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Abstract

We consider the multiple hypothesis testing problem for symmetric quantum state
discrimination between r given states σ1, . . . , σr. By splitting up the overall test into
multiple binary tests in various ways we obtain a number of upper bounds on the optimal
error probability in terms of the binary error probabilities. These upper bounds allow us
to deduce various bounds on the asymptotic error rate, for which it has been hypothesized
that it is given by the multi-hypothesis quantum Chernoff bound (or Chernoff divergence)
C(σ1, . . . , σr), as recently introduced by Nussbaum and Szko la in analogy with Salikhov’s
classical multi-hypothesis Chernoff bound. This quantity is defined as the minimum of
the pairwise binary Chernoff divergences minj<k C(σj , σk). It was known already that
the optimal asymptotic rate must lie between C/3 and C, and that for certain classes of
sets of states the bound is actually achieved. It was known to be achieved, in particular,
when the state pair that is closest together in Chernoff divergence is more than 6 times
closer than the next closest pair. Our results improve on this in two ways. Firstly, we
show that the optimal asymptotic rate must lie between C/2 and C. Secondly, we show
that the Chernoff bound is already achieved when the closest state pair is more than 2
times closer than the next closest pair. We also show that the Chernoff bound is achieved
when at least r − 2 of the states are pure, improving on a previous result by Nussbaum
and Szko la. Finally, we indicate a number of potential pathways along which a proof (or
disproof) may eventually be found that the multi-hypothesis quantum Chernoff bound is
always achieved.
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1 Introduction

Consider a communication scenario where a sender (say, Alice) wishes to send one of r
possible messages to a receiver (Bob). To achieve this goal, Alice has a device at her disposal
that can prepare r quantum states ρ1, . . . , ρr from some state space S(H), one for each
possible message, which she can then send through a quantum channel Φ, resulting in the
states σi = Φ(ρi) at Bob’s side. Bob then has to make a quantum measurement to identify
which message was sent. His measurement is described by a set of positive semidefinite
operators E1, . . . , Er, one corresponding to each possible message, that form an incomplete
POVM (positive operator-valued measure), i.e., they satisfy E1 + . . .+Er ≤ I. The operator
E0 := I− (E1 + . . .+Er) corresponds to not making a decision on the identity of the received
state. The probability of making an erroneous decision when the message i was sent is then
given by Trσi(I − Ei). If we also assume that Alice sends each message i with a certain
probability pi then the best Bob can do is choose the POVM that minimizes the Bayesian
error probability

Pe ({E1, . . . , Er}) :=

r∑
i=1

pi Trσi(I − Ei) =

r∑
i=1

TrAi(I − Ei),

where Ai := piσi.

In the classical case, i.e., when the σi are mutually commuting, the optimal success prob-
ability is known to be reached by the so-called maximum likelihood measurement, and the
optimal success probability is given by Tr max{p1σ1, . . . , prσr}, where the maximum is taken
entrywise in some basis that simultaneously diagonalizes all the σi. In the general quantum
case, no explicit expression is known for the optimal error probability, or for the measurement
achieving it, unless r = 2, in which case these optimal quantities are easy to find [20, 25].
Moreover, it turns out to be impossible to extend the notion of maximum of a set of real num-
bers to maximum of a set of positive semidefinite operators on a Hilbert space while keeping
all the properties of the former – technically speaking, the positive semidefinite ordering does
not induce a lattice structure – and because of this a straightforward generalization of the
classical results is not possible. In Section 2.3, we define a generalized notion of maximum
for a set of self-adjoint operators, which we call the least upper bound (LUB). This notion
reduces to the usual maximum in the classical case, and the optimal success probability can
be expressed as Tr LUB(p1σ1, . . . , prσr) [53], giving a direct generalization of the classical
expression. We explore further properties of the least upper bound, and its dual, the greatest
lower bound (GLB), in Appendix A.

An obvious way to reduce the error probability is to send the same message multiple
times. For n repetitions, the optimal error probability is given by

P ∗
e (A1,n, . . . , Ar,n) := min

{
r∑

i=1

TrAi,n(I − Ei) : {E1, . . . , Er} POVM on S(H⊗n)

}
, (1)

where Ai,n := piσ
⊗n
i . These error probabilities are known to decay exponentially fast in the

number of repetitions [4, 38, 39], and hence we are interested in the exponents (which are
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negative numbers)

p
e

(
A⃗1, . . . , A⃗r

)
:= lim inf

n→∞

1

n
logP ∗

e (A1,n, . . . , Ar,n) and (2)

pe

(
A⃗1, . . . , A⃗r

)
:= lim sup

n→∞

1

n
logP ∗

e (A1,n, . . . , Ar,n) , (3)

where A⃗i := {Ai,n}n∈N.

In the case of two possible messages, the theorem for the quantum Chernoff bound [4, 5, 38]
states that

p
e

(
A⃗1, A⃗2

)
= pe

(
A⃗1, A⃗2

)
= min

0≤t≤1
log Trσt1σ

1−t
2 =: −C(σ1, σ2), (4)

where C(σ1, σ2) is a positive quantity known as the Chernoff divergence of σ1 and σ2. Ac-
cording to a long-standing conjecture, it is hypothesized that

p
e

(
A⃗1, . . . , A⃗r

)
= pe

(
A⃗1, . . . , A⃗r

)
= − min

(i,j): i̸=j
C(σi, σj), (5)

i.e., the multi-hypothesis exponent is equal to the worst-case pairwise exponent. Following
[39], we call C(σ1, . . . , σr) := min(i,j): i̸=j C(σi, σj) the multi-Chernoff bound. In fact, the

lower bound p
e
(A⃗1, . . . , A⃗r) ≥ −C(σ1, . . . , σr) (optimality) follows trivially from the binary

case [38], as was pointed out e.g., in [40]. The upper bound pe(A⃗1, . . . , A⃗r) ≤ −C(σ1, . . . , σr)
(achievability) is known to be true for commuting states [48] and when the states σi have
pairwise disjoint supports [41]. A special case of the latter is when all the states σi are pure
[40].

Our aim here is to establish decoupling bounds on the single-shot error probability by
decomposing a multi-hypothesis test into multiple binary tests. These bounds in turn yield
bounds on the exponents (2)–(3) in terms of the corresponding pairwise exponents. We
remark that the existing asymptotic results mentioned in the previous paragraph also rely
implicitly on single-shot decoupling bounds. Regarding lower bounds, it has been shown in
[45] that, for any choice of σ1, . . . , σr, and priors p1, . . . , pr, we have

P ∗
e (A1, . . . , Ar) ≥

1

r − 1

∑
(i,j): i<j

P ∗
e (Ai, Aj), (6)

where Ai := piσi. Taking then r sequences of states σi,n, n ∈ N, and A⃗i := {piσi,n}n∈N, we
get

p
e

(
A⃗1, . . . , A⃗r

)
≥ max

(i,j): i̸=j
p
e

(
A⃗i, A⃗j

)
. (7)

Note that this is true for arbitrary sequences of states {σi,n}n∈N, with no special assump-
tion on the correlations. In the i.i.d. case the right-hand side (RHS) of (7) is exactly
−min(i,j): i ̸=j C(σi, σj), and we recover the optimality part of (5).

Hence, in this paper we will focus on upper decoupling bounds. Upper bounds on the
optimal error in terms of the pairwise fidelities can easily be obtained from some results in
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[8]:

P ∗
e (A1, . . . , Ar) ≤

1

2

∑
(i,j): i̸=j

√
pipjF (σi, σj), (8)

where F (σi, σj) := ∥σ1/2i σ
1/2
j ∥1 is the fidelity. We provide a short proof of this bound in

Appendix E. When all the σi are of rank one, the above bound can be improved as [19]

P ∗
e (A1, . . . , Ar) ≤

1

2

∑
(i,j): i̸=j

p2i + p2j
pipj

F 2(σi, σj). (9)

Using the Fuchs–van de Graaf inequalities [15], these bounds can easily be translated into
bounds in terms of the pairwise error probabilities, and we obtain the following converses to
(6) and (7):

Single-shot upper decoupling bounds: For Ai := piσi, i = 1, . . . , r,

P ∗
e (A1, . . . , Ar) ≤

∑
(i,j): i̸=j

√
pi + pj

√
P ∗
e (Ai, Aj). (10)

If Ai is rank one for all i then the square root can be removed from the pairwise errors; more
precisely,

P ∗
e (A1, . . . , Ar) ≤

∑
(i,j): i ̸=j

(pi + pj)
p2i + p2j
p2i p

2
j

P ∗
e (Ai, Aj) . (11)

These single-shot bounds immediately yield the following

Asymptotic upper decoupling bounds: For A⃗i := {piσi,n}n∈N, i = 1, . . . , r,

pe

(
A⃗1, . . . , A⃗r

)
≤ 1

2
max

(i,j): i̸=j
pe(A⃗i, A⃗j). (12)

If Ai,n is rank one for all i and n then

pe

(
A⃗1, . . . , A⃗r

)
≤ max

(i,j): i̸=j
pe(A⃗i, A⃗j). (13)

Note that again (12) and (13) are true for arbitrary sequences of states, and in the
i.i.d. case we have max(i,j): i ̸=j pe(A⃗i, A⃗j) = −min(i,j): i̸=j C(σi, σj) = −C(σ1, . . . , σr). In
particular, by (7) and (13) we recover the result of [40], i.e., that (5) is true for pure states.
For mixed states, Theorem 3 in [41] gives that pe(A⃗1, . . . , A⃗r) is between −C(σ1, . . . , σr) and
−1

3C(σ1, . . . , σr). Our bound (12) improves the factor 1/3 in this upper bound to 1/2, which
is the best general result known so far.

Analytical proofs for various special cases and extensive numerical simulations for the
general case suggest that the square root in (10) – and, consequently, the factor 1

2 in (12) –
can be removed. The fidelity bounds in (8) and (9) were obtained by bounding from above the
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error probability of the pretty good measurement, using matrix analytic techniques. Here we
explore a completely different approach to obtaining upper decoupling bounds. Namely, we
show that the optimal error P ∗

e can be bounded from above by the sum of the optimal error
probabilities of r binary state discrimination problems, where in each of these problems,
the goal is to discriminate one of the original hypotheses from all the rest. Thus, finding
the optimal error exponent of the symmetric multiple state discrimination problem with
i.i.d. hypotheses can be reduced to finding the optimal error exponent of the correlated
binary state discrimination problem where one of the hypotheses is i.i.d., while the other is
a convex mixture of i.i.d. states. This latter problem is interesting in its own right, as it
is arguably the simplest non-i.i.d. state discrimination problem and yet its solution is not
yet known, despite considerable effort towards establishing non-i.i.d. analogs of the binary
Chernoff bound theorem [21, 22, 23, 31, 32]. Here we make some progress towards the solution
of this problem, and provide a complete solution when the i.i.d. state is pure.

The structure of the paper is as follows. In Section 2 we summarize the necessary prelim-
inaries and review the known results that are relevant for the rest of the paper. In particular,
we give a short proof of (6), and summarize the known results for the binary case. We also
introduce the notion of the least upper bound for self-adjoint operators, and show how the
optimal error probability can be expressed in this formalism.

In Section 3 we first review the fidelity bounds of [8] and [19], which are based on the
performance of the suboptimal pretty good measurement. Then we follow a similar approach
to obtain bounds in terms of pairwise fidelity-like quantities. From these bounds we can
recover (8)–(9) up to a constant factor, and for some configurations they are strictly better
than (8)–(9). This approach is based on Tyson’s bound [50] on the performance of an other
suboptimal family of measurements, the square measurements.

In Section 4 we study a special binary problem where one of the hypotheses is i.i.d., while
the other one is averaged i.i.d., i.e., a convex mixture of i.i.d. states. In the setting of Stein’s
lemma (with the averaged state being the null-hypothesis) the corresponding error exponent
is known to be the worst-case pairwise exponent [9] (see also [35] for a simple proof), and we
conjecture the same to hold in the symmetric setting of the Chernoff bound. Similarly to the
case of multiple hypotheses, it is easy to show that the worst-case pairwise exponent cannot
be exceeded (optimality). In Theorem 4.3 we present upper decoupling bounds on the error
probability, analogous to (10) and (11), which in the asymptotics yield that 1/2 times the
conjectured exponent is achievable. Moreover, when the i.i.d. state is pure then the factor
1/2 can be removed and we get both optimality and achievability.

In Section 5 we show that the exponential decay rate of the optimal error probability (1)
is the same as that of another quantity, which we call the dichotomic error. This is defined as
the sum of the error probabilities of the binary state discrimination problems where we only
want to decide whether hypothesis i is true or not, for every i = 1, . . . , r. In the i.i.d. case
these binary problems are exactly of the type discussed in Section 4, and we can directly
apply the bounds obtained there to get upper decoupling bounds on both the single-shot and
the asymptotic error probabilities, which give the bounds (10)–(13).

In Section 6 we follow Nussbaum’s approach [42] to obtain a different kind of decoupling
of the optimal error probability. When applied recursively and combined with the bounds of
Section 4, this approach provides an alternative way to obtain bounds of the type (10)–(11),
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which again yield (12)–(13) in the asymptotics.

In Section 7 we show how the various single-shot bounds of the above described approaches
translate into bounds for the error rates, i.e., we derive (12)–(13) for the most general scenario,
and its variants for more specific settings, where the pairwise rates can be replaced by pairwise
Chernoff divergences. In particular, we improve on the result of [40] by showing that (5)
holds if at least r − 2 of the states σi are pure. We also give an improvement of Nussbaum’s
asymptotic result [42], which says that (5) is true if there is a pair of states (σi, σj) such
that C(σi, σj) <

1
6C(σk, σl) for any (k, l) ̸= (i, j). Here we show that the constant 1

6 can be
replaced with 1

2 .

Supplementary material is provided in a number of Appendices. In Appendix A, we
explore some properties of the least upper bound and the greatest lower bound for self-
adjoint operators, which further extend their analogy to the classical notions of minimum
and maximum. In Appendix B we show how our approaches work in the classical case (when
all operators commute), thus providing various alternative proofs for (5) in the classical case.
In Appendix C we review the pure state case; we show an elementary way to derive the
Chernoff bound theorem (4) for two pure states, and show how the combination of the single-
shot bounds of [19] and [45] yield (5) for an arbitrary number of pure states. In Appendix
D we review the dual formulation of the optimal error probability due to [53]. For readers’
convenience, we provide a proof for Tyson’s and Barnum and Knill’s error bounds in Appendix
E.

2 Preliminaries

2.1 Notations

For a finite-dimensional Hilbert space H, let B(H) denote the set of linear operators on H,
let B(H)sa denote the set of self-adjoint (Hermitian) operators, B(H)+ the set of positive
semidefinite (PSD) operators, and S(H) the set of density operators (states), i.e., the set of
PSD operators with unit trace.

For X a Hermitian operator, let |X| denote its absolute value (or modulus), |X| :=
√
X2.

The Jordan decomposition of X into its positive and negative parts is given by X = X+−X−,
with X± = (|X|±X)/2, and |X| = X+ +X−. It is clear that X+X− = 0. As the eigenvalues
of |X| are the absolute values of the eigenvalues of X, the eigenvalues of X+ (X−) are the
positive (negative) eigenvalues of X. We denote the projections onto the support of X+ and
X− by {X > 0} and {X < 0}, respectively.

We will follow the convention that powers of a positive semidefinite (PSD) operator are
only taken on its support. That is, if a1, . . . , ar are the strictly positive eigenvalues of A ≥ 0,
with corresponding spectral projections P1, . . . , Pr, then As :=

∑r
i=1 a

s
iPi for every s ∈ R. In

particular, A0 denotes the projection onto the support of A.

By a POVM we will mean a set of PSD operators E1, . . . , Er such that E1 + . . .+Er ≤ I.
On occasion we will also consider the underlying measurement operators {Xk}rk=1, which are
sets of operators such that the products X∗

kXk constitute a POVM.

We will normally not indicate the base of the logarithm, but we will always assume that
it is larger than 1, and hence log is a strictly increasing function. We will use the conventions
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log 0 := −∞ and log +∞ := +∞.

