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Abstract 

 

Carotenoids and ketocarotenoids are isoprenoid molecules, which represent one of 

the most widespread classes of natural pigments, found in animals, plants and 

microorganisms. Moreover, they have valuable antioxidant properties. Their health 

benefits and colorant aspects have led to attempts to elevate their level in foodstuffs.  

In the present study, several metabolic engineering strategies were tested in order to 

enhance the levels of high-value carotenoid and ketocarotenoid compounds, such as 

lycopene, -carotene, canthaxanthin and astaxanthin, in tomato and tobacco plants. 

Biosynthetic bacterial pathway genes have been overexpressed independently 

(GGPP synthase (CrtE), phytoene synthase (CrtB) and phytoene desaturase (CrtI)) 

and in combination (CrtE+B, CrtE+I, CrtB+I and -carotene hydroxylase and 

ketolase (CrtZ+W)), with different promoters (for CrtB, CrtI and CrtB+I) or in 

association with transcription factors (Phytochrome-interacting factor 5 

(CrtZ+W+PIF5) and Arabidopsis Response Regulator 14 (CrtZ+W+ARR14)). The 

effects of these different strategies on the plant metabolism and especially on 

carotenoid formation, sequestration and the activation of regulation mechanisms 

were studied. 

The combination of the two genes CrtB and CrtI, in their hemizygous state, had a 

synergistic effect on the production of carotenoids and the expression of 

CrtZ+W+ARR14 increased the levels of ketocarotenoids in the plants. The important 

features for the design of metabolic engineering strategies were highlighted. 

Moreover, regulatory mechanisms that operate across multiple levels of cellular 

regulation, including transcription, protein localisation, metabolite levels, cell or 

tissue type, and organelle/sub-organelle structure and organisation were revealed. It 

was demonstrated how changes to chromoplast and sub-chromoplast structures, such 

as crystal formation, plastoglobule and membrane composition/structures can arise in 

response to changes in metabolites. A new carotenoid regulation mechanism at the 

sub-organellar level was discovered and a schematic model was proposed.  
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CYP97C  Haem-containing cytochrome P450 -ring hydroxylase 

DDB1   Damaged DNA binding protein 1 

DET1   De-etiolated 1 

DGDG  Digalactosyldiacylglycerol 

dH2O  Distilled water 



17 

 

DMAPP  Dimethylallyl diphosphate 

DNA   Deoxyribonucleic acid 

dsDNA  Double stranded DNA 

DTT   Dithiothreitol 

DW   Dry weight 

DXP   1-Deoxy-D-xylulose 5-phosphate                                                                                                                           

DXS   1-Deoxy-d-xylulose 5-phosphate synthase  

DXR  1-Deoxy-D-xylulose 5-phosphate reductoisomerase 

EDTA   Ethylenediaminetetraacetic acid 

EMS  Ethyl methane sulfonate 

EPA  Environmental Protection Agency 

F  Fraction 

FAD  Flavin adenine dinucleotide 

FAOSTAT Food and Agriculture Organisation of the United Nations 

FDA  Food and Drug Administration 

FLIM  Fluorescence lifetime imaging microscopy 

FPP   Farnesyl diphosphate 

FRAP  Fluorescence recovery after photobleaching 

FRET  Fluorescence resonance energy transfer 

FW  Fresh weight 

GA3P   Glyceraldehyde-3-phosphate 

GA   Gibberellic acid 

GC-MS Gas Chromatography Mass Spectrometry 

GFP  Green Fluorescent Protein 

GGPP   Geranyl geranyl diphosphate 

GGPPS  Geranyl geranyl diphosphate synthase 

GM   Genetically modified 

GMO  Genetically modified organism 

GPP   Geranyl diphosphate 

GPPS   Geranyl diphosphate synthase 

GUS  -Glucuronidase enzyme 

h  Hour 

H2O2   Hydrogen peroxide 

HCl   Hydrochloric acid 

HDS  1-Hydroxy-2-methyl-2-(E)-butenyl 4-phosphate synthase 

HDR  4-Hydroxy-3-methylbut-2-enyl diphosphate reductase   

HMG-CoA 3-Hydro-3-methylglutaryl Coenzyme A 

HO    Hydroxyl radical 

Hp-1   High pigment 1 

Hp-2  High pigment 2 

Hp-3  High pigment 3 

HPLC  High performance liquid chromatography 

HSP21  Heat shock protein 21 

IPP   Isopentenyl diphosphate 

IUPAC  International Union of Pure and Applied Chemistry 
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LB   Luria Broth medium 

LCYE   Lycopene -cyclase 

LCYB   Lycopene -cyclase 

LC-MS  Liquid chromatography mass spectrometry 

MbS  Membranous sac 

MEP   2-C-Methyl-D-erythritol 4-phosphate 

MEcPP  Methylerythritol cyclodiphopshate 

Min  Minute 

MG  Mature green stage 

MGDG  Monogalactosyldiacylglycerol  

MVA  Mevalonate pathway 

NAA   1-Naphthaleneacetic acid 

NADPH Nicotinamide Adenine Dinucleotide Phosphate Hydrogen 

NCBI  National Centre for Biotechnology 

NCED  9-Cis-epoxycarotenoid dioxygenase 

NPQ  Non photochemical quenching 

NXS  Neoxanthin synthase 
1O2*   Singlet oxygen 

O2
-
    Superoxide anion 

OD   Optical density 

Pb  Lycopene cyclase promoter (S. galapagense) 

PB   Phosphate buffer 

PC  Phosphatidylcholine 

PCR   Polymerase chain reaction 

PDA   Photo-diode array 

PDS   Phytoene desaturase 

PE  Phosphatidylethanolamine 

PG  Plastoglobule 

PG promoter Polygalacturonase promoter (S. lycopersicum) 

PGL35  Plastoglobule PGL35 Plastoglobulin 

PIF  Phytochrome-interacting factor family 

PIF5   Phytochrome-interacting factor 5 

PPPP   Pre-phytoene pyrophosphate 

PS  Phosphatidylserine 

PSI   Photosystem I 

PSII   Photosystem II 

PSBA  Photosystem II protein D1 

PSY-1  Fruit specific phytoene synthase 1 

PSY-2  Phytoene synthase 2 

PVDF   Polyvinylidene fluoride  

qPCR   Quantitative PCR 

QTL  Quantitative trait loci 

RAP2.2 Ethylene response transcription factor 

RbcL   RuBisCO large subunit 

RC  Remaining of crystals 
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RI  Retention index 

RNA  Ribonucleic acid 

RNAi  RNA interference 

RO    Alkoxy radical 

ROS   Reactive oxygen species  

RP   Reverse phase 

RT-PCR  Reverse transcription PCR 

RTqPCR  Quantitative real time reverse transcription 

RuBisCO  Ribulose 1,5-bisphosphate carboxylase/oxygenase 

SAP  Shrimp Alkaline Phosphate 

SD  Standard deviation 

SDG8  Histone methyltransferase 

SDS   Sodium dodecyl sulphate 

SDS-PAGE  SDS polyacrylamide gel electrophoresis 

Sec  Second 

SIERF6 Ethylene response factor 

SSU   Small subunit 

sp   Species 

T0   Primary generation 

T1   Second generation 

TAG  Triacylglycerol 

TAP  Tandem Affinity Purification 

TB   Transfer buffer 

TEM   Transmission electron microscopy 

Thp  Thylakoid plexus 

TFA  Trifluoroacetic 

TIC40  Chloroplast inner envelope membrane translocon complex protein 

TILLING Targeting Induced Local Lesions IN Genomes 

TLC   Thin layer chromatography 

Tm  Melting temperature 

TOC75  Chloroplast outer envelope membrane translocon complex protein 

Tris   Tris-hydroxymethyl-aminomethane 

tp   Transit peptide 

UPLC  Ultra High Performance Liquid Chromatography 

USDA  U.S. Department of Agriculture 

UTR  Untranslated regions 

V   Volt 

VDE-1  Violaxanthin de-epoxidase 

WT   Wild-type 

X-Gluc  5-Bromo-4-chloro-3-indolyl-β-D-glucuronic acid 

ZEP-1   Zeaxanthin epoxidase 

Z-ISO   15-Cis- ζ -carotene isomerase 
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1.1 Isoprenoids in plants 

Isoprenoids are mainly designated as secondary metabolites, a wide group of 

compounds, which includes alkaloids and phenolics. Secondary metabolites were 

historically described as not directly essential for plant cell life (Theis and Lerdau, 

2003), but can also be defined as compounds whose biosynthesis is restricted to 

selected plant groups (Pichersky and Gang, 2000). The majority of these compounds 

are involved in plant-environment interactions (Sheludko, 2010). It is considered that 

the ability to synthesise secondary metabolites has been selected in different lineages 

during evolution, when a specific metabolite or type of metabolites were required to 

address precise functions (Pichersky and Gang, 2000). Concurrently, it is also 

typically found that secondary metabolite formation is associated with a specialised 

type of tissue or cell within the tissues. Some other isoprenoids, such as 

phytohormones, are involved in essential plant functions and are therefore 

designated as primary metabolites. 

The isoprenoids are the largest group of secondary metabolites (ca. 50,000 

compounds) with a wide range of structural and functional diversity (Vranova et al., 

2012). However, they are all biosynthetically derived from the same C5 unit, 

isopentenyl diphosphate (IPP). IPP can be synthesised via two distinct pathways, the 

mevalonate (MVA) pathway in the cytosol and mitochondria and the 2-C-methyl-D-

erythritol 4-phosphate (MEP) pathway in the plastid (Figure 1-1). The 

compartmentalisation of the isoprenoid pathway is unique to the plants and it is 

thought to be essential for the interactions of plants with their environment 

(Hemmerlin et al., 2012). The IPP is interconverted into dimethylallyl diphosphate 

(DMAPP) by isopentenyl diphosphate isomerase. DMAPP is then elongated into 

geranyl diphosphate (GPP), farnesyl diphosphate (FPP) and geranylgeranyl 

diphosphate (GGPP) by addition of one, two or three IPP units. Several isoprenoid 

families exist. They are distinguished by the number of carbons of the isoprenoid 

molecules and the identity of the precursor utilised for their biosynthesis. They 

consist of monoterpenes (C10, built from GPP), sesquiterpenes (C15, FPP), diterpenes 

(C20, GGPP), triterpenes (C30, FPP) and carotenoids (C40, GGPP) (Figure 1-2). It is 

believed that GPP and all-trans-FPP biosynthesis occur exclusively in the plastid and 
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the cytosol, respectively. Exchanges between plastid and cytosol compartments have 

been described (Hemmerlin et al., 2012) and are represented in Figure 1-2.  

 

 

Figure 1-1 Overview of isoprenoid biosynthesis and compartmentalisation in plant 

cells (adapted from Bouvier et al., 2005; Vranova et al., 2013) 

Arrows indicate either single or multiple enzymatic steps. Solid-line arrows correspond to the main 

isoprenoid pathway, dashed-line arrows to related pathways, and red arrows to cross-membrane 

transport. HMG-CoA, 3-hydroxy-3-methylglutaryl CoA; MVA, mevalonate; IPP, isopentenyl 

diphosphate; DMAPP, dimethylallyl diphosphate; GPP, geranyl diphosphate; FPP, farnesyl 
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diphosphate; GGPP, geranylgeranyl diphosphate; GA3P, glyceraldehyde 3-phosphate; DXP, 1-deoxy-

D-xylulose. Mitochondrion and chloroplast drawings were adapted from the websites 

http://www.rsc.org/chemistryworld/News/2010/August/27081001.asp and http://thebuildingblockof 

biology.wordpress.com/category/my-important-best-friend-the-plant-cell/chloroplast/, respectively.  

 

Isoprenoids have an impressive scope of functions. They are involved in plant 

growth and survival via the phytohormones (gibberellic acid, abscisic acid, etc.); in 

photosynthesis via the carotenoids, chlorophylls and plastoquinones; in respiration 

via the ubiquinones; and in membrane structure via the phytosterols (Aharoni et al., 

2005). Volatile isoprenoid compounds play an important role in defence, but also in 

attraction for the plants via plant-insect, plant-pathogen, and plant-plant interactions 

(Dudareva et al., 2004; Dudareva et al., 2013). Isoprenoids also include natural 

pigments, flavours and fragrances that are of commercial importance. One of the 

most commercially attractive roles of some isoprenoids is their medicinal properties, 

which are utilised by humans, as nutraceuticals, anti-carcinogenic and antimalarial 

medicines (Sinensky, 2000; Lewinsohn et al., 2001; Galili et al., 2002; Rodriguez-

Concepion, 2004; Sun-Waterhouse, 2011). Carotenoid and ketocarotenoid 

compounds are of particular interest due to their natural pigmentation and their 

antioxidant activities (Fraser and Bramley, 2004; Krinsky and Johnson, 2005; 

Peñuelas and Munné-Bosch, 2005; Zhu et al., 2013). 
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Figure 1-2 MVA and MEP pathways in plants (adapted from Hemmerlin, 2013; 

Vranova et al., 2013) 

In plants, isopentenyl diphosphate (IPP) and its chemically active allylic isomer dimethylallyl 

diphosphate (DMAPP) are synthesised either by the cytosolic MVA pathway or by the plastidial MEP 

pathway. Substrates and enzymes of the MVA pathway are as follows: Ac-CoA, acetyl-coenzyme A; 
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HS-CoA, reduced coenzyme A; AACT, acetoacetyl-coenzyme A thiolase; HMGS, 3-hydroxy-3-

methylglutaryl-coenzyme A synthase; HMGR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase; 

MK, mevalonate kinase; PMK, phosphomevalonate kinase; MPDC, diphospho-mevalonate 

decarboxylase. Enzyme of the MEP pathway are as follows: DXS, 1-deoxy-D-xylulose 5-phosphate 

synthase; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomerase; MCT, 2C-methyl-D-erythritol 4-

phosphate cytidyltransferase; CMK, 4-diphosphocytidyl-2C-methyl-D-erythritol kinase; MDS, 2C-

methyl-D-erythritol 2,4-cyclodiphosphate synthase; HDS, 1-hydroxy-2-methyl-2-(E)-butenyl 4-

diphosphate synthase; HDR, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase. IPPI, 

isopentenyl diphosphate isomerase; GPPS, geranyl diphosphate synthase; GGPPS, geranylgeranyl 

diphosphate synthase; Pi, orthophosphate; PPi, pyrophosphate. Red arrows correspond to cross-

membrane transport and the transporters are depicted as red dots.  

 

 

1.2 Carotenoids and ketocarotenoids 

1.2.1 Structure and nomenclature 

Carotenoids are biosynthesised in the plastids, by the tail-to-tail linkage of two 

geranylgeranyldiphosphate molecules (GGPP, C20), which represent a total of eight 

IPP units.  All carotenoids and ketocarotenoids are derived from this C40 skeleton 

molecule. It can be modified by (i) desaturation, (ii) cyclisation, (iii) addition of 

oxygen-containing functional groups (hydroxy (OH), epoxy, aldehyde (CHO), keto 

(C=O), carboxy (CO2H), carbomethoxy (CO2Me) and methoxy (OMe) groups), (iv) 

chain degradation or (v) chain extension. The acyclic carotenoids are called 

carotenes and those containing one or more oxygen functions are known as 

xanthophylls. The carotenoids harbouring a keto group are named ketocarotenoids 

and apocarotenoids are the cleavage products of carotenoid molecules catalysed by 

CCDs (carotenoid cleavage dioxygenases). Most commonly, carotenoids are 

described with their trivial names. However, it is recommended, as described in the 

IUPAC-IUB rules, to use the stem name carotene, preceded by the Greek-letter 

prefixes that designate the two end groups (Britton, 1995; Weedon and Moss, 1995). 

Seven possible end groups exist but only four are found in higher plants (, , , ). 

The carotenoid hydrocarbon numbering scheme along with nomenclature examples 

of the acyclic lycopene and cyclic -carotene, zeaxanthin and canthaxanthin are 

illustrated in Figure 1-3. In this study, trivial names will be used for the sake of 

clarity.  
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Figure 1-3 Nomenclature and numbering scheme of carotenoids 

Names are given as following: trivial / IUPAC-IUB nomenclature. Only the end groups found in 

higher plants are represented. 

 

Moreover, details of carotenoid structure (spatial orientation) are often given by 

specifying the geometrical isomer of the carbon-carbon double bonds of the 

molecule. Indeed, the four single bonds of each C=C double bond lie in the same 

plane. Consequently, each double bond of carotenoid polyene chains can exist in two 

forms, which are the trans (latin for “on the opposite side”) and cis (latin for “on this 

side of”) configurations. The cis configuration indicates that the substituent groups 

of the double bond are on the same side of the double bond. In a trans configuration, 

they are of each side of the double bond (Figure 1-4, a). The cis isomers are usually 

less stable thermodynamically compared to the trans form, since the presence of a 

cis double bond induces greater steric effects between hydrogen atoms and/or methyl 

groups. Therefore, most carotenoids in nature have predominantly an all-trans form 

(Britton, 1995). Another nomenclature is used to represent these spatial 

organisations: Z (from the German zusammen = together) and E (from the German 

entgegen = opposite). In this case, the Z and E configuration depend on the order of 

priority of the substituents on each carbon atom of the double bond. The highest 

priority corresponds to the substituent with the highest atomic numbers. If the two 

substituents with the highest priority are on the same side of the C=C bond, the 

geometry is assigned as Z. When they are at opposite sides, it corresponds to an E 
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configuration (Figure 1-4, b). In carotenoids, the trans and cis configurations are 

usually equivalent to E and Z, respectively, although some exceptions exist.  

(Britton, 1995; Weedon and Moss, 1995). 

 

Figure 1-4 Geometric isomers 

Trans/cis configurations are represented in a, E/Z configurations in b. Substituents priority order is 

indicated in b, as explained in section 2.1. 

 

The central part of carotenoid molecules is characterised by a long system of 

alternating double and single bonds, which constitutes a conjugated system (Figure 

1-3). The -electrons are effectively delocalised over the entire length of the polyene 

chain, which makes it a highly reactive electro-rich system. This gives distinctive 

light-absorbing properties to the carotenoid molecules, which are influenced by the 

number of conjugated double bonds. Extending a conjugated system with more 

unsaturated bonds will tend to shift absorption to longer wavelengths. The polyene 

chain of carotenoids, composed of seven or more double bonds, delivers the ability 

to absorb light in the visible spectrum. Consequently, yellow, orange and red colours 

are produced (Britton, 1995; Weedon and Moss, 1995). When the polyene chain 

absorbs wavelengths in the visible range, it is termed a chromophore. The polyene 

chain also confers antioxidant properties to carotenoid molecules (Britton, 1995), 

which are further discussed in section 1.2.5. 

 

1.2.2 Distribution of carotenoids 

Carotenoid composition varies widely between plants and within plant tissues. The 

production of carotenoids occurs in almost all types of plastids, except in the 
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proplastid, which is the undifferentiated progenitor of plastids (Figure 1-5) (Howitt 

and Pogson, 2006).  

 

Figure 1-5 The plastid family (simplified)  

The arrows represent a possible conversion/differentiation between two types of plastids. Proplastid 

(undifferentiated plastid), leucoplast (colourless plastid), chromoplast (pigment biosynthesis and 

storage plastids), amyloplast (starch-storing plastid), chloroplast (photosynthetic plastid) and etioplast 

(dark-grown precursor of the chloroplast). Pictures are not to scale, they were adapted from the 

following websites, respectively: www.skidmore.edu/academics/biology/plant_bio/photos /photos 

/cellbio.html; www.macroevolution.net/leucoplasts.html#.UfftC22YdX4; http://shivecellproj.weebly 

.com/chromoplast.html; www.biologie.uni-hamburg.de/b-online/library/webb/BOT410/anatweb/ 

pages /ORPlastids-1.htm; www. funsci. com/fun3_en/guide/guide3/micro3_en.htm; www.kmle.co.kr. 

 

Chloroplasts are found in photosynthetic tissues. Their carotenoid composition 

consists of lutein (40-50% of the total), -carotene (25-30%), violaxanthin (15%) 

and neoxanthin (15%). Small amounts of other carotenoids such as zeaxanthin and -

carotene can also be found (Young, 1993; Bramley, 2013). Mature green fruits are 

made of photosynthetic tissues and therefore contain chloroplasts, but with the onset 

of ripening, the chloroplasts differentiate into chromoplasts. This process activates 

many mechanisms such as degradation of the thylakoid membranes and 

chlorophylls, internal membrane remodelling, formation of carotenoid storing 

structures and often de novo synthesis of carotenoids (Egea et al., 2010; Figure 1-6).  
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Figure 1-6 Chloroplast-chromoplast transition 

a, electron micrograph of a tomato chloroplast; b, electron micrograph of a tomato chromoplast. Bar = 

1m (adapted from Simkin et al., 2007); c, schematic representation of the chloroplast–chromoplast 

transition. The scheme shows the breakdown of starch granules (1) and of grana and thylakoids (2); 

the synthesis of new membrane structures form the inner membrane envelope of the plastid (3) 

leading to the formation carotenoid-rich membranous sacs (4); the increase in the number and size of 

plastoglobules (5); the appearance of carotenoid-containing crystalloids (6); and the increase in the 

number of protrusions emanating from the plastid envelope, called stromules (7) (Egea et al., 2010). 
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The chromoplasts are the plastids of mature fruit, but also vegetable and flower 

tissues. They are capable of storing large quantities of carotenoids. The distribution 

of carotenoids is complex. The diversity (a few to over 50 carotenoids) and the 

quantities (insignificant to large amounts) of carotenoids are specific to species or 

even varieties (Howitt and Pogson, 2006; Bramley, 2013). For instance, strawberries 

contain low amount of carotenoids, whereas tomatoes have large quantities of 

lycopene, and peaches and mangoes contain large amounts of -carotene. Unusual 

carotenoids, such as capsorubin and capsanthin, are found in peppers, poly-cis-

carotenes are produced in tangerine tomatoes and apocarotenoids are found in large 

amounts in the peel and flavedo of Citrus species (Goodwin, 1980). Amyloplasts are 

the starch-storing plastids. However, they can also store carotenoids such as in the 

root tubers or seeds. Sweet potato contains mainly -carotene, while potato 

accumulates -cryptoxanthin or lutein. Amyloplasts are also found in starchy seeds 

such as wheat, rice and maize. Lutein and zeaxanthin are the main carotenoids found 

in seed amyloplasts (Howitt and Pogson, 2006). 

1.2.3 Carotenoid interactions within the cell 

Carotenoids are highly hydrophobic molecules, and therefore they have little or no 

solubility in an aqueous environment. Consequently, carotenoids are mainly found in 

the hydrophobic core of the membranes, except when they bind to other molecules 

that allow them to access aqueous areas. Carotenoids interact with other carotenoids, 

lipids and proteins. They associate with the hydrophobic part of the protein or with 

the lipid of the lipoprotein. Thus, carotenoids can also function and be transported in 

an aqueous environment. However, carotenoids have a tendency to crystallise in a 

hydrophilic environment. This alters their physical properties, such as light 

absorption and chemical reactivity (Britton, 1995). Moreover, carotenoid interaction 

with proteins allow them to maintain the optimal positions in order to interact with 

other molecules, such as in the case of the photosynthetic pigment-protein 

complexes, where the proteins hold the chlorophylls and carotenoids in proximity so 

that efficient energy transfer can occur (Britton, 1995). 

The ability of carotenoids to fit in membrane structures depends on the shape, size 

and hydrophobicity of the carotenoid molecule. These features can be modified by, 

for instance, the polarity of the functional groups, the trans or cis configuration and 
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the cyclisation of the carotenoid molecule. Consequently, the sequestration of the 

carotenoids within the membrane depends on each individual carotenoid (Britton, 

1995). All trans dipolar carotenoids, such as zeaxanthin, will tend to anchor in the 

two opposite polar regions of the bilayer (Subczynski et al., 1992; Havaux, 1998; 

Gruszecki and Strzalka, 2005). In the case of cis dipolar carotenoids, both polar ends 

are attached on the same side of the polar region of the membrane (Gruszecki and 

Strzalka, 2005). Non-polar carotenoids, such as lycopene and -carotene, are 

distributed homogenously within the membrane without well-defined orientations, 

exclusively governed by van der Waals interactions with the hydrocarbon acyl 

chains of lipid molecules (Gabrielska and Gruszecki, 1996; Gruszecki and Strzalka, 

2005). A schematic representation of the orientation of -carotene, lutein, all trans-

zeaxanthin and 13-cis-zeaxanthin in bilayer membranes is showed in Figure 1-7. The 

presence of carotenoids has an effect on the thickness, strength and fluidity of the 

membrane, but also on its effectiveness as a barrier to water and its permeability to 

oxygen and other molecules (Britton, 1995).   

 

Figure 1-7 Schematic representation of orientation of carotenoids in the hydrophobic 

core of lipid membranes (Gruszecki and Strzalka, 2005) 

Zeaxanthin, all trans-zeaxanthin; zeaxanthin cis, 13-cis-zeaxanthin. 

 

1.2.4 Biosynthesis of carotenoids and ketocarotenoids 

1.2.4.1 Carotenoid biosynthesis in plants 

Since the 1950s, several approaches have been undertaken to elucidate the 

carotenoid biosynthetic pathway. Pioneering studies described the use of specific 

enzyme inhibitors and mutants of the carotenoid pathway (Porter and Lincoln, 1950; 
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(C10), FPP (C15) and GGPP (C20) (Figure 1-9). These reactions involve the attack of 

a carbonium ion to the electron rich C3,4 double bond, associated with the loss of 

inorganic phosphate (Figure 1-2) (Fraser and Bramley, 2004). The condensation of 

two GGPP molecules in a head to head manner forms the intermediate pre-phytoene-

pyrophosphate (PPPP). Phytoene (15-cis-phytoene) is obtained after elimination of 

the diphosphate group and stereospecific proton abstraction (Figure 1-9). Phytoene is 

the first carotenoid precursor of the pathway. It is colourless and its C40 skeleton is 

the basic structure from which all carotenoids are derived.    

 

Figure 1-9 Phytoene synthesis from DMAPP and IPP 

IPP, isopentenyl pyrophosphate; DMAPP, dimethylallyl pyrophosphate; GPP, geranyl diphosphate; 

FPP, farnesyl diphosphate; GGPP, geranylgeranyl diphosphate; PPPP, prephytoene diphosphate; 

GPS, geranyl diphosphate synthase; GGPS, geranylgeranyl diphosphate synthase and PSY, phytoene 

synthase (Fraser and Bramley, 2004). 

 

The enzyme IPP isomerase catalyses the reversible isomerisation of IPP and 

DMAPP. GPP synthase (GPS) and GGPP synthase (GGPS) enzymes add a 

supplemental IPP unit to IPP or DMAPP and GPP, respectively. Phytoene synthase 

is responsible for the formation of the intermediate PPPP and phytoene. The 

corresponding gene(s) Psy have been identified and isolated from several species 

(for instance Arabidopsis (Lange and Ghassemian, 2003), maize (Buckner et al., 
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Goodwin, 1955; Villoutreix, 1960). Then, in vitro approaches, using radioactive 

substrates were adopted (Williams et al., 1967; Bramley, 1985). Purification of 

enzymes from native and recombinant sources, gene cloning and expression in 

recombinant systems and transgenic plants and finally the use of the “omic” 

technologies are modern techniques used to pursue the study of the carotenoid 

biosynthesis pathway and its regulation (Bramley, 2013).  

The description of the carotenoid pathway is divided in sections corresponding to 

different stages of the biosynthesis (Figure 1-8). The early stages of carotenoid 

formation were already illustrated in section 1, Figure 1-1 and 1-2.  Carotenoids are 

synthesised in the plastids by nuclear encoded enzymes (Hirschberg, 2001). It 

involves IPP, which is synthesised mainly in the MEP pathway, but IPP from the 

MVA pathway could supposedly be also used, as exchanges of IPP between the 

MEP and MVA pathway do exist (Figure 1-2). 

 

Figure 1-8 Summary of the stages of carotenoid biosynthesis 

GGPP, geranylgeranyl diphosphate. Xantophylls can also be formed from lycopene. This step is not 

represented in this figure. 

 

1.2.4.1.1 Formation of the first carotenoid, phytoene 

The building unit IPP (C5) is isomerised to its allylic isomer DMAPP in order to 

initiate chain elongation. Successive additions of IPP lead to the formation of GPP 
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1996), pepper (Kuntz et al., 1992)). In tomato, two variants of phytoene synthase 

(PSY-1 and PSY-2) have been identified and characterised. PSY-1 is a fruit and 

flower specific enzyme while PSY-2 is mainly active in chloroplasts (Fraser et al., 

1999; Fraser et al., 2000a).  The tomato phytoene synthases require ATP and Mn
2+ 

(Fraser and Bramley, 2004).  

 

1.2.4.1.2 Desaturation and isomerisation reactions leading to lycopene 

The characteristic system of conjugated double bonds, the chromophore, is 

introduced via four sequential desaturation reactions. The extension of the polyene 

chain converts a colourless carotenoid (phytoene) into a red lycopene. Phytoene 

desaturase (PDS) catalyses two consecutives desaturation reactions to form -

carotene from phytoene (Figure 1-10). PDS activity is mainly membrane bound and 

requires FAD and oxidised quinones as cofactors (Fraser and Bramley, 2004). -

Carotene undergoes one desaturation reaction to become neurosporene and one more 

to lycopene (Figure 1-10). These last desaturations are catalysed by -carotene 

desaturase, which requires FAD as a cofactor. Two isomerisation reactions occur in 

this pathway. The first one is catalysed by Z-ISO (Chen et al., 2010). The tri-cis--

carotene is transformed in di-cis (Figure 1-10). The second one, through the activity 

of CRTISO, consists on the conversion of tetra-cis-lycopene to all-trans-lycopene 

(Isaacson, 2002; Isaacson et al., 2004). In green tissues, it is reported that the 

isomerisation steps occur only with the presence of light and chlorophyll (Isaacson, 

2002; Bramley, 2013).  
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Figure 1-10 Desaturation and isomerisation reactions in the biosynthesis of lycopene 

PDS, phytoene desaturase; Z-ISO, 15-cis--carotene isomerase; ZDS, -carotene desaturase, 

CRTISO, carotene isomerase. Red shading indicates the position of newly formed double bonds. 

Yellow lightening symbols highlight reactions also mediated by light (adapted from Fraser and 

Bramley, 2004; Fraser et al., 2009).  
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1.2.4.1.3 Cyclisation reactions 

All-trans-lycopene is at the junction of two distinct pathways, which are 

differentiated by the cyclic end groups that are formed from lycopene. Carotenoids 

of the -pathway (-carotene and -carotene) only contain -rings, whereas 

carotenoids of the -pathway (-carotene and -carotene) have either only one -

ring or - and -rings (Figure 1-11). The -lycopenecyclase (LCY-E) and the -

lycopene cyclase (LCY-B) introduce - and -rings, respectively. Both cyclases 

require NADPH as a cofactor (Fraser and Bramley, 2004). In tomato, a chromoplast 

specific -lycopene cyclase (CYC-B) has also been identified (Ronen et al., 2000). 

 

 

Figure 1-11 Cyclisation of lycopene 

The characteristic double bond within the carotenoid end group is shown in blue. LCY-E, -

lycopenecyclase; LCY-B, -lycopene cyclase; CYC-B, fruit specific -lycopene cyclase (adapted 

from Fraser and Bramley, 2004; Fraser et al., 2009). 

 

1.2.4.1.4 Xanthophyll formation 

In the later steps of the carotenoid pathway, oxygen atoms are introduced either as 

hydroxyl or epoxy groups (Figure 1-12). Hydroxylation of the C3 positions of the -

carotene and -carotene result in  and -crypto anthin, respectively.  he 

hydro ylation of the C   positions leads then to the formation of lutein and 

zeaxanthin, respectively (Figure 1-12). The hydroxyl moieties are introduced at the 

-rings by a haem-containing cytochrome P450 -ring hydro ylase (CYP97A) 
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or/and the carotene -hydro ylase 1 and 2 (CR R-B1 and CR R-B2), and at the -

rings by a haem-containing cytochrome P450 -ring hydro ylase (CYP97C) (Sun et 

al., 1996;  ian and DellaPenna, 2001;  ian et al., 200 ;  ian et al., 2004; Kim and 

DellaPenna, 2006) (Figure 1-12).   

 

Figure 1-12 Xanthophyll biosynthesis 

The oxygen/hydroxyl moieties introduced into the carotenoid skeleton are shaded in yellow. The 

enzymes encoding the major activity at each step are in bold. CYP97A, haem-containing cytochrome 

P450 -ring hydroxylase; CYP97C, haem-containing cytochrome P450 -ring hydroxylase CRTR-B1, 

carotene -hydroxylase 1; CRTR-B2, carotene -hydroxylase 2 (flower specific); ZEP-1, zeaxanthin 

epoxidase; VDE-1, violaxanthin de-epoxidase; NXS, neoxanthin synthase. 

   

Zea anthin epo idase (ZEP-1) catalyses the -ring epo idation reaction of 

zea anthin, which is converted to anthera anthin and which in turn forms 
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viola anthin by the introduction of a second epo y group (Figure 1-12).  hese 

reactions are reversible. Viola anthin can be converted back to zea anthin, through 

the action of viola anthin de-epo idase (VDE-1). In order to protect thylakoid 

membrane lipids against photo-o idation, which happens under e cessive light, 

viola anthin is rapidly and reversibly converted via anthera anthin to zea anthin 

under the action of VDE (DemmigAdams and Adams, 1996).  his is known as the 

 anthophyll cycle. 

Viola anthin is converted to neo anthin by neo anthin synthase (NXS), with the 

introduction of a single allenic end group. It is speculated that this group is formed 

by proton abstraction of C7, which has the consequence of converting the epo y 

group into a hydro yl group (Figure 1-12). In tomato, the deduced amino acid 

sequence of NXS is identical to that of CYC-B.  herefore, it is suggested that the 

enzyme is bi-functional under certain conditions (Fraser and Bramley, 2004). 

 

1.2.4.2 Ketocarotenoid biosynthesis in bacteria 

Ketocarotenoids are almost exclusively biosynthesised in microorganisms. The first 

carotenoid precursor of the ketocarotenoid pathway is -carotene. As in plants, the 

formation of -carotene in bacteria occurs from phytoene, which is formed by the 

condensation of two GGPP molecules (Figure 1-13). The GGPP synthase and 

phytoene synthase are called CRTE and CRTB, respectively. Contrary to the 

carotenoid pathway in plants, which requires four enzymes, only one bacterial 

enzyme (CRTI) is needed to convert phytoene to lycopene in bacteria (Figure 1-13). 

The formation of -carotene is catalysed by the lycopene cyclase CRTY (Misawa et 

al., 1990; Misawa et al., 1995b).   

Ketocarotenoids are biosynthesised from the carotenoids -carotene, -crypto anthin 

and zea anthin, via multiple and consecutive  /   -hydro ylation and 4/4  -ketolation 

reactions of the end groups. From -carotene to the final product astaxanthin, there 

are eight intermediates (Figure 1-14). Several hydroxylases (CRTZ, CYP175A1 and 

CRTR) and ketolases (CRTW and CRTO), which are structurally different, have 

been functionally identified (Misawa et al., 1990; Misawa et al., 1995a; Misawa et 

al., 1995b; Fernandez-Gonzalez et al., 1997; Fraser et al., 1997; Fraser et al., 1998; 

Masamoto et al., 1998; Blasco et al., 2004; Misawa, 2009; Zhu et al., 2009). CRTZ 
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(hydroxylase) and CRTW (ketolase) are bi-functional, as they can act prior or after 

ketolation and hydroxylation of the -rings, respectively. Since the intermediates of 

the pathway are found in relatively high proportions, it was postulated that the CRTZ 

and CRTW-type enzymes contain a reaction site, which can only introduce one 

hydroxyl or keto moiety at a time, respectively. In vitro characterisation of CRTZ 

and CRTW showed that these enzymes require O2 and that Fe
2+ 

is beneficial for their 

activities (Fraser et al., 1997).  

 

Figure 1-13 Formation of -carotene in bacteria  

FPP, farnesyl diphosphate; GGPP, geranylgeranyl diphosphate, IPP, isopentenyl pyrophosphate; 

CRTE, GGPP synthase; CRTB, phytoene synthase; CRTI, lycopene desaturase; CRTY, lycopene 

cyclase (adapted from Misawa et al., 1995b). 

 

Most plants lack -carotene ketolase enzymes and therefore are not able to 

synthesise ketocarotenoids. There are a few exceptions, such as the green algae 

Haematococcus pluvialis and the Adonis flower (Zhu et al., 2009).  However, plants 

have endogenous -carotene hydroxylases (as discussed in section 1.2.4.1.4). 
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Figure 1-14 The ketocarotenoid biosynthetic pathway in bacteria 

CRTZ, -carotene hydroxylase; CRTW, -carotene ketolase. Purple and green shadings indicate the position of newly introduced hydroxyl and 

keto groups, respectively. Other hydroxylases and ketolases, described in section 1.2.4.2, are not shown for the sake of clarity. 
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1.2.5 The roles of carotenoids and ketocarotenoids 

1.2.5.1 In plants 

Carotenoids are essential components of the light harvesting complexes, which allow 

photosynthetic organisms (plants, algae and photosynthetic bacteria) to collect light 

for photosynthesis. Carotenoids, especially xanthophylls (lutein, violaxanthin and 

zeaxanthin) are associated with chlorophylls within pigment-protein complexes 

(Figure 1-15). The carotenoids absorb light in the spectral region in which the sun 

emits, and transfer this energy to chlorophylls and subsequently to the reaction 

centre, initiating the first photochemical step of photosynthesis (Polivka and Frank, 

2010). The advantage of having a variety of carotenoid and chlorophyll pigments is 

to increase the absorption range of light within the antenna and consequently the 

amount of energy transferred to the reaction centre.  

 

Figure 1-15 Antenna complex component of the light harvesting systems 

Adapted from http://hyperphysics.phy-astr.gsu.edu/hbase/biology/antpho.html 

 

Light is essential for the life of plants, however, excess light can cause photo-

oxidative damage to membranes and proteins, via production of reactive oxygen and 

chlorophyll species. Carotenoids play an important role in photoprotection of the 

plant, via photochemical and non photochemical reactions. Firstly, carotenoids are 

able to quench the reactive triplet chlorophyll and reactive oxygen species (ROS), 

such as singlet oxygen and release the energy as heat (Frank and Cogdell, 1993). The 

photochemical quenching reactions are described in Figure 1-16.  
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Figure 1-16 Photochemical quenching of triplet chlorophyll and singlet oxygen by 

carotenoids 

Chl, chlorophyll; 3Chl, triplet chlorphyll; Car, carotenoids; O2, oxygen, 1gO2, singlet oxygen; *, 

denotes an excited state (adapted from Frank and Cogdell, 1993). 

 

Ketocarotenoids were also shown to provide photoprotection in plants modified to 

synthesise ketocarotenoids. Transgenic carrot plants were more resistant to UV light 

and hydrogen peroxide treatment (H2O2), compared to wild type plants as 

ketocarotenoids helped to quench free radicals and ROS (Jayaraj et al., 2008). 

Non photochemical quenching (NPQ) is provided by carotenoids via thermal 

dissipation processes (Havaux and Niyogi, 1999; Niyogi, 1999; Muller et al., 2001).  

The xanthophylls have a great capacity of energy dissipation since they have lower 

energy levels compared to those of chlorophylls and they undergo very rapid light-

triggered concentration changes (DemmigAdams and Adams, 1996). Under excess 

light, violaxanthin is converted rapidly to zeaxanthin via the intermediate 

antheraxanthin. This reaction is reversed under low light levels. It is termed the 

xanthophyll cycle (Figure 1-17). The formation of zeaxanthin catalysed by 

violaxanthin de-epoxidase, which is located in the thylakoid lumen, is strictly 

regulated by pH of the lumen (Jahns et al., 2009). The exact role of zeaxanthin in 

non photochemical quenching is still under debate. It could have a direct function 

and/or a more indirect function, by strongly affecting the thermodynamic parameters 

of membranes (Jahns et al., 2009).The carotenoids 
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Figure 1-17 Xanthophyll cycle and regulation of excess of light (DemmigAdams 

and Adams, 1996) 

 

Carotenoids and especially apocarotenoids or their products can be phytohormones, 

such as abscisic acid and volatile molecules, which play critical roles in the 

interactions between plants and their environments (Walter et al., 2010; Cazzonelli, 

2011). 

Another role of some carotenoids in plants is intrinsically linked with their light-

absorbing properties, as they colour the fruits and flowers of plants. It is well known 

that colours of fruits and flowers play a role in attracting pollinators and favour seed 

dispersal (Cazzonelli, 2011). 

1.2.5.2 In animals 

Carotenoids are provided to animals through their diet and for humans, primarily 

from crop plants (roots, leaves, shoots, seeds, fruit and flowers), since they cannot 

synthesise carotenoids de novo (Fraser and Bramley, 2004). In animals, carotenoids 

play a role in reproduction, the determination of sexual behaviour, camouflage and 

avoiding predation and parasitism. However, they have many other functions, such 

as in fishes and birds, where they boost the immune system and promote health 

(McGraw, 2006; McGraw and Klasing, 2006; Cazzonelli, 2011). 

Carotenoids and ketocarotenoids have been shown to be beneficial to human health 

probably due to their antioxidant activity (Krinsky, 1989; Krinsky and Johnson, 

2005). Human diseases, such as cancers and heart diseases, always involve, at some 
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stage, oxidation processes mediated by free radicals, such as O2
-
   (superoxide anion), 

H    (hydro yl radical),
 
R    (alko y radical), ROO

 
  (peroxyl radical) (Britton, 

1995a; Gulcin, 2012). Antioxidant molecules neutralize reactive oxygen species and 

thus prevent oxidative damage to cellular components. Consequently, the rate of cell 

death is reduced, along with the effects of ageing and ageing-related diseases 

(Gulcin, 2012; Zhu et al., 2013). The polyene chain, a highly reactive electron-rich 

system, is the important feature in relation with carotenoids’ antio idant activity. It 

stabilises the carotenoid radicals created by free radical quenching and acts as a 

prime target for the free radicals, removing them from the cellular environment 

(Britton, 1995; Krinsky and Yeum, 2003; Krinsky and Johnson, 2005). The three 

possible mechanisms of carotenoid interaction with free radicals are illustrated in 

Figure 1-18. 

 

Figure 1-18 Carotenoid reactions with radicals 

a, adduct formation; b, electron transfer; c, allylic hydrogen abstraction; CAR, carotenoid; R, radical 

(adapted from Krinsky and Yeum, 2003) 

 

Since the 1970s, correlations between high intake of carotenoids and health benefits 

have been regularly published. The best-established carotenoid activity in terms of 

human health is provitamin A activity, which is conferred by 50 carotenoids with -

ring end groups, such as -carotene and zeaxanthin. These carotenoids are cleaved 

symmetrically by an intestinal 15,15 -o ygenase to form retinal molecule(s) or 

asymmetrically by a 9,10 -oxygenase (Fraser and Bramley, 2004; Tang and Russell, 

2009). Vitamin A deficiency has been linked with blindness and growth retardation, 

but also severe diseases including respiratory and urinary infections, dysentery and 

immune responses (Britton, 2009). A diet with provitamin A prevents deficiency 

related diseases and promotes human health by its immuno-stimulant and photo-

protectant activities (Cazzonelli, 2011). Many studies have been reported on the 

health-promoting effects of these -rings carotenoids, but also of other carotenoids 

and ketocarotenoids such as lutein, lycopene and astaxanthin, in cancers, 
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cardiovascular disease, eye disease and the prevention of cognitive decline (Johnson 

et al., 1995; Johnson, 2002; Fraser and Bramley, 2004; Krinsky and Johnson, 2005; 

Hussein et al., 2006; Voutilainen et al., 2006; Moeller et al., 2008; Johnson, 2010a; 

Johnson, 2010b; Naito, 2011; Yuan et al., 2011; Abdel-Aal et al., 2013; Bojorquez et 

al., 2013).  

Awareness of the importance of carotenoid intake for health benefits has become 

predominant in the public domain. The population was recommended, by the World 

Health Organization, to eat at least five portions of fruits and vegetables (a minimum 

of 400g) a day in order to increase their intake of vitamins, fibre and carotenoids. 

Moreover, complementing daily diets with -carotene, lutein, astaxanthin or 

lycopene nutraceuticals (food complement), has become very popular (as discussed 

in section 1.2.5).  

1.2.6 Global market of carotenoids and ketocarotenoids 

According to the most recent BBC research report (FOD025D, 2011), the global 

market for commercially used carotenoids (including ketocarotenoids) was $1.2 

billion in 2010 and is estimated to reach $1.4 billion in 2018. The market is 

dominated by sales of -carotene ($260 million), lutein ($230 million) and 

astaxanthin ($230 million). Canthaxanthin and lycopene have a global market of 

approximately $70-90 million. 

These carotenoids and ketocarotenoids have large markets not only due to their 

health-benefits (as discussed in section 1.2.5.2), but also to their natural 

pigmentation. Indeed, they are used as industrial colourants, particularly in the 

aquaculture and poultry farming industries. Astaxanthin is the colour of choice for 

pigmenting fish and shrimp and canthaxanthin for introducing a red tone in egg yolk 

(Marz, 2011). Although the majority of carotenoids found in the market are 

chemically synthesised, the pressure for natural products keeps increasing and 

therefore changes of production are observed. Companies producing carotenoids 

from algae or by fermentation are starting to be competitive (Marz, 2011). For 

instance, -carotene is also now produced from algae (COGNIS, Australia) and by 

fermentation (DSM, Holland and Vitatene, Spain).  
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The market is dominated by chemically synthesised carotenoids, because this type of 

production has low overall costs. Therefore, chemically synthesised carotenoids have 

lower prices than natural carotenoids. However, chemical synthesis has several 

disadvantages, such as the contamination with reaction intermediates, organic 

residues and the production of stereoisomers not found in Nature. Moreover, the 

general concept that natural products are healthier is prevalent in people’s minds. 

Consequently, a greater majority of people are ready to pay more for natural 

products, enabling the natural carotenoid market to increase.  

Although higher plants provide the majority of carotenoids to humans through their 

diet, almost none are industrially used to produce carotenoids. The only exception is 

marigold flowers (utilised by PIVEG company), which exist with a range of white to 

dark-orange petal colours. 

Efforts to enhance high-value isoprenoid levels in plants have been undertaken for 

industrial purposes, but also to create biofortified crops, fruits and vegetables.  

 

1.3 Enhancing high-value isoprenoid levels in plants 

The functions and characteristics of the carotenoid and ketocarotenoid molecules 

(discussed in section 1.2.5) bring the attention of the scientific world and therefore, 

are attractive subjects for investigation. One of the critical tasks in the production of 

secondary metabolites is to find systems for high-scale generation of valuable natural 

products (Sheludko, 2010). Plants are essential providers of biologically active 

compounds. Moreover, they have several advantages compared to chemical 

synthesis, or the use of microorganisms: (i), Plants are ecologically and 

pharmacologically safe; (ii), they have high natural biosynthetic abilities, including 

multi-steps stereospecific synthesis of complex organic molecules and eukaryote- 

type biosynthesis; (iii), the natural potential of plant systems can be used to scale-up 

high-value compound production; (iv), they are of economic value; (v), they are 

renewable biosources, with no need for by-products of the petrochemical industry as 

precursors and no disposal of contaminated waste (Sheludko, 2010).  
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Field cultivation of medicinal plants was the first production system of valuable 

secondary metabolites. However, large-scale cultivation is often not straightforward, 

as medicinal plants are typically restricted to their local ecosystem and the pathogen 

sensitiveness increases in this scale of production (Bourgaud et al., 2001). This has 

led to the development of in vitro cultures, such as the culture of undifferentiated 

plant cells and tissue and organ cultures such as shoots (Bourgaud et al., 2001; 

Hussain et al., 2012). These techniques have been scaled-up through the usage of 

bioreactors. However, only a few commercial successes have been achieved, such as 

the production of ginseng (Ushiyama and Hibino, 1997). The major improvements in 

the production of plant secondary metabolites were accomplished following the 

development of molecular biology (Bourgaud et al., 2001). The possibility of 

optimising plant secondary metabolites, through molecular breeding and transgenic 

strategies, contributed to the success of these alternative approaches. 

1.3.1 Conventional strategies  

1.3.1.1 Breeding approach 

Over thousands of years, humans have been selecting plants with interesting 

characteristics and crossing them in order to obtain plants, which suited their needs. 

Nowadays, breeding is still carried out in a similar way. The first step consists in 

generating a breeding population, by using parents that have different traits of 

interest. The second step is the selection of the segregating progeny for plants that 

combine the most useful traits of each parent and that are devoid of, or show 

minimal adverse effects (Manshardt, 2004). The selection can be assisted with 

molecular markers, such as AFLP (amplified fragment length polymorphism) or SSR 

(simple sequence repeat), which flank quantitative trait loci (QTL). Mapping of QTL 

for lycopene and fruit colour was studied in tomato (Chen et al., 1999; Liu et al., 

2003). However, the complexity of the QTL, with a desirable influence on 

carotenoids levels, makes the process slow and laborious (Farre et al., 2010). The 

breeding approach was also chosen as one of the main strategies of the international 

project HarvestPlus, to develop staple food crops rich in micronutrients, especially 

provitamin A (-carotene; Kimura et al., 2007; Ortiz-Monasterio et al., 2007). HPLC 

screening of several sweet potato, cassava and maize varieties has been undertaken 
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in order to select those that are naturally rich in provitamin A at harvest. Plant 

breeding trials were carried out with the selected lines (Kimura et al., 2007). 

 

 

1.3.1.2 Plant mutants 

Natural variants of plants with interesting carotenogenic properties have been 

previously described (Table 1-1). These mutants were subjected to natural, 

spontaneous mutation(s), which sometimes contributed to an increase or altered 

carotenoid levels, such as in the beta tomato mutant (Table 1-1). They are useful 

tools for complementation studies or to be subjected to further improvement through 

genetic engineering.  

 

 

Table 1-1 Carotenoid pathway mutants in tomato (Solanum lycopersicum) (adapted 

from Farre et al., 2010)  

 

Mutant name Phenotype Enzyme (gene) Carotenoid profile References

white-flower  (wf )
White to beige petals 

and pale anthers
CRTR-B2

Carotenoid analysis indicated a 

reduction of 80 to 84% in total 

carotenoids in petals of the various wf 

mutant alleles

Galpaz et al., 2006

yellow flesh  (r ) Yellow fruit colour PSY (Psy1 ) Low carotenoid content in fruit Fray and Grierson, 1993

delta Orange fruit colour LCY-E
Accumulation of -carotene at the 

expense of lycopene
Ronen et al., 1999

tangerine Orange fruit colour CRTISO 
Accumulates pro-lycopene instead of all-

trans -lycopene 
Isaacson et al., 2002

beta Orange fruit colour

old-gold (og) 
Tawny orange 

flowers

ghost 

 Poorly coloured 

petals compared with 

the yellow carotenoid-

containing wild-type 

petals

PTOX (Plastid 

terminal oxidase 

gene)

Accumulates phytoene in fruits instead 

of lycopene
Josse et al., 2000

high-pigment 1 

(hp-1 )
,

Dark green leaves, 

deep red fruit, dark 

green immature fruit, 

increased leaf 

thickness and plastid 

compartment size

DDB1

Increases total carotenoid content in  

ripe fruit (1.8-fold); activity of phytoene 

synthase is increased (1.9-fold)

Cookson et al., 2003 

Lieberman et al., 2004

high-pigment 2 

(hp-2 )

Dark green leaves, 

deep red fruit, dark 

green immature fruit

DET1
Increases total carotenoid content in ripe 

fruit, primarily lycopene

Mustilli et al., 1999 

Kolotilin et al., 2007

high-pigment 3 

(hp-3 )

Dark green leaves, 

deep red fruit, dark 

green immature fruit

ZEP

30% more carotenoids in the mature 

fruit, leaves of the mutant lack 

violaxanthin and neoxanthin

Galpaz et al., 2008

Beta is a dominant mutation that results 

in a 5-10% increase in fruit -carotene 

levels, reflecting increased LYC-B 

activity, whereas old gold  is a null 

allele at the same locus, which reduces 

the amount of -carotene and increases 

lycopene in fruit

 LYC-B 

chromoplats
Ronen et al., 2000
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1.3.1.3 TILLING approach 

Diversity can be introduced in plants via induced-mutation approaches, such as the 

ethyl methane sulfonate mutagenesis (EMS) method. Mutational screening at a 

specific locus can then be carried out to discover induced lesions. This method is 

called Targeting Induced Local Lesions IN Genomes (TILLING) (McCallum et al., 

2000a, b). TILLING can be specifically used in an attempt to enhance carotenoid 

levels in tomato fruits. TILLING, when applied to study the lycopene cyclase locus 

of an EMS-Red Setter tomato population (Minoia et al., 2010), revealed one allele 

which conferred an increase in lycopene content (2-fold) in the red tomato fruit 

(Silletti et al., 2013). Mutations in genes encoding elements of the tomato light 

signal transduction pathway, such as DEETIOLATED1, resulted in increased total 

carotenoid levels (2.3-fold) of ripe tomato fruit (Jones et al., 2012). Therefore, it is 

another strategy to improve the content of valuable carotenoids in plants.  

1.3.2 Metabolic engineering strategies 

Metabolic engineering has been defined as the modification of intermediary 

metabolism using recombinant DNA techniques to produce new metabolites, 

improve the accumulation of existing metabolites or mediate the degradation of 

compounds. The introduction of genes of the carotenoid and ketocarotenoid 

pathways directly into plants provides a shortcut compared to the laborious breeding 

approaches exploiting natural diversity. Moreover, it allows introduction of genes 

from beyond the natural gene pool. It is the only strategy that can introduce the 

carotenoid pathway de novo in an organism or extend it beyond its natural endpoint 

via, for instance, the formation of ketocarotenoids (DellaPenna, 2001; Farre et al., 

2010). Plant transformation can be executed via numerous techniques (Rao et al., 

2009), but the most common are the indirect method with Agrobacterium 

tumefaciens or rhizogenes and the biolistic method. The first technique is based on 

the introduction of a plasmid-carrying gene construct into the genome by means of 

Agrobacterium (Chilton, 1979; Horsch et al., 1985). The second one is a direct 

delivery of DNA by microprojectile bombardment into intact cell tissues (Sanford, 

2000). A plastid transformation technique has been developed more recently. It 

offers several advantages, including a high level of transgene expression and site-
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specific integration by homologous recombination (Hasunuma et al., 2009). 

However, this approach is challenging and more difficult to establish.  

The production of commercially valuable compounds in plants can be optimised 

using different engineering strategies (Figure 1-19). Strategies can focus on one or 

multiple steps of the pathway of interest, or on the surroundings of the pathway, 

upstream, to increase the levels of precursors, or downstream, to accumulate 

products. Entire parallel mini-pathways can also be created (Figure 1-19). Other 

strategies concentrate on the size, number and specialisation of plastids where the 

biosynthesis of the carotenoids occurs (Figure 1-19). All approaches are based on the 

expression of heterologous genes (recombinant DNA or RNAi), which encode a 

variety of molecular elements of the cell, such as enzymes, transcription factors, 

transporters, lipid associated proteins and light signal transduction components. 

These elements interact with the cell metabolism and that results in the accumulation 

or production of valuable carotenoids and ketocarotenoids (Figure 1-19). 

 

Figure 1-19 Diagrammatic representation of the potential strategies for metabolic 

engineering secondary metabolites (adapted from Fraser, personal communication) 
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P, product; E, enzyme; HE, heterologous enzyme; EE, enhanced enzyme (transcriptionally or/and 

translationally); NP, new product; OP; other products derived from the new product; CP, competing 

pathway; TFs, transcription factors. 1, Construction of a mini-pathway with heterologous enzymes; 2, 

improved transcription; 3, enhanced translation; 4, improved transcription and translation; 5 enhanced 

transcription via transcription factor expression; 6, plastid transformation; 7, restriction of the 

diversion of precursors; 8, interaction with intermediary metabolism and other plant processes; 9, 

minimising non-enzymatic degradation and the diversion of new products into other pathways; 10, 

metabolites plastidial modification; 11, sequestration of metabolites; 12, manipulating transport 

mechanisms; 13; controlling the rate of non-enzymatic degradation; 14, controlling the rate of 

diversion into other catabolic pathways. 

A good example of the transcription factor approach (Figure 1-19, n°5) is the 

enhancement of anthocyanin production in tomato via the overexpression of two 

transcription factors (Del and Ros1 from snapdragon Antirrhinum majus), which 

specifically induce anthocyanin synthesis (Butelli et al., 2008). Transgenic tomatoes 

containing the highest level of anthocyanin reported to date were obtained (2.8 mg/g 

FW). Such specific transcription factors of carotenoid synthesis have not been found 

yet. Sequestration strategies (Figure 1-19, n°11) can target lipid associated protein 

such as CHRD and fibrillin (Table 1-2), or the biosynthesis of the lipid linked with 

carotenoid sequestration to create a favourable hydrophobic environment. The latter 

approach builds on previous observations (Rabbani et al., 1998; Barsan et al., 2012). 

