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We report the observation of near-perfect light wave transfer by emulating quantum state transfer on a lattice with
Hamiltonian dynamics, i.e., time-dependent intersite couplings. The structure transferring a single waveguide ex-
citation over 11 sites with a fidelity of 0.93 works for classical light as well as single photons. As our implementation
of perfect quantum state transfer uses a photonic setting, we introduce polarization as a new degree of freedom to the
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transport protocol. We demonstrate rotation operations of up to 40° on polarization during state transfer.
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Feasible quantum computers that are able to outperform
classical computation schemes require a large number of
qubits [1]. However, maintaining control and coherence
over large quantum registers poses serious challenges
[2]. A feasible route for overcoming this problem is to
divide the large qubit register into smaller units, which
interact via so-called “quantum wires.” The basic task
of the quantum wire is, thus, to coherently transfer a
quantum state between the interfaces of two separated
subregisters. A possible implementation of this challeng-
ing task is the utilization of nearest-neighbor interactions
in a discrete lattice, such as chains of spin-1/2 particles
[3,4] or waveguide lattices [5,6].

In all state transfer schemes, an initial excitation of a
boundary site is transported automatically to the oppo-
site side of the chain due to the intersite coupling [7].
However, in systems with time-independent Hamilto-
nians (i.e., static coupling), the transfer is accomplished
perfectly for one specific moment (transfer time)
only. After this moment, the excitation will again spread
out over the entire chain. As a consequence, all time-
independent transfer schemes are subject to the limita-
tions that result from precise timing of the extraction
of the transferred state in addition to the precise speci-
fication of the coupling strengths—the quality of the
transfer in these schemes is sensitive to (random and sys-
tematic) errors of the fixed intersite coupling [5,6,8].

A solution to this problem is provided by models involv-
ing an explicit time dependence of the Hamiltonian, mean-
ing the coupling between the chain sites is changed
dynamically. The marginal couplings can be controlled
to trap the excitation at the receiver site after perfect state
transfer (PST) is accomplished. It has been shown that
this can be achieved even if all couplings other than
the marginals are constant [9]. There is one particular
among these schemes, which turns out to be also robust
to imperfections of the couplings [10]. To date, this model
is the only time-dependent model that has been formu-
lated analytically for arbitrary lengths N of the chain
[10]. Nevertheless, precise temporal control of individual
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sites is challenging to realize in a spin setting and, hence,
experimental demonstration of such a system is still
missing.

In our work, we demonstrate the implementation of a
time-dependent coherent state transfer scheme using op-
tical waveguides. Our system can be used for the high-
fidelity transfer of classical as well as quantum light along
a chain of waveguides on a chip. Moreover, making use of
the degrees of freedom inherent to the optical setting, we
elucidate the versatility of the transfer scheme by simul-
taneously rotating the input polarization during the trans-
fer in a controlled manner. This new functionality is not
possible with already investigated time-independent
transfer schemes, as the intersite coupling in the
optical system is noticeably polarization-dependent.
The integrated device described in our work might find
application in photonic on-chip quantum computation
circuits, as it provides a combination of spatial transfer
across chips with a well-defined rotation of the light’s
polarization.

The model studied in this Letter was originally consid-
ered for a chain of coupled spins, which is depicted in
Fig. 1(a). The two marginal couplings C, and Cp are
controlled externally [9,10]. This system is closely related
to those studied in [11] to provide quantum computation
via a Universal Quantum Interface [12]. Each of the N
spins in the chain is associated with the qubit
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Fig. 1. (a) Coupling distribution of the time-dependent state

transfer model. The picture shows the qubit chain just after
the initiation of state transfer. (b) The waveguide structure that
emulates the excitation evolution in the spin chain.
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lyn) = an(D[1) + b,(1)[0)

where a,,(t) is the time-dependent probability amplitude
for the nth spin being “up.” In the single-excitation sub-
space, the transport of amplitudes a,, is governed by a
Schrodinger equation with a nearest-neighbor interaction
Hamiltonian. Except at the edges of the one-dimensional
(1D) chain, the model assumes constant and homo-
geneous couplings of strength C. PST is achieved within
transfer time T if the chain evolves from [ay,...,ay] =
[1,0,....,0] at ¢t=0 to J[a,...,ax]=]0,...,0,1] at
time t = T.