2.2 The problem setting

We will consider a generalized state discrimination problem, where the hypotheses are repre-
sented by arbitrary non-zero PSD operators (i.e., not necessarily states). We consider such
a generalized setting partly to absorb the priors into the states to make the formalism sim-
pler, and partly because the formalism supports it, and all our results can be formulated
and proved in this more general setting. More importantly, however, we need to treat such
generalized setups even if we restrict our original hypotheses to be states; see, e.g., Lemma
6.2.

More in detail, in the single-shot case our hypotheses are represented by non-zero PSD
operators A1, . . . , Ar. Occasionally, we will use the notations

pk := TrAk, σk := Ak/pk, k = 1, . . . , r.

If p1 + . . .+ pr = 1 then we say that {Ak} forms a set of weighted states.

For any POVM E1, . . . , Er, we define the corresponding success- and error probabilities
as

Ps({Ei}) :=
r∑

i=1

TrAiEi, Pe({Ei}) :=
r∑

i=1

TrAi(I − Ei).

These can indeed be interpreted as probabilities in the case of weighted states, whereas in
the general case they might take values above 1. Since it will always be obvious what the
hypotheses are, we don’t indicate them in the above notations. The optimal values of these
quantities over all possible choices of POVMs are the optimal success- and error probability

P ∗
s (A1, . . . , Ar) := max

{∑r

i=1
TrAiEi : {E1, . . . , Er} POVM

}
, (14)

P ∗
e (A1, . . . , Ar) := min

{∑r

i=1
TrAi(I − Ei) : {E1, . . . , Er} POVM

}
.

The maximum and the minimum above exist because the domain of optimization is compact
and the functions to optimize are continuous with respect to any natural topology on the set
of POVMs on a fixed set of outcomes. We will use the shorthand notations P ∗

s and P ∗
e when

it is clear what the hypotheses are. Note that

P ∗
s (A1, . . . , Ar) + P ∗

e (A1, . . . , Ar) = TrA0, where A0 :=

r∑
i=1

Ai.

Again, these can be interpreted as probabilities if 1 = TrA0 =
∑

i pi, i.e., in the case of
weighted states. Note that any POVM that is optimal for P ∗

s is also optimal for P ∗
e and vice

versa. Moreover, there always exists an optimal POVM {Ei}ri=1 such that E1 + . . .+Er = I.

In the asymptotic setting, our hypotheses are going to be represented by sequences of
PSD operators, A⃗i := {Ai,n}n∈N, i = 1, . . . , r, and we will be interested in the exponents p

e
and pe, defined in (2) and (3), respectively. We say that the i-th hypothesis is i.i.d. (for the
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classical analogy of independent and identically distributed) if pi,n = TrAi,n is independent of
n (and hence we can define pi := pi,n, n ∈ N), and Ai,n/pi = σ⊗n

i for every i, where σi := σi,1.
We say that the asymptotic state discrimination problem is i.i.d. if all the hypotheses are
i.i.d.

When passing from single-shot error bounds to asymptotic error bounds, we will use the
following standard lemma without further notice.

Lemma 2.1. Let ai,n, n ∈ N, i = 1, . . . , r, be sequences of positive numbers. Then

max
i

lim inf
n→∞

1

n
log ai,n ≤ lim inf

n→∞

1

n
log

r∑
i=1

ai,n ≤ lim sup
n→∞

1

n
log

r∑
i=1

ai,n ≤ max
i

lim sup
n→∞

1

n
log ai,n.

Proof. The first inequality is straightforward from ai,n ≤
∑

i ai,n, ∀i, and the second in-
equality is obvious. To prove the last inequality, let M := maxi lim supn→∞

1
n log ai,n. If

M = +∞ then the assertion is trivial, and hence we assume that M < +∞. By the
definition of the limit superior, for every M ′ > M , there exists an NM ′ such that for all
n ≥ NM ′ , ai,n < exp(M ′), i = 1, . . . , r, and hence 1

n log
∑r

i=1 ai,n < 1
n log r + M ′. Thus

lim supn→∞
1
n log

∑r
i=1 ai,n ≤M ′. Since this is true for all M ′ > M , the assertion follows.

2.3 The generalized maximum likelihood error

In the classical state discrimination problem, where the hypotheses are represented by non-
negative functionsAi : X → R+ on some finite set X , the optimal success probability is known
to be

∑
x max{A1, . . . , Ar}, and it is achieved by the maximum likelihood measurement (see

Appendix B for details). If we consider the Ai as diagonal operators in some fixed basis, then
P ∗
s can be rewritten as

P ∗
s (A1, . . . , Ar) = Tr max{A1, . . . , Ar}, (15)

where max{A1, . . . , Ar} is the operator with maxiAi(x) in its diagonals. Note that this is
not a maximum in the usual sense of PSD ordering; indeed, it is well-known that the PSD
ordering does not induce a lattice structure [3], so in general the set of upper bounds to r
given self-adjoint operators A1, . . . , Ar, which is defined as A := {Y : Y ≥ Ak, k = 1, . . . , r},
has no minimal element, not even when the Ak mutually commute; see, e.g. Example A.1
in Appendix A. However, there is a unique minimal element within A in terms of the trace
ordering. We can therefore define a least upper bound in this more restrictive sense as

LUB(A1, . . . , Ar) := arg min
Y

{TrY : Y ≥ Ak, k = 1, . . . , r}. (16)

For the proof of uniqueness, see Appendix A. In a similar vein we can define the greatest
lower bound (GLB) as

GLB(A1, . . . , Ar) := arg max
Y

{TrY : Y ≤ Ak, k = 1, . . . , r}. (17)

Clearly, we have
GLB(A1, . . . , Ar) = −LUB(−A1, . . . ,−Ar). (18)
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For further properties of the above notions, see Appendix A.

Note that the set of k-outcome POVMs forms a convex set, and the optimal success
probability in (14) is given as the maximum of a linear functional over this convex set. It
was shown in [53] that the duality of convex optimization yields

P ∗
s (A1, . . . , Ar) = min{TrY : Y ≥ Ak, k = 1, . . . , r} (19)

(see also [28] for a different formulation of the same result). Using the definition of the LUB
above, this can be rewritten as

P ∗
s (A1, . . . , Ar) = Tr LUB(A1, . . . , Ar), (20)

in complete analogy with the classical case (15). For readers’ convenience, we provide a
detailed derivation of (19) in Appendix D.

For an ensemble of PSD operators {Ai}ri=1, we define the complementary operator of Ai

as the operator given by the sum of all other operators in the ensemble:

Āi :=
∑
j ̸=i

Aj = A0 −Ai,

where A0 =
∑

iAi. The optimal error probability can be expressed in terms of the GLB of
the complementary density operators:

P ∗
e (A1, . . . , Ar) = Tr GLB(Ā1, . . . , Ār). (21)

This is easy to show:

P ∗
e = min

{Ek}

∑
k

TrAk

∑
l: l ̸=k

El = min
{Ek}

∑
l

TrEl

∑
k: k ̸=l

Ak = min
{Ek}

∑
l

TrElĀl = −max
{Ek}

∑
l

TrEl(−Āl)

= −Tr LUB(−Ā1, . . . ,−Ār) = Tr GLB(Ā1, . . . , Ār),

where we used (20), (18), and that an optimal POVM can be chosen so that E1+. . .+Er = I.
Note that this is in general different from Tr GLB(A1, . . . , Ar), which is the minimal i.e. worst-
case success probability Ps,min = min{Ek}

∑
k TrAkEk.

In the binary case, i.e., when r = 2, we have

P ∗
s (A1, A2) = max{TrA1E + TrA2(I − E) : 0 ≤ E ≤ I} = TrA2 + max

0≤E≤I
Tr(A1 −A2)E

= TrA2 + Tr(A1 −A2)+ =
1

2
Tr(A1 +A2) +

1

2
∥A1 −A2∥1 ,

and the maximum is attained at E = {A1 − A2 > 0}; this is the so-called Holevo-Helström
measurement [25, 20]. Consequently, we have

P ∗
e (A1, A2) = min{TrA1(I − E) + TrA2E : 0 ≤ E ≤ I} (22)

= Tr(A1 +A2) − P ∗
s (A,A2) =

1

2
Tr(A1 +A2) −

1

2
∥A1 −A2∥ . (23)
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Comparing these with (20) and (21), and noting that in the binary case Ā1 = A2, Ā2 = A1,
we obtain

Tr LUB(A1, A2) =
1

2
Tr(A1 +A2) +

1

2
∥A1 −A2∥1 ,

Tr GLB(A1, A2) =
1

2
Tr(A1 +A2) −

1

2
∥A1 −A2∥1 .

For a more straightforward way to derive these identities, see Appendix A.

In the rest of the paper, we will use the notations P ∗
e (A,B), Tr GLB(A,B) and 1

2 Tr(A+
B) − 1

2 ∥A−B∥1 interchangeably for PSD operators A,B.

2.4 Chernoff bound for binary state discrimination

For PSD operators A,B on the same Hilbert space, define

Qs(A∥B) := TrAsB1−s, s ∈ R,
Qmin(A,B) := min

0≤s≤1
Qs(A∥B), (24)

C(A,B) := − logQmin(A,B).

The last quantity, C(A,B) is the Chernoff divergence of A and B. As it was shown in
Theorem 1 in [4] (see also [5, 7]),

1

2
Tr(A+B) − 1

2
∥A−B∥1 ≤ Qs(A∥B), s ∈ [0, 1]. (25)

Consider now the generalized asymptotic binary hypothesis testing problem with hypothe-
ses A⃗1, A⃗2. By (25), we have

P ∗
e (A1,n, A2,n) =

1

2
Tr(A1,n +A2,n) − 1

2
∥A1,n −A2,n∥1 ≤ Qs(A1,n∥A2,n) (26)

for every n ∈ N and s ∈ [0, 1], and hence,

pe(A⃗1, A⃗2) = lim sup
n→∞

1

n
logP ∗

e (A1,n, A2,n) ≤ −C(A⃗1, A⃗2), (27)

where

C(A⃗1, A⃗2) := − lim sup
n→∞

1

n
logQmin(A1,n, A2,n) = lim inf

n→∞

1

n
C(A1,n, A2,n) (28)

is the regularized Chernoff divergence.

In the i.i.d. case, i.e., when A1,n = p1σ
⊗n
1 and A2,n = p2σ

⊗n
2 for every n ∈ N, we have

Qs(A1,n∥A2,n) = ps1p
1−s
2 Qs(σ1∥σ2)n ≤ max{p1, p2}Qs(σ1∥σ2)n, and (26) yields

P ∗
e (p1σ

⊗n
1 , p2σ

⊗n
2 ) ≤ max{p1, p2}Qmin(σ1, σ2)

n = max{p1, p2} exp (−nC(σ1, σ2))

for every n ∈ N. In particular,

lim sup
n→∞

1

n
logP ∗

e (p1σ
⊗n
1 , p2σ

⊗n
2 ) ≤ −C(σ1, σ2).

10



(Note that in this case C(A⃗1, A⃗2) = C(σ1, σ2)).

The above argument shows that the asymptotic Chernoff divergence (which is equal to
the single-shot Chernoff divergence in the i.i.d. case) is an achievable error rate. Optimality
means that no faster exponential decay of the optimal error is possible, i.e., that

p
e
(A⃗1, A⃗2) = lim inf

n→∞

1

n
logP ∗

e (A1,n, A2,n) ≥ −C(A⃗1, A⃗2).

This was shown to be true in the i.i.d. case in [38]. Optimality for various correlated scenarios
was obtained in [21, 22, 23, 31, 32]; the classes of states covered include Gibbs states of finite-
range translation-invariant interactions on a spin chain, and thermal states of non-interacting
bosonic and fermionic lattice systems.

2.5 Pairwise discrimination and lower decoupling bounds

Consider the generalized state discrimination problem with hypotheses A1, . . . , Ar. In this
section we review a lower bound on the optimal error probability for discriminating between
r given states in terms of the optimal pairwise error probabilities, originally given in [45].
Let us thereto define the following quantities:

P ∗
s,2 := P ∗

s,2(A1, . . . , Ar) :=
1

r − 1

∑
(k,l): k<l

P ∗
s (Ak, Al) =

1

r − 1

∑
(k,l): k<l

Tr LUB(Ak, Al)

=
1

r − 1

∑
(k,l): k<l

1

2
(Tr(Ak +Al) + ∥Ak −Al∥1) . (29)

and

P ∗
e,2 := P ∗

e,2(A1, . . . , Ar) :=
1

r − 1

∑
(k,l): k<l

P ∗
e (Ak, Al) =

1

r − 1

∑
(k,l): k<l

Tr GLB(Ak, Al)

=
1

r − 1

∑
(k,l): k<l

1

2
(Tr(Ak +Al) − ∥Ak −Al∥1) . (30)

Note that

P ∗
s,2(A1, . . . , Ar) + P ∗

e,2(A1, . . . , Ar) =
∑
i

TrAi = P ∗
s (A1, . . . , Ar) + P ∗

e (A1, . . . , Ar),

explaining the choice 1/(r − 1) for the normalization.

In the case of weighted states, i.e., when TrA0 = 1, we can interpret these quantities as
optimal success and error probabilities in a very special setting, whereby the receiver can
make use of a particular kind of side information. We shall assume that this side information
has been provided by an oracle. The oracle knows the correct value of each symbol sent out
by the source, but in the best of oracular traditions, does not quite reveal this information
to the receiver. Rather, the oracle provides the receiver with a choice of two symbols, one of
which is the correct one and the other is chosen from the remaining values at random, with
uniform probability 1/(r − 1). It is intuitively plausible that the receiver should only try to
discriminate between the two options provided.
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The optimal success probability in this setup can easily be calculated. From the receiver’s
viewpoint, the probability that the values of the symbols provided by the oracle are k and l
(with k ̸= l) is pk(r− 1)−1 + (r− 1)−1pl, and the conditional probability that k is the correct
one is pk/(pk + pl). Hence, the receiver’s optimal success probability will be

P ∗
s,2 =

∑
(k,l): k<l

pk + pl
r − 1

1

2

(
1 +

∥∥∥∥ pk
pk + pl

σk −
pl

pk + pl
σl

∥∥∥∥
1

)
,

which simplifies to (29).

It is intuitively clear that this oracle-assisted success probability should never be smaller
than the unassisted optimal success probability, whereby the receiver needs to discriminate
between all r possible symbols. The following Theorem, first given in [45], shows that this is
indeed the case. Here we give a detailed and slightly simplified proof for readers’ convenience.
We also provide a different proof and a strengthening of (31) in Theorem 5.2.

Theorem 2.2. For any A1, . . . , Ar ∈ B(H)+,

P ∗
s (A1, . . . , Ar) ≤ P ∗

s,2(A1, . . . , Ar), and P ∗
e (A1, . . . , Ar) ≥ P ∗

e,2(A1, . . . , Ar). (31)

Proof. First notice that∑
(k,l): k ̸=l

(TrAkEk + TrAlEl) = 2(r − 1)

r∑
k=1

TrAkEk

and

TrAkEk + TrAlEl ≤ TrAkEk + TrAl (I − Ek) = TrAl + Tr (Ak −Al)Ek

≤ TrAl + Tr (Ak −Al)+ =
1

2
(Tr(Ak +Al) + ∥Ak −Al∥1).

Hence,

r∑
k=1

TrAkEk =
1

2(r − 1)

∑
(k,l): k ̸=l

(TrAkEk + TrAlEl)

≤ 1

4(r − 1)

∑
(k,l): k ̸=l

(Tr(Ak +Al) + ∥Ak −Al∥1) ,

which yields the first assertion. The second assertion, P ∗
e ≥ P ∗

e,2, is now obvious.

We conjecture that for any choice of signal states and source probabilities the oracle-
assisted error probability can not be arbitrarily smaller than the unassisted one. In particular,
we believe:

Conjecture 2.3. There exists a constant c, only depending on the number of hypotheses r,
such that for all A1, . . . , Ar ≥ 0

P ∗
e (A1, . . . , Ar) ≤ cP ∗

e,2(A1, . . . , Ar).