However, the most classical strategy is the overexpression of carotenogenic gene(s) 

from the target plant species or from another species into the target plant via nuclear 

transformation (Table 1-2). The collection of genes encoding carotenogenic enzymes 

isolated from bacteria, fungi and plants, including algae represent an important 

resource for carotenoid engineering (Table A1-1).  
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Table 1-2 

 

Species Genes (origin) Function  Promoters  Carotenoid levels in transgenic plants Engineering strategy References

Arabidopsis 

thaliana
Psy  (Arabidopsis ) phytoene synthase Napin (seed specific) 260 g/g FW-carotene in seeds 

tissue-specific overexpression 

of one carotenogenic gene
Lindgren et al., 2003

Psy  (Arabidopsis ) phytoene synthase
 CaMV35S 

(constitutive)

1600 g/g DW (10-fold) of total 

carotenoid in seed-derived calli, 500 

g/g DW (100-fold) in roots 

overexpression of one 

carotenogenic gene
Maass et al., 2009

Bkt1  (H. pluvialis ) -carotene ketolase Napin 
4-keto-lutein, canthaxanthin and 

adonirubin seeds up to 13-fold

tissue-specific overexpression 

of one carotenogenic gene
Stalberg et al., 2003

Chy-b  (Arabidopsis ) -carotene hydroxylase  CaMV35S 2274.8 nmol/g DW total carotenoid 
overexpression of one 

carotenogenic gene
Cho et al., 2008

Chy-b  (Arabidopsis ) -carotene hydroxylase  CaMV35S 
285 mmol/chl a (mol) violaxanthin (2-

fold)

overexpression of one 

carotenogenic gene
Davison et al., 2002

728 mmol/chl a (mol) of total 

carotenoid

AtB1 (Arabidopsis ) -ring hydroxylase  CaMV35S 38.2 g/g -carotene leaf tissue
overexpression of one 

carotenogenic gene
Kim et al., 2010

CYP97A3  (Arabidopsis ) -ring hydroxylase  CaMV35S 41.7 g/g -carotene leaf tissue
overexpression of one 

carotenogenic gene
Kim et al., 2010

CYP97B3  (Arabidopsis ) -ring hydroxylase  CaMV35S 36.7 g/g -carotene leaf tissue
overexpression of one 

carotenogenic gene
Kim et al., 2010

CYP97C1  (Arabidopsis ) -ring hydroxylase  CaMV35S 41.3  g/g -carotene leaf tissue
overexpression of one 

carotenogenic gene
Kim et al., 2010

Canola (Brassica 

napus ) 
Crt B (P. ananatis ) phytoene synthase Napin 

1617 g/g fresh weight (FW) total 

carotenoid in seeds (50-fold)

tissue-specific overexpression 

of one carotenogenic gene

Shewmaker et al., 

1999

Crt B (P. ananatis ) phytoene synthase Napin 
1341 g/g FW total carotenoid in 

seeds

tissue-specific overexpression 

of one carotenogenic gene
Ravanello et al., 2003

Crt E and Crt B (P. 

ananatis ) 

GGPP synthase and 

phytoene synthase
Napin 

1023 g/g FW total carotenoid in 

seeds

overexpression of several 

carotenogenic genes
Ravanello et al., 2003

Crt B (P. ananatis ) Crt I 

(P. ananatis ) 

phytoene synthase and 

lycopene desaturase
Napin 

1412 g/g FW total carotenoid in 

seeds

overexpression of several 

carotenogenic genes
Ravanello et al., 2003

Crt B and Crt Y (P. 

ananatis ) 

phytoene synthase and 

lycopene cyclase
Napin 935 g/g FW total carotenoid in seeds

overexpression of several 

carotenogenic genes
Ravanello et al., 2003

Crt B and-cyclase (B. 

napus ) 

phytoene synthase and 

lycopene desaturase
Napin 985 g/g FW total carotenoid in seeds

overexpression of several 

carotenogenic genes
Ravanello et al., 2003
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Table 1-2 (continued 2/8) 

 

Species Genes (origin) Function  Promoters  Carotenoid levels in transgenic plants Engineering strategy References

Canola (Brassica 

napus ) 

Crt B, Crt I (P. ananatis ) 

and CrtY (P. ananatis )

phytoene synthase, 

lycopene desaturase and 

lycopene cyclase

Napin 
1229 g/g FW total carotenoid in 

seeds

overexpression of several 

carotenogenic genes
Ravanello et al., 2003

idi , Crt E, Crt B, Crt I and 

Crt Y (P. ananatis ) Crt Z, 

Crt W (Brevundimonas 

sp.)

idi : isopentenyl 

diphosphate isomerase

CaMV35S, napin and 

Arabidopsis  FAE1 

(seed specific)

412-657 g/g FW total carotenoid in 

seeds (30-fold) 

overexpression of several 

carotenogenic genes
Fujisawa et al., 2009

60–190 g/g FW total ketocarotenoid 

in seeds

Carrot  (Daucus 

carota )
Psy  (Arabidopsis ) phytoene synthase  CaMV35S 

858.4 g/g DW total carotenoid in 

roots 

overexpression of one 

carotenogenic gene
Maass et al., 2009

Bkt1  (H. pluvialis ) Chy-

b  (Arabidopsis )

-carotene ketolase and 

-carotene hydroxylase

 CaMV35S and 

Agrobacterium 

rhizogenes  rolD (root 

specific)

345.5 g/g FW total carotenoid in root 
overexpression of several 

carotenogenic genes
Jayaraj et al., 2008

240 g/g root FW novel 

ketocarotenoid

Lcy-b  (Daucus carota ) lycopene cyclase  CaMV35S 
1250 g/g DW total carotenoid in 

storage roots (1.6-fold) 

overexpression of one 

carotenogenic gene
Moreno et al., 2013

900 g/g DW -carotene in storage 

root (1.8-fold)

Corn (Zea mays )
Psy-1  (Z. mays) Crt I (P. 

ananatis) 

phytoene synthase and 

lycopene desaturase

Wheat LMW glutelin 

and barley D-hordein 

163.2 g/g DW total carotenoid in 

seeds (112-fold) 

overexpression of several 

carotenogenic genes
Naqvi et al., 2009

59.32 g/g DW -carotene in seeds 

(169-fold)

Crt B and Crt I (P. 

ananatis ) 

phytoene synthase and 

lycopene desaturase
 Super -zein 

33.6 g/g DW total carotenoid in seeds 

(34-fold) 

overexpression of several 

carotenogenic genes
Aluru et al., 2008

Psy-1  (Z. mays ) Crt I (P. 

ananatis ) Crt W 

(Paracoccus spp. ) Lyc-b 

(Gentiana lutea )

phytoene synthase, 

lycopene desaturase, -

carotene ketolase and 

lycopene cyclase

146.7 g/g DW total carotenoid in 

seeds 

overexpression of several 

carotenogenic genes
Zhu et al., 2008

35.85 g/g DW total ketocarotenoid in 

seeds

Wheat LMW glutelin, 

barley D-hordein, corn -

zein, rice prolamin (all 

endosperm-specific)
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Table 1-2 (continued 3/8) 

 

Species Genes (origin) Function  Promoters  Carotenoid levels in transgenic plants Engineering strategy References

Lilly (Lilium)
Crt Z, Crt W, idi, Crt E, 

Crt B, Crt I and Crt Y
described in other lines  CaMV35S 

133 g/g FW total carotenoid and 

ketocarotenoid  (26-fold) in calli, 135 

g/g FW (7.5-fold) in leaves

overexpression of several 

carotenogenic genes
Azadi et al., 2010

17.7 g/g FW-carotene (59-fold) in 

calli, 44.6 g/g FW (9-fold) in leaves

Lotus (Lotus 

japonicus )

 Crt W (Agrobacterium 

aurantiacum ) 
-carotene ketolase  CaMV35S 

387 mg/g FW total carotenoid in flower 

petals (1.5-fold)

overexpression of one 

carotenogenic gene
Suzuki et al., 2007

89.9 g/g FW total ketocarotenoid in 

flower petals (2.2-fold)

Potato (Solanum 

tuberosum )
Dxs  (E. coli ) DXP synthase Patatin (tuber specific) 

7 g/g DW total carotenoid in tubers (2-

fold) 

tissue-specific overexpression 

of one carotenogenic gene
Morris et al., 2006a

Crt B (P. ananatis ) phytoene synthase Patatin
35 g/g DW total carotenoid in tubers 

(6.3-fold) 

tissue-specific overexpression 

of one carotenogenic gene
Ducreux et al., 2005

11 g/g DW -carotene in tubers (19-

fold)

Crt B (P. ananatis ) Bkt1 

(Haematococcus 

pluvialis ) 

phytoene synthase and -

carotene ketolase
Patatin  5.2 g/g DW total carotenoid in tubers 

overexpression of several 

carotenogenic genes
Morris et al., 2006b

1.1 g/g DW total ketocarotenoid in 

tubers

overexpression of several 

carotenogenic genes

Crt B, Crt I and Crt Y (P. 

ananatis ) 

phytoene synthase, 

lycopene desaturase and 

lycopene cyclase

Patatin
114 g/g DW total carotenoid in tubers 

(20-fold) 

overexpression of several 

carotenogenic genes
Diretto et al., 2007a

47 g/g DW -carotene in tubers 

(3600-fold)

Lyc-e  (potato, antisense) lycopene cyclase Patatin 
9.9 g/g DW total carotenoid in tubers 

(2.5-fold) 

tissue-specific overexpression 

of one carotenogenic gene
Diretto et al., 2006

0.043 g/g DW -carotene in tubers 

(14-fold)

Zep  (Arabidopsis ) zeaxanthin epoxidase GBSS (tuber specific)
 60.8 g/g DW total carotenoid in 

tubers (5.7-fold) 

tissue-specific overexpression 

of one carotenogenic gene
Romer et al., 2002
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Table 1-2 (continued 4/8) 

 

 

Species Genes (origin) Function  Promoters  Carotenoid levels in transgenic plants Engineering strategy References

Potato (Solanum 

tuberosum )
Crt O (Synechocystis  sp.) -carotene ketolase CaMV35S 

39.76 g/g DW total carotenoid in 

tubers

overexpression of one 

carotenogenic gene

Gerjets and 

Sandmann, 2006

Ketocarotenoid represented 10–12% 

of total carotenoid in tubers

Bkt 1 (H. pluvialis ) -carotene ketolase CaMV35S 
30.4 g/g DW total carotenoid in 

tubers

overexpression of one 

carotenogenic gene

Gerjets and 

Sandmann, 2006

19.8 g/g DW total ketocarotenoid in 

tubers

Bch (potato, antisense) -carotene hydroxylase Patatin
9.3 g/g DW total carotenoid in tubers 

(4.5-fold) 
RNAi of carotenogenic gene Diretto et al., 2007b

0.085 g/g DW -carotene in tubers 

(38-fold)

Bch (potato, antisense) -carotene hydroxylase GBSS and CaMV35S 3.31 g/g DW -carotene in tubers RNAi of carotenogenic gene Van Eck et al., 2007

Crt W and Crt Z 

(Brevundimonas sp.) 

-carotene ketolase and 

-carotene hydroxylase
 CaMV35S 

4260 g/g DW total ketocarotenoid in 

leaves, 26.30 g/g DW in tuber

overexpression of several 

carotenogenic genes

Mortimer et al., 

unpublished

Or   (Brassica oleracea 

var botrytis ) 

conversion of non-

coloured plastid to 

chromoplasts

GBSS 
25 g/g DW total carotenoid (6-fold) in 

tubers 

overexpression of non-

carotenogenic genes
Lu et al., 2006

Or   (Brassica oleracea 

var botrytis ) 

conversion of non-

coloured plastid to 

chromoplasts

 GBSS 
31g/g DW total carotenoid in tubers 

(5.7-fold) 

overexpression of non-

carotenogenic genes
Lopez et al., 2008

Rice (Oryza 

sativa ) 
Psy-1 (daffodil) phytoene synthase CaMV35S 

0.3 g/g dry weight (DW) phytoene in 

seeds 

tissue-specific overexpression 

of one carotenogenic gene
Burkhardt et al., 1997

Gt1 (seed specific) 0.74 g/g DW phytoene in seeds
overexpression of one 

carotenogenic gene

Psy-1  (Zea mays ) Crt I 

(Pantoea ananatis ) 

phytoene synthase and 

lycopene desaturase
Gt1 37 g/g DW total carotenoid in seeds 

overexpression of several 

carotenogenic genes
Paine et al., 2005

Psy-1 and Lyc-b  (daffodil) 

Crt I (Pantoea ananatis ) 

phytoene synthase, 

lycopene cyclase and 

lycopene desaturase

Gt1 (Psy 1 and Lyc-b) 

and CaMV35S (CrtI ) 

1.6 g/g DW total carotenoid in 

endosperm 

overexpression of several 

carotenogenic genes
Ye al., 2000
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Table 1-2 (continued 5/8) 

 

Species Genes (origin) Function  Promoters  Carotenoid levels in transgenic plants Engineering strategy References

Sweet potato 

(Ipomoea batatas 

L. Lam. cv.Yulmi )

Or  (Ipomoea batatas L. 

Lam. cv. Sinhwangmi )

conversion of non-

coloured plastid to 

chromoplasts

 CaMV35S 50 g/g DW total carotenoid (10-fold) 
overexpression of non-

carotenogenic genes
Kim et al., 2013a

Lcy- e (sweetpotato; 

antisense)
lycopene -cyclase  CaMV35S 

20 g/g DW -carotene in calli (20-

fold)
RNAi of carotenogenic gene Kim et al., 2013b

65 g/g DW total carotenoid in calli (9-

fold) 

Chy-b  (Ipomoea batatas 

L. Lam. cv. Sinhwangmi ; 

antisense)

-carotene hydroxylase  CaMV35S 
34.4 g/g DW -carotene in calli (38-

fold)
RNAi of carotenogenic gene Kim et al., 2012

117 g/g DW total carotenoid in calli 

(18-fold) 

Tobacco 

(Nicotiana )
LeLUT1 (tomato) -hydroxylase  CaMV35S 

ca. 100g/g FW lutein (1.6-fold 

increase)

overexpression of one 

carotenogenic gene
Zhou et al., 2013

Crt W and Crt Z 

(Paracoccus sp. )

-carotene ketolase and 

-carotene hydroxylase
 CaMV35S 

1275 g/g DW total carotenoid in 

leaves

overexpression of several 

carotenogenic genes
Ralley et al., 2004

64 g/g DW total ketocarotenoid in 

leaves

Crt W and Crt Z 

(Brevundimonas sp.) 

-carotene ketolase and 

-carotene hydroxylase
Ribosomal RNA 

7290 g/g DW total ketocarotenoid in 

leaves

plastid transformation 

(overexpression of several 

carotenogenic genes)

Hasunuma et al., 2008

Crt O (Synechocystis sp.) 

Crt Z (P. ananatis ) 

-carotene ketolase and 

hydroxylase
 CaMV35S 

839 g/g DW total carotenoid in leaves 

(2.5-fold) 

overexpression of several 

carotenogenic genes
Gerjets et al., 2007

342.4 g/g DW total ketocarotenoid in 

leaves

Crt O (Synechocystis  sp.) -carotene ketolase  CaMV35S 429 g/g DW total carotenoid in leaves 
overexpression of one 

carotenogenic gene
Zhu et al., 2007

156.1 g/g DW total ketocarotenoid in 

leaves

Crt O (H. pluvialis ) -carotene ketolase
 pds (fruit specific; 

tomato)

300 g/g DW total ketocarotenoid in 

nectary (flower)

overexpression of one 

carotenogenic gene
Mann et al., 2000
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Table 1-2 (continued 6/8) 

 

Species Genes (origin) Function  Promoters  Carotenoid levels in transgenic plants Engineering strategy References

Tobacco 

(Nicotiana )

Crt W and Crt Z 

(Brevundimonas sp.) 

-carotene ketolase and 

-carotene hydroxylase
 CaMV35S 

1910 g/g DW total ketocarotenoid in 

leaves, 13970 g/g DW in 

nectary/ovary, 5950 g/g DW in petal

overexpression of several 

carotenogenic genes

Mortimer et al., 

unpublished

Tomato (Solanum 

lycopersicum )
Dxs  (Escherichia coli ) DXP synthase Fibrillin (pepper) 

 7200 g/g DW total carotenoid in fruit 

(1.6-fold) 

tissue-specific overexpression 

of one carotenogenic gene
Enfissi et al., 2005

700 g/g DW -carotene (1.5-fold);  

6700 g/g DW lycopene (1.6-fold)

Psy-1  (tomato) phytoene synthase CaMV35S 
3615 g/g DW total carotenoid in 

vegetative tissue (1.14-fold) 

overexpression of one 

carotenogenic gene
Fray et al., 1995

detection of lycopene (386 g/g DW) 

and small increase of -carotene 

Psy-1  (tomato) phytoene synthase CaMV35S
 2276.7 g/g DW total carotenoid in 

ripe fruit (1.25-fold)  

overexpression of one 

carotenogenic gene
Fraser et al., 2007 

819 g/g DW -carotene in ripe fruit 

(1.4-fold)

Crt B (P. ananatis ) phytoene synthase
Polygalacturonase (fruit 

specific)

5918 g/g DW total carotenoid in ripe 

fruit (2-fold) 

tissue-specific overexpression 

of one carotenogenic gene
Fraser et al., 2002

825 g/g DW -carotene (5-fold); 56 

g/g DW phytoene (1.6-fold); 5137 

g/g DW lycopene (1.8-fold) 

Crt I (P. ananatis ) lycopene desaturase CaMV35S 
520 g/g DW (1.9-fold) -carotene in 

fruit 

overexpression of one 

carotenogenic gene
Romer et al., 2000

reduced lycopene and phytoene content

Lyc-b  (Arabidopsis ) Chy-

b  (Capsicum annuum ) 

lycopene cyclase -

carotene hydroxylase

 pds (fruit specific; 

tomato)

63 g/g FW -carotene in fruit (12-

fold) 

tissue-specific overexpression 

of one carotenogenic gene

Dharmapuri et al., 

2002

-cryptoxanthin (11g/g FW) and 

zeaxanthin (13 g/g FW) were 

produced

Lyc-b  (Arabidopsis 

thaliana )
lycopene cyclase

 pds (fruit specific; 

tomato)

 57 g/g FW -carotene in fruit (7-

fold);  no affect on lycopene

tissue-specific overexpression 

of one carotenogenic gene
Rosati et al., 2000
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Table 1-2 (continued 7/8) 

 

Species Genes (origin) Function  Promoters  Carotenoid levels in transgenic plants Engineering strategy References

Tomato (Solanum 

lycopersicum )

Lyc-b  (antisense; 

Arabidopsis thaliana )
lycopene cyclase

 pds (fruit specific; 

tomato)

 85 g/g FW lycopene in fruit (1.6-

fold)
RNAi of carotenogenic gene Rosati et al., 2000

Lyc-b  (tomato) lycopene cyclase CaMV35S
215.2 g/g FW total carotenoid in fruit 

(2.3-fold) 

overexpression of one 

carotenogenic gene

D'Ambrosio et al., 

2004

205 g/g FW -carotene in fruit (46-

fold); almost no lycopene left 

Lyc-b  (citrus) lycopene cyclase CaMV35S
1105 g/g DW -carotene in fruit (4-

fold)

overexpression of one 

carotenogenic gene
Guo et al., 2012

30% increase of total carotenoid in fruit 

Lyc-b  (daffodil) lycopene cyclase Ribosomal RNA 
950 g/g DW -carotene (4.5-fold) in 

fruit 

plastid transformation 

(overexpression of one 

carotenogenic gene)

Apel and Bock, 2009

Cyc-b  (tomato) lycopene cyclase CaMV35S increased % of -carotene (6-fold)
overexpression of one 

carotenogenic gene
Ronen et al., 2000

Cyc-b  (antisense; tomato) lycopene cyclase CaMV35S increased % of lycopene (1.1-fold) RNAi of carotenogenic gene

Crt Y (P. ananatis ) lycopene cyclase aptI 
286 g/g DW -carotene in fruit (4-

fold) 

tissue-specific overexpression 

of one carotenogenic gene
Wurbs et al., 2007

SINCED1
9-cis -epoxycarotenoid 

dioxygenase
E8 fruit-specific

210 g/g FW lycopene in pulp (1.5-

fold); 40 g/g -carotene (2.4-fold)
RNAi of carotenogenic gene Sun et al., 2012

275 g/g FW total carotenoid in pulp 

(1.6-fold)

CrtR -b2 (tomato) -carotene hydroxylase  CaMV35S 
1589 g/g DW violaxanthin in leaf (3.5-

fold)

overexpression of one 

carotenogenic gene
Giorio et al., 2012

3453 g/g DW total carotenoid in leaf 

(3.5-fold)

Crt W and Crt Z 

(Paracoccus sp. )

-carotene ketolase and 

-carotene hydroxylase
 CaMV35S 

Ketocarotenoid formation in leaves, 

low levels detected in the fruit

overexpression of several 

carotenogenic genes
Ralley et al., 2004

Bkt  (Chlamydomonas 

reinhardtii ) and Bhy 

(Haematococcus 

pluvialis )

-carotene ketolase and 

-carotene hydroxylase
 CaMV35S 

5050 g/g DW total ketocarotenoid in 

leaves

overexpression of several 

carotenogenic genes
Huang et al., 2013
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Table 1-2 (continued 8/8) 

 

 

Table 1-2 Carotenoids and ketocarotenoid enhancement in transgenic plants (adapted from Farre et al., 2010) 

A colour code differentiates each engineering strategy. Light pink, tissue-specific overexpression of one carotenogenic gene; light yellow, overexpression of one 

carotenogenic gene; green, overexpression of several carotenogenic genes; blue, RNAi of carotenogenic gene; dark blue, RNAi of non-carotenogenic gene; grey, 

overexpression of non-carotenogenic genes; yellow, plastid transformation. Highlighted cells correspond to the greatest levels of carotenoids and ketocarotenoids produced in 

plants. 

Species Genes (origin) Function  Promoters  Carotenoid levels in transgenic plants Engineering strategy References

Tomato (Solanum 

lycopersicum )
Chrd (cucumber; antisense) lipid associated protein CaMV35S  Reduced carotenoid levels in flower 

overexpression of non-

carotenogenic genes

Leitner-Dagan et al., 

2006

Fibrillin (Capsicum 

annuum ) 
lipid associated protein Fibrillin (pepper)

150 g/g FW -carotene (1.5-fold); 

450 g/g FW lycopene (2-fold);  

increased derived volatiles  in fruit

overexpression of non-

carotenogenic genes
Simkin et al., 2007

Cry2  (tomato) blue light photoreceptors  CaMV35S
 1490 g/g DW total carotenoid ripe 

fruit pericarps (1.7-fold)

overexpression of non-

carotenogenic genes
Giliberto et al., 2005

101 g/g DW -carotene ripe fruit 

pericarps (1.3-fold)

Det-1 (tomato, antisense) light signal transduction
P119, 2A11 and TFM7 

(ripening enhanced) 

increased -carotene (8.5-fold) and 

lycopene (2.2-fold) and increased 

flavonoid content in red-ripe fruit 

RNAi of non-carotenogenic 

gene
Davuluri et al., 2005

Det-1 (tomato, antisense) light signal transduction
P119, 2A11 and TFM7 

(ripening enhanced) 

1455 g/g DW -carotene (15-fold); 

1574 g/g DW lycopene (5-fold); 

4179 mg/g DW total carotenoid (6-

fold) in ripe fruit

RNAi of non-carotenogenic 

gene
Enfissi et al., 2010

Cul4
light signal transduction, 

DDB1 interacting protein

TMF7 (ripening 

enhanced) 

 59 g/g FW -carotene (2-fold); 310 

g/g FW lycopene (2-fold)  in fruit

overexpression of non-

carotenogenic genes
Wang et al., 2008

Wheat (Triticum ) 
Psy-1 (Z. mays ) Crt I (P. 

ananatis )

phytoene synthase and 

lycopene desaturase

CaMV35S and 1Dx5 

(endosperm specific) 
4.96 g/g DW in seeds 

overexpression of several 

carotenogenic genes
Cong et al., 2009
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The greatest amounts of -carotene and lycopene were obtained in engineered 

tomato plants (Table 1-2) (Fraser et al., 2002; Enfissi et al., 2005; Enfissi et al., 

2010; Guo et al., 2012). The same approach was chosen in three of these studies: 

Fraser et al., 2002, Enfissi et al., 2005 and Guo et al., 2012. It consisted of 

overexpressing a carotenogenic gene, CrtB, dxs and Lcy-b, respectively, from 

different species (Pantoea ananatis, E. coli and Citrus, respectively) in tomato. The 

fold change increase of carotenoid levels in these studies are not as spectacular 

compared to some other studies (1.5- to 5-fold increase compared to, for instance, 

38-fold increase of -carotene in sweet potatoes down-regulating -hydroxylase 

(Kim et al., 2012)) (Table 1-2). However, tomato has high carotenoid basal levels 

and therefore, even a 1.5-fold increase has a substantial effect in terms of quantity of 

carotenoids. In the fourth study, the down regulation of a gene implicated in light 

signal transduction (det1) contributed to an increase of the plastid area in the fruit 

and consequently to an increased level of carotenoids (Enfissi et al., 2010). This 

work highlights the potential of an engineering strategy based on the alteration of 

carotenoid sequestration instead of their biosynthesis. The transgenic plants 

producing the highest levels of ketocarotenoids were engineered tobacco plants 

(Table 1-2; Hasunuma et al., 2008, Mortimer et al., unpublished). In these two 

studies, CrtZ and CrtW genes from Brevundimonas sp. were overexpressed in 

tobacco via plastid and nuclear transformation, respectively. The corresponding 

enzymes (CRTZ and CRTW) have been shown to be highly efficient in producing 

ketocarotenoids (Choi et al., 2005; Choi et al., 2006; Choi et al., 2007). Moreover, 

CrtZ and CrtW genes were transcriptionally optimised, since they were chemically 

synthesised with plant (rape) codon usage and, in the Mortimer et al. study, they 

were also translationally enhanced via the use of a potent NtADH 5΄UTR (Satoh et 

al., 2004). Applying the strategy of overexpressing several carotenogenic genes, 

which are transcriptionally and translationally enhanced in tobacco, is the best 

combination so far, to produce ketocarotenoids in plants. 

1.3.3 Plant platforms to engineer high levels of isoprenoids 

Tomato is the most common fruit produced worldwide (FAOSTAT database 2011) 

and thus, it is amenable to modern agricultural practices, and could be produced in 

contained growth facilities as for GM perspectives. Tomato is a model plant well 

studied. As a consequence, genetic and genomic resources have been developed 
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(Zouine et al., 2012), advanced transcriptomic, metabolomic and proteomic 

platforms are established and efficient transformation protocols have been set up. 

Moreover, tomato is one of the plants with the highest basal level of carotenoids. It 

contains specialised storage tissues with cellular structures amenable to isoprenoid 

formation and accumulation. Tomato fruits are the best platform to engineer high 

amounts of carotenoids (as discussed in section 1.3.2). Additionally, tomato fruits 

are an essential component of our diet, as tomato fruits and tomato-based products 

provide at least 85% of our dietary lycopene (Fraser and Bramley, 2004). For all 

these reasons, tomato plants are an excellent system in which to engineer high level 

of carotenoids.  

Tobacco plants, especially Nicotiana benthamiana, are also a plant model. 

Therefore, as for tomato, genomic resources are well developed. Methods for stable 

and transient transformation have been established. Moreover, previous studies 

showed that they are an excellent platform tested so far to engineer high level of 

ketocarotenoids (Table 1-2). 

 

1.3.4 Genetically modified plants 

Genetically modified plants have been grown commercially in the Americas and 

Asia for over 10 years and more recently in Africa. Regulation of GM plants differs 

between countries but it also depends on the intended use of the GM product. A crop 

not designed for human food use is not subjected to same regulations as the one for 

human consumption. Europe has the most stringent regulations in the world. All 

GMOs are subjected to extensive case-by-case evaluation by the European Food 

Safety Authority. GMOs authorised in Europe are mainly for animal feed. On the 

contrary, in the USA, although GM foods are under regulatory control of three 

agencies (the Food and Drug Administration (FDA), the Environmental Protection 

Agency (EPA) and the U.S. Department of Agriculture (USDA)), genetically 

modified tobacco, canola, corn, cotton, soybean, alfalfa and papaya are grown and 

commercialised for human consumption (Lemaux, 2008, 2009). Benefits of GM 

plants include the reduction of production costs and pesticide use, the increase of 

yields, resistance to insects, bacterial, fungal and viral diseases but also resistance to 

drought, salt and cold tolerance, the production of biopharmaceuticals, biofortified 

crops and biofuels (Yonekura-Sakakibara and Saito, 2006; Lemaux, 2008, 2009; 
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Clarke and Daniell, 2011). The slow pace of European approval has been criticized. 

Golden Rice, a crop containing a high level of provitamin A created to fight 

malnutrition in developing countries, may reach the market in the following years 

after 13 years of excessive regulations (Potrykus, 2010). This genetically engineered 

rice could have already saved many millions of humans from blindness and 

starvation. Although GM foods have been grown and consumed in other part of the 

world for years with no adverse environmental or health effects, in Europe, GM 

foods are still considered as a threat to human health by many. Some consumers 

avoid genetically engineered crops as they perceive them to be unnatural foods as 

opposed to the fruits and vegetables available in European supermarkets, which are 

perceived as natural. However, commercial varieties that are consumed by the public 

have also undergone genetic modifications during conventional breeding or selection 

(Manshardt, 2004; Rozin et al., 2012). This highlights the need for better 

communication with the public to ensure consumer understanding of the processes 

employed in the creation of both GM and non-GM products. This could be key to 

unlocking the excessive regulations applied in Europe. 

 

1.4 Aim and objectives of the study 

The aim of this project is the evaluation of potential engineering strategies to 

optimise the production of high-value isoprenoids in higher plants and especially, 

valuable carotenoids and ketocarotenoids. Additionally, mechanisms of the plant 

adaptation responses to increased carotenoid content were investigated most notably 

the process of carotenoid sequestration in the transgenic plants. 

The metabolic engineering strategies assessed are described in the following 

objectives. The plant platforms chosen to test the different approaches are the tomato 

and tobacco plants for the reasons mentioned in section 1.3.3.  

Objective 1: To evaluate the potential benefits of simultaneously overexpressing 

two bacterial carotenoid genes in tomato plants, compared to single 

independent expression, in terms of carotenoid content. The carotenogenic genes 

CrtE (geranylgeranyl diphosphate synthase), CrtB (phytoene synthase) and CrtI 

(phytoene desaturase) genes from the bacterium Pantoea ananatis were expressed 
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independently and in combination (CrtE+B, CrtE+I and CrtB+I) in Ailsa Craig 

tomato plants (Chapter III). The development of biofortified tomatoes, which contain 

more antioxidants and health-promoting compounds, is an attractive project for 

future perspectives. 

Objective 2: To further our understanding of adaption mechanisms of the 

plants in response to perturbed carotenoid content at the level of the fruit, 

chromoplast but also at a sub-chromoplast level. The tomato CrtB+I line, which 

has a high level of carotenoids, was selected to fulfil this objective (Chapter IV). 

Knowledge on carotenoid sequestration mechanisms is of great importance as it 

could be utilised to generate new engineering strategies for the enhancement of 

carotenoid levels in plants. 

Objective 3: To optimise the production of carotenoids in tomato via 

transcription enhancement of heterologous expression of bacterial genes. The 

chromoplast specific lycopene -cyclase promoter from the orange fruited Solanum 

galapagense was chosen to control the expression of the CrtB and CrtI genes 

(Chapter V). The timing and strength of expression of this promoter is thought to be 

more appropriate for the carotenoid pathway compared than the ones utilised 

previously in the CrtB+I construct (objectives 1&2). 

Objective 4: To optimise the production of high-value ketocarotenoids in plants 

via combining the expression of ketocarotenoid genes (CrtZ and CrtW), with 

transcription factors potentially related to carotenoid regulation (PIF5 and 

ARR14). The marine bacterial genes CrtZ (carotene hydroxylase) and CrtW 

(carotene ketolase) from Brevundimonas were selected as they were shown to be the 

most efficient at producing ketocarotenoids in plants (see section 1.3.2). They were 

transcriptionally and translationally enhanced via plant codon usage and a potent 5  

UTR, respectively. The potential of the transcription factors Phytochrome-

Interacting Factor 5 (PIF5) and Arabidopsis Response Regulator 14 (ARR14) to 

enhance the formation of ketocarotenoids is assessed (Chapter VI). Industrial 

production of natural ketocarotenoids from plants, such as tobacco, could be a 

promising process to compete with chemical synthesis as the production method of 

choice for ketocarotenoid production. 
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A summary scheme representing the interactions of the bacterial enzymes used to 

achieve these objectives with the carotenoid pathway in plants is shown in Figure 1-

20.  

 

 

Figure 1-20 Summary scheme of the interactions of the bacterial carotenogenic 

enzymes within the carotenoid biosynthetic pathway in plants 

Numbers in stars correspond to the number of the objective of this thesis. Enzymes: CRTE, 

geranylgeranyl diphosphate synthase; CRTB, phytoene synthase; CRTI, phytoene desaturase; CRTZ, 

carotene hydroxylase; CRTW, carotene ketolase. Transcription factors: PIF5, Phytochrome-

Interacting Factor 5; ARR14, Arabidopsis Response Regulator 14.  Enzymes in red are tomato fruit 

ripening specific or enhanced, those in blue are flower specific. GA3P, glyceraldehyde-3-phosphate; 

DXP, 1-deoxy-D-xylulose 5-phosphate; MEP, 2-C-methyl-D-erythritol 4-phosphate; IPP, isopentenyl 

diphosphate; DMAPP, dimethylallyl diphosphate; FPP, farnesyl diphosphate; GGPP, geranylgeranyl 

diphosphate; GGPPS-1 and -2, geranyl diphosphate synthase; PSY-1, fruit specific phytoene 
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synthase-1, PSY-2, phytoene synthase-2; PDS, phytoene desaturase; ZDS, -carotene desaturase, 

CRTISO, carotene isomerase; LCY-E, lycopenecyclase; LCY-B, -lycopene cyclase; CYC-B, fruit 

specific -lycopene cyclase; CRTR-B1, carotene -hydroxylase 1; CRTR-B2, carotene -hydroxylase 

2 (flower specific); ZEP, zeaxanthin epoxidase; NXS, neoxanthin synthase; VDE, violaxanthin de-

epoxidase. The cis configurations are not showed in all the molecules but they are represented with 

blue numbers. The dashed arrows illustrate biochemical steps which are not represented in this 

scheme.  
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2.1 Plant cultivation and collection 

2.1.1 Tomato and tobacco cultivation 

Tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) and tobacco (Nicotiana 

benthamiana) plants were grown in pots containing M3 professional growing 

medium (Scotts Levington
®

, UK). Plants were glasshouse-grown, with a daytime 

temperature of approximately 25°C and nocturnal temperature of 15°C. The light 

regime used was a 16 h light and 8 h dark. Tomato fruits were tagged at the breaker 

stage which was designated as the initiation of colour (orange/yellow) on 

predominantly green fruited tomatoes.  

Transformed tomato plantlets received from UC Davis facility (USA) were carefully 

removed from the tubes with long forceps, taking care not to break off the roots. The 

agar was rinsed off from the roots with lukewarm tap water. Plants were placed in 

moist soil (M3 professional growing medium) in 2 inch pots. They were then placed 

in zip lock freezer bags and under 16 h light in a growth chamber. After 3 days, the 

bags were unsealed and after 24 to 36 h, they were fully opened. After an additional 

24 h, the plants were removed from the bags and left in the growth chamber for an 

additional 7 days to acclimate before transferring to the greenhouse. 

2.1.2 Cross pollination of tomato lines 

Tomato CrtE, CrtB and CrtI lines were crossed to generate the CrtE+B, CrtE+I and 

CrtB+I lines. Cross pollination was performed by depositing the pollen of one line 

onto the stigma of the flowers of another line using a small paint brush or glass slide. 

2.1.3 Tissue collection for DNA/RNA studies 

Leaf and fruit tissues were harvested from Ailsa Craig tomato plants. Four 

expanding leaves (c.a. 3-4 cm) of each biological replicate plant were harvested. 

Younger leaves, at the top of the plants, were preferentially chosen. Leaves were 

flash frozen in liquid nitrogen and stored at -80°C prior to grinding.  Fruits of each 

biological replicate plant at breaker + 3 days to breaker + 5 days were harvested. 

Seeds and jelly were quickly removed and the pericarp was cut in pieces (c.a. 2 cm
2
). 

Pieces of pericarp were flash frozen in liquid nitrogen and stored at -80°C. 
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2.1.4 Tissue collection for metabolite analysis 

Leaf and fruit tissues were harvested in a similar manner to that described in section 

2.1.3, but these tissues were subsequently freeze dried for either one or three days, 

respectively, and then stored at -20°C. Fruits were harvested at several stages, 

depending on the experiments to be performed (mature green, breaker, breaker +3 

days, breaker +7 days, breaker +14 days). 

2.1.5 Seed collection 

Seeds from harvested tomatoes were treated in a hydrochloric acid solution (1:1 

HCl(32%)/dH2O) within a plastic tray for 2 h. They were then rinsed with water and 

dried on filter paper for one day. Seeds were stored in small paper envelopes at room 

temperature.  

 

2.2 Bacterial cultures 

2.2.1 Maintenance of bacterial cultures 

Escherichia coli strain DH5α and Agrobacterium tumefaciens strains LBA4404 and 

C58C1 were used. E. coli was used for plasmid amplification and vector construction 

and Agrobacterium for plant transformation. Bacterial growth was maintained on 

Luria Broth (LB; 1% (w/v) tryptone, 0.5 g % (w/v) yeast extract, 1% (w/v) NaCl) 

and YEB (0.5% (w/v) beef extract; 0.1% (w/v) yeast extract; 0.5% (w/v) peptone; 

0.5 % (w/v) sucrose; 0.03% (w/v) MgSO4.7H2O) medium. Agar (1.5% w/v) was 

added to solidify media when necessary. Cooled media were supplemented with 

appropriate antibiotics for selection after autoclaving. E. coli and Agrobacterium 

were grown on solid and liquid media at 37°C and 28°C, respectively. Liquid 

cultures were shaken at 180 rpm. Glycerol stocks were made from each new liquid 

culture as described in section 2.2.2. Frozen bacterial cells were revived by scraping 

cells from the top of frozen cultures tubes, streaking onto LB-agar or YEB-agar 

plates, supplemented with appropriate antibiotics. Plates were incubated overnight to 

two days to establish colonies. Plates were sub-cultured by re-streaking one colony 

onto fresh plates. 
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2.2.2 Glycerol stocks 

Screw-cap tubes (2 ml) containing 100% glycerol (500 µl) were autoclaved. An 

overnight culture of bacteria (1.5 ml) was added into the tube in a sterile manner and 

mixed thoroughly. The bacteria-glycerol solution was flash frozen in liquid nitrogen 

and placed at -80°C for long-term storage. 

 

2.3 Extraction and analysis of nucleic acids 

2.3.1 DNA extraction from plant tissues 

Total cellular DNA was isolated, from plant tissues, using the Qiagen DNeasy
®

 Plant 

Mini Kit, following the manufacturer’s instructions. Frozen leaf tissue, collected as 

detailed in section 2.1.3, was ground using a TissueLyser LT (Qiagen, UK). The 

insert of the TissueLyser LT adapter was incubated on dry ice for 30 min. Frozen 

material (up to 100 mg) was placed in pre-cooled 2 ml sterile sample tube RB 

(Qiagen, UK) with one 0.5 mm stainless steel bead (Qiagen, UK). Leaf tissue was 

disrupted for 2 min at 50 Hz. Frozen fruit tissue, collected as detailed in section 

2.1.3, was ground in liquid nitrogen, using a mortar and pestle. Frozen powder (up to 

100 mg) was transferred into a pre-cooled 1.5 ml sterile microcentrifuge tube. Buffer 

AP1 (400 µl) and RNase A (4 µl) were added to the tubes containing the sample, and 

mixed vigorously by vortexing. The tubes were incubated for 10 min at 65°C and 

mixed three times during the incubation. Buffer AP2 (130 µl) was added to the 

lysate, mixed and the tubes were incubated for 5 min on ice. The lysate was placed 

into a QIAshredder Mini spin column in a 2 ml collection tube and centrifuged for 2 

min at 14,000 rpm with an Eppendorf 5424 centrifuge. The flow-through was 

transferred to a new sterile microcentrifuge tube and buffer AP3 (1.5 volumes) was 

added. The sample was then transferred to a DNeasy Mini spin column and 

centrifuged for 1 min at 14,000 rpm. The flow-through was discarded. The column 

was transferred to a new 2 ml collection tube and washed twice with buffer AW (500 

µl). The column was centrifuged for 1 min at 14,000 rpm for each wash. The column 

was transferred to a sterile 1.5 ml microcentrifuge tube and the DNA eluted with 

buffer AE (50 µl, twice), by centrifugation at 14,000 rpm for 1 min. DNA solutions 

were stored at -20°C. 
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2.3.2 RNA extraction from plant tissues 

Total cellular RNA was extracted, from plant tissues, using the Qiagen RNeasy
®

 

Mini Kit and the RNase-Free DNase set (Qiagen, UK). Plant tissue, collected as 

detailed in section 2.1.3, was ground in liquid nitrogen, using a mortar and pestle. 

Frozen powder (up to 100 mg) was transferred to a pre-cooled 1.5 ml sterile 

microcentrifuge tube. Buffer RLT (450 l) was added to the frozen material and 

mixed vigorously by vortexing. The lysate was placed into a QIAshredder Mini spin 

column in a 2 ml collection tube and centrifuged for 2 min at maximum speed with 

an Eppendorf 5424 centrifuge. The flow-through was transferred to a fresh sterile 

microcentrifuge tube to which 100% ethanol (0.5 volumes) was added and placed in 

an RNeasy Mini spin column in a 2 ml collection tube and centrifuged for 15 sec at 

14,000 rpm. The flow-through was discarded. Buffer RW1 (350 l) was added and 

the column centrifuged for 15 sec at 14,000 rpm, the flow-through was discarded. 

DNaseI incubation mixture (80 l) was applied directly to the RNeasy spin column 

membrane and incubated at room temperature for 15 min. Buffer RW1 (350 l) was 

added to wash the membrane, followed by another wash with buffer RPE (500 l). 

The column was centrifuged for 15 sec at 14,000 rpm for each wash. A final wash 

with buffer RPE (500 l) was performed and the column centrifuged for 2 min at 

14,000 rpm. The flow-through of each wash was discarded. The column was placed 

into a new sterile microcentrifuge tube and the RNA eluted with RNase-free water 

(30 l, twice) by centrifugation for 1 min at 14,000 rpm. RNA solutions were stored 

at -20°C. 

2.3.3 Plasmid DNA purification from bacteria 

Plasmid DNA was extracted from bacterial cultures using the Wizard
®

 Plus SV 

Minipreps DNA Purification System reagents and protocol (Promega, UK). Bacterial 

overnight cultures (1 to 10 ml) were pelleted by centrifugation at 4,000 rpm for 5 

min with the Eppendorf centrifuge 5810R. The pellet was resuspended in Cell 

Resuspension Solution (250 µl) and transferred to a 1.5 ml microcentrifuge tube. 

Cell Lysis Solution (250 µl) was added as well as Alkaline Protease Solution (10 µl). 

The sample was mixed by inverting the tube four times after each solution was 

added. The sample was incubated for 5 min at room temperature. Neutralization 

Solution (350µl) was added and the sample mixed by inverting the tube four times, 
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followed by centrifugation for 10 min at 14,000 rpm in an Eppendorf 5424 

centrifuge. The cleared lysate was decanted into a Spin Column in a 2 ml collection 

tube and centrifuged at 14,000 rpm for 1 min. The flow-through was discarded. The 

spin column was washed twice by adding Wash Solution (750µl and 250µl 

respectively) followed by centrifugation for 2 min at 14,000 rpm and the flow-

through was discarded. The column was transferred to a new sterile 1.5 ml 

microcentrifuge tube and the DNA eluted in Nuclease-Free Water (100µl) by 

centrifugation at 14,000 rpm for 1 minute. DNA solutions were stored at -20°C. 

2.3.4 Quantification of nucleic acids 

Spectrophotometric analysis of nucleic acids, using a NanoDrop 1000 

spectrophotometer v3.7, was performed to determine the quantity of nucleic acids 

extracted and to provide an estimate of sample purity. Amongst the several 

application modules available, the module nucleic acids was chosen. When 

measuring DNA, the default setting was used (DNA-50), but for RNA, the option 

RNA-40 was selected. The spectrophotometer was zeroed using sterile deionised 

water at 260 nm. Absorbance (Abs) readings of samples (1µl) were taken at 260 nm. 

As quoted by the manufacturer, the detection limit is 2 ng/l and the upper limit is 

3,700 ng/l for double strand DNA, 2,400 ng/l for single strand DNA, and 3,000 

ng/l for RNA. A ratio of the absorbances at 260 and 280 nm was used to assess the 

purity of DNA and RNA samples. A ratio of ~1.8 and ~2 is accepted as pure for 

DNA and RNA, respectively. If the ratio is lower, it may indicate the presence of 

proteins or other contaminants, absorbing near 280 nm. A secondary measure of 

nucleic acid purity is given by the ratio of the absorbance at 260 and 230 nm. The 

ratio of pure samples is expected in the range of 1.8 to 2.2.  

 

2.3.5 Construction of vectors 

2.3.5.1 Restriction enzyme digestion 

Restriction enzymes, such as AscI, PacI and EcoRI, were used in order to cleave 

DNA fragments from existing plasmids. The restriction enzymes were mainly 

purchased from Promega, UK and NEW ENGLAND Biolabs
® 

Inc., UK. Each 

restriction enzyme was used according to the manufacturers’ instructions. In general, 
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one unit of restriction enzyme is defined as the amount of enzyme required to digest 

1 g of lambda DNA in 1 h at a certain temperature (usually, 37°C or 65°C). 

Reactions were generally performed in a final volume of 20 l, including 5 to 10 

units of restriction enzyme, DNA (~1 g), enzyme buffer (10X) and sterile deionised 

water. Sometimes, BSA (bovine serum albumin) was also required. Samples were 

incubated at the appropriate temperature for 1 to 4 h. Loading buffer (6X) was added 

to the sample and the DNA fragments were separated by agarose gel electrophoresis. 

2.3.5.2 Agarose gel electrophoresis 

Nucleic acid analysis by electrophoresis was performed on ~1% (w/v) agarose gels, 

depending on the size of the fragments of interest. Agarose was melted in TBE (Tris-

hydroxymethyl-aminomethane (Tris) borate ethylenediamine tetra-acetic acid). 

GelRed
TM

 (10,000X dilution of stock) nucleic acid gel stain (Biotium, UK) was 

added to the mixture before it was poured in one compartment of a gel 

electrophoresis tank with a gel comb and left to set for 20 min. The agarose gel was 

transferred in the electrophoresis tank filled with TBE. Samples were loaded in the 

gel wells with Blue/Orange Loading Dye (6X; Promega, UK). DNA ladder (100bp 

or 1kb; Promega) depending on the sizes of the DNA) was run alongside with the 

samples, for DNA size comparison. Gels were run 10-15 min at 50-100 volts. DNA 

bands were visualized using a U:Genius
3
 gel imaging system (Syngene, UK). 

2.3.5.3 DNA purification  

Purification of DNA from (i), PCR amplification and (ii), agarose gel was performed 

using the Wizard® SV Gel and PCR Clean-Up System (Promega, UK). An equal 

volume of Membrane Binding Solution was added to the PCR amplification product. 

In the case of DNA purification from an agarose gel, a ratio of 10 l of Membrane 

Binding Solution per 10 mg of agarose slice gel, containing the DNA fragment of 

interest, was added in a sterile 1.5 ml microcentrifuge tube. The sample mixture was 

mixed vigorously with a vortex and incubated at 50-65°C for 10 min until the gel 

slice was completely dissolved. The tube was mixed vigorously every few minutes 

during the incubation time. From here, the same protocol was followed for DNA 

purification from PCR amplification or agarose gel. The mixture of DNA with 

Membrane Binding Solution was placed in a SV Minicolumn in a collection tube and 
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incubated for 1 min at room temperature, followed by centrifugation at 14,000 rpm 

for 1 min in Eppendorf 5424 centrifuge. The flow-through was discarded. The SV 

Minicolumn was washed twice by adding Membrane Wash Solution (700 µl and 500 

µl, respectively), followed by centrifugation for 1 min and 5 min, respectively, at 

14,000 rpm. At each step, the flow-through was discarded. An additional 

centrifugation at 14,000 rpm for one min was performed. The SV Minicolumn was 

transferred into a sterile 1.5 ml microcentrifuge tube. Nuclease-Free Water (50 l) 

was directly placed at the centre of the column, followed by a one min incubation at 

room temperature and by centrifugation for 1 min at 14,000 rpm. The eluted DNA 

was kept at -20°C. 

2.3.5.4 Dephosphorylation of 5  phosphates from DNA or RNA 

Dephosphorylation of linearised plasmids is employed to prevent the plasmids 

recircularising during the ligation step when cloning the DNA of interest. It is 

especially useful when both ends of the linearised plasmid have been cleaved with 

the same restriction enzyme. Shrimp Alkaline phosphate (SAP, Promega, UK) was 

utilised to catalyse the dephos horylation of 5  phosphates from DNA. SAP (1 unit 

per g DNA) was incubated with cleaned restriction-digested vector at 37°C for 15 

min in 1X SAP reaction buffer in a final volume of 30-50 l. SAP was inactivated by 

heating at 65°C for 15 min, followed by centrifugation at 14,000 rpm for a few 

seconds. 

2.3.5.5 Ligation 

 

The ligation of two strands of DNA is necessary to form plasmid from different 

DNA fragments. The T4 DNA Ligase (Promega, UK) was utilised to catalyse this 

reaction. A 1:3 molar ratio of vector:insert DNA was used to clone a fragment into a 

plasmid vector. The following formula was used to calculate the amount (ng) of 

insert to be used. 

 

In a sterile microcentrifuge tube, the appropriate amount of vector DNA and insert 

was added, together with 1 unit of T4 DNA ligase, ligase buffer (10X) and Nuclease-
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Free Water to a final volume of 10 l. The reaction was incubated at room 

temperature for 3 h or overnight at 4°C. 

 

2.3.5.6 Description of vectors used in this work  

The vectors used in this work are described in Table 2-1. A representative scheme of 

the vectors is shown in appendix Figure A2-1. 

 

Table 2-1 Description of the vectors used in this study 

Kanamycin, ampicillin and rifampicin were utilised at 50 mg/l, spectinomycin at 100 mg/l and 

chloramphenicol at 36 mg/l.  

 

Escherichia coli 

(DH5a)

 Agrobacterium 

(LBA4404 or C58C1)
Plant

CrtE
Geranylgeranyl diphosphate 

synthase gene (P. ananatis )
Kanamycin Rifampicin, Kanamycin Kanamycin Fraser et al.

CrtB
Phytoene synthase gene (P. 

ananatis )
Kanamycin Rifampicin, Kanamycin Kanamycin

Fraser et al., 

2002

CrtI
Phytoene desaturase gene (P. 

ananatis )
Kanamycin Rifampicin, Kanamycin Kanamycin

Romer et al., 

2000

CrtB*
Phytoene synthase gene (P. 

ananatis )
Ampicillin Rifampicin, Ampicillin Kanamycin

Misawa et al., 

perso. com.

CrtI*
Phytoene desaturase gene (P. 

ananatis )
Ampicillin Rifampicin, Ampicillin Kanamycin

Misawa et al., 

perso. com.

pb
Lycopene b-cyclase promoter (S. 

galapagense )
Kanamycin Rifampicin, Kanamycin Kanamycin

Heldt et al., 

perso. com.

pbCrtB
Phytoene synthase gene (P. 

ananatis ) 
Ampicillin Rifampicin, Ampicillin Kanamycin

Nogueira, 

PhD study

pbCrtI
Phytoene desaturase gene (P. 

ananatis ) 
Ampicillin Rifampicin, Ampicillin Kanamycin

Nogueira, 

PhD study

pbCrtB+I
Phytoene synthase and desaturase 

genes (P. ananatis ) 
Ampicillin Rifampicin, Ampicillin Kanamycin

Nogueira, 

PhD study

ZW

Carotene hydroxylase (Crt Z) and 

ketolase (Crt W) 

(Brevundimonas ) with plant codon 

usage

Spectinomycin
Rifampicin, 

Spectinomycin
Kanamycin

Misawa et al., 

perso. com.

PIF5
Phytochrome-Interacting Factor 5 

transcription factor
Spectinomycin

Rifampicin, 

Spectinomycin
Kanamycin

Misawa et al., 

perso. com.

ARR14
Arabidopsis Response Regulator 14 

transcription factor
Ampicillin Rifampicin, Ampicillin Kanamycin

Misawa et al., 

perso. com.

ZW-PIF5 Crt Z+Crt W+PIF5 Spectinomycin
Rifampicin, 

Spectinomycin
Kanamycin

Misawa et al., 

perso. com.

ZW-ARR14 Crt Z+Crt W+ARR14 Spectinomycin
Rifampicin, 

Spectinomycin
Kanamycin

Misawa et al., 

perso. com.

GUS β-glucuronidase gene Spectinomycin
Rifampicin, 

Spectinomycin
Kanamycin

Laboratory 

stocks

p19
p19 Suppressor of gene silencing 

gene

Kanamycin, 

Chloramphenicol

Rifampicin, 

Kanamycin, 

Chloramphenicol

Kanamycin
Laboratory 

stocks

pBINPLUS
Binary vector for plant 

transformation
Kanamycin Rifampicin, Kanamycin Kanamycin

Laboratory 

stocks

pZK3B Empty vector for cloning Spectinomycin
Rifampicin, 

Spectinomycin
Kanamycin

Misawa et al., 

perso. com.

Antibiotic resistance in

Name of vectors Description References
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All the plant transformations, using the vectors described in Table 2-1, were carried 

out during this thesis except for the CrtE, CrtB and CrtI tomato lines, which were 

created prior this work.  

2.3.6 Testing the presence of transgenes 

2.3.6.1 Designing primers 

Primers were designed using the open-source program Primer3web version 4.0.0 

(http://primer3.ut.ee/) and the sequence of the genes of interest mainly obtained from 

the National Centre for Biotechnology (NCBI) website (www.ncbi.nlm.nih.gov). 

Primers for PCR analysis were designed to the following specifications: 18-23bp 

(optimal 20bp) for primer length, Tm of 57-62°C (optimal 59°C), maximum Tm 

difference, 5°C and a percentage of GC content of 30-70% (optimal 50%). Primers 

for real-time PCR analysis, using the SYBR
®

 Green system, were designed with 

different specifications: amplicon length: 100-150bp, primer length: 10-30bp, GC 

content: ideally 40-60%, Tm: 55-60°C and the maximal Tm difference between 

primers, 4°C. For both PCR and real-time PCR primers, mismatches between 

 rimers and target, es ecially towards the    end of the  rimer should  e a oided, as 

well as    end with Ts, complementarities within the primers to avoid hairpins, 

complementarities between the primers to avoid primer dimers, especially of 2 or 

more  ases at the    ends of the primers. Primers were supplied by Eurofins MWG 

Operon, UK. The sequences of the primers used in this work are listed in the 

appendix Table A2-2. 

 

2.3.6.2 PCR 

The presence of the Crt genes in the crossed lines was detected by PCR, using sets of 

primers shown in Table A2-2. PCR reactions were performed using IllustraTM 

puReTaq Ready-to-go PCR beads (GE Healthcare, UK), with reagents prepared 

following the manufacturer’s guidelines. Reactions contained 10 pmol of each of the 

respecti e forward  5       and re erse     5  ) primers, ~50 ng of plant genomic DNA, 

extracted from the leaves, as described in section 2.3.1, and sterile molecular water 

(Sigma-Aldrich, UK) to a final volume of 25 l. Tubes were incubated at 95°C for 5 

min to denature the DNA template, followed by 30 cycles of PCR amplification, 

which consisted of a denaturation  step at 94°C for 30 sec, an annealing step at 50°C 
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for 30 sec and an extension step at 72°C for 30 sec. A final incubation of 5 min at 

72°C was performed to complete the reaction. Reactions were carried out using a 

Techgene thermo cycler (Techne, UK). The temperature of annealing varied 

depending on the set of primers. The annealing temperature corresponds to 

approximately the Tm of the primers minus 5°C. PCR products were analysed by 

agarose gel electrophoresis (described in section 2.3.5.2). 

2.3.7 Determination of genes’ zygosity in plants 

2.3.7.1 Cloning DNA in TOPO
®

 vector 

PCR products were cloned into pCR
®

2.1 TOPO
®

 cloning vectors for quantitative 

real-time PCR (section 2.3.7.2), using the TOPO-TA DNA cloning
®

 kit (Invitrogen, 

UK). The PCR product (2 l) was added to a salt solution (1 l), TOPO
® 

vector (1 

l) and sterile water to a final volume of 6 l. The mixture was incubated for 5 min 

at room temperature to allow the ligation reaction to proceed. The reaction (TOPO
® 

Cloning reaction) was placed on ice. TOPO
® 

Cloning reaction (2 l) was added to a 

vial of One Shot
®

 TOP10 chemically competent E.coli cells, which were previously 

thawed on ice. One Shot
®

 TOP10 competent cells were transformed by heat shock 

treatment at 42°C for 30 sec, followed by immediate incubation on ice. Room 

temperature S.O.C. medium (250 l) was added to the transformation reaction and 

the tubes incubated at 200 rpm, horizontally at 37°C for 1 h in a shaking incubator. 

The transformed cells were selected with ampicillin. The transformation reaction 

(50-150 l) was spread on pre-warmed LB agar plates supplemented with ampicillin 

(50 g/ml) and incubated overnight at 37°C. The resulting colonies were used to 

inoculate LB medium (5 ml) supplemented with ampicillin (50 g/ml). Liquid 

cultures were incubated overnight at 37°C in a shaking incubator. Plasmid DNA was 

isolated using the Wizard
®

 Plus SV Miniprep DNA Purification System (section 

2.3.3). Presence of the cloned product was confirmed by PCR and agarose gel 

electrophoresis (sections 2.3.6.2 and 2.3.5.2). 

 

2.3.7.2 Quantitative real-time PCR 

Quantitative real-time PCR (qPCR) was used to determine the zygosity of the 

transgenes CrtB and CrtI in plants, and relied upon the comparison of the relative 
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amplification of the transgenes in these plants and in the CrtB and CrtI plants with 

known zygosity. The endogenous single-copy gene, phytoene desaturase was utilised 

as a normaliser. Real-time qPCR analysis was performed using a QuantiFast SYBR
®

 

Green PCR kit (Qiagen, UK) and a Research Rotor-Gene RG-3000 thermal cycler 

(Corbett Life Sciences). DNA was extracted from plant leaves (section 2.3.1) and 

quantified (section 2.3.4). DNA solutions were diluted to a concentration of 25 

ng/l. Per reaction, DNA (25 ng) was used, the relevant primers (forward and 

reverse) at a final concentration of 1 M were added, as well as 2X QuantiFast 

SYBR
®

 Green PCR Master Mix (10 l) and RNA-free water to final volume of 20 

l. Thermocycling conditions were, 95°C for 15 min, followed by 40 cycles of 15 

sec at 94°C, 30 sec at 50°C, and 15 sec at 72°C. Melt curve analysis was performed 

to verify the specificity of the reactions. Calibration curves for each gene were run 

simultaneously with experimental samples. Calibration curves covered the complete 

range of expected expression, with 4 or 5 points of dilution of TOPO
®

 plasmids 

containing the DNA amplicon of interest (2.3.7.1). Triplicates of each reaction were 

run. The standard curve determined the linearity, reaction efficiency, sensitivity and 

reproducibility of the assay. The qPCR reaction was considered acceptable when the 

PCR efficiency, given by the Rotor-Gene software, was between 90 and 110% and 

the R
2
, which indicates how well the data points lie on a line, higher than 0.985. 

 

2.3.7.  Delta Delta Ct  ΔΔCt  method 

A direct comparison of Ct values between the target gene and the reference gene, 

given by the Rotor-Gene software, allows a relative quantification of the amount of 

DNA of interest in the experimental sample compared to the calibrator sample. PCR 

efficiencies of both the target and of the reference gene were between 90 and 110% 

and did not differ by more than 10%. Only the initial experiment requires a standard 

curve to compare the PCR efficiency of the target and control gene. In the case of the 

determination of the zygosity of CrtB genes in new plants, the target gene was CrtB, 

the reference gene was phytoene desaturase (endogenous single-copy gene), the 

experimental samples corresponded to the CrtB plants with unknown zygosity and 

the calibrator samples were the hemizygous CrtB plants previously determined. 

 

 



78 

 

                ΔCt = Ct target – Ct reference gene 

 

  ΔΔCt =  Ct target – Ct reference) calibrator – (Ct target – Ct reference) sample 

 

The normalized target amount in the sample was then equal to 2
-ΔΔCt

 and this value 

could be used to compare expression levels in samples. When the amount of CrtB 

DNA in the new plants was twice that of the CrtB hemizygous plant, it meant that 

the CrtB gene was homozygous. On the contrary, when the 2
-ΔΔCt 

equalled
 
one, it 

meant that the CrtB gene was hemizygous. 

2.3.8 Determination of number of transgenes in plants 

2.3.8.1 Southern blot 

Southern blotting was used to determine the number of inserts of the transgene of 

interest in tomato plants. DNA from plants with unknown numbers of insert 

(pbCrtB, pbCrtI and pbCrtB+I), as well as DNA of the control Ailsa Craig 

(untransformed plant) was extracted from the tomato leaves (section 2.3.1). Probes 

for the genes of interest (CrtB and CrtI), labelled with DIG-dUTP, were created by a 

polymerase chain reaction, using the PCR DIG Probe synthesis kit (Roche, UK). The 

instructions of the manufacturer were followed to perform this step. DNA from the 

experimental samples, a positive and negative control, were digested by a restriction 

enzyme, which cleaves only once between the left and right border of the insert, but 

not in the gene of interest. This restriction enzyme also needed to be a high 

frequency enzyme. The digestion was performed with EcoRI (Promega, UK) in 100 

l (section 2.3.5.1). Isopropanol was used to precipitate the DNA. The salt 

concentration was adjusted with sodium acetate pH 5.2, to 0.3 M. Isopropanol (0.6 

volumes) was added to the digestion reaction, followed by centrifugation at 

maximum speed for 10 to 30 min at 4ºC. The supernatant was discarded and the 

DNA pellet was washed with 1 to 10 ml of room temperature 70% ethanol, followed 

by centrifugation at maximum speed for 5 to 15 min at 4ºC in the Eppendorf 5424 

centrifuge. The pellet was air-dried for 5 to 20 min. DNA was dissolved in buffer AE 

(15 l; Qiagen). A thin 0.8% agarose gel (16.7x11.2cm) was made (section 2.3.5.2) 

and loaded with genomic DNA (~10 g), plasmid (~1 ng; positive control), as well 

as a ladder (1 kb; Promega). The gel was electrophoresed overnight at 25 V for an 
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optimum separation of the DNA bands (section 2.3.5.2). The gel was submerged in 

Denaturation solution (0.5 M NaOH, 1.5 M NaCl) for 15 min, twice, at room 

temperature and with gentle shaking. It was then rinsed with sterile distilled water 

and submerged in Neutralisation solution (0.5 Tris-HCl, pH 7.5, 1.5M NaCl) for 15 

min, twice, at room temperature with gentle shaking. Each gel was equilibrated in 

20X SSC buffer (3M NaCl, 300mM sodium citrate, pH 7.0) for a minimum of 10 

min. The blot transfer apparatus was then assembled and 20X SSC buffer was placed 

in the reservoir. A glass plate was placed on top of that and a long sheet of Whatman 

paper (3MM paper; Whatman international Ltd) was placed on top of it with its ends 

in contact with the buffer. The gel was laid on the soaked sheet of Whatman paper 

and on top of it a positively charged nylon membrane (1417240.1; Roche, UK) was 

placed, followed by a layer of Whatman paper, a stack of paper towels, a glass plate 

and weights (200 to 500 g). The transfer of DNA from the gel to the membrane was 

carried out overnight. The apparatus was dismantled and the wet membrane exposed 

to UV light for 1 min at 120 mJ in a transilluminator (UVItec, UK). It was then 

briefly washed in molecular water, and air-dried. Membrane, in a mesh, was placed 

in Hybaid tubes (Thermo Scientific, UK), containing pre-warmed pre-hybridisation 

buffer (20 ml of DIG Easy Hyb; Roche, UK) and then incubated in the Hybaid oven 

for at least 30 min at 45ºC (temperature depends on the sequence of the probe used). 

