrarily close. Nevertheless, we now discuss how the value Max[PI→F(t)] = 4/k2

is approximately achieved for almost all general Hamiltonians Hk .
The Hamiltonian Hk given in (19) for a general homogeneous fully connected network can

be partitioned into m blocks indexed by i , each of dimension ki and with site energies εi = ni Bi ,
where Bi = −γi/2. Transforming the Hamiltonian Hk into the basis of uniform superposition
across each block (via the unitary of section 3.2), and then moving to the rotating basis, i.e.
transforming each amplitude ai as

ai → ai e
−it (ki J+ni Bi ), (A.6)

yields an effective Hamiltonian H eff
k of dimension m, with diagonal elements all 0, and off-

diagonal elements of the form

J
√

knkme−it ((kn−km)J+(nn Bn−nm Bm). (A.7)

In the rotating wave approximation, over long times each matrix element undergoes many
oscillations and can therefore be approximated to 0, with the best approximation here achieved
at times for which∫ t

0
e−it[(kn−km)J+(nn Bn−nm Bm)] dt = 0 for all n,m. (A.8)

Hence, the amplitude remains (approximately) in the first block, but with an evolving phase that
at some time becomes −1.

This proof only fails in exceptional cases where some of the couplings of the effective
Hamiltonians do not have a time dependent term, and cannot be averaged away. For example,
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when the initial and final sites are in block 1, and

(k1 − km)J + (n1 B1 − nm Bm)= 0, (A.9)

with n1 B1 6= nm Bm , it could be that the phase never evolves to −1. However it is sufficient for
J/Bi to be irrational to avoid these cases, which means the exceptions are of measure 0, and the
upper bound can be achieved in almost all cases.
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