We have ample numerical evidence for this conjecture, and this evidence suggests that
c = 4(r − 1). Several approaches towards a proof will be provided in the next sections.
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2.6 Inequalities for various operator distinguishability measures

We will often benefit from inequalities between various operator distinguishability measures.
In particular, we will use inequalities between the optimal binary error, the Chernoff diver-
gence, and the fidelity. For positive semidefinite operators A,B ∈ B(H)+, their fidelity is
defined as

F (A,B) :=
∥∥∥A1/2B1/2

∥∥∥
1

= Tr(A1/2BA1/2)1/2. (32)

The following bounds between the fidelity and the trace-norm were shown in [15] for
states, and extended to weighted states in [7], where also the sharpness of the inequalities
1
2 Tr(A + B) − 1

2 ∥A−B∥1 ≤ F (A,B) ≤
√

1
4 (Tr(A+B))2 − 1

4 ∥A−B∥21 has been shown.

The proof for the general case can be obtained exactly the same way as in the above cases.

Lemma 2.4. For any A,B ∈ B(H)+,

P ∗
e (A,B) = Tr GLB(A,B) =

1

2
Tr(A+B) − 1

2
∥A−B∥1 ≤ F (A,B) (33)

≤
√

1

4
(Tr(A+B))2 − 1

4
∥A−B∥21 =

√
Tr LUB(A,B)

√
Tr GLB(A,B)

≤
√

Tr(A+B)
√

Tr GLB(A,B) =
√

Tr(A+B)
√
P ∗
e (A,B).

When A is rank one, we also have the following inequality. This has been stated as an
exercise in [37] for states; we provide a proof here for readers’ convenience.

Lemma 2.5. Let A,B ∈ B(H)+ and assume that A has rank one. Then

P ∗
e (A,B) = Tr GLB(A,B) =

1

2
Tr(A+B) − 1

2
∥A−B∥1 ≤

1

TrA
F (A,B)2. (34)

Proof. Let Ã := A/TrA. The assumption that A is rank one yields that TrAÃ = TrA and
F (A,B) =

√
TrAB. Using the representation (23), we get

1

2
Tr(A+B) − 1

2
∥A−B∥1 = min{A(I − E) + TrBE : 0 ≤ E ≤ I}

≤ TrA(I − Ã) + TrBÃ =
1

TrA
TrAB =

1

TrA
F (A,B)2.

Remark 2.6. Monotonicity of the fidelity under the trace yields that F (A,B) ≤ (TrA)1/2(TrB)1/2.
If TrB ≤ TrA then F (A,B) ≤ TrA, or equivalently, 1

TrAF (A,B)2 ≤ F (A,B), and hence the
upper bound in (34) is stronger than the inequality in (33). This is the case, for instance, for
states. In general, however, the two bounds are not comparable.

According to Theorem 6 in [5], for any A,B ∈ B(H)+,

F (A,B)2 ≤ TrAtB1−t(TrA)1−t(TrB)t, t ∈ [0, 1].

In particular, for states ρ, σ,

F (ρ, σ)2 ≤ Qmin(ρ, σ) = min
0≤t≤1

Tr ρtσ1−t. (35)
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3 Upper bounds from suboptimal measurements

Consider the generalized state discrimination problem with hypotheses Ai ∈ B(H)+, i =
1, . . . , r. As before, we write Ai = piσi, with Trσi = 1. When the number of hypotheses
r is larger than 2, there is no explicit expression known for the optimal error probability
P ∗
e (A1, . . . , Ar) in general. Obviously, any measurement yields an upper bound on the optimal

error probability, some of which are known to have the same asymptotics in the limit of
infinitely many copies as the optimal error probability. Here we first review the pretty good
measurement (PGM), and the bounds (8)–(9) from [8, 19]. Next, we consider the square
measurement (SM), and derive upper bounds on its optimal error probability. These upper
bounds sometimes outperform those of (8)–(9).

For every α ∈ R, define the α-weighted POVM E(α) by

E
(α)
k := S−1/2

α Aα
kS

−1/2
α , Sα :=

∑
k

Aα
k .

Note that if Ak = |ψk⟩⟨ψk| for some vectors ψk then E
(α)
k = |ψ(α)

k ⟩⟨ψ(α)
k | with ψ

(α)
k :=

S
−1/2
α ∥ψk∥α−1 ψk, and

∑
k |ψ

(α)
k ⟩⟨ψ(α)

k | = (
∑

k Ak)0. In particular, if ψ1, . . . , ψr are linearly

independent then ψ
(α)
1 , . . . , ψ

(α)
r is an orthonormal system, spanning the same subspace as the

original ψ vectors. That is, the above procedure yields an orthogonalization of the original
set of vectors, which is different from the Gram-Schmidt orthogonalization in general.

The case α = 1 yields the so-called pretty good measurement (PG) [16]. Barnum and
Knill [8] have shown that in the case of weighted states, the success probability of the PG
measurement is bounded below by the square of the optimal success probability: (P ∗

s )2 ≤
PPG
s ≤ P ∗

s , which in turn yields that 1
2P

PG
e ≤ P ∗

e ≤ PPG
e . In particular, P ∗

e and PPG
e have

the same exponential decay rate in the asymptotic setting.

Theorem 3.1 (Barnum and Knill).

PPG
e ≤ 1

2

∑
(i,j): i̸=j

F (Ai, Aj) =
1

2

∑
(i,j): i̸=j

√
pipjF (σi, σj). (36)

Actually, Theorem 4 in [8] gives the upper bound in (36) without the 1/2 pre-factor. We
give a short proof of the improved bound in Appendix E. This theorem immediately yields
(8). It was shown in [19] that when all the Ai are rank one then

PPG
e ≤ 1

2

∑
(i,j): i ̸=j

p2i + p2j
p2i p

2
j

F (Ai, Aj)
2 =

1

2

∑
(i,j): i ̸=j

p2i + p2j
pipj

F (σi, σj)
2, (37)

which yields (9).

The case α = 2 yields the square measurement (SQ), with POVM elements

ESQ;k = X∗
SQ;kXSQ;k, XSQ;k = Ak

(∑
k

A2
k

)−1/2

.
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This type of measurement has been used by various authors [10, 12, 27, 25], and it features
in Tyson’s bounds on the error probability [50], which we briefly review below. For a com-
prehensive overview of the use of the pretty good and the square measurements for state
discrimination, see [51].

For any set {Xk} of measurement operators (i.e.,
∑

kX
∗
kXk ≤ I), let

Γ({Xk}) := TrA0 −
r∑

k=1

∥XkAk∥1 . (38)

Minimizing over all possible choices of {Xk} yields the optimal value Γ∗:

Γ∗ := inf
{Xk}:

∑
k X∗

kXk=I
Γ({Xk}). (39)

The importance of this quantity Γ comes from a combination of two facts. First, it differs
from the error probability Pe only by a factor between 1 and at most 2. Hence, Γ∗ is a good
approximation of P ∗

e , especially in the asymptotic regime. Moreover, unlike the optimal error
probability, Γ∗ can be calculated explicitly by a closed-form expression. This is the content
of the following two theorems, first proven by Tyson [50]. For completeness, we provide short
proofs in Appendix E.

Theorem 3.2 (Tyson). Let A1, . . . , Ar ∈ B(H)+ and {Ek = X∗
kXk} be a POVM. Then

Γ({Xk}) ≤ Pe({Ek}) ≤ 2Γ({Xk}).

In particular, for the optimal POVM and optimal Xk that achieve the minimum:

Γ∗ ≤ P ∗
e ≤ 2Γ∗. (40)

Theorem 3.3 (Tyson). Let A1, . . . , Ar ∈ B(H)+ and A0 :=
∑

iAi. Then

Γ∗ = TrA0 − Tr

(
r∑

i=1

A2
i

)1/2

, (41)

with the optimal measurement operators being those of the SQ measurement.

From (41) it follows that Γ∗ can take values between 0 (when all Ai are mutually or-
thogonal) and TrA0 − TrA2

0/
√
r (when all Ai are equal), whereas P ∗

e lies between 0 and
(TrA0)(1 − 1/r).

Tyson’s theorems yield that

P ∗
e ≤ PSQ

e ≤ 2

TrA0 − Tr

(
r∑

i=1

A2
i

)1/2
 . (42)

Thus any decoupling bound on the RHS of (42) yields a decoupling bound on P ∗
e . Here we

show the following:
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Proposition 3.4. Let A1, . . . , Ar ∈ B(H)+ and A0 :=
∑

iAi. Then

TrA0 − Tr

∑
j

A2
j

1/2

≤ TrA0 − (TrA0)
3
2

(TrA0) + 2
∑

(i,j): i<j

TrA
1/2
i A

1/2
j

−1/2

≤
∑

(i,j): i<j

TrA
1/2
i A

1/2
j .

Proof. According to Lieb’s theorem, the functional (B,C) 7→ Tr(BtC1−t) is jointly concave
for 0 < t ≤ 1. That is, for PSD operators Bj and Cj ,

Tr
∑

j
Bt

jC
1−t
j ≤ Tr

(∑
j
Bj

)t (∑
j
Cj

)1−t
.

Then, using the fact |TrX| ≤ ||X||1 and Hölder’s inequality,

Tr
∑

j
Bt

jC
1−t
j ≤

∥∥∥∥(∑j
Bj

)t (∑
j
Cj

)1−t
∥∥∥∥
1

≤
∥∥∥∥(∑j

Bj

)t∥∥∥∥
1/s

∥∥∥∥(∑j
Cj

)1−t
∥∥∥∥
1/(1−s)

for every 0 < s < 1. Now take t = 2/3, s = 1/3, Bj = A
1/2
j and Cj = A2

j , then

Tr
∑

j
A

1/3
j A

2/3
j ≤

∥∥∥∥(∑j
A

1/2
j

)2/3∥∥∥∥
3

∥∥∥∥(∑j
A2

j

)1/3∥∥∥∥
3/2

=

(
Tr
(∑

j
A

1/2
j

)2)1/3 (
Tr
(∑

j
A2

j

)1/2)2/3

.

Obviously, the LHS equals TrA0. Taking the 3/2 power and rearranging then yields

Tr
(∑

j
A2

j

)1/2
≥ (TrA0)

3
2

(
Tr
(∑

j
A

1/2
j

)2)−1/2

= (TrA0)
3
2

(∑
i,j

TrA
1/2
i A

1/2
j

)−1/2

= (TrA0)
3
2

TrA0 + 2
∑

(i,j): i<j

TrA
1/2
i A

1/2
j

−1/2

≥ TrA0 −
∑

(i,j): i<j

TrA
1/2
i A

1/2
j ,

where in the last line we exploited the inequality (a+ x)−1/2 ≥ a−1/2 − 1
2a

−3/2x.

Theorem 3.5. Let A1, . . . , Ar ∈ B(H)+ and let pk := TrAk, σk := Ak/TrAk. Then

P ∗
e (A1, . . . , Ar) ≤

∑
(i,j): i ̸=j

TrA
1/2
i A

1/2
j ≤

∑
(i,j): i ̸=j

F (Ai, Aj) (43)

≤

{∑
(i,j): i̸=j

√
pi + pj P ∗

e (Ai, Aj)
1/2,∑

(i,j): i̸=j
√
pipj Qmin(σi, σj)

1/2
. (44)
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In the special case that all states σk are pure, we have the improved bound

P ∗
e (A1, . . . , Ar) ≤

∑
(i,j): i̸=j

TrA
1/2
i A

1/2
j =

∑
(i,j): i̸=j

√
pipj Qmin(σi, σj) (45)

=
∑

(i,j): i̸=j

1
√
pipj

F (Ai, Aj)
2 ≤

∑
(i,j): i̸=j

pi + pj√
pipj

P ∗
e (Ai, Aj). (46)

Proof. The first inequalities in (43) and (45) are due to (42) and Proposition 3.4. The second

inequality in (43) is obvious from TrA
1/2
i A

1/2
j ≤ ∥A1/2

i A
1/2
j ∥1 = F (Ai, Aj). The first bound

in (44) follows from lemma 2.4, while the second bound is due to (35). The identities in
(45) and (46) are straightforward to verify, and the inequality in (46) is again due to lemma
2.4.

Remark 3.6. Since the inequalities used to prove (44) can be saturated, the square roots in
(44) cannot be removed from P ∗

e (Ai, Aj)
1/2 and Qmin(σi, σj)

1/2 in general.

Remark 3.7. When all states are pure and the prior is uniform (i.e., pk = TrAk = 1/r ∀k),
we can use another argument. By the inequality Tr ρσ ≤ 1 − (||ρ− σ||1/2)2 [7], we get

Trσjσk ≤ 1 − ∥σj − σk∥21 /4 ≤ 2 − ∥σj − σk∥1 .

Hence,

TrA
1/2
j A

1/2
k =

1

r
Trσjσk ≤ 1

r
(2 − ∥σj − σk∥1),

so that

1 − Γ∗ ≥

1 +
2

r

∑
(j,k): j<k

(2 − ∥σj − σk∥1)

−1/2

. (47)

Based on extensive numerical simulations, we conjecture that the latter bound also holds
for mixed states and for non-uniform priors:

Conjecture 3.8. For any Ai ≥ 0 with
∑

i TrAi = 1,

Γ∗ ≤ 1 −
(
1 + 4(r − 1)P ∗

e,2

)−1/2 ≤ 2(r − 1)P ∗
e,2. (48)

By Theorem 3.2, this would imply the inequality of Conjecture 2.3 for weighted states:

P ∗
e ≤ 4(r − 1)P ∗

e,2.

Remark 3.9. Note that for any pi, pj , (pipj)
3/2 ≤ pipj ≤ (p2i + pj)

2/2, from which it follows
that the constants in the bound

P ∗
e ≤

∑
(i,j): i̸=j

1
√
pipj

F (Ai, Aj)
2,

given in (46), are better than in (37), i.e., (46) gives a tighter upper bound on the optimal
error than (37).
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To compare the bounds in (36) and (43), first choose all the σj to be pure, i.e., σj =

|ψj⟩⟨ψj | for some unit vectors ψj . Then TrA
1/2
i A

1/2
j =

√
pipj | ⟨ψi, ψj⟩ |2, while F (Ai, Aj) =√

pipj | ⟨ψi, ψj⟩ |. Choosing thus the ψj close to orthogonal, but not orthogonal, we see that
the ratio ∑

(i,j): i ̸=j TrA
1/2
i A

1/2
j∑

(i,j): i ̸=j F (Ai, Aj)

can be arbitrarily small. By continuity, we can also add a small perturbation to obtain
PSD operators Aj of full support with the same property. In this sense, the upper bound

P ∗
e ≤

∑
(i,j): i̸=j TrA

1/2
i A

1/2
j in (43) can be arbitrarily better than the bound in (36), for any

fixed r. On the other hand, there are configurations for which the bound in (36) outperforms
the one in (43), due to the 1/2 pre-factor in the former.

4 Binary state discrimination: i.i.d. vs. averaged i.i.d

Consider the binary state discrimination problem where one of the hypotheses is i.i.d., i.e., for
n copies it is represented by ρ⊗n for some state ρ, while the other hypothesis is averaged i.i.d.,
i.e., for n copies it is of the form

∑r
i=1 qiσ

⊗n
i for some states σ1, . . . , σr, and a probability

distribution q1, . . . , qr. This represents a situation where we have a further uncertainty about
the identity of the true state when the second hypothesis is true. Alternatively, this can be
considered as a state discrimination problem with r+1 i.i.d. hypotheses, where we only want
to know whether one of the hypotheses is true or not. If the state ρ has prior probability
0 < p < 1 then the optimal error probability for n copies is

P ∗
e

(
pρ⊗n, (1 − p)

∑
i
qiσ

⊗n
i

)
=

1

2

(
1 −

∥∥∥pρ⊗n − (1 − p)
∑

i
qiσ

⊗n
i

∥∥∥
1

)
.