A second Hybaid tube was incubated with hybridisation solution (DIG Easy Hyb (7 

ml), with the appropriate PCR probe (21 l)) for 10 min at 68ºC in the oven. The 

pre-hybridisation solution was discarded from the first Hybaid tube and replaced by 

the pre-warmed hybridisation solution. The tube was incubated in the Hybaid oven, 

under rotation, for 6 to 16 h at 45ºC. The hybridisation solution was replaced with 

low stringency buffer (100 ml; 2X SSC (0.3 M NaCl, 30 mM sodium citrate, pH 

7.0)) containing 0.1% (w/v) SDS and incubated at room temperature for 5 min, 

twice. Low stringency buffer was discarded and pre-warmed high stringency buffer 

(100 ml; 0.1X SSC + 0.1% (w/v) SDS) was added in the Hybaid tube and incubated 

15 min at 68ºC, twice, in the Hybaid oven, under rotation. The membrane was 

washed in washing solution (100 ml; 0.1 M maleic acid, 0.15 M NaCl, pH 7.5, 0.3% 

Tween 20) for 2 min at room temperature. The washing solution was discarded and 

blocking solution (100 ml; Roche) was added, and incubated for 30 min, and then 

discarded. The membrane was then incubated in antibody solution (Anti-
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Digoxigenin-AP (Roche), 1:10,000 in blocking solution) for 30 min. It was rinsed 

with molecular water, followed by two washes of washing buffer (0.1 M maleic acid, 

0.15 M NaCl, pH 7.5, 0.3% (v/v) Tween 20) for 15 min each time. After 

equilibration for 3 min in detection buffer (20 ml; 0.1M Tris-HCl, 0.1M NaCl, pH 

9.5), the membrane was placed in a plastic bag with CSPD solution (1:100 in 

detection buffer; Roche; 4 ml) and incubated 5 min at room temperature. The plastic 

bag was sealed after squeezing the excess CSPD solution out and incubated for 10 

min at 37 ºC in an incubator (Memmert, UK), to enhance the luminescence reaction. 

The bag containing the membrane was placed in a cassette (Curix AGFA, UK) 

together with a Lumi-Film Chemiluminescent Detection Film (Roche, UK) and left 

for 30 min to 90 min. The film was developed using a developer (Photon Imaging 

Systems, UK). The number of bands on the developed film corresponded to the 

number of inserts of transgenes in the plants. 

 

2.3.8.2 Verification by real-time qPCR 

The number of insert was verified by qPCR in a similar way to that for the zygosity 

of  lants  section 2. .7.2 , using the ΔΔCt method  section 2. .7.  . A hemizygous 

plant with only one insert of gene of interest was used as the comparator. The value 

of 2
-ΔΔCt 

corresponds to the number of transgene inserts,  because all the inserts in the 

plant tested were hemizygous, as they all belonged to the first generation of 

transgenic plants. 

2.3.9 Determination of transcript levels 

 2.3.9.1 RT-PCR 

Reverse-transcription PCR (RTPCR) was used to create a complementary DNA 

(cDNA) template of the genes of interest. RT-PCR amplification was performed 

using illustra
TM

 Ready-to-go
TM

 RTPCR beads (GE Healthcare, UK). RNA was 

extracted from tomato plant as described in sections 2.1.3 and 2.3.2. Reactions 

contained oligo (dT) primer (2.5 pmol), each of the respective forward and reverse 

primers (5 pmol) and template RNA (~200 ng). Molecular water was added to a final 

volume of 50 l. Tubes were incubated at 55°C for 5 min to denature the template, 

followed by a reverse transcription reaction at 65°C for 30 min and 5 min incubation 

at 95°C to denature the reverse transcriptase. This was followed by 30 cycles of PCR 
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amplification (denaturation 94°C for 30 sec; annealing 52°C for 30 sec; extension 

72°C for 30 sec). A final incubation of 5 min at 72°C completed the reaction. 

Reactions were carried out using a Techgene thermo cycler (Techne, UK). PCR 

products were analysed by agarose gel electrophoresis (section 2.3.5.2) and cloned in 

to TOPO
®

 vectors (section 2.3.7.1) for real-time RT-qPCR. 

 

2.3.9.2 RT-qPCR 

Real-time qRT-PCR was performed to measure the expression of genes of interest. It 

was performed using a QuantiFast
TM

 SYBR
®

 Green RT-PCR kit (Qiagen, UK) and a 

Research Rotor-Gene RG-3000 thermal cycler (Corbett Life Sciences, UK). DNA 

was extracted from plant leaves (section 2.3.1) and quantified (section 2.3.4). RNA 

solutions were diluted to a concentration of 25 ng/l. Per reaction, RNA (25 ng) was 

used, the relevant primers (forward and reverse) at a final concentration of 1 M 

were added, as well as 2X QuantiFast SYBR Green RT-PCR Master Mix (10 l), 

QuantiFast RT Mix (0.2 l) and RNA-free water to final volume of 20 l. Thermo-

cycling conditions were 10 min at 55°C for reverse transcription, 5 min at 95°C for 

PCR activation, followed by 35 cycles of 5 sec at 95°C and 10 sec at 60°C for PCR 

amplification. Melt curve analysis was performed to verify the specificity of the 

reactions. Calibration curves for each gene were run simultaneously with 

experimental samples. Calibration curves covered the complete range of expected 

expression, with 4 or 5 points of dilution of TOPO
®

 plasmids containing the RNA 

amplicon of interest (sections 2.3.9.1 and 2.3.7.1). The actin gene was used as the 

normaliser (Table A2-2). Triplicates of each reaction were analysed. The standard 

curve determined the linearity, reaction efficiency, sensitivity and reproducibility of 

the assay. The RT-qPCR run was considered acceptable when the PCR efficiency, 

given by the Rotor-Gene software, was between 90 and 110% and the R
2
, which 

indicates how well the data points lie on line, higher than 0.985.  
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2.4 Transformation of plants and bacteria 

2.4.1 Plant transformation 

2.4.1.1 Tomatoes and Nicotiana benthamiana transient transformation 

Tomato cultivars Moneymaker and Micro-Tom were transformed with several 

constructs (GUS (control); ZW; ZW-PIF5 and ZW-ARR14 as described in appendix 

Figure A2-1) by Agrobacterium tumefaciens C58C1-mediated transient 

transformation. The protocol was based on that developed by Orzaez et al. (2006). 

Overnight cultures (5 ml) of Agrobacterium harbouring the plasmid of interest were 

transferred into 50 ml of induction media (yeast extract 1 g/l, beef extract 5 g/l, 

peptone 5 g/l, sucrose 5 g/l, 2 mM MgSO4, 20 μM acetosyringone, 10 mM MES, pH 

5.6) and grown again overnight at 28°C, with shaking at 220 rpm. Overnight cultures 

(50 ml) were then centrifuged for 10 min at 4,000 rpm in an Eppendorf centrifuge 

5810R. The supernatant was discarded and the pellet was resuspended in induction 

medium (5 ml). The centrifugation step was repeated and the pellets were 

resuspended in infiltration media (10 mM MgCl2, 10 mM MES stock, 200 μM 

acetosyringone; 10 ml; pH 5.6) to an OD600 of 0.5. The culture was then left at room 

temperature for a minimum of 3 h, with gentle agitation (50 rpm). Equal volumes of 

Agrobacterium strain with the plasmid expressing the gene of interest, along with 

Agrobacterium strain harbouring p19 plasmid (to maximize protein production by 

suppression of gene silencing (Voinnet et al., 2003)) cultures were combined. The 

Agrobacterium culture mix was collected and injected in the tomato fruit as 

subsequently described. Tomato fruits were infiltrated using a 1ml syringe with a 

0.5x16 mm needle (BD Plastipack). The syringe was introduced 3 to 4 mm in depth 

into the fruit tissue through the stylar apex and the Agrobacterium culture was gently 

injected into the mature green fruit tomato. The total volume injected varied with the 

size of the fruit (~600 µl for the Micro-Tom fruit; ~ 1.5 ml for the Moneymaker 

tomato fruits).  The progress of the process could be followed by a slight change in 

colour in the infiltrated areas. Once the entire fruit surface has been infiltrated, some 

drops of infiltration solution begin to show running off the hydathodes at the tip of 

the sepals. Fruits were collected between 4 to 9 days after infiltration. Histochemical 

detection of GUS activity was carried out on the tomato fruits transiently 

transformed by Agrobacterium harbouring the GUS vector. 
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Nicotiana benthamiana plants (6 week old) were transformed with several 

constructs (GUS (control); ZW; ZW-PIF5 and ZW-ARR14, as described in 

Appendix A2-1) by Agrobacterium tumefaciens C58C1-mediated transient 

transformation. The protocol was based on that of developed by Sparkes et al. 

(2006). Overnight cultures (5 ml) of Agrobacterium harbouring the plasmid of 

interest were transferred into 50 ml of induction media (yeast extract 1 g/l, beef 

extract 5 g/l, peptone 5 g/l, sucrose 5 g/l, 2 mM Mg SO4, 20 μM acetosyringone, 10 

mM MES, pH 5.6) and grown again overnight at 28°C, shaking at 220 rpm. 

Overnight cultures (50 ml) were then centrifuged for 10 min at 4,000 rpm in an 

Eppendorf centrifuge 5810R. The supernatants were discarded and the pellets were 

resuspended in induction medium (5 ml). The centrifugation step was repeated and 

the pellets were resuspended in infiltration medium (10 mM MES buffer, 10 mM 

MgCl2, 100 µM acetosyringone, pH 5.6; 10 ml) to an OD600 of 0.5. The culture was 

then left at room temperature for a minimum of 3 h with gentle agitation (50 rpm) 

applied. Equal volumes of culture were combined (Agrobacterium strain with the 

plasmid containing the gene of interest with Agrobacterium strain harbouring p19 

plasmid to maximize protein production by suppression of gene silencing (Voinnet et 

al. 2003)). The mix was collected and injected in the tobacco epidermal cells as 

described below. The tobacco plants were placed under a white fluorescent lamp for 

1 h before infiltration to open the stomata fully as an aid to infiltration. The leaves to 

be infiltrated were chosen in the middle of the plant (neither the youngest nor 

oldest). The region of the leaf was prepared to be infiltrated by gently rubbing the 

underside of the leaf in order to remove the wax cuticle. A 1 ml syringe (without 

needle) was used to collect the resuspended Agrobacterium culture. The tip of the 

syringe was placed against the underside of the leaf over the rubbed region and the 

plunger was gently pressed down while directly supporting the upperside of the leaf 

with a finger. Diffusion of the Agrobacterium culture through the leaf, as it filled the 

mesophyllar air spaces could be followed. This step was repeated in order to fill all 

the chosen leaf material. Leaves were collected and frozen in liquid nitrogen at 9 

days after infiltration. Histochemical detection of GUS activity was carried out on 

the tobacco leaves transiently transformed by Agrobacterium harbouring the GUS 

vector as described in section 2.4.1.2.  
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2.4.1.2 Histochemical detection of GUS activity 

The β-glucuronidase (GUS) enzyme from E. coli was used as the marker gene in 

transformed plants. Thin slices of tomato fruits or whole tobacco leaves transiently 

transformed by Agrobacterium harbouring the GUS plasmid were covered with GUS 

buffer (0.1 M of sodium phosphate buffer pH 7, 25 ml; 0.5M EDTA, pH 8, 1 ml; 5% 

Triton X-100 (1 ml), 1 ml of 25 mg of X-GlcA (5-bromo-4-chloro-3-indolyl-β-D-

glucuronic acid; Melford) dissolved in dimethylforamide (1 ml), and water (22 ml)) 

in a petri dish and incubated overnight at 37°C, shaking at 100 rpm. The tissues were 

thus put in contact with 5-bromo-4-chloro-3-indolyl glucuronide (X-Gluc), which is 

the substrate of the b-glucuronidase enzyme. If the enzyme was present in the tissue, 

its product was synthesised and then dimerised through its reaction with oxygen 

resulting in a blue dye being produced. The tomato slices or tobacco leaves were 

washed in methanol for one day to give rise to the blue colouration representing 

GUS enzyme activity. 

2.4.1.3 Stable transformation 

Nicotiana glauca was transformed with several constructs (ZW and ZW-ARR14 as 

described in Appendix A2-1) by Agrobacterium LBA4404-mediated transformation. 

Plants were transformed following the protocol based on the leaf disc method 

developed for N. tabacum by Horsch et al. (1985). Tobacco seeds were sterilised. A 

first wash in 95% (v/v) EtOH for 1 minute was followed by a 10 min wash in 20% 

(v/v) bleach with 0.01% Tween 20 (Sigma-Aldrich, UK) and five consecutive 

washes with sterile water. Seeds were sown in Magenta pots (Sigma-Aldrich, UK) 

on Murishage and Skoog medium (MS media; 0.44% (w/v) MS salts (Melford 

laboratories, UK), 0.1% (v/v) Gamborgs vitamin solution (Sigma-Aldrich, UK), 3% 

(w/v) sucrose) solidified with 0.8% (w/v) agar. Medium was autoclaved prior to use 

and hormones and antibiotics added, if necessary, when cooled. Explants, 0.5-1.0 

cm
2
, were excised from in vitro grown plantlets. Explants were pre-cultured for 24 h 

on plates of MS-agar medium supplemented with 6-benzylaminopurine (BAP, 1 

mg/l) and 1-naphthaleneacetic acid (NAA, 0.1 mg/l). Plates were sealed with 

Parafilm
®

 (Sigma-Aldrich, UK). Overnight cultures (50 ml) of Agrobacterium 

harbouring the plasmids of interest were centrifuged for 5 min at 4,000 rpm in an 

Eppendorf centrifuge 5810R. Bacterial pellets were resuspended to an OD600 of 1.0 
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(but also 0.5 and 0.1) in liquid MS medium. Pre-cultured explants were immersed in 

the Agrobacterium suspension for 3 to 5 min, blotted on sterile filter paper, and 

placed upside down on fresh MS-agar plates. Explants were co-cultured with 

Agrobacterium for four days on the same media at 26°C, under low light conditions 

(7-11 mol/m
2
/s). Following co-culture, explants were transferred to MS-agar plates 

supplemented with plant hormones as before plus antibiotics; carbenicillin (500 

g/ml) was used to inhibit Agrobacterium growth and kanamycin (100 g/ml) to 

select recombinant plants. Explants were sub-cultured every two weeks. After four 

weeks, the carbenicillin concentration in the medium was halved (250 g/ml). Well 

defined shoots were excised from the explants and transferred to Magenta pots 

(Sigma-Aldrich, UK) on MS-agar as before, but without hormones, to induce root 

growth. Plants were regenerated at 26°C under a 16 h light (45-70 mol/m
2
/s) and 8 

h darkness cycle.  

2.4.2 Bacterial transformation 

2.4.2.1 Preparation of Escherichia coli heat shock competent cells 

Overnight cultures were prepared by inoculating liquid LB (5 ml) with a single 

colony of Escherichia coli stain DH5α from a LB-agar plate. The cultures were 

incubated overnight at 37°C in a shaker. Overnight cultures (200 µl) were used to 

inoculate fresh LB medium cultures (20 ml). The E.coli cultures were incubated with 

gentle agitation (200 rpm) until the cell densities, determined with a DU
®

800 

Spectrophotometer (Beckman Coulter), reached an optical density OD578 of 0.6 to 

0.85. The cultures were transferred in sterile 50 ml Falcon tubes (BD Biosciences) 

and incubated on ice for 10 min, prior to centrifugation for 10 min at 4,000 rpm and 

4°C in an Eppendorf centrifuge 5810R. The supernatants were discarded. The 

bacterial pellets were washed by re-suspending the pellet in 4 ml of ice cold 

CaCl2/glycerol solution (0.1 M/10% glycerol, filter-sterilised 0.2 μm , incu ated on 

ice for a minimum of 15 min and followed by centrifugation for 10 min at 4,000 rpm 

and 4°C. The supernatants were discarded. Bacterial pellets were re-suspended in ice 

cold CaCl2/glycerol solution (400 µl) and separated into aliquots (25 µl) in pre-

chilled autoclaved 1.5 ml microcentrifuge tubes. The bacterial cells were then flash 

frozen in liquid nitrogen and kept as -80°C prior to transformation by heat shock 

method. 
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2.4.2.2 Heat shock transformation of Escherichia coli 

Escherichia coli competent cells, prepared as detailed in section 2.4.2.1, were 

transformed with selected plasmids by the heat shock method. E. coli competent 

cells (25 l) were thawed on ice. Plasmid DNA (1µl) was mixed gently with the 

cells. The mixture was incubated on ice for 30 min and then transferred into a water 

bath at 42°C for 45 sec followed by incubation on ice for 2 min. SOC media (2% 

w/v bacto-tryptone, 0.5% w/v bacto-yeast extract, 8.56 mM NaCl or 10 mM NaCl, 

2.5 mM KCl, 10 mM MgCl2 or 20 mM MgSO4 and 20 mM glucose; 250 µl) was 

added. The mixture was incubated at 37°C for 1 h, gently shaking at 180 rpm. Cells 

were plated on fresh LB-agar plates, supplemented with appropriate antibiotic 

selection and incubated overnight at 37°C. Positive transformants were identified by 

antibiotic resistance.    

2.4.2.3 Preparation of Agrobacterium competent cells 

Overnight cultures were prepared by inoculating liquid YEB (5 ml) with a single 

colony of Agrobacterium from a YEB-agar plate. The cultures were incubated 

overnight at 28°C in a shaker. An aliquot from overnight cultures (500 µl) was used 

to inoculate fresh YEB media cultures (50 ml). The Agrobacterium cultures were 

incubated with gentle agitation (200 rpm) until the cell densities, determined with a 

DU
®

800 Spectrophotometer (Beckman Coulter, UK), reached an optical density 

OD600 of 1 to1.5. The cultures were split into two aliquots (25 ml) in sterile 50 ml 

Falcon tubes (BD Biosciences, UK) and incubated on ice for 20 min, prior to 

centrifugation for 15 min at 4,000 rpm and 4°C in an Eppendorf centrifuge 5810R. 

The supernatants were discarded. The bacterial pellets were washed by re-

suspending the pellet in pre-chilled sterile water (25 ml) followed by centrifugation 

for 20 min at 4,000 rpm and 4°C. The resulting supernatants were discarded. 

Washing was repeated four times.  Following washing the bacterial pellets were re-

suspended in pre-chilled sterile 10% (v/v) glycerol (2.5 ml) and cells from the same 

original cultures re-combined in a sterile 50 ml Falcon tube. This was followed by 

centrifugation at 4,000 rpm and 4°C for 10 min. The supernatants were discarded. 

Bacterial pellets were re-suspended in pre-chilled sterile 10% (v/v) glycerol (200 µl) 

and separated into aliquots (40 µl) in pre-chilled 2 ml screw-cap microcentrifuge 

http://en.wikipedia.org/wiki/Tryptone
http://en.wikipedia.org/wiki/NaCl
http://en.wikipedia.org/wiki/KCl
http://en.wikipedia.org/wiki/Magnesium_chloride
http://en.wikipedia.org/wiki/Magnesium_sulfate
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tubes. The bacterial cells were then flash frozen in liquid nitrogen and kept at -80°C 

prior to transformation by electroporation. 

2.4.2.4 Electroporation transformation of Agrobacterium 

Electrocompetent Agrobacterium cells, prepared as detailed in section 2.4.2.3, were 

transformed with selected plasmids by electroporation with a Muliporator
®

 

Electroporator 2510 (Eppendorf, UK). Electrocompetent cells (40 µl) were thawed 

on ice. Plasmid DNA (1 µl) was mixed gently with the cells. The mixture was 

transferred to a pre-chilled sterile electroporation cuvette in a pre-chilled cuvette 

holder. The mixtures were subjected to five milliseconds electrical pulses of 1440V. 

Liquid YEB medium (400 µl) was added to Agrobacterium cells. The mixtures were 

transferred to sterile 1.5 ml microcentrifuge tubes and incubated for 1 h at room 

temperature with gentle agitation (200 rpm). Cells were plated on fresh YEB-agar 

plates supplemented with appropriate antibiotic selection and incubated overnight at 

28°C. Positive transformants were identified by antibiotic resistance.    

 

2.5 Extraction and analysis of metabolites 

2.5.1 Carotenoids, chlorophylls and lipids from freeze dried plant material 

Carotenoids, tocopherols, chlorophylls and lipids were extracted from freeze dried 

fruit and leaf tissues. Extractions were made from sample powder (15 mg) in 1.5 ml 

microcentrifuge tubes. Metabolites were extracted by the addition of chloroform and 

methanol (2:1). Samples were stored for 20 min on ice. Subsequently, water (1 vol.) 

was added. Samples were centrifuged for 5 min at top speed in an Eppendorf 5424 

centrifuge. The organic phase, containing the pigment extract, was placed in a fresh 

centrifuge tube and the aqueous phase re-extracted with chloroform (x2 by volume). 

Organic phases were pooled and dried using a GeneVac Ez-2 Plus rotatory 

evaporator (UK). Dried samples were stored at -20°C and resuspended in ethyl 

acetate prior to spectrophotometric and chromatographic analysis (sections 2.5.2, 

2.5.3 and 2.5.4).  
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2.5.2 Spectrophotometric quantification of carotenoids and chlorophylls 

Specific absorption coefficients for an absorbance of a 1% sample in a 1 cm path-

width cuvette have been determined and published for most carotenoids  (A
1% 

in a 1 

cm light path) (Britton et al., 1995). Using these coefficients, the weight (X; mg) of 

carotenoid in a sample solution (Y; ml) can be calculated using the equation below.  

X = (Abs x Y x 1000)/ absorbance coefficient x 100) 

Purified carotenoids, suspended in the appropriate solvents, were quantified using 

the equation above. The absorbance (Abs) of the sample was measured at the 

wavelength corresponding to the absorbance maximum  λ  of the carotenoid in the 

given solvent. Absorbance values were determined using a DU
®

800 

Spectrophotometer (Beckman Coulter, UK). 

The equations below derived, by Wellburn (1994) enable the calculation of 

chlorophyll a (Ca), chlorophyll b (Cb) and total carotenoids concentrations (µg/ml) 

in a mixed sample. The equations utilise the absorbance coefficient values of 

chlorophylls and carotenoids suspended in chloroform and the Abs of a mixed 

sam le measured at the λ of Ca, C  and Cx+c  666 nm, 648 nm and 480 nm 

respectively).  

Ca (chlorophyll a) = (10.91*Abs666) – (1.2*A648) 

Cb (chlorophyll b) = (16.38*Abs648) – (4.57*Abs666) 

Cx+c (total carotenoids) = (1000* Abs480 – 1.42*Ca – 46.09*Cb)/ 202 

Samples obtained from leaf extraction (section 2.5.1), were used for the 

quantification of Ca, Cb and Cx+c. Sample (1 µl) was suspended in chloroform (1 

ml). Abs480, Abs648 and Abs666 were measured using Beckman Coulter DU
®

800 

spectrophotometer and used to quantify Ca, Cb and Cx+c, using the equations above. 

2.5.3 Ultra High Performance Liquid Chromatography 

Carotenoids were separated and identified by Ultra High Performance Liquid 

Chromatography (reverse phase) with photo diode array detection (UPLC-PDA). An 

Acquity™ UPLC  Waters, UK  was used with a BEH C18 column  2.1 x 100 mm, 

1.7 μm  with a BEH C18 VanGuard  re-column  2.1 x 50 mm, 1.7 μm . The mo ile 
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phase used was A, MeOH/H2O (50/50 by volume) and B, ACN (acetonitrile)/ethyl 

acetate (75:25 by volume). All solvents used were HPLC grade and filtered prior to 

use through a 0.2 μm filter. The gradient was 30% A: 70% B for 0.5 min and then 

stepped to 0.1% A: 99.9% B for 5.5 min and then to 30% A: 70% B for the last 2 

min. The column temperature was maintained at 30°C and the temperature of 

samples at 8°C. On-line scanning across the UV/Vis range was performed in a 

continuous manner from 250 to 600 nm, using an extended wavelength PDA 

(Waters, UK). Carotenoids were identified by their spectra (Figure A2-2) and 

quantified from dose-response curves (Figure A2-3). Ketocarotenoid analysis was 

performed using the method described previously, except for the gradient of solvent, 

which was 50% A: 50% B for 0.5 min and then stepped to 30% A: 70% B for 4.5 

min, to 0% A: 100% B for 2 min, back to 30% A: 70% B for 1 min and to 50% A: 

50% B for the two last minutes. 

2.5.4 High Performance Liquid Chromatography 

Carotenoids extracted from plant tissues, as described in section 2.5.1, were 

separated and identified by High Performance Liquid Chromatography with photo 

diode array (HPLC-PDA). An Agilent HPLC (UK) was used with a C30 reverse-

phase (RP) 5 µm column (150 x 4.6 mm) coupled to a C30 guard column (50 x 4.6 

mm, 5 µm) (YMC Inc., USA). For screening analysis, the mobile phases used were 

A, methanol; B water/methanol (20/80 by volume), containing 0.2% ammonium 

acetate, and C, tert-methyl butyl ether. The gradient was 95% A: 5% B for 2 min 

stepped to 80% A: 5% B: 15% C, from which a linear gradient to 30% A: 5% B: 

65% C over 23 min was performed. For detailed analysis mobile phases used were 

A, methanol; B, water/methanol (50/50 by volume), containing 0.2% ammonium 

acetate and C, tert-methyl butyl ether. The gradient was 95% A: 5% B for 6 min 

stepped to 80% A: 5% B: 15% C, from which a linear gradient to 30% A: 5% B: 

65%C over 42 min was performed. A Waters Alliance HPLC system was used 

(Waters 600S controller, Waters 610 pump, Waters 996 photodiode array detector 

and Waters 717plus auto-sampler). The column temperature was maintained at 25°C 

during screening and 12°C during detailed analysis, with a Jones Chromatography 

column heater/cooler. Detection was performed continuously from 220 to 700 nm 

with an online photodiode array detector. Carotenoids were analysed at a wavelength 

of 450 nm. Component identification was performed by co-chromatography and 
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comparison of spectral properties and retention times with authentic standards and 

reference spectra (Britton et al., 2004). The HPLC separation, detection and 

quantification of carotenoids, tocopherols and chlorophylls have been described in 

detail previously (Fraser et al., 2000b). 

2.5.5 Thin Layer Chromatography 

Metabolite extracts (6 l) obtained from freeze-dried tomato tissues (mix of three 

biological replicates), as described in section 2.5.1, were loaded at the bottom of 

HPTLC silica gel 60 F254 plates (Merck, UK). Lipids were separated using a solvent 

system of acetone/toluene/water (91:30:7). They were visualized with iodine vapour 

and identified by co-chromatography with lipids of known composition.  

2.5.6 Lipid extraction and derivatisation for GC-MS analysis 

For quantitative analysis, individual lipids were isolated from TLC plates (section 

2.5.5) and extracted in chloroform/methanol (1:1). Then, internal standard (myristic 

acid-D27; 50 g) was added to the extract prior drying. To transmethylate the lipids, 

the samples were resuspended in hexane (2 ml), methanol (4 ml), plus 1% sulphuric 

acid and incubated at 85°C for 2 h. Hexane (2 ml) and water (1 ml) plus 5% of KCl 

were then added. The hexane phase was dried and resuspended in methanol (20 l) 

for quantification by GC-MS (section 2.5.8). 

2.5.7 Metabolite extraction and derivatisation for GC-MS analysis 

Methanol (400 l) and water (400 l) were added to freeze-dried (10 mg) tomato 

fruit powder mix of three biological replicates. Six technical replicates were utilised. 

Samples were mixed vigorously with a vortex and incubated at room temperature for 

1 h with continuous agitation. Chloroform (800 l) was added and mixed vigorously 

followed by centrifugation at 10,000 rpm for 5 min to remove cell debris. The upper 

phase of the supernatant, containing methanol and water, was collected in a fresh 

microcentrifuge tube. The internal standard ribitol (10 g) was added in an aliquot of 

the collected fraction (20 l) and dried using a GeneVac Ez-2 Plus rotary evaporator 

(UK). At this point, samples could be derivatised immediately or stored without 

degradation at -20°C. Derivatisation was performed by the addition of 

methoxyamine-HCl (30 l; Sigma-Aldrich, UK) prepared at a concentration of 20 

mg/ml in pyridine. After incubation in glass screw-capped tubes at 40°C for 1 h, N-
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methyltrimethylsilytrifluoroacetaminde  (70 l; Sigma-Aldrich, UK) was added and 

incubated for 2 h at 40°C before GC-MS analysis (section 2.5.8).  

2.5.8 Gas chromatography-mass spectrometry 

Gas chromatography-mass spectrometry analysis was performed, as previously 

described (Enfissi et al., 2010), on an Agilent HP6890 (UK) gas chromatograph with 

a 5973MSD. Typically, samples (1 l) were injected with a split/splitless injector at 

290°C with a 20:1 split. Retention time locking to the internal standard was used. 

The gas chromatography oven was held for 4 min at 70°C before ramping at 

5°C/min to 310°C. This final temperature was held for a further 10 min, making a 

total time of 60 min. The interface with the MS was set at 290°C and MS performed 

in full scan mode using 70 eV EI+ and scanned from 10 to 800 D. To identify 

chromatogram components found in the tomato profiles, a mass spectral (MS) library 

was constructed from in-house standards, as well as the NIST08 MS library. 

Retention time calibration was performed on all standards to facilitate the 

determination of retention indices (RIs). Using the retention indices and MS, 

identification was performed by comparison with the MS library. Relative 

quantification to the internal standard was performed. 

 

 

2.6 Extraction and analysis of proteins 

2.6.1 Protein extraction 

Following carotenoid extraction and removal of the organic phase (section 2.5.1), a 

volume of methanol, equal to the organic phase removed, was added. The sample 

was mixed vigorously using a vortex mixer and centrifuged for 5 min at 14,000 rpm 

in an Eppendorf 5424 centrifuge (UK). The supernatants were discarded. Protein 

pellets were air dried and stored at -20°C prior to analysis. 

2.6.2 Protein quantification  

Protein quantification was carried out using a Quick Start Bradford Microassay (Bio-

Rad). Bovine Serum Albumin (BSA) (Sigma-Aldrich, UK) standards were prepared 

at concentrations of 0, 0.2, 0.4, 0.6 and 0.8 g/l in 1.5 ml microcentrifuge tubes. 

Proteins (section 2.6.1) were resuspended in 0.5 M Tris-HCl. Aliquots (20 l) were 
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added in fresh microcentrifuge tubes. Bradford dye reagent (1 ml) (Bio-Rad) was 

added to each tube and mixed with a vortex. Tubes were incubated for 15 min at 

room temperature. The OD595 of each mixture was measured with a DU
®

800 

Spectrophotometer (Beckman Coulter, UK). Absorbance measurements for BSA 

standards were used to create a standard curve. The protein concentration was 

calculated by comparison of the sample OD595 with the BSA standard curve.  

2.6.3 Separation of proteins on SDS-PAGE 

The precipitated protein pellets (section 2.6.1), were resuspended in SDS loading 

buffer (30-100 l; 0.5 M Tris-HCl (pH 6.8) 10% (v/v) glycerol, 10% (w/v) SDS, 

0.05% (w/v) bromophenol blue, 1.4% (v/v) b-mercaptoethanol) and transferred to 

1.5 ml microcentrifuge tubes. Tubes were incubated for 5 min in boiling water. 

Solubilised proteins were separated by sodium dodecyl sulphate polacrylamide gel 

electrophoresis (SDS-PAGE). Aliquots (5 l), of solubilised proteins in SDS loading 

buffer, were loaded in 0.5 cm wells in 12.5% SDS-PAGE gels. The stacking gel was 

composed of acrylamide/bis-acrylamide solution (16.7% v/v) (National Diagnostics), 

Tris-HCl (0.5 M; 12.6% v/v; pH 6.8), SDS (0.1% w/v), ammonium persulphate 

(0.1% w/v), and tetramethylethylenediamine (temed) (0.1% v/v). The running gel 

comprised acrylamide/bis-acrylamide solution (40% v/v), SDS (0.1% w/v), Tris-HCl 

(1.5 M; 25% v/v; pH 8.8), ammonium persulphate (0.1% w/v) and temed (0.1% v/v). 

Gels were cast in Hoefer Scientific Instrument gel-casting apparatus. The running 

buffer was Tris (0.25 M), glycine (1.92 M), and SDS (1% w/v). High-Range 

Rainbow Molecular Weight Markers (RPN756E, GE Healthcare) were run alongside 

the protein samples. Gels were run at 80V per gel for c.a. 3 h in Hoefer protein-

electrophoreses apparatus.  

2.6.4 Gel staining 

Protein gels were silver stained using a ProteoSilverTM Plus Silver Stain Kit 

(Sigma-Aldrich, UK). Gels were incubated in fixing solution (50% (v/v) ethanol 

10% (v/v) acetic acid) for 20 min, followed by two washes (each for 10 min), the 

first in 30% (v/v) ethanol and the second in distilled water. Gels were sensitized for 

10 min in Sensitizer solution (1% v/v of ProteoSilver Sensitizer), followed by two 10 

min washes in distilled water. Gels were equilibrated in Silver solution (1% v/v of 

ProteoSilver Solution) for 10 min. A final wash in distilled water was performed for 
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1.5 min before gel development. Gels were developed with Developer solution (5% 

v/v of ProteoSilver Developer 1 and 0.1% v/v of ProteoSilver Developer 2). 

ProteoSilver Stop Solution (5 ml) was added to stop the development of the gels 

when the required colour intensity was obtained. Gels were scanned with an image 

scanner (Amersham Biosciences). 

2.6.5 Western blotting 

SDS-PAGE gels (section 2.6.3) were used for Western blotting using a Mini Trans-

Blot Electrophoretic Transfer Cell and PowerPac 300 (Bio-Rad). An ImmobilonTM-

P transfer membrane (polyvinylidene fluoride (PVDF) membrane with 0.45 m pore 

size; Millipore) and two pieces of filter paper (3 mm thick) were cut to match the 

size of the selected gel. The transfer membrane and filter papers were equilibrated in 

methanol (20%) for 10 sec, followed by Transfer Buffer (TB; 25 mM Tris, 192 mM 

glycine, and 20% (v/v) methanol) for a minimum of 10 min, prior to blotting. The 

SDS-PAGE gels were rinsed in TB and overlaid with equilibrated transfer 

membranes. The gels and transfer membranes were sandwiched between 2 pieces of 

equilibrated filter paper and two TB soaked foam pads, in a gel holding cassette. The 

cassette was inserted into a Mini Trans-Blot Electrophoretic Transfer Cell (Bio-Rad), 

together with a cooling unit filled with frozen sterile water. The cell was filled with 

TB and run for ~1 h at 100V, to transfer the proteins from the gel to the transfer 

membrane. The membranes were incubated in BSA (1% w/v), overnight at 4°C with 

gentle agitation (200 rpm), in order to block protein binding sites. Primary antibodies 

solutions were prepared by diluting the antiserum in TBST (5 mM TrisHCl pH 7.5, 

15 mM NaCl, 0.01% v/v Tween20) with 0.1% (w/v) of BSA. Primary antibodies 

were used to target the following proteins (values in parenthesis are the v/v 

dilutions): CRTI (1/5,000), CRTB (1/1,000), plastoglobulin 35 (PGL35) (1:3,000), 

PsbA D1 protein of PSII, C terminal (1:10,000), RuBisCO large subunit (RbcL), 

form I and II (1:10,000), chloroplast inner envelope membrane translocon complex 

protein (TIC40) (1:5,000) and chloroplast outer envelope membrane translocon 

complex OEP75 protein (TOC75) (1:1,000). The appropriate primary antibody was 

bound to the membrane by incubation for 1 h, with gentle agitation (200 rpm). 

Membranes were washed three times for 10 min with gentle agitation (200 rpm) in 

TBST. The secondary antibody was bound to the membranes by incubation for 2 h. 

The secondary antibody used was Anti-Rabbit IgG Alkaline Phosphatase Conjugate 
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(Promega, UK) at a 1:5000 (v/v) dilution. Membranes were washed three times for 5 

min in TBST and twice for 1 min in TBT (5 mM TrisHCl pH 7.5, 15 mM NaCl), 

with gentle agitation (200 rpm). Visualization of the immunoreactions was 

performed with FASTTM BCIP®/NBT (5-bromo-4chloro-3-indlyl phosphate/nitro 

blue tetrazolium tablets; Sigma-Aldrich, UK). One tablet was dissolved in 20 ml of 

distilled water. Membranes were incubated in this solution until the desired density 

of colour was obtained. The reaction was stopped by washing the membranes in 

distilled water twice for 2 min. Molecular weights of the proteins were determined 

by comparison with parallel lanes of High-Range Rainbow Molecular Weight 

Markers (GE Healthcare, UK). 

 

2.6.6 Liquid Chromatography-mass spectrometry 

2.6.6.1 In-Gel Digestion of Protein Bands 

Stained bands corresponding to the proteins of interest were excised from the SDS-

PAGE gels (section 2.6.3) using a scalpel, cut into 1 mm cubes, and placed in 

microcentrifuge tubes (0.5 ml). Gel sections were washed three times for 10 min 

with 50 mM ammonium bicarbonate, pH 8.0 (50 μl). Washed gel sections were dried 

3 times with acetonitrile (50 μl) for 10 min. Once the gel pieces shrank and turned 

opaque, 12.5 ng/μl trypsin (10 μl) dissolved in 50 mM ammonium bicarbonate, pH 

8.0, were added. An additional 15 μl of 50 mM ammonium bicarbonate was added to 

each tube in order to cover the gel pieces. The tubes were incubated at 37°C 

overnight and the supernatant was transferred to a fresh microcentrifuge tube. 

Tryptic peptides were sequentially extracted with ACN/H2O (25 μl; 50:50, v/v) with 

0.1% (v/v) of trifluoroacetic acid (TFA) sonicating for 10 min (twice). The peptide 

extracts were combined and dried using a GeneVac Ez-2 Plus rotary evaporator 

(Ipswich) and reconstituted in 5 μl of 0.1% v/v TFA. The peptide samples were 

cleaned with ZipTip C18 (Millipore, USA), prior to the nano-LC-MS/MS analysis 

and peptides were eluted with H2O:ACN (10 l; 50:50, v/v) with 0.1% of formic 

acid. 

2.6.6.2 Nano-LC/MS/MS conditions 

The nano LC-MS/MS analyses were performed using an Ultimate 3000 RSLC nano 

system from Dionex (Thermo Fisher Scientific Ltd, UK), coupled to an AmaZon 
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ETD ion-trap mass spectrometer, equipped with a nanoelectrospray ionization source 

(Bruker Daltonik, Germany). Loading buffer (20 l; H2O:acetonitrile, 98:2, v/v with 

0.1% of formic acid) were added to the sample and  were injected (2 l) into the LC-

MS system by using the autosampler. Sample was pre-concentrated on a Dionex 

Acclaim® PepMap 100 column (100m x 2 cm, C18, 5m, 100Å) (Dionex 

Corporation, LC Packings) at a flow rate of 4l /min and using 0.1% (v/v) of TFA 

as mobile phase. After 3 min of pre-concentration, the trap column was 

automatically switched in-line with a Dionex Acclaim® PepMap RSLC nano-

column (75m x 15cm, C18, 2m, 100Å) (Dionex Corporation, LC Packings). 

Mobile phases consisted of solvent A, containing 0.1% formic acid in water, and 

solvent B, containing 0.1% formic acid in 100% acetonitrile. Chromatographic 

conditions were a linear gradient from 95 to 60% solvent A in 45 min at a flow rate 

of 0.250 μl/min at 30ºC. The column outlet was directly coupled to a nano 

eletrospray ion source. The positive mass spectrum was recorded for a mass range 

m/z 300-2000, followed by MS/MS scans of the three most intense peaks. Typical 

ion spray voltage was in the range of 2.5-3.0 kV, and nitrogen was used as collision 

gas. The ion trap was used in Ultrascan mode with a maximum accumulation time of 

200 ms and an average of 5 ms. Other source parameters and spray position were 

optimized with a tryptic digest of BSA protein. 

2.6.6.3 Database search 

Automated spectral processing and peak list generation was performed using Mascot 

Distiller v2.4.2.0 software (Matrix Science, USA) (hppt://www.matrixscience.com). 

The database search was done through Mascot Daemon software in combination 

with the Mascot interface 2.2 (Matrix Science, USA) 

(hppt://www.matrixscience.com). Mascot searches were done with no enzymatic 

specificity and a peptide tolerance on the mass measurement of 100 ppm and 0.6 Da 

for MS/MS ions. Carbamidomethylation (C) and oxidation of Met were used as 

variable modifications. Identification of the protein origin of the identified peptides 

was done using UniProt protein database. BLAST was used as a basic local 

alignment search tool to find regions of local similarities between the identified 

proteins and the protein sequences of Solanum lycopersicum 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). 
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2.7 Isolation and fractionation of organelles  

2.7.1 Chromoplast fractionation (system 1) 

Chromoplast extraction was undertaken in a cold room at 4°C. Fresh tomato fruits, 

ca. 10, (breaker + 3 to + 5 days, 90 to 150 g) were harvested from selected plants, cut 

into pieces of ~1 cm
2
, covered in foil and stored at 4°C overnight, to reduce starch 

content. Tomato tissue was homogenised in pre-chilled chromoplast extraction 

buffer (0.4 M sucrose, 50 mM Tris, 1 mM DTT, 1 mM EDTA, pH 7.8), twice for 3 

sec in a small laboratory blender (Waring Products, UK). The resulting slurry was 

filtered through 4 layers of muslin cloth and the liquid decanted into a 500 ml screw 

cap centrifuge tube. Subsequently, tubes were centrifuged for 10 min at 5,000 g and 

4°C in a Sorval RC5C centrifuge (Thermo Scientific, UK), with a GSA-3 rotor. The 

supernatant was discarded, the pellet resuspended in extraction buffer and transferred 

into 50 ml centrifuge tubes. The tubes were centrifuged for 10 min at 9,000 g and 

4°C with the GSA-5 rotor. The supernatants were discarded. Pellets were 

resuspended in 45% sucrose buffer (45% w/v sucrose, 50 mM Tricine, 2 mM EDTA, 

2 mM DTT, 5 mM sodium bisulphite, pH 7.9; 3 ml). The chromoplasts were 

physically broken by using a hand held potter homogenizer (VWR, UK). The 

solutions were then resuspended in 45% sucrose buffer (5 ml) and the 8 ml were 

placed in a 38.5 ml Ultra-Clear
TM

 centrifuge tube (Beckmann Coulter, UK). 

Subsequently, other layers of discontinuous sucrose gradient were overlaid, 

consisting of 38% w/v sucrose buffer (6 ml), then 20% w/v sucrose buffer (6 ml), 

15% w/v sucrose buffer (4 ml) and 5% w/v sucrose buffer (8 ml). Three gradients 

were prepared concurrently. Gradients were centrifuged for 17 h at 100,000 g and 

4°C, using an L7 ultracentrifuge with an SW28 swing out rotor (Beckman Coulter, 

UK). Fractions (1 ml) were collected, from the top of the gradients using a 

Minipuls
®

3 peristaltic pump and FC203B fraction collector (Gilson, UK). 

Carotenoids were extracted using the same method detailed in section 2.5.1. Dried 

extracts were stored at -20°C prior to UPLC-PDA analysis (section 2.5.3). Proteins 

remaining in the aqueous phases were precipitated, as described in section 2.6.1 for 

TEM analysis (2.8.2), samples were dialysed overnight against phosphate buffer (50 

mM, pH 7.5). 
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2.7.2 Chromoplast fractionation (system 2) 

Chromoplasts were isolated as in system one (section 2.7.1). However, instead of 

resuspending the pellets obtained after the centrifugation step at 9,000 g (section 

2.7.1), they were resuspended in 0.6 M sucrose buffer (0.6 M sucrose, 50 mM Tris,1 

mM DTT,1 mM EDTA, pH 7.8; 3 ml) and homogenised using a hand held Potter 

homogenizer (VWR) in order to break the chromoplasts. The solution was then 

resuspended in 0.6 M sucrose buffer to a final volume of 35 ml in 38.5 ml Ultra-

Clear
TM

 centrifuge tubes (Beckmann Coulter, UK). Tubes were centrifuged for 1 h at 

100,000 g and 4°C, using an L7 ultracentrifuge with an SW28 swing out rotor 

(Beckman Coulter, UK). The red-coloured supernatants, which correspond to the 

chromoplast crystals and plastoglobules were transferred in microcentrifuge tubes 

and stored at -20°C.  The pellets were resuspended in 45% sucrose buffer (8 ml) and 

placed in a 38.5 ml Ultra-Clear
TM

 centrifuge tube (Beckmann Coulter, UK). The 

same gradient and protocol, as that of system one (section 2.7.1) was used. The two 

systems are represented in Figure A2-4.  

2.7.3 Separation of chromoplast type by sucrose gradient centrifugation 

Chromoplast extraction was undertaken in a cold room at 4°C. Fresh tomato fruits 

(200 g) were harvested from selected plants, cut into pieces of ~1cm
2
, covered in foil 

and stored at 4°C overnight, to reduce starch content. Tomato tissue was 

homogenised in pre-chilled chromoplast buffer A (100 mM Tris-HCl pH 8.2, 0.33 M 

sorbitol, 2 mM MgCl2, 10 mM KCl, 8 mM EDTA,10 mM ascorbic acid, 5 mM L-

cysteine,1 mM PMSF, 1% PVPP, 1 mM DTT), twice for three sec in a small 

laboratory blender (Waring Products). The resulting slurry was filtered through 4 

layers of muslin cloth and the liquid decanted into a 500 ml screw cap centrifuge 

tube. Subsequently, tubes were centrifuged for 15 min at 5,000 g and 4°C in a Sorval 

RC5C centrifuge (Thermo Scientific, UK), with a GSA-3 rotor. The supernatants 

were discarded. The pellets were resuspended in buffer B (buffer A without PVPP) 

and transferred into 50 ml centrifuge tubes. The tubes were centrifuged for 15 min at 

5,000 g and 4°C with the GSA-5 rotor. The supernatants were discarded. The pellets 

were resuspended in buffer B (4 ml). In 38.5 ml Ultra-Clear
TM

 centrifuge tubes, a 

discontinuous sucrose gradient (sucrose w/v in 50 mM Tris-HCl pH 7.4 

supplemented with 1 mM DTT) with the following steps was constituted: 50% (9 
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ml), 40% (7 ml), 30% (7 ml) and 15% (7 ml) of sucrose. The chromoplast solutions 

(4 ml) were placed on top of the gradients. Gradients were centrifuged for 1 h at 

100,000 g and 4°C, using an L7 ultracentrifuge with an SW28 swing out rotor 

(Beckman Coulter, UK). The chromoplast fractions were recovered with a Pasteur 

pipette in microcentrifuge tube, washed in one volume of buffer B followed by 

centrifugation at 6,000 g for 10 min. The supernatants were discarded and the pellets 

of chromoplasts stored at -20°C. 

 

2.8 Transmission electron microscopy (TEM) 

2.8.1 TEM of tomato pericarp 

Tomato fruit were cut into 2 mm cubes using a new sharp razor blade in a drop of 

cold fixative (CAB; 2.5% glutaraldehyde in 100 mM sodium cacodylate buffer, pH 

7.2) on dental wax. Pieces of tissue were transferred into a glass vial (with a cocktail 

stick) containing cold fixative (~2 ml). Lids were placed on the vials and tissue was 

fixed in the fridge  4˚C  o ernight. Tissue was washed twice in CAB for 10 min each 

time and then post fixed in 1% osmium tetroxide in CAB for 1 h at room 

tem erature  20˚C . Tissue was washed twice for 10 min each time in milliQ water. 

Tissue was dehydrated in increasing concentrations of ethanol 50, 70, 90% (10 min) 

and three times with ethanol 100% (15 min). Tissue was then washed (10 min) in the 

transition solvent propylene oxide. Tissue was then transferred into 50% propylene 

oxide 50% agar low viscosity resin (ALVR) (Agar Scientific) for 30 min. Tissue was 

then placed in 100% ALVR, twice, 1.5 h, with vacuum applied four times during the 

incubation. Tissue pieces were then placed in labelled silicone moulds and 

 olymerised in the o en  60˚C  for 24 h. Polymerised  locks were sectioned  70 nm  

on a RMC MTXL ultramicrotome and sections were collected on 400 mesh copper 

grids. Sections were counterstained with 4.5% uranyl acetate in 1% acetic acid for 45 

min and Reynolds lead citrate for 7 min. Sections were viewed in a Jeol 1230 TEM, 

with an accelerating voltage of 80 kV. Images were recorded with a Gatan digital 

camera. 
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2.8.2 TEM of sub-chromoplast fractions 

Two previous methods were combined (De Camilli et al., 1983; Angaman et al., 

2012). Dialysed sub-chromoplast fractions (section 2.7.1) were pelleted in 

microcentrifuge tubes and fixed in 2.5% (v/v) glutaraldehyde in 100 mM phosphate 

buffer (PB) (pH 7.4) for 1 h at room temperature. Fixed sub-chromoplast 

components were pelleted in a microfuge tube and washed 2 x 10 min in PB. After 

the final wash components were resuspended in PB (100 ml). Aliquots (100 l) of 

fixed component were added to tubes immersed in a 54°C water bath. After a 15 sec 

interval, which allowed the suspension to warm up, 100 ml of a solution (at 54°C) 

containing 3% agarose in 5 mM PB was added to the sub-chromoplast suspension. 

The suspension obtained was quickly mixed, while still immersed in the warm water 

bath, by forcing it up and down through a Pasteur pipette pre-warmed in a 60°C 

oven. Care was taken to prevent foaming. Immediately afterwards, the agarose-sub-

chromoplast suspension was transferred by pipetting into a frame made from two 

glass slides separated by a shaped acetate gasket and held together by bull dog clips. 

The frame had also been pre-warmed in a 60°C oven. The agarose mixture was then 

allowed to cool and solidify. At this point, the two glass slides were separated and 

the agarose gel, attached to one of the glass slides, was cut into 2 mm squares with a 

razorblade. The gel squares were then washed off the glass slide into a petri dish by a 

stream of 0.1% Alcian blue in 1% acetic acid from a Pasteur pipette. These agarose 

squares were then transferred to glass vials and washed (2 x 10 min) in PB to remove 

stain. The Alcian blue stain made the agarose squares visible and aided subsequent 

processing and resin embedding. Samples were post-fixed in 1% osmium tetroxide 

(OsO4) containing potassium ferricyanide (K3Fe(CN)6, 0.8% (w/v)) in the same 

phosphate buffer for 1 h at room temperature. Then, after washes in milliQ water, 

TEM was carried out, as described in section 2.8.1.  

 

2.9 Statistical analysis 

A minimum of three biological and three technical replicates were analysed for every 

experiment unless stated otherwise. Metabolite levels from the different technology 

platforms were combined. PCA was performed on these data matrices. SIMCA-P+ 

software v. 13.0.2 (Umetrics, UK) was used to carry out and display clusters derived 
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from PCA analysis. GraphPadPrism software v.5 (GraphPad Software, UK) or Excel 

 Microsoft  em edded algorithms were used to calculate student’s t-tests or 

Dunnett’s test in order to determine significant differences  etween the transgenic 

lines and the control AC. Where appropriate, P < 0.05, P < 0.01, and P < 0.001 are 

indicated by *, **, and ***, respectively. The term significant was used in this 

manuscript to indicate statistical significant differences. 
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3.1  Introduction 

Optimising the production of carotenoids in tomato plants through expression of 

heterologous genes is a strategy that has been used successfully to genetically 

engineer the carotenoid pathway (Romer et al., 2000; Enfissi et al., 2005; Wurbs et 

al., 2007). Contrary to the overexpression of endogenous genes in plants, expression 

of heterologous genes such as those derived from bacteria can be advantageous in 

avoiding cosuppression and gene silencing (Fray et al., 1995; Fraser et al., 2002) as 

well as alleviating the impact of endogenous regulatory mechanisms. In this study, 

three tomato lines expressing the bacterial genes: (i), geranylgeranyl diphosphate 

synthase (CrtE); (ii), phytoene synthase (CrtB) and (iii), phytoene desaturase (CrtI) 

independently were chosen (details on the constructs are given in Appendix FA2-1; 

and the catalytic action of the enzymes is described in Figure 1-20) and genetically 

crossed in order to investigate the potential effect of coordinate expression of 

multiple bacterial genes on carotenoid production. 

 

3.2 Results 

3.2.1 Generation and selection of lines with different carotenoid gene combinations 

produced by genetic crossing 

Tomato varieties containing the Pantoea ananatis (i), geranylgeranyl diphosphate 

synthase (CrtE); (ii), phytoene synthase (CrtB) both under the control of the tomato 

polygalacturonase fruit specific promoter  and (iii), phytoene desaturase (CrtI) under 

the control of the CaMV 35S constitutive promoter were used as parental lines for 

stacking the transgenes by genetic crossing (section 2.1.2). These parental lines were 

all homozygous for the transgenes of interest and showed inheritable 

phenotypes/genotypes beyond the F5 generation. Genetic crosses were performed in 

a complementary manner, with the pollen of one transgenic parent placed onto the 

stigma of another after emasculation and vice versa. A minimum of six 

complementary crossing events were carried out to establish combinations of the 

following heterologous carotenoid genes CrtE+B, CrtE+I, and CrtB+I. From these 

crosses, ten F1 plants per crossing event were generated and screened by PCR for the 

presence of transgenes (Figure 3-1). Four PCR positive lines for each combination 
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were selected for further analysis. No changes in the phenotype of the crosses were 

observed compared to the Ailsa Craig (wild type), when grown concurrently. The 

only exceptions were the lines containing the CrtI gene which had slight altered fruit 

morphology (e.g. globe shaped fruit).  

 

 

 

Figure 3-1 PCR confirmation of the presence of CrtE and CrtI genes in the CrtE+I 

lines 

Amplification of the genes CrtI (163bp) and CrtE (142bp) was performed by PCR on four plants of 

the CrtE+I genetic cross and visualised under UV light. DNA was extracted from a pool of 4 

representative leaves of each genotype. NTC: non template control; AC: Ailsa Craig tomato variety 

(wild type). Numbers (purple) indicate different biological replicates. The same approach was 

undertaken for CrtE+B and CrtB+I lines. 

 

 

The lines were screened for total pigment content and those exhibiting the highest or 

altered carotenoid contents were taken to mature plants in the F2 generation. The 

generation of a double homozygous CrtB+I line was also undertaken as the CrtB+I 

hemizygous line showed an interesting increase in carotenoids. The selection of this 

CrtB+I homozygous line is described in section 2.3.7. 
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3.2.2 Assessment of carotenoid profiles in tomato fruits and leaves of all transgenic 

lines 

In order to fully assess the Crt gene combinations and the effects of gene dosage, 

detailed analysis of carotenoids, chlorophylls and tocopherols were performed on 

lines, both in the hemizygous and homozygous states. Leaf and fruit tissue extracts 

of tomato plants, were screened by Ultra and High Performance Liquid 

Chromatography with on-line photo-diode array detection (UPLC-PDA and HPLC-

PDA) to enable the estimation of the level of carotenoids being produced in each 

transgenic plant and their control Ailsa Craig (AC). The UPLC and HPLC methods 

are described in sections 2.5.3 and 2.5.4. Chromatogram profiles of carotenoids, 

chlorophylls and -tocopherol and their spectral characteristics are showed in Figure 

3-2. 

 

The HPLC/UPLC profiles of the leaf pigments revealed significant qualitative 

differences that could be attributed to the presence of the CrtI gene (Figure 3-2). 

Quantification indicated that -carotene had increased 1.5- to almost 2-fold and other 

-ring derived carotenoids such as violaxanthin (and its isomers) displayed similar 

increases (Table 3-1). The total carotenoid content was also increased (~1.4-fold), 

which contributed to a decreased chlorophyll:carotenoid ratio (Table 3-1). In 

comparison to the wild type, no significant differences in carotenoid contents were 

found in the lines expressing the CrtE and CrtB genes. 
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Figure 3-2 Chromatographic profiles of carotenoids, chlorophylls and -tocopherol 

of AC and CrtB+I lines (a), with the chromatographic annotations and spectral 

characteristics (recorded from 250 to 600 nm) (b), obtained by HPLC analysis 
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A similar situation occurred in the tomato fruit, where the presence of the CrtI gene 

in the ripe tomato fruit confers the greatest changes in carotenoid and tocopherol 

levels compared to the other genes, CrtE and CrtB (Table 3-1). Indeed, in 

comparison to the wild type, the hemizygous and homozygous CrtE lines showed a 

similar carotenoid profile, and only a significant increase of phytoene level (1.2-fold) 

is noticeable in the hemizygous CrtB line. However, there was a significant increase 

of lycopene level in the CrtE+B line (1.4-fold) as well as in the homozygous CrtB 

line (2.2-fold). The hemizygous CrtI line was characterised by a high level of -

carotene (2.3-fold increase compared to AC), a greater content of -carotene, lutein 

and -tocopherol, and a substantial decrease of phytoene and phytofluene (0.4-fold). 

The presence of an early step carotenoid gene (CrtE or CrtB) in the hemizygous 

CrtE+I and CrtB+I lines alleviated the decrease of phytoene and phytofluene. 

Moreover, an increase of lycopene content (1.4 fold) was also observed in the 

hemizygous CrtB+I line. The homozygous CrtI line had a similar carotenoid profile 

to the hemizygous CrtB+I line. Surprisingly, the level of lycopene in the 

homozygous CrtB+I line was comparable with the wild type. However, the -

carotene content of this line was the highest compared to all the CrtI lines studied 

(e.g. CrtI gene on its own, or in combination). 

 

Analysis of ripe fruit pigments derived from the various Crt gene combinations 

indicated that the CRTI enzyme solely or in combination with the CRTE and CRTB 

enzymes, conferred the greatest effects on lycopene and -carotene contents 

compared to the wild type, either in the hemizygous or homozygous states (Table 3-

1). Analysis of carotenoid pigments among the genotypes of the different Crt gene 

combinations revealed CrtB+I as the best line for fruit carotenoid content. Therefore, 

further characterisation was performed to ascertain the underlying mechanisms 

associated with the effects of this gene combination. 
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LEAF 

Genotype AC CrtE CrtB CrtI CrtE+B CrtE+I CrtB+I 

Zygosity -  homozygous  hemizygous  

-Carotene 219 ± 15 331  ± 7 217 ± 7 298 ± 6* 228 ± 4 361 ± 32* 319 ± 13* 

Violaxanthin 335 ± 16 347 ± 10 322 ± 9 535 ± 4** 344 ± 4 552 ± 22* 549 ± 14** 

Lutein 303 ± 20 316 ± 8 311 ± 7 294 ± 9 310 ± 11 280 ± 16 253 ± 8 

Total CAR 856 ± 51 894 ± 24 851 ± 23 1127 ± 18* 881 ± 19 1193 ± 69* 1120 ± 26* 

Chlorophyll a 9433 ± 2210 10825 ± 642 11005 ± 448 8107 ± 213 9534 ± 1264 7501 ± 422 7301 ± 507 

Chlorophyll b 1346 ± 598 1817 ± 289 2217. ± 93 589 ± 190 1468 ± 429 426 ± 274 519 ± 70 

CHL: CAR 13 ± 3 15 ± 1 15  ± 1 8 ± 1 13 ± 2 7 ± 1 7 ± 1 

 

FRUIT 

Genotype AC CrtE CrtB CrtI CrtE+B CrtE+I CrtB+I CrtE CrtB CrtI CrtB+I 

Zygosity -  hemizygous  homozygous  

Phytoene 133  ± 16 136  ± 4 160 ± 4* 52  ± 7*** 143  ± 8 70  ± 7*** 56 ± 8*** 149 ± 15 124 ± 12 41 ± 1*** 42 ± 3*** 

Phytofluene 134 ± 24 141  ± 4 146  ± 11 55  ± 13*** 138  ± 5 84  ± 2** 81 ± 2** 153 ± 11 134 ± 8 79  ± 1** 40 ± 1*** 

Lycopene 1224 ± 255 1434  ± 55 1352  ± 108 1191 ± 10 1681  ± 258* 1285  ± 168 1656 ± 6* 1602 ± 21 2696 ± 146*** 1780 ± 74* 1109 ± 113 

-Carotene 321  ± 32 322  ± 10 220  ± 19*** 785 ± 11*** 296  ± 18 560  ± 39*** 665 ± 55*** 286 ± 8 377 ± 40 680 ± 93*** 803 ± 40*** 

-Carotene 62 ± 7 56  ± 2 48 ± 2* 93  ± 14* 61  ± 3 71  ± 3 74 ± 2* 66 ± 4 71 ± 5 81  ± 6** 69 ± 3 

Lutein 122 ± 15 132  ± 3** 117 ±  9 155  ± 5* 116  ± 2 120  ± 2 122 ± 1 120 ± 4 114 ± 1* 114 ± 2* 117 ± 5 

Total CAR 1995  ± 327 2220  ± 73 2042 ± 136 2330 ± 26 2435  ± 251 2190  ± 177 2649  ± 117** 2376 ± 328 3517 ± 179*** 2775 ± 368* 2179 ± 140 

-Tocopherol 256  ± 39 283  ± 10 229 ± 8 319  ± 8** 232  ± 21 336  ± 19** 385 ± 42** 334 ± 40* 331 ± 63 378  ± 24*** 343 ± 16** 

 

Table 3-1 Carotenoid, chlorophyll and tocopherol contents in the leaves and fruits of the transgenic lines
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Table 3-1 Carotenoid, chlorophyll and tocopherol contents in the leaves and fruits of 

the transgenic lines 

Carotenoid, chlorophyll, and tocopherol contents are presented as g/g DW. Four representative 

leaves and three representative fruits from a minimum of three plants were used. The leaves and fruits 

were pooled and three determinations were made per sample, making a minimum of three biological 

and three technical replicates. Methods used for these determinations are described in section 2.5. The 

mean data are presented ± SD, with n=9. Violaxanthinindicates the presence of violaxanthin and 

isomers; CHL, chlorophyll and CAR, carotenoid. Dunnett’s test was used to determine significant 

differences between the wild type background (AC) and the transgenic varieties. Values in bold 

indicate where significant differences have been found. P<0.05, P<0.01 and P<0.001 are designated 

by *, **, and ***, respectively. 