The implementation of coherent state transfer in ar-
rays of evanescently coupled waveguides is based on
the formal analogy between the excitation amplitude a
of a spin in a 1D chain of spin-1/2 particles and the
electric field amplitude in a single-mode waveguide of
a waveguide array. The fundamental mode of each wave-
guide can be maximally excited, which corresponds to
|1), or dark, corresponding to |0). Consequently, the field
amplitude ®,, in each waveguide can be interpreted as
the amplitude a(?) of the associated qubit. As illustrated
by the comparison of the optical structure with the quan-
tum chain in Fig. 1, the formal analogy between excita-
tion transfer in spin chains and in waveguide arrays also
suggests the mapping of the quantum time evolution onto
the spatial propagation of light along the longitudinal
direction z. The ferromagnetic spin interactions transfer-
ring amplitude a from spin 1 to N in the 1D chain are
emulated by the evanescent coupling C' between wave-
guides. This coupling decays exponentially as their
separation d is increased, i.e.,

m=1,...N), (1

C = k- exp{-d/5}, 2

where x and 6 are parameters depending on the wave-
guide properties and the wavelength 1 of the transfer
light [13]. The vector of coupling coefficients can thus
be translated into a vector of separations between
adjacent waveguides. In order to implement the time
dependence of the marginal coupling in the spin chain,
the edge waveguides are curved with respect to z.

In general, it is a priori not clear whether there exists a
set of functions C, and Cp, which can provide PST.
According to a recent work [10], functions C,(2) and
Cp(2) can be formulated analytically if one demands that
the “sender” waveguide release the excitation such that a
Gaussian pulse of the form
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is established in the homogeneous part. This is achieved
by using the z-dependent couplings to simulate the cen-
tral region of an infinitely long uniformly coupled chain
[9] through which a Gaussian pulse propagates [14]. The
Gaussian pulse has width A and is initially centered at a
fictitious site xy located in the negative half-space. It is
essential that the pulse is propagating with maximal
group velocity v, = 2C along the chain, as under this
condition, the diffraction of the Gaussian wave packet
can be neglected [15], if width A is sufficiently large

[14]. Consequently, the shape of the Gaussian can be as-
sumed to be invariant under z-evolution in the homo-
geneous part, and one finds that for the z-dependent
coupling at the sender site
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Assuming the shape invariance of the pulse, the cou-
plings C4(2) and Cp(2) are mutually mirror symmetric
with respect to 2 = T'/2, resulting in the condition

Cp(2) = Cx(T - 2). ®)

Given this symmetry, the transfer distance 7' can be
calculated as

2CT = N + 1-2x,. )

Since C, T, and N are given, this formula fixes x,, ensur-
ing symmetric evolution. In Fig. 2, an example of C4(2)
and Cpg(z) is given for N =11, C = 0.16/mm,
T = 100 mm, x, = -10, and A = 5.69. As a consequence
of the particular z dependence of Cy(z), the excitation
becomes trapped at the last site for the remaining
propagation. This is a very beneficial feature compared
with transfer schemes based on z-independent Hamilto-
nians where PST can only be accomplished for one par-
ticular moment. The dynamic scheme thus removes the
necessity of precise timing of the qubit extraction. One
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Fig. 2. Central image depicts the excitation dynamics in a
waveguide structure with N = 11 and 7' = 100 mm. The plots
to the left and right show couplings C, and Cjp, respectively, as
functions of the propagation direction.



notices that the setting in Fig. 2 is reminiscent of a struc-
ture investigated recently in the context of stimulated
Raman adiabatic passage (STIRAP) [16,17]. However,
the transfer process itself is fundamentally different. It
is characteristic for any STIRAP process for C, to reach
its maximal value after Cg. Although in the example in
Fig. 2 this is coincidentally fulfilled due to the short
length of the chain being simulated, in general, the
PST scheme does not require such a counter-intuitive se-
quence of the maxima of C, and Cp [10]. Furthermore, in
the STIRAP process the light is transported via a “dark
state,” which is only existing if N is an odd number.
The PST scheme, however, is universal, meaning it works
for all N. The excitation is traversing the homogeneous
part and sequentially occupying all sites.

For our experiments, we fabricated various waveguide
arrays in bulk fused silica glass chips by employing the
femtosecond laser direct write technique [18]. All struc-
tures extend approximately 200 pm in the lateral
direction x and they are fabricated to transfer the exci-
tation to the receiver waveguide within 7' = 10 cm. In
our experiments, we inject horizontally (along x) polar-
ized light with wavelength A = 633 nm into the structure.
The separation between the waveguides in the homo-
geneous part is d;, = 14.6 pm, which corresponds to
C = 0.160 mm™. In order to observe the evolution of
the intensity distribution along the z axis, we use fluores-
cence microscopy [19]. Figure 3(a) shows a transfer
structure with 11 sites. The fraction of the total power
measured in the receiver waveguide after transfer dis-
tance T is taken as the transfer fidelity (F). We achieve
a fidelity of 7P = 0.93, whereas the theoretical value is
Ftheo — (.99. The residual imperfection can be attributed
to small deviations from the ideal coupling distribution
resulting from an inaccuracy of the positioning system.
Moreover, there is an inhomogeneity of the refractive in-
dex modulation along each waveguide and across the ar-
ray especially at the edges of the array where the
waveguide is influenced by the stress field of the neigh-
bors only one-sidedly.