Convexity of the trace-norm implies that

P ∗
e

(
pρ⊗n, (1 − p)

∑
i
qiσ

⊗n
i

)
≥ 1

2

r∑
i=1

qi
(
1 −

∥∥pρ⊗n − (1 − p)σ⊗n
i

∥∥
1

)
=

r∑
i=1

qiP
∗
e

(
pρ⊗n, (1 − p)σ⊗n

i

)
, (49)

and hence,

p
e

(
{pρ⊗n}n,

{
(1 − p)

∑
i
qiσ

⊗n
i

}
n

)
≥ max

1≤i≤r
p
e

(
{pρ⊗n}n, {(1 − p)σ⊗n

i }n
)

= −min
i
C(ρ, σi).

Based on analytical proofs for various special cases as well extensive numerical search, we
conjecture that the following converse decoupling inequality is also true:

Conjecture 4.1.

pe

(
{pρ⊗n}n,

{
(1 − p)

∑
i
qiσ

⊗n
i

}
n

)
≤ max

1≤i≤r
pe
(
{pρ⊗n}n, {(1 − p)σ⊗n

i }n
)

= −min
i
C(ρ, σi).
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This conjecture would immediately yield

Conjecture 4.2.

lim
n→∞

1

n
logP ∗

e

(
pρ⊗n, (1 − p)

∑
i
qiσ

⊗n
i

)
= −min

i
C(ρ, σi).

Below we will prove Conjecture 4.1 in the case where ρ is a pure state, and prove a weaker
version in the general case. These will follow from the following single-shot decoupling bounds,
which are the main results of this section:

Theorem 4.3. Let A,B1, . . . , Br ∈ B(H)+. Then

P ∗
e

(
A,
∑

j
Bj

)
≤
∑
j

F (A,Bj) ≤
∑
j

√
Tr(A+Bj)

√
P ∗
e (A,Bj). (50)

If A is rank one then we also have

P ∗
e

(
A,
∑

j
Bj

)
≤


(∑

j TrBj

)∑
j F
(

A
TrA ,

Bj

TrBj

)2
≤
(∑

j TrBj

)∑
j

TrA+TrBj

(TrA)(TrBj)
P ∗
e (A,Bj)(∑

j

√
1 +

TrBj

TrA

√
P ∗
e (A,Bj)

)2

≤
(∑

j

(
1 +

TrBj

TrA

))∑
j P

∗
e (A,Bj) .

(51)

Before proving Theorem 4.3, we first explore some of its implications. We start with the
following:

Corollary 4.4. For every n ∈ N, let An, B1,n, . . . , Br,n ∈ B(Hn)+, where Hn is some finite-
dimensional Hilbert space. If lim supn Tr(An +

∑
j Bj,n) < +∞ then

pe

(
A⃗,
∑

j
B⃗j

)
≤ 1

2
max
1≤j≤r

pe

(
A⃗, B⃗j

)
.

If An is rank one for every large enough n and lim supn Tr(An +
∑

j Bj,n)/TrAn < +∞ then

pe

(
A⃗,
∑

j
B⃗j

)
≤ max

1≤j≤r
pe

(
A⃗, B⃗j

)
.

Remark 4.5. Note that P ∗
e

(
A,
∑

j Bj

)
≥ P ∗

e (A,Bj) for every j, and hence

max
1≤j≤r

P ∗
e (A,Bj) ≤ P ∗

e

(
A,
∑

j
Bj

)
.

In the asymptotic setting this yields

max
1≤j≤r

p
e

(
A⃗, B⃗j

)
≤ p

e

(
A⃗,
∑

j
B⃗j

)
,

complementing the inequalities of Corollary 4.4.
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Applying Corollary 4.4 to the problem of i.i.d. vs. averaged i.i.d. state discrimination, we
finally get the following:

Theorem 4.6. In the i.i.d. vs. averaged i.i.d. case described at the beginning of the section,

−min
i
C(ρ, σi) ≤ lim inf

n→∞

1

n
logP ∗

e

(
pρ⊗n, (1 − p)

∑
i
qiσ

⊗n
i

)
≤ lim sup

n→∞

1

n
logP ∗

e

(
pρ⊗n, (1 − p)

∑
i
qiσ

⊗n
i

)
≤ −1

2
min
i
C(ρ, σi).

If ρ is pure then we have

lim
n→∞

1

n
logP ∗

e

(
pρ⊗n, (1 − p)

∑
i
qiσ

⊗n
i

)
= −min

i
C(ρ, σi).

In realistic scenarios it is more natural to assume that the hypotheses are represented
by sets of states with many elements (composite hypothesis) rather than one single state
(simple hypothesis). Here we briefly consider the simplest such scenario, where we have two
hypotheses, of which one is simple, represented by some PSD operator A, and the other one
is composite, represented by a finite set of PSD operators {B1, . . . , Br}. For a given POVM
{E, I −E}, the worst-case error probability is given by TrA(I −E) + max1≤i≤r TrBiE, and
we define

P ∗
e (A, {Bi}ri=1) := inf

{
TrA(I − E) + max

1≤i≤r
TrBiE : 0 ≤ E ≤ I

}
.

For every i and every E, we have

TrA(I − E) + TrBiE ≤ TrA(I − E) + max
1≤i≤r

TrBiE ≤ TrA(I − E) + Tr

r∑
i=1

BiE,

and taking the infimum in E yields

max
1≤i≤r

P ∗
e (A,Bi) ≤ P ∗

e (A, {Bi}ri=1) ≤ P ∗
e

(
A,
∑

i
Bi

)
.

Corollary 4.4 then immediately yields the following:

Corollary 4.7. For every n ∈ N, let An, B1,n, . . . , Br,n ∈ B(Hn)+, where Hn is some finite-
dimensional Hilbert space, and let

p
e

(
A⃗, {B⃗i}ri=1

)
:= lim inf

n→+∞

1

n
logP ∗

e (A, {Bi}ri=1)

pe

(
A⃗, {B⃗i}ri=1

)
:= lim sup

n→+∞

1

n
logP ∗

e (A, {Bi}ri=1) .

If lim supn Tr(An +
∑

j Bj,n) < +∞ then

max
1≤i≤r

p
e

(
A⃗, B⃗i

)
≤ p

e

(
A⃗, {B⃗i}ri=1

)
≤ pe

(
A⃗, {B⃗i}ri=1

)
≤ 1

2
max
1≤i≤r

pe

(
A⃗, B⃗i

)
.

If An is rank one for every large enough n and lim supn Tr(An +
∑

j Bj,n)/TrAn < +∞ then

max
1≤i≤r

p
e

(
A⃗, B⃗i

)
≤ p

e

(
A⃗, {B⃗i}ri=1

)
≤ pe

(
A⃗, {B⃗i}ri=1

)
≤ max

1≤i≤r
pe

(
A⃗, B⃗i

)
.
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Taking now An := ρ⊗n, Bi,n := σ⊗n
i , where ρ, σ1, . . . , σr are density operators on some

finite-dimensional Hilbert space, we get the following analogous statement to Theorem 4.6:

Theorem 4.8. Let ρ, σ1, . . . , σr be density operators on some finite-dimensional Hilbert
space. Then

−min
i
C(ρ, σi) ≤ lim inf

n→∞

1

n
logP ∗

e

(
ρ⊗n, {σ⊗n

i }ri=1

)
≤ lim sup

n→∞

1

n
logP ∗

e

(
ρ⊗n, {σ⊗n

i }ri=1

)
≤ −1

2
min
i
C(ρ, σi).

If ρ is pure then we have

lim
n→∞

1

n
logP ∗

e

(
ρ⊗n, {σ⊗n

i }ri=1

)
= −min

i
C(ρ, σi).

Now we turn to the proof of Theorem 4.3. For this we will need the following subadditivity
property of the fidelity:

Lemma 4.9. Let A,B1, . . . , Br ∈ B(H)+. Then

F
(
A,
∑

i
Bi

)
≤
∑

i
F (A,Bi). (52)

Proof. The function X 7→ Tr
√
X is subadditive on PSD operators, i.e., if X,Y ∈ B(H)+

then Tr
√
X + Y ≤ Tr

√
X + Tr

√
Y . Indeed, assume first that X,Y > 0. Then

Tr
√
X + Y − Tr

√
X =

∫ 1

0

d

dt
Tr

√
X + tY dt =

∫ 1

0
TrY

1

2
(X + tY )−1/2 dt

≤ Tr
√
Y

∫ 1

0

t−1/2

2
dt = Tr

√
Y ,

where we used the identity d
dt Tr f(X+tY ) = TrY f ′(X+tY ), and that the function x 7→ x−1/2

is operator monotone decreasing. The assertion for general PSD X and Y then follows by
continuity. Thus,

F
(
A,
∑

i
Bi

)
= Tr

√∑
i
A1/2BiA1/2 ≤

∑
i
Tr
√
A1/2BiA1/2 =

∑
i
F (A,Bi).

After this preparation, we are ready to prove Theorem 4.3.

Proof of Theorem 4.3:

P ∗
e

(
A,
∑

j
Bj

)
≤ F

(
A,
∑

j
Bj

)
≤
∑
j

F (A,Bj) ≤
∑
j

√
Tr(A+Bj)

√
P ∗
e (A,Bj),

where we used Lemma 2.4 in the first inequality, the second inequality is due to Lemma 4.9,
and the third inequality is again due to Lemma 2.4. This proves (50).
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Assume now that A is rank one. Then

P ∗
e

(
A,
∑

j
Bj

)
≤ 1

TrA
F
(
A,
∑

j
Bj

)2
≤ 1

TrA

(∑
j
F (A,Bj)

)2
=

1

TrA

(∑
j
(TrA)

1
2 (TrBj)

1
2F

(
A

TrA
,
Bj

TrBj

))2

≤ 1

TrA

(∑
j
(TrA)(TrBj)

)(∑
j
F

(
A

TrA
,
Bj

TrBj

)2
)

=
(∑

j
TrBj

)∑
j

1

(TrA)(TrBj)
F (A,Bj)

2

≤
(∑

j
TrBj

)∑
j

TrA+ TrBj

(TrA)(TrBj)
P ∗
e (A,Bj),

where the first inequality is due to Lemma 2.5, the second inequality is due to Lemma 4.9, in
the third inequality we used the Cauchy-Schwarz inequality, and the last inequality follows
from Lemma 2.4. This proves the first bound in (51). Alternatively, we may proceed as

P ∗
e

(
A,
∑

j
Bj

)
≤ 1

TrA
F
(
A,
∑

j
Bj

)2
≤ 1

TrA

(∑
j
F (A,Bj

)2
≤ 1

TrA

(∑
j

√
Tr(A+Bj)

√
P ∗
e (A,Bj)

)2

≤ 1

TrA

(∑
j

Tr(A+Bj)
)∑

j
P ∗
e (A,Bj),

where the third inequality is due to Lemma 2.5, and in the last line we used the Cauchy-
Schwarz inequality. This proves the second bound in (51).

We close this section with some discussion of the above results.

Let ρ, σ1, . . . , σr be states and q1, . . . , qr be a probability distribution. Then we have∑
i

qiF (ρ, σi) ≤ F
(
ρ,
∑

i
qiσi

)
≤
∑
i

√
qiF (ρ, σi),

where the first inequality is a special case of the joint concavity of the fidelity [37, Theorem
9.7], and the second inequality is due to Lemma 4.9 with the choice A = ρ and Bi =
qiσi. Hence, Lemma 4.9 yields a complement to the concavity inequality

∑
i qiF (ρ, σi) ≤

F (ρ,
∑

i qiσi). It is natural to ask whether the joint concavity inequality
∑

i qiF (ρi, σi) ≤
F (
∑

i qiρi,
∑

i qiσi) can be complemented in the same way, but it is easy to see that the
answer is no. Indeed, let ρ1 = σ2 = |x⟩⟨x| and ρ2 = σ1 = |y⟩⟨y| with x, y being orthogonal
unit vectors in C2, and let q1 = q2 = 1/2. Then

∑
i qiρi = 1

2I =
∑

i qiσi, and hence
F (
∑

i qiρi,
∑

i qiσi) = 1, while F (ρ1, σ1) = F (ρ2, σ2) = 0, and hence no inequality of the form
F (
∑

i qiρi,
∑

i qiσi) ≤ c
∑

i F (ρi, σi) can hold with some c > 0.

One can ask the same questions about the quantity P ∗
e (. , .) = Tr GLB(. , .), which has

very similar properties to the fidelity. Indeed, convexity of the trace-norm yields joint
concavity of this quantity, i.e., Tr GLB(

∑
i qiρi,

∑
i qiσi) = 1

2

(
1 − ∥

∑
i qiρi −

∑
i qiσi∥1

)
≥∑

i qi
1
2 (1 − ∥ρi − σi∥1) =

∑
i qi Tr GLB(ρi, σi), and the same example as above shows that
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this inequality cannot be complemented in general. On the other hand, one may hope that
the weaker concavity inequality, where the first argument is a fixed ρ, can be complemented
the same way as for the fidelity, i.e., that there exists a constant c > 0, depending at most
on r, such that

Tr GLB
(
ρ,
∑

i
qiσi

)
=

1

2

(
1 −

∥∥∥ρ−∑
i
qiσi

∥∥∥
1

)
≤ c

2

∑
i

(1 − ∥ρ− σi∥1) = c
∑
i

Tr GLB(ρ, σi).

More generally, one could ask whether an analogy of the subadditivity inequality (52) holds
for Tr GLB(. , .), i.e., if there exists a c > 0, depending at most on r, such that

P ∗
e

(
A,
∑

j
Bj

)
= Tr GLB

(
A,
∑

j
Bj

)
≤ c

∑
j

Tr GLB(A,Bj) = c
∑
j

P ∗
e (A,Bj) (53)

holds for any PSD A,B1, . . . , Br, where c > 0 depends only on r. This would give an
improvement over Theorem 4.3, and prove Conjecture 4.1. Note that (53) is true when A is
of rank one, according to Theorem 4.3, and also when all the operators are commuting, as
we show in Appendix B. However, as it turns out, no such c exists in the general case.

Counterexamples are as follows: for r = 2, take A = ε|ψ1⟩⟨ψ1|, B1 = |ψ2⟩⟨ψ2| and
B2 = |ψ3⟩⟨ψ3| with ε small and ψ2 and ψ3 very close and almost orthogonal to ψ1. For
example, consider

ψ1 =

(
1
0

)
, ψ2 =

(
sinα
cosα

)
, ψ3 =

(
− sinα
cosα

)
,

with sin2 α = ε/2. Then B1+B2 = Diag(ε, 2−ε) and Tr GLB(A,B1+B2) = 1
2(ε+2−|2−ε|) =

ε. However, one can check that Tr GLB(A,B1) = Tr GLB(A,B2) ≈ ε2/2 for very small ε.
Thus, the LHS of (53) is linear in ε, whereas its RHS is quadratic, meaning that the RHS can
be arbitrarily smaller than the LHS in the sense that the RHS/LHS ratio can be arbitrarily
small.

One might get the impression that this failure is due to the fact that A1 has very small
trace. Thus one could try to amend inequality (53) by dividing the RHS by that trace
(making both sides linear in ε):

Tr GLB
(
A,
∑

j
Bj

)
≤ 1

TrA

∑
j

Tr GLB(A,Bj). (54)

This is a sensible amendment as it resonates with the appearance of the factor 1
TrA in (34) in

our treatment of the pure state case, and furthermore, initial numerical simulations seemed to
bolster the claim. However, this inequality is false too. We can use the direct sum trick based
on Lemma A.9, and replace A by A⊕(1−TrA)|x⟩⟨x| and Bi by Bi⊕0 in the counterexample
of the previous paragraph, where x is a unit vector in some auxiliary Hilbert space. This
does not change the Tr GLB terms but changes TrA to 1, thereby eliminating its supposedly
compensating effect. Thus inequality (54) is violated to arbitrarily high extent. Moreover,
the same argument excludes the possibility to fix inequality (54) by replacing 1/TrA with
f(TrA) where f : R+ → R+ is such that limx→0+ f(x) = +∞.

The problems presented by the above example could be eliminated if we allowed the cross-
term Tr GLB(B1, B2) to appear (with some positive constant) on the RHS of (53), since the
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term Tr GLB(B1, B2) is close to 1 and swamps the distinction between ε and ε2. Although
such a bound is too weak for proving Conjecture 4.1, it would be just the right tool to prove
Conjecture 2.3, as we will see in the next section.