 

3.2.3 Biochemical and molecular characterisation of the CrtB+I line 

3.2.3.1 Spatial repartition of carotenoids within the different tissues of the tomato 

fruit 

In ripe fruit, carotenoids and tocopherols were quantified (by UPLC analysis) in the 

pericarp, jelly and columella tissues of the homozygous CrtB, CrtI and CrtB+I lines 

and compared to the same material in wild type background (Table 3-2 and Figure 3-

3). Carotenoids and -tocopherol were found in all the fruit tissues, but not in the 

same proportion. Analysis of wild type tissues showed that, on a DW basis per unit 

mass, pericarp tissue contained the most carotenoids, with about 50% of total 

carotenoid present. The columella sequestrated 30% of total carotenoids, while the 

jelly tissue contained about 20%. In the transgenic lines CrtB, CrtI and CrtB+I, the 

distribution of total carotenoid within the fruit compartments was comparable to that 

of the control, although quantitative increases were evident in the different tomato 

tissues. For example, total carotenoid content was elevated in the pericarp and 

columella by 1.3- and 1.4-fold, respectively in the CrtB line. In the CrtI line, the 

columella tissue had a 1.2-fold increase.  

Lycopene and -carotene are the predominant carotenoids in the tomato fruit and of 

the most biotechnological interest. Therefore, for clarity, analysis focused only on 

these two carotenoids (Figure 3-3). Lycopene was mainly found in the pericarp of 

the control and all the transgenic lines while -carotene was the most abundant 

carotenoid in the jelly of all lines. However, the predominant carotenoid in the 
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columella varied among the different lines. Lycopene was the main carotenoid in the 

columella tissue of the wild type and the CrtB lines, whereas -carotene 

predominated in CrtI and CrtB+I lines. In order to understand how the changes in 

carotenoid contents were distributed in the fruit tissues, the changes arising have 

been represented as relative fold changes for each carotenoid analysed. Although the 

lycopene levels increased in the pericarp and in the columella tissues of CrtB 

(homozygous) line, the greatest increase occurred in the columella (2.3-fold 

increase). The -carotene levels increased in all the fruit tissues of CrtI and CrtB+I 

(homozygous) but the greatest change was seen in the columella (2.2- and 2.5-fold 

increase, respectively for CrtI and CrtB+I lines). The carotenoids, lycopene and -

carotene, were preferentially stored in the pericarp of the fruit for all lines. However, 

when their level varied significantly due to the expression of heterologous genes, the 

greatest accumulation of these carotenoids occurred in the columella.                                                                              
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Table 3-2 Carotenoid content found in the pericarp, jelly and columella tissues of ripe fruit derived from the genetic crosses containing different 

gene combinations 

Carotenoid contents are presented as g/g DW. Methods used for this determination are described in section 2.5. Determinations were made from three independent pools of 

three fruits, each pool with three technical replicates. The mean data are presented with ± SD. Dunnett’s test was used to determine significant differences between the wild 

type background (AC) and the transgenic varieties for each compound. Values in bold indicate where significant differences have been found. P<0.05, P<0.01 and P<0.001 

are designated by *, **, and ***, respectively. CAR, carotenoid. 

 

Line

Lutein 154.6 ± 4.6 132.6 ± 0.9* 150.6 ± 1.4 158.4 ± 3.1 150.8 ± 0.6 142.5 ± 2.2 142.7 ± 5.6 143.6 ± 6.1 127.5 ± 0.7 123.0 ± 0.9* 135.2 ± 4.1 133.3 ± 3.6

Lycopene 1154.8 ± 120.1 2021 ± 67.2* 1358 ± 58.2* 1201.7 ± 14.4 226.2 ± 31.2 248.4 ± 28.4 184.3 ± 10.6 192.0 ± 47.4 526.9 ± 25.8 1191.0 ± 22*** 491.8 ± 48.3 416.7 ± 60.1

-Carotene 99.1 ± 4.4 85.2 ± 10.1 88.7 ± 9.7 87.5 ± 3.9 70.3 ± 5.5 60.5 ± 1.7 71.7 ± 5.3 69.5 ± 5.5 89.7 ± 1.9 68.3 ± 1.7** 80.5 ± 1.7* 76.7 ± 5.7

-Carotene 344.1 ± 21.1 246.1 ± 7.6* 685.2 ± 37.8* 825.6 ± 69.3* 341.8 ± 27.7 302.2 ± 16.9 505.2 ± 44.6* 541.4 ± 43.6* 303.7 ± 19.5 230.7 ± 12.1 658.4 ± 18*** 775.0 ± 70***

Phytofluene 187.6 ± 5.5 197.9 ± 16.4 66.5 ± 3.2*** 67.2 ± 1.3** 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 112.5 ± 2.2 142.8 ± 6.0 * 66.2 ± 3.2*** 67.2 ± 11.6*

Phytoene 177.4 ± 4.9 144.9 ± 8.5 53.6 ± 4.5*** 59.5 ± 5.3*** 21.6 ± 1.6 20.5 ± 1.7 18.2 ± 1.2 18.6 ± 1.6 98.7 ± 1.7 89.3 ± 11.6 40.2 ± 7.4* 40.0 ± 15.6*

Total CAR 2117.6 ± 138.1 2828 ± 99.1* 2402.9 ± 235.2 2399.9 ± 81.1 810.6 ± 103.1 774.1 ± 16.3 922.1 ± 57.0 965.1 ± 62.0 1259.0 ± 34.0 1846 ± 39.1* 1472 ± 35.2* 1509.0 ± 62.0

-Tocopherol 309.1 ± 15.9 308.8 ± 5.3 377.8 ± 60.9 420.8 ±  6.2* 209.1 ± 17.2 250.4 ± 7.7 274.1 ± 33.8 239.1 ± 20.3 291.0 ± 9.3 248.1 ± 15.4 313.2 ± 59.1 282.4 ± 25.2

Pericarp ColumellaJelly

Crt B Crt I Crt B+I AC Crt B Crt I Crt B+IAC Crt B Crt I Crt B+I AC
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Figure 3-3 Lycopene and -carotene contents found in the pericarp, jelly and 

columella tissues of the tomato fruits of the genetic crosses 

Carotenoid contents are given as g/g DW. Methods used for determinations are described in the 

experimental section. Three representative fruits were used for a minimum of three plants. Three 

determinations were made per fruit, making three biological and three technical replicates. The bars 

represent the mean ± SD. Dunnett’s tests were used to determine significant differences between the 

wild type background (AC) and the transgenic lines for each compartment. Bars with stars indicate 

where significant differences have been found. P<0.05, P<0.01 and P<0.001 are designated by *, **, 

and ***, respectively.  

 

 

It is also interesting to notice that in the CrtI line, which showed a small increase of 

lycopene in the fruit (1.1-fold increase compared to AC), this increase was only seen 

in the pericarp. However, when there was an increase of almost 2-fold of lycopene in 

the fruit such as in the CrtB line, the changes occurred in the pericarp and the 

columella. 

Overall, these results demonstrate that the transgenic lines had an altered intra fruit 

carotenoid composition compared to the wild type (AC).   
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3.2.3.2 The effect of the CrtB+I (homozygous) combination on carotenoid 

composition during fruit development and ripening 

Pigment analysis of the pericarp of tomato fruit was carried out at mature green, 

breaker, breaker + 3 days, breaker + 7 days and breaker + 14 days in both CrtB+I 

line and its comparator (AC). Carotenoids (phytoene, phytofluene, violaxanthin, 

lycopene, -carotene, -carotene, and lutein) and -tocopherol were quantified by 

UPLC (Table 3-3). Changes of these metabolite levels in CrtB+I occurred at 

different time points during ripening, depending on the identity of the metabolite. In 

general, differences in the carotenoid composition of CrtB+I were observed at each 

time point, although a greater number of metabolites levels were affected in CrtB+I 

from the breaker + 3 days ripening stage. 

 

For clarity, a figure representing only the carotenoids with greatest altered levels 

(phytoene, -carotene and lycopene) in CrtB+I during ripening is displayed (Figure 

3-4). With the onset of ripening at the breaker stage, the phytoene content decreased, 

while -carotene content increased in CrtB+I line. These significant differences 

remained throughout fruit ripening. The difference of phytoene levels between AC 

and CrtB+I lines continuously increased through ripening. In the case of -carotene, 

the difference of levels between AC and CrtB+I also increased, but only until the 

breaker + 7 days ripening stage. A difference in lycopene content did occur in 

CrtB+I line compared to AC, but only at the breaker + 3 days stage, when there was 

a decrease. The lycopene content in all the other stages was not significantly 

different from that in AC at the same ripening stages.  

Significant changes were observed in the carotenoid composition of CrtB+I 

compared to the wild type (AC) during the ripening process. 
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Table 3-3 Carotenoid and -tocopherol contents in AC and CrtB+I throughout ripening 

Carotenoid and -tocopherol contents are presented as g/g DW. Methods used for these determinations are described in section 2.5. Determinations were made from three 

independent pools of three fruits, each pool with three technical replicates. The mean data are presented with ± SD. Dunnett’s test was used to determine significant 

differences between the wild type background (AC) and the transgenic variety for each compound. Values in bold indicate where significant differences have been found. 

P<0.05, P<0.01 and P<0.001 are designated by *, **, and ***, respectively. Violaxanthin*, indicates violaxanthin and isomers. 

Phytoene 0 ± 0 0 ± 0 13 ± 1 9 ± 0*** 42 ± 0 19 ± 0*** 130 ± 2 34 ± 2*** 209 ± 25 28 ± 1**

Phytofluene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 59 ± 1 34 ± 1*** 129 ± 2 57 ± 2*** 199 ± 21 35 ± 1**

Violaxanthin* 67 ± 6 65 ± 3 44 ± 2 51 ± 3* 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

Lycopene 0 ± 0 0 ± 0 40 ± 1 41 ± 4 336 ± 5 222 ± 8*** 995 ± 16 1021 ± 42 1197 ± 186 1029 ± 14

-Carotene 105 ± 8 93 ± 4 114 ± 5 157 ± 1** 156 ± 2 280 ± 11** 282 ± 2 555 ± 15*** 284 ± 29 520 ± 7**

-Carotene 0 ± 0 0 ± 0 24 ± 1 24 ± 1 23 ± 1 24 ± 0 24 ± 1 24 ± 1 23 ± 1 24 ± 1

Lutein 105 ± 8 87 ± 4* 89 ± 4 90 ± 2 91 ± 3 98 ± 3* 96 ± 3 95 ± 3 90 ± 4 94 ± 1

-Tocopherol 99 ± 12 122 ± 4 102 ± 6 181 ± 9*** 156 ± 4 195 ± 4*** 185 ± 6 203 ± 6* 201 ± 22 207 ± 4

Crt B+I ACCrt B+I ACAC Crt B+I

Stage of fruit development and ripening

Crt B+I AC Crt B+I

Breaker Breaker + 3 days Breaker + 7 days Breaker + 14 days

AC

Mature green
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Figure 3-4 The changes in carotenoid composition in the fruit of CrtB+I through 

ripening, compared to AC 

Lycopene, -carotene and phytoene contents are given as g/g DW. Methods used for determinations 

are described in section 2.5. Three representative fruits were used. Three determinations were made 

per fruit, making three biological and three technical replicates. The bars represent the mean ± SD. 

Student’s t-test was used to determine significant differences between the wild type background (AC) 

and the CrtB+I line for ripening stage. Bars with stars indicate where significant differences have 

been found. P<0.05, P<0.01 and P<0.001 are designated by *, **, and ***, respectively.  
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3.2.3.3 Transcriptional changes of the carotenoid/isoprenoid pathway in the CrtB+I 

line  

The CrtB+I combination modified the carotenoid profile of both leaf and fruit tissues 

(Table 3-1). To ascertain how these effects arose, transcriptional analysis of 

carotenoid biosynthetic pathway genes was carried out. Quantitative real-time RT-

PCR was performed on leaf and tomato fruit (at breaker + 3 days) from the CrtB, 

CrtI, CrtB+I lines and the wild type (AC) as described in section 2.3.9.  

 

Overall, only the expression of a few transcripts for carotenoid biosynthesis genes 

was affected by the heterologous expression of CrtB and CrtI genes in the tomato 

tissues (Figure 3-5). Although these variations in gene expression between AC and 

CrtB+I were significant, they remained modest (only 0.5- to 3- fold change). 

In the leaf, only the level of the fruit specific lycopene -cyclase (Cyc-B) and the 

flower specific carotene -hydroxylase (CrtR-b2) transcripts were significantly 

different in the CrtI containing lines, showing a 2- to 3-fold increase, in comparison 

with the wild type levels.  

 

In the fruit, there was an upregulation of the expression of the geranylgeranyl 

diphosphate synthase-2 (Ggpps-2), the zeaxanthin epoxidase-1 (Zep-1), the -

lycopene cyclase (Lcy-E) and the lycopene -cyclase (Lcy-B) with a 2- to 2.5-fold 

increase of the Ggpps-2 transcript level in the CrtI and CrtB+I lines, a 2-fold 

increase of the Zep-1 transcript level in CrtB+I, a similar increase of Lcy-E 

transcripts in CrtB line and a 1.3-fold increase of Lcy-B transcripts in the CrtB+I 

line, all compared to the wild type levels. Moreover, the CrtB and CrtB+I lines had 

reduced levels of Psy-1 and 2 transcripts (~0.7-fold) compared to their control. 

However, the CrtI line only exhibited a significant reduction in Psy-2. The carotene 

-hydroxylase (CrtR-b1) transcripts were reduced in all transgenic lines, whereas the 

phytoene and -carotene desaturase (Pds and Zds) transcripts were only lower in the 

CrtB line.  
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Figure 3-5 Changes in the transcript levels of carotenoid biosynthetic genes in 

response to changes in carotenoid content resulting from the expression of CrtB, CrtI 

and CrtB+I genes in tomato 

Pooled fruit originating from 3 plants per genotypes (AC; AC-CrtB; AC-CrtI; AC-CrtB+I) were 

ground in liquid nitrogen to provide a homogenous powder as described in section 2.3.9. Total RNA 

was then extracted from an aliquot of this material. Quantitative real time RT-PCR was performed 

with gene-specific primers for (1) Ggpps-1, geranylgeranyl diphosphate synthase-1; (2) Ggpps-2, 

geranylgeranyl diphosphate synthase-2; (3) Psy-1, phytoene synthase-1; (4) Psy-2, phytoene synthase 

2; (5) Pds, phytoene desaturase; (6) Zds. -carotene desaturase; (7) CrtISO, carotene isomerase; (8) 

Lcy-E, -lycopene cyclase; (9) Lcy-B, -lycopene cyclase; (10), Cyc-B, -lycopene cyclase; (11) 

CrtR-b1, carotene - hydroxylase 1; (12) CrtR-b2, carotene -hydroxylase 2; (13) Zep-1, zeaxanthin 

epoxidase-1.  The expression data shown have been normalized to the expression of actin. Data are 

represented as relative levels found in the three varieties compared to the wild-type AC (Ailsa Craig). 

Statistical determinations are shown as mean ± SD values, where n= 3. Dunnetts’s test established 

statistically significant differences (*, p<0.05; **, p<0.01; ***, p<0.001) from the wild-type levels. 

The yellow bars of the histogram indicate levels in the wild-type AC, the blue bars in AC-CrtB, the 
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purple bars in AC-CrtI and the pink bars in AC-CrtB+I. IPP, isopentenyl pyrophosphate; DMAPP, 

demethylallyl diphosphate; GGPP, gerenaylgeranyl diphosphate; (14), CYP97A, P450 -ring 

hydroxylase; (15),CYP97C, P450 hydroxylase. 

 

3.2.3.4 Cellular changes occurring in the CrtB+I line 

To observe potential ultrastructural changes at the cellular level, Transmission 

Electron Microscopy (TEM) was performed on ripening fruit (pericarp tissue) from 

the CrtB+I and the wild type lines, as described in section 2.8.1. Characteristic 

features of chromoplast structures were observed, such as plastoglobules and 

(remnants of) lycopene crystals, in both AC and CrtB+I electron micrographs 

(Figure 3-6). However altered plastid parameters were also apparent. Firstly, the 

chromoplasts in the CrtB+I were larger in volume (9.1 ± 1.3 m
2
) compared to the 

wild type (3.12 ± 0.5 m
2
). In addition, the CrtB+I plastids contained significantly 

more plastoglobules (2.8-fold) (Figure 3-6, electron micrographs C and D). Some of 

these plastoglobules were larger (c.a. 2-fold) and had different staining 

characteristics, which could correspond to crystal-like structures. Structures termed 

“thylakoid plexus” and “membranous sacs” were identified and were more abundant 

in the chromoplasts derived from the CrtB+I line. The formation of the membranous 

sacs from the inner envelope of the chromoplast have been visualised in CrtB+I line 

(Figure 3-6, electron micrograph E). 

 

Among the different lines, the electron micrographs showed very similar types of 

chromoplasts. As a complementary experiment, and to verify that no heterogeneity 

in chromoplast structure and carotenoid content existed, the separation of potential 

chromoplast types (from the pericarp of tomato fruits) was performed by sucrose 

density gradient centrifugation (described in section 2.7.3). The intact chromoplasts 

accumulating at the different densities on the gradient, all appeared to have similar 

ultrastructure and carotenoid profiles (Figure 3-7). The only difference between the 

CrtB+I line and control was the quantitative difference in carotenoids; a feature 

reflecting the carotenoid content of the intact fruit tissue. 
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Figure 3-6 Electron micrographs of chromoplasts and substructures of the CrtB+I 

line and the AC control  

(A-B), Chromoplasts found in Ailsa Craig (control); (C-D), Chromoplasts of the CrtB+I line; (E-F), 

Substructures of the CrtB+I chromoplasts. Arrows show plastoglobules; dashed arrows show 

plastoglobules containing another structure (possibly a crystal); C, lycopene crystal; RC, remains of 

crystal; ThP, thylakoid plexus-like; MbS, membranous sac; ChE, chromoplast envelope. Methods 

used to obtain the electron micrographs are described in section 2.8.1.       
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Figure 3-7 Separation of chromoplast type by sucrose gradient centrifugation 

(A) Photograph of the sucrose gradient. The numbers 1, 2 and 3 represent the bands of separated chromoplasts 

(B) Carotenoid profile of AC and CrtB+I bands 1, 2 and 3. Carotenoids contents are given as g/band. The volume of band 1&3 was +/- 0.5ml and the volume of band 2 

was +/- 1ml. Methods used for determinations are described in sections 2.5 and 2.7.3. Eight representative fruits were used. Three determinations were made per 

fruit, making eight biological and three technical replicates. The bars represent the mean ± SD.  
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3.2.3.5 Metabolite perturbations arising from the expression of CrtB+I genes 

The distinct changes at the cellular level suggested that metabolite perturbations 

beyond the isoprenoid pathway have arisen in the CrtB+I line. To assess the broader 

effects across metabolism, metabolite profiling was performed. Using a combination 

of analytical platforms, over 50 metabolites were identified and quantified in a 

relative or absolute manner in the tomato leaf and fruit of CrtB+I line and in the wild 

type. To investigate the changes in the metabolome of the CrtB+I line, metabolite 

changes relative to their control (AC) levels were determined (as described in 

sections 2.5.7 and 2.5.8) and statistical analysis performed to assess the differences 

(as described in section 2.9). Significant (p-value <0.05) changes of metabolite 

levels were found in all the class of compounds analysed (Table 3-4). Alteration of 

isoprenoid levels in the leaf and fruit of CrtB+I line have been described in section 

3.2.2. In the fruit of CrtB+I, all amino acids and most of the sugars levels were 

significantly greater, compared to their levels in AC, while the majority of the 

organic acids detected were significantly decreased in CrtB+I. The results in the leaf 

were more varied although similar conclusions for the amino acids could be drawn. 

The levels of several lipid classes were also assessed in the tomato fruit of AC and 

CrtB+I (as described in sections 2.5.5, 2.5.6 and 2.5.8). Interestingly, only the level 

of monogalactosyldiacylglycerol lipid (MGDG) showed a 3.6-fold increase in 

CrtB+I compared to its level in AC. No significant differences were observed in the 

total amounts of fatty acids for all other lipid classes analysed. 
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 Ratio CrtB+I to AC 

Metabolite Leaf Fruit 
Amino acid   

Alanine  1.43 ± 0.08 - 

Aspartic acid 10* 2.10 ± 0.53 

-Alanine  10* - 

-Aminobutyric acid 1.03 ± 0.06 2.44 ± 0.11 

Leucine  10* - 

Proline 10* - 

Glutamine 1.98 ± 0.2 1.41 ± 0.33 

Serine  10* 1.73 ± 0.29 

Threonine  1.32 ± 0.39 10* 

Valine  1.34 ± 0.37 - 

Isoprenoid   

-Tocopherol - 1.34 ± 0.12 

Violaxanthin 1.64 ± 0.08 - 

Lutein 0.83 ± 0.06 0.97 ± 0.07 

-Carotene 1.46 ± 0.21 2.50 ± 0.25 

Chlorophyll a 0.77 ± 0.35 - 

Chlorophyll b 0.39 ± 0.32 - 

-Carotene - 1.11 ± 0.11 

Lutein - 0.96 ± 0.07 

Lycopene - 0.91 ± 0.19 

Phytoene - 0.31 ± 0.04 

Phytofluene - 0.30 ± 0.02 

Non amino acid N-Containing compound 

Putrescine  10* - 

Lipid   

DGDG ND 1.05 ± 0.50 

MGDG ND 3.61 ± 1.03 

PE ND 1.09 ± 1.12 

PS/PC ND 0.75 ± 0.22 

Triglycerides ND 0.99 ± 0.10 

Organic acid   

Aconitic acid - 0.01# 

Citric acid 1.13 ± 0.09 0.98 ± 0.14 

Erythronic acid  6.80 ± 1.01 - 

Fumaric acid  0.61 ± 0.09 0.01# 

Glucaric acid  8.88 ± 1.57 1.53 ± 0.10 

Gluconic acid 0.29 ± 0.09 0.76 ± 0.15 

Glycerate 0.01# - 

Itaconic acid - 0.28 ± 0.04 

Isocitrate 0.01# - 

Lactic acid  10* - 

Maleic acid  0.61 ± 0.06 0.01# 

Malic acid 1.49 ± 0.17 1.05 ± 0.14 

Succinic acid 0.96 ± 0.07 0.89 ± 0.07 

Phosphate   

Glucose-6-phosphate 10* 0.01# 

Glycerol-3-phosphate 10* - 

Phosphate 8.87 ± 1.91 0.99 ± 0.06 

Polyol   

Glycerol  10* - 
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Inositol  0.74 ± 0.14 1.96 ± 0.20 

Sugar   

Arabinose 0.58 ± 0.23 3.45 ± 0.88 

Fructose 0.90 ± 0.06 1.10 ± 0.21 

Glucose 1.90 ± 0.18 1.15 ± 0.20 

Ribose 0.58 ± 0.23 3.45 ± 0.88 

Sedoheptulose 0.18 ± 0.05 0.95 ± 0.17 

Xylose 0.58 ± 0.23 3.45 ± 0.88 

Xylulose  - 0.01# 

 

Table 3-4 Metabolite changes occurring in tomato leaf and fruit in the CrtB+I line 

compared to the control AC 

Data have been compiled from multiple analytical platforms. The ratio data are presented as mean ± 

SD. Student’s t-test was carried out. Significant changes are represented in bold (p-value < 0.05). 10*, 

theoretical value when a metabolite is unique to CrtB+I at the concentration used; 0.01#, theoretical 

value when a metabolite is unique to AC at the sample concentration used, - indicates metabolite not 

detected in both CrtB+I and AC at the sample concentration used; ND indicates metabolite not 

determined ; PS/PC, phosphatidylserine/phosphatidylcholine; PE, phosphatidylethanolamine; DGDG; 

digalactosyldiacylglycerol; MGDG, monogalactosyldiacylglycerol 

 

Multivariate principal component analysis (PCA) was used to assess the overall 

variance in chemical composition among AC and CrtB+I lines and to identify the 

contributions of each metabolite in the leaves and tomato fruits to the overall 

variance. A scatter plot representing the score values for the fruit PCA (Figure 3-8) 

showed two statistically different clusters, corresponding to AC and CrtB+I fruits. 

The two lines are clearly separated in the score scatter plot. The same result was 

observed for the score scatter plot of the leaf PCA (Figure 3-9). The loading scatter 

plot of the fruit and leaf PCAs indicated that numerous metabolites have significant 

weightings and the clusters were due to multiple metabolites. In the fruit, MGDG, -

carotene and some amino acids such as threonine and aspartic acid had the highest 

loading in CrtB+I whereas phytoene, phytofluene and some organic acids like 

aconitic acid, fumaric acid and itaconic acid had the highest loading in AC. 
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Figure 3-8 Principal component analysis of isoprenoids, lipids and polar compounds 

of AC and CrtB+I tomato fruits 

A minimum of three biological and three technical replicates were analysed for every experiment. 

Metabolite levels from the different analytical platforms were combined. Lipid values correspond to 

the sum of the total fatty acid values obtained by GC-MS. PS PC, 

phosphatidylserine/phosphatidylcholine; PE, phosphatidylethanolamine; DGDG, 

digalactosyldiacylglycerol; MGDG, monogalactosyldiacylglycerol; TAG; triacylglycerides. The 

methods used to analyse isoprenoids, and polar metabolites are described in sections 2.5 and 2.9 along 

with the treatment and processing of data. 
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In the leaf, the loading scatter plot demonstrated that the variables with the greatest 

loading were serine, proline, glycerol, phosphate and glucaric acid, which were all 

influencing CrtB+I. Violaxanthin and its isomers, plus -carotene, were also found 

close to the previous metabolites described but with a smaller weight.  

To compare visually alterations in sectors of metabolism and interactions between 

metabolites, the relative changes in metabolite levels compared with their respective 

controls were painted onto biochemical pathway displays (Figure 3-10). The 

variables with the greatest loading in CrtB+I leaf and fruit (enumerated previously) 

are not linked to closely associated biochemical pathways, but a common feature is 

that they all have their levels increased in CrtB+I line.   
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Figure 3-9 Principal component analysis of isoprenoids, lipids and polar compounds 

of AC and CrtB+I tomato leaves 

A minimum of three biological and three technical replicates were analysed for every experiment. 

Metabolite levels from the different technology platforms were combined. Lipid values correspond to 

the sum of the total fatty acid values obtained by GC-MS. The methods used to analyse isoprenoids, 

and polar metabolites are described in sections 2.5 and 2.9 along with the treatment and processing of 

data. 
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A 

 

Green, elevated levels 

Fold increase:

Red, decreased levels 

Fold increase:

over 5 over 5

to 5 to 5 No change

Not detectable
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Figure 3-10 Metabolite changes in tomato leaf and fruit as a result of the expression of the CrtB+I genes 

B 

 

Green, elevated levels 

Fold increase:

Red, decreased levels 

Fold increase:

over 5 over 5

to 5 to 5 No change

Not detectable
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Figure 3-10 Metabolite changes in tomato leaf and fruit as a result of the expression 

of the CrtB+I genes 

A. Fruit; B. Leaf. The metabolomic data are displayed quantitatively over schematic representations 

of biochemical pathways produced with BioSynLab software (www.biosynlab.com). False colour 

scale is used to display the quantity of each metabolite in CrtB+I line relative to that in the control 

AC. Green indicates a significant 3-fold increase, to 5-fold increase is pale green, and >5-fold is dark 

green. Red colouration has been used to represent decreased metabolite levels; dark red is over 5-fold, 

light red is to 5-fold. Grey indicates no significant change, whereas white indicates that the metabolite 

was not detected in the samples either because it is not present in the sample or because the compound 

cannot be detected using the analytical platforms available. 3PGA, glyceraldehyde-3-phosphate; Ac-

CoA, acetyl-coenzyme A; ARG, arginine; DGDG; digalactosyldiacylglycerol; DMAPP, dimethylallyl 

pyrophosphate; FPP, farnesyl diphosphate; GGPP, geranylgeranyl-pyrophosphate; GPP, geranyl 

diphosphate; H-SER, homo serine; ILE, isoleucine; MEP, 2-C-methyl-D-erythritol 4-phosphate; 

MET, methionine; MGDG, monogalactosyldiacylglycerol; PE, phosphatidylethanolamine; PEP, 

phosphoenolpyruvate; PHE, phenylalanine ; PRO, proline; PS/PC, 

phosphatidylserine/phosphatidylcholine; Pyr, pyruvate; SuccCoA, succinyl-coenzyme A; TRP, 

tryptophan; TYR, tyrosine. 

 

 

 

Multivariate principal component analysis was then performed on the same data set 

but excluding the isoprenoid data, which represents the target compounds expected 

to be affected by the expression of the CrtB and CrtI genes. The analyses in fruit and 

leaf tissues of AC and CrtB+I are shown in Figure 3-11 and Figure 3-12, 

respectively. In the scatter plots of the score plot for AC and CrtB+I lines, distinct 

clustering occurred. The same variables, as those occurring when the isoprenoid data 

were included within the PCA, appeared to contribute the most to the separation of 

AC and CrtB+I, such as MGDG in the fruit. 
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Figure 3-11 Principal component analysis of the metabolites detected by GC-MS in 

AC and CrtB+I tomato fruits, with the metabolites derived from the targeted 

carotenoid pathway excluded from the data matrix 

Three biological and six technical replicates were performed. The methods used to analyse the polar 

metabolites are described in sections 2.5 and 2.9, along with the treatment and processing of data. 
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Figure 3-12 Principal component analysis of the metabolites detected by GC-MS in 

AC and CrtB+I tomato leaves, with the metabolites derived from the targeted 

carotenoid pathway excluded from the data matrix 

Three biological and six technical replicates were analysed. The methods used to analyse isoprenoids, 

and polar metabolites are described in sections 2.5 and 2.9, along with the treatment and processing of 

data. 
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In order to have a better understanding of the lipid modification in CrtB+I fruits, the 

fatty acids composition of each lipid class was analysed (Table 3-5) and the fold 

change increase of the percentage of each fatty acid in a particular lipid of CrtB+I 

compared to its percentage in AC was calculated (Table 3-6). The predominant fatty 

acids found in most of the lipid classes of AC are the C16 and C18 fatty acids as in 

CrtB+I. It is interesting to notice that, in the MGDG of AC, the two predominant 

fatty acids are C18 fatty acids and that no C16 fatty acids were detected at the 

sample concentration used. However, in CrtB+I line, the two predominant fatty acids 

are C16 and C18. 

MGDG is the only class of lipid whose level significantly varied in CrtB+I 

compared to AC. It seems that the main changes in MGDG are due to an increase of 

the quantity of 16:0 and 16:1 cis-9 fatty acid in CrtB+I line (Table 3-6).  

Multivariate principal component analysis was performed on the fatty acids solely 

derived from all the lipid classes in order to identify and understand the contribution 

of each fatty acid in AC and CrtB+I. The AC and CrtB+I fruits can be grouped as 

two distinct clusters in the scatter plot of the PCA score values (Figure 3-13). The 

16:0 and 16:1 cis-9 fatty acids seem to have an influential loading, but they are not 

the only metabolites with influence. Several fatty acids seem to contribute to the 

separation of CrtB+I to AC, mainly 18:1 and 16:1 fatty acids for most of the lipid 

classes analysed. 
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Table 3-5 Fatty acids composition of the lipid classes in CrtB+I and control AC 

Values represent the percentage of each fatty acid in CrtB+I and the AC background. The data are presented as ± SD. Three biological and three technical replicates were 

used. - indicates fatty acids not detected at the concentration used, Values highlighted in blue correspond to the predominant fatty acids for each lipid class; PS/PC, 

phosphatidylserine/phosphatidylcholine; PE, phosphatidylethanolamine; DGDG; digalactosyldiacylglycerol; MGDG, monogalactosyldiacylglycerol. 

 

fatty acid (%)

12:0 0.4 ± 0.4 0.2 ± 0.2 0.4 ± 0.1 0.6 ± 0.3

14:0 0.8 ± 0.8 0.3 ± 0.1 0.5 ± 0.5 0.4 ± 0.1 1.8 ± 0.8 1.2 ± 0.2 3.5 ± 1.6 1.6 ± 0.3 0.6 ± 0.2 1.1 ± 0.9

16:0 32.4 ± 0.6 34.7 ± 1.1 27.5 ± 2.8 28.2 ± 1.5 52.5 ± 6.7 57.0 ± 3.6 41.9 ± 8.5 15.8 ± 2.8 11.4 ± 3.9

16:1 cis -9 3.7 ± 6.1 2.0 ± 1.8 3.3 ± 1.1 0.3 ± 0.1 2.0 ± 3.2

18:0 6.7 ± 0.8 6.7 ± 1.4 7.1 ± 0.2 8.6 ± 3.2 35.5 ± 15.1 29.7 ± 1.5 64.4 ± 9.3 34.8 ± 11.7 7.1 ± 0.8 10.0 ± 3.2

18:1 cis -9 8.6 ± 4.6 5.4 ± 4.7 1.7 ± 2.4 2.8 ± 2.4 11.1 ± 18.0 24.2 ± 0.6 23.9 ± 9.1

18:1 trans -9 3.2 ± 2.8 2.5 ± 2.2

18:2 trans -9,12 45.9 ± 13.0 48.7 ± 2.7 60.9 ± 4.7 57.3 ± 3.9 9.8 ± 8.7 11.7 ± 2.2 27.1 ± 10.2 6.6 ± 4.0 49.4 ± 3.0 47.1 ± 5.7

20:0 0.8 ± 0.1 0.7 ± 0.1 1.0 ± 0.1 0.7 ± 0.1 0.5 ± 0.4 0.4 ± 0.4 0.4 ± 0.6 0.4 ± 0.4 0.9 ± 0.1 1.3 ± 0.3

22:0 0.6 ± 0.1 1.3 ± 0.2

22:2 cis -13,16  0.1 ± 0.0 0.2 ± 0.2

24:0 1.1 ± 0.4 0.3 ± 0.0 0.9 ± 0.2 0.5 ± 0.1 1.4 ± 2.5 0.7 ± 0.1 1.0 ± 0.3

PS / PC PE

Crt B+I

DGDG

Crt B+I

MGDG

 -

ACCrt B+IAC AC ACCrt B+I

 -  -  -  -  -

 -  -

 -

 -  -

 -  -

 -

 -

 -

 -

 -  -

 -  -

 -  -

 -  -

 -  -

 -  -

 -  -  -

 -

 -

 -  -

 -

 -  -

 -

 -

 -

AC Crt B+I

Triglycerides
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Table 3-6 Changes in the composition (in percentage) of fatty acids present in the 

lipids species found in CrtB+I and control AC 

Values represent the percentage ratio of each fatty acid in CrtB+I compared to the AC background. 

The ratio data are presented as ± SD. Student’s t-test was carried out. The significant changes are 

shown in bold (p-value < 0.05). Lipids were extracted from a mix of 3 ripe tomato fruits. Lipids were 

then separated on a TLC plate. Three technical replicates were used. 10* is a theoretical value used 

when a fatty acid is unique to CrtB+I; 0.01# is a theoretical value used when a fatty acid is unique to 

AC, - indicates fatty acids not detected in both CrtB+I and AC at the concentration used, * 

corresponds to the ratio (CrtB+I to AC) of the sum of fatty acid contents for each lipid species; 

PS/PC, phosphatidylserine/phosphatidylcholine; PE, phosphatidylethanolamine; DGDG; 

digalactosyldiacylglycerol; MGDG, monogalactosyldiacylglycerol. 

 

 

 

 

 

 

 

 

Fatty acid PS/PC PE DGDG MGDG Triglycerides

12:0 - - - 0.48 ± 0.08 1.42 ± 0.61

14:0 0.45 ± 0.07 0.77 ± 0.10 0.68 ± 0.10 0.46 ± 0.08 1.70 ± 1.37

16:0 1.08 ± 0.03 1.02 ± 0.05 1.07 ± 0.07 10* 0.72 ± 0.24

16:1 cis -9 0.01# 0.01# - 10* 7.69 ± 0.48

18:0 1.00 ± 0.20 1.20 ± 0.45 0.83 ± 0.04 0.54 ± 0.18 1.42 ± 0.45

18:1 cis -9 0.64 ± 0.55 10* - 3.96 ± 1.92 0.99 ± 0.38

18:1 trans -9 10* 10* - - -

18:2 trans -9,12 1.06 ± 0.06 0.94 ± 0.06 1.17 ± 0.22 0.24 ± 0.14 0.95 ± 0.11

20:0 0.86 ± 0.09 0.67 ± 0.09 0.89 ± 0.79 1.23 ± 0.98 1.51 ± 0.39

22:0 - - - - 2.10 ± 0.37

22:2 cis -13,16  - - - - 1.45 ± 0.05

24:0 0.31 ± 0.03 0.52 ± 0.10 - 0.01# 1.51 ± 0.46

TOTAL* 0.75 ± 0.22 1.09 ± 0.12 1.05 ± 0.50 3.61 ± 1.03 0.99 ± 0.10

Ratio % in Crt B+I to % in AC



134 
 

 

 

 

 

 

Figure 3-13 Principal component analysis of the fatty acids of AC and CrtB+I 

tomato fruits  

Lipid classes: PS, (PS and PC) phosphatidylserine/phosphatidylcholine; PE, 

phosphatidylethanolamine; DG, (DGDG) digalactosyldiacylglycerol; MG, (MGDG) 

monogalactosyldiacylglycerol and TG; triglycerides. These compounds were isolated by TLC and 

their fatty acids were analysed by GC-MS. Three biological and three technical replicates were 

analysed.  
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3.3 Discussion 

3.3.1 Expression of several carotenoid genes can have synergistic effects on 

carotenoid formation 

The Pantoea Crt genes have proven useful tools in the enhancement of carotenoids 

in bacterial, fungal, and plant systems (Misawa et al., 1991; Shimada et al., 1998; 

Ravanello et al., 2003). The carotenoid profiles of homozygous CrtB and CrtI 

tomato lines have been studied previously (Romer et al., 2000; Fraser et al., 2002). 

The results generated in this study correlate with the previous description of these 

lines, with the exception that no difference in total carotenoid content in the CrtI line 

was detected (Table 3-1). This could reflect the different generations used, or more 

precise sampling. The carotenoid profile of the CrtE tomato line is described for the 

first time in this thesis. Although the reaction catalysed by CRTE was the least 

effective in increasing the level of carotenoids, the presence of transcripts and the 

changes in pigments showed that this enzyme was active upon expression. This is 

significant as the bacterial CRTE enzyme uses FPP predominantly as a precursor 

(Sandmann and Misawa, 1992), whereas the plant GGPP synthase enzyme utilises 

IPP or DMAPP as precursors (Laferriere and Beyer, 1991). Thus, despite altered 

precursor specificity, it seems that the CRTE step can still act or be influential on the 

pathway flux. 

 

As expected, the individual expression of the three Crt genes (CrtE, CrtB and CrtI) 

in tomato plants led to different carotenoid/isoprenoid phenotypes (Table 3-1). It 

seems logical as each enzyme (CRTE, CRTB and CRTI) has a different precursor 

and a different product compared to the other enzymes. However, it is interesting to 

note that the precursor-product relationship was not always observed. Indeed, the 

decrease of the precursor and the increase of the product did not always correlate. 

For instance, in the hemizygous CrtI plants, there was a decrease of phytoene but an 

increase of -carotene instead of an expected increase of lycopene. In the 

homozygous CrtB plants, there was an increase of lycopene but not of phytoene. 

There was also an increase of -tocopherol in all the CrtI containing lines, which 

was not expected as it is a metabolite synthesised upstream of the carotenoid 

pathway. This reveals that there is a high level of regulation within the carotenoid 
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pathway that leads to unpredicted carotenoid/isoprenoid phenotypes. Other 

carotenoid engineering studies in other plant species encountered similar situations 

(e.g. an increase of -carotene instead of lycopene). For instance, in rice (“Golden 

rice”) an engineering approach initially utilised a construct harbouring three genes, 

phytoene synthase (Psy), CrtI and lycopene -cyclase, but it was later realised that 

the lycopene -cyclase gene was not necessary as Psy and CrtI alone were able to 

drive -carotene synthesis (Beyer et al., 2002). However, it has been suggested that 

in tomato a feedback regulatory loop exists from -carotene, or its derivative (Al-

Babili et al., 1999; Romer et al., 2000), which is different from the rice mechanism 

that relies on the expression of constitutively expressed intrinsic carotenoid rice 

genes (Schaub et al., 2005). 

 

The strategy of a coordinate expression of multiple bacterial carotenoid genes in 

order to improve carotenoid formation has been utilised previously in canola seeds 

(Ravanello et al., 2003) and potato tuber (Diretto et al., 2007a). The decrease of 

phytoene and increase in lycopene/-carotene levels while expressing the CrtI gene 

seems to be a constant effect in both these studies and, in part, supported by our 

findings in tomato fruit (Table 3-1). In contrast to potato and canola, tomato fruit 

have a high basal level of endogenous carotenoids. In the present study, a genetic 

crossing approach has been used, whereby the highest producers were selected for 

subsequent crossing. The coordinate expression of two hemizygous carotenoid genes 

in tomato highlights synergistic effects on carotenoid formation, which are not 

observed in the lines expressing only one carotenoid gene. For instance, there is no 

significant increase in the lycopene level of the hemizygous CrtE, CrtB and CrtI 

lines, compared to the control. However, there is a significant increase in the 

hemizygous CrtE+B and CrtB+I lines compared to the control, and to the 

hemizygous CrtE, CrtB and CrtI lines (p-value < 0.5). The production of lycopene, 

which was not enhanced by the expression of only one bacterial carotenoid gene, is 

positively affected when two bacterial carotenoid genes are expressed. It suggests 

that there is an interaction between the CRTE and CRTB enzymes and the CRTB 

and CRTI enzymes. It is interesting to notice that there is no such synergistic effect 

on the lycopene formation in CrtE+I line. The CRTE and CRTI enzymes may not be 

able to interact through the endogenous phytoene synthase. Only the bacterial 
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enzymes representing consecutive steps of the carotenoid pathway have been able to 

produce a synergistic effect on the carotenoid formation. It may indicate that the 

CRTE, CRTB, and CRTI enzymes need to form an aggregate complex (termed 

metabolon; Jorgensen et al., 2005)) to be able to interact together, or be sequestrated 

into a common microenvironment within the plastid. Previous work also suggested 

that a complex of the bacterial phytoene synthase, phytoene desaturase and the 

lycopene cyclase enzymes allowed in vivo activity of all three proteins through 

substrate channelling (Ravanello et al., 2003). Another example of synergistic 

interactions between carotenoid pathway enzymes, driving the formation of lutein, 

have been reported (Quinlan et al., 2012).  

Although the strategy of combining expression of bacterial hemizygous carotenoid 

genes allows the increase of some carotenoid levels, the dose of the heterologous 

gene seems to also have a similar impact on the carotenoid levels. For instance, 

while the level of lycopene was not significantly increased in the CrtB and CrtI 

hemizygous lines compared to the wild type, it was in the CrtB and CrtI 

homozygous lines, as it is in the CrtE+B and CrtB+I hemizygous lines. Surprisingly, 

the homozygous CrtB+I line did not have a significant increase in lycopene and total 

carotenoid levels. However, it contained the highest level of -carotene produced in 

all the lines studied. Consequently, the hemizygous CrtB+I line appears to be a more 

appropriate option than the homozygous line in regard to increasing the entirety of 

the carotenoid molecules.  

It is important to note that the dose of gene (hemizygous or homozygous) affects the 

carotenoid phenotype in the plant, as discussed in the previous paragraph. In most 

cases, the dose of gene will be positively linked with the quantity of product 

synthesised by the enzyme. Consequently, it means that different levels of the 

carotenoid synthesised by the heterologous enzyme will lead to different 

carotenoid/isoprenoid phenotypes. A similar phenomenon had been reported in 

tobacco overexpressing the tobacco Psy-1 gene (Busch et al., 2002). This reveals that 

the level of one carotenoid can trigger different regulatory mechanisms in the 

carotenoid pathway. Thus, it implies that there are sensors in the plants that can 

recognise the identity of a carotenoid and its level in order to trigger signaling in the 

plant, which will lead to the regulation of the flux in the carotenoid pathway.  
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The aim of this work was to study the strategy of the coordinate expression of 

multiple bacterial carotenoid genes in order to increase carotenoid production. It 

seems that it is an efficient strategy, but only with specific carotenoid gene 

combinations (CrtB+I or CrtE+B). The tomato plant has a high basal level of 

carotenoids and although changes in carotenoids of interest were moderate (2- to 3-

fold increase), these increases are really substantial. Tomato lines producing up to 

2700g/g DW of lycopene and 800g/g DW of -carotene were engineered which 

is 4 to 20 times more -carotene synthesised than in engineered maize (Naqvi et al., 

2009), potato (Diretto et al., 2007a), cassava (Welsch et al., 2010) and carrot (Maass 

et al., 2009). However, this work shows that the coordinate expression of multiple 

bacterial genes is not the only aspect to be considered. The choice of the 

heterologous carotenoid genes, their combination and the dose of genes are all 

criteria with a potential impact on carotenoid formation that need to be assessed in 

order to manipulate the pathway. Other criteria such as the choice of the promoter 

and the subcellular location of the carotenoids and their enzymes will be discussed in 

chapters IV and V of this thesis. 

 

3.3.2 The effects of CrtB+I expression go beyond the carotenoid pathway  

 

Transcriptional regulation of the carotenoid pathway has been well documented 

(Fraser and Bramley, 2004; Fraser et al., 2009). In the present study, it has been 

observed that the small changes detected at the transcriptional level correlate with 

the changes in carotenoids (Figure 3-5). Of particular interest was the observation 

that, those transcripts affected the most, correspond to genes associated with 

alternative tissue specific expression. For example, in the leaf, it is the transcripts of 

the fruit specific lycopene cyclase (Cyc-b) and the flower specific carotene -

hydroxylase (CrtR-b2) genes that were altered. This finding suggests that the 

transcription of carotenoid genes is tightly regulated for those genes expressed in a 

certain tissue but genes not usually expressed in a given tissue are not under the 

same regulatory mechanisms (Fray et al., 1995). Overall, the changes of the 

transcript levels of the carotenoid genes in CrtB+I, compared to AC, remained 

modest. This may be due to the fact that the tomatoes used for this experiment were 
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at the breaker + 3 days stage of ripening. It is possible that greater modification of 

the transcripts levels could appear in a later ripening stage, especially under the 

control of the polygalacturonase promoter (Atkinson et al., 1998). 

 

The presence of CRTB and CRTI also affected the spatial accumulation of pigments 

over fruit development and ripening, as well as the partitioning of the carotenoids 

within the fruit tissues. For example, comparisons between the pericarp of the 

homozygous CrtB+I line with its control AC, at different ripening stages, showed 

that the timing of carotenoid formation is altered in the CrtB+I line (Figure 3-4 and 

Table 3-3). From the breaker stage, the CrtB+I line contained significantly more -

carotene and less phytoene compared to AC, but lycopene level was significantly 

lower in the CrtB+I line at the breaker + 3 days ripening stage. These changes in 

carotenoids reflect the expression of the different promoters controlling the CrtB and 

CrtI genes, the CrtI gene being under constitutive control and the CrtB gene ripening 

specific promoter control (Atkinson et al., 1998). The earlier presence of the CRTI 

enzyme influences the level of -carotene and phytoene from the breaker stage, and 

the CRTB enzyme appearing later in the ripening process affects the level of 

lycopene. The choice of the promoter is always a determinant in engineering 

carotenoid production in plants, but it becomes crucial when overexpressing two 

bacterial genes, which enzymes may need to interact, or be in the same tissue, in 

order to create a synergistic effect on carotenoid production. 

 

Another effect of altered pigment content resulting from CRTB and CRTI is the 

intra-fruit partitioning of carotenoids in the pericarp, jelly and columella fruit tissues 

(Figure 3-3 and Table 3-2). The pericarp seems to be the most amenable fruit 

compartment to store carotenoids (i.e. the highest levels), but the greatest changes 

resulting in the increased lycopene level in the CrtB line and -carotene level in the 

CrtI and CrtB+I lines were associated with the columella tissue. This suggests that 

the accumulation of the carotenoid in the tomato fruit depends on several tissue 

related factors, such as the type of cells, the type and quantity of membranes, and 

perhaps the water content of each tissue/cell type. The factor revealed is the 

saturation of a tissue with a specific carotenoid. It would appear that a saturation 

limit for a specific carotenoid exists in a given tissue and beyond this point another 
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region of the fruit must be utilised. In the case of the CrtI line, there was a small 

increase of total lycopene level (1.2-fold), which was only noticeable in the pericarp 

compartment. However, in the CrtB line, which had a 2-fold increase of total 

lycopene level, an increase in the pericarp (1.7-fold) was observed, but also in the 

columella (2.3-fold). There is already evidence that spatio-temporal specificity in the 

accumulation of endogenous carotenoid from tomato fruit exists (Moco et al., 2007). 

The work presented here highlights the presence of a saturation threshold specific to 

individual carotenoids, which leads in the case of an increased carotenoid level to a 

modification of the spatial sequestration of the carotenoids within the fruit.   

 

In addition to the altered tissue distribution, structural differences at the chromoplast 

level have also been observed (Figure 3-6). The chromoplasts from the CrtB+I line 

appeared to be greater in size and contain more membranes (previously described as 

thylakoid plexus by Harris and Spurr, 1969a). The thylakoid plexus had also been 

identified in the chromoplast of the full ripe fruit of the high -mutant tomato (Harris 

and Spurr, 1969b). The presence of the thylakoid-like membranes could allow a 

greater storage environment for the carotenoids. In CrtB+I, most of the 

plastoglobules were the same size as in AC. However, some of them appeared to be 

much greater and seemed to contain a crystal-like structure. Plastoglobules 

containing crystals have previously been reported in another Solanum species 

(Solanum capsicastrum; Wrischer et al., 2007). Therefore, the mechanism of storing 

crystals in the plastoglobules of the CrtB+I chromoplasts seems plausible. Another 

striking difference was the number of membranous sacs. In the CrtB+I line, the 

formation of multiple membranous sacs from the inner envelope of the chromoplasts 

was observed (Figure 3-6, E and F). This is the first time that a clear image of the 

formation process of the membranous sacs has been shown. The hypothetical role of 

the membranous sacs (also described as carotenoid-containing-structure or newly 

synthesised membrane) is to contain crystals of carotenoids (Cheung et al., 1993; 

Deruere et al., 1994; Simkin et al., 2007; Egea et al., 2010). The structure of the 

chromoplasts found in CrtB+I seem to have been altered in order to accommodate 

more (crystals of) carotenoids. The chromoplast structure can be affected by the type 

of carotenoids that are accumulating (Harris and Spurr, 1969a). It seems that in the 

CrtB+I line, which has an increased level of lycopene, but a more substantial 
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increase in -carotene, only have one type of chromoplast structure in the pericarp 

(Figure 3-7). 

 

Metabolite profiling illustrated that, in addition to cellular changes the expression of 

CrtB+I genes in the tomato fruit had effects across the metabolome (Table 3-4). As 

expected, the carotenoid/isoprenoid levels were affected. Moreover, primary 

metabolism, including the lipid content, was modified in CrtB+I. The PCA 

performed on the whole dataset of metabolites and on the dataset without the 

isoprenoid compounds showed that AC and CrtB+I could still cluster apart, even 

when the isoprenoids were not present (Figure 3-8 to Figure 3-12). This suggests that 

differences within primary metabolism are significant enough to differentiate these 

two lines. The precise biochemical/molecular links with the increased sugars and 

amino acid levels and decrease of organics acids levels in response to altered 

carotenoids awaits further systematic analysis. However, it could be that 

perturbations in fruit ripening via phytohormone imbalances could have arisen. Such 

changes in sugars, amino acids and organic acids have the potential to alter taste, 

which is an important industrial attribute. Among the lipids analysed a significant 

increase of monogalactosyldiacylglycerol (MGDG) content (3.6-fold increase) was 

determined in the transgenic lines containing CrtI; Specifically a significant increase 

of 16:0 and 16:1 cis-9 fatty acids and a slight augmentation of 18:1 fatty acid. It is 

not the first time that an associated increase of carotenoid and MGDG lipid levels 

has been observed. A marine bacterium (cyanobacterium Synechococcus sp), showed 

a similar effect in carotenoid and MGDG lipid levels, especially the 16:0 and 18:3 

fatty acids, during high light acclimation (Montero et al., 2012). It seems that it is the 

prokaryotic pool of MGDG (16:0 plus 18:1, from plastids) that is positively 

regulated, in parallel with the carotenoid level in the CrtB+I line. MGDG is found in 

abundance in the inner envelope and in the thylakoid membranes of the 

chloroplast/chromoplast (Marechal et al., 1997). The reason why the quantity of 

MGDG increased in relation to an elevated carotenoid content is the fact that MGDG 

has a high propensity for interfacial curvature (Szilagyi et al., 2007), allowing the 

membrane to adapt to a greater quantity of -carotene. This membrane curvature 

property of MGDG has been proposed to be essential for the conversion of 

violaxanthin to zeaxanthin, by allowing the conical-shaped violaxanthin de-
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epoxidase enzyme to bind to the curved thylakoid membranes and act on 

violaxanthin molecules (Figure 3-14). In the transgenic line, it appears that the 

plasticity of the membrane to accumulate lipids is increased to accommodate the 

extra carotenoid produced.  

 

 

 

 

 

Figure 3-14 Schematic model of the effect of curvature stress on the xanthophyll 

cycle (from Szilagyi et al., 2007) 

Upon high light, the formation of the MGDG-rich regions gives rise to curvature stress in the bilayer. 

MGDG serves as an efficient host for violaxanthin (hatched hexagon) and is also required by the 

violaxantin de-epoxidase enzyme, VDE (truncated cone). (1), The enzyme binds to the membrane and 

converts violaxanthin to zeaxanthin (filled hexagon); (2), As the conversion proceeds more 

hydrophobic and stretched zeaxanthin is formed; (3), The membrane expands and brings about a 

release of curvature stress, leading to a less favoured lipid environment for VDE (cylinder).  
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Chapter IV: Sub-plastidial 

sequestration of carotenoids in 

response to elevated synthesis 
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4.1 Introduction 

The heterologous expression of the bacterial CrtB and CrtI gene combination in 

tomato plants resulted in an increase of carotenoid content in the fruit. Changes at 

multiple levels (transcription, primary and secondary metabolites, chromoplast 

ultrastructure, and fruit tissue) in the plant were observed, as described in Chapter 

III. The sub-plastidial components of the CrtB+I chromoplasts had also been altered, 

with the increased content of carotenoids in the fruit. In this chapter, the following 

questions are addressed: (i), where in the plastid are the pigments sequestrated? and 

(ii), whether adaptation to increased levels arises within the sub-plastidial component 

of the chromoplasts. Sucrose density gradient centrifugation was performed to 

fractionate chromoplasts from the wild type and the CrtB+I line and then sub-

plastidial structures were isolated. Characterisation of the AC and CrtB+I 

chromoplasts sub-structure was then achieved. 

 

4.2 Results 

4.2.1 Fractionation and identification of sub-plastidial components of the 

chromoplasts from AC (wild type) and CrtB+I lines  

The sub-plastidial components of AC and CrtB+I chromoplasts from breaker + 3 to 

5 days ripening stage tomato fruits were isolated in a 5 steps discontinuous sucrose 

density gradient (as described in section 2.7.1 and Figure A2-4). The separation of 

the sub-chromoplast structures in the sucrose gradients is shown in Figure 4-1. Two 

distinct coloured sectors in the gradient of AC and CrtB+I were observed, the first 

occurring at the top of the gradient in fractions 1 and 2 and the second in the middle, 

lower part of the gradient from fractions 16 to 24. The red/orange colour intensity of 

all these fractions was greater in the CrtB+I preparations compared to AC. The 

lower coloured sector of the gradient was characterised by the presence of crystal-

like structures. A greater intensity of crystal-like aggregates was found in the upper 

phase of this sector derived from the wild type (fractions 16 to 20), compared with 

relatively fewer structures in its lower phase (fractions 21 to 24). In contrast, the 

CrtB+I line exhibited a greater intensity of crystalline aggregates over both parts of 

the coloured sector. It is interesting to note that in the CrtB+I preparation, a clear 
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separation of the two crystalline phases was observed with fraction 20/21 containing 

no crystal-like structures. 

 

Figure 4-1 Fractionation of sub-plastidial components of the chromoplasts from AC 

(wild type) and CrtB+I lines 

Chromoplasts were extracted from breaker + 3 to 5 days fruits (90 g), broken with a hand held 

Potter-type homogeniser and separated in a discontinuous sucrose gradient of 5%, 15%, 20%, 

38% and 45% sucrose w/v. Encircled 1 and 2 correspond to sub-membrane compartments I and 

II, respectively. Fractions (1 ml) were collected for further analysis. Typically, a total of 30 or 31 

fractions were collected per centrifuge tube.  

 

Fractions (F, 1 ml) were collected from top to bottom of the gradients and sixteen 

fractions throughout the gradient (mainly from coloured sections) have been 

thoroughly analysed to identify and designate the different sub-compartments of the 

chromoplasts. The protein profiles of these fractions have been determined and 

identification of individual proteins undertaken (Figure 4-2 and Table 4-1). 

The protein profiles of AC and CrtB+I were similar. F1 and F2 were characterised 

by two major proteins. These proteins have been identified as plastoglobulin-1 and 

the plastid lipid associated protein, CHRC (Table 4-1). These two proteins are 

known to be localised in the plastoglobule (Kessler et al., 1999; Ytterberg et al., 

2006; Kessler and Vidi, 2007). The amount of protein present in F7 and F12 was too 

low for detection on SDS-PAGE stained with silver reagents. Fractions 17 to F30 in 

the gradient contained a comparatively higher protein intensity compared to earlier 
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fractions, with prominent bands displaying Gaussian distribution across adjacent 

fractions (Figure 4-2). In the F17 to F24, all the prominent proteins identified were 

derived from the photosynthetic systems present in the thylakoid membrane, as for 

example, ATP synthase subunit , photosystem I reaction centre subunit II, 

Photosystem II 22 kDa protein, and the oxygen evolving enhancer proteins 1 and 2. 

In F24 to F30, thylakoid proteins were still identified, but additional proteins were 

found, such as the heat shock cognate 70 kDa protein. This protein has been 

attributed to the chromoplast envelope (Ko et al., 1992). RuBisCO protein, from the 

chromoplast stroma, was mainly detected in F28 and F30. Further details on the 

proteins identified are provided in Table 4-1.  

In order to complement the proteomic approach, immuno-detection of key biomarker 

proteins of known sub-plastid location were used. The immuno-localisation of 

PGL35 (plastoglobulin 35), PSBA (photosystem II protein D1), TIC40 (translocon at 

the inner envelope of chloroplasts), TOC75 (translocon at the outer envelope of 

chloroplasts) and the stromal RBCL (RuBisCo large subunit) proteins was carried 

out across the gradient (Figure 4-2). The PGL protein was detected in F1 and F2, but 

also in F18 to F30. Following comparative protein loading of wild type and CrtB+I 

samples, a greater quantity of PGL was prevalent in the CrtB+I derived fractions. 

The PSBA protein was mainly detected in the 17 to 26 fractions and at low level in 

control F1 and F2. The TIC protein was found principally in F28 and F30 in AC and 

in F24, F25 and F26 in CrtB+I. As expected, TOC75, specific to the chloroplast 

envelope, was not detected in the fractions. The RBCL protein was mainly 

discovered at the bottom of the gradient in F26 to F30 in AC and F25 to F30 in 

CrtB+I.  

According to these results, it seems that F1 and F2 correspond to the free 

plastoglobules of the chromoplasts (displayed in yellow in Figure 4-2), while F17 to 

F23 represent the subcompartment structure with thylakoid membrane (represented 

in green in Figure 4-2). Fractions 24 to F26/28 appear to be a mix of thylakoid 

membrane and envelope membrane structure (dark green in Figure 4-2) and the last 

fractions (F25 to F30) represents enriched stromal proteins (orange in Figure 4-2). 