As our waveguides exhibit an elliptic shape, the funda-
mental mode fields depend on the polarization of the
light. Consequently, the intersite coupling between the
waveguides exhibits polarization dependence for a given
spacing. In Fig. 4, couplings as a function of intersite
spacing is shown, when the polarization is either vertical
(Cy) or horizontal (Cy). This dependence has a strong
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Fig. 3. Fluorescence microscopy images of the excitation
transfer. The small red arrow shows the position of the light
input. The horizontal polarization of the input light is indicated
by the white arrow in the upper right corner.
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impact on time-independent transfer schemes, which
are very sensitive to deviations of the couplings.

In order to exploit a new degree of freedom, we want
to show how one can also operate on the polarization of
the transferred light. By installing a supplementary wave-
guide close to the sender and receiver sites, henceforth
called “ghost” waveguide, the polarization can be rotated.
Note that the ghost waveguides exhibit a much higher
refractive index than the other waveguides in the device,
so that only their stress fields interact with the edge
waveguides, but light is not able to couple into the ghosts
[6]. It is shown in [20] that the laser writing induces a
stress field that surrounds the ghost and causes a bire-
fringent change of the refractive index of the neighboring
waveguides. The strength of this induced birefringence is
a function of the spacing between the ghost and the
sender and receiver waveguides [20]. We additionally ob-
serve a rotation of the polarization of the guided light,
which also depends on this separation. Therefore, the
separation between the sender and receiver waveguides
and their ghosts can be used to precisely tune the amount
of polarization rotation. This offers, e.g., a possibility of
fabricating integrated quantum gates.

For the experimental demonstration of polarization ro-
tation during the PST, we fabricated transfer structures
identical to the one analyzed above using the two addi-
tional ghosts. Importantly, the ghosts follow the same tra-
jectory as sender and receiver guides. We launched
horizontally polarized light into the sender waveguide
and measured the (rotated) polarization as well as the
transfer fidelity after postselecting that polarization.
Our experimental results are summarized in Fig. 5. We
were able to rotate the polarization of the light to up
to almost 40° by changing the spacing between the ghosts
and the sender and receiver guides from d,,,, = 18.6 pm
to dpin = 12.6 pm (red data points and black dashed line
in Fig. 5). The inset in Fig. 5 shows the measured data for
the normalized power in the receiver waveguide as a
function of the rotation angle of the analyzer. The meas-
urement corresponds to a separation of 14.6 pm between
the ghosts and edge. At V + 25°, the power is only 6% of
the maximum value, which proves that the polarization
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Fig. 4. Couplings Cy and Cy of vertically and horizontally po-
larized light, respectively, as functions of waveguide separation.
The symbols are measured data, whereas the solid lines show
the exponential fit according to Eq. (2).
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adequate tool for coherent information transport and
processing in quantum circuits as well as for applications
in classical integrated optics.

This work was supported by the German Ministry of
Education and Research (Center for Innovation Compe-
tence programme, grant no. 03Z1HN31) and the Thurin-
gian Ministry for Education, Science and Culture
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Fig. 5. Red data points show the relative angle of the analyzer
(a) for which the power measured in the receiver waveguide is
highest, i.e., the angle between the input and the output polari-
zation, in dependence on the separation between the edge
waveguides and the ghosts. Each of the blue data points gives
the fidelity for that analyzer angle. The inset shows the power in
the receiver waveguide as a function of the polarizer angle mea-
sured in the structure, with a 14.6 pm separation between the
ghosts and edge.

of the light in the receiver waveguide is again linear. No
detectable polarization rotation occurred in absence of
the ghosts. The transfer fidelity stays approximately con-
stant and is always >0.9 (blue data points and blue dotted
line in Fig. 5), despite the large polarization rotation.
Note that the curvature of the sender and receiver wave-
guides was actually designed for one specific coupling C
in the homogeneous part and, therefore, only one polari-
zation can be transferred with optimal fidelity. Hence, the
transfer scheme is sufficiently robust to allow consider-
able deviations of the coupling without great degradation
of transfer fidelity.

In conclusion, in our work we demonstrate the first
implementation of a time-dependent PST scheme, using
optical waveguides. The transfer structures exhibit great
robustness to imperfections of the intersite coupling and
overcome the need for precise extraction timing. Using
the benefits of an optical setting, this allows the combi-
nation of photonic state transfer with well-controlled
polarization rotation, which makes our device an

(Research group Spacetime, grant no. 11027-514).
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