5 Dichotomic discrimination

Consider the generalized state discrimination problem with hypotheses A1, . . . , Ar. In this
section we show an intermediate step towards proving Conjecture 2.3 in the form of a partial
decoupling bound. Namely, we prove (in Theorem 5.2) that the multiple state discrimination
error is bounded from above by the dichotomic error, which is the sum of the error prob-
abilities of discriminating one Ai from the rest of the hypotheses. Using then the bounds
obtained in Section 4, we get full decoupling bounds (Theorem 5.5).

Define the complementary operators as Āi :=
∑

j ̸=iAj = A0 −Ai, where A0 :=
∑

iAi. If
we only want to decide whether the true hypothesis is Ai or not, i.e., we want to discriminate
between Ai and Āi, then the corresponding optimal error is given by

P ∗
e,dich,i := P ∗

e (Ai, Āi) = Tr GLB(Ai, Āi) =
1

2
(TrA0 −

∥∥Ai − Āi

∥∥
1
). (55)

We will call this a dichotomic discrimination, and P ∗
e,dich,i the i-th optimal dichotomic error.

Let us define P ∗
e,dich as the sum of the r optimal dichotomic errors corresponding to each of

the Ai:

P ∗
e,dich(A1, . . . , Ar) := P ∗

e,dich :=

r∑
i=1

P ∗
e,dich,i =

r∑
i=1

P ∗
e (Ai, Āi). (56)

We show in Theorem 5.2 that the optimal multi-hypothesis discrimination error P ∗
e is

well-approximated by P ∗
e,dich; more precisely,

1

2
P ∗
e,dich ≤ P ∗

e ≤ P ∗
e,dich. (57)

In particular, these bounds, together with the fact that P ∗
e,dich is a number between 0 and

TrA0, show that there exists a POVM {Ek}rk=1 for which Pe ({Ek}rk=1) = P ∗
e,dich. Therefore,

we can rightly call P ∗
e,dich the dichotomic error. Moreover, these inequalities show that P ∗

e and
P ∗
e,dich have the same exponential behavior in the limit of many i.i.d. copies of the hypotheses.

We need some preparation to prove the bounds in (57). First, we give a number of useful
expressions for P ∗

e,dich. Since Ai − Āi = 2Ai − A0, we have ||Ai − Āi||1 = 2 Tr(2Ai − A0)+ +
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TrA0 − 2 TrAi. Then

P ∗
e,dich =

1

2

r∑
i=1

(TrA0 − ||Ai − Āi||1)

=
1

2

r∑
i=1

2 TrAi − 2 Tr(2Ai −A0)+

= TrA0 −
r∑

i=1

Tr(2Ai −A0)+

= TrA0 −
r∑

i=1

Tr(Ai − Āi)+. (58)

These expressions show that the quantity P ∗
e,dich is a number between 0 and TrA0.

Next, we prove Lemma 5.1 below, which we will use for the proof of the upper bound in
(57). Note that the map f : X 7→ X∗X is operator convex on B(H), as it was pointed out in
[43, Lemma 5]. Indeed, for any X1, X2 ∈ B(H) and any t ∈ [0, 1], we have

tf(X1) + (1 − t)f(X2) − f(tX1 + (1 − t)X2) = t(1 − t)(X1 −X2)
∗(X1 −X2) ≥ 0.

In particular, for X1, . . . , Xr ∈ B(H), we have (
∑

iXi)
∗ (
∑

iXi) ≤ r
∑

iX
∗
iXi, and operator

monotony of the square root yields∣∣∣∑
i
Xi

∣∣∣ ≤ √
r
(∑

i
|Xi|2

)1/2
. (59)

Lemma 5.1. Let {Pi}ri=1 be a set of r projectors. Define P0 =
∑r

i=1 Pi. Then

0 ≤
∑
i

(2Pi − P0)+ ≤ I,

i.e. the set of operators {(2Pi − P0)+}ri=1 forms an (incomplete) POVM.

Proof. Let Xi := |2Pi − P0|, with Pi and P0 as defined in the statement of the lemma. By
(59), ∑

i
|2Pi − P0| ≤

√
r
(∑

i
(2Pi − P0)

2
)1/2

.

Considering the facts that the Pi are projectors, i.e. P 2
i = Pi, and that P0 is equal to their

sum, the expression
∑

i(2Pi − P0)
2 simplifies to∑

i

(2Pi − P0)
2 =

∑
i

(4Pi + P 2
0 − 2PiP0 − 2P0Pi) = 4P0 + rP 2

0 − 4P 2
0 = 4P0 + (r − 4)P 2

0 .

Now note the following:

r(4P0 + (r − 4)P 2
0 ) ≤ r(4P0 + (r − 4)P 2

0 ) + 4(I − P0)
2

= 4rP0 + (r2 − 4r)P 2
0 + 4I − 8P0 + 4P 2

0

= 4I + 4(r − 2)P0 + (r − 2)2P 2
0

= (2I + (r − 2)P0)
2.
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Thus, we get ∑
i

|2Pi − P0| ≤ 2I + (r − 2)P0.

To rewrite this in terms of the positive parts, we use the relation |X| = 2X+−X. This gives∑
i

|2Pi − P0| = 2
∑
i

(2Pi − P0)+ −
∑
i

(2Pi − P0) = 2
∑
i

(2Pi − P0)+ − (2 − r)P0.

Hence, we finally obtain∑
i

(2Pi − P0)+ =
1

2

(∑
i

|2Pi − P0| + (2 − r)P0

)
≤ I,

as we set out to prove.

Now we are ready to prove (57).

Theorem 5.2. For any A1, . . . , Ar ∈ B(H)+,

P ∗
e,2 ≤

1

2
P ∗
e,dich ≤ P ∗

e ≤ P ∗
e,dich. (60)

Proof. The first inequality follows by a straightforward computation:

P ∗
e,2 =

1

r − 1

∑
(k,l): k<l

P ∗
e (Ak, Al) =

1

2(r − 1)

∑
(k,l): k ̸=l

P ∗
e (Ak, Al)

=
1

2

∑
k

1

r − 1

∑
l: l ̸=k

P ∗
e (Ak, Al) ≤

1

2

∑
k

1

r − 1

∑
l:l ̸=k

P ∗
e (Ak, Āk) =

1

2

∑
k

P ∗
e (Ak, Āk) =

1

2
P ∗
e,dich.

The inequality is due to the fact that Al ≤ Āk for l ̸= k, and hence P ∗
e (Ak, Al) ≤ P ∗

e (Ak, Āk).

Next we prove the second inequality. Let {Ei}ri=1 be the optimal POVM for P ∗
e . Clearly,

Tr(2Ai −A0)+ ≥ Tr(2Ai −A0)Ei = 2 TrAiEi − TrA0Ei.

Summing over i yields

r∑
i=1

Tr(2Ai −A0)+ ≥ 2

r∑
i=1

TrAiEi − TrA0

r∑
i=1

Ei ≥ 2

r∑
i=1

TrAiEi − TrA0 = 2P ∗
s − TrA0.

Hence, by (58),

P ∗
e,dich = TrA0 −

r∑
i=1

Tr(2Ai −A0)+ ≤ TrA0 − (2P ∗
s − TrA0) = 2P ∗

e .

We will use Lemma 5.1 to prove the last inequality in (60). The trace of the positive
part X+ of a Hermitian operator X can be expressed as TrXP with P the projector on the
support of X+. In particular, if Pi is the projector on the support of (Ai − Āi)+, we have

r∑
i=1

Tr(Ai − Āi)+ =
∑
i

Tr(Ai − Āi)Pi.
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Defining P0 :=
∑

i Pi, the summation on the right-hand side can be rewritten in the following
way:∑

i

Tr(Ai − Āi)Pi =
∑
i

Tr(2Ai −A0)Pi = 2
∑
i

TrAiPi − TrA0P0 =
∑
i

Tr(2Pi − P0)Ai

≤
∑
i

Tr(2Pi − P0)+Ai ≤ max
{Ei} POVM

∑
i

TrEiAi = P ∗
s ,

where the last inequality follows from the fact that the set of operators {(2Pi − P0)+}ri=1

forms an (incomplete) POVM by Lemma 5.1. Hence

P ∗
e,dich = TrA0 −

∑
i

Tr(Ai − Āi)Pi ≥ TrA0 − P ∗
s = P ∗

e .

Remark 5.3. Validity of the last inequality in (60) in the classical case is a simple conse-
quence of the fact that in a list of positive numbers only the largest one can be bigger than
half their sum. Hence, for diagonal states∑

i

(2Ai −A0)+ = LUB ({(2Ai −A0)+}) = (2 LUB({Ai}) −A0)+ ≤ r LUB({Ai}) −A0

r − 1
.

Taking the trace then yields

TrA0−P ∗
e,dich =

∑
i

Tr(2Ai−A0)+ ≤ rTr LUB({Ai}) − TrA0

r − 1
=
rP ∗

s − TrA0

r − 1
= TrA0−

r

r − 1
P ∗
e ,

which is slightly stronger than what we needed to prove.

Note that the proof presented above for the first two inequalities in (60) gives an alter-
native proof of the inequality P ∗

e,2 ≤ P ∗
e from Theorem 2.2. Moreover, we have obtained a

strengthening of this inequality, by including 1
2P

∗
e,dich in between P ∗

e,2 and P ∗
e .

Theorem 5.2 shows that the pairwise error does not exceed one half of the dichotomic
error, and we conjecture that it can not be less than the dichotomic error up to another
constant factor (depending only on the number of hypotheses). More precisely, we have the
following:

Conjecture 5.4. There exists a constant c, at most depending on the number of hypotheses
r, such that for all A1, . . . , Ar ∈ B(H)+,

P ∗
e,dich(A1, . . . , Ar) ≤ cP ∗

e,2(A1, . . . , Ar).

Explicitly,

P ∗
e,dich =

r∑
i=1

Tr GLB(Ai, Āi) ≤ c(r)
1

r − 1

∑
(i,j): i ̸=j

Tr GLB(Ai, Aj)

= c̃(r)
∑

(i,j): i̸=j

P ∗
e (Ai, Aj). (61)
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Numerical simulations suggest that c(r) = 4(r − 1) is best possible. Clearly, validity of
this conjecture would prove validity of Conjecture 2.3. We can prove this conjecture for pure
states, and for commuting states (see Appendix B), whereas for mixed states we are able to
prove a weaker inequality:

Theorem 5.5. Let A1, . . . , Ar ∈ B(H)+ and pi := TrAi. Then

P ∗
e (A1, . . . , Ar) ≤ P ∗

e,dich(A1, . . . , Ar) ≤
∑

(i,j): i̸=j

F (Ai, Aj) ≤
∑

(i,j): i̸=j

√
pi + pj

√
P ∗
e (Ai, Aj).

(62)

If Ai is rank one for all i then

P ∗
e (A1, . . . , Ar) ≤ P ∗

e,dich(A1, . . . , Ar)

≤

{
(TrA0)

∑
(i,j): i̸=j

1
pipj

F (Ai, Aj)
2 ≤ (TrA0)

∑
(i,j): i̸=j

pi+pj
pipj

P ∗
e (Ai, Aj),

TrA0
mini TrAi

∑
(i,j): i ̸=j P

∗
e (Ai, Aj) .

(63)

Proof. The inequality P ∗
e (A1, . . . , Ar) ≤ P ∗

e,dich(A1, . . . , Ar) is due to Theorem 5.2, and the
rest is immediate from the definition of P ∗

e,dich and Theorem 4.3.

Remark 5.6. Note that the bound P ∗
e (A1, . . . , Ar) ≤

∑
(i,j): i ̸=j F (Ai, Aj) in (62) is the same

as in (43), but weaker than the bound in (36), due to the 1/2 prefactor in the latter.

To compare the bounds in (63) to the other bounds obtained previously, we consider the
most relevant case where TrA0 = p1 + . . . + pr = 1. Then (63) tells that P ∗

e (A1, . . . , Ar) ≤∑
(i,j): i ̸=j

1
pipj

F (Ai, Aj)
2. Since 1

pipj
≤ 1

2

p2i+p2j
p2i p

2
j

, this bound is better than the one in (37), and

the two coincide if and only if p1 = . . . = pr. On the other hand, 1
pipj

> 1√
pipj

(we assume

that all pi > 0), and hence the fidelity bound in (63) is strictly worse than the one in (46).

To close this section, we formulate two further conjectures that would imply Conjecture
5.4. We have seen in the previous section that no bound of the form Tr GLB(A1, A1) ≤
c
∑r

l=2 Tr GLB(A1, Al) may hold in general, but amending the RHS with cross terms, i.e.,
error probabilities between Ak, Al, k, l ̸= 1 may yield a valid upper bound. Although such
a bound would not have been useful for the purposes of Section 4, it would be sufficient for
Conjecture 5.4, and numerical simulations suggest that it is indeed true. Hence, we have the
following

Conjecture 5.7. There exist constants c1 and c2, at most depending on the number of
hypotheses r, such that for all Ai ≥ 0,

Tr GLB(A1, Ā1) ≤ c1

r∑
l=2

Tr GLB(A1, Al) + c2

r∑
k,l=2:k ̸=l

Tr GLB(Ak, Al). (64)

An equivalent conjecture in terms of POVM elements (using the primal SDP characteri-
zation of error probabilities) is:
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Conjecture 5.8. There exist constants c1 and c2, at most depending on the number of
hypotheses r, such that for any 0 ≤ Fi ≤ I (for 2 ≤ i ≤ r) and 0 ≤ Gj,k ≤ I (for 2 ≤ j < k ≤ r)
there exists an E in the intersection of operator intervals

0
I−c1

∑r
i=2(I−Fi)

}
≤ E ≤

{
I

c1Fj + c2

(∑r
k=j+1Gj,k +

∑j−1
k=2(I−Gk,j)

)
, j = 2, . . . , r.

(65)

Note, however, that operator intervals behave very differently than ordinary intervals of
real numbers and are not very well understood. See for example the papers by Ando on this
subject (e.g. [2]).

Proof of equivalence of Claims 5.7 and 5.8. The correspondence between the two claims is
based on the following equivalent characterizations of the error probabilities:

Tr GLB(A1, A1) = min
E

Tr((I−E)A1 +E

r∑
j=2

Aj)

Tr GLB(A1, Ai) = min
Fi

Tr((I−Fi)A1 + FiAi)

Tr GLB(Aj , Ak) = min
Gj,k

Tr(Gj,kAj + (I−Gj,k)Ak),

where E,Fi, Gj,k are POVM elements and satisfy 0 ≤ E,Fi, Gj,k ≤ I. Hence (64) holds if and
only if

0 ≤ c1

r∑
i=2

min
Fi

Tr((I−Fi)A1 + FiAi)

+c2

r∑
j=2

r∑
k=2:k ̸=j

min
Gj,k

Tr(Gj,kAj + (I−Gj,k)Ak)

−min
E

Tr((I−E)A1 +E
r∑

j=2

Aj)

= min
Fi

c1

r∑
i=2

Tr((I−Fi)A1 + FiAi)

+ min
Gj,k

c2

r∑
j=2

r∑
k=2:k ̸=j

Tr(Gj,kAj + (I−Gj,k)Ak)

+ max
E

−Tr((I−E)A1 + E

r∑
j=2

Aj)

= min
Fi

min
Gj,k

max
E

TrA1

(
E − I +c1

r∑
i=2

(I−Fi)

)

+

r∑
j=2

TrAj

−E + c1Fj + c2

 r∑
k=j+1

Gj,k +

j−1∑
k=2

(I−Gk,j)
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holds for all Ai ≥ 0. This quantification can be rephrased as the requirement that the mini-
mization of the RHS over all Ai ≥ 0 is non-negative. By von Neumann’s minimax theorem,
the order between this minimization and the minimization over E can be interchanged:

0 ≤ min
Fi

min
Gj,k

max
E

min
A1≥0

TrA1

(
E − I +c1

r∑
i=2

(I−Fi)

)

+

r∑
j=2

min
Aj≥0

TrAj

−E + c1Fj + c2

 r∑
k=j+1

Gj,k +

j−1∑
k=2

(I−Gk,j)

 .