This colour code will be used for all the figures of this chapter. 
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Figure 4-2 Identification of sub-chromoplast components within the fractions 

(i). Protein profile. Proteins, extracted from each fraction, were separated and visualised using SDS-PAGE, followed by silver staining. Selected proteins have been identified 

by LC-MS-MS: 1. plastoglobulin-1; 2. plastid lipid associated protein CHRC; 3. ATP synthase subunit b; 4. photosystem I reaction centre subunit II; 5. photosystem II 22 

kDa protein; 6. oxygen evolving enhancer protein1; 7. oxygen evolving enhancer protein 2; 8. heat shock cognate 70 kDa protein-1; 9. RuBisCO large subunit-binding 

protein subunit b. Details of the identification of these proteins are showed in Table 4-1. (ii). Western blot. Immuno localisation of biomarker proteins (plastoglobulin (PGL, 

35 kDa); Photosystem II protein D1 (PSBA, 28 kDa); Translocon at the inner envelope of chloroplasts (TIC, 45 kDa); Translocon at the outer envelope of chloroplasts (TOC, 

75 kDa); and RuBisCo large subunit (RBCL, 52 kDa) in the fractions was determined by western blotting.  The colour scheme represents the different sub-chromoplast 

components. PG, plastoglobules. Dark green corresponds to the envelope membrane location. 
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Table 4-1 Identification of proteins from the isolated fractions by nESI-LC-MS/MS 

The protein band number refers to the number shown in Figure 4-2(i). 1 The homology of bands 2 and 

8 with Solanum lycopersicum species was studied and the percentage of similarity and accession 

number of the closest protein are shown.  2 Accession number according to SwissProt protein 

database.  3 Score obtained in Mascot (v2.4.2.0) search. Scores higher than 51 indicate identity or 

extensive homology (p<0.001).4 According to UniProt (http://www.uniprot.org/). 

 

 

 

 

 

 

 

Band number
1
 Acc.No

2
 Protein Name Score

3
 Location

4
 

1 PG1_PEA 
Plastoglobulin-1, 

chloroplastic 
73 

Chloroplast › plastoglobules 

periphery 

2 LIPC_SOLTU 
Light-induced protein, 

chloroplastic 
750 

Chloroplast thylakoid 

membrane 

97% similarity with Q0ZPA3_SOLLC 
Plastid lipid associated 

protein CHRC 
 Chloroplast 

3 ATPB_SOLLC ATP synthase subunit  750 
Chloroplast thylakoid 

membrane; Peripheral 

membrane protein 

4 PSAD_SOLLC 
Photosystem I reaction 

center subunit II 
187 

Chloroplast thylakoid 

membrane 

5 PSBS_SOLLC 
Photosystem II 22 kDa 

protein 
331 

Chloroplast thylakoid 

membrane 

6 PSBO_SOLLC 
Oxygen-evolving 

enhancer protein 1 
170 

Chloroplast thylakoid 

membrane 

7 PSBP_SOLLC 
Oxygen-evolving 

enhancer protein 2 
853 

Chloroplast thylakoid 

membrane 

8 HSP72_SOLLC 
Heat shock cognate 70 

kDa protein 2 
1003 N/A 

94% similarity with HSP7E_SPIOL 
70 kDa heat shock-

related protein 
 Chloroplast envelope 

9 RUBB_BRANA 
RuBisCO large subunit-

binding protein subunit  
501 Chloroplast 

http://www.uniprot.org/
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4.2.2 Biochemical characterisation of AC and CrtB+I sub-chromoplast fractions 

Carotenoids and -tocopherol were profiled by UPLC (section 2.5.3), in most of the 

fractions (25 out of 31 fractions) derived from the separation of the sub-chromoplast 

components of AC and CrtB+I from the sucrose gradient. The distribution of the 

isoprenoids within the gradient was investigated and the percentage of each 

metabolite per fraction was represented (Figure 4-3). The profile of quantity of 

metabolite (g/fraction) within the gradient was similar to the profile of percentage.  

The percentage of each compound varied through the gradient and was dependent on 

the line analysed. However, a common feature was that all compounds accumulated 

mainly in the membranes (F15 to F28) and that phytoene, phytofluene and -

tocopherol were also found in a large percentage in the plastoglobules (F1&2). Two 

sectors of dense pigmentation, forming peaks of metabolite intensity were observed 

for lycopene, -carotene, lutein, and -tocopherol, derived from the fractionation of 

the CrtB+I fruit. The first peak of pigmentation, related to F16 to F21, has been 

designated as the sub-membrane compartment I (see also Figure 4-1). The second 

peak, located in F21 to F26, is termed sub-membrane compartment II. Lycopene, -

carotene and lutein had similar profiles through the gradient. In AC, they mainly 

accumulated in the sub-membrane I. The CrtB+I line is characterised by an increase 

of lycopene, -carotene and lutein. The accumulation of these carotenoids was 

greater in both sub-membrane compartment I and II in CrtB+I line, compared to the 

control. The ratio of the sub-membrane compartment I to II percentage of content of 

these carotenoids was altered in the CrtB+I line. It decreased in CrtB+I compared to 

AC. On a percentage basis the relative increase in carotenoids in CrtB+I, compared 

to AC, was greater in sub-membrane compartment II. One of the differences between 

sub-membrane compartment I and II was the ratio of -carotene to lycopene, which 

was higher in sub-membrane compartment II. The profile of -tocopherol through 

the gradient was similar to that of lutein, with the exception that -tocopherol was 

also found in the plastoglobules (14% of the total content in AC and 9% in CrtB+I).  
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Figure 4-3 Percentage of carotenoids 

and -tocopherol in sub-chromoplast 

fractions  

Metabolites were extracted from each fraction. 

Contents are given as % in a fraction compared 

to the total content in the gradient. Simplified 

carotenoid pathway is displayed. Black arrows 

correspond to one or more carotenoid step(s) and 

dashed arrow to isoprenoid enzymes(s). The 

heterologous enzymes are showed in red. CRTB, 

phytoene synthase; CRTI, phytoene desaturase; 

GGPP, geranylgeranyldiphosphate. Colour 

scheme represents the different sub-chromoplast 

components. Yellow indicates the plastoglobules; 

green corresponds to the membranes and dark 

green the envelope membrane; orange displays 

the stroma. Total amounts (in AC, CrtB+I; 

g/fraction) of -tocopherol (7.8, 12.5); 

phytoene (2.3, 1.3); phytofluene (2.4, 1.3); 

lycopene (7.5, 14.2); -carotene (7.1, 18.9) and 

lutein (1.3, 1.9). 
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In the control chromoplasts, phytoene and phytofluene accumulated in the 

plastoglobules (15%) and then mainly in the sub-membrane compartment I. In the 

CrtB+I line, the levels of phytoene and phytofluene were lower with only 6 to 9% of 

these carotenoids accumulating in the plastoglobules. The percentage of phytoene 

and phytofluene was comparable in the sub-membrane compartments I and II of 

CrtB+I line.  

 

The lipid composition in AC and CrtB+I chromoplasts was also investigated, as 

membrane structures had been revealed to be altered in CrtB+I line. Lipids were 

extracted from the tomato fruits and separated by thin layer chromatography (as 

described in section 2.5.5). The lipid profile of AC and CrtB+I fractions were 

qualitatively comparable (Figure 4-4). All the fractions contained triglycerides. 

However, MGDG (monogalactodiacylglycerol), DGDG (digalactodiacylglycerol), 

PE (phosphatidylethanolamine), PS (phosphatidylserine) and PC 

(phosphatidylcholine) were found only in the F17 to F26/28 (the membrane region). 

Similarly, no major qualitative differences were found when comparing the protein 

profiles of AC and CrtB+I (Figure 4-2). 

 

 

Figure 4-4 Lipid profiles in the sub-chromoplast fractions of AC and CrtB+I 

Lipids derived from the fractions were separated in a TLC silica plate with a mixture of 

acetone:toluene:water (91:30:7). Standards for lipid species were used for identification: a, 

triglycerides b, monogalactodiacylglycerol; c, digalactodiacylglycerol; d, phosphatidylethanolamine; 

e. phophatidylserine / phosphatidylcholine; *, contaminant. Colour scheme represents the different 

sub-chromoplast components. PG, plastoglobules. Dark green corresponds to the envelope membrane 

location. 
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4.2.3 Cellular characterisation of AC and CrtB+I sub-chromoplast fractions 

Structural differences of the sub-chromoplast components between AC and CrtB+I 

were investigated. Electron microscopy was used to visualise the structures 

fractionated through the gradient (Figure 4-5). Plastoglobule structures were found in 

F1 and F2 of both the wild type and the CrtB+I line. Membranous structures with 

varying degrees of complexity and aggregation were seen in F16, F18 to F22, and 

F24, although, clear vesicle-like structures predominated in these fractions. The 

structures varied in the thickness of the membrane, as judged by the intensity of 

staining and membrane size, with some vesicles embedded in larger membrane 

structures (ca. 2-fold larger). In addition, some vesicles appeared to retain 

plastoglobules and/or dense staining amorphous material associated with these 

membranes. The different electron density level throughout the membranes suggests 

a variability of the carotenoids, and/or lipoproteins of the membrane. The contents of 

fractions lower in the gradient (e.g. F24) appeared to be enriched with larger 

vesicles, containing electron dense material.   

 

Figure 4-5 Ultrastructure of the sub-chromoplast fractions of AC and CrtB+I 

After collection, the fractions (1+2, fraction 1 and 2 pooled together; 16, fraction 16; 18-22, fractions 

18 to 22 pooled together; 24, fraction 24) were dialysed against phosphate buffer, fixed in osmium 

tetroxide and visualised by TEM. Colour scheme represents the different sub-chromoplast 

components. PG, plastoglobules. Dark green corresponds to the envelope membrane location. The 

arrow shows a plastoglobule. The bar scale represent 100 nm for F1+2 pictures, 0.2 m for F16 and 

F24, and 0.5m for F18-22. 
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4.2.4 Localisation of the endogenous and heterologous enzymes within the sub-

chromoplast fractions 

The localisation of the heterologous enzymes (CRTB and CRTI) within the sub-

chromoplast fractions was studied in comparison with the location of the endogenous 

phytoene synthase (PSY-1) in order to give an insight into spatial and biosynthetic 

aspects of the carotenoid pathway. Immuno detection of these enzymes (CRTB, 

CRTI and PSY-1) was performed using specific antibodies (Figure 4-6). As 

expected, CRTB and CRTI were only found in the CrtB+I line. They appeared to be 

strongly associated with the thylakoid-related fractions and mainly in the sub-

membrane compartment II. However, PSY-1 was observed mainly in the stroma of 

both the control and CrtB+I lines as showing in Figure 4-6.  

 

 

Figure 4-6 Phytoene synthase and desaturase enzymes localised within the sub-

chromoplast fraction of AC and CrtB+I 

CRTB, heterologous phytoene synthase enzyme (38 kDa); CRTI, heterologous phytoene desaturase 

enzyme (56 kDa); PSY-1, endogenous phytoene synthase enzyme (35 kDa). Specific antibodies were 

used for the immuno detection of these enzymes in each fraction collected. The coloured bars at the 

bottom of the figure display a scheme that represents the different sub-chromoplast components. 

Yellow indicates the plastoglobules; green corresponds to the membranes and dark green the envelope 

membrane; orange displays the stroma. 
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4.2.5 Carotenoid crystals are located within the chromoplast membranes 

An experiment was performed to ascertain if the carotenoid crystals, visualised in the 

sub-membrane compartment I and II of the CrtB+I gradient, are actually 

attached/embedded into the membrane (Figure 4-7).  

Light microscopy of the sub-chromoplast components before separation on sucrose 

gradient (section 2.7.1 and Figure A2-4) showed crystals embedded in membranous-

like structures (Figure 4-7, a). Similar pictures were obtained when observing the 

fractions containing crystal-like structures (in sub-compartment I and II) in the 

sucrose gradient after separation (Figure 4-7, b).  

A different fractionation protocol was also used (system 2, section 2.7.2 and Figure 

A2-4). The sub-compartments of the chromoplasts were first separated in a 0.6 M 

sucrose step. At the top of the gradient, a large red area was observed after 

centrifugation (and collected in microcentrifuge tubes), while the membranes 

pelleted at the bottom of the gradient. The membranes were then separated in the 

system 1 gradient. No crystals were observed in the sub-membrane compartment I 

and II (Figure 4-7). However, membrane-free crystals were observed by light 

microscopy when analysing the red sector obtained in the first step gradient of the 

system 2 (Figure 4-7, c). It seems that when using system 2, the crystals separate 

from the membrane. Therefore, it appears that the carotenoid crystals are normally 

attached/embedded into the membrane, but can be separated during the fractionation. 
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Figure 4-7 Evidence of the carotenoids crystals embedded in the chromoplast 

membranes  

The sub-compartments of CrtB+I chromoplasts were separated on a discontinuous sucrose gradient in 

system 1(picture tube 1; section 2.7.1 and Figure A2-4). In system 2 (described in section 2.7.2 and 

Figure A2-4), before separation on the same sucrose gradient, the chromoplast sub-compartments 

were spun in a 0.6 M sucrose solution. A red sector was created at the top of the gradient (tube not 

showed here) and collected in microcentrifuge tubes (represented) while the chromoplast membranes 

pelleted. Only the membranes were separated on the second gradient (picture tube 2). For both 

experiments, 150 g of breaker + 3 to 5 days tomatoes were used. Light microscopy photographs were 

taken at magnification 600X. x, membrane free red crystal (possibly lycopene crystal); *, membrane 

free orange crystal (possibly -carotene crystal).   
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4.3 Discussion 

4.3.1 Separation and characterisation of sub-chromoplast compartments 

Chromoplast components were separated and analysed (Figure 4-1) to determine 

where carotenoids were sequestrated within AC and CrtB+I chromoplasts. SDS-

PAGE and subsequent Western blot analysis of sub-plastid fractions, using key 

biomarker proteins of known sub-plastid location, were performed to identify the 

different compartments of the chromoplasts (Figure 4-2). The discontinuous sucrose 

gradient resulted in a broad and partially overlapping area of biomarker proteins. The 

plastoglobule fractions were found at the top of the gradient (F 1&2). However, the 

plastoglobule biomarker protein PGL also appeared in the thylakoid membrane 

fractions (F16/17 to F26). This correlates with the fact that plastoglobules arise from 

thylakoid membrane at areas of high curvature by a membrane-blistering 

mechanism. Then, they remain physically coupled to the thylakoids throughout their 

life span (Austin et al., 2006). In this study, tomatoes at the breaker + 3 to 5 days 

ripening stage were used. During chromoplast biogenesis, structural changes occur, 

such as the degradation of thylakoid membranes (Spurr and Harris, 1968) and the 

increase in size and number of plastoglobules (Harris and Spurr, 1969a). At the 

ripening stage studied, thylakoid membranes are expected to be in the process of 

disintegration and consequently plastoglobules are then found in a membrane-free 

form. The plastoglobule fractions (F1&2) correspond to the membrane-free 

plastoglobules. Thylakoid membranes were still present in the chromoplasts studied 

because the PSBA thylakoid biomarker protein was detected. This was confirmed 

with the TEM pictures (Figure 4-5), where membranous structures were visualised. 

Occasionally, plastoglobules were also found attached to these membranes (Figure 

4-5, arrow), which validates the presence of the PGL biomarker protein in the 

membrane fractions, especially in CrtB+I. The greater intensity of the thylakoid 

biomarker protein in the CrtB+I immuno-blots suggests that the CrtB+I 

chromoplasts contained more thylakoid membranes than AC chromoplasts. The 

thylakoid membranes and envelope membranes were not separated in the sucrose 

gradient, as the envelope biomarker protein TIC was found at the bottom of the 

thylakoid membranes fractions area in CrtB+I. Although most of the biomarker 

proteins were detected in similar location in AC and CrtB+I gradients, it was not the 

case for TIC (inner envelope marker). In AC, the TIC protein was found at the 
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bottom of the thylakoid fractions, but mainly in what corresponds to stromal 

fractions (F28-30). The shift of location of the TIC protein in AC and CrtB+I 

gradients reveals a difference in the envelope density and therefore structure in the 

chromoplasts of these two lines. The other envelope biomarker protein, TOC (from 

the outer envelope), was not detected in AC and CrtB+I chromoplasts sub-

compartments which correlates with previous study showing that the TOC75 protein 

is lost during the chloroplast to chromoplast conversion (Barsan et al., 2010). The 

TOC and TIC proteins were detected in the samples derived from the fractionation of 

chloroplasts by sucrose density centrifugation (Enfissi et al. unpublished). The 

localisation of the envelope was different in the chloroplast gradient compared to the 

chromoplast. That correlates with the changes occurring within the envelope during 

the ripening process. 

The identification of the different sub-chromoplast compartments of AC and CrtB+I 

also revealed qualitative differences of plastoglobules and thylakoid membranes and 

structural differences of the envelope between AC and CrtB+I. This finding 

correlates with the description of AC and CrtB+I chromoplasts ultrastructure in 

Chapter III, Figure 3-6, where more membranes linked with plastoglobules were 

visualised in CrtB+I chromoplasts. 

 

4.3.2 Sequestration of carotenoids and enzymes in the sub-compartments of AC and 

CrtB+I chromoplasts  

The majority of studies quantifying carotenoid levels in tomato plants are completed 

at a fruit tissue level (Fraser et al., 2009; Enfissi et al., 2010) or chromoplast level 

(Camara et al., 1983; Angaman et al., 2012). However, understanding the dynamic 

nature of the carotenoid pathway at a sub-chromoplast level seems crucial to 

improve predictive metabolic engineering of this complex pathway as it was 

suggested in recent carotenoid reviews (Cazzonelli and Pogson, 2010; Shumskaya 

and Wurtzela, 2013). In this study, the analysis of the sequestration of carotenoid 

metabolites and enzymes in AC and CrtB+I sub-chromoplast compartments was 

undertaken. 
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The isoprenoids studied were sequestrated mainly in the membranes (thylakoid and 

envelope) but also in the plastoglobules (Figure 4-3). The profile of percentage of 

metabolite per fraction along the gradient was different in CrtB+I, compared to the 

profile in AC. While in the thylakoid membrane of AC there was only one main peak 

of isoprenoid accumulation (for lycopene, -carotene, lutein and -tocopherol) at the 

sub-membrane compartment I (F16 to F21), there was a supplementary peak at the 

sub-membrane compartment II (F21 to F26) in CrtB+I. No differences were found in 

the protein and lipid profiles of these two sub-membrane compartments (Figure 4-2 

and 4-4). They both corresponded to the location of crystal-like structures in the 

CrtB+I sucrose gradient (Figure 4-1). The only variance found was that the sub-

membrane compartment II contained a greater ratio of -carotene to lycopene 

compared to compartment I. The main characteristic of the CrtB+I tomatoes used for 

this experiment is an increased level of -carotene compared to AC. So, a greater 

content of -carotene in the sub-membrane compartment II seems plausible. It may 

be that the two groups of crystals (at the sub-membrane compartment I and II) are 

separated in the sucrose gradient due to their different composition in carotenoid 

crystals and that they are then responsible for the differentiation between the two 

sub-membrane compartments. Carotenoid crystals have been shown to be embedded 

into the membranes (Figure 4-7). In other studies, carotenoid crystals are found 

enclosed in a membrane (Simkin et al., 2007), which correlates with this finding. 

This supports the hypothesis of the crystals being the cause of the distinction 

between the two sub-membrane compartments in the thylakoid membranes. The 

question that arises is: Why a similar type of membrane accumulates different 

proportions of carotenoid crystals? One possibility is that it is the way the crystal 

forms in the membrane and how the thylakoid membranes break during the 

centrifugation. During the formation of the lycopene crystal, lycopene seems to 

predominate in long areas of the thylakoid membrane (Figure 4-8). It is difficult to 

imagine -carotene crystals forming within lycopene crystals. Consequently, -

carotene crystals are plausibly formed in other parts of the thylakoid membranes 

which are lycopene crystal-free. It is possible that lycopene and -carotene crystals 

have different densities. So, that could result in the fractionation of the thylakoid 

membranes during the centrifugation separating thylakoid membranes with different 

percentages of lycopene and -carotene. 
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Figure 4-8 Diagrammatic interpretation of lycopene crystalloid development as 

revealed with two different fixatives (glutaraldehyde -KMnO
4 

or -O
S
O

4
). Adapted 

from Harris and Spurr, (1969a). 

These diagrams are based on electron micrographs observed in Harris and Spurr, (1969a). Lycopene 

often first appears with the partition and then spreads throughout the thylakoid membrane. After O
S
O

4
 

fixation, the lycopene crystalloids appear as undulating dark lines (visible in TEM of AC 

chromoplasts; Figure 3-6); with KMnO
4
, they appear relatively straight. As lycopene continues to 

increase in the thylakoids, the pigment crystalloids and the associated membranes increase in length. 

Individual crystalloids lamellae can join to form a multiple crystalloids. 

 

In AC, the lutein profile had an extra peak, located at the end of the subcompartment 

II (Fractions 24 to 26; Figure 4-3). That could correspond to lutein stored in the 

envelope membrane. Lutein has been previously reported in the chloroplast envelope 

membrane (Block et al., 1983), so it is plausible to find it as well in the chromoplast 

envelope membrane. The reason why a similar peak was not present in CrtB+I is 

unclear, especially as the presence of the CrtI gene increases lutein. Perhaps, the 

lutein derived from the presence of CrtI is sequestrated in a different sub-plastidial 

environment away from the endogenous pool. Phytoene and phytofluene had 
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atypical profiles, compared to the other isoprenoids studied, due to a high percentage 

of these metabolites in the plastoglobules. Phytoene has also been detected in 

plastoglobules of Arabidopsis thaliana (Lundquist et al., 2013). In the CrtB+I 

gradient, the percentage of these carotenoids in the plastoglobules decreases 

considerably (1.7- to 2.5-fold decrease). CrtB+I line contains significantly less 

phytoene and phytofluene (1.6- to 3-fold decrease), compared to AC. This decreased 

content seems to mainly have an impact on the sequestration of phytoene and 

phytofluene in the plastoglobules. It suggests that either less phytoene and 

phytofluene were stored in the plastoglobules because they were utilised in the up-

regulated carotenoid pathway in CrtB+I, or that the pool of phytoene and 

phytofluene in the plastoglobules has been required for the biosynthesis of the 

carotenoid pathway, which was also up-regulated due to the presence of the CRTB 

and CRTI enzymes. The isoprenoids studied were almost not detected in the stromal 

fractions, suggesting that they are not part of soluble protein complexes. 

 

The localisation of carotenoid pathway enzymes has been mainly based on 

proteomics studies. Enzyme location varies a lot depending on the plant species and 

the type of organelle studied (Ytterberg et al., 2006; Joyard et al., 2009; Wang et al., 

2013). The localisations also seem to change during the chloroplast to chromoplast 

conversion (Shumskaya and Wurtzela, 2013). Therefore, enzyme location within the 

plastid is very inconsistent in the literature and this is why it is important to do the 

specific localisation studies of the carotenoid enzymes within the chromoplasts of 

tomato. The heterologous enzymes phytoene synthase (CRTB) and phytoene 

desaturase (CRTI) have been found in the same location which is in the (thylakoid) 

membranes of the CrtB+I chromoplast (Figure 4-6). This finding correlates with a 

previous study which describes CRTI as a membrane-peripheral FAD-dependent 

oxidase/isomerase (Fraser et al., 1992; Schaub et al., 2012). It strengthens as well the 

hypothesis that the enzymes can interact with each other (as a metabolon) and have a 

synergistic effect on the carotenoid production. However, the endogenous phytoene 

synthase (PSY-1) enzyme was mainly located in the stroma of AC and CrtB+I. This 

correlates with results found in the literature (Fraser et al., 1994; Fraser et al., 2002). 

These results bring to light the interesting aspect that CRTB and PSY-1 are not 

found in the same sub-chromoplast compartments, although they catalyse the same 

step in the carotenoid pathway. A previous study reported an altered sub-organelle 
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localisation of PSY enzymes only due to the variation of one amino acid in the 

sequence (Shumskaya et al., 2012). The phytoene synthase enzymes described in this 

chapter have more than one amino acid differences since they belong to two diverse 

sources (appendix Figure A4-1), so it seems conceivable that their localisations 

within the chromoplast vary. An alternative is that, upon over-expression, enzymes 

do not necessarily reside in their normal endogenous position. Moreover, CRTB and 

PSY-1 are not in the sub-chromoplast compartment sequestrating the highest content 

of their product phytoene and CRTI is not present in the same compartment as its 

precursor. Consequently, what could be thought as an inefficient process for 

carotenoid biosynthesis could actually represent a novel means of regulation. These 

data also reveal the importance of signaling and transporters within the 

chromoplasts. This aspect will be further discussed in the general discussion Chapter 

VII. 

 

4.3.3 Identification of carotenoid sequestration mechanisms  

The CrtB+I line has increased carotenoid levels compared to AC. In this study, 

investigations were focused on the differences between CrtB+I and its control at the 

sub-chromoplast level. The assessments made led to the identification of carotenoid 

sequestration mechanisms. 

A comparison between subcompartments of the fruit chromoplasts from control and 

CrtB+I lines showed a number of important differences. Firstly, an increased number 

of -carotene and lycopene crystal-like structures arose in the thylakoid-like 

membrane fractions of the CrtB+I line (Figure 4-1 and 4-3). Storage of endogenous 

carotenoid in crystal-like structures has been reported in other plant species such as 

mango (Vasquez-Caicedo et al., 2006) and red papaya (Schweiggert et al., 2011), as 

well as in tomato (Rosso, 1967, 1968). It seems that this sequestration mechanism 

has been positively regulated in the transgenic line containing an excess of 

carotenoid. This phenomenon has also been reported in Arabidopsis and carrot roots 

(Maass et al., 2009) and embryogenic calli from citrus (Cao et al., 2012), 

overexpressing the phytoene synthase gene. Altogether, the data shown in this 

chapter, plus the images of AC and CrtB+I chromoplasts (Figure 3-6), indicate that 

membranes of the chromoplast (envelope and thylakoid-like membrane) also appear 
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to play an important role in carotenoid sequestration. The inner envelope of the 

CrtB+I chromoplasts seemed to be actively producing vesicles (membranous sacs), 

which were visible in the electromicrographs of the CrtB+I chromoplasts (Figure 3-

6). The thylakoid-like membranes appeared in greater quantity and electron density 

in the CrtB+I chromoplasts, compared to those in AC (Figure 3-6, Figure 4-2 and 

Figure 4-5). The darker and thicker membranes could be caused by a high number of 

lipids, proteins and carotenoids. A previous study had highlighted similar 

characteristics of the chromoplast compartments of the tomato high -mutant (Harris 

and Spurr, 1969b). They described invagination of the internal membrane of the 

plastid envelope and a swollen grana and intergrana lamaella. Finally, the presence 

of phytoene at a high level in the plastoglobules (Figure 4-3) shows that a significant 

quantity of the substrate for phytoene desaturase (and carotene formation) is 

partitioned away from the enzyme. Collectively these data suggest that sub-plastidial 

compartmentalisation of precursors and enzymes represent a new regulatory 

mechanism for the carotenoid pathway.    

 

The study of transgenic lines with modest carotenoid changes (2- to 3-fold increase 

compared to the control) allowed the identification of several carotenoid 

sequestration processes, which respond to the elevated content of carotenoids. A 

comparable study of a transgenic line with a large increase of carotenoid content 

may not help further our understanding of the sub-plastidic location of carotenoids 

and their enzymes, since such increases would be too disruptive. The separation of 

the sub-chromoplast compartments on a sucrose gradient, together with immuno-

detection of proteins and chromatographic analysis of carotenoids give a more 

accurate view of the localisation of the constituents of the carotenoid pathway within 

the chromoplast, compared to the studies of proteins which have been fused to 

reporter like GFP and consequently modified (Shumskaya et al., 2012). 
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5.1 Introduction 

In the search for potential strategies to increase carotenoid levels in plants, tomato 

plants coordinately overexpressing bacterial carotenoid genes, CrtB and CrtI, were 

studied and described in Chapters III and IV. These two genes were under the 

control of the polygalacturonase ripening specific promoter (PG) and the CaMV 35S 

constitutive promoter (35S), respectively. The PG promoter was chosen since tomato 

plants overexpressing the CrtB gene or other phytoene synthases under the control of 

35S showed pleiotropic effects (Fray et al., 1995). Polygalacturonase is a major cell 

wall polyuronide degrading enzyme of tomato fruit (Gray et al., 1992), which is 

synthesised de novo at the onset of ripening (Tucker and Grierson, 1982), but the 

highest activity of this enzyme is at a late stage in the ripening process (Nicholass et 

al., 1995). The hypothesis is that an earlier ripening stage promoter may have a 

greater impact on carotenoid levels when controlling the expression of CrtB. The 

focus of the work in this chapter is to investigate the effect of timing of expression of 

carotenoid genes on carotenoid production in plants. The lycopene -cyclase (Cyc-B) 

promoter (pb) from the orange fruited Solanum galapagense was chosen for further 

investigation on the basis of two criteria. Firstly, the pb promoter is an early fruit 

ripening stage promoter (Enfissi et al., unpublished; Heldt et al., unpublished). 

Secondly, the transcript levels of Cyc-B are 100 times greater in S. galapagense 

compared to S. lycopersicum (Enfissi et al. unpublished), which is the tomato species 

used in all the studies in this thesis. Here, the generation and characterisation of three 

new transgenic tomato lines pb-CrtB, pb-CrtI and pb-CrtB+I in S. lycopersicum is 

reported. The carotenoid contents of the T0 and T1 generation of tomato plants were 

analysed and the pb promoter was further characterised. 

 

5.2 Results 

5.2.1 Construction of vectors and generation of transgenic tomato plants 

Vectors harbouring the CrtB gene and CrtI, solely or in combination, with the 

lycopene -cyclase promoter (pb) were constructed from vectors kindly provided by 

Dr N. Misawa (Ishikawa Prefectural University, Japan), which were 35S-CrtB 

(CrtB*) and 35S-CrtI (CrtI*) (described in appendix Figure A2-1). All these vectors 
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carried the alcohol dehydrogenase    untranslated region of Nicotiana tabacum, the 

RuBisCO small subunit transit peptide of  Pisum sativum L., the heat shock protein 

18.2 gene terminator of Arabidospsis thaliana and the nopaline synthase gene 

terminator of Agrobacterium tumefaciens (Figure 5-1). In order to create the new 

vectors, the 3 S promoters of the 35S-CrtB and 35S-CrtI vectors were replaced with 

the pb promoter and then the sequence of interest of the newly constructed pb-CrtB 

vector was cut (using AscI and PacI restriction enzymes) and pasted into the newly 

constructed pb-CrtI vectors to form pb-CrtB+I (=pb-CrtB+pbCrtI) as illustrated in 

Figure 5-1. The sequence of the pb promoter and the primers used to create these 

vectors are described in Figure A5-1 (appendices) and Table A2-2. The sequences of 

interest were then inserted in pBINplus binary vector (Vanengelen et al., 1995) 

between the left and right T-DNA borders, using the AscI and EcoRI restriction 

enzymes. For the pb-CrtB+I vector, a partial digestion was necessary in order to get 

the whole B+I fragment.   

 

 

Figure 5-1 Structure of the pb-CrtB, pb-CrtI and pb-CrtB+I constructs containing 

the lycopene -cyclase promoter from Solanum galapagense  

Locations of the restriction sites are shown by the blue dashed line. pb, lycopene -cyclase 

promoter from Solanum galapagense     UTR, untranslated region of Nicotiana tabacum alcohol 

dehydrogenase; tp, transit peptide of the Pisum sativum L. RuBisCO small subunit; Hsp, terminator of 
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the Arabidospsis thaliana heat shock protein 18.2 gene; Nos, terminator of nopaline synthase gene 

from Agrobacterium tumefaciens. 

 

The vectors were then sent to the transformation facility at UC Davis (Plant 

transformation Facility, 192 Robbins Hall, University of California Davis, CA 

95616, USA), where the transformations of cv. Ailsa Craig tomato plants (S. 

lycopersicum) with the three pb-Crt vectors were performed. Eleven transgenic 

seedlings per pb-Crt line were received and transferred into soil following an 

acclimation protocol (described in section 2.1.1). However, two plantlets of each of 

pb-CrtI and pb-CrtB+I lines did not survive. 

 

5.2.2 Analysis of the transgenic primary (T0) generation 

5.2.2.1 Characterisation of T0 plants 

The presence of the CrtB and CrtI genes was verified by PCR (section 2.3.6.2 and 

primers are described in Table A2-2), in young tomato plants (30 cm high), to 

confirm that the transgenic lines corresponded to their predicted genotype (Figure 5-

2). No escapes were found. Moreover, the absence of the CrtB gene was verified in 

the pb-CrtI plants and the absence of CrtI in the pb-CrtB lines was verified to 

confirm that no contamination had occurred. The results were all negative (data not 

shown). 

 

Figure 5-2 PCR confirmation of the presence of CrtB and CrtI genes in the pb-Crt 

transgenic lines 

Amplication of the genes CrtB (108bp) and CrtI (163bp) was performed by PCR on all pb-CrtB, pb-

CrtI and pb-CrtB+I transgenic plants and visualised under UV light.  DNA was extracted from a pool 

of 4 representative leaves of each line. NTC: non template control. 
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The number of inserts for each plant of the three pb-Crt lines was determined by 

Southern blot, using CrtB and CrtI probes (method is described in section 2.3.8.1). 

First, the probes were created and tested (CrtB, 108bp  CrtI, 163bp), the DNA from 

all the transgenic plants was extracted and then southern blots were performed using 

the DNA cut by the EcoRI restriction enzyme. The resulting autoradiograms, 

obtained from the Southern blot, displayed band(s) of different sizes. The number of 

bands corresponded to the number of Crt gene inserts in the transgenic plant. The 

autoradiogram obtained for the determination of the number of inserts in pb-CrtI 

plants using the CrtI probe is shown in Figure  -3. There is only one plant (n° ) 

harbouring one CrtI insert  and plants n°1 & 2 have two inserts. All the other pb-CrtI 

plants have a high number (>4) of CrtI inserts (Figure  -3).  

          

Figure 5-3 Autoradiograms of Southern blot obtained from DNA of pb-CrtI lines 

digested by EcoRI and hybridised to CrtI probes 

Numbers correspond to the different pb-CrtI plants.-, negative control (DNA from the AC control); +, 

positive control (DNA from the plasmid CrtI). 

 

The CrtB probe was utilised for the determination of the number of inserts in pb-

CrtB and pb-CrtB+I plants. Overall, an unexpectedly high number of inserts was 

found in some of the pb-Crt transgenic lines (Table  -1). In order to confirm some of 

the results found by Southern blot, real-time qPCR was performed to quantify the 

level of Crt genes and therefore determine the number of inserts in each transgenic 

plant (method is described in section 2.3.8.2). Table  -1 summarises the number of 
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inserts found in each plant of the three pb-Crt lines using the two distinct methods 

(Southern blot and qPCR). The qPCR results for the plant tested confirmed most of 

the Southern blot results (14 from 1 ).  

 

Table 5-1 Number of Crt inserts in the T0 pb-Crt transgenic lines, analysed by 

Southern blot and checked by qPCR 

The yellow cells represent plants which died at the seedling stage. qPCR analysis was only performed 

on selected lines using the primers described in Table A2-2. No number means that the number of 

inserts was not determined by qPCR. Southern blot and qPCR methods are described in section 2.3.8. 

 

5.2.2.2 Isoprenoid profiles of the pb-Crt lines of the T0 generation 

The isoprenoid profiles of the tomato fruits (pericarp) from all the T0 plants of the 

three pb-Crt lines were analysed in order to select the plants to grow for T1 

generation, depending on their level of carotenoids and -tocopherol (method is 

described in section 2.5.3). The contents of isoprenoids in the three different T0 

transgenic lines are displayed Table 5-2 (A-C). The pb-CrtB plant n°5 as well as the 

pb-CrtI n°8 and the pbCrtB+I n°1 and 11 did not produce fruits, preventing analysis 

of isoprenoids.   

The ten T0 pb-CrtB plants had variable isoprenoid profiles, but common features can 

be highlighted. Compared to the AC control, the phytoene levels were increased up 

to 2.3-fold, the phytofluene levels up to 1.6-fold, and the lycopene levels up to 1.5-

line Southern blot qPCR Southern blot qPCR Southern blot qPCR

1 4 2 1 or 2 < 6

2 6 2 2

3 6 < 5 6 1 1

4 1 1 4 4 2 2

5 2 2 1 1 < 10

6 3 < 6 10 6

7 1 1 < 9

8 3 10 or 11 10 or 11 1 or 2 2

9 < 2 6 8 4

10 3

11 3 6 6 3

pb-Crt B pb-Crt I pb-Crt B+I

Number of inserts 
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fold, while the total carotenoid content increased up to 1.4-fold, depending on the 

plant (Table 5-2, A). Changes in -carotene, -carotene, lutein and -tocopherol 

levels occurred only in a few plants. The selection of the plants to be grown for a T1 

generation was based on the number of inserts and the levels of isoprenoids. The pb-

CrtB7 plant was selected as it contained only one insert and the levels of isoprenoids 

were the highest.  

Although the eight T0 pb-CrtI plants had different isoprenoid profiles, the main 

characteristics of these plants were an increase of phytoene levels, up to 2-fold 

compared to the control and an increase of phytofluene and lycopene up to 1.5-fold. 

The total carotenoid content increased from 1.2- to 1.4-fold, compared to AC (Table 

5-2, B). The levels of -carotene are quite variable as they can be lower or greater 

compared to the control (0.8- to 1.7- fold). Some plants, for example pb-CrtI6, had 

an increase in -carotene content, but not of lycopene. Other transformants such as 

pb-CrtI4 and 9 had a contrasting profile with increased lycopene content but not of 

-carotene, while others showed an increase in both carotenoids (for instance, pb-

CrtI3 and 5). In certain lines, changes were also observed in -carotene, lutein and -

tocopherol. The plant selected, for further investigations, was pb-CrtI2 as it 

contained only 2 inserts and high levels of phytoene, lycopene and -tocopherol. 

Although the pb-CrtI6 plant had multiple inserts (ca.10), it was also sown for the T1 

generation, because its level of -carotene was the greatest amongst the pb-CrtI 

plants. 

The seven pb-CrtB+I plants were defined by an increased level of phytoene (1.3- to 

3.4-fold), phytofluene (1.1- to 2.1-fold), lycopene and -carotene (up to 1.6-fold), 

lutein and -tocopherol (up to 1.3-fold) and total carotenoid content (1.1- to 1.6-

fold), compared to AC (Table 5-2, C). The level of -carotene varied depending on 

the plant (0.9- to 2-fold change). There was a positive correlation between the level 

of -carotene and the number of CrtB+I inserts in the plants. The plants with one or 

two inserts had ca. 250 g/g DW of -carotene, those with 4 to 6 inserts showed a -

carotene level of ca. 400 g/g DW and the plants with the greatest number of inserts 

(ca. 10) had ca. 550 g/g DW of -carotene. This correlation was not found for the 

other isoprenoids.  
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The pb-CrtB+I3 line, which harboured one insert, was selected on the basis of 

increased phytoene, phytofluene and lycopene contents. The pb-CrtB+I6 and 7 

plants were also sown, as they had a higher level of phytoene/lycopene and -

carotene, respectively, but did contain more than 6 inserts. 
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Phytoene 98 ± 2 186 ± 6*** 200 ± 1*** 221 ± 3*** 183 ± 6*** 185 ± 3*** 201 ± 5*** 124 ± 4 211 ± 2*** 224 ± 23*** 167 ± 1***

Phytofluene 135 ± 2 190 ± 4*** 187 ± 1*** 215 ± 2*** 187 ± 6*** 183 ± 3*** 208 ± 3*** 156 ± 5 203 ± 2*** 201 ± 17*** 177 ± 1**

Lycopene 1412 ± 22 2026 ± 37*** 2180 ± 24*** 2291 ± 23*** 1570 ± 57 1751 ± 24*** 2209 ± 29*** 1328 ± 11 1736 ± 29*** 2032 ± 43*** 1847 ± 95***

-Carotene 281 ± 3 229 ± 3** 242 ± 1* 249 ± 1 302 ± 7 279 ± 2 270 ± 4 313 ± 6 250 ± 1 275 ± 20 264 ± 2

-Carotene 76 ± 1 87 ± 4 95 ± 6** 93 ± 4* 76 ± 2 94 ± 4* 103 ± 1*** 79 ± 2 78 ± 1 83 ± 4 74 ± 1

Lutein 142 ± 1 155 ± 1* 151 ± 1 152 ± 2 142 ± 3 154 ± 1 148 ± 1 138 ± 1 145 ± 1 148 ± 7 144 ± 1

Total CAR 2143 ± 27 2874 ± 54*** 3054 ± 20*** 3219 ± 32*** 2459 ± 80* 2647 ± 35*** 3139 ± 38*** 2138 ± 21 2621 ± 28*** 2963 ± 103** 2673 ± 99***

-Tocopherol 280 ± 6 311 ± 7 304 ± 2 332 ± 6* 301 ± 10 286 ± 5 305 ± 7 309 ± 11 297 ± 5 296 ± 28 293 ± 1

pb-Crt B
AC 1 2 3 4 6 7 8 9 10 11

Phytoene 98 ± 2 184 ± 7*** 194 ± 5*** 141 ± 2*** 161 ± 2*** 90 ± 1 178 ± 2*** 166 ± 1*** 120 ± 1**

Phytofluene 135 ± 2 189 ± 6*** 194 ± 4*** 166 ± 2*** 166 ± 1*** 118 ± 1** 206 ± 2*** 173 ± 1*** 146 ± 2

Lycopene 1412 ± 22 1791 ± 60*** 2116 ± 37*** 1662 ± 24*** 2067 ± 21*** 1848 ± 11*** 1506 ± 3 1735 ± 17*** 1746 ± 33***

-Carotene 281 ± 3 231 ± 4*** 245 ± 4*** 310 ± 7*** 296 ± 1 302 ± 1* 467 ± 3*** 269 ± 2 245 ± 1***

-Carotene 76 ± 1 74 ± 1 102 ± 7** 92 ± 1 126 ± 7*** 87 ± 6 133 ± 2*** 80 ± 3 73 ± 2

Lutein 142 ± 1 142 ± 3 154 ± 2** 141 ± 3 147 ± 1 144 ± 1 140 ± 1 159 ± 1*** 150 ± 1

Total CAR 2143 ± 27 2610 ± 77*** 3005 ± 37*** 2511 ± 39*** 2964 ± 26*** 2589 ± 12*** 2630 ± 10*** 2581 ± 16*** 2480 ± 32***

-Tocopherol 280 ± 6 258 ± 5 341 ± 8*** 288 ± 5 337 ± 3*** 279 ± 3 246 ± 3* 300 ± 12 319 ± 8*

11

pb-Crt I
AC 1 2 3 4 5 6 9

A. 

B. 
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Table 5-2 Carotenoid and tocopherol contents in the pericarp tissue of all lines of pb-Crt transgenic (T0) tomato plants  

A, pb-CrtB; B, pb-CrtI; C, pb-CrtB+I. Tomato used (pericarp) were at breaker + 7 days ripening stage. Isoprenoid contents are presented as g/g DW. Methods used for this 

determination are described in section 2.5. Determinations were made from at least three biological replicates and three technical replicates. The mean data are presented with 

± SD. Dunnett’s test was used to determine significant differences between the wild type background (AC) and the transgenic varieties for each compound. Values in bold 

indicate where significant differences have been found. P<0.05, P<0.01 and P<0.001 are designated by *, **, and ***, respectively. CAR, carotenoid. Numbers represents the 

different events for each pb-Crt variety. 

Phytoene 98 ± 2 231 ± 1*** 162 ± 1*** 236 ± 2*** 337 ± 3*** 163 ± 1*** 129 ± 4*** 159 ± 2***

Phytofluene 135 ± 2 213 ± 1*** 175 ± 1*** 243 ± 2*** 287 ± 2*** 179 ± 1*** 154 ± 4*** 166 ± 2***

Lycopene 1412 ± 22 2036 ± 17*** 2094 ± 45*** 1538 ± 38 2176 ± 12*** 1154 ± 6*** 1779 ± 46*** 1809 ± 19***

-Carotene 281 ± 3 226 ± 1*** 257 ± 1** 558 ± 3*** 338 ± 1*** 563 ± 3*** 280 ± 5 445 ± 5***

-Carotene 76 ± 1 79 ± 1 88 ± 3** 125 ± 1*** 111 ± 2*** 115 ± 1*** 77 ± 2 129 ± 1***

Lutein 142 ± 1 143 ± 1 168 ± 1*** 137 ± 1* 155 ± 1*** 145 ± 1 148 ± 1** 151 ± 1***

Total CAR 2143 ± 27 2928 ± 20*** 2944 ± 49*** 2836 ± 46*** 3404 ± 16*** 2319 ± 5* 2566 ± 61*** 2859 ± 29***

-Tocopherol 280 ± 6 271 ± 3 389 ± 4*** 285 ± 8 331 ± 1** 344 ± 10*** 310 ± 9 302 ± 6

AC 3 4 5 6 7 8 9

pb-Crt B+IC. 
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5.2.3 Analysis of transgenic T1 generation 

5.2.3.1 Characterisation of the T1 pb-Crt plants 

The inheritance of the Crt gene(s) in the pb-CrtB7, pb-CrtI2 and pb-CrtB+I3 T1 

lines was determined by real-time qPCR (section 2.3.7). Twenty plants were grown 

from the T0 seeds and their zygosity analysed in order to select, ideally, three of 

azygous, hemizygous and homozygous plants. The ratio of azygous, hemizygous and 

homozygous plants found for each T1 pb-Crt line are represented in Table 5-3. 

Mendelian inheritance was expected as 5/10/5 ratio for the lines with one insert and 

1/4/6/4/1 for pb-CrtI2, which had 2 inserts (Table 5-3). However, when the qPCR 

results were ambiguous, they were not included and were then classified as “others” 

(see Table 5-3). Consequently, without having the whole dataset, it is impossible to 

conclude on a Mendelian inheritance. 

 

 

Table 5-3 Inheritance of the Crt genes in the T1 generation of pb-Crt plants 

Twenty plants were screened by line. Other*, plants excluded of the analysis due to ambiguous 

results. In this table, CrtB+I3 (=CrtB+CrtI) is considered as only one Crt copy, not two. Mendelian 

represents the expected distribution of 20 plants in the case of Mendelian inheritance. 

 

For the pb-CrtI2 lines, further investigation was necessary. The pb-CrtI2 line 

harboured two inserts in the T0 generation, so when two copies of the CrtI gene were 

found in the T1 generation, it could correspond to two hemizygous inserts, or one 

homozygous insert, associated with the loss of the second insert. In order to 

determine the inheritance of the CrtI gene in the T1 pb-CrtI2 lines, which contained 

two copies of the gene, a Southern blot experiment was performed (Figure 5-4). Two 

0 copy 1 copy 2 copies other*

pb-Crt B7 3 2 6 8

pb-Crt B+I3 1 12 5 1

Mendelian 5 10 5

Number of Crt  copies 

0 copy 1 copy 2 copies 3 copies 4 copies other*

pb-Crt I2 6 0 9 2 1 2

Mendelian 1 4 6 4 1

Number of Crt  copies 
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bands were found in all the tested pb-CrtI2 lines. Therefore, it was concluded that all 

the lines were hemizygous for two CrtI inserts. 

 

Figure 5-4 Autoradiogram of Southern blot obtained from DNA of pb-CrtI2 (T1) 

lines with two copies of CrtI, digested with EcoRI and hybridised to CrtI probes 

Multiple pb-CrtI2 plants were tested. +, positive control (DNA from the plasmid CrtI); -, negative 

control (DNA from the AC control). 

 

 

5.2.3.2 Isoprenoid profiles in the pb-Crt lines of the T1 generation 

5.2.3.2.1 Ripening series in pb-CrtI2 and pb-CrtB+I3 lines 

Profiles of isoprenoids in the pericarp of the transgenic pb-Crt T1 tomato fruits were 

determined by UPLC (method described in section 2.5.3). The isoprenoid contents in 

pb-CrtI2 and pb-CrtB+I3 lines were analysed in 5 developmental and ripening 

tomato stages (mature green, breaker, breaker + 3 days, breaker + 7 days, breaker + 

14 days). Homozygous (2 copies) and double homozygous (4 copies) lines were 

studied for pb-CrtI2 and a hemizygous (1 copy) and homozygous lines (2 copies) for 

pb-CrtB+I3 (Table 5-4). 
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Table 5-4 Carotenoid and -tocopherol contents in pb-CrtI2 and pb-CrtB+I3 lines 

of T1 generation during fruit developmental and ripening stages 

Mature Green

-Carotene 149 ± 1 142 ± 1* 151 ± 1 150 ± 1 144 ± 1

Lutein 171 ± 1 161 ± 1** 182 ± 2*** 170 ± 1 155 ± 1***

Neo / viola 93 ± 1 88 ± 1** 102 ± 1*** 92 ± 1 83 ± 1***

Total CAR 412 ± 1 392 ± 2** 435 ± 3* 411 ± 2 382 ± 2***

Homozygous

pb-Crt I2 pb-Crt B+I3

Azygous Homozygous Double homozygous Hemizygous

Breaker

Phytoene 23 ± 1 19 ± 1*** 25 ± 1 21 ± 1 21 ± 0

Lycopene 58 ± 1 62 ± 1* 73 ± 1*** 60 ± 1 65 ± 1***

-Carotene 154 ± 1 172 ± 1*** 171 ± 2*** 162 ± 1* 162 ± 2*

-Carotene 40 ± 1 42 ± 1 42 ± 1* 40 ± 1 42 ± 1

Lutein 148 ± 1 165 ± 1*** 172 ± 1*** 161 ± 1*** 152 ± 2

Neo / viola 68 ± 1 75 ± 1** 71 ± 1 73 ± 1 71 ± 1

Total CAR 492 ± 3 535 ± 1** 555 ± 5** 516 ± 2* 514 ± 5*

-Tocopherol 156 ± 2 169 ± 1 208 ± 2*** 166 ± 1 144 ± 2

pb-Crt I2 pb-Crt B+I3

Azygous Homozygous Double homozygous Hemizygous Homozygous

Br + 3d

Phytoene 132 ± 3 95 ± 1*** 80 ± 1*** 80 ± 3*** 88 ± 2***

Phytofluene 134 ± 1 110 ± 2*** 97 ± 1*** 102 ± 2*** 109 ± 1***

Lycopene 655 ± 13 690 ± 13 431 ± 5*** 405 ± 9*** 579 ± 12**

-Carotene 195 ± 3 219 ± 1** 204 ± 3 209 ± 1 213 ± 1*

-Carotene 55 ± 1 59 ± 1* 53 ± 1 54 ± 1 56 ± 1

Lutein 153 ± 2 168 ± 1*** 161 ± 2 166 ± 1** 153 ± 1

Total CAR 1324 ± 15 1342 ± 16 1024 ± 13*** 1015 ± 12*** 1198 ± 17**

-Tocopherol 195 ± 1 220 ± 1*** 212 ± 3* 183 ± 2 178 ± 2*

pb-Crt I2 pb-Crt B+I3

Azygous Homozygous Double homozygous Hemizygous Homozygous

Br + 7d

Phytoene 315 ± 12 305 ± 27 165 ± 5*** 262 ± 23 195 ± 22***

Phytofluene 251 ± 6 257 ± 21 158 ± 3** 220 ± 14 184 ± 17***

Lycopene 1119 ± 80 1422 ± 38*** 749 ± 33*** 1043 ± 67 1200 ± 82

-Carotene 188 ± 4 224 ± 13* 207 ± 2 202 ± 8 244 ± 10***

-Carotene 51 ± 1 56 ± 2* 49 ± 1 53 ± 2 61 ± 2***

Lutein 149 ± 2 170 ± 7** 156 ± 2 145 ± 2 155 ± 6

Total CAR 2072 ± 87 2434 ± 68*** 1484 ± 43*** 1924 ± 91 2039 ± 136

-Tocopherol 182 ± 8 276 ± 30*** 202 ± 4 184 ± 6 193 ± 9

pb-Crt I2 pb-Crt B+I3

Azygous Homozygous Double homozygous Hemizygous Homozygous

Br + 14d

Phytoene 433 ± 9 399 ± 3  - 466 ± 8 297 ± 2***

Phytofluene 356 ± 7 338 ± 11  - 381 ± 3 272 ± 2***

Lycopene 1729 ± 42 1614 ± 23  - 1772 ± 16 1755 ± 29

-Carotene 193 ± 3 255 ± 3***  - 224 ± 1** 226 ± 5***

-Carotene 54 ± 1 62 ± 1*  - 61 ± 1 61 ± 2*

Lutein 138 ± 3 153 ± 2**  - 147 ± 1 142 ± 2

Total CAR 2905 ± 64 2820 ± 40  - 3053 ± 15 2752 ± 37

-Tocopherol 244 ± 1 336 ± 1***  - 223 ± 6 226 ± 12

pb-Crt I2 pb-Crt B+I3

Azygous Homozygous Double homozygous Hemizygous Homozygous
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Isoprenoid contents are presented as g/g DW. Methods used for this determination are described in 

the section 2.5. Determinations were made from at least three biological replicates and three technical 

replicates. The mean data are presented with ± SD. Dunnett’s test was used to determine significant 

differences between the control (azygous) and the transgenic lines for each compound. Values in bold 

indicate where significant differences have been found. P<0.05, P<0.01 and P<0.001 are designated 

by *, **, and ***, respectively. CAR, carotenoid; Neo / viola, neoxanthin and violaxanthin; -, not 

determined; MG, mature green; Br; breaker; Br+3d; breaker + 3 days; Br+7d; breaker + 7 days; 

Br+14d; breaker + 14 days. 

Contents of isoprenoids varied depending on the line and the developmental stage of 

the tomato fruit. At the mature green stage, only the pb-CrtI2 double homozygous 

line had significant increases in some isoprenoids (lutein, neoxanthin and 

violaxanthin; 1.1-fold) compared to the azygous line. Both pb-CrtI2 and pb-CrtB+I3 

homozygous lines had decreased carotenoids levels and in the pb-CrtB+I3 

hemizygous line there was no significant change. At breaker stage, the pb-CrtI2 lines 

had significantly increased levels of most carotenoids levels (lycopene, -carotene, 

lutein, total carotenoids, by 1.1- to 1.3-fold). In the pb-CrtB+I3 lines, -carotene and 

total carotenoids levels were significantly increased in both lines (1.1-fold increase). 

At breaker + 3 days stage, the phytoene and phytofluene levels significantly 

decreased in all the lines studied, as well as lycopene levels except in the pb-CrtI2 

homozygous, where the lycopene level remained unchanged. The -carotene and -

tocopherol levels were significantly increased in the homozygous lines (1.1-fold 

increase). The pb-CrtI2 line also had significant increase of -carotene and lutein 

levels, but no change in the total carotenoids. At breaker + 7 days stage, levels of 

phytoene and phytofluene in pb-CrtI2 homozygous and pb-CrtB+I3 hemizygous 

lines were similar to the ones in the azygous line. In the other studied lines, the levels 

were significantly decreased. All the other isoprenoids measured in pb-CrtI2 

homozygous were significantly increased (1.1- to 1.3-fold). The levels of -carotene 

and -carotene were also significantly increased in pb-CrtB+I3 homozygous line 

compared to azygous. The pb-CrtB+I3 hemizygous showed no change in any of the 

isoprenoids studied. At breaker + 14 days stage, levels of phytoene and phytofluene 

were still unchanged in the pb-CrtI2 homozygous and pb-CrtB+I3 hemizygous lines 

and decreased in the pb-CrtB+I3 homozygous line. Moreover, as in the breaker + 7d 

stage, the other isoprenoids studied in pb-CrtI2 homozygous lines were all 

significantly increased (1.1- to 1.4-fold), except for the total carotenoids content 
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which did not vary compared to azygous. The pb-CrtB+I3 lines had an increased 

content of -carotene (1.2-fold). Changes through fruit development and ripening in 

all the pb-CrtI2 and pb-CrtB+I3 lines are shown in Figure 5-5.  

 

   

   

 

Figure 5-5 Schematic representations of changes of isoprenoid contents in pb-CrtI2 

and B+I3 T1 lines during fruit developmental and ripening stages 

Changes of isoprenoids content in the pb-Crt lines were calculated compared to the azygous control 

from the values showed in Figure 5-4. Significant changes (detailed in Table 5-4) are represented by 

the colour code described in this figure. CAR, carotenoid; Neo / viola, neoxanthin and violaxanthin; 

MG, mature green; Br; breaker; Br+3d; breaker + 3 days; Br+7d; breaker + 7 days; Br+14d; breaker + 

14 days. 

 

The pb-CrtI2 homozygous lines showed changes in all the different stages compared 

to the azygous. Increased levels of carotenoids were found from the breaker stage 

onwards for -carotene and lutein. For -carotene and -tocopherol, increased levels 

only occurred from the breaker + 3 days stage, and they too remained constant. For 

the pb-CrtI2 double homozygous, increased level of isoprenoids were mainly 

MG Breaker Br+3 Br+7 Br+14

Phytoene

Phytofluene

Lycopene

-Carotene

-Carotene

Lutein

Neo / viola

Total CAR

-Tocopherol

Changes in pb-Crt I2  homozygous 

MG Breaker Br+3 Br+7 Br+14

Phytoene  -

Phytofluene  -

Lycopene  -

-Carotene  -

-Carotene  -

Lutein  -

Neo / viola  -

Total CAR  -

-Tocopherol  -

Changes in pb-Crt I2 double homozygous

MG Breaker Br+3 Br+7 Br+14

Phytoene

Phytofluene

Lycopene

-Carotene

-Carotene

Lutein

Neo / viola

Total CAR

-Tocopherol

Changes in pb-Crt B+I3 hemizygous 

MG Breaker Br+3 Br+7 Br+14

Phytoene

Phytofluene

Lycopene

-Carotene

-Carotene

Lutein

Neo / viola

Total CAR

-Tocopherol

Changes in pb-Crt B+I3 homozygous 

 No change

 Increased level

 Decreased level 

 Not detected

 -  Not determined

Compared to azygous:



178 

 

observed at the mature green and breaker stages. Afterwards, isoprenoid levels (i.e. 

phytoene, phytofluene and lycopene) were either unchanged or decreased. The 

hemizygous pb-CrtB+I3 showed fewer changes and it was mainly at breaker and 

breaker + 3 days stages. In the homozygous pb-CrtB+I3 line, like in pb-CrtI2 double 

homozygous line, phytoene and phytofluene levels started to decrease from breaker 

+ 3 days stage. The -carotene levels did increase, compared to azygous, but only 

from breaker + 7 days stage. 

 

5.2.3.2.2 Comparison of pb-Crt lines and other CrtB and CrtI containing lines 

In this section, the lines containing CrtB or/and CrtI genes harbouring other 

promoters, instead of the pb promoter, are called comparator lines (such as PG-CrtB, 

PG-CrtI, 35S-CrtI, etc.). 

Levels of isoprenoids in the pb-CrtB7 hemizygous and homozygous lines were only 

analysed at breaker + 7 days stage in a concurrent manner with the comparator lines, 

due to the small number of fruits obtained during cultivation. Some other pb-Crt 

lines (pb-CrtI6; pb-CrtB+I6 and pb-CrtB+I7), showing interesting increases of 

carotenoids in the T0 generation, but with a high number of inserts, were also studied 

at the breaker + 7 days stage. Levels of isoprenoids of all the pb-Crt lines and their 

comparators at breaker + 7 days stage are shown in Figure 5-6.  

The pb-CrtB7 hemizygous and homozygous lines had an increased level of lycopene 

and total carotenoid contents (1.3-fold) compared to the azygous line (Figure 5-6, 

A). The pb-CrtB7 homozygous line also showed a significant increase in -carotene 

content (1.1-fold). No changes in phytoene and -tocopherol levels were observed. 

Although significant changes were observed in the pb-CrtB7 line compared to its 

azygous control, they were not as great as the changes in carotenoids levels in the 

PG-CrtB homozygous line (described in Chapter III, Table 3-1). For instance, the 

level of lycopene was two times greater in PG-CrtB compared to the hemizygous pb-

CrtB7 

 

. 
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A. 

 

B. 

 

C. 

 

 

Figure 5-6 Carotenoid and -tocopherol contents in pb-CrtB, pb-CrtI and pb-

CrtB+I lines of T1 generation and their comparators at breaker +7 days ripening 

stage 

Comparators are lines containing CrtB or/and CrtI genes harbouring a promoter, other than pb.  

Isoprenoid contents are presented as g/g DW. Methods used for this determination are described in 

the section 2.5. Determinations were made from at least three biological replicates and three technical 

replicates. The bars correspond to the mean data and the error bars represent the standard deviation. 

The pink bars correspond to data obtained in a different experiment, which were normalized to AC to 

be comparable. Dunnett’s or student’s t-tests were used to determine significant differences between 

the wild type background (AC or azygous) and the transgenic varieties for each compound. P<0.05, 

P<0.01 and P<0.001 are designated by *, **, and ***, respectively. The black stars indicate a 
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significant difference compared to the azygous line. The grey stars indicate a significant difference 

compared to the AC control. Hemi, hemizygous line; homo, homozygous line.  

 

Pb-CrtI2 homozygous was a better line compared to the double homozygous, in the 

terms of isoprenoid content at breaker + 7 days stage (Figure 5-6, B). The pb-CrtI6 

line, which showed the greatest increase of -carotene in the T0 generation, still had 

the greatest -carotene level in the T1 generation, compared to pb-CrtI2 lines, but the 

levels of the other isoprenoids studied were unchanged compared to azygous. The 

PG-CrtI line, which had not been previously described in this thesis, had a similar 

level of isoprenoids compared to the pb-CrtI lines. The 35S-CrtI homozygous line, 

which was reported in Chapter III (Table 3-1), showed the greatest content of all 

isoprenoids studied except for phytoene levels, which were extremely low. The pb-

CrtI2 homozygous line had 8-times more phytoene than the 35S-CrtI line. 

The pb-CrtB+I3 lines were very similar to the azygous line at breaker + 7 days 

tomato stage (Figure 5-6). The pb-CrtB+I6 and 7 lines with high numbers of inserts, 

were characterised in the T0 generation by a high level of phytoene/lycopene and -

carotene, respectively. At the T1 generation, pb-CrtB+I6 had the greatest levels of 

phytoene and lycopene compared to all the lines studied, even compared to the PG-

CrtB+35S-CrtI homozygous line, which was discussed in Chapter III (Table 3-1). 

The pb-CrtB+I7 line also had the greatest content of -carotene compared to all the 

pb-CrtB+I lines. These two lines did not lose their characteristics from the T0 to T1 

generation.  However, the best line in terms of -carotene content was the PG-

CrtB+35S-CrtI homozygous line. 

 

5.2.3.2.3 Pb-Crt seeds 

Surprisingly, the seeds of pb-CrtB and pb-CrtB+I tomato plants (T0 and T1 

generations) had an orange-pink tinge (Figure 5-7). In order to understand the 

identity of the colour, isoprenoid analyses were performed on the seeds of breaker + 

7 days pb-Crt tomato fruits (Figure 5-7). Substantial amounts of -carotene (ca. 175 

g/g DW) were found in the pb-CrtB line and pb-CrtB+I, but not in the control and 

pb-CrtI. Lycopene was also detected in pb-CrtB+I (ca. 50g/g DW). The presence 
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of these two carotenoids could explain the coloured seeds. It is interesting to notice 

that it only occurred in the seeds of the line overexpressing the CrtB gene. 

 

 

Figure 5-7 Carotenoid contents of pb-Crt seeds of the T1 tomato fruits at breaker + 7 

days 

Carotenoid contents are presented as g/g DW. Methods used for this determination are described in 

the section 2.5. Determinations were made from at least three biological replicates and three technical 

replicates. The bars correspond to the mean data and the errors bars represent the standard deviation. 

The different colours of the pb-Crt seeds are shown. 

 

5.2.4 Characterisation of the pb promoter in the pb-CrtB+I hemizygous line 

Although the pb promoter was thought to be chromoplast specific, according to 

studies of the promoter in other Solanum species (Ronen et al., 2000; Dalal et al., 

2010), the coloured seeds proved that this does not seem to be the case. In order to 

elucidate the tissue specificity of the pb promoter, further characterisation was 

undertaken. The pb-CrtB+I hemizygous line was chosen and its levels of CrtI 

transcripts, of CRTI proteins and the contents of carotenoids (only -carotene is 

shown here) were analysed in different plant organs (leaf, pericarp from different 

tomato stages, flower and seeds). The results are grouped in Figure 5-8. The levels of 
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transcript were determined by real-time RT-qPCR (method described in section 

2.3.9). The CrtI transcripts were found in all the plant organs (Figure 5-8, 1). The 

seeds from mature green fruits contained the greatest level of transcripts (3- to 120-

fold increase compared to the other organs). In the fruits, the highest levels of 

expression are at breaker and breaker + 3 days stages, thus showing that the pb 

promoter is active in early ripening stages. Levels in the leaves and the seeds from 

ripe tomatoes are extremely low compared to levels in the other organs. Proteins 

from the seeds, fruits and flowers of pb-CrtB+I hemizygous were extracted and 

quantified with a Bradford assay. Then the same amount of proteins for each organ 

was separated on SDS-PAGE (Figure 5-8, 2a; method described in section 2.6). 

CRTI proteins were visualised by immuno detection (Figure 5-8, 2b; method 

described in section 2.6.5). The greatest amount of CRTI was found in the seeds 

from ripe tomatoes. The level of CRTI in the seeds of mature green fruit could not be 

tested due to the lack of material. According to the thickness of the stained bands, 

the greatest levels of proteins in the fruits were at breaker + 3 days and mature green 

stages. Almost no CRTI proteins were detected in breaker + 14 days fruits and in the 

leaves. The greatest levels of -carotene were found in the leaves of the azygous and 

pb-CrtB+I lines. All the other organs had a similar content of -carotene in pb-

CrtB+I. However, there was no -carotene in the seeds of the azygous line. 

Consequently, the seeds had the greatest fold change increase of -carotene when 

comparing the azygous and the pb-CrtB+I line levels (from 0 to 225 g/g DW; 

Figure 5-8, 3). 
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Figure 5-8 Characterisation of the pb 

promoter in the pb-CrtB+I 

hemizygous line 

1. Levels of CrtI transcripts in different 

tomato plant organs determined by RT-

qPCR. Levels are shown as relative to the 

leaf transcripts level.  2. Levels of CRTI 

protein in different tomato tissues. a, 

Proteins, extracted from the organs, were 

separated and visualised using an SDS-PAGE 

followed by silver staining. b, Western blot. 

Immuno-localisation of the CRTI proteins. 3. 

-carotene contents are presented as g/g 

DW. Determinations were made from at least 

three biological replicates and three technical 

replicates. The bars correspond to the mean 

data and the errors bars represent the standard 

deviation. Methods used for these 

determinations are described in sections 

2.3.9, 2.6.5 and 2.5.3. Br, breaker; d, days. 
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5.3 Discussion 

5.3.1 Evaluation of the pb-Crt transgenic lines 

A surprisingly high number of Crt inserts were found in the pb-CrtB, pbCrtI and pb-

CrtB+I T0 plants (Table 5-1). Usually, when performing an Agrobacterium-mediated 

transformation, it is excepted to obtain a large proportion (> 1/3) of plants with one 

unique insert and then plants with 2 to 4 inserts (Cheng et al., 1997; Kohli et al., 

2003). That was not the case with these three lines, where sometimes more than ten 

inserts were visualised (Figure 5-3). This is unusual for plants transformed by the 

UC Davis transformation service. So, it could indicate that an amended 

transformation process may have been used this time. It also could be explained by 

the duplication of T-DNA loci during the integration process, or ligation of separate 

T-DNAs prior to integration (Kohli et al., 2003). In the pb-CrtB and pb-CrtI T0 

plants, the high number of inserts did not have a particular effect (positive or 

negative) on isoprenoid production (Table 5-2). However, there was a positive 

correlation between the level of -carotene and the number of inserts in the pb-

CrtB+I T0 plants (Table 5-2).  The coordinated expression of CrtB+I usually leads to 

an increase of -carotene and sometimes lycopene levels (Table 5-2; Chapter III, 

Table 3-1). Moreover, the isoprenoid profile of CrtB+I appeared to be dependent on 

the dose of gene. In chapter III, the CrtB+I hemizygous line was discussed regarding 

an increase of -carotene and lycopene, while in the homozygous line, there was 

only an increase in -carotene. It seems that the same phenomenon happened with 

the pb-CrtB+I T0 lines, but that the dose of gene required to drive the unique 

increase of -carotene was greater with the pb promoters than the combination of PG 

+ 35S promoters used previously (Chapter III). It is only when more than 9 inserts 

were present in the plant (pb-CrtB+I lines 7 and 10, Table 5-2) that the level of -

carotene increased substantially (2-fold), associated with no change in lycopene 

level. Therefore, the same -carotene/lycopene pattern, which is dependent on the 

number of gene copies, was found in the CrtB+I and pb-CrtB+I plants. Moreover, it 

is not the first time that multiple copies of transgenes have been shown to have a 

cumulative effect on carotenoid accumulation (Rai et al., 2007). 

It is interesting to see the stable inheritance of isoprenoid profiles from the T0 to T1 

generation of the pb-Crt plants. Only the lines with the same number of gene copies 
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can be compared. The profiles of carotenoids in pb-CrtB7 hemizygous (T1) 

compared to pb-CrtB7 T0, pb-CrtI2 homozygous (T1) compared to pb-CrtI2 T0, and 

pb-CrtB+I3 hemizygous (T1) compared to pb-CrtB+I3 T0 were different. One of the 

consistant differences was the level of phytoene and phytofluene, which both 

increased (1.4- to 2.5-fold) in pb-Crt T0 plants compared to the control levels, while 

in the T1 generation (Table 5-2, Table 5-4 and Figure 5-6) they were unchanged. 

Qualitative changes of the other isoprenoids studied were similar between T0 and T1. 

The only exception was the hemizygous pb-CrtB+I3, which showed no differences 

in isoprenoid levels compared to the control in the T1 generation. When the changes 

in isoprenoid levels were qualitatively the same between T0 and T1 (for instance, an 

increase of lycopene level in pb-CrtB compared to the control in T0 and T1), they 

were usually quantitatively smaller in the T1 generation, compared to T0 (i.e. the fold 

change increase of lycopene level compared to the control, was greater in T0 than in 

T1). The same conclusions can be attributed to pb-CrtI6, pb-CrtB+I6 and pb-

CrtB+I7 lines, which had the greatest level of -carotene, phytoene/lycopene and -

carotene, respectively, compared to the other pb-Crt lines in T0 and T1 generations. It 

will certainly take more generations to have a stabilised isoprenoid phenotype in the 

pb-Crt lines. Moreover, the T0 and T1 plants were grown at different periods of the 

year, spring and autumn, respectively, which could explain why the isoprenoid 

content of T1 plants was not as high, compared to the T0 plants. Additionally, 

different controls were used. The AC control, which represents the tomato 

background, was used for the T0 analysis. The azygous line, which has been through 

the transformation process but lost its transgene, was used for the T1 studies. The 

azygous control is a better choice, as it had also been transformed. Other studies 

have used the azygous line as the control of choice for carotenoid studies (Fraser et 

al., 2001; D'Ambrosio et al., 2004; Lee et al., 2012). Usually, the azygous lines and 

the AC control are not different. However, in this study, most of the isoprenoids 

levels are significantly different in AC compared to azygous (Figure 5-9). This may 

indicate that the transformation process had been quite stressful for the plants. It is 

plausible that in further generations the differences between AC and azygous lines 

will reduce. It is important to notice that for the T1 generation studies, fewer 

biological replicates were available due to the study of the ripening series and poor 
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weather conditions during the growth period. Consequently, the same studies need to 

be repeated on a T2 generation in order to confirm the T1 results. 

Changes in isoprenoid levels due to the expression of the CrtI and CrtB+I genes 

under the control of the pb promoter were reported during all the developmental and 

ripening stages studied in the fruit (Figure 5-5). That correlates with the pattern of pb 

expression in fruit (Figure 5-8). Although the hemizygous and homozygous lines of 

pb-CrtI lines were under the control of the same promoter, and consequently had the 

same timing of expression, their isoprenoid patterns were different during ripening 

(Figure 5-5). It shows again that different doses of gene(s) and thus presumably 

protein, can trigger different responses within the carotenoid pathway. The pb-CrtI2 

double homozygous line might have been silenced from breaker + 3 days stage, as 

no increase in - and -carotene levels were found, whereas there were still increased 

levels in the pb-CrtI2 homozygous until the breaker + 14 days stage. It is plausible 

that silencing of the genes in the double homozygous lines was due to DNA 

methylation (Finnegan and McElroy, 1994; Li et al., 2001) 

 

 

Figure 5-9 Isoprenoid contents in AC and azygous lines at breaker + 7 days 

Carotenoid contents are presented as g/g DW. Methods used for this determination are described in 

the section 2.5. Determinations were made from at least six biological replicates and three technical 

replicates. The bars correspond to the mean data and the errors bars represent the standard deviation. 

Student’s t-test was used to determine significant differences between AC and azygous for each 
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compound. P<0.05, P<0.01 and P<0.001 are designated by *, **, and ***, respectively. AC, Ailsa 

Craig. 

 

5.3.2 Effect of different promoters on carotenoid production 

There is a broad spectrum of promoters available which differ in their ability to 

regulate the temporal and spatial expression patterns of the genes. Fine-tuning the 

control of the most suitable promoter for the appropriate transgene can dramatically 

increase the successful application of transgenic technology (Potenza et al., 2004). 

Consequently, the strategy chosen to optimise isoprenoid production in this study 

was to test a different promoter (pb) which was an earlier ripening promoter 

compared to the PG promoter. The hypothesis was that, by expressing the gene(s) 

earlier during the ripening process, more carotenoids of interest could be produced in 

the tomato fruit, since the CRTB enzyme would be available for a longer period, 

when the cells are still metabolically active. Moreover, the pb promoter had proved 

to deliver high expression in the S. galapagense (Enfissi et al., unpublished), so it 

was a good candidate. Other carotenoid engineering studies have tested several 

promoters in order to find the best one for their transgenes of interest (Davuluri et 

al., 2005; Enfissi et al., 2010). In this case, the promoters used to down-regulate 

DET-1 (2A11, TFM7 and P119) would be problematic because the presence of 

phytoene synthase early in fruit ripening has pleiotrophic effects (Enfissi and Fraser, 

unpublished). The choice of the suitable promoter is complicated since the best 

anticipated time for its expression is within a tight period of fruit ripening. 

In order to assess the effect of the pb promoter, it was necessary to compare the 

isoprenoid levels in pb-Crt plants with the levels in the previous Crt plants (under 

the control of PG or/and 35S promoters), described in Chapter III. It is clear that the 

PG-CrtB, 35S-CrtI and PG-CrtB+35S-CrtI lines are better in terms of carotenoid 

production compared to the pb-Crt lines, with ca. twice as much of the carotenoids 

of interest in each line (Figure 5-6, pink bars). This was not the result predicted. 

Moreover, it was surprising to find the pb promoter expressed not only in the fruit 

and flower, but also in the seed (Figures 5-7 and 5-8). The expression in the fruit and 

flower was expected as the Cyc-B promoter (pb) has been described as a chromoplast 

specific promoter in S. pennelli (Ronen et al., 2000) and in S. habrochaites (Dalal et 

al., 2010). However, no experiment on pb expression in the seed were shown in these 
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latter papers. Consequently, it seems that the pb promoter was not functioning to the 

same extent, in terms of level of expression, in the Ailsa Craig variety of S. 

lycopersicum compared to the S. galapagense.  

The control of gene expression by the promoter relies on a multitude of factors. The 

initiation of the transcription depends on the core sequence and upstream region of 

the promoter. Much of the gene expression control is realised by transcription factors 

and enhancer binding proteins, which bind to cis-elements called enhancer elements. 

These elements can be located hundreds or thousands of base pairs away from the 

gene that they control, and they are associated with tissue-specificity, expression, 

regulation by light or by a specific cellular substrate (Potenza et al., 2004).  

Consequently, when a promoter from one tomato species (such as S. galapagense) is 

introduced in another one (such as S. lycopersicum), unforeseen difficulties can 

occur: (i), the more distant 5׳ cis-acting enhancer elements can be removed during 

the promoter isolation; (ii), the random integration of the pb-Crt gene into S. 

lycopersicum genome can eliminate potential trans-interactions that occur based on 

the chromatin structure or location within the genome; (iii), interaction between the 

trans-acting factors and cis-elements from the different genome may not be possible 

(Potenza et al., 2004). A similar situation to the one occurring with the pb promoter 

in AC was observed when the pectin methyl esterase gene and its promoter were 

transferred from S. pennelli into AC (Seymour et al., unpublished). The promoter 

seemed to not be fully functional in AC, compared to S. pennelli. Then, it was 

previously shown that the upstream region of the Cyc-B promoter (pb) in S. pennelli 

and S. lycopersicum contained different cis-elements (Figure 5-10) and that could be 

the reason for different expression patterns (Ronen et al., 2000). It is plausible that 

the same differences occur between S. lycopersicum and S. galapagense, explaining 

why the pb-Crt plants were not producing high levels of isoprenoids. 
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Figure 5-10 Cis-elements in the upstream sequences of the promoters of Cyc-B in S. 

lycopersicum (1) and S. pennelli (2) adapted from Ronen et al. (2000) 

They are six additional sequence elements that exist in (2) but are absent from (1), and one sequence 

element that exists in (1) but not in (2). 

 

 

5.3.3 Insight into the carotenoid pathway in the tomato seeds 

The seeds from the pb-CrtB and pb-CrtB+I (T0 and T1) had an orange/pink colour 

(Figure 5-7). This phenotype has not been reported in other studies on the Cyc-B 

gene. Investigations on carotenoid contents in the seeds of the AC control and the 

pb-Crt lines showed that pb-CrtB and pb-CrtB+I contained high level of -carotene, 

similar to the ones in the fruits (Figure 5-9). Therefore, this indicates that CrtB and 

CrtB+I were expressed in the seeds, leading to the production of carotenoids. It is 

plausible that the tissue-specificity of the pb promoter was lost by elimination of one 

or several enhancer elements of the pb promoter during the isolation of the pb 

promoter from S. galapagense. This hypothesis correlates with the ones described in 

section 5.3.2. It is interesting to note that only the CrtB containing lines were able to 

produce -carotene. This observation gives an insight into the carotenoid pathway in 

the tomato seeds. It appears that phytoene synthase is not present in the wild type 

seeds but some of the other carotenoid enzymes potentially are (phytoene desaturase, 

-carotene desaturase, carotene isomerase and -lycopene cyclase enzymes). When 

the CrtB gene is expressed in the seed, phytoene is synthesised and can be utilised as 

a precursor by either -lycopene cyclase enzymes or CRTI (if it is in pb-CrtB+I). In 

pb-CrtB+I, CRTI catalyses the synthesis of lycopene which may be converted to -

carotene by the -lycopene cyclase enzymes or accumulated in the seed, which 
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seems plausible since lycopene was detected in pb-CrtB+I seeds (Figure 5-7). A 

schematic representation is displayed in Figure 5-11. 

 

 

Figure 5-11 Schematic representation of carotenoid pathway in the seeds of the pb-

Crt lines and the AC control 

Blue colour represents endogenous compounds. Purple indicates the heterologous enzymes. Orange 

displays carotenoids only found in the CrtB containing lines.  Enzymes are in a rectangular shape, 

while metabolites have an oval shape. The red cross indicates a biosynthetic step which does not exist 

in the particular line. GGPP, geranylgeranyl diphosphate; PDS, phytoene  desaturase; ZDS, -

carotene desaturase, CRTISO, carotene isomerase; LCY-B, -lycopene cyclase; CYC-B, fruit specific 

-lycopene cyclase; CRTB, phytoene synthase; CRTI, phytoene desaturase. 
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6.1 Introduction 

Manipulating transcription factors is of great interest in metabolic engineering, since 

they are regulatory proteins that can control an entire pathway (Broun and 

Somerville, 2001) and, consequently, have a large scale impact (Martin, 1996). 

Overexpressing transcription factors has been a successful strategy to increase 

carotenoid (Pan et al., 2013) and flavonoid (Butelli et al., 2008) contents in tomato 

fruit. Some of the transcription factors, which regulate specific pathways, have been 

found by correlation network analysis (Rohrmann et al., 2011). The transcription 

factors described in this chapter, Phytochrome-Interacting Factor 5 (PIF5) and 

Arabidopsis Response Regulator 14 (ARR14), have been identified as being linked 

with carotenoid pathways in a similar manner. PIF5 acts on ethylene biosynthesis 

and phytochrome signalling (Khanna et al., 2007), but also has been shown to take 

part in the regulation of phytoene synthase gene expression (Toledo-Ortiz et al., 

2010). ARR14 is known to play a role in modulating the cellular response to 

cytokinin (Mason et al., 2005) and potentially in light signalling (D'Agostino and 

Kieber, 1999). The transcription factors were chosen as a strategy to improve the 

production of ketocarotenoids in plants. Ketocarotenoids are formed from a common 

substrate, -carotene, by the carotene hydroxylase (CRTZ) and carotene ketolase 

(CRTW) enzymes (Figures 1-14 and 1-20). They are high value products, as they 

serve as colourants for animal feeding (Breithaupt, 2007) and have health-promoting 

effects (Yuan et al., 2011). In this study, transient expression of the transcription 

factors associated with CrtZ and CrtW genes was undertaken in order to evaluate the 

potential of expressing PIF5 or ARR14 to optimise ketocarotenoid production. 

 
 

6.2 Results 

Vectors used in this study were kindly provided by Dr N. Misawa (Ishikawa 

Prefectural University, Japan). They are represented in Figure 6-1. The CrtZ and 

CrtW genes originated from the marine bacterium Brevundimonas sp strain SD212 

(Hasunuma et al., 2008), and were chemically synthesised with altered codons 

designed for plants (appendix Figure A6-1).    
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Figure 6-1 Structure of the vectors harbouring the transcription factors 

1, PIF5 vector; 2, ARR14 vector; 3, ZW vector; 4, ZW-PIF5 vector; 5, ZW-ARR14 vector. Locations 

of the restriction sites are shown by the blue dashed lines. LB, left border; Pnos, promoter of nopaline 

synthase gene from Agrobacterium tumefaciens; npt, gene conferring the kanamycin resistance; Tnos, 

terminator of nopaline synthase gene from Agrobacterium tumefaciens; P35S, 35S promoter from the 

cauliflower mosaic virus; U, untranslated region of Nicotiana tabacum alcohol dehydrogenase; tp, 

transit peptide of the Pisum sativum L. RuBisCO small subunit; CrtZ, carotene hydroxylase from 

Brevundimonas sp stain SD212; CrtW; carotene ketolase from Brevundimonas sp stain SD212 Thsp, 

terminator of the Arabidospsis thaliana heat shock protein 18.2 gene; DT2, succession of Thsp and Tnos 

terminators; PIF5, phytochrome-interacting factor 5 transcription factor from Arabidopsis thaliania; 

ARR14, Arabidopsis thaliana response regulator 14 transcription factor from Arabidopsis thaliania; 

RB, right border. 

 

6.2.1 Selection of an appropriate platform for transient expression experiments 

One of the advantages of plant transient agro-infiltration transformations is the 

rapidity with which transformed biomass can be produced. When the plants are 

ready for transformation, it only takes approximately two weeks to agro-infiltrate the 

plants, collect plant tissues and analyse ketocarotenoid contents. However, it was 

necessary to first ascertain whether ketocarotenoids could be produced in a transient 

expression experiment and which plant platform would be the more suitable for this 

approach. Three platforms were tested. Moneymaker tomatoes were chosen since 

stable ZW (Figure 6-1) transformed tomatoes lines were already available with this 

tomato background and could be used for comparison. Micro-Tom tomatoes were 

selected for their small size, which is a benefit in terms of agro-infiltration 
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efficiency. Nicotiana benthamiana was also chosen for its amenability to transient 

transformation. Methods of agro-infiltration are described in section 2.4.1.1. For all 

the agro-infiltration experiments described in this chapter, Agrobacterium cultures of 

each vector infiltrated were mixed with the Agrobacterium culture of p19 vector 

prior to infiltration. This vector, harbouring the p19 gene from the tomato bushy 

stunt virus, was used to maximise protein production by suppression of gene 

silencing (Voinnet et al., 2003). For the sake of clarity, the p19 vector will not be 

mentioned independently for each transient experiment in the following sections; its 

use should be assumed unless stated.  In order to test the different platforms for 

ketocarotenoid production, the three types of plants were agro-infiltrated with an 

empty vector (control), a GUS vector (containing the -glucuronidase gene under 

35S promoter) and the ZW vector. After 4 days, leaf tissues from the control and 

ZW plants were collected and flash-frozen in liquid nitrogen. Ketocarotenoids were 

then extracted and analysed by UPLC (methods are described in sections 2.5.1 and 

2.5.3). Chromatographic profiles of the ketocarotenoids found and their spectral 

characteristics are shown in Figure 6-2. The tissues freshly collected from the GUS 

plants, at the same time as the others, were tested with a histochemical GUS assay in 

order to evaluate the efficiency of the transformation. The tissues were put in contact 

with the 5-bromo-4-chloro-3-indolyl glucuronide (X-Gluc) compound, which is the 

substrate of the -glucuronidase enzyme. If the enzyme was present in the tissue, its 

product was synthesised and then dimerised through its reaction with the oxygen 

present in the air, which results in a blue dye being produced. The results are 

summarised in Figure 6-3. The Moneymaker tomato fruits were poorly transformed 

(20 to 50%) and no ketocarotenoids were detected in the fruits. The efficiency of 

transformation of Micro-Tom tomato fruits was much better, with 70 to 100% of the 

fruit transformed and echineone was produced. However, the Nicotiana benthamiana 

leaves had the best rate of transformation (90 to 100%) and three ketocarotenoids 

were synthesised (pheonicaxanthin, canthaxanthin and echineone) at high levels (25 

to 275 g/g of DW). Consequently, Nicotiana benthamiana leaves represent the best 

platform tested in this study for the production of ketocarotenoids, with the best 

variety and highest contents of ketocarotenoids produced and the best efficiency of 

agro-infiltration. 
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Figure 6-2 UPLC Chromatographic profiles of carotenoids, chlorophylls and 

ketocarotenoids found in control and ZW transformed tobacco leaves (a), the 

chromatographic annotations and spectral characteristics (recorded from 250 to 600 

nm) are shown in (b) 

The chromatographic profile was recorded at 470 nm. Blue numbers correspond to carotenoids and 

green to ketocarotenoids. Control designates tobacco plants transformed with an empty vector. 
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Figure 6-3 Comparison of three platforms for transient production of 

ketocarotenoids 

Mature green Moneymaker and Micro-Tom tomatoes and Nicotiana benthamiana leaves were agro-

infiltrated with ZW (illustrated in Figure 6-1) and GUS constructs as described in section 2.4.1.1. C, 

control, which correspond to a plant infiltrated with an empty vector. A minimum of 9 to 12 biological 

replicates and three technical replicates were analysed. Methods for histochemical detection of GUS 

activity and quantification of ketocarotenoids are explained in sections 2.4.1.2 and 2.5.3. An average 

quantity of ketocarotenoids is shown as g/g of DW. 

 

6.2.2 Ketocarotenoid analysis in transgenic tobacco plants 

Six week old Nicotiana benthamiana leaves were independently agro-infiltrated with 

an empty vector, GUS, PIF5, ARR14, ZW, ZW-PIF5 and ZW-ARR14 vectors 

(Figure 6-1). Histochemical GUS assay was performed to verify the efficiency of the 

transformation. The efficiency of the tobacco leaf transformations were always high 

(90 to 100%, such as in Figure 6-3). The phenotypes of the control, GUS, PIF5 and 

ARR14 transformed leaves remained the same post infiltration. However, the ZW 

containing leaves showed a difference in their colour compared to the control, from 3 

or 4 days post infiltration onwards. In the ZW, ZW-PIF5 and ZW-ARR14 

transformed leaves a brown colour intensified with each day post infiltration. The 
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representative phenotypes of all the transformed leaves and the control at 8 days post 

infiltration are shown in Figure 6-4.  

 

 

Figure 6-4 Leaf phenotypes 8 days post agro-infiltration 

Control represents a leaf, which has been agro-infiltrated with an empty vector. The control, PIF5 and 

ARR14 leaves have the same phenotype. The ZW containing leaves have similar phenotypes.  

 

Leaves were collected either at 4 or 8 days post infiltration. Usually, carotenoids and 

ketocarotenoids were extracted and analysed by UPLC (methods are described in 

sections 2.5.1 and 2.5.3). A parallel experiment was performed with saponified 

samples, in order to see the colours of the transformed leaf extracts, otherwise 

masked by the green colour of the chlorophylls. The extracted samples from the 

control, and other non- ZW containing leaves were yellow, while the samples from 

all the ZW containing leaves were orange (Figure 6-5). That indicated the production 

of ketocarotenoids in the ZW containing leaves. 
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Figure 6-5 Microcentrifuge tubes containing saponified metabolites extracted from 

tobacco leaves 

Control, ARR14, ZW and ZW-ARR14 correspond to the plants agro-infiltrated with an empty vector, 

ARR14, ZW and ZW-ARR14 vectors, respectively. Methods used to extract the carotenoids and 

ketocarotenoids are described in the section 2.5.1. 

 

Carotenoid and ketocarotenoid contents of all transformed leaves (control, PIF5, 

ARR14, ZW, ZW-PIF5 and ZW-ARR14) were analysed at 4 days post infiltration 

(Figure 6-6).  The control, PIF5 and ARR14 had similar carotenoid profiles. PIF5 

and ARR14 were not significantly different to the control. The ketocarotenoids, 

pheonicaxanthin, canthaxanthin and echineone, were only detected in ZW, ZW-PIF5 

and ZW-ARR14 plants. These plants were also characterised by significant 

decreases of endogenous carotenoid contents. The -carotene level in the ZW 

containing leaves was 2.6-fold lower, compared to the control. Smaller decreases of 

neoxanthin and violaxanthin levels were found (1.3-fold decrease) in ZW, ZW-PIF5 

and ZW-ARR14 plants compared to the control. The ZW-ARR14 transformed leaves 

had a greater level of canthaxanthin compared to ZW (1.3-fold increase). The ZW-

PIF5 leaves did not contain more ketocarotenoids compared to ZW. Consequently, 

ZW-ARR14 was the best construct tested for production of ketocarotenoid in 

tobacco leaves. These experiments were repeated to generate data from three 

independent experiments that confirmed the formation of ketocarotenoids. 
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Figure 6-6 Carotenoid and ketocarotenoid contents of transgenic tobacco leaves 4 

days post-infiltration 

Carotenoid and ketocarotenoid contents are presented as g/g DW. Methods used for this 

determination are described in the section 2.5.3. Determinations were made from at least twelve 

biological replicates (which were collected from three different plants) and three technical replicates. 

The bars correspond to the mean data and the error bars represent the standard deviation. Control, 

PIF5, ARR14, ZW, ZW-PIF5 and ZW-ARR14 correspond to the plants agro-infiltrated with an empty 

vector, PIF5, ARR14, ZW, ZW-PIF5 and ZW-ARR14 vectors, respectively. Dunnett’s test was used 

to determine significant differences between the control and the transgenic leaves and between ZW 

and ZW-transcription factor. P<0.05, P<0.01 and P<0.001 are designated by *, **, and ***, 

respectively. The black stars indicate a significant difference compared to the control. The grey stars 

demonstrate a significant difference compared to ZW.  

 

Nicotiana benthamiana leaves were also agro-infiltrated with the empty vector, 

GUS, ARR14, ZW and ZW-ARR14 vectors (Figure 6-7). In this experiment, the 

leaves were collected at 8 days post infiltration, instead of 4 days post infiltration. 

The purpose was to verify if a longer period of transformation could have an effect 

on the quantity of ketocarotenoids produced. New ketocarotenoids, astaxanthin, 

antheraxanthin and adonixanthin, were detected in ZW and ZW-ARR14 (10 to 40 

g/g DW), which were not present at 4 days post infiltration. The other 

ketocarotenoids, found at 4 days post infiltration, were detected in similar amounts at 

8 days post infiltration. The ZW-ARR14 transformed leaves contained significantly 

more adonixanthin, pheonicaxanthin, canthaxanthin and echineone compared to ZW 



200 

 

leaves (1.3 to 1.5-fold increase). Consequently, ZW-ARR14 was again considered 

the best construct for ketocarotenoid production. The effects on the endogenous 

carotenoids were qualitatively similar at 4 and 8 days post infiltration, with a 

significant decrease of neoxanthin, violaxanthin and -carotene levels in the ZW 

containing leaves compared to the control. However, in comparison with the control, 

there was a 4.4-fold decrease in -carotene content in ZW-ARR14 at 8 days post 

infiltration, while it was a 2.6-fold decrease at 4 days post infiltration.  

 

 

Figure 6-7 Carotenoid and ketocarotenoid contents of transgenic tobacco leaves 8 

days post-infiltration 

Carotenoid and ketocarotenoid contents are presented as g/g DW. Methods used for this 

determination are described in section 2.5.3. Determinations were made from at least twelve 

biological replicates (which were collected from three different plants) and three technical replicates 

per sample. The bars correspond to the mean data and the error bars represent the standard deviation. 

Control, ARR14, ZW and ZWARR14 correspond to the plants agro-infiltrated with an empty vector, 

ARR14, ZW and ZWARR14 vectors, respectively. Dunnett’s test and student’s t-test were used to 

determine significant differences between the control and the transgenic leaves and between ZW and 

ZW-ARR14, respectively.  P<0.05, P<0.01 and P<0.001 are designated by *, **, and ***, 

respectively. The black stars indicate a significant difference compared to the control. The grey stars 

demonstrate a significant difference compared to ZW.  
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6.2.3 Generation of stable ZW-ARR14 transgenic glauca plants 

Nicotiana glauca has been previously used as an engineering model for the 

production of ketocarotenoids (Gerjets et al., 2007; Zhu et al., 2007). It is an 

attractive system for the production of ketocarotenoids, due to its carotenoid 

accumulating flowers. Moreover, it is a potential advanced renewable biofuel source 

(Mortimer et al., 2012). Therefore, it could be used as a multipurpose system. 

Several attempts were performed to transform Nicotiana glauca plants in a stable 

manner with the ZW-ARR14 (method is described in section 2.4.1.3). However, 

despite modifications to the concentration of the Agrobacterium inoculum as well to 

the media, no plantlet was successfully regenerated from the transformed ZW-

ARR14 N. glauca calli. The positive controls, which were not transformed calli, 

successfully produced plantlets. One possible reason might be that the ZW-ARR14 

vectors with the constitutive 35S promoter are lethal and cannot be used to stably 

transform N. glauca plants. 

 

6.3 Discussion 

6.3.1. Transient production of ketocarotenoids 

The production of high-value ketocarotenoids and especially astaxanthin has been 

the focus of many studies over the years. Plants from different genera (Nicotiana, 

Arabidopsis, Lotus, Solanum, Daucus, Brassica, Zea) have been transformed in a 

stable manner with -carotene ketolase and/or hydroxylase genes from different 

origins (Mann et al., 2000; Stalberg et al., 2003; Ralley et al., 2004; Gerjets and 

Sandmann, 2006; Morris et al., 2006; Gerjets et al., 2007; Suzuki et al., 2007; Zhu et 

al., 2007; Cho et al., 2008; Hasunuma et al., 2008; Zhu et al., 2008; Fujisawa et al., 

2009; Ahn et al., 2012; Huang et al., 2013). In this study, the optimised vector 

harbouring the chemically synthesised CrtZ and CrtW genes with plant codon usage, 

which encode the same amino acid sequences of CRTZ and CRTW of 

Brevundimonas sp, was agro-infiltrated in a transient manner. The expression of 

heterologous genes in plants can be limited by differences in codon usage. Optimised 

codon use has been successfully utilised to enhance protein content (Perlak et al., 

1991; Rouwendal et al., 1997; Batard et al., 2000; Vervoort et al., 2000; Wang and 

Roossinck, 2006). The 5΄UTR region from N. tabacum alcohol dehydrogenase 
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(NtADH) has also been included in this vector to enhance the stability of the CrtZ 

and CrtW mRNAs and therefore, translation (Van Der Velden and Thomas, 1999; 

Satoh et al., 2004). To date, the highest level of ketocarotenoid accumulation 

achieved in plants, was obtained through the stable expression of this optimised 

CrtZ/CrtW vector. Ketocarotenoid levels up to 8,000-14,000 g/g DW have been 

reported (Hasunuma et al., 2008; Mortimer et al., unpublished). 

In this study, transient production of ketocarotenoids was successfully achieved in 

tomato (Micro-Tom) and N. benthamiana using the optimised CrtZ/CrtW vector. It 

is the first time that transient production of ketocarotenoids in plants has been 

reported. Large contents of ketocarotenoids (ca. 500 g/g DW) were quantified in N. 

benthamiana leaves. The levels achieved, at just 8 days post agro-infiltration, are 

greater or of similar range compared to the ketocarotenoid levels obtained in the 

studies previously cited, which did not use the optimised CrtZ/CrtW vector. 

Contrary to the majority of studies reporting the production of ketocarotenoids in 

plants, the main ketocarotenoid synthesised in the transiently transformed N. 

benthamiana leaves was not astaxanthin but canthaxanthin (Figure 6-6; Figure 6-7). 

Astaxanthin was not detected in the tobacco leaves at 4 days post infiltration and 

represented only 4% of the total ketocarotenoids at 8 days post infiltration. 

Therefore, it seems that the last steps of the ketocarotenoid pathway are not 

efficiently catalysed in this transient system, which causes an accumulation of the 

intermediate ketocarotenoid canthaxanthin (Figure 1-14). It may be possible that a 

longer period of agro-infiltration will provide greater quantities of astaxanthin. The 

fact that there is no increase of canthaxanthin levels at 8 days compared to 4 days 

post-infiltration whereas all the ketocarotenoids, which are synthesised post 

canthaxanthin have increased levels at 8 days compared to 4 days, encourages this 

hypothesis. The presence of canthaxanthin suggests that hydroxylation of ketolated 

-ionone rings does not occur readily following transient expression. Perhaps this 

approach restricts the concurrent participation of the heterologous and/or the 

endogenous hydroxylases. In addition, the spatial organization of the enzymes and 

precursors could be more affected by transient expression.  

The production of ketocarotenoids was always associated with a decrease of the -

carotene content in N. benthamiana leaves (Figure 6-6; Figure 6-7). This was 

expected as -carotene is the first precursor of the ketocarotenoid pathway (Figure 1-
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14). However, the decrease of -carotene level in the ZW containing lines was not 

equivalent to the content of ketocarotenoid produced in the respective lines. There 

was a reduction of 9 to 37% of -carotene content depending on the experiments (4 

or 8 days post infiltration) and on the lines (ZW or ZW-ARR14). The loss of -

carotene corresponds to the percentage of -carotene content, which was not 

transformed into ketocarotenoids. Some unidentified ketocarotenoids (represented by 

a star in Figure 6-2) were detected but not quantified. Therefore, the total amount of 

ketocarotenoid is under-estimated and this could explain the lack of stoichiometry. 

Another cause may be the action of carotenoid cleavage dioxygenase enzymes 

(CCD), which could degrade the newly formed ketocarotenoids in the plants or -

carotene. This hypothesis is strengthened by the fact that no ketocarotenoids are 

endogenously synthesised in plants and consequently, they might be targeted 

preferentially for degradation as non-endogenous compounds, with presumably no 

defined sequestration mechanisms. The production of ketocarotenoids in the ZW 

containing lines was also connected to decreased levels of neoxanthin, violaxanthin 

and sometimes lutein (Figure 6-6; Figure 6-7). A decrease of -carotene level could 

have a negative impact on violaxanthin and neoxanthin levels, since -carotene is 

upstream in the carotenoid pathway (Figure 1-20). Moreover, according to Misawa 

(2009), -carotene is not the only endogenous carotenoid precursor of the 

ketocarotenoid pathway in tobacco leaves but zeaxanthin and lutein can also be 

directly transformed into ketocarotenoids (Figure 6-8). Thus, it could explain the 

reduction of the lutein levels in the ZW containing lines.   
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Figure 6-8 Carotenoid biosynthetic pathway in plants and the catalytic functions of 

CrtW and CrtZ introduced and expressed in tobacco leaves (Misawa, 2009)  

Fritshiellaxanthin corresponds to 4-ketolutein. IPP, isopentenyl diphosphate (pyrophosphate); 

DMAPP, dimethylallyl diphosphate; GPP; geranyl diphosphate; FPP, farnesyl diphosphate; GGPP, 

geranylgeranyl diphosphate; Idi, IPP isomerase; GGPS, GGPP synthase; Psy, phytoene synthase; Pds, 

phytoene desaturase; Zds, zcarotene desaturase; CrtISO, carotene isomerase; Lcy-b, lycopene - 

cyclase; Lcy-e, lycopene -cyclase; Bhy, -carotene hydroxylase; Zep, zeaxanthin epoxidase; Vde, 

violaxanthin de-epoxidase; Ehy, –carotene hydroxylase. 

 

 

6.3.2. N. benthamiana as an evaluation platform of transcription factors 

In this study, N.benthamiana was the best system tested to transiently produce large 

quantities of diverse ketocarotenoids (Figure 6-3). Therefore, it was the platform of 

choice to test the potential effect of transcription factors on carotenoid levels. 

Transient gene expression systems have multiple advantages. A transient system is 

rapid, flexible and straightforward (Kapila et al., 1997; Fischer and Emans, 2000). 

Numerous genes present in different population of Agrobacterium can be 

simultaneously expressed. It can be used to produce substantial quantities of proteins 
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in a matter of weeks (Twyman et al., 2003). The expression level of proteins can be 

enhanced by co-expressing the p19 gene from the tomato bushy stunt virus, which 

helps the suppression of gene silencing (Voinnet et al., 2003). Transient expression 

systems have been previously used for a broad range of purposes, such as 

characterising a novel gene expression (Zhao et al., 2013), studying gene silencing 

(Bhagwat et al., 2013; Kumar et al., 2013), and producing high-value compounds, 

such as artemisinin precursors (Van Herpen et al., 2010). In this study, N. 

benthamiana transient system was used to evaluate the potential of transcription 

factors for ketocarotenoid production. Overexpressing select transcription factors 

coordinately with CrtW and CrtZ genes in plants was the strategy of choice to 

optimise the production of ketocarotenoids, as similar strategies were successfully 

exploited previously. For instance, the overexpression of the ARABIDOPSIS 

PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like), which was 

identified by artificial neural network inference analysis, increased plastid number, 

area, and pigment content, enhancing the levels of chlorophyll in immature fruits and 

carotenoids in red ripe fruits (Pan et al., 2013). The expression of the two 

transcription factors Delila and Rosea1 genes from snapdragon in tomato, which 

induce anthocyanin biosynthesis in snapdragon flower, led to higher content of 

anthocyanins in the transgenic tomatoes (Butelli et al., 2008). Silencing of the 

ethylene response factor SIERF6, which was identified by correlation network 

analysis, enhanced both carotenoid and ethylene levels in tomato (Lee et al., 2012).  

However, in general, most of the transcription factors are poorly characterised. 

Therefore, selecting and testing in a stable manner the appropriate transcription 

factors, which positively regulate the pathway of interest, is time-consuming. The 

option of transient transformation of plants to test transcription factors is therefore 

suitable. In the knowledge that the levels of proteins and metabolites produced 

depend on the number of days post infiltration, as it was shown in Figure 6-6 and 

Figure 6-7, it is necessary to verify which period of incubation is optimal. In this 

study, two periods were tested (i.e. 4 and 8 days post infiltration); the longer period 

was the more appropriate for this work, since greater amounts of ketocarotenoids 

were produced. Nevertheless, other time periods could be tested to ensure the 

selection of the best conditions for ketocarotenoid production. The N. benthamiana 

platform is ideal to evaluate transcription factors when the final aim is to stably 

transform N. benthamiana plants with the transcription factors. However, if the final 
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target is tomato plants or other plant species, the results transiently obtained in N. 

benthamiana may vary in the stably transformed plants. Results from the N. 

benthamiana platform should then be only used as indications.    

Futhermore, the N. benthamiana evaluation platform could be translated into a 

ketocarotenoid production platform by scaling up the system as it is done at the 

Fraunhofer institute, (http://www.fhcmb.org/technology/overview; www.fhcmb 

.org/our-story-video; Figure 6-9). 

 

 

Figure 6-9 Innovative protein production platform at Fraunhofer, USA  

Large scale production of N. benthamiana plants (a), which are transiently transformed by submersion 

in a tank containing Agrobacterium culture harbouring the vector of interest and under vacuum (b). 

The vaccines and therapeutics are then purified from the transformed tobacco plants.  

 

6.3.3. Evaluation of PIF5 and ARR14 in optimising ketocarotenoid production 

In order to adapt to the environment, plants continuously monitor and respond to 

changes in red and far-red lights via phytochromes, which are plant photoreceptors. 

Phytochrome Interacting Factor 5 (PIF5), a basic helix-loop-helix transcription 

factor, belongs to the PIFs family. The Phytochrome Interacting Factors directly bind 

to photoactivated phytochrome and control light-regulated gene expression 

(Castillon et al., 2007). They play negative roles in  light responses as light activated 

phytochromes are responsible for post-translational inhibitions of PIFs via promoting 

their degradation and directly or indirectly preventing their binding to DNA (Jeong 

and Choi, 2013). Red light induces rapid phosphorylation and subsequent 

degradation of PIF5 through the proteasome system (Shen et al., 2007). PIF5 was 

shown to act on ethylene biosynthesis (Khanna et al., 2007) and on the regulation of 
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the phytoene synthase gene and therefore carotenoid biosynthesis (Toledo-Ortiz et 

al., 2010). A model of PSY regulation via the PIFs has been proposed (Figure 6-10). 

Manipulating levels of PIF transcription factors is therefore a potential strategy to act 

on carotenoid levels.  Moreover, if the expression of PIF5 is synchronized with the 

expression of CrtZ and CrtW, then a modification of ketocarotenoid levels could be 

anticipated.  

 

 

 

Figure 6-10 Model for the role of PIFs in regulating photosynthetic metabolism 

during seedling development (Toledo-Ortiz et al., 2010) 

In dark-grown seedlings, high PIF1 levels repress PSY gene expression by direct binding to its 

promoter. PIFs also repress other genes involved in carotenoid biosynthesis (likely by indirect 

pathways), as well as genes required for the biosynthesis of chlorophylls and the differentiation of 

etioplasts into chloroplasts (such as those encoding components of the photosynthetic apparatus). All 

of these genes are rapidly and coordinately derepressed when PIFs levels drop on illumination, when 

photoactivated phytochromes (Pfr form) migrate to the nucleus and interact with PIFs to promote their 

degradation. This leads to a rapid production of carotenoids and chlorophylls together with 

components of the photosynthetic machinery in an interdependent fashion, eventually resulting in the 

development of functional chloroplasts and the transition to photosynthetic metabolism. 

 

In this study, the transient overexpression of ZW-PIF5 combination of genes in 

N.benthamiana did not increase the levels of ketocarotenoids compared to ZW 

expression alone (Figure 6-6). This result does not seem very surprising as PIF5 has, 

in the dark, a negative effect on carotenoid biosynthesis (Figure 6-10). Only if the 
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overexpression of PIF5 led to silencing, carotenoid and therefore ketocarotenoid 

contents could have been increased. Consequently, an antisense strategy seems  more 

appropriate, although it could have detrimental effects on the plants, since PIFs have 

essential and far reaching roles.  

Little is known about the Arabidopsis Response Regulator 14 (ARR14), except that 

it plays a role in modulating the cellular response to cytokinin (Mason et al., 2005) 

and potentially in light signalling (D'Agostino and Kieber, 1999). This transcription 

factor was selected through correlation network analysis for its potential effects on 

carotenoid biosynthesis (Misawa et al., unpublished). Indeed, the overexpression of 

this transcription factor in coordination with the CrtZ and CrtW genes had a positive 

effect on the levels of ketocarotenoids (Figure 6-7).  Levels of ketocarotenoids (i.e. 

adonixanthin, pheonicaxanthin, canthaxanthin and echineone) were significantly 

increased (1.3- to 1.5-fold) in ZW-ARR14 compared to ZW. Consequently, the 

coordinated expression of ZW-ARR14 was a successful strategy to transiently 

increase levels of ketocarotenoids in N. benthamiana. Additional analyses need to be 

performed in order to further our understanding of the regulation mechanisms of the 

carotenoid pathway by ARR14 transcription factor. 

 

6.3.4 Nicotiana glauca as a multipurpose plant 

The interesting properties of Nicotiana glauca make it an attractive plant to be used 

as a multipurpose system, as it was described in section 6.2.3. Previously, N. glauca 

was successfully transformed with ZW in a stable manner. The transformed plants 

had pink/orange coloured flower and leaves but no detrimental effects were observed 

(Mortimer et al., unpublished).   
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Figure 6-10 Phenotypes of the wild type and ZW Nicotiana glauca (Mortimer et al., 

unpublished) 

Scale bars are 3cm for flower images and 8cm for images of aerial parts. 

 

 

Transiently overexpressing CrtZ, CrtW and ARR14 genes proved to be a valuable 

strategy to optimise the production of ketocarotenoids in plants (as described in 

section 6.3.3). Therefore, stable transformation of ZW-ARR14 was undertaken in N. 

glauca, but all attempts failed. Consequently, it suggests that the expression of 

ARR14 under the control of the 35S constitutive promoter was detrimental resulting 

in no regeneration of the calli. A tissue specific or an inducible promoter may 

overcome this lethal effect, facilitating controlled expression of the ARR14 

transcription factor when the vigour of the plant is vulnerable (i.e. an early 

developmental stage).  
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7.1 Summary and general conclusions  

7.1.1 Summary 

The overarching aim of this PhD study was to optimise the production of high-value 

carotenoids and ketocarotenoids in higher plants, especially tomato and tobacco. 

Several metabolic engineering strategies were used and assessed. 

The first objective was to evaluate the potential benefits of simultaneously 

overexpressing two bacterial carotenoid genes in plants compared to single 

independent expression (Chapter III). Three genes (CrtE, CrtB and CrtI) and their 

combinations (CrtE+B, CrtE+I and CrtB+I) were studied. CrtI and CrtB genes had 

the greatest impact on fruit carotenoid levels. Moreover, in the hemizygous state, the 

expression of CrtB+I genes in combination had a synergistic effect on the formation 

of high value carotenoids (i.e. lycopene, -carotene) compared to the expression of 

CrtB and CrtI independently. This direction of research also highlighted the positive 

correlation between gene dosage, the level of carotenoids and regulation mechanisms 

operating in response to altered carotenoid contents. 

The second objective was to further our understanding of the plants adaption 

mechanisms to perturbed carotenoid contents at the level of fruit and in the 

chromoplast (Chapter III), but also at a sub-chromoplast level (Chapter IV). These 

studies focused on the CrtB+I tomato lines, the best Crt combination line in terms of 

carotenoid levels. Changes in transcription, plastid ultrastructure and levels of 

primary and secondary metabolites were observed in CrtB+I. Special attention was 

given to the sequestration of the carotenoids and related regulatory mechanisms were 

revealed and proposed within the different tomato tissues and sub-chromoplast 

compartments.  

The third objective was to optimise the production of carotenoids by using a 

promoter, whose timing and strength of expression was thought to be more 

appropriate for the carotenoid pathway compared to the ones utilised previously 

(Chapter V). The chromoplast specific lycopene -cyclase promoter from the orange 

fruited Solanum galapagense was chosen to control the expression of the CrtB and 

CrtI genes. Results were unexpected, as carotenoid production was only slightly 

increased in fruits, whereas accumulation of -carotene was observed in the seeds. 
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The reasoning underlying these findings is discussed in section 5.3.2 of chapter V. 

Moreover, the unexpected expression of the CrtB and CrtI genes in the seeds gave 

insights into the carotenoid pathway in tomato seeds (Figure 5-11). 

The fourth objective was to optimise the production of high-value ketocarotenoids 

via combining the expression of ketocarotenoid genes (CrtZ and CrtW), with 

transcription factors potentially related to carotenoid regulation (PIF5 and ARR14). 

A transient transformation platform of N.benthamiana was developed and the 

ARR14 transcription factor was found to positively upregulate the formation of 

ketocarotenoids (Chapter VI).  

Carotenoid and ketocarotenoid formation in higher plants occurs in complex 

branched pathways (Figures 1-9 to 1-14). Multiple enzymes, which sometimes 

catalyse more than one enzymatic step, are involved. Consequently, optimising high-

value compound production is not straightforward. However, it was shown in this 

study that overexpressing several genes, the corresponding enzymes of which can 

work synergistically, is a good option to increase high-value isoprenoids. The choice 

of the gene overexpressed is essential as well as the timing and strength of 

expression of the heterologous genes. It was noticed that the identity and quantity of 

the carotenoids produced could trigger different regulatory mechanisms of 

carotenoid formation and sequestration within the pathway. It is important to 

understand these regulation mechanisms, especially for the future rational design of 

isoprenoid metabolic engineering. The following sections focus on carotenoid 

regulation mechanisms, which were revealed by the study of the transgenic Crt lines. 

7.1.2 Discussion on carotenoid regulation mechanisms 

The comparison of the isoprenoid levels in the tomato fruits of CrtB, CrtI and 

CrtB+I hemizygous and homozygous lines gave insights into carotenoid pathway 

regulatory mechanisms in the transgenic plants (Table 3-1, Figure 7-1). The 

carotenoid patterns of the six lines were different, even between the same Crt lines 

with different zygosity states. The level of the product of the CRTB enzyme, 

phytoene, increased in the CrtB hemizygous line. However, in the homozygous line, 

it was not phytoene, which increased, but lycopene levels (Figure 7-1). The effect of 

the two copies of CrtB gene was the activation of the synthesis of lycopene. It seems 

that the phytoene synthesised by CRTB was not accumulated, but utilised by the 
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enzymes of the downstream pathway. If the assumption that two copies of CrtB gene 

lead to more phytoene content than a single copy is correct, it could mean that a 

greater quantity of phytoene induced the formation of an enzyme complex (possibly, 

a metabolon of PDS, ZDS, ZISO and CRTISO). Thus, this could explain the 

unchanged levels of phytoene with the increased levels of lycopene in CrtB 

homozygous. Formation of transient enzyme complexes is a metabolic system, 

which provides a rapid and efficient regulation of metabolism (Jorgensen et al., 

2005). Other examples of metabolite-induced metabolons are described in the 

literature (Norris et al., 1999; McKenna et al., 2006; McKenna, 2011). Metabolite-

induced metabolons are fast and adaptable systems, which can react to changes in the 

environment (for instance, the level of a specific metabolite in the plastid) and 

provide rapid adaptation. Metabolite-induced metabolons are a faster regulatory 

system than transcriptional regulation (Norris et al., 1999). Another possibility is that 

the metabolon is stable and already present but maybe not working at its fastest pace 

in hemizygous CrtB. The higher content of phytoene, in homozygous CrtB, may 

have induced a change in the metabolon’s catalytic activity. In the CrtI containing 

lines, although the pattern of carotenoid changed, three aspects remained the same. 

There was always an increase of -carotene and -tocopherol levels and a decrease 

of phytoene levels. It appears that the presence of the CrtI gene, and therefore an 

increase of lycopene level, always induced the formation of -carotene. Moreover, 

the level of Ggpps-2 mRNA was increased and that of Psy was decreased (Figure 7-

1). Consequently, these combined data suggest that there was a negative feedback 

mechanism on phytoene content, which was previously described (Al-Babili et al., 

1999; Romer et al., 2000), but also a positive feedback mechanism on -tocopherol 

content. They both seem to be induced by the level of -carotene or a molecule 

resulting from its transformation/degradation. The homozygous CrtI and hemizygous 

CrtB+I plants both had greater levels of both lycopene and -carotene, compared to 

the control AC. It may be that the level of lycopene induced by two copies of CrtI or 

one copy of CrtB, plus one copy of CrtI, are equivalent and consequently, the effects 

on the carotenoid pathway were similar. However, when two copies of CrtB and two 

copies of CrtI were present, there was only an increase of -carotene level. This 

suggests that the regulation was different in this case. Moreover, in the homozygous 

CrtB+I, -carotene cyclase enzyme (LCY-B) seemed to be up-regulated as its 
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mRNA level was increased (Figure 7-1). It is plausible that LCY-B was recruited to 

regulate the high content of lycopene, as the CYC-B fruit-specific enzyme was 

saturated. The formation of a lycopene-induced metabolon formed with CRTI and 

LCY-B could also be proposed to explain the homozygous CrtB+I lines. It is also 

interesting to note that the increase in total carotenoid levels was always linked to the 

increase in lycopene level. This means that it is only when levels of lycopene were 

changed that the flux of the carotenoid pathway was improved. In the other cases, 

only the concentration control was modified and not the flux control of the pathway 

(Morandini, 2013).  

 

Figure 7-1 Carotenoid metabolite and transcript changes in Crt lines 

This figure combines data from Table 3-1 and Figure 3-5. Carotenoid metabolites are represented as 

squares. The mRNAs are represented by their name of corresponding gene in italics. Green indicates a 

significant increase compared to the control AC. Red shows a significant decrease, grey corresponds 
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to no significant changes and white, not determined. Statistical tests (Dunnett's) were used to 

determine the significance (p-value < 0.05). Arrows indicate a catalytic step. Solid arrows represent a 

single step; dashed arrows, several steps. Blue arrow indicates CRTB enzyme; purple, CRTI enzyme. 

+, positive activation. -, negative activation. IPP, isopentenyl diphosphate; GGPP, geranylgeranyl 

diphosphate; Ggpps-2, geranyl diphosphate synthase 2; Psy1&2, phytoene synthase-2; Lcy-b, -

lycopene cyclase; CrtR-b1, carotene -hydroxylase 1. 

 

 

The same pattern of carotenoid regulation, which is associated with the dose of gene, 

was observed in the study of the pb-Crt lines (Chapter V), but only in pb-CrtB+I and 

with at least 9 inserts. The pb promoter was not very efficient, presumably 

explaining why 9 inserts (9 x B+I) are necessary to equal the effect in the CrtB+I 

homozygous line (2 x B+I). The lack of correlation between the dose of gene and the 

levels of carotenoids in pb-CrtB and pb-CrtI may be due to the fact that levels of 

expression are too low to really be influential and trigger regulatory mechanisms. 

As discussed in the previous section, the regulation of the carotenoid pathway 

appears to be a fine-tuned mechanism, which could be induced by carotenoid levels. 

The transcriptomic data (Figure 3-5, Figure 7-2) brings a second aspect to carotenoid 

regulation. In the homozygous CrtB+I transgenic leaves, only fruit specific and 

flower specific mRNA levels, corresponding to enzymes downstream of CRTI, were 

increased. Moreover, as described in the previous section, in the transgenic fruit, it 

seems that the LCY-B enzyme activity was induced. This suggests that carotenoid 

levels in the transgenic plants are not able to be regulated only by the enzymes, 

which are already highly active in this specific tissue. Therefore, ectopically 

expressed enzymes, whose activity is negligible in this particular tissue, are utilised 

to take part in the regulation of the additional carotenoids as it is shown in Figure 7-

2.  
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Figure 7-2 Putative induction of the endogenous carotenoid enzymes in CrtB+I 

leaves and fruits 

Data are based on carotenoid transcript and metabolite levels. Pathway of the AC control is indicated 

in grey. Enzymes are represented as rectangles. Endogenous enzymes correspond to the grey 

rectangles. The CRTB and CRTI heterologous enzymes are shown in blue and purple, respectively. 

The grey rectangles filled in grey represent enzymes which are almost not active in the specific tissue 

of the control AC. Green, red and orange indicate tissue specificity of the enzymes, leaf, fruit and 

flower, respectively. The black star shows a decrease of mRNA levels in CrtB+I. PSY-1, fruit specific 

phytoene synthase-1, PSY-2, phytoene synthase-2; PDS, phytoene desaturase; ZDS, -carotene 

desaturase, CRTISO, carotene isomerase; LCY-E, lycopenecyclase; LCY-B, -lycopene cyclase; 

CYC-B, fruit specific -lycopene cyclase; CRTR-B1, carotene -hydroxylase 1; CRTR-B2, carotene 

-hydroxylase 2 (flower specific); ZEP, zeaxanthin epoxidase; NXS, neoxanthin synthase; VDE, 

violaxanthin de-epoxidase; CRTB, phytoene synthase; CRTI, phytoene desaturase.  

 

The carotenoid levels also appear to have an effect on the distribution of carotenoids 

through the tomato tissues. Levels of carotenoids were measured in the pericarp, 

jelly and columella tissues of AC, CrtB, CrtI and CrtB+I tomatoes (Table 3-2). A 

representation of the hypothetical regulation of the carotenoid distribution in the 

transgenic tomato lines is shown Figure 7-3. The following hypothesis is based on 

two facts. The first is that, although the pericarp is the tissue most amenable to 

sequestrate carotenoid (greatest levels), the increase of lycopene and -carotene 
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levels are greater in the columella (when changes do occur in the columella). This 

implies that the cell area left in the pericarp to store extra carotenoids is limited; 

otherwise it would be expected that the greatest increase of carotenoids would be in 

the pericarp. The second fact is that when there is an increase of carotenoids, it is at 

least always in the pericarp or in the pericarp plus the columella or in the three 

tissues, but never only in the columella or only in the jelly (Figure7-3). Therefore, 

the hypothesis is that there is a saturation limit for carotenoid storage in each tissue 

of the tomato. Carotenoids will be preferentially stored in the pericarp. If this is 

saturated then the carotenoids will be sequestrated in the columella and, lastly, in the 

jelly. Moreover, the saturation in carotenoids seems to be specific to each carotenoid. 

For instance, in CrtI, the pericarp is saturated with -carotene but not lycopene 

(Figure 7-3). It is another aspect of the carotenoid regulation which appears to be 

dependent on the quantity and identity of the carotenoid. 

 

Figure 7-3 Interpretation of lycopene and -carotene level changes in the different 

tissues of Crt lines tomato fruits  
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Scale is arbitrary. +, indicates a significant increase of carotenoid compared to the control AC; -, 

shows a significant decreased compared to AC. Statistical tests (Dunnett’s) were used to 

determine significant changes. P, pericarp; C, columella; J, jelly. 