The minimizations over Fi and Gj,k and the maximization over E can now be replaced by
quantifications: for all POVM elements Fi and Gj,k there should exist a POVM element E
such that

0 ≤ min
A1≥0

TrA1

(
E − I +c1

r∑
i=2

(I−Fi)

)

+

r∑
j=2

min
Aj≥0

TrAj

−E + c1Fj + c2

 r∑
k=j+1

Gj,k +

j−1∑
k=2

(I−Gk,j)

 .

Since TrAB ≥ 0 for all A ≥ 0 if and only if B ≥ 0, this is so if and only if

E − I +c1

r∑
i=2

(I−Fi) ≥ 0

and, for all j ≥ 2,

−E + c1Fj + c2

 r∑
k=j+1

Gj,k +

j−1∑
k=2

(I−Gk,j)

 ≥ 0.

Combining this with the requirement 0 ≤ E ≤ I yields the inequalities of Claim 5.8.

6 Nussbaum’s mixed exponents approach

In [42] Nussbaum presented a different approach towards splitting up the multi-hypothesis
testing problem into pairwise tests, in which one pair of hypotheses is treated in a preferential
way. This leads to an upper bound on the total error probability in which different pairwise
error probabilities appear with different exponents. Here we generalize his approach and by
combining it with our results we improve his bounds on the total error probability.

First we need a lemma about POVM elements, the content of which is implicit in [42]:

Lemma 6.1. For any E and Q satisfying 0 ≤ E,Q ≤ I,

1

2
Q1/2EQ1/2 ≤ I−Q+ E. (66)
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Proof. For any operator X, we have 0 ≤ (X−2)∗(X−2), which can be rewritten as X∗X/2 ≤
(I−X)∗(I−X) + I. In particular, let E be positive definite and Q positive semidefinite and
let X = E1/2Q1/2E−1/2. Then we obtain

1

2
E−1/2Q1/2EQ1/2E−1/2 ≤ E−1/2(I−Q1/2)E(I−Q1/2)E−1/2 + I,

which yields, after multiplying with E1/2 on the left and on the right,

1

2
Q1/2EQ1/2 ≤ (I−Q1/2)E(I−Q1/2) + E.

By continuity, this inequality also holds for positive semidefinite E. If we now impose E,Q ≤ I
then the RHS can be bounded above by a simplified expression:

(I−Q1/2)E(I−Q1/2) + E ≤ (I−Q1/2)2 + E ≤ I−Q+ E.

Nussbaum’s result relies on the following decomposition lemma, proven by him for the
case of uniform priors and for K = 2. We provide the lemma in full generality, and with a
somewhat shorter proof, but still based on Nussbaum’s main idea to decompose the POVM
in a clever way into two parts.

Lemma 6.2. Let A1, . . . , Ar ∈ B(H)+. For all 1 ≤ K ≤ r,

P ∗
e (A1, . . . , Ar) ≤ 2P ∗

e (A1, . . . , AK) + P ∗
e (3A(K), AK+1, . . . , Ar), (67)

where A(K) :=
∑K

i=1Ai.

Proof. Let F = {F1, . . . , FK} be the optimal POVM for discriminating between A1, . . . , AK ,
and let E(K) = {Q,EK+1, . . . , Er} be the optimal POVM for discriminating between 3A(K),
AK+1, . . . , Ar. Define Ei := Q1/2FiQ

1/2 for i = 1, . . . ,K. Then E = {E1, . . . , Er} is a POVM.

In terms of the POVM E we have, for i = 1, . . . ,K,

TrAiEi = TrAi(Q− (Q− Ei)) = TrAiQ− TrAiQ
1/2(I−Fi)Q

1/2.

The total error probability for this POVM (an upper bound on P ∗
e ) is given by

Pe (E) =
K∑
i=1

TrAi(I−Ei) +
r∑

i=K+1

TrAi(I−Ei)

= TrA(K)(I−Q) +

K∑
i=1

TrAiQ
1/2(I−Fi)Q

1/2 +

r∑
i=K+1

TrAi(I−Ei).

Using (66) of Lemma 6.1, the second sum can be bounded above by

2

(
Tr

K∑
i=1

Ai(I−Fi) + TrA(K)(I−Q)

)
= 2P ∗

e (A1, . . . , AK) + 2 TrA(K)(I−Q).
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Then

P ∗
e ≤ Pe (E) ≤ 2P ∗

e (A1, . . . , AK) + 3 TrA(K)(I−Q) +

r∑
i=K+1

TrAi(I−Ei)

= 2P ∗
e (A1, . . . , AK) + P ∗

e

(
3A(K), AK+1, . . . , Ar

)
,

proving (67).

The above lemma yields immediately the following:

Theorem 6.3. Let A1, . . . , Ar ∈ B(H)+. Then

P ∗
e (A1, . . . , Ar) ≤ 2r−2P ∗

e (A1, A2) + 3
r−1∑
k=2

2r−1−kP ∗
e

(
k∑

i=1

Ai, Ak+1

)
. (68)

Proof. Applying Lemma 6.2 recursively, we get

P ∗
e (A1, . . . , Ar) ≤ 2P ∗

e (A1, . . . , Ar−1) + P ∗
e (3A(r−1), Ar)

≤ 4P ∗
e (A1, . . . , Ar−2) + 2P ∗

e (3A(r−2), Ar−1) + P ∗
e (3A(r−1), Ar)

≤ . . .

≤ 2r−2P ∗
e (A1, A2) +

r−1∑
k=2

2r−1−kP ∗
e (3A(k), Ak+1).

Note that P ∗
e (3A(k), Ak+1) ≤ 3P ∗

e (A(k), Ak+1), and thus we obtain (68).

Remark 6.4. Note that the upper bound in (68) is similar to the bound P ∗
e ≤ P ∗

e,dich in
Theorem 5.2, but the two are not directly comparable regarding their tightness.

Combining now Theorem 4.3 with the above theorem, we finally get the following decou-
pling bound in terms of the optimal pairwise error probabilities:

Theorem 6.5. Let A1, . . . , Ar ∈ B(H)+ and κ := 3 max1≤i<j≤r

√
TrAi + TrAj . Then

P ∗
e (A1, . . . , Ar) ≤ 2r−2P ∗

e (A1, A2) + κ

r−1∑
k=2

2r−1−k
k∑

l=1

√
P ∗
e (Al, Ak+1). (69)

If Ak is of rank one for k = 3, . . . , r, then

P ∗
e (A1, . . . , Ar) ≤ 2r−2P ∗

e (A1, A2) + κ′
r−1∑
k=2

2r−1−k
k∑

l=1

P ∗
e (Al, Ak+1), (70)

where κ′ := 3 TrA0/ (min3≤i≤r TrAi).

Proof. Applying Theorem 4.3 to each term in the summand in (68) yields the inequalities of
the theorem.

Remark 6.6. The constants in (69) and (70) are in general worse than the ones in Theorems
3.5 and 5.5. On the other hand, (69) outperforms all the previous bounds in the sense that
for one pair of states, it contains the optimal binary error probability instead of its square
root. We will explore the consequences of this in the next section.
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7 Asymptotics: the Chernoff bound

The various single-shot decoupling bounds, that we obtained in the previous sections for the
multiple state discrimination problem, can be summarized as follows:

Lemma 7.1. For every r ∈ N, there exist κr, κ
′
r > 0 such that for all A1, . . . , Ar ∈ B(H)+,

P ∗
e (A1, . . . , Ar) ≤ κr(TrA0)

1/2
∑

(i,j): i ̸=j

P ∗
e (Ai, Aj)

1/2. (71)

If all but at most two of the Ai are of rank 1 then we also have

P ∗
e (A1, . . . , Ar) ≤ κ′r

TrA0

mini TrAi

∑
(i,j): i ̸=j

P ∗
e (Ai, Aj). (72)

Proof. The bound in (71) can be obtained from either of the following: the bound (36) of
[8] using the Fuchs–van de Graaf inequalities; from the bound (44) of Theorem 3.5; from the
bound (62) of Theorem 5.5; and from (69) of Theorem 6.5.

The bound (72) follows from (70) of Theorem 6.5. (We can assume without loss of
generality that at most hypotheses 1 and 2 are not represented by rank one operators.)
However, when all the Ai are pure, (72) also follows from any of the following: from the bound
(37) of [19] using the Fuchs–van de Graaf inequalities; from the bound (46) of Theorem 3.5;
and from the bound (63) of Theorem 5.5.

Armed with these upper bounds, we now turn to the study of its asymptotic behavior.
Let our hypotheses be represented by the sequences A⃗i := {Ai,n}n∈N, i = 1, . . . , r, and

define A0,n :=
∑r

i=1Ai,n. Recall the definitions of p
e

(
A⃗1, . . . , A⃗r

)
and pe

(
A⃗1, . . . , A⃗r

)
from

(2)–(3). Due to Theorem 2.2, we have

p
e

(
A⃗1, . . . , A⃗r

)
≥ max

(i,j): i̸=j
p
e

(
A⃗i, A⃗j

)
. (73)

Our aim here is to complement the above inequality by giving upper bounds on pe

(
A⃗1, . . . , A⃗r

)
in terms of the pairwise exponents. Recall the definition of the asymptotic Chernoff diver-
gence from (28),

C(A⃗1, A⃗2) = lim inf
n→∞

1

n
C(A1,n, A2,n) = − lim sup

n→∞

1

n
log min

0≤s≤1
TrAs

1,nA
1−s
2,n .

We conjecture that the following converse to (73) holds under very mild conditions:

pe

(
A⃗1, . . . , A⃗r

)
≤ max

(i,j): i̸=j
pe

(
A⃗i, A⃗j

)
≤ − min

(i,j): i̸=j
C(A⃗1, A⃗2). (74)

Note that the second inequality is always true, due to (27). Below we show that the weaker
inequality

pe

(
A⃗1, . . . , A⃗r

)
≤ 1

2
max

(i,j): i̸=j
pe

(
A⃗i, A⃗j

)
≤ −1

2
min

(i,j): i̸=j
C(A⃗1, A⃗2) (75)
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is always true as long as lim supn→∞
1
n log TrA0,n = 0, which is trivially satisfied in the case

of weighted states. We also show (74) in a number of special cases.

We have the following general result:

Theorem 7.2. Assume that lim supn→∞
1
n log TrA0,n = 0. Then

pe

(
A⃗1, . . . , A⃗r

)
≤ 1

2
max

(i,j): i̸=j
pe

(
A⃗i, A⃗j

)
≤ −1

2
min

(i,j): i ̸=j
C(A⃗1, A⃗2). (76)

Assume, moreover, that Ai,n is of rank one for every n ∈ N for at least r−2 of the hypotheses.

If lim supn→∞
1
n log

TrA0,n

mini TrAi,n
= 0, then we have the stronger inequality

pe

(
A⃗1, . . . , A⃗r

)
≤ max

(i,j): i̸=j
pe

(
A⃗i, A⃗j

)
≤ − min

(i,j): i̸=j
C(A⃗i, A⃗j). (77)

Proof. Immediate from Lemma 7.1, Lemma 2.1, and (27).

We can also prove (74) in the following special cases, by using Theorem 6.5.

Theorem 7.3. Assume that (74) holds for hypotheses A⃗i, i = 1, . . . , r, and that Ar+1,n is

rank one for every n. If lim supn→∞
1
n log

Tr
∑r

i=1 Ai

TrAr+1,n
= 0 then

pe

(
A⃗1, . . . , A⃗r, A⃗r+1

)
≤ max

{
pe

(
A⃗i, A⃗j

)
: 1 ≤ i < j ≤ r + 1

}
≤ −min

{
C(A⃗i, A⃗j) : 1 ≤ i < j ≤ r + 1

}
.

Proof. By (67),

P ∗
e (A1,n, . . . , Ar,n) ≤ 2P ∗

e (A1, . . . , Ar) + P ∗
e (3A(r), Ar+1).

Applying then (51) to the second term yields the assertion.

Remark 7.4. Note that the binary case (27), combined with a recursive application of
Theorem 7.3, gives an alternative proof of the second part of Theorem 7.2.

Inequality (74) has been proved in [42] for the i.i.d. case under the assumption that
there exists a pair of states σk, σl, k ̸= l, such that C(σk, σl) ≤ 1

6C(σi, σj) for every (i, j) ̸=
(k, l), i ̸= j. Theorem 7.5 below shows that the constant 1/6 can be improved to 1/2.

Theorem 7.5. Assume that lim supn→∞
1
n log TrA0,n = 0. For any pair (k, l), k ̸= l,

pe

(
A⃗1, . . . , A⃗r

)
≤ max

{
pe(A⃗k, A⃗l),

1

2
pe(A⃗i, A⃗j), i ̸= j, (i, j) ̸= (k, l)

}
≤ −min

{
C(A⃗k, A⃗l),

1

2
C(A⃗i, A⃗j), i ̸= j, (i, j) ̸= (k, l)

}
.

In particular, if there exists a pair (k, l), k ̸= l, such that pe(A⃗k, A⃗l) ≥ 1
2pe(A⃗i, A⃗j) or

C(A⃗k, A⃗l) ≤ 1
2C(A⃗i, A⃗j), i ̸= j, (i, j) ̸= (k, l), then

pe

(
A⃗1, . . . , A⃗r

)
≤ max

(i,j): i̸=j
pe

(
A⃗i, A⃗j

)
≤ − min

(i,j): i̸=j
C(A⃗i, A⃗j).
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Proof. Immediate from Theorem 6.5.

Finally, we note that in many important cases, we have the optimality relation

p
e

(
A⃗i, A⃗j

)
≥ −C

(
A⃗i, A⃗j

)
. (78)

For instance, this happens in the standard state discrimination problem if the hypotheses i, j
are i.i.d. [38], or Gibbs states of a finite-range, translation-invariant Hamiltonian on a spin
chain [22], or Gibbs states of interaction-free fermionic or bosonic chains [31, 32]. In these
cases, if lim supn→∞

1
n log TrA0,n = 0 then we have

− min
(i,j): i̸=j

C
(
A⃗i, A⃗j

)
≤ p

e

(
A⃗1, . . . , A⃗r

)
≤ pe

(
A⃗1, . . . , A⃗r

)
≤ −1

2
min

(i,j): i̸=j
C
(
A⃗i, A⃗j

)
.

If, moreover, (74) is satisfied then we get the stronger statement

lim
n→+∞

1

n
logP ∗

e (A1,n, . . . , Ar,n) = − min
(i,j): i̸=j

C
(
A⃗i, A⃗j

)
.

Appendix

A Least upper bound and greatest lower bound for operators

As mentioned already in Section 2.3, for a set A1, . . . , Ar of self-adjoint operators on the same
Hilbert space, the set of upper bounds A := {Y : Y ≥ Ak, k = 1, . . . , r} has no minimal
element in general. The following example shows that a minimal element may not exist even
if all the Ak commute with each other.

Example A.1. Let H = C2, and let the operators A1, A2, Yα,β,δ be given by their matrices
in the standard basis of C2 as

A1 :=

[
1 0
0 2

]
, A2 :=

[
2 0
0 1

]
, Yα,β,δ :=

[
2 + α δ

δ 2 + β

]
.

Let I := {(α, β, δ) ∈ R3 : α, β ≥ 0, min{α, β}+αβ ≥ |δ|2}. It is easy to see that U(A1, A2) =
{Y : Y ≥ A1, A2} = {Yα,β,δ : (α, β, δ) ∈ I}. Assume that U(A1, A2) has a minimal element
Y . The assumption Y ≥ A1, A2 yields that Y11 ≥ 2 and Y22 ≥ 2, while the assumption
that Y ≤ Yα,β,δ for all (α, β, δ) ∈ I yields that Y11 ≤ 2 and Y22 ≤ 2. Hence, 0 ≤ Y − A1 =[

1 Y12
Y12 0

]
, which yields Y12 = 0, i.e., Y = 2I. Now, Yα,β,δ−Y ≥ 0 if and only if α, β ≥ 0 and

αβ ≥ |δ|2, which defines a strictly smaller set than I, contradicting our initial assumption
that Y is a lower bound to U(A1, A2).