 

Carotenoid regulation also occurs at the sub-chromoplast level. The localisation of 

the carotenoids within the chromoplast compartments (Figure 4-3) of CrtB+I and the 

control AC gave insight into the regulation of carotenoids, especially phytoene 

within the membranes of the chromoplasts. A hypothetical regulation mechanism is 

proposed (Figure 7-4). This is based upon the following findings: (i), phytoene was 

found in higher quantity in the plastoglobules of the control than in the 

plastoglobules of CrtB+I (Figure 4-3); (ii), the CRTB and CRTI enzymes were 

localised in the thylakoid membranes of CrtB+I (Figure 4-6); (iii) carotenoids were 

stored as crystals in the membrane (Figure 4-7) and this mechanism of sequestration 

was enhanced in CrtB+I (Figure 4-1); (iv) MGDG lipids appeared to take part in the 

regulation of the carotenoid sequestration via augmenting the flexibility of the 

chromoplasts membranes (Table 3-4, Figure 3-14). Combined, these data lead to the 

hypothesis that in AC all the phytoene is not utilised in the carotenoid pathway, and 

consequently, part of it is stored in the plastoglobules. However, in the transgenic 

line, the CRTB and CRTI enzymes, which may act as a complex with or without -

carotene cyclase enzymes (CYC-B and in the case of the homozygous line, LCY-B), 

recruit most of the phytoene into the carotenoid pathway and eventually formation of 

lycopene and -carotene crystals is induced. 
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Figure 7-4 Schematic representation of the regulation of carotenoid production 

within the thylakoid-like membranes of AC and CrtB+I chromoplasts 

In AC, the pool of phytoene, synthesised by PSY-1, can be used by PDS. However, at saturated 

levels, the excess phytoene appears to be sequestrated in the plastoglobules. Some lycopene and -

carotene are sequestrated in the thylakoid-like membranes and lycopene crystals are formed 

subsequently. In CrtB+I, although the pool of phytoene is greater due to the catalytic activity of 

CRTB, it is utilised by PDS and the excess by CRTI. Consequently, less phytoene is stored in the 

plastoglobules. A greater quantity of -carotene and lycopene are formed, leading to the formation of 

carotenoid crystals. Solid arrows represent a catalytic step; dashed arrows indicate a movement of 
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carotenoid. The significant changes in the galactolipid content of the membranes are also illustrated. 

IDS, IPP/DMAPP; synthase; GGPPS, 1-geranylgeranyl pyrophosphate synthase; PSY-1, phytoene 

synthase-1; PDS, phytoene desaturase; ZDS, -carotene desaturase; Z-ISO, 15-cis--carotene 

isomerase; CRTISO, carotene isomerase; CYC-B, -lycopene cyclase; CRTB, phytoene synthase; 

CRTI, phytoene desaturase; MGDG, monogalactodiacylglycerol. 

 

Regulation of the sequestration of carotenoids was also controlled via structural 

changes to the chromoplast structure (Figure 3-6, Figure 4-4). A schematic 

representation of the structural changes in the transgenic chromoplast is shown in 

Figure 7-5. It seems that in order to sequestrate more carotenoids, thylakoid 

membranes are maintained for a longer period, via the formation of thylakoid plexus. 

This allows the formation of more plastoglobules from thylakoid membranes. 

Moreover, the transgenic chromoplasts appear to create more internal envelope 

membranes, via the formation of membranous sacs. Carotenoids are stored in all 

these different types of membranous sub-compartments and especially as crystal-like 

structures. Therefore, plastoglobules, membranous sacs and thylakoid plexus are 

three subcompartments, which play an important role in carotenoid sequestration. 

Plastoglobules, as well as membranous sacs are created via a blistering mechanism 

from the thylakoid and inner envelope membranes, respectively (Austin et al., 2006). 

The plastoglobules are exclusively formed at areas of high curvature. Moreover, the 

lipid class MGDG has a high propensity for interfacial curvature (Figure 3-14) and 

the content of MGDG was 3.6-fold greater in CrtB+I chromoplasts compared to AC 

(Table 3-6). Altogether, this seems to indicate that MGDG could play an important 

role by allowing the membranes to curve, which could trigger the formation of 

plastoglobules and membranous sacs (Figure 7-4, Figure 7-5). Evidence that increase 

in MGDG content is due to an activation of its formation from the prokaryote pool 

was discussed in section 3.3.2. The prokaryote pool represents the lipid classes 

which are synthesised within the plastids (18:1 and 16:0). The eukaryote pool (18:2) 

is imported from the endoplasmic reticulum (Ohlrogge and Browse, 1995). It is 

coherent that activation of MGDG formation was done at a plastidial level, thus the 

regulation can be quicker compared to importing lipids from outside of the 

chromoplast. Moreover, the latter option may not even be possible at that stage of 

fruit development. Long lycopene crystals were found in AC and CrtB+I 

chromoplasts, but they appeared with different aspects. In AC, the lycopene crystals 
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were seen as multiple wavy lines, whereas in CrtB+I, only remnants of crystals were 

found. This may indicate a fundamental difference, but the reasons behind this 

alteration are unclear.  

 

Figure 7-5 Schematic representation and interpretation of AC and CrtB+I sub-

chromoplast structures observed by electron microscopy 

The initial chromoplasts were stained with osmium tetroxide. a; envelope membranes, b; lycopene 

crystals in AC; c, plastoglobule; d, thylakoid membrane remnant; e, membranous sac; f, stromule; g, 

-carotene crystal-like structure; h, lycopene crystal-like structure; i, remnant of lycopene crystals in 

CrtB+I; j, thylakoid plexus-like structure. The scheme shows the formation of the membranous sacs 

from the inner envelope of the chromoplast (1).  This scheme is based on Figure 3-6 and 4-7. 

 

Regulation of carotenoids is complex, dynamic and precise. An abundance of 

mechanisms are involved around their biosynthesis and sequestration. Therefore, it is 

difficult to predict the level of success of a genetic engineering strategy. 

Additionally, as it was observed in this study, the heterologous enzymes were not 

found in the same sub-chromoplast compartment as the endogenous homologues 

(Figure 4-6). They did not seem to interact with the same endogenous enzymes 

(recruitment of ectopic enzymes) and in the case of transient transformation, the 

heterologous enzymes seemed to be poorly functional (for instance CrtZ) or the 
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participation of the endogenous carotene hydroxylases had been restricted (Chapter 

VI). These are other aspects that can influence the success of the strategy. 

Furthermore, in Chapters III and V, the notion of timing and strength of gene 

expression was addressed. It was discussed that the timing of carotenoid gene 

expression must be extremely precise within a tight period of the fruit development 

in order to have the best impact on carotenoid levels without having detrimental 

effects. In Chapter VI, lethal effects due to the association of a constitutive promoter 

with ZW-ARR14 during stable transformation were observed (section 6.2.3). In 

consequence, the choice of the promoter is another aspect, which must be 

approached carefully. Plant codon use and a potent 5  UTR are two features used in 

the constructs of Chapters V and VI. They enhance the expression and translation of 

the heterologous genes. The advantages of these strategies were discussed in section 

6.3.1. All the aspects described in this section are important and should be addressed 

in order to optimise the production of high-value carotenoids and ketocarotenoids in 

plants. 

Although more and more parameters of genetic engineering are tested and improved 

in order to optimise the production of metabolites in plants, this study reveals that 

knowledge on the regulation mechanisms of the carotenoid pathway achieved by the 

plant in order to adapt to elevated contents is key to pursuing this challenge.  

 

7.2 Relevance to current understanding 

7.2.1 Production of carotenoids and ketocarotenoids in plants 

Tomato lines producing up to 3500 g/g DW of total carotenoid, 2700 g/g DW of 

lycopene and 800 g/g DW of -carotene were engineered (Table 3-1). These levels 

are comparable with the highest levels of carotenoids previously reported in tomato 

fruit metabolic engineering studies (Fraser et al., 2002; Enfissi et al., 2005; Apel and 

Bock, 2009, Table 1-2). Moreover, knowing that the rate conversion of -carotene to 

vitamin A is 12:1, only 75 to 150 g FW of CrtB+I tomato (i.e. ca. one tomato) fruit 

provides the daily recommended dietary allowance for vitamin A, which is 500 g 

for a children, 800 g for a female and 1000 g for a male. It is 4 to 20 times less 

than the amount recommended for engineered maize (Naqvi et al., 2009), potato 
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(Diretto et al., 2007b), cassava (Welsch et al., 2010) and carrot (Maass et al., 2009) 

plants (Table 1-2). Additionally, the CrtB+I tomato fruits contain high levels of 

lycopene, which was shown to also have health-promoting antioxidant activities 

(Fraser and Bramley, 2004; Zhu et al., 2013). Therefore, biofortified tomato plants 

with enhanced antioxidant content (-carotene and lycopene) have been created. 

In a period of 8 days, 500 g/g DW of ketocarotenoids were transiently produced in 

N. benthamiana. This level could be further enhanced by extending the period of 

agro-infiltration. Transient production of ketocarotenoids has not been reported 

previously. The highest levels of ketocarotenoids have been achieved via stable 

transformation of tobacco plants (leaves and nectary; Hasunuma et al., 2008, 

Mortimer et al., unpublished; Hernandez-Marin et al., 2013, Table 1-2). Astaxanthin 

and canthaxanthin are valuable ketocarotenoids due to their natural colour and their 

health-promoting antioxidant activities (Hernandez-Marin et al., 2013). In section 

6.3.2, a possible N.benthamina transient transformation platform, which could be 

used for industrial production of these high-value ketocarotenoids, was discussed.  

Different strategies are used to genetically engineer plants with higher contents of 

carotenoids (section 1.3, Table 1-2). The carotenoid pathway itself can be targeted or 

the formation of its precursors or the storage capacity of the carotenoids can be 

modified. However, the results of this study showed that the regulation of the 

carotenoid pathway is a very complex and sensitive system, and that could impact on 

the strategy chosen in unpredictable ways. This study reveals that carotenoid 

regulation and signalling systems are important factors that must be taken into 

account when considering which engineering strategy to choose. 

7.2.2 Isoprenoid/carotenoid pathways regulation and signalling system 

Contrary to other organisms, the biosynthesis of isoprenoid in plants takes place 

within two distinct compartmentalised pathways, the mevalonate (MVA) and the 2-

C-methyl-D-erythritol 4-phosphate (MEP) pathways (Figure 1-2). The co-existence 

of these pathways in the cytosol and in the plastids, respectively, allows the synthesis 

of a multitude of isoprenoid molecules with a wide range of physiological processes. 

This unusual dynamic is presumably an essential process for the interaction of plants 

with their environment (Hemmerlin et al., 2012). Moreover, since isoprenoids are 

part of such a diverse range of plant processes, their biosynthesis needs to be 
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specifically coordinated with these mechanisms. For instance, the roles of 

carotenoids in photosynthesis, photomorphogenesis and plant development suggest 

that their biosynthesis is regulated with processes such as plastid biogenesis, 

flowering and fruit development (Bramley, 2002; Fraser and Bramley, 2004; Lu and 

Li, 2008). Consequently, regulation of isoprenoids is complex, multifaceted and acts 

at multiple levels in the plants. 

The state of the art of isoprenoid, and more precisely carotenoid, pathway regulation 

in plants is presented in the next section. However, isoprenoid regulation 

mechanisms can differ between plant species as it was discussed in section 3.3.1. 

Therefore, the regulation mechanisms described here are general and may not be 

present in all plants. 

Pathway regulatory nodes correspond to rate limiting enzymes, whose activities are 

slow and therefore represent steps with great influence over the pathway. It was 

common assumption to think that there was a unique rate limiting enzyme within 

each pathway, which had the control of the entire metabolic flux. However, it seems 

that it is a rare case and that most often control of the flux is shared between many 

enzymes (Morandini, 2013; Vranova et al., 2013). Several regulatory nodes have 

been identified within the upstream isoprenoid pathway and carotenoid pathway, 

such as 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), 1-deoxy-D-xylulose 5-

phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase  

(HDR) and phytoene synthase (PSY) enzymes (Botella-Pavia et al., 2004; Cazzonelli 

and Pogson, 2010; Hemmerlin, 2013; Vranova et al., 2013). To date, there is only 

one example where flux control coefficients have been obtained to illustrate 

unequivocally that phytoene synthase is the most influential step in the formation of 

fruit carotenoids (Fraser et al., 2001). Due to their importance in controlling the 

metabolic flux of the pathway, these enzymes are under tight regulation. However, 

they are not the only ones to be controlled. For instance, the carotenoid isomerase 

CRTISO is regulated through an epigenetic process (Cazzonelli et al., 2009). Some 

of the regulation mechanisms occurring in the MEP pathway are represented in 

Figure 7-6. The following lists enumerate all the factors and processes involved in 

the regulation of carotenoids and isoprenoids.  
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Factors: 

o Light
1
  

o Circadian oscillations
2
 

o Other abiotic factors
3
 (i.e. salt, drought, temperature) 

o Environmental biotic factors
4
 (interaction with microbes and fungi) 

o Developmental cues
5
 (conversion from protoplast to chloroplast; 

chloroplast to chromoplast; flower development; fruit ripening) 

1
Von Lintig et al., 1997; Park et al., 2002); 

2
Thompson et al., 2000; Facella et al., 

2008; 
3
Welsch et al., 2008; 

4
Vogeli and Chappell, 1988; Akiyama et al., 2005; 

5
Bramley, 2002; Sandmann et al., 2006. 

Processes: 

o Modulation of transcription  

Pattern of carotenoid genes expression varies along with physiological processes, for 

instance the ripening of the tomato fruit (Bramley, 2002; Fraser and Bramley, 2004). 

Carotenoid transcription can also be regulated by transcription factors, such as 

phytochrome interacting factor (PIF; Toledo-Ortiz et al., 2010), SIER6 (Lee et al., 

2012), APETALA2 (Chung et al., 2010; Karlova et al., 2011), RAP2.2 (Welsch et 

al., 2007), APRR2 (Pan et al., 2013). Most of them act on Psy expression.  

o Post translational regulation 

Post translation regulation can act as a rapid response to environmental and 

physiological challenges. There are several regulatory mechanisms possible 

(Hemmerlin, 2013).  

(i) Metabolite-enzyme interaction: Some metabolites can act as activators or 

inhibitors of gene expression, by interacting directly with the enzyme, through non-

covalent binding, which modifies the enzymes’ catalytical properties. This can occur 

during feedback modulations of enzyme activities by substrate/product accumulation 

(for instance, free CoA and HMG-CoA are described as the potential metabolites, 

which act on HMGR-CoA) or during the modulation of enzyme activities by the  
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isoprenoid intermediates (for example, the mevalonate kinase enzyme is found 

inhibited by downstream metabolites, principally FPP, but also IPP, DMAPP or 

GPP). 

 

 

Figure 7-6 Major reactions in the higher plant carotenoid biosynthetic pathway 

(Cazzonelli and Pogson, 2010) 

Enzymes (encircled in red), carotenoids and their precursors (pipes), carotenoid sinks (barrels), 

carotenoid-derived signalling hormones (green signs) and other MEP isoprenoid-derived metabolites 
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(blue sign). The windows displayed within the chrome pipes indicate abundant carotenoid pigments 

found in photosynthetic tissues and also represent key nodes for regulation in the pathway. Carotenoid 

biosynthesis is modulated by environmental factors (light), chromatin modification and metabolic 

feedback regulation. The side funnels represent examples of metabolic feedback control mechanisms 

acting upon biosynthetic gene expression as a result of altered PSY and CRTISO enzymatic activity, 

respectively. First, the bottleneck in phytoene biosynthesis is regulated by PSY and its overexpression 

increased DXS and DXR mRNA levels post-transcriptionally in etiolated tissues. Second, loss-of-

function CRTISO mutants show reduced -LCY transcript levels in etiolated tissues. Abbreviations: 

-LCY, -cyclase; -OHase, -hydroxylase; CCD, carotenoid cleavage dioxygenase; CRTISO, 

carotenoid isomerase; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomerase; DXS, 1-deoxy-

xylulose-5-phosphate synthase; -LCY, -cyclase; -OHase, -hydroxylase; GGPP, geranylgeranyl 

diphosphate; HDR, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase; NCED, 9-cis-

epoxycarotenoid dioxygenase; NXS, neoxanthin synthase; PDS, phytoene desaturase; PSY, phytoene 

synthase; SDG8, histone methyltransferase; VDE, violaxanthin de-epoxidase; ZDS, -carotene 

desaturase; and ZE, zeaxanthin epoxidase. 

 

(ii) Structural regulation: The allosteric regulation of the enzyme can be done via 

modification of the enzyme structure, which causes variation of the enzyme activity. 

It can happen via changes in the primary structure of the enzyme or the organisation 

of the enzymes in multiprotein complexes (metabolon). 

(iii) Redox regulation: Several enzymes in the isoprenoid pathway are thought to be 

redox regulated, such as HMGR-CoA and DXR. 

Post translational modifications can be chemical, via modification of the amino acids 

(phosphorylation, glycosylation or ubiquitination), or linked with a proteolysis 

regulatory mechanism. Consequences of post translational regulation are the 

modification of enzyme activities, or their subcellular location, or the initiation of 

their degradation (Hemmerlin, 2013). 

 

o Modification of carotenoid sequestration  

Organelle biogenesis, especially chromoplast biogenesis, has a great impact on the 

accumulation of carotenoids. There is a positive correlation between the area of 

storage available and the carotenoid content. Plant mutants with increased plastid 

area (number or size), such as the tomato hp-1 (ddb1), hp-2 (det1), and hp-3 (zep) 

mutants have shown a concurrent increase in carotenoid content (Liu et al., 2004; 

Kolotilin et al., 2007; Galpaz et al., 2008). The Or gene of the cauliflower mutant, 
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induces the differentiation of proplastids or other non-colored plastids into 

chromoplast. Therefore, it creates a metabolic sink for carotenoid biosynthesis and 

accumulation (Lu et al., 2006; Li and van Eck, 2007). Moreover, other proteins have 

been found to be part of the regulation of plastid biogenesis and to promote 

carotenoid accumulation.  For instance, the HSP21 protein chaperone from tomato 

not only protects photosystem II from oxidative stress, but also induces the 

conversion of chloroplasts to chromoplasts and consequently the accumulation of 

carotenoids (Neta-Sharir et al., 2005; Carvalho et al., 2012). Several carotenoid-

associated proteins such as CHRC, CHRD and fibrillin, which participate in the 

biogenesis of carotenoid-lipoprotein structures in chromoplast, have been 

characterised (Vishnevetsky et al., 1999). Expression of these genes is associated 

with chromoplast development and increased carotenoid content (Leitner-Dagan et 

al., 2006; Simkin et al., 2007; Kilambi et al., 2013).  The acetyl-CoA carboxylase 

gene (ACCD), which is the only plastid-encoded gene involved in fatty acid 

biosynthesis (Kahlau and Bock, 2008), could also play an important part in 

chromoplast biogenesis (Barsan et al., 2010) and therefore, represents another 

potential regulatory gene. 

o Control of carotenoid degradation and turnover  

Degradation of carotenoids is performed by the carotenoid cleavage dioxygenase 

enzymes (CCDs). Therefore, the activity of the CCDs controls the rate of carotenoid 

turnover.  Some of the apocarotenoids (end products) are linked with the abscisic 

acid (ABA) pathway. This phytohormone is involved in complex plant signalling 

mechanisms (Hirayama and Shinozaki, 2007; Golldack et al., 2013). Therefore, 

regulation of the degradation of carotenoids is another important node of control.  

o Epigenetic regulation (Cazzonelli et al., 2009) 

o Phytochrome-mediated pathway (Alba et al., 2000; Welsch et al., 

2000) 

 

In this study, heterologous genes were introduced in plants. Their expression led to 

increased content of carotenoids (Chapter III, IV and V) and to the production of 

ketocarotenoids, unknown metabolites in the plants (Chapter VI). Consequently, 

perturbation was created within the plant homeostatic system. When a plant system 
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faces disruption, it tends to regulate it and adapt to the perturbation if necessary. 

Several regulatory mechanisms were highlighted in this work: (i), transcription 

adjustment of carotenoid genes (ectopic or not; Chapter IV); (ii), structural 

adaptation of the chromoplasts and its sub-compartments (Chapter IV); (iii), 

modification of carotenoid storage location at different levels (tomato tissues and 

chromoplast sub-compartments; Chapter III and IV) and (iv) potential post 

translational regulation with the formation of metabolite induced transient metabolon 

(Chapter III).  

The questions that remain are: How do these regulatory mechanisms work? What is 

the signal? In Chapter III, evidence that the increased carotenoid content induced 

changes in primary metabolite levels was presented (Table 3-4). It is likely that 

changes of carotenoid levels led to modified levels of ABA or/and even gibberellin 

(GA) and strigalactone (Figure 7-6). Previous studies reported the existence of 

feedback mechanisms from ABA to PSY (Welsch et al., 2000) and from ABA and 

GA to CHRD proteins (Vishnevetsky et al., 1999). Therefore, it strengthens the 

hypothesis that these phytohormones play an important role in the signalling system 

of the regulatory mechanisms described previously. It was also reported in the 

current study, how the levels of specific carotenoids could affect the accumulation 

and the storage of other carotenoids. Metabolite feedback mechanisms have been 

extensively reported; however, the molecular nature of the process remains unknown 

(Cazzonelli and Pogson, 2010). Cis-carotenes or cis-apocarotenoids have been 

proposed to act as signalling molecules of the carotenoid pathway (Kachanovsky et 

al., 2012). In human studies, the role of carotenoids and apocarotenoids as signalling 

molecules related to cancer and their modes of action have been described (Sharoni 

et al., 2012). There are two types of regulation and both involve transcription factors. 

In the first one, the carotenoid or apocarotenoid acts as a ligand and binds to a 

nuclear receptor, which activates its transcription factor function. For instance, in the 

case of the retinoid receptors, they are composed of two families of nuclear receptors 

(RAR and RXR). When the carotenoid or apocarotenoid binds to a RAR receptor, it 

hetero-dimerises with a RXR receptor and attaches to the promoter of a tumor 

suppressor gene to induce its expression. In the second system, such as in the case of 

the EpRE/ARE system, the transcription factors are bound to their cysteine rich 

inhibitory proteins and it is the interaction of carotenoids or apocarotenoids with the 
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inhibitory protein that activates the transcription factor. Additionally, the 

methylerythritol cyclodiphopshate (MEcPP) produced by the plastidial MEP 

pathway has been shown to regulate the expression of nuclear stress-response genes 

by retrograde signalling (Xiao et al., 2012), so it could also be a good candidate. 

Transposon elements are also believed to provide cis-acting regulatory elements that 

lead to changes in expression patterns (Kidwell and Lisch, 1997). They could be part 

of the carotenoid regulation and signalling mechanisms. 

In order to have a complete vision of the isoprenoid metabolic network and its 

regulation systems, it is important to determine the sub-cellular and sub-plastidial 

location of the pathway enzymes. The compilation of recent proteomics studies have 

resulted in a hypothetical topology of the carotenoid biosynthetic pathway in maize 

chloroplasts (Figure 7-7, Shumskaya and Wurtzela, 2013). However, it is plausible 

that the topology of the carotenoid pathway differs from one plant species to another. 

Moreover, it is necessary to confirm these data using, for instance, immuno-detection 

techniques and yeast hybrid systems to verify the protein-protein interactions. The 

results from proteomics alone could be sometimes misleading, for example, when 

the protein of interest has not yet been identified in a particular subcompartment but 

in another one, or if there is no sequence available for the species studied and the 

comparison is done with another species that may have different sub-plastidial 

location for the protein of interest. Special care needs to be brought to the enzyme 

sub-plastidial localisations, since this knowledge is crucial to advance our 

understanding of the interaction within the carotenoid pathway and therefore 

facilitate the improvement of metabolic engineering strategies. 
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Figure 7-7 Hypothetical topology of carotenoid biosynthetic pathway in maize 

chloroplast (Shumskaya and Wurtzela, 2013) 

Grey shadows: proteins were not localized experimentally. PG, globular 

plastoglobules; FPG, fibrillar plastoglobules; CR, hypothetical carotenoid crystals. 

GGPPS, geranylgeranyl pyrophosphate synthase; PSY, phytoene synthase; PDS, 

phytoene desaturase; ZISO, 15-cis--carotene isomerase; ZDS, -carotene 

desaturase; CRTISO, carotenoids isomerase; LCYE, lycopene -cyclase; LCYB, 

lycopene -cyclase; HYD, nonheme diiron carotene hydroxylase; CYP97A, P450 

carotene hydroxylase 97A; CYP97C, P450 carotene hydroxylase 97C; ZEP, 

zeaxanthin epoxidase; VDE, violaxanthin de-epoxidase; NXS, neoxanthin synthase; 

CCD/NCED, carotenoid cleavage enzymes. 
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7.3 Future directions and recommendations 

Further experiments could be performed to advance our understanding of how the 

plants respond and adapt to elevated carotenoid or ketocarotenoid content.  

CrtB+I tomato lines (Chapter III and IV)  

It would be interesting to look at the transcript levels of genes involved in the 

regulatory nodes of both the plastid localised MEP pathway and  extra-plastidial 

mevalonate isoprenoid pathway, such as hmgr and dxs, to see whether changes in the 

carotenoid pathway induce a modification in the control points of the upstream 

isoprenoid pathway at a transcriptional level. The levels of the MEP pathway 

metabolites in response to carotenoid perturbation would also be interesting given 

their recent association with plastid to nuclear retrograde signalling (Xiao et al., 

2012).  

Knowledge of carotenoid enzyme activities and the determination of flux control 

coefficients, possibly at different time points during tomato ripening, would also be a 

very valuable addition to the work presented, to ascertain how enzymes respond to 

additional heterologous enzymes in the pathway and how the overall flux is 

controlled through the pathway. In vitro assays would give information about the 

enzyme activities and the flux control. The metabolite-induced transient metabolon 

theory needs to be investigated further. Blue native gels (Reisinger and Eichacker, 

2006) could be used to isolate protein complexes and identification of protein 

components performed using modern proteomic (MS/MS) approaches. This could 

shed light on the existence and nature of a metabolon for CRTB+I as well as the 

endogenous enzymes. This knowledge could be utilised in the design of new 

engineering strategies such as using synthetic protein scaffolding technique or 

similar approaches to force the creation of enzyme complexes of interest in the 

plants (Conrado et al., 2008; Dueber et al., 2009; Whitaker and Dueber, 2011). 

Electron micrographs of the chromoplasts within the different tomato tissues 

(pericarp, jelly and columella), may partially explain the differences of carotenoid 

accumulation within these tissues.  The work done at a sub-chromoplast level could 

be improved by adding more sucrose steps (around the 38% sucrose step) in the 

discontinuous sucrose gradient. Thus, the envelope membrane may be easier to 

separate from the thylakoid membrane. Moreover, as it was highlighted before 
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(section 7.2.2), localisation of the enzymes is crucial to improve the conception of 

the carotenoid network. Consequently, it would be interesting to synthesise more 

polyclonal antibodies to localise a greater number of carotenoid enzymes. Then, as a 

comparison, it would also be informative to perform the same work that was done on 

CrtB+I, on carotenoid tomato mutants. Information on the specific level of 

carotenoid saturation, which triggers the regulation mechanisms, would also be 

valuable. Therefore, in vitro approaches to the process of carotenoid formation could 

be performed. Associated with this approach would be further studies to understand 

how the carotenoid crystals are attached to the thylakoid membranes. Protein-protein 

interaction or protein-membrane interaction studies will further our understanding on 

enzyme complex formation and maybe the crystal’s relation with the membranes. 

Tandem affinity purification (TAP) of protein complexes, fluorescence recovery 

after photobleaching (FRAP), fluorescence lifetime imaging microscopy (FLIM) and 

fluorescence resonance energy transfer (FRET) experiments could be utilised as it 

was recently done to understand the protein and lipid association in the lignin 

pathway (Bassard et al., 2012). However, in these cases, it is important to not lose 

sight of the fact that the protein stoichiometry is altered through overexpression. One 

way around this would be to use deletion mutants and express the endogenous 

tagged gene products under the control of their endogenous promoters. 

In order to verify the importance of the MGDG lipid class in the formation of 

membranous sacs and plastoglobules, experiments of overexpression or down 

expression (RNAi) of enzymes involved in the MGDG synthesis could be 

performed. Finally, levels of phytohormones (abscisic acid, gibberellins, cytokinins 

and strigalactones) could be analysed in order to reveal a possible signalling 

mechanism of the carotenoid pathway. 

PbCrt tomato lines (Chapter V) 

Firstly, the experiment needs to be repeated at T2 generation during spring/summer 

time and with a greater number of replicates to ensure the robustness of the results. 

Then, it would be crucial to understand why and how the pb promoter is not optimal 

in the Ailsa Craig (AC) tomato variety. Sequencing of the upstream promoter 

sequences (up to 2,500 bp) in AC and S. galapagense would give an indication of 

cis-element differences. Finally, tomato seeds containing high levels of -carotene 
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were created (Figure 5-7). They could potentially be exploited to produce 

biofortified tomato oil a since market for tomato oil is already present.  

 

ZW-PIF5 and ZW-ARR14 constructs (Chapter VI)  

ZW-ARR14 tobacco transient experiments could further be improved by testing 

different times of agro-infiltration periods. Consequently, it would be an even more 

advantageous technique to be transferred to an industrial scale, as discussed in 

section 6.3.2. Concerning the tobacco stable transformation with the ZW-ARR14 

construct, it is necessary to change the constitutive promoter to an inducible one, for 

instance ethanol-inducible promoter (Caddick et al., 1998). Work on ZW-PIF5 

should be continued, as PIF is a transcription factor directly linked to phytoene 

synthase and consequently with the carotenoid pathway. However, as mentioned 

previously (section 6.3.3), it would probably be more efficient and advantageous to 

achieve a phenotype by down-regulation using a TILLING approach, since from a 

nutritional perspective and consumer perception, it would be more acceptable than a 

genetic modification. From a more fundamental point of view, increased knowledge 

of the carotenoid and ketocarotenoid pathway at a transcriptional and translational 

level would facilitate understanding of the regulation mechanisms in the transgenic 

tobacco.  

In conclusion, the transgenic tomato and tobacco lines studied highlighted regulatory 

mechanisms that operate across multiple levels of cellular regulation, including 

transcription, protein localisation, metabolite cell/tissue type, and organelle/sub-

organelle structure/organisation. Previous descriptions of regulatory mechanisms 

operating in the pathway have focussed on transcription, protein levels and protein 

interactions. It is clear now that pathway regulation, including secondary metabolite 

formation, is a more complex process and intrinsically connected to global metabolic 

and cellular processes. In the present study, we have demonstrated how changes to 

cellular structures, such as crystal formation, plastoglobule and membrane 

composition/structures can arise in response to changes in metabolites. The 

partitioning of phytoene in plastoglobules as a regulatory mechanism was revealed 

for the first time. Synthesis and sequestration are two processes which are important 

for engineering carotenoids in plants, with the latter requiring further investigation.  
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All these adaptive mechanisms of the plant influence the accumulation of 

carotenoids or ketocarotenoids.  It is therefore crucial to understand them in order to 

rationally manipulate levels in future engineering strategies. The control of the flux 

is an important factor that needs to be considered in the design of the engineering 

strategy (Moreno-Sanchez et al., 2008; Morandini, 2013). Acting on multiple 

enzymes, especially the ones in the regulatory nodes of the isoprenoid/carotenoid 

pathway, seems a good approach. Nevertheless, the enzymes synthesising the 

products of interest and those involved in the carotenoid sequestration must not be 

ignored. Therefore, according to the results obtained in this study, the best 

combination of genes to be used in an overexpression approach is: (i), genes 

controlling the level of precursors plus (ii), genes of the intermediate pathway and 

(iii), genes controlling the accumulation of carotenoids. A potential construct would 

be dxs/CrtB/CrtI/fibrillin. Moreover, further transcription factors remain good 

candidates, due to their widespread effect on the pathway. As a consequence, they 

may also be associated within the construct previously described. Gene regulatory 

network can be identified using a systems biology approach. For example, 

correlation networks have identified the APRR2-like transcription factor gene, which 

is linked to pigment accumulation in tomato and pepper fruits (Pan et al., 2013). 

Systems biology integrates various experimental datasets from high-throughput 

biochemical and bioanalytical platforms, into models, which can functionally 

describe the physiological and biochemical processes within an organism. 

Consequently, this approach can go beyond the targeted pathway to be engineered 

and identify complex regulators of cellular metabolism, which can also be exploited 

to produce valuable products.  
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Appendix 1 Table A1-1 Carotenogenic genes cloned from bacteria, fungi and plants  

 

 

 

 

 

 

Gene (protein) Species Function References

Crt E (GGPP synthase)

 Bacteria: Pantoea ananatis , Erwinia 

herbicola, Paracoccus  sp., 

Rhodobacter capsulatus 

Converts IPP to GGPP 

Misawa et al., 1990; Lee et 

al., 2006; Sandmann and 

Misawa, 1992; Math et al., 

1992; Armstrong et al., 1989

Crt B (phytoene 

synthase) 

Bacteria: P. ananatis, E. herbicola, 

Paracoccus sp., Bradyrhizobium  sp. 

strain ORS278, R. capsulatus

Converts GGPP to phytoene 

Misawa et al., 1990; Lee et 

al., 2006; Sandmann and 

Misawa, 1992; Armstrong et 

al., 1989; Hannibal et al., 

2000; Misawa et al., 1995b

Crt I (phytoene 

desaturase) 

Bacteria: P. ananatis, E. herbicola, 

Paracoccus  sp., Deinococcus 

radiodurans , Bradyrhizobium sp. 

Strain ORS278

Converts phytoene to lycopene

Misawa et al., 1990; Lee et 

al., 2006; Misawa et al., 

1995b; Hannibal et al., 2000; 

Fraser at al., 1992; Xu et al., 

2007

Cyanobacteria: Gloeobacter violaceus Converts phytoene to lycopene
Tsuchiya et al., 2005; Steiger 

et al., 2005

Fungi: Xanthophyllomyces 

dendrorhous  (Phaffia rhodozyma )
Converts phytoene to lycopene Verdoes et al., 1999 and 2003

Bacteria: Rhodobacter sphaeroides 
Converts phytoene to neurosporene 

(three desaturation steps)
Lang et al., 1994

Crt Y (lycopene b-

cyclase)

 Bacteria: P. ananatis, E. herbicola, 

Paracoccus  sp., Bradyrhizobium  sp. 

strain ORS278

Converts lycopene to b-carotene 

Misawa et al., 1990; Lee et 

al., 2006; Sandmann and 

Misawa, 1992; Hundle et al., 

1993; Hannibal et al., 2000; 

Misawa et al., 1995b

Crt YB 
Fungi: X. dendrorhous  (P. 

rhodozyma ) 

Bifunctional enzyme, equivalent to 

bacterial CrtB and CrtY
Verdoes et al., 1999 and 2003

Crt Z (b-carotene 

hydroxylase) 

Bacteria: P. ananatis, E. herbicola, 

Paracoccus  sp. (incl N81106 and 

PC1) Brevundimonas  sp. SD212

Converts b-carotene to zeaxanthin 

and can accept canthaxanthin as a 

substrate. Hydroxylates at C-3 on 

the b-ring of g-carotene

Misawa et al., 1990 and 

1995b; Lee et al., 2006; 

Fraser et al., 1997; Choi et al., 

2006

Cyanobacteria: Haematococcus 

pluvialis 

Converts b-carotene to zeaxanthin. 

Diketolation at position 4 and 4 ́ to 

canthaxanthin; unable to convert 

zeaxanthin to astaxanthin

Linden et al., 1999

Crt R (b-carotene 

hydroxylase)

 Cyanobacteria: Synechocysti s sp. 

PCC 6803, Anabaena sp. PCC 7120

Converts  b-carotene to zeaxanthin 

but is unable to accept canthaxanthin  

 as a substrate. Anabaena enzyme is 

poor in accepting either b-carotene 

or canthaxanthin as substrates. 

Substrate for Synechocystis sp. 

PCC 6803: Deoxymyxol 2' -

dimethylfucoside Substrate for 

Anabaena sp. PCC 7120: 

Deoxymyxol 2' -fucoside

Makino et al., 2008

Crt X (zeaxanthin 

glucosylase) 
Bacteria: P. ananatis , E. herbicola 

Converts zeaxanthin to zeaxanthin b-

D-diglucoside

Misawa et al., 1990; Hundle 

et al., 1992
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Table A1-1 (continued) 

 

 

 

Gene (protein) Species Function References

Crt W (b-carotene 

ketolase) 
Cyanobacteria: G. violaceus 

Converts b-carotene to echinenone 

and a small amount of canthaxanthin
Tsuchiya et al., 2005

Bacteria: Paracoccus 

sp.,Bradyrhizobium  sp. strain 

ORS278, Brevundimonas  sp. SD212

Converts b-carotene  to 

canthaxanthin. Introduction of keto 

group at the 4,4 ́ position

Lee et al., 2006; Misawa et 

al., 1995b; Hannibal et al., 

2000; Fraser et al., 1997; Choi 

et al., 2007

Cyanobacteria: Nostoc punctiforme  

PCC 73102; Anabaena  sp. PCC 

7120

Makino et al., 2008; Steiger 

et al., 2004

Crt O (b-carotene 

ketolase)

 Bacteria: Rhodococcus erythropolis  

strain PR4; D. radiodurans

Converts b-carotene to 

canthaxanthin. Unable to accept 3-

hydroxy b-ionone ring as a 

substrate. Substrate: b-carotene

Tao et al., 2006; Choi et al., 

2007

Cyanobacteria: Synechocystis  sp. 

PCC 6803

Choi et al., 2006; Fernandez-

Gonzalez et al., 1997

Crt O (b-carotene 

ketolase)
Cyanobacteria: H. pluvialis 

Bifunctional enzyme: synthesises 

canthaxanthin via echinenone from 

b-carotene and 4-ketozeaxanthin 

(adonixanthin) with trace amounts of 

astaxanthin from zeaxanthin

Fraser et al., 1997; 

Breitenbach et al., 1996

Cyanobacteria: Chlorella zofingiensis 

Bifunctional enzyme: Converts b-

carotene to canthaxanthin, and 

converts zeaxanthin to astaxanthin 

via adonixanthin

Huang et al., 2006

Crt YE 
Cyanobacteria: Prochlorococcus 

marinus

Bifunctional enzyme catalyzing the 

formation of e and b-ionone end 

groups

Stickforth et al., 2003

Crt YF and Crt YE 

(decaprenoxanthin 

synthase)

Bacteria: Corynebacterium 

glutamicum 

Converts flavuxanthin to 

decaprenoxanthin 
Krubasik et al., 2001

Crt EB (lycopene 

elongase) 
Bacteria: C. glutamicum 

 Converts lycopene to cyclic C50 

carotenoids
Krubasik et al., 2001

Crt D 

(methochineurosporene 

desaturase)

Bacteria: R. capsulatus 

Desaturase 1-hydroxy-

neurosporene. Synthesises 

demethylspheroidene

Albercht et al., 1997

Crt C (1-

hydroxyneurosporene 

synthase)

Bacteria: R. capsulatus 

Hydratase which adds water to the 

double bond at position 1,2 of the 

end group yielding a 1-hydroxy 

derivative. Synthesizes 

neurosporene and its isomers.

Albrecht et al., 1997

Bacteria: Rubrivivax gelatinosus and  

Thiocapsa roseopersicina

Catalyses the conversion of 

lycopene to 1-HO- and 1,1'-

(HO)(2)-lycopene

Hiseni et al., 2011

Astaxanthin synthase 

gene (cytochrome P450 

monooxygenase)

Fungi: X. dendrorhous  (P. 

rhodozyma )

 Multifunctional enzyme catalyzing all 

steps from b-carotene to 

astaxanthin formation by 

oxygenation of C-3 and C-4

Ojima et al., 2006

Crt S (cytochrome-

P450 hydroxylase) 

Fungi: X. dendrorhous  (P. 

rhodozyma )

Can hydroxylate canthaxanthin to 

phoenicoxanthin and finally 

astaxanthin

Alvarez et al., 2006

P450  monooxygenase 

(CYP175A1) 
Bacteria: Thermus thermophilus 

b-carotene hydroxylase. b-

carotene-specific enzyme and does 

not accept canthaxanthin as a 

substrate

Blasco et al., 2004

Gene s110033 Cyanobacteria: Synechocystis  6803 Carotene isomerase Breitenbach et al., 2001
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Table A1-1 (continued) 

 

 

 

Gene (protein) Species Function References

ggpps  (GGPP synthase) 

Arabidopsis (Arabidopsis thaliana ), 

rubber tree (Hevea brasiliensis) , 

pepper (Capsicum annuum ), yellow 

gentian (Gentiana lutea )

Converts IPP to GGPP 
Zhu et al., 1997a, b and 2002; 

Kuntz et al., 1992; Takaya et 

al., 2003

Jatropha curcas Converts IPP to GGPP Lin et al., 2010

Salvia miltiorrhiza Converts IPP to GGPP Kai et al., 2010

Catharanthus roseus Converts IPP to GGPP Thabet et al., 2012

psy  (phytoene synthase) 
Tomato (Solanum esculentum ), 

yellow gentian 
Converts GGPP to phytoene 

Zhu et al., 2002; Misawa et 

al., 1994

Corn (Zea mays ; psy- 1, psy- 2), rice 

(Oryza sativa ; psy -2)

Two tissue-specific genes cloned 

from corn (from three present in the 

genome). Expression of psy- 1 is in 

endosperm and is predominantly 

responsible for carotenoids in seed.

Gallagher et al., 2004

Corn (Zea mays ; psy- 3) and sorghum 

(Sorghum bicolor ; psy -1 and psy- 3 

cDNAs)

Psy-3 expression plays a role in 

controlling flux to carotenoids in 

roots in response to drought stress. 

Maize psy-3  is mainly expressed in 

root and embryo tissue

Li et al., 2008a and b

babana (cv. Asupina and cv. 

Cavendish ; psy-1  and psy-2 )
 Converts GGPP to phytoene Mlalazi et al., 2012

Osmanthus fragrans Converts GGPP to phytoene Han et al., 2013

pds  (phytoene 

desaturase) 

Tomato, corn, pepper, yellow gentian, 

soybean (Glycine max )
Converts phytoene to z-carotene 

Bartley et al., 1991; Zhu et 

al., 2002; Li et al., 1996; 

Pecker et al., 1992; 

Hugueney et al., 1992

Chlorella protothecoides  CS-41 Li et al., 2011

zds  (z-carotene 

desaturase) 
Corn, yellow gentian

 Converts z-carotene to pro-

lycopene 

Matthews et al., 2003; Zhu et 

al., 2003

lyc-b  (lycopene b-

cyclase) 

Tomato, tobacco (Nicotiana 

tabacum ), Arabidopsis, yellow gentian
Converts lycopene to b-carotene

Zhu et al., 2002; Pecker et al., 

1996; Cunningham et al., 1996

Papaya (Carica papaya ) 

Two papaya lyc-b  genes: lyc-b1  is 

downregulated during fruit ripening, 

and lyc-b2  is chomoplast specific

Skelton et al., 2006; Devitt et 

al., 2010

lyc-e  (lycopene e-

cyclase)
 Arabidopsis, yellow gentian 

Adds one e-ionone ring to lycopene 

to d-carotene

Zhu et al., 2003; 

Cunningham et al., 1996

bch  (b-carotene 

hydroxylase) 
Arabidopsis, yellow gentian Converts b-carotene to zeaxanthin

Sun et al., 1996; Zhu et al., 

2003

zep  (zeaxanthin 

epoxidase) 
Yellow gentian 

Converts zeaxanthin to 

antheraxanthin 
Zhu et al., 2003

HYD4 (nonheme diiron  

b-carotene 

hydroxylases)

Yellow gentian 
Encode carotene b-ring 

hydroxylases
Zhu et al., 2003

cDNA encoding the 

enzyme b-carotene 

hydroxylase

Arabidopsis (Arabidopsis thaliana ) 

Adds hydroxyl groups to both b  

rings of the symmetrical  b-carotene 

(b-b-carotene) to form zeaxanthin 

and converts the monocyclic b-

zeacarotene to hydroxy-b-

zeacarotene

Sun et al., 1996

P450 CYP97C2  (Clan 

C enzyme) 
Rice (Oryza sativa )  e-Ring hydroxylase activity Quinlan et al., 2007

P450 CYP97A4 (Clan 

A enzyme)
Rice (Oryza sativa )

 b-Ring hydroxylase activity with 

some minor activity towards e-rings
Quinlan et al., 2007

P450 CYP97C11 Tomato (Solanum esculentum )  e-Ring hydroxylase activity Stigliani et al., 2011

P450 CYP97A29 Tomato (Solanum esculentum )  b-Ring hydroxylase activity Stigliani et al., 2011
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Table A1-1 (continued) 

 

 

Table A1-1 Carotenogenic genes cloned from bacteria, fungi and plants (adapted 

from Farre et al., 2010) 

 

 

 

 

 

 

 

Gene (protein) Species Function References

CCD4  (carotenoid 

cleavage dioxygenase 

protein)

Apple (Malus ×domestica ) 

Chrysanthemum 

(Chrysanthemum×morifolium) Rose 

(Rosa×damascena) Osmanthus 

(Osmanthus fragans) Arabidopsis

 Degrades b-carotene to yield b- 

ionone
Huang et al., 2009

bitter melon (Momordica charantia ) McCCD4, not determined Pham Anh and Park., 2013

CCD1  (carotenoid 

cleavage dioxygenase)
Strawberry (Fragaria  × ananassa ) Degradation of b-carotene in vivo Garcia-Limones et al., 2008

Corn (Zea mays ) 
Cleaves carotenoids at the 9, 10 

position 
Sun et al., 2008

bitter melon (Momordica charantia ) McCCD1, not determined Pham Anh and Park., 2013

Artemisis annua AaCCD1, cleaves carotenoids Liu et al., 2012

Vitis vinifera 

Cleaves zeaxanthin symmetrically 

yielding 3-hydroxy-b-ionone, a 

C13-norisoprenoidic compound, 

and a C14-dialdehyde

Mathieu et al., 2005

Z-ISO
maize (Zea mays ) and Arabidopsis  

(Arabidopsis thaliana )

Isomerization of the 15-cis  double 

bond in 9,15,9'-tri-cis -zeta-carotene
Chen et al., 2010

CRTISO  (crtiso1) Zea Mays 

Converts tetra-cis prolycopene to 

all-trans lycopene but could not 

isomerize the 15-cis double bond of 

9,15,9 -tri-cis-z-carotene.

Li et al., 2010

bch1  (b-carotene 

hydroxylase1)
Zea Mays 

Convert b-carotene into b-

cryptoxanthin and zeaxanthin
Li et al., 2010

bch2  (b-carotene 

hydroxylase2)
Zea Mays 

Convert b-carotene into b-

cryptoxanthin and had a lower 

overall activity than ZmBCH1

Li et al., 2010

CCS (capsanthin-

capsorubin synthase)
Lolium lancifolium  'Splendens

Catalyses the conversion of 

antheraxanthin and violaxanthin into 

capsanthin and capsorubin, 

respectively

Jeknic et al., 2012
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Appendix 2 Figure A2-1 Description of vectors used in this work 
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Figure A2-1 Description of vectors used in this work 

P, promoter; T, terminator; CrtE, geranylgeranyl diphosphate synthase gene from Pantoea ananatis; 

CrtB, phytoene synthase gene from Pantoea ananatis; CrtI, lycopene desaturase gene from Pantoea 

ananatis; CrtZ, carotene hydroxylase gene from Brevundimonas sp. SD212; CrtW, carotene ketolase 

gene from Brevundimonas  sp. SD212; PIF5, phytochrome interacting factor 5 transcription factor 

from Arabidopsis thaliana; ARR14, arabidopsis response regulator 14 transcription factor from 

Arabidopsis thaliana; MCS, multiple cloning site; nptII, kanamycin resistance gene; PG, 

polygalacturonase from Solanum lycopersicum; Nos, nopaline synthase from Agrobacterium 

tumefaciens; 35S, 35S RNA reverse transcriptase from the cauliflower mosaic virus (Caulimovirus); 

Hsp, heat shock protein 18.2 from Arabidopsis thaliana;        untranslated region of alcohol 

dehydrogenase gene from Nicotiana tabacum; tp1, transit peptide of the phytoene synthase-1 gene 

from Solanum lycopersicum; tp2, transit peptide of the RuBisCO small subunit from Pisum sativum 

L.; LB, left border of the T-DNA; RB, right border of the T-DNA; Restriction enzyme sites are 

represented.  
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Appendix 3 Table A2-2 Sequences of primers used in (RT) real-time qPCR and PCR 

Gene ID Accession number 
Primers sequences 

Forward Reverse 

Primers used for real-time qPCR* and RT real-time qPCR 

GGPPS-1 DQ267902 GACAGCATCTGAGTCCGTCA CTTGGCCAGGACAGAGTAGC 

GGPPS-2 SGNU223568 GGGATTGGAAAAGGCTAAGG AGCAATCAATGGAGCAGCTT 

PSY-1 Y00521 TGGCCCAAACGCATCATATA CACCATCGAGCATGTCAAATG 

PSY-2 L23424 GTTGATGGCCCTAATGCATCA TCAAGCATATCAAATGGCCG 

PDS X59948 AC GTGCATTTTGATCATCGCATTGA GCAAAGTCTCTCAGGATTACC 

ZDS AF195507 TTGGAGCGTTCGAGGCAAT AGAAATCTGCATCTGGCGTATAGA 

CRTISO AF416727 TTTTGGCGGAATCAACTACC GAAAGCTTCACTCCCACAGC 

LCY-E Y14387 AACACTTGCATTTGGTGCTG AGTACAGAGGCGCATTTTGG 

 LCY-B AF254793 TCGTTGGAATCGGTGGTACAG AGCTAGTGT CCTTGCCACCAT 

CYC-B Y18297 T GTTATTGAGGAAGAGAAATGTGTGAT TCCCACCAATAGCCATAACATTTT 

CRTR-B1 Y14809 CTCGAGGATGAGAAGCTGAAACCTC GCCAAGCGAGTAGCTAAGATCTGTT 

CRTR-B2 DQ864755 TTTCTCAGTCCAAAATCCGCCTCAA TCATTCTCCAGCACAAAACAAACCG 

ZEP-1 Z83835.1 TTGGGTTTTAGGAGGCAATG CCCGCAGGTAAAAGTAACCA 

CRTB D90087.2 CGCCTGTGACCTTGGGCTGG GGCTCAGCGCCTGACGGTTT 

CRTI D90087.2 AGCCATATGGAAACGACAGG TCTGCAGTTTGTTGGACTGC 

CRTB* D90087.2 CGCCTGTGACCTTGGGCTGG GGCTCAGCGCCTGACGGTTT 

CRTI* D90087.2 AGCCATATGGAAACGACAGG TCTGCAGTTTGTTGGACTGC 

PDS* X59948 AC CTAGGTTCTTGCTGCCTTGG CCAACTTTTTGGCAATGCTT 

ACTIN# BT012695.1 GGTATTGTGTTGGACTCTGGTGA ACGGAGAATGGCATGTGGAA 

Primers used for PCR 

CRTE D90087.2 AACTGCTGGACGATTTGACC TCACTGGCAAGCTGAAGA 

CRTB D90087.2 TATTGCTCGCGATATTGTGG TTTTCAGGTGCCGCATAAT 

CRTI D90087.2 AGCCATATGGAAACGACAGG TCTGCAGTTTGTTGGACTGC 

CRTZ AB181388.1 ATGCATGGTTTCCTTTGGTC CCAAGGCCAAAGATGAAGTC 

CRTW AB181388.1 TGGCTTCCTCACAGACACAC GTCTCCACCAAGGTCTCCAA 

pb promoter - CACCTGCCCGTTTTATTGGTCTGAG TATAGAGAATGTATAAGATTGATAATGG 
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Table A2-2 Sequences of primers used in (RT) real-time qPCR and PCR 

GGPPS-1, 1-geranylgeranyl pyrophosphate synthase-1;  GGPPS-2, 1-geranylgeranyl pyrophosphate 

synthase-2;  PSY-1, phytoene synthase-1; PSY-2, phytoene synthase 2;  PDS, phytoene desaturase;  

ZDS. z-carotene desaturase; CRTISO, carotene isomerase; LCY-E, e-lycopene cyclase; LCY-B, b-

lycopene cyclase; CYC-B, b-lycopene cyclase; CRTR-B1, carotene b-hydroxylase 1; CRTR-B2, 

carotene b-hydroxylase 2;  ZEP-1, zeaxanthin epoxidase-1; CRTE, geranylgeranyl diphosphate 

synthase; CRTB, phytoene synthase; CRTI, phytoene desaturase; CRTZ, carotene hydroxylase, 

CRTW, carotene ketolase; pb promoter, lycopene b-cyclase promoter from the orange fruited 

Solanum galapagense; #, predicted actin-97-like.  
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Appendix 4 Figure A2-2 Spectra of metabolites of interest 
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Appendix 5 Figure A2-3 Carotenoid and -tocopherol dose response curves 
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Appendix 6 Figure A2-4 Schematic representation of the systems (1 and 2) used to 

fractionate chromoplasts and isolate their respective sub-membrane compartments   

 

Figure A2-4 Schematic representation of the systems (1 and 2) used to fractionate 

chromoplasts and isolate their respective sub-membrane compartments   

The scheme shows the different chromoplasts fractionation systems used. System 1 isolates 

intact chromoplasts, which are subsequently lysed and their sub-membrane compartments 

separated over the sucrose density gradient described. System 2 isolates initially intact 
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chromoplasts and subsequently, the chromoplast membranes (pellet) and the majority of the 

chromoplasts plastoglobules and crystals (supernatant). The sub-membrane compartments of 

the chromoplast membranes are then separated over the sucrose density gradient described. 

Green rectangles correspond to the steps, which are unique to system 2. Details of the 

respective methods are provided in sections 2.7.1 and 2.7.2. 

  

Appendix 7 Figure A4-1 Comparison of phytoene synthase amino acid sequence in 

P. ananatis (CrtB; D90087.2) and S. lycopersicum (Psy-1; EF157835.1) 

CrtB               1 --------------------------------------------------      0 

                                                                        

Psy-1              1 MSVALLWVVSPCDVSNGTSFMESVREGNRFFDSSRHRNLVSNERINRGGG     50 

 

CrtB               1 --------------------------------------------------      0 

                                                                        

Psy-1             51 KQTNNGRKFSVRSAILATPSGERTMTSEQMVYDVVLRQAALVKRQLRSTN    100 

 

CrtB               1 ----------MNNPSLLNHAV----ETMAVGSKSFATASKLFDAKTRRSV     36 

                               ..|..||:.|.    |..|..:|:|...:.|...:.||:: 

Psy-1            101 ELEVKPDIPIPGNLGLLSEAYDRCGEVCAEYAKTFNLGTMLMTPERRRAI    150 

 

CrtB              37 LMLYAWCRHCDDVIDDQTLGFQARQPALQTPEQRLMQLEMKTRQAYAGSQ     86 

                     ..:|.|||..|:::|.....: ....||...|.||       ...:.|.. 

Psy-1            151 WAIYVWCRRTDELVDGPNASY-ITPAALDRWENRL-------EDVFNGRP    192 

 

CrtB              87 MHEPAFAAFQEVA-MAHDIAPAYAFDHLEGFAMDVREAQYSQLDDTLRYC    135 

                     ......|....|: ...||.|..  |.:||..||:|:::|...|:...|| 

Psy-1            193 FDMLDGALSDTVSNFPVDIQPFR--DMIEGMRMDLRKSRYKNFDELYLYC    240 

 

CrtB             136 YHVAGVVGLMMAQIMGV--RDNATLD----RACDLGLAFQLTNIARDIVD    179 

                     |:|||.||||...|||:  ...||.:    .|..||:|.|||||.||:.: 

Psy-1            241 YYVAGTVGLMSVPIMGIAPESKATTESVYNAALALGIANQLTNILRDVGE    290 

 

CrtB             180 DAHAGRCYLPASWLEHEGLNKENYAAPENRQALSRIARRLVQEAEPYYLS    229 

                     ||..||.|||...|...||:.|:..|...........::.:..|..::.. 

Psy-1            291 DARRGRVYLPQDELAQAGLSDEDIFAGRVTDKWRIFMKKQIHRARKFFDE    340 

 

CrtB             230 ATAGLAGLPLRSAWAIATAKQVYRKIGVKVEQAGQQAWDQRQSTTTPEKL    279 

                     |..|:..|...|.:.:..:..:||||..::|......:.:|...:..:|| 

Psy-1            341 AEKGVTELSSASRFPVWASLVLYRKILDEIEANDYNNFTKRAYVSKSKKL    390 

 

CrtB             280 TLLLAASGQALTSRMRAHPPRPAHLWQRPL    309 

                     ..|..|..::|.      ||......||   

Psy-1            391 IALPIAYAKSLV------PPTKTASLQR--    412 

 

Identity: 94/430 (21.9%) 

 
 

Appendix 8 Figure A5-1 Sequence of the pb promoter 

TGCCCGTTTTATTGGTCTGAGAACGGCGTGATGCCAAATTCTGCCGCTCCACAGTG

AGCATTTCGATCTACTGGAAATTGACCAACTTATTTTATCACTTGATAACTAGAGT

TTGGGTTCAACAAAATCCTATTAACTTTAATCATACATTGTATTTATACCGAAAAA

GTTATGCATAACTCAGTAAATTACCTTTTTTAGCAGTCAAATTCTAGATGAGTTTC

CAATTTATCAAAATGGCTTTTATAGGGTCTCAGTTCCACTAATATACCTGCCGTCC

ATGCACTGACTACAAGACAAATACCTCACTATGTTTGTTAGTGCTTGGTAATATAA

AACCTTTTCTTTTATGAGAAAGTTCACCGAAAATAATTTTCTATTTGTGGCATAAC
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TAGTATATAGTGCAGATTGACAAGAATTTAATTTTGCAGTTGGGCACATGAACAAT

TTTCCTCAAAGTTGTAGAAAGTATTTTTCATTTTCTTGTCACCGAAAATTATTTAT

AATTGAAATTAAAACCGAATGAGCTGCAAGATTCAAGTCGAATTTCAAAAGATTGA

CCAAGAAAAAATTCAAAAATATCCCCCACCCCCTACCAAACACATCCTAAAGTGAG

GTATAGACTGGGACTGGGATTGGGAAAAGGGTAAAATGCTTTCACTAGCTTTGCAA

AGATTCCACTTTGTTAGCTATCTTTCTTTCTCATTTCCTTTTTTCTTTTTCTTTTT

TTTGTTATATAAGCCAAAGTAGGTACCCAAAAGCATCAATATTTTGTATTGCTTGG

TGATTCCTCTTTAGTCCAGTATTTCATTTTCTACAAGTTCCACCTCCCTCCATAAT

TAACCATTATCAATCTTATA 

 

Appendix 9 Figure A6-1 Sequences comparison of CrtZ and CrtW of 

Brevundimonas before and after plant codon optimisation 

CrtZ               1 -------------------------------TCAGGCGCCGCTGCT----     15 

                                                    |.|       |||||     

CrtZopt            1 ATGGCTTGGCTTACTTGGATCGCTCTTTTCCTTA-------CTGCTTTTT     43 

 

CrtZ              16 --GGAA--GAGCC--CCGCTT--------CTGAG----------------     35 

                       ||||  |||.|  .|||||        |..||                 

CrtZopt           44 TGGGAATGGAGGCTTTCGCTTGGATCATGCATAGATATGTTATGCATGGT     93 

 

CrtZ              36 --CCAGTTCGGCCT--------------TCAGCGCCCGCGCCGACCGCAC     69 

                       ||  ||.||.||              |||....||.| .|||  .||| 

CrtZopt           94 TTCC--TTTGGTCTTGGCATAGAAGTCATCATGAACCTC-ACGA--TCAC    138 

 

CrtZ              70 CCAC---AGAAAGCCGAAGGA----GACGCAG---CCTTCGCGCGTGCGC    109 

                     ||.|   ||||    |||.||    ..|||.|   .||||||   |||.| 

CrtZopt          139 CCTCTTGAGAA----GAACGATCTCTTCGCTGTTATCTTCGC---TGCTC    181 

 

CrtZ             110 ACGG----CGTGATGCAGACGGTGC------------------GCCTGGA    137 

                      |.|    |||.|||     |.|||                  ||||.|  

CrtZopt          182 -CTGCTATCGTTATG-----GTTGCTGTTGGACTTCATCTTTGGCCTTG-    224 

 

CrtZ             138 TGCGCCGCGTCC----------AGAAGCCGGACCGC--CCGGAAAAGCCC    175 

                        |.|.|.|||          .|||.|   |||||  .|||||       

CrtZopt          225 ---GGCTCTTCCTGTTGGACTTGGAATC---ACCGCTTACGGAA------    262 

 

CrtZ             176 GTCGGGAAC--------CGCCGGTGCACCAGGCCGTCGTGGA-AGAAGAA    216 

                      |.|.|.||        |..||.||.||       ||||..| |||||   

CrtZopt          263 -TGGTGTACTTCTTCTTCCACGATGGAC-------TCGTTCATAGAAG--    302 

 

CrtZ             217 ATAGACCATCCCATAGGCCGTGATCCCCAGGCCGACCGGCAGGGCCCAGG    266 

                            ||.||.||  ||| |||.|.|.||..||   .|.||...|.|| 

CrtZopt          303 -------ATTCCCTA--CCG-GATTCTCTGGAAGA---TCTGGATTCTGG    339 

 

CrtZ             267 GCCACAGG--TGCAGACCCACGGCCACCATGACGATGGCCGGGGCGGCGA    314 

                     .|||.|.|  |.|||.|.||..|.|..|||.|||.||           .. 