In general, the set A := {Y : Y ≥ Ak, k = 1, . . . , r} is the intersection of r cones, and
the intersection of two cones is not itself a cone, unless one is completely contained in the
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other. Thus, A has no unique minimal element in general, in the sense that there would
be an element Y0 such that Y0 ≤ Y for all Y ∈ A. Rather, there is an infinity of minimal
elements, in the sense that there is an infinity of operators Y ∈ A for which no other Y ′ ∈ A
exists such that Y ′ ≤ Y , and these minima constitute the boundary of A [2]. The upshot is
that one can not define a least upper bound on the basis of the PSD ordering alone.

However, there is a unique minimal element within A in terms of the trace ordering. We
can therefore define a least upper bound in this more restrictive sense as

LUB(A1, . . . , Ar) := arg min
Y

{TrY : Y ≥ Ak, k = 1, . . . , r}. (79)

To make sense of the definition, we have to prove the uniqueness of the minimizer. For the
proof, we will need the following simple fact, which has been stated, e.g., in [2] without a
proof. Here we provide a proof for readers’ convenience.

Lemma A.2. Let D,T ∈ B(H) be self-adjoint operators such that D ≥ ±T . Then D is
positive semidefinite, and its support dominates the support of T .

Proof. First, D ≥ ±T implies D ≥ (T + (−T ))/2 = 0, proving that D is PSD. Let H1

denote the support of D, and decompose H as H = H1 ⊕H2. Then D and T can be written

in the corresponding block forms as D =

[
D11 0

0 0

]
and T =

[
T11 T12
T ∗
12 T22

]
, and positive

semidefiniteness of D±T implies 0 ≥ T22 ≥ 0. Using again that D+T ≥ 0, we finally obtain
that T12 = 0, too, from which the assertion follows.

Theorem A.3. Let A1, . . . , Ar ∈ B(H)sa be a finite number of self-adjoint operators. Then
in the set A := {Y : Y ≥ A1, . . . , Ar} there is a unique element with minimal trace.

Proof. Let us assume that there are two distinct elements Y1 and Y2 in A with minimal
trace TrY1 = TrY2. Let Ym = (Y1 + Y2)/2 and ∆ = (Y1 − Y2)/2. Then Y1 = Ym + ∆ and
Y2 = Ym − ∆, and Y1, Y2 ≥ Ai implies Ym −Ai ≥ ±∆. Hence, by Lemma A.2, there exists a
constant ci > 0 such that Ym−Ai ≥ ci|∆| for every i = 1, . . . , r. Taking c := mini ci, we have
Ym − c|∆| ≥ Ai, i = 1, . . . , r. Thus, Ym − c|∆| ∈ A, but Tr(Ym − c|∆|) = TrYm − cTr |∆| <
TrYm = TrYi, i = 1, 2, contradicting our original assumption.

Next, we explore some properties of the LUB. It is easy to see from (79) that the LUB
satisfies the translation property :

LUB(A1 +B, . . . , Ar +B) = LUB(A1, . . . , Ar) +B. (80)

This is because the addition X 7→ X + B, with a fixed self-adjoint operator B, is an order-
preserving operation. Furthermore, the LUB is jointly homogeneous: for any c ≥ 0,

LUB(cA1, . . . , cAr) = cLUB(A1, . . . , Ar). (81)

The positive part and modulus can be expressed in terms of the LUB.

Lemma A.4. For all Hermitian operators A,

A+ = LUB(A, 0), and |A| = LUB(A,−A). (82)
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Proof. Consider the set A = {Y : Y ≥ A, Y ≥ 0}. Clearly, A+ ∈ A. By Weyl’s monotonicity
principle, the eigenvalues of any Y ∈ A are non-negative and not smaller than those of A;
that is, λj(Y ) ≥ λj(A), where λj denotes the jth largest eigenvalue. Hence, λj(Y ) ≥ λj(A+),
since the spectrum of A+ consists of the positive eigenvalues of A and zero. As the sum of
all eigenvalues is the trace, A+ is an element (and therefore the element) in A with minimal
trace.

Using (80) and (81), the modulus |A| = 2A+ − A can be similarly expressed as |A| =
2 LUB(A, 0) −A = LUB(A,−A).

Remark A.5. We emphasize again that the LUB is a minimum with respect to the trace
ordering and not the PSD ordering. In particular, X ≥ A and X ≥ −A doesn’t imply

X ≥ |A|. A counterexample can be easily given by taking A =

[
1 0
0 −1

]
and X =

[
2

√
3√

3 2

]
.

However, as lemma A.2 shows, there always exists a positive constant c, depending on A and
X, such that X ≥ c|A|.

By lemma A.4 and (80), (A−B)+ = LUB(A,B)−B. This immediately leads to a closed
form expression for the LUB of two Hermitian operators:

Lemma A.6. For all Hermitian operators A,B,

LUB(A,B) = B + (A−B)+ =
1

2
(A+B + |A−B|) = A+ (A−B)−. (83)

From these expressions it is clear that for A,B ≥ 0, the LUB is PSD as well.

In a similar vein we can define the greatest lower bound (GLB) as

GLB(A1, . . . , Ar) := arg max
Y

{TrY : Y ≤ Ak, k = 1, . . . , r}. (84)

Clearly, we have
GLB(A1, . . . , Ar) = −LUB(−A1, . . . ,−Ar). (85)

Hence, for two operators, we get

Lemma A.7. For all Hermitian operators A,B,

GLB(A,B) =
1

2
(A+B − |A−B|) = A− (A−B)+ = B − (A−B)−. (86)

A warning is in order about the sign of the GLB. When A and B commute, their GLB
is given by the entrywise minimum in the joint eigenbasis. If A and B are also PSD, then
clearly their GLB will be PSD. When A and B are PSD but do not commute, however, their
GLB need not be PSD; only the trace of their GLB will be guaranteed to be non-negative.
The reason is that while the function x 7→ x+ = max(0, x) is monotone increasing, it is also
convex and therefore not operator monotone. Thus, for A,B ≥ 0, (A−B)+ ≤ A need not be
true. For a concrete counterexample, take A = |x⟩⟨x|, B = |y⟩⟨y| with x = (1, 1), y = (1, i);
then it is easy to check that 0 � LUB(A,B). Similarly, the LUB of two negative semidefinite
operators need not be negative semidefinite.

Both LUB and GLB are monotonous in their arguments with respect to the PSD ordering.
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Lemma A.8. For all Hermitian operators {Ai} and {Bi}, if Ai ≤ Bi then

Tr LUB(A1, . . . , Ar) ≤ Tr LUB(B1, . . . , Br), (87)

Tr GLB(A1, . . . , Ar) ≤ Tr GLB(B1, . . . , Br). (88)

Proof. By definition, LUB(B1, . . . , Br) ≥ Bi ≥ Ai, for all i, so that LUB(B1, . . . , Br) is an
upper bound on all Ai. In general it is not the minimal one, hence Tr LUB(B1, . . . , Br) ≥
Tr LUB(A1, . . . , Ar). Monotonicity for the GLB follows from this and the correspondence
(85).

The LUB and GLB (and their trace) behave in the expected way with respect to the
direct sum:

Lemma A.9. For any pair of sets of Ai ∈ B(H1)sa and Bi ∈ B(H2)sa, i = 1, . . . , r,

LUB({Ai ⊕Bi}) = LUB({Ai}) ⊕ LUB({Bi}) (89)

GLB({Ai ⊕Bi}) = GLB({Ai}) ⊕ GLB({Bi}). (90)

Proof. Consider first the LUB. Let X := LUB({Ai ⊕ Bi}), and let Pi denote the projection
onto Hi in the direct sum H1 ⊕H2. Then P1XP1 ⊕ P2XP2 ≥ Ai ⊕ Bi for all i, and TrX =
TrP1XP1 ⊕ P2XP2. The uniqueness of the LUB then yields X = P1XP1 ⊕ P2XP2.

The proof for the GLB goes exactly the same way.

This lemma has an important consequence. For every set of subnormalized states {Ai}ri=1

there is a set of normalized states {σi}ri=1 such that Tr GLB({Ai}) = Tr GLB({σi}); namely
σi = Ai ⊕ (1 − TrAi)|i⟩⟨i|, where {|i⟩}ri=1 is an orthonormal system. This is because the
‘appended’ states Bi = (1 − TrAi)|i⟩⟨i| are mutually orthogonal so that Tr GLB({Bi}) = 0.
Similar statements can be made when the arguments of Tr GLB are linear combinations of
states. The upshot of this is two-fold. First, for a large class of statements it allows one
to restrict to normalized states to prove them. Secondly, it aids the heuristic processes of
coming up with reasonable conjectures and finding counterexamples (see, e.g., at the end of
Section 4).

Finally, we give another representation of the least upper bound as the max-relative
entropy center in the case where all the operators are positive semidefinite. For PSD operators
A,B ∈ B(H)+, their max-relative entropy Dmax(A ∥B) is defined as [13, 47]

Dmax(A ∥B) := inf{γ : A ≤ 2γB}.

For a set of states A ⊂ S(H), its max-relative entropy radiusRmax(A) is defined asRmax(A) :=
infω∈S(H) supσ∈ADmax(σ ∥ω). For the interpretation of this quantity in quantum informa-
tion theory, see, e.g. [28, 33, 34] and references therein. We extend this definition to general
positive semidefinite operators by keeping the reference ω varying only over the set of states.
That is, for a set of PSD operators A ⊂ B(H)+, its max-relative entropy radius Rmax(A) is
defined as

Rmax(A) := inf
ω∈S(H)

sup
A∈A

Dmax(A ∥ω).
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Any state ω where the infimum above is attained is called a Dmax-divergence center of A.

If A = {0} then Rmax(A) = −∞, and any state is a divergence center. Assume for
the rest that A = {A1, . . . , Ar} is finite, and it contains a non-zero element, and hence
R := Rmax(A) is a finite number. By definition, for every n ∈ N, there exists an ωn ∈ S(H)
such that A ≤ 2R+1/nωn for every A ∈ A. Since S(H) is compact, there exists a subsequence
nk, k ∈ N, such that ωnk

, k ∈ N, is convergent. Let ω∗ := limk→∞ ωnk
; then A ≤ 2Rω∗ for

every A ∈ A, and hence ω∗ is a divergence center. Thus, the set of divergence centers is
non-empty. Obviously, if ω is a divergence center then 2Rω is an upper bound to A, and
hence 2Rω ≥ LUB(A) =: L. Let R̃ := log2 TrL and ω̃ := L/TrL. Then 2Rω ≥ L yields

R ≥ R̃, while A ≤ 2R̃ω̃ due to the definition of LUB(A), and hence R ≤ R̃. Thus, R = R̃, i.e.,
Tr(2Rω) = Tr LUB(A). Taking into account that 2Rω ≥ L, this implies that 2Rω = LUB(A).
Thus, the Dmax-divergence center is unique, and is equal to LUB(A)/Tr LUB(A), while
Rmax(A) = log Tr LUB(A).

According to [53] (see also Appendix D), this can be rewritten as logP ∗
e (A1, . . . , Ar) =

Rmax(A). A similar expression for the optimal error probability in terms of the max-relative
entropy has been given in [28].

B The classical case

In the classical case the hypotheses (in the single-shot setting) are represented by non-negative
functions Ai : X → R+, where X is some finite set, and POVM elements are replaced by
non-negative functions Ei : X → R+, satisfying

∑
iEi(x) ≤ 1, ∀x ∈ X , which we may

call a classical POVM. The success probability corresponding to a classical POVM {Ei} is
Ps ({Ei}) =

∑r
i=1

∑
x∈X Ai(x)Ei(x). We can assign to each non-negative function F : X →

R+ a diagonal operator F̂ on CX in an obvious way, and under this identification we get∑r
i=1

∑
x∈X Ai(x)Ei(x) =

∑r
i=1 Tr ÂiÊi, which is the success probability corresponding to

hypotheses Âi and POVM elements Êi. On the other hand, if A1, . . . , Ar ∈ B(H)+ are
mutually commuting then there exists a basis in H, labeled by the elements of some finite
set X , such that Ai =

∑
x∈X ⟨x|Ai|x⟩ |x⟩⟨x|. Moreover, for any operator E ∈ B(H), we

have TrAiE =
∑

x∈X Ã(x)Ẽ(x), where for F ∈ B(H), we let F̃ : X → C be defined by

F̃ (x) := ⟨x|F |x⟩. In particular, if E1, . . . , Er is a POVM then Ẽ1, . . . , Ẽr is a classical
POVM, and

∑r
i=1

∑
x∈X Ãi(x)Ẽi(x) =

∑r
i=1 TrAiEi. Hence, if the operators representing

the hypotheses are diagonal in a given basis then it is enough to consider POVM elements
that are also diagonal in the same basis, which reduces the problem into a classical one. Thus,
the classical case can be represented both by functions and diagonal operators, and we will
not make a difference in the notation between the two representations in what follows.

Consider first the classical binary state discrimination problem with hypotheses A1 = A
and A2 =

∑r
i=1Bi. Then we have the following strengthening of Theorem 4.3:

P ∗
e

(
A,
∑

i
Bi

)
≤
∑
i

P ∗
e (A,Bi). (91)
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Indeed,

P ∗
e

(
A,
∑

i
Bi

)
=

1

2
Tr
(
A+

∑
i
Bi

)
− 1

2

∥∥∥A−
∑

i
Bi

∥∥∥
1

=
1

2

∑
x

(
A(x) +

∑
i
Bi(x) −

∣∣∣A(x) +
∑

i
Bi(x)

∣∣∣)
=

1

2

∑
x

fx

(∑
i
Bi(x)

)
,

where fx(t) := t+ x− |t− x| = 2 min{t, x}. It is easy to see that fx is subadditive for every
x, and hence the above can be continued as

P ∗
e

(
A,
∑

i
Bi

)
=

1

2

∑
x

fx

(∑
i
Bi(x)

)
≤ 1

2

∑
x

∑
i

fx(Bi(x)) =
∑
i

1

2

∑
x

fx(Bi(x))

=
∑
i

(
1

2
Tr (A+Bi) −

1

2
∥A−Bi∥1

)
=
∑
i

P ∗
e (A,Bi).

Combining this with Theorem 5.2, we get

P ∗
e (A1, . . . , Ar) ≤ P ∗

e =

r∑
k=1

P ∗
e

(
Ak,

∑
l ̸=k

Al

)
≤

r∑
(k,l): k ̸=l

P ∗
e (Ak, Al), (92)

proving Conjecture 2.3 with c = 2(r− 1). Below we give a more direct proof of this, without
using Theorem 5.2.

Consider now the i.i.d. vs. averaged i.i.d. problem as in Section 4, with hypotheses A1,n =
pρ⊗n and Bi,n = (1 − p)qiσ

⊗n
i , where p ∈ (0, 1) and q is a probability distribution. Then we

have∑
i

qiP
∗
e

(
pρ⊗n, (1 − p)σ⊗n

i

)
≤ P ∗

e

(
pρ⊗n, (1 − p)

∑
i
qiσ

⊗n
i

)
≤
∑
i

P ∗
e

(
pρ⊗n, (1 − p)qiσ

⊗n
i

)
≤
∑
i

P ∗
e

(
pρ⊗n, (1 − p)σ⊗n

i

)
,

where the first inequality is due to the convexity of the trace-norm, the second is due to the
subadditivity relation (91), and the last inequality is obvious from the definition of the error
probability. This yields immediately Conjecture 4.2 in the classical case, i.e.,

lim
n→∞

1

n
logP ∗

e

(
pρ⊗n, (1 − p)

∑
i
qiσ

⊗n
i

)
= −min

i
C(ρ, σi).

Consider now the classical single-shot state discrimination problem with hypothesesA1, . . . ,
Ar : X → R+, and let m(x) := maxk Ak(x). We say that a POVM {Ek}rk=1 is a maximum
likelihood POVM if Ek(x) = 0 when Ak(x) < m(x), and for every x ∈ X ,

∑
k Ek(x) = 1. For

any POVM {Ek}rk=1, we have

Ps(E1, . . . , Er) =
∑
k

∑
x

Ak(x)Ek(x) ≤
∑
k

∑
x

m(x)Ek(x) ≤
∑
x

m(x) = Tr max{A1, . . . , Ar},
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where max{A1, . . . , Ar} :=
∑

xm(x)|x⟩⟨x|. The above inequality holds with equality if and
only if {Ek}rk=1 is a maximum likelihood POVM, and hence we have

P ∗
s (A1, . . . , Ar) = Tr max{A1, . . . , Ar}.

Now let E1, . . . , Er be a maximum likelihood measurement. Then the individual error
probabilities are, for each k,

Pe,k =
∑
x

Ak(x) (1 − Ek(x)) =
∑

x:Ak(x)<m(x)

Ak(x) +
∑

x:Ak(x)=m(x)

Ak(x) (1 − Ek(x)) .

Obviously, if Ak(x) < m(x) then there exists an l ̸= k such that Ak(x) < Al(x), and if
Ak(x) = m(x) and Ak(x) (1 −Ek(x)) > 0 then there exists and l ̸= k such that Ak(x) =
Al(x). Hence,

Pe,k ≤
∑
l ̸=k

∑
x:Ak(x)<Al(x)

Ak(x) +
∑
l ̸=k

∑
x:Ak(x)=Al(x)

Ak(x) =
∑
l ̸=k

∑
x:Ak(x)≤Al(x)

Ak(x).

Thus,

P ∗
e (A1, . . . , Ar) =

r∑
k=1

Pe,k ≤
r∑

k=1

∑
l ̸=k

∑
x:Ak(x)≤Al(x)

Ak(x)

≤
r∑

k=1

∑
l ̸=k

 ∑
x:Ak(x)≤Al(x)

Ak(x) +
∑

x:Ak(x)>Al(x)

Al(x)


=

r∑
k=1

∑
l ̸=k

[
1

2
Tr(Ak +Al) −

1

2
∥Ak −Al∥1

]
=

∑
(k,l): k ̸=l

P ∗
e (Ak, Al),

and we recover (92).

C The pure state case

Let A1, A2 ∈ B(H)+ be rank one operators; then we can write them as Ai = |xi⟩⟨xi| =
pi|ψi⟩⟨ψi| = piσi, where pi := TrAi. Many of the divergence measures coincide in this case;
indeed, it is easy to see that

| ⟨ψ1, ψ2⟩ |2 = F (σ1, σ2)
2 = Qs(σ1∥σ2) = Qmin(σ1, σ2) = exp(−C(σ1, σ2)), s ∈ [0, 1].

A straightforward computation gives that ∥A1 −A2∥1 =
√

(p1 + p2)2 − 4p1p2| ⟨ψ1, ψ2⟩ |2, and
hence

P ∗
e (A1, A2) =

1

2
Tr(A1 +A2) −

1

2
∥A1 −A2∥1 =

2p1p2| ⟨ψ1, ψ2⟩ |2

p1 + p2 + ∥A1 −A2∥1
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Noting that 0 ≤ ∥A1 −A2∥1 ≤ p1 + p2, we get

p1p2
p1 + p2

| ⟨ψ1, ψ2⟩ |2 ≤ P ∗
e (A1, A2) ≤

2p1p2
p1 + p2

| ⟨ψ1, ψ2⟩ |2 (93)

Consider now two sequences of rank one operators A⃗i = {Ai,n}n∈N, i = 1, 2, and let pi,n :=
TrAi,n, and Ai,n = pi,n|ψi,n⟩⟨ψi,n| = pi,nσi,n. Applying (93) to each n, we get

p1,np2,n
p1,n + p2,n

exp (−C(σ1,n, σ2,n) ≤ P ∗
e (A1,n, A2,n) ≤ 2p1,np2,n

p1,n + p2,n
exp (−C(σ1,n, σ2,n) .

If we assume now that 0 < lim infn pi,n ≤ lim supn pi,n < +∞, i = 1, 2, then taking the limit
n→ ∞ in the above formula yields

lim
n→∞

1

n
logP ∗

e (A1,n, A2,n) = −C (σ⃗1, σ⃗2) = −C
(
A⃗1, A⃗2

)
,

where the last identity is straightforward to verify. Thus in the pure state case we can get
the Chernoff bound theorem from the above elementary argument, without using the trace
inequality of [4] or the reduction to classical states from [38].

Consider now the case r > 2, and let A1, . . . , Ar ∈ B(H)+ be rank one operators. Let

Ei := A
−1/2
0 AiA

−1/2
0 be the POVM elements of the pretty good measurement, where A0 :=∑r

i=1Ai. It was shown in Appendix A of [19] that for every i,

TrAi(I − Ei) ≤
1

pi

∑
j: j ̸=i

| ⟨xi, xj⟩ |2.

Summing it over i, we get

P ∗
e (A1, . . . , Ar) ≤ Pe({E1, . . . , Er}) ≤

r∑
i=1

1

pi

∑
j: j ̸=i

| ⟨xi, xj⟩ |2 ≤
1

mini pi

∑
(i,j): i̸=j

exp(−C(Ai, Aj)),

(94)

while Theorem 2.2 yields

P ∗
e (A1, . . . , Ar) ≥

1

r − 1

∑
(k,l): k<l

P ∗
e (Ak, Al) ≥

1

r − 1

∑
(k,l): k<l

1

pk + pl
exp(−C(Ak, Al)), (95)

where the last inequality is due to (93). Note that (94) also yields a decoupling bound for
the error probabilities, as | ⟨xi, xj⟩ |2/pi ≤ (1 + pj/pi)P

∗
e (Ai, Aj) by (93), and hence

P ∗
e (A1, . . . , Ar) ≤

r∑
i=1

1

pi

∑
j: j ̸=i

| ⟨xi, xj⟩ |2 ≤
TrA0

mini pi

∑
(i,j): i ̸=j

P ∗
e (Ai, Aj).

Consider now the asymptotic case, with hypotheses A⃗i, i = 1, . . . , r, and assume as before
that 0 < lim infn pi,n ≤ lim supn pi,n < +∞, ∀i. Applying (94) and (95) to every n, and taking
the limit n→ ∞, we get

lim
n→∞

1

n
logP ∗

e (A1,n, . . . , Ar,n) = − max
(i,j): i̸=j

C
(
A⃗i, A⃗j

)
.
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D Semidefinite program representations of success and error
probabilities

The average success probability of a POVM {Ek} for discriminating between r PSD operators
{Ak}rk=1 is given by

Ps({Ek}) =

r∑
k=1

Tr(AkEk), (96)

and the optimal success probability P ∗
s is the maximum over all POVMs:

P ∗
s = max {Ps({Ek}) : {Ek}rk=1 POVM} . (97)

In this section we consider the consequences of the following simple observation [53]: in
(97) the maximum of a linear functional is taken over the set of POVMs, which is a convex
set. This optimization problem is therefore a so-called semidefinite program (SDP) [52]. One
consequence is that P ∗

s can be efficiently calculated numerically by SDP solvers even when no
closed form analytical solution exists. Another, theoretically important consequence is that
the duality theory of SDPs allows to express the value of P ∗

s in a dual way as a minimization
problem [14, 27].

The Lagrangian of problem (97) is

L =
∑
k

Tr(AkEk) +
∑
k

Tr(ZkEk) + TrY

(
I −

∑
k

Ek

)
= TrY +

∑
k

TrEk(Ak + Zk − Y ),

where the operators Zk and Y are the Lagrange multipliers of the problem. If the Zk are
taken to be PSD, we see that always Ps({Ek}) ≤ L. This does not change when maximizing
over all POVMs, and certainly not when in the maximization of L over the Ek the POVM
constraints are dropped. Hence P ∗

s ≤ maxEk
L. This unconstrained maximization is easy to

do; when Y = Ak +Zk for all k, maxEk
L = TrY , otherwise it is positive infinity. Minimizing

this upper bound over all PSD Zk and all Y yields the best upper bound on P ∗
s . The positivity

condition on the Zk can be replaced by requiring that for all k, Y ≥ Ak. Minimizing over
such Y then gives

P ∗
s ≤ min

Y
{TrY : Y ≥ Ak, k = 1 . . . , r}, (98)

which is again an SDP, called the dual of the original (primal) SDP (see, e.g., [53] or [14],
equations (15) and (16)).

Therefore, the optimal success probability is bounded above by the trace of the LUB of
all weighted density operators:

P ∗
s ≤ Tr LUB(A1, . . . , Ar). (99)

Note that in the classical case (all Ai are diagonal, with diagonal elements Ai(j) = piqi(j)) the
LUB is the entrywise maximum, so that the dual SDP reproduces the maximum-likelihood
formula P ∗

s =
∑

j maxi(Ai(j)).

43



The difference between the maximum of the primal SDP (P ∗
s ) and the minimum of the

dual SDP is called the duality gap. One can show that the duality gap is zero, provided some
mild technical conditions are satisfied (e.g. Slater’s conditions), in which case equality holds:

P ∗
s = Tr LUB(A1, . . . , Ar). (100)

If the duality gap is zero, then the optimal Zk (denoted by Z∗
k) and the optimal POVM

{E∗
k} must necessarily satisfy a simple relation, called the complementary slackness condi-

tion. Indeed, Let Y ∗ be the operator where the minimum on the RHS of (98) is attained.
As TrY ∗ = Tr(Y ∗∑

k E
∗
k) and Y ∗ − Ak = Z∗

k , the equality
∑

k TrAkE
∗
k = TrY ∗ implies∑

k Tr(Z∗
kE

∗
k) = 0. Since all Z∗

k and E∗
k are required to be PSD, this actually means that

Z∗
kE

∗
k = 0, ∀k. (101)

A simple consequence of these complementary slackness conditions is obtained by sum-
ming over k:

∑
k Z

∗
kE

∗
k = 0. Noting that Zk = Y −Ak, this yields

Y ∗ =
∑
k

AkE
∗
k . (102)

Combined with the conditions Y ∗ ≥ Ak for all k, these are the optimality conditions first
obtained by Yuen, Kennedy and Lax [53].

E Short proofs of Barnum and Knill’s and Tyson’s bounds

Proof of Theorem 3.1. The main ingredient of the proof is the following lemma (a slight
improvement over Lemma 5 in [8], which lacked the factor 1

2). LetM be a positive semidefinite

n× n matrix, symmetrically partitioned as the 2 × 2 block matrix M =

(
X Y
Y ∗ Z

)
, where

X is n1 × n1, Y is n1 × n2 and Z is n2 × n2 (with n = n1 + n2). Let M2 be partitioned
conformally. Then the off-diagonal blocks of M and M2 satisfy

||M1,2||22 ≤
1

2
||(M2)1,2||1.

Note that the validity of this lemma does not extend to general m×m partitions.

Proof of lemma. We have M1,2 = Y and (M2)1,2 = XY + Y Z. Let us, without
loss of generality, assume that n1 ≤ n2. From the singular value decomposition of
Y we can obtain a basis for representing M in which Y is pseudo-diagonal with
non-negative diagonal elements. Let (for i = 1, . . . , n1) xi and yi be the diagonal
elements of X and Y , and zi the first n1 diagonal elements of Z, all of which are
non-negative. As M is PSD, any of its principal submatrices is PSD too, and we
have yi ≤

√
xizi ≤ (xi + zi)/2. Thus

||Y ||22 =

n1∑
i=1

y2i ≤ 1

2

n1∑
i=1

xiyi + yizi =
1

2

n1∑
i=1

(XY + Y Z)i,i ≤
1

2
||XY + Y Z||1,
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as required. The last inequality follows from the inequality |TrA| ≤ ||A||1 applied
to the square matrix obtained by padding XY + Y Z with extra rows containing
zero (an operation that does not affect the trace norm).

To prove Theorem 3.1, let X be the r × 1 column matrix X := (A
1/2
j A

−1/4
0 )rj=1. Then

X∗X =
∑r

j=1A
−1/4
0 AjA

−1/4
0 = A

1/2
0 . Furthermore, letN = XX∗. ThenNi,j = A

1/2
i A

−1/2
0 A

1/2
j

and (N2)i,j = (XX∗XX∗)i,j = A
1/2
i A

1/2
j .

For each value of i = 1, . . . , r we now apply the lemma to the 2 × 2 block matrix M =(
X Y
Y ∗ Z

)
where X = Ni,i, Y is the i-th row of N , but with the i-th column removed, and

Z is the submatrix of N with the i-th row and i-th column removed. Thus, M1,2 = Y is

itself a row block matrix consisting of the r − 1 blocks A
1/2
i A

−1/2
0 A

1/2
j for fixed i and j ̸= i.

Likewise, (M2)1,2 is a row block matrix consisting of the r − 1 blocks A
1/2
i A

1/2
j . The lemma

then implies, for all i,∑
j:j ̸=i

TrAiA
−1/2
0 AjA

−1/2
0 =

∑
j:j ̸=i

||A1/2
i A

−1/2
0 A

1/2
j ||22 = ||M1,2||22

≤ 1

2
||(M2)1,2||1 =

1

2
||(A1/2

i A
1/2
j )j ̸=i||1

≤ 1

2

∑
j:j ̸=i

||A1/2
i A

1/2
j ||1 =

1

2

∑
j:j ̸=i

F (Ai, Aj).

The last inequality is just the triangle inequality for the trace norm. Summing over all i
yields the stated bound on the error probability PPG

e .

Proof of Theorem 3.2. For any operator X with ∥X∥ ≤ 1 and any quantum state σ we have

1 − ∥Xσ∥1 ≤ 1 − Tr(X∗Xσ) ≤ 1 − ∥Xσ∥21 ≤ 2(1 − ∥Xσ∥1). (103)

The first two inequalities both follow from Hölder’s inequality ([11], Cor IV.2.6):

Tr(X∗Xσ) ≤ ∥X∗Xσ∥1 ≤ ∥Xσ∥1 ∥X∥ ≤ ∥Xσ∥1 ,

and

∥Xσ∥21 =
∥∥∥(Xσ1/2)σ1/2

∥∥∥2
1
≤
∥∥∥Xσ1/2∥∥∥2

2

∥∥∥σ1/2∥∥∥2
2

= TrX∗Xσ

and the last inequality in (103) follows from 1 − x2 ≤ 2(1 − x), x ∈ R. Applying (103) for
σk := Ak/TrAk and Xk and summing over k yields

r∑
k=1

(TrAk) (1 − ∥Xkσk∥1) ≤
r∑

k=1

(TrAk) (1 − Tr(X∗
kXkσk)) ≤ 2

r∑
k=1

(TrAk) (1 − ∥Xkσk∥1) .

Taking the minimum over all Xk then yields the inequalities of the theorem.

Proof of Theorem 3.3. In the following we will abbreviate the expression
∑r

k=1A
2
k by S.
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First note that the operator
⊕

kXkAk is a pinching of the block operator (XjAk)j,k. This
operator is the product of the column block operator X := (Xj)j,1 and the row block operator
A := (Ak)1,k. Because unitarily invariant norms do not increase under pinchings, we get

∑
k

∥XkAk∥1 =

∥∥∥∥∥⊕
k

XkAk

∥∥∥∥∥
1

≤ ∥(XjAk)j,k∥1 = ∥XA∥1 = Tr (A∗X ∗XA)1/2 .

Noting that X ∗X =
∑

kX
∗
kXk = I yields

Tr (A∗X ∗XA)1/2 = Tr (A∗A)1/2 = ∥A∥1 = ∥A∗∥1 = TrS1/2.

Hence, ∑
k

∥XkAk∥1 ≤ TrS1/2.

Equality can be achieved by taking the SQ measurement, Xk = AkS
−1/2. Indeed, from

XkAk = AkS
−1/2Ak ≥ 0, we get

∑
k

∥XkAk∥1 =
∑
k

Tr(XkAk) = Tr

(
S−1/2

∑
k

A2
k

)
= TrS1/2.

This shows that the maximum of
∑

k ∥XkAk∥1 over any complete set of r measurement
operators {Xk} is achieved for Xk = AkS

−1/2 and is given by TrS1/2. Hence, Γ∗ = TrA0 −
TrS1/2, which is (41).
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