CrtZopt          340 ACCAGAAGAATCCAGGCTCATAGACTTCATCACGCTG-----------TT    378 

 

CrtZ             315 AGACCACGGCGAACAGG--------TCGTTC---TTCTCCAGGG---GGT    350 

                     |||.|..|    |.|||        ||.|||   |||..|.|||   ||| 

CrtZopt          379 AGAACTAG----AGAGGGATGCGTTTCTTTCGGATTCCTCTGGGTTAGGT    424 

 

CrtZ             351 ------GATCGT--GCGGCTCATGATGGCT-----GCGGTGCCAGGACCA    387 

                           ||.|.|  |.||||.| |.|||||     |.||     |||.|  

CrtZopt          425 CTGCTAGAGCTTTGGAGGCTGA-GTTGGCTCAAAAGAGG-----GGATC-    467 

 

CrtZ             388 CAGGAAACCGTGCATCACATAGCGGTGC---ATGATCCAGGCGAACGCCT    434 

                               |.|.||   ||||||.||   |.|||||             

CrtZopt          468 ----------TTCTTC---TAGCGGAGCTTGAGGATCC------------    492 

 

CrtZ             435 CCATGCCCAAAAAGGCGGTCAGGAACAGCGCGATCCACGTCAGCCAGGCC    484 

                                                                        

CrtZopt          493 --------------------------------------------------    492 
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CrtZ             485 AT    486 

                        

CrtZopt          493 --    492 

 

Identity: 239/652 (36.7%) 

 

Crtw               1 AAGTGGAAGCAGGTGAGCAGGGAAAGAACGGGGCCGTAGCCGCTGCTGCG     50 

                                                                        

CrtWopt            1 --------------------------------------------------      0 

 

Crtw              51 GGCGTGGTGGGCGTCGGCGAACGGCTGGTCGGTGTGGCGGTGCGGCAGCC    100 

                                         |.|.|||.| |.|||.||.|      |||| 

CrtWopt            1 --------------------ATGACTGCT-GCTGTTGCTG------AGCC     23 

 

Crtw             101 -AG----GTGCCGAAGGTGA-AGAGCTGAAGC------------GCTGAA    132 

                      ||    ||.||.|    || |||..||.|.|            ||||   

CrtWopt           24 TAGAATCGTTCCTA----GACAGACTTGGATCGGACTTACTCTTGCTG--     67 

 

Crtw             133 AGCAGGGCCGGCGCGGCCCAGAAGG--------TCA-------GGAGATT    167 

                      |.|.|..||..||.|    ||.||        |||       ||||.|| 

CrtWopt           68 -GAATGATCGTTGCTG----GATGGGGATCTCTTCACGTTTACGGAGTTT    112 

 

Crtw             168 GGCCGGCCGCGCCCCCAGGCCGAAGAGGGCGATCAGGACCAGGGCGGTCA    217 

                               .|..|||     .|||.||                      

CrtWopt          113 ----------ACTTCCA-----CAGATGG---------------------    126 

 

Crtw             218 GGACCGCCATC--------TCGCGCCAGCCGAAATAGGTGCGAAAGAAGT    259 

                     |||.|..|.||        |||..||.||   .||.|.|||      .|| 

CrtWopt          127 GGAACTTCTTCTCTTGTTATCGTTCCTGC---TATCGTTGC------TGT    167 

 

Crtw             260 TCAGGAACCAGG------------------------------GAAGGAAG    279 

                     ||||  ||..||                              ||.|..|. 

CrtWopt          168 TCAG--ACTTGGCTTTCTGTTGGACTTTTCATCGTTGCTCATGATGCTAT    215 

 

Crtw             280 GCGCGG------GGCGCCGGGGCGTAAAAGTCCGGGTCGTCGGCCGTGCC    323 

                     ||.|||      .||.||.||      |||.||..|.|.|           

CrtWopt          216 GCACGGATCTCTTGCTCCTGG------AAGACCTAGACTT----------    249 

 

Crtw             324 GGGCGCGGCGTGGTGG---------GCGTGG----TGCGCCGTCTTCAG-    359 

                      ..|||.|| ||.|||         .|.|||    |.|||.|..|||||  

CrtWopt          250 -AACGCTGC-TGTTGGAAGACTTACTCTTGGACTTTACGCTGGATTCAGA    297 

 

Crtw             360 -CCGATCGAAGCGGAAGCCCGCATAGAGCCCCAGGGTCAGCCGGCCG---    405 

                      .||||.||  |..|||.|.||     .|.|||.|.|||.|..||.|    

CrtWopt          298 TTCGATAGA--CTTAAGACTGC-----TCACCACGCTCACCACGCTGCTC    340 

 

Crtw             406 -----ACTGCGG----------------CGTTCAGCCGCGGCCGTCCCGG    434 

                          |||||.|                ||.||  |.||     |||..| 

CrtWopt          341 CTGGAACTGCTGATGATCCTGATTTCTACGCTC--CTGC-----TCCTAG    383 

 

Crtw             435 CGC---------------------------CAG----------GGA----    443 

                     .||                           |||          |||     

CrtWopt          384 AGCTTTCCTTCCTTGGTTCCTTAACTTCTTCAGAACTTACTTCGGATGGA    433 

 

Crtw             444 --------GCCGTGC-----------------ATGGC--------GTCAT    460 

                             ||.||.|                 ||.||        |.|.| 

CrtWopt          434 GAGAGATGGCTGTTCTTACTGCTCTTGTTCTTATCGCTCTTTTCGGACTT    483 

 

Crtw             461 GG-GCGACGATGAAAAGGCCGACC-GACAACC------AGGTCTGGACCG    502 

                     || ||.|             |||| |..||||      ...|||||.|.| 

CrtWopt          484 GGAGCTA-------------GACCTGCTAACCTTCTTACTTTCTGGGCTG    520 

 

Crtw             503 CTAC-GATC--------GC------------------CGGGAC-------    518 

                     ||.| |.||        ||                  |||.||        

CrtWopt          521 CTCCTGCTCTTCTTTCTGCTCTTCAGCTTTTCACTTTCGGAACTTGGCTT    570 

 

Crtw             519 GATCAC---CAGACTG--------------GAGGTGCCCCAGCGGTGAAA    551 

                     ..||||   ||.||||              ||.|..|.||| ||.|  |. 

CrtWopt          571 CCTCACAGACACACTGATCAGCCTTTCGCTGATGCTCACCA-CGCT--AG    617 

 

Crtw             552 AT-------AGACGCCGTAGACGTG---------------CAGGCTCCCC    579 

                     ||       |.|||     |||.||               |..|||.||. 

CrtWopt          618 ATCTTCTGGATACG-----GACCTGTTCTTTCTCTTCTTACTTGCTTCCA    662 
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Crtw             580 CATC-----CCGCCACGATCATTCC------CGCCAGGGTCAGACCGATC    618 

                     |.||     .|.||||||.||  ||      |.||..||  |||||     

CrtWopt          663 CTTCGGAAGACACCACGAGCA--CCACCTTACTCCTTGG--AGACC----    704 

 

Crtw             619 CAGGTCTGGCGCGGGACGATGCGGGGCTCGGCGACGGCGGCG-GTCAT--    665 

                          .|||.| |.|||..||           ||  |.||.| |||.|   

CrtWopt          705 -----TTGGTG-GAGACTTTG-----------GA--GAGGAGAGTCTTGA    735 

 

Crtw             666 -    665 

                       

CrtWopt          736 G    736 

 

Identity: 322/951 (33.9%) 
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Metabolic engineering of the carotenoid pathway in recent years has successfully enhanced the carotenoid contents of crop
plants. It is now clear that only increasing biosynthesis is restrictive, as mechanisms to sequestrate these increased levels
in the cell or organelle should be exploited. In this study, biosynthetic pathway genes were overexpressed in tomato (Solanum
lycopersicum) lines and the effects on carotenoid formation and sequestration revealed. The bacterial Crt carotenogenic genes,
independently or in combination, and their zygosity affect the production of carotenoids. Transcription of the pathway genes
was perturbed, whereby the tissue specificity of transcripts was altered. Changes in the steady state levels of metabolites in
unrelated sectors of metabolism were found. Of particular interest was a concurrent increase of the plastid-localized lipid
monogalactodiacylglycerol with carotenoids along with membranous subcellular structures. The carotenoids, proteins, and
lipids in the subchromoplast fractions of the transgenic tomato fruit with increased carotenoid content suggest that cellular
structures can adapt to facilitate the sequestration of the newly formed products. Moreover, phytoene, the precursor of the
pathway, was identified in the plastoglobule, whereas the biosynthetic enzymes were in the membranes. The implications of
these findings with respect to novel pathway regulation mechanisms are discussed.

INTRODUCTION

Carotenoids are a large class of natural yellow, orange, and red
pigments, which color fruits, flowers, birds, and crustacea
(Hirschberg, 2001; Fraser and Bramley, 2004). Moreover, in higher
plants, carotenoids act as free-radical scavengers (Demmig-Adams
and Adams, 2002), ancillary photosynthetic pigments (Dall’Osto
et al., 2007), and precursors of phytohormones (Auldridge et al.,
2006). Dietary carotenoids with biological antioxidant properties
have been intensively studied with respect to their potential in
alleviating age-related diseases in humans (Fraser and Bramley,
2004; Krinsky and Johnson, 2005). These health-promoting prop-
erties, along with their ability to act as natural colorants, have
created intense biotechnological interest to increase or alter their
contents in foodstuffs and to develop new, renewable sources
that are capable of competing with chemical synthesis, which for
many carotenoids is the present production method of choice.

Biosynthetically, carotenoids are isoprenoids synthesized in
the plastid, using isopentenyl diphosphate (C5) derived from the
methylerythritol-4-phosphate pathway (Pulido et al., 2012). The

conversion of two geranylgeranyl diphosphate (C20) molecules
into phytoene (C40) represents the first committed step in the
carotenoid pathway and is catalyzed by the enzyme phytoene
synthase. Phytoene is a colorless carotene with three conju-
gated double bonds that can then undergo a sequential series of
desaturations and isomerizations to form all-trans lycopene,
which has a characteristic red coloration as a result of the 11
conjugated double bonds. In plants and algae, the optimal de-
saturation and isomerization of phytoene to lycopene requires
four proteins, a phytoene and z-carotene desaturase, and two
isomerases acting on z-carotene and poly cis-lycopene (Sandmann,
2009). Depending on the action and specificity of the cyclase
enzymes, lycopene can then undergo cyclization to form b- or
e-ionone rings, yielding b-carotene and/or a-carotene. These
cyclic carotenoids can then be decorated by hydroxylation and
epoxidation reactions (Fraser and Bramley, 2004; Figure 1). Tran-
scriptional regulation of the carotenoid pathway has been well
documented (Fraser and Bramley, 2004; Fraser et al., 2009).
The heterologous expression of the Pantoea ananatis caroten-

oid biosynthetic genes (CrtE, CrtB, and CrtI; Misawa et al., 1990,
1991; Shimada et al., 1998; Ravanello et al., 2003) has proven to
be a useful tool in the engineering of the pathway, as their low
homology with respective plant genes alleviates potential silencing/
cosuppression, the potential effects of endogenous allosteric
regulators is reduced, and the phytoene desaturase (CRTI) from
this organism is a single enzyme that will convert 15-cis phytoene
to all-trans lycopene, thus overcoming the need for four proteins
(Figure 1). To make further progress in carotenoid engineering of
higher plants, knowledge of carotenoid pathway regulation and
sequestration within the plastids are of considerable importance.
Over recent years, correlations between carotenoid content and
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Figure 1. Representative Scheme of the Carotenoid Biosynthetic Pathway in Higher Plants.
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sequestration mechanisms have been highlighted (Simkin et al.,
2007; Li et al., 2012; Kilambi et al., 2013). The biosynthesis and
sequestration of carotenoids are two aspects that need to be
considered simultaneously to optimize carotenoid accumulation
through engineering of plants. Moreover, our understanding of
cellular compartmentalization (Heinig et al., 2013) and plastid
compartmentalization remain key in metabolic engineering.

In this article, the optimal combination of the Crt heterologous
carotenoid biosynthetic genes has been ascertained in tomato
(Solanum lycopersicum) fruit for increased carotenoid levels.
Characterization of these events has furthered our understanding
of regulation mechanisms associated with carotenoid formation,
revealed subcellular adaptation to newly synthesized carotenoids,
and demonstrated how perturbations to carotenoids can impact
the metabolome.

RESULTS

The Combinations of Crt Genes and Their Zygosity Affect
Carotenoid Content

Three homozygous tomato lines, containing the P. ananatis (1)
geranylgeranyl diphosphate synthase (CrtE) and (2) phytoene
synthase (CrtB), both under the control of fruit-specific promoters,
and (3) phytoene desaturase (CrtI), under the control of a consti-
tutive promoter, were used to perform genetic crosses (Figure 1).
A minimum of six complementary crossing events were per-
formed to establish the heterologous carotenoid gene combi-
nations CrtE+B, CrtE+I, and CrtB+I. From these crosses, 10 F1
plants per cross were generated and screened by PCR for the
presence of transgenes (see Supplemental Figure 1 online). Four
PCR positive lines for each combination were selected for fur-
ther analysis. The lines exhibiting the highest or altered carot-
enoid contents were then grown to maturity in the F2 generation.

To fully assess the Crt gene combinations and the effects of
gene dosage, analyses of carotenoids, chlorophylls, and toco-
pherols were performed on hemizygous and homozygous lines
over several growth cycles. Absolute levels of carotenoids did
change with environmental conditions (growth season). How-
ever, the concurrent generation and analysis of wild types en-
able accurate evaluation of the transgenic plants. Leaf pigments
revealed significant qualitative differences that could be attrib-
uted to the presence of CrtI (Table 1; see Supplemental Figure 2
online). b-carotene increased almost twofold and other b-ring–
derived carotenoids, such as violaxanthin (and its isomers),

displayed similar increases (Table 1). The total carotenoid con-
tent was also increased (1.3- to 1.4-fold), which contributed to
a decreased chlorophyll:carotenoid ratio (Table 1). Compared
with the wild type, no significant difference in carotenoid content
was found in the lines expressing CrtE and CrtB alone.
A similar situation occurred in the tomato fruit, where the

presence of CrtI in the ripe fruit conferred the greatest changes
in carotenoid and tocopherol levels compared with the other
genes, CrtE and CrtB (Table 2). Indeed, compared with the wild
type, the hemizygous and homozygous CrtE lines showed a
similar carotenoid profile, and only a modest, but significant in-
crease of phytoene (1.2-fold) was noticeable in the hemizygous
CrtB line. However, there was a significant increase of lycopene in
the CrtE+B line (1.4-fold), as well as in the homozygous CrtB line
(2.2-fold). The hemizygous CrtI line was characterized by a higher
level of b-carotene (2.4-fold increase compared with Ailsa Craig
[AC]), a greater content of g-carotene, lutein, and a-tocopherol,
and a substantial decrease of phytoene and phytofluene (0.4-fold).
The presence of an early step carotenoid gene (CrtE or CrtB) in
the hemizygous CrtE+I and CrtB+I lines alleviates the decrease
of phytoene and phytofluene contents. Moreover, an increase in
lycopene (1.4-fold) was also observed in the hemizygous CrtB+I
line. The homozygous CrtI line had a similar carotenoid profile
to hemizygous CrtB+I. Surprisingly, the level of lycopene in the
homozygous CrtB+I line was comparable with the wild type.
However, the b-carotene content of this line was the highest
compared with all the CrtI-containing lines. Analysis of ripe fruit
pigments from the various Crt gene combinations indicated that
the CRTI enzyme solely, or in combination with the CRTE and
CRTB enzymes, conferred the greatest effects on lycopene and
b-carotene contents compared with the wild type, either in the
hemizygous or homozygous states (Table 2).

CrtB+I Lines Showed Changes in Transcription, Plastid
Ultrastructure, and Levels of Primary and
Secondary Metabolites

Since analysis of carotenoids among the lines of the different
Crt gene combinations revealed CrtB+I as the best line for fruit
carotenoid content and showed that this combination could
exist in a stable homozygous state maintaining the high b-carotene
phenotype, further characterization was performed to ascertain the
underlying mechanisms associated with the effects of this gene
combination.
Pigment analysis of mature green, breaker, breaker + 3 d,

breaker + 7 d, and breaker + 14 d, in the CrtB+I line and its wild

Figure 1. (continued).

Enzymes in red are tomato fruit ripening specific or enhanced, and those in blue are flower specific. GA3P, glyceraldehyde-3-phosphate; DXP, 1-deoxy-
D-xylulose 5-phosphate; MEP, 2-C-methyl-D-erythritol 4-phosphate; IPP, isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; FPP, farnesyl
diphosphate; GGPP, geranylgeranyl diphosphate; GGPPS-1 and -2, geranylgeranyl diphosphate synthase; PSY-1, fruit-specific phytoene synthase-1;
PSY-2, phytoene synthase-2; PDS, phytoene desaturase; ZDS, z-carotene desaturase; CRTISO, carotene isomerase; LCY-E, e-lycopene cyclase; LCY-
B, b-lycopene cyclase; CYC-B, fruit-specific b-lycopene cyclase; CRTR-B1, carotene b-hydroxylase 1; CRTR-B2, carotene b-hydroxylase 2 (flower
specific); ZEP, zeaxanthin epoxidase; NXS, neoxanthin synthase; VDE, violaxanthin deepoxidase; CRTE, geranylgeranyl diphosphate synthase; CRTB,
phytoene synthase; and CRTI, phytoene desaturase. The cis configurations are not shown for all molecules, but they are represented with blue
numbers. The dashed arrows illustrate biochemical steps that are not represented in this scheme.
[See online article for color version of this figure.]
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type (AC), revealed differences in carotenoids at the breaker
stage onwards (Figure 2). With the onset of ripening at the
breaker stage, the phytoene content decreased, while b-carotene
content increased in the CrtB+I line. These significant differences
remained throughout fruit ripening. A decrease in the lycopene
content occurred at the breaker + 3 d stage but was not signifi-
cantly different at other stages.

In ripe fruit, carotenoids and tocopherols were quantified in
the pericarp, jelly, and columella tissues of the CrtB, CrtI, and
CrtB+I lines and compared with the same material in the wild-
type background (Figure 3; see Supplemental Table 1 online).
Carotenoids and a-tocopherol were found in all the compart-
ments of the fruit, but not in the same proportions. Pericarp
tissue contained the most carotenoids in the control (AC), with
;50% of total carotenoids present. The columella sequestrated
30%, while the jelly tissue contained ;20%. In CrtB, CrtI, and
CrtB+I lines, the distribution of total carotenoids within the fruit

compartments was comparable to that of the control, but small
increases were evident (see Supplemental Table 1 online).
Lycopene was mainly found in the pericarp of all the lines,

while b-carotene was the most abundant carotenoid in the jelly.
However, the predominant carotenoid in the columella varied
among the lines. Lycopene was the main carotenoid in the colu-
mella tissue of the wild type and the CrtB lines, whereas b-carotene
predominated in CrtI and CrtB+I lines. When calculated as fold
changes, although the lycopene levels increase in the pericarp
and the columella of CrtB (homozygous) line, the greatest in-
crease was in the columella (2.3-fold increase). The b-carotene
levels increased in all the fruit compartments of CrtI and CrtB+I
(homozygous), but the greatest change was in the columella (2.2-
and 2.5-fold increase, respectively, for CrtI and CrtB+I).
Levels of mRNAs were studied in the leaf and tomato fruit (at

breaker + 3 d) of CrtB, CrtI, and CrtB+I lines and the wild type
(Figure 4). In the leaf, the majority of the pathway transcripts

Table 1. Carotenoid and Chlorophyll Contents in the Leaves of the Transgenic Lines

Content AC

Homozygous Hemizygous

CrtE CrtB CrtI CrtE+B CrtE+I CrtB+I

b-Carotene 219 6 15 331 6 7 217 6 7 298 6 6* 228 6 4 361 6 32* 319 6 13*
Violaxanthin# 335 6 16 347 6 10 322 6 9 535 6 4** 344 6 4 552 6 22* 549 6 14**
Lutein 303 6 20 316 6 8 311 6 7 294 6 9 310 6 11 280 6 16 253 6 8
Total CAR 856 6 51 894 6 24 851 6 23 1,127 6 18* 881 6 19 1,193 6 69* 1,120 6 26*
Chlorophyll a 9,433 6 2,210 10,825 6 642 11,005 6 448 8,107 6 213 9,534 6 1,264 7,501 6 422 7,301 6 507
Chlorophyll b 1,346 6 598 1,817 6 289 2,217.6 93 589 6 190 1,468 6 429 426 6 274 519 6 70
CHL:CAR 13 6 3 15 6 1 15 6 1 8 6 1 13 6 2 7 6 1 7 6 1

Carotenoid and chlorophyll contents are presented as mg/g dry weight. Methods used for determinations are described in Methods. Four representative
leaves from a minimum of three plants were used. The leaves were respectively pooled, and three determinations were made per sample, making
a minimum of three biological and three technical replicates. The mean data are presented 6 SD; # violaxanthin and isomers; CHL, chlorophyll; CAR,
carotenoid. Dunnett’s test was used to determine significant differences between the wild-type background (AC) and the transgenic varieties. Values in
bold indicate where significant differences have been found. P < 0.05 is designated by *.

Table 2. Carotenoid and Tocopherol Contents in the Fruits of the Transgenic Lines

Variety Phytoene Phytofluene Lycopene b-Carotene g-Carotone Lutein Total CAR a-Tocopherol

AC 133 6 16 134 6 24 1,224 6 255 321 6 32 62 6 7 122 6 15 1,995 6 327 256 6 39
Hemizygous

CrtE 136 6 4 141 6 4 1,434 6 55 322 6 10 56 6 2 132 6 3** 2,220 6 73 283 6 10
CrtB 160 6 4* 146 6 11 1,352 6 108 220 6 19*** 48 6 2* 117 6 9 2,042 6 136 229 6 8
CrtI 52 67*** 55 63*** 1,191 6 10 785 6 11*** 93 6 14* 155 6 5* 2,330 6 26 319 6 8**
CrtE+B 143 6 8 138 6 5 1,681 6 258* 296 6 18 61 6 3 116 6 2 2,435 6 251 232 6 21
CrtE+I 70 6 7*** 84 6 2** 1,285 6 168 560 6 39*** 71 6 3 120 6 2 2,190 6 177 336 6 19**
CrtB+I 56 6 8*** 81 6 2** 1,656 6 6* 665 6 55*** 74 6 2* 121 6 1 2,649 6 117** 385 6 42**

Homozygous
CrtE 149 6 15 153 6 11 1,602 6 21 286 6 8 66 6 4 120 6 4 2,376 6 328 334 6 40*
CrtB 124 6 12 134 6 8 2,696 6 146*** 377 6 40 71 6 5 114 6 1* 3,517 6 179*** 331 6 63
CrtI 41 6 1*** 79 6 1** 1,780 6 74* 680 6 93*** 81 6 6** 114 6 2* 2,775 6 368* 378 6 24***
CrtB+I 42 6 3*** 40 6 1*** 1,109 6 113 803 6 40*** 69 6 3 117 6 5 2,179 6 140 343 6 16**

Carotenoid and tocopherol contents are presented as mg/g dry weight. Methods used for determinations are described in Methods. Three
representative fruits from a minimum of three plants were used. The fruits were respectively pooled, and three determinations were made per sample,
making a minimum of three biological and three technical replicates. The mean data are presented 6 SD; CAR, carotenoid. Dunnett’s test was used to
determine significant differences between the wild-type background (AC) and the transgenic varieties. Values in bold indicate where significant
differences have been found. P < 0.05, P < 0.01, and P < 0.001 are designated by *,**, and ***, respectively.
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were not significantly affected compared with the control (AC).
Only the levels of the fruit-specific lycopene b-cyclase (Cyc-b)
and the flower-specific carotene b-hydroxylase (CrtR-b2) tran-
scripts were significantly different in the CrtI lines, showing a
two- to threefold increase in comparison with the wild-type levels.
In the transgenic fruit, several carotenogenic genes were upre-
gulated, including geranylgeranyl pyrophosphate synthase-2
(Ggpps-2), zeaxanthin epoxidase-1 (Zep-1), e-lycopene cyclase
(Lcy-E), and the lycopene b-cyclase (Lcy-B). By contrast, the
CrtB and CrtB+I lines had reduced levels of Psy-1 and Psy-2
transcripts (;0.7-fold) compared with their control. However,
CrtI only exhibited a significant reduction in Psy-2. The levels of
carotene b-hydroxylase (CrtR-b1) transcripts were reduced in all
transgenic lines, whereas the phytoene and z-carotene desa-
turase (Pds and Zds) transcripts were only reduced in the CrtB
line (Figure 4). Several ultrastructural changes were apparent in
the transgenic lines. The chromoplasts of CrtB+I were signifi-
cantly larger in volume (9.1 6 1.3 mm2) than those of the wild
type (3.12 6 0.5 mm2). In addition, the plastids contained sig-
nificantly more plastoglobules in the CrtB+I line (36.36 8.3) than
in AC (12.9 6 2.9). Some of these plastoglobules were larger
(approximately twofold) and had different staining characteristics.
Structures termed thylakoid plexus and membranous sacs were
identified and were more abundant in the chromoplasts derived
from this line (Figure 5). Among the different transgenic lines,
similar types of chromoplasts were apparent. To verify that no
heterogeneity in chromoplast structure and carotenoid content
existed, separation of potential chromoplast types was performed
by Suc density gradient centrifugation (see Supplemental Figure 3
online; system 3 as described in Methods). The intact chromo-
plasts, accumulating at different densities on the gradient, all
appeared to have a similar ultrastructure and similar carotenoid
profiles.

The distinct changes at the cellular level suggested pertur-
bations beyond the isoprenoid pathway had arisen in the CrtB+I
line. To assess the global effects across metabolism, metabolite
profiling was performed. Over 50 metabolites were identified and
quantified in a relative or absolute manner in the tomato leaf and
fruit of the CrtB+I line and in the wild type. Metabolite changes
relative to their control (AC) levels were determined and statis-
tical analysis performed to assess the differences (Table 3; see
Supplemental Figure 4 online). Significant changes in metabolite
levels were found in all classes of compounds studied. In the
fruit of CrtB+I, all amino acids and most of the sugar levels were
significantly greater compared with their levels in AC, while the
majority of organic acids significantly decreased in CrtB+I. Among
the lipids, the level of monogalactosyldiacylglycerol (MGDG) lipids
increased (3.6-fold increase) in CrtB+I. MGDG fatty acids of the
CrtB+I line had increased levels of C16:0 and C16:1 cis 9 fatty
acids (see Supplemental Table 2 online). No significant differ-
ence was observed in the total amount of fatty acids for all other
lipids analyzed.

Elevated Carotenoid Levels Are Sequestered in
Subplastidial Compartments

To identify the subplastidial location of carotenoids in CrtB+I
and wild-type lines, chromoplasts were fractionated by Suc den-
sity gradient centrifugation (Figure 6A; see Supplemental Figure 5
online, system 1). Three distinct colored sectors in the gradient
were observed, the first at the top of the gradient, in fractions 1
and 2. The red/orange color intensity of these fractions was
greater in the CrtB+I preparations. In the lower part of the gra-
dient, from fractions 16 to 24, two sectors of color intensity
occurred. These two sectors were in close proximity in the
gradient but separated by the less intense area arising at fractions

Figure 2. The Changes of Carotenoid Composition in the Fruit of CrtB+I through Ripening Compared with AC.

Lycopene, b-carotene, and phytoene contents are given as mg/g dry weight (DW). Methods used for determinations are described in Methods. Three
representative fruits were used. Three determinations were made per fruit, making three biological and three technical replicates. The bars represent the
mean 6 SD. Student’s t test was used to determine significant differences between the wild-type background (AC) and the CrtB+I line for each ripening
stage indicated. Asterisks indicate significant differences. P < 0.05, P < 0.01, and P < 0.001 are designated by *, **, and ***, respectively. The CrtB+I
homozygous line was used.
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20 and 21. One of the distinguishing features arose from the
presence of particulates, crystal-like structures, within the two
sectors. Comparison between the wild-type and CrtB+I lines in-
dicated a greater intensity of crystal-like aggregates in the upper
sector derived from the wild type, with relatively few structures in
the lower phase. By contrast, the CrtB+I line exhibited a greater
intensity of crystalline aggregates over both sections (Figure 6A).

Sixteen fractions (F) throughout the gradient were analyzed to
identify and designate the different subcompartments of the
chromoplasts (Figure 6). The protein and lipid profiles of these
fractions have been determined (Figure 6B). Their ultrastructure
and carotenoid profile have been investigated (Figures 6C and 6D),
and the location of heterologous enzymes (CRTB and CRTI) as well
as the endogenous enzyme (the fruit-specific phytoene synthase
PSY-1) have been determined (Figure 6E). The protein profile of AC
and CrtB+I is similar (Figure 6B, i), with F1 and F2 characterized by
two major proteins. These proteins are plastoglobule-associated
plastoglobulin-1 and the Chromoplast-specifc associated pro-
tein C (CHRC). The amount of proteins present in F7 to F12 was
too low for detection on SDS-PAGE stained with silver reagents.
F17 to F30 contained comparatively higher protein intensity than
earlier fractions, with prominent bands displaying Gaussian dis-
tribution across adjacent fractions (Figure 6B). In F17 to F24,
all the proteins identified were derived from the photosynthetic
systems present in the thylakoid membrane; for example, ATP
synthase subunit b, photosystem I reaction center subunit II,
photosystem II 22-kD protein, and the oxygen evolving enhancer
proteins 1 and 2. In F24 to F30, thylakoid proteins were present,
but additional proteins such as the heat shock cognate 70-kD protein
were detected. This protein has been attributed to the chromo-
plast envelope (Ko et al., 1992). The ribulose-1,5-bisphosphate
carboxylase/oxygenase protein, from the chromoplast stroma,
was mainly detected in F28 and F30. Further details on the pro-
teins identified are in Supplemental Table 3 online.

To complement the proteomic approach, immunodetection of
biomarker proteins of known subplastid location was used. The
immunolocalization of the plastoglobulin 35, PSBA (for photo-
system II protein D1), TIC40 (for translocon at the inner envelope
of chloroplasts), TOC75 (for translocon at the outer envelope of
chloroplasts), and the stromal RBCL (for ribulose-1,5-bisphosphate
carboxylase/oxygenase large subunit) proteins was performed
across the gradient (Figure 6B, ii). The plastoglobulin was de-
tected in F1 and F2, but also in F18 to F30. Following compar-
ative protein loading of wild-type and CrtB+I samples, a greater
quantity of PGL was prevalent in the CrtB+I fractions. The PSBA
was mainly detected in F17 to F26 fractions and at low level in
control F1 and F2. TIC was found principally in F28 and F30 in AC
and in F24 to F26 in CrtB+I, while TOC75, specific to the chlo-
roplast envelope, was not detected in the fractions. The RBCL
was mainly discovered at the bottom of the gradient in F26 to F30
in AC and F25 to F30 in CrtB+I.
The lipid profile of AC and CrtB+I fractions was comparable.

All the fractions contained complex lipids. However, MGDG, diga-
lactodiacylglycerol, phosphatidylethanolamine, phosphatidylserine,
and phosphatidylcholine lipids were only found in F17 to F26/28
(Figure 6B, iii). These data show that F1 and F2 correspond to the
free plastoglobules of the chromoplasts, F17 to F23 represent the
subcompartment structure with thylakoid membrane, while F24 to
F26/28 are a mix of thylakoid membrane and envelope membrane
structures and the last fractions represent enriched stromal proteins
(F25 to F31).
Electron microscopy was used to visualize the structures frac-

tionated through the gradient (Figure 6C). Plastoglobules were
found in F1 and F2 of both the wild type and the CrtB+I line.
Membranous structures, with varying degrees of complexity and
aggregation, were seen in F16 and F18 to F22, and F24, although,
clear vesicle-like structures predominated in these fractions. The
structures varied in the thickness of the membrane, as judged by

Figure 3. Lycopene and b-Carotene Content in the Pericarp, Jelly, and Columella of the Fruits of the Genetic Crosses.

Carotenoid contents are given as mg/g dry weight (DW). Methods used for determinations are described in Methods. Three representative fruits were
used for a minimum of three plants. Three determinations were made per fruit, making three biological and three technical replicates. The bars represent
the mean 6 SD. Dunnett’s test was used to determine significant differences between the wild-type background (AC) and the transgenic lines for each
compartment. Asterisks indicate significant differences. P < 0.05, P < 0.01, and P < 0.001 are designated by *,**, and ***, respectively. The CrtB+I
homozygous line was used.
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the intensity of staining and size, with some vesicles embedded in
larger membrane structures. In addition, some vesicles appeared
to retain plastoglobules and/or dense staining amorphous ma-
terial associated with these membranes. The different electron
density levels throughout the membranes suggest a variability of

the carotenoid lipoprotein structure of the membrane. The con-
tents of fractions lower in the gradient (e.g., F24) appeared to be
enriched with larger vesicles containing electron dense material.
Carotenoids and a-tocopherol were profiled in all the fractions

derived from the fractionated chromoplasts (Figure 6D). The

Figure 4. Changes in the Transcript Levels of Carotenoid Biosynthetic Genes in Response to Changes in Carotenoid Content Resulting from the
Expression of CrtB, CrtI, and CrtB+I Genes in Tomato.

Pooled fruit originating from three plants per genotype (AC, AC-CrtB, AC-CrtI, and AC-CrtB+I; homozygous lines) were ground in liquid nitrogen to
provide a homogenous powder as described in Methods. Total RNA was then extracted from an aliquot of this material. Quantitative real-time RT-PCR
was performed with gene-specific primers for (1) Ggpps-1, (2) Ggpps-2, (3) Psy-1, (4) Psy-2, (5) Pds, (6) Zds, (7) CrtISO, (8) Lcy-E, (9) Lcy-B, (10), Cyc-B,
(11) CrtR-b1, (12) CrtR-b2, (13) Zep-1, (14) CYP97A, P450 b-ring hydroxylase, and (15) CYP97C, P450 hydroxylase. The expression data shown have
been normalized to the expression of actin. Data are represented as relative levels found in the three varieties compared with the wild-type AC. Statistical
determinations are shown as mean 6 SD values, where n = 3. Dunnetts’s test illustrates statistically significant differences (*P < 0.05, **P < 0.01, and ***P <
0.001) from the wild-type levels. The first bars of the histogram indicate levels in the wild-type AC, the second bars in AC-CrtB, the third bars in AC-CrtI, and
the fourth bars in AC-CrtB+I. IPP, isopentenyl pyrophosphate; DMAPP, demethylallyl diphosphate; GGPP, gerenaylgeranyl diphosphate.
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percentage of each compound studied varied through the gra-
dient and was dependant on the line (see Supplemental Figure 6
online). Two sectors of dense pigmentation, forming peaks of
metabolite intensity, were observed for lycopene, b-carotene,
lutein, and a-tocopherol derived from the fractionation of the
CrtB+I material. The first peak of pigmentation was located from
F16 to F21 and designated as the submembrane compartment I.
The second peak, located in F21 to F26, was termed sub-
membrane compartment II. Lycopene, b-carotene, and lutein

have similar profiles through the gradient. In AC, they mainly
accumulate in submembrane I. In the CrtB+I line, there is an
increase of lycopene, b-carotene, and lutein contents. The ac-
cumulation of these carotenoids was greater in both sub-
membrane compartments I and II in the CrtB+I line compared
with the control, especially in compartment II, which contained
a higher ratio of b-carotene to lycopene, compared with com-
partment I. In the control, phytoene accumulated in the plasto-
globules (15%) and then mainly in submembrane compartment

Figure 5. Electron Micrographs of Chromoplasts and Substructures of the CrtB+I Line and the AC Control at the Breaker + 5 d Stage.

Chromoplasts found in AC (control) ([A] and [B]), chromoplasts of the CrtB+I line ([C] and [D]), and substructures of the CrtB+I chromoplasts ([E] and
[F]). Arrows show plastoglobules (close-up of [A]); dashed arrows show morphologically different plastoglobules (close-up of [C]). C, lycopene crystal;
RC, remains of crystal; ThP, thylakoid plexus-like; MbS, membranous sac; ChE, chromoplast envelope. Methods used to obtain the electron micro-
graphs are described in Methods. The CrtB+I homozygous line was used.
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I. In the CrtB+I line, the level of phytoene in the plastoglobules
was lower (6%). The percentage of phytoene was comparable in
submembrane compartments I and II.
An additional experiment was performed to ascertain if the

carotenoid crystals in submembrane compartments I and II
(system 1) were attached/embedded into the membrane. Another
fractionation system was used (see Supplemental Figure 5 online,
system 2). At the top of the gradient, a large red area was ob-
served, while the membranes pelleted at the bottom of the gra-
dient. The membranes were then separated using system 1. No
crystals were observed in submembrane compartments I and II
of the system 2 gradients (see Supplemental Figure 6A online).
However, membrane-free crystals were observed by light mi-
croscopy when analyzing the red sector obtained in the first step
gradient of system 2 (see Supplemental Figure 6B online). Ob-
servation of submembrane compartments I and II with a light
microscope showed carotenoid crystals wrapped in a membra-
nous structure. Therefore, carotenoid crystals are normally at-
tached/embedded into the membrane but can be separated
during fractionation. The importance of the crystalline structures
in the sequestration of carotenoids in the CrtB+I line is illustrated
by the comparison of carotenoid content in membranes with
embedded crystals (obtained from system 1) with that in crystal-
free membranes (obtained from system 2), where the ratio of
carotenoid content in plastoglobules to membranes with em-
bedded crystals is decreased in CrtB+I compared with AC
(system 1) and the ratio of plastoglobules plus crystals to
crystal-free membrane is increased in CrtB+I compared with AC
(see Supplemental Figure 6C online). The localization of CRTB, CRTI,
and PSY-1 was performed using specific antibodies (Figure 6E).
The heterologous enzymes CRTB and CRTI in the CrtB+I line ap-
peared to be strongly associated with the thylakoid-related frac-
tions and were mainly present in submembrane compartment II.
However, PSY-1 was found mainly in the stroma of both the
control and CrtB+I lines.

DISCUSSION

Expression of Bacterial Carotenoid Gene Combinations
Can Have a Synergistic Effect on Carotenoid Formation
in Tomato Fruit

The carotenoid profiles of the homozygous CrtB and CrtI tomato
lines have been studied previously by Fraser et al. (2002) and
Römer et al. (2000), respectively. The results shown in this study
correlate with the previous description of these lines. Moreover,
the expression of CrtI in tobacco (Nicotiana tabacum) leaves
was studied (Misawa et al., 1994) and also shown to result in an
increase in xanthophylls. The strategy to coordinate the expres-
sion of multiple bacterial carotenoid genes to improve carotenoid
formation in plants has been used previously in crops with low
basal levels of carotenoids, for example, in canola (Brassica napus)
seed (Ravanello et al., 2003) and potato (Solanum tuberosum)
tuber (Diretto et al., 2007). The decrease of phytoene and increase
in lycopene/b-carotene levels in CrtI lines was reported in both
studies and is supported by the results with tomato fruit (Table 2),
which are chromoplasts-containing tissues predisposed to

Table 3. Metabolite Changes Occurring in Tomato Leaves and Fruit in
the CrtB+I Line Compared to the Control AC

Metabolite

Ratio CrtB+I to AC

Leaf Fruit

Amino acid
Ala 1.43 6 0.08 –

Asp 10* 2.10 6 0.53
b-Ala 10* –

g-Aminobutyric acid 1.03 6 0.06 2.44 6 0.11
Leu 10* –

Pro 10* –

Gln 1.98 6 0.2 1.41 6 0.33
Ser 10* 1.73 6 0.29
Thr 1.32 6 0.39 10*
Val 1.34 6 0.37 –

Isoprenoid
a-Tocopherol – 1.34 6 0.12
Violaxanthin 1.64 6 0.08 –

Lutein 0.83 6 0.06 0.97 6 0.07
b-Carotene 1.46 6 0.21 2.50 6 0.25
Chlorophyll a 0.77 6 0.35 –

Chlorophyll b 0.39 6 0.32 –

g-Carotene – 1.11 6 0.11
Lutein – 0.96 6 0.07
Lycopene – 0.91 6 0.19
Phytoene – 0.31 6 0.04
Phytofluene – 0.30 6 0.02

Non-amino acid N-containing compound
Putrescine 10* –

Lipid
DGDG ND 1.05 6 0.50
MGDG ND 3.61 6 1.03
PE ND 1.09 6 1.12
PS/PC ND 0.75 6 0.22
Triglycerides ND 0.99 6 0.10

Organic acid
Aconitic acid – 0.01#
Citric acid 1.13 6 0.09 0.98 6 0.14
Erythronic acid 6.80 6 1.01 –

Fumaric acid 0.61 6 0.09 0.01#
Glucaric acid 8.88 6 1.57 1.53 6 0.10
Gluconic acid 0.29 6 0.09 0.76 6 0.15
Glycerate 0.01# –

Itaconic acid – 0.28 6 0.04
Isocitrate 0.01# –

Lactic acid 10* –

Maleic acid 0.61 6 0.06 0.01#
Malic acid 1.49 6 0.17 1.05 6 0.14
Succinic acid 0.96 6 0.07 0.89 6 0.07

Phosphate
Glc-6-phosphate 10* 0.01#
Glycerol-3-phosphate 10* –

Phosphate 8.87 6 1.91 0.99 6 0.06
Polyol

Glycerol 10* –

Inositol 0.74 6 0.14 1.96 6 0.20
Sugar

Ara 0.58 6 0.23 3.45 6 0.88
Fru 0.90 6 0.06 1.10 6 0.21

(Continued)
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carotenoid accumulation. The coordinate expression of two
bacterial hemizygous carotenoid genes in tomato highlights syn-
ergistic effects on carotenoid formation, which were not observed
in the lines expressing only one gene. For instance, there is no
significant increase in lycopene in the hemizygous CrtE, CrtB, and
CrtI lines compared with the control. However, there is a signifi-
cant increase in the hemizygous CrtE+B and CrtB+I lines. The
production of lycopene, which was not enhanced by the expres-
sion of only one bacterial carotenoid gene, is positively affected,
while two bacterial carotenoid genes are expressed. This sug-
gests that there is a functional interaction between CRTE and
CRTB plus CRTB and CRTI in the fruit. By contrast, no such
synergistic effect on lycopene formation was found in the CrtE+I
line (Table 2), indicating that CRTE and CRTI do not interact via
the endogenous phytoene synthase enzyme PSY-1. Thus, only
the bacterial enzymes of consecutive steps of the carotenoid
pathway have a synergistic effect on carotenoid formation. This
suggests that CRTE, CRTB, and CRTI need to form an aggre-
gate complex to be able to interact or to be sequestrated into
a common microenvironment within the plastid to form a func-
tionally complete metabolon. Previous work also suggested that
a complex of the bacterial phytoene synthase, phytoene desa-
turase, and the lycopene cyclase enzymes allowed in vivo ac-
tivity of all three proteins through substrate channeling (Ravanello
et al., 2003). Although the strategy of combining expression of
bacterial hemizygous carotenoid genes increased carotenoid
levels, the dose of the heterologous gene(s) had a similar im-
pact. For instance, while the level of lycopene was not signifi-
cantly increased in the CrtB hemizygous and CrtI hemizygous
lines compared with the wild type, it was increased in the CrtB
homozygous and CrtI homozygous lines, as in the CrtE+B and
CrtB+I hemizygous lines. Surprisingly, no significant increase in
lycopene and total carotenoids was found in the homozygous
CrtB+I line, although it did contain the highest level of b-carotene
of all the lines. Consequently, the hemizygous CrtB+I line appears
to be a better option than the homozygous line in regard to in-
creasing total carotenoid levels. In summary, the choice of the

heterologous carotenoid genes, their combination, and gene
dosage (hemizygous or homozygous) are factors that affect
carotenoid formation and that therefore need to be assessed in
order to manipulate the pathway. These data also highlight why
characterization of transgenic plants should not be performed
solely on primary transformants. It is also feasible that the ho-
mozygous state is more prone to silencing by methylation. The
involvement of epigenetic regulatory mechanisms that affect het-
erologous genes has not been studied intensively, but methylation
has been shown to be an important mode of regulation in tomato
fruit (Zhong et al., 2013). However, in this case, immunoblot
analysis of CRTB and CRTI levels in the hemizygous and homo-
zygous states indicated an increase in protein content approaching
twofold in the latter. Therefore, determination of enzyme activities/
flux coefficients (Fraser et al., 2002) would be an informative
approach to reveal underlying mechanisms associated with the
changes in carotenoid profiles between the different Crt gene
combinations. This study demonstrated the potential beneficial
effects of combining two Crt genes on carotenoid content. Fu-
ture approaches could use the triple combination (CrtE+B+I) to
potentially enhance carotenoid levels further.

The Effects of CrtB+I Go Beyond the Carotenoid Pathway

Small changes in transcription correlated, as expected, with increa-
ses in carotenoids (Tables 1and 2). Interestingly, those transcripts
most affected in the transgenic lines corresponded to genes
associated with alternative tissue-specific expression (Figure 4).
For example, in the leaf, transcripts of the fruit-specific lycopene
cyclase (CYC-B) and the flower-specific carotene b-hydroxylase
carotene (CrtR-b2) genes were altered. This suggests that tran-
scription is tightly regulated for those carotenoid genes ex-
pressed in certain tissues, but genes not usually expressed in
a given tissue are not under the same regulatory mechanisms.
The activity of CRTB and CRTI also affected the spatial ac-

cumulation of pigments over fruit development and ripening, as
well as the partitioning of the carotenoids within the fruit tissues.
For example, comparisons between the pericarp of the homo-
zygous CrtB+I line with its control, at different ripening stages,
showed that the timing of carotenoid formation is altered in the
CrtB+I line. From the breaker stage, the CrtB+I line contained
significantly more b-carotene and less phytoene compared with
AC, but lycopene levels are significantly greater in the CrtB+I line
at the breaker + 3 d ripening stage (Figure 2). These changes in
carotenoids reflect the timing of expression of the different pro-
moters that regulate the CrtB and CrtI genes, the CrtI gene being
under constitutive control and CrtB under ripening-specific pro-
moter control (Atkinson et al., 1998). The constitutive presence of
CRTI influenced the levels of b-carotene and phytoene from
the breaker stage, while synthesis of CRTB later in the ripening
process affected the level of lycopene. Another phenotype re-
sulting from CRTB and CRTI was the intrafruit partitioning of
carotenoids in the pericarp, jelly, and columella. The pericarp was
the fruit compartment with the greatest capacity to store car-
otenoids (i.e., the highest levels), but the largest changes of ly-
copene in the CrtB line and b-carotene level in the CrtI and CrtB+I
lines, were associated with the columella (Figure 3). This suggests
that the accumulation of carotenoids in the tomato fruit depends

Table 3. (continued).

Metabolite

Ratio CrtB+I to AC

Leaf Fruit

Glc 1.90 6 0.18 1.15 6 0.20
Rib 0.58 6 0.23 3.45 6 0.88
Sedoheptulose 0.18 6 0.05 0.95 6 0.17
Xyl 0.58 6 0.23 3.45 6 0.88
Xylulose – 0.01#

Data were compiled from multiple analytical platforms. The ratio data are
presented as mean 6 SD. Student’s t test analysis was carried out.
Significant changes are represented in bold (P value < 0.05). 10*,
theoretical value when a metabolite is unique to CrtB+I at the
concentration used; 0.01#, theoretical value when a metabolite is unique
to AC at the sample concentration used. – indicates metabolite not detected
in both CrtB+I and AC at the sample concentration used. ND indicates
metabolite not determined; PS/PC, phosphatidylserine/phosphatidylcholine;
PE, phosphatidylethanolamine; DGDG; digalactosyldiacylglycerol.
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Figure 6. Subplastidial Carotenoid Sequestration in Response to Elevated Carotenoid Synthesis.
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on several tissue-related factors, such as the type of cell, the
composition and quantity of membranes, and the aqueous con-
tent of each tissue/cell type. Apparently, there is a saturation limit
for a specific carotenoid in a given tissue and beyond that con-
centration, another region of the fruit must be used. In addition to
the altered tissue distribution of carotenoids in the transgenic
lines, structural differences of the chromoplasts were observed
(Figure 5). The chromoplasts from the CrtB+I line were signifi-
cantly larger (2.8-fold) and contained more membranes (pre-
viously described as thylakoid plexus in Spurr and Harris, 1968).
The thylakoid plexus has also been identified in the chromoplast
of ripe fruit of the high b-mutant of tomato (Harris and Spurr,
1969). The presence of the thylakoid-like membranes could allow
a greater storage environment for the carotenoids. In CrtB+I,
most of the plastoglobules were the same size as the control;
however, some of them appeared to be larger and contained
a possible crystal-like structure. Plastoglobules containing crys-
tals have been reported in another Solanum species (Wrischer
et al., 2007). Therefore, storing crystals of carotenoids in the
plastoglobules of the CrtB+I chromoplasts is plausible. Mem-
branous sacs in CrtB+I formed from the inner envelope of
chromoplasts (Figure 6B). The hypothetical role of the membra-
nous sacs is to store crystals of carotenoids (Egea et al., 2010). In
conclusion, it would appear that the ultrastructure of the chro-
moplast adapts or responds to perturbations in carotenoid com-
position. This phenomenon has been observed previously (Fraser
et al., 2009; Maass et al., 2009).

Metabolite profiling illustrated that, in addition to cellular changes,
the expression of CrtB+I genes in the tomato fruit had effects
across the metabolome (Table 3). The precise biochemical/
molecular links with the increased sugars and amino acid levels,
decreased organic acid levels, and altered carotenoids await fur-
ther systematic analysis. However, it could be that perturbations in

fruit ripening via phytohormone imbalances have arisen. Such
changes in sugars, amino acids, and organic acids have the
potential to alter taste, which is an important consumer attribute.
It is also feasible that the changes in leaf carotenoids affect
source tissue metabolism, which then manifests itself in sink
tissues. Further studies under different environmental conditions
would be beneficial to clarify how the modifications can alter the
plant’s responses to abiotic stresses. Increased MGDG content
(3.6-fold increase; Table 3) was determined in the transgenic
line, especially the C16:0, C16:1 cis 9, and C18:1 fatty acid
moieties of this complex lipid (see Supplemental Table 2 online).
An associated increase of carotenoid and MGDG lipid (C16:0
and C18:3 fatty acids) levels was observed in a marine bacte-
rium (Synechococcus sp) during high-light acclimation (Montero
et al., 2012). It seems that the prokaryotic pool of MGDG (C16:0
plus C18:1, from plastids) is positively regulated in parallel with
the carotenoid level in the CrtB+I line. MGDG is found in abun-
dance in the inner envelope and in the thylakoid membranes of
the chloroplast/chromoplast (Marechal et al., 1997). The reason
for elevated MGDG in relation to carotenoid content could be
explained by the fact that MGDG has a high propensity for in-
terfacial curvature, allowing the membrane to adapt to a greater
quantity of b-carotene (Szilágyi et al., 2007). In the transgenic line,
it appears that this plasticity of the lipid is used to accommodate
the extra carotenoid produced.

Carotenoid Sequestration Mechanisms Have Implications
for Pathway Regulation

A comparison between subcompartments of the fruit chromo-
plasts from control and CrtB+I lines showed a number of im-
portant differences. First, an increased number of b-carotene
and lycopene crystal-like structures arose in the thylakoid-like

Figure 6. (continued).

(A) Fractionation of subplastidial components of chromoplasts from AC (the wild type) and CrtB+I lines. Chromoplasts were extracted from 90 g of a mix
of breaker + 3 to + 5 d tomatoes and then broken with a handheld potter and separated in a discontinuous gradient of 5, 15, 20, 38, and 45% Suc
(weight per volume). Fractions of 1 mL were collected for further analysis. Typically, a total of 30 fractions were collected per centrifuge tube. Fractions
from six replicates were used to achieve all the experiments showed in Figure 6B. Validation of subplastidial components using antibodies to biomarker
proteins and analysis of lipid species.
(B) (i) Protein profile. Proteins, extracted from each fraction, were separated and visualized using SDS-PAGE followed by silver staining. Selected
proteins were identified by nano-LC-MS-MS: 1, Plastoglobulin-1; 2, plastid lipid-associated protein CHRC; 3, ATP synthase subunit b; 4, photosystem I
reaction center subunit II; 5, photosystem II 22-kD protein; 6, oxygen evolving enhancer protein 1; 7, oxygen evolving enhancer protein 2; 8, heat shock
cognate 70-kD protein-1; 9, ribulose-1,5-bis-phosphate carboxylase/oxygenase large subunit binding protein subunit b. Details of the identification of
these proteins are shown in Supplemental Figure 6 online. (ii) Immunoblot (I. blot). Immunolocalization of biomarker proteins in the fractions were
determined by immunoblotting: plastoglobulin (PGL, 35 kD), photosystem II protein D1 (PSBA, 28 kD), TIC (45 kD), TOC (75 kD), and ribulose-1,5-bis-
phosphate carboxylase/oxygenase large subunit (RBCL, 52 kD). (iii) Lipid profile. Lipids derived from the fractions were separated in a thin layer
chromatography silica plate with a mixture of acetone:toluene:water (91:30:7). Standards for lipid species were used for identification: a, triglycerides; b,
monogalactodiacylglycerol; c, digalactodiacylglycerol; d, phosphatidylethanolamine; e, phosphatidylserine/phosphatidylcholine; asterisk, contaminant.
(C) Ultrastructure component of isolated fractions. After collection, the fractions were dialyzed against PB and then fixed in osmium tetroxide.
(D) Carotenoids and a-tocopherol contents of the isolated fractions. Metabolites were extracted from each fraction and separated by liquid chro-
matography using a ultrahigh performance liquid chromatograph. The carotenoids and a-tocopherol were identified and quantified using calibration
curves of standards. Contents are given as a percentage in a fraction compared with the total content in the tube.
(E) Localization of the heterologous phytoene synthase (CRTB, 38 kD) and phytoene desaturase (CRTI, 56 kD) enzymes and the endogenous phytoene
synthase (PSY-1, 35 kD) enzyme within the subplastidial component of the AC and CrtB+I chromoplasts. Specific antibodies were used to im-
munodetect these enzymes in each collected fraction. Experiments were performed with the hemizygous CrtB+I line and a concurrent control.
[See online article for color version of this figure.]

12 of 20 The Plant Cell

http://www.plantcell.org/cgi/content/full/tpc.113.116210/DC1


Figure 7. Schematic Representation of the Regulation of Carotenoid Production within the Thylakoid-Like Membranes of AC and CrtB+I Chromoplasts.

In the wild-type AC (top panel), the pool of phytoene, synthesized by PSY-1, can be used by PDS; however, at saturated levels, the excess phytoene
appears to be sequestrated in the plastoglobules. Some lycopene and b-carotene are sequestrated in the thylakoid-like membranes and lycopene
crystals are subsequently formed. In CrtB+I (bottom panel), the pool of phytoene is used by PDS and CRTI. Consequently, less phytoene is stored in the
plastoglobules. A greater quantity of b-carotene and lycopene is created, leading to the formation of carotenoid crystals. Solid arrows represent
a catalytic step; dashed arrows indicate movement of carotenoid. Changes in the galactolipid content of the membranes are also illustrated. IDS,
isopentenyl diphosphate/dimethylallyl diphosphate isomerase; GGPPS, 1-geranylgeranyl pyrophosphate synthase; PSY-1, phytoene synthase-1; PDS,
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membrane fractions of the CrtB+I line (Figure 6A). Storage of
endogenous carotenoids in crystal-like structures has been re-
ported in other plant species, such as mango (Mangifera indica)
(Vasquez-Caicedo et al., 2006) and red papaya (Carica papaya)
(Schweiggert et al., 2011) as well as in tomato (Rosso, 1967, 1968).
It seems that this sequestration mechanism has been upregulated
in the transgenic lines containing increased carotenoids. This
phenomenon has also been observed in Arabidopsis thaliana and
carrot (Daucus carota) roots (Maass et al., 2009) and embryogenic
calli from citrus (Cao et al., 2012) overexpressing the phytoene
synthase gene. Secondly, the membranes of the chromoplast
(envelope and thylakoid-like membrane) also appeared to play an
important role. The inner envelope of the CrtB+I chromoplasts
seemed to be actively producing vesicles (membranous sacs),
which were visible in the electron micrographs of the CrtB+I
chromoplasts (Figure 5). The thylakoid-like membranes appeared
in greater quantity and electron density in the CrtB+I chromo-
plasts compared with those in AC. The darker and thicker
membranes could be caused by a high number of lipids, proteins,
and carotenoids or complexes of these components. Harris and
Spurr (1969) highlighted similar characteristics of chromoplasts of
the tomato high b-mutant. They described invagination of the
internal membrane of the plastid envelope and swollen grana and
intergrana lamellae. CRTB and CRTI are found in the same sub-
membrane compartment, which strengthens the hypothesis that
they can interact with each other and have a synergistic effect on
carotenoid production. However, PSY-1 was mainly found in the
stroma, whereas its product phytoene was predominantly found
in the membranes and in the plastoglobules. The location of PSY-
1 within the chromoplasts confirmed results found in the literature
(Fraser et al., 1994, 2002). The presence of phytoene in plasto-
globules means that a significant quantity of the substrate for
phytoene desaturase (and carotene formation) is partitioned away
from the enzyme, possibly causing it to be metabolically inert,
unless it is reincorporated into the membrane enzyme complex.
Collectively, the data illustrate that synthesis and sequestration
are two processes that are important for engineering carotenoids
in plants, with the latter requiring further investigation. Only a few
proteins have been identified with a potential link to the accu-
mulation of carotenoids in plants, including the chromoplast-
specific carotenoid-associated proteins (CHRC; Kilambi et al.,
2013), the plastid-encoded acetyl CoA carboxylase D (Barsan
et al., 2012), and the heat shock protein 21 (Neta-Sharir et al.,
2005; Carvalho et al., 2012), while the Or gene in potato en-
hances carotenoid accumulation and stability (Li et al., 2012).

Plant Cells Adapt to Changes in Carotenoid Content
at Multiple Levels

The characterization of transgenic lines with moderate increases
in carotenoid levels has demonstrated the ability of the plant to
adapt to changes in the homeostatic levels of carotenoid pigments.

Adaptation occurs across multiple levels of cellular regulation,
including transcription, protein localization, metabolite cell/tissue
type, and organelle/suborganelle structure/organization. Previous
descriptions of regulatory mechanisms operating in the pathway
have focused mainly on transcription and their response to de-
velopmental or environmental responses. This study also shows
that the identity and level of carotenoids can trigger different
regulatory mechanisms. Consequently, it implies that changes in
levels of carotenoids can be sensed, causing signaling cascades
that trigger adaptive mechanisms in the cell. Little is known about
these sensors and signaling molecules, although cis-carotenes or
cis-apocarotenoids have been proposed to act as signaling
molecules (Kachanovsky et al., 2012) for the carotenoid pathway
and the methylerythritol cyclodiphosphate, produced by the
plastidial methylerythritol-4-phosphate pathway, has been shown
to regulate the expression of nuclear stress response genes by
retrograde signaling (Xiao et al., 2012). Further detailed knowl-
edge of how the plant cell can sense, adapt, and modulate these
changes is important for further exploitation of biodiversity and
holistic engineering approaches.
Recently, there has been an increasing trend to create sche-

matic representations relating to the plastid topology of carotenoid
formation in the plastid. To date, these models are predominantly
based on proteomic data (Barsan et al., 2012). However, valuable
limitations do arise; for example, interrogating proteomic data-
bases without implementing stringent parameters or validation
procedures can lead to misleading identifications. Moreover, the
expression of proteins with visualization tags, such as green
fluorescent protein, could alter the protein conformation and/or
the stoichiometric ratio of proteins within a complex or micro-
environment of the membrane.
In this study, our perturbation of the system by transgenesis

has enabled us to acquire valuable insight into the fundamental
subplastidial organization of carotenoid synthesis and seques-
tration. From the experimental data, a model is presented in
Figure 7. The wild-type state (AC) is illustrated with isopentenyl
diphosphate isomerase, geranylgeranyl pyrophosphate syn-
thase, and phytoene synthase(s) functioning as a metabolon for
efficient channeling of precursors. This has been proven ex-
perimentally using biochemical approaches with the topology of
the complex designated as membrane associated (Dogbo et al.,
1988; Fraser et al., 2000). This study shows the presence of
phytoene in the membrane and plastoglobule. Thus, the desa-
turase cannot completely use the phytoene synthesized or the
delivery of the phytoene from the synthase to the desaturase is
not a tethered process. Given that in green tissues no phytoene
accumulates, it would appear that the desaturase is capable of
converting phytoene efficiently. Thus, perhaps during the tran-
sition from chloroplast to chromoplast, the dismantling of the
membrane structure affects the efficiency of the carotenoid
biosynthetic pathway at the stroma–membrane juncture. The
determination of phytoene in relatively high amounts in the

Figure 7. (continued).

phytoene desaturase; ZDS, z-carotene desaturase; Z-ISO, 15-cis-z-carotene isomerase; CRTISO, carotene isomerase; CYC-B, b-lycopene cyclase;
CRTB, phytoene synthase; CRTI, phytoene desaturase.
[See online article for color version of this figure.]
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plastoglobule suggests that the cell acts to remove excess phy-
toene accumulating in the membrane, presumably alleviating the
potential damaging effects. In addition, the compartmentalization
of enzymes is a well-documented regulatory process (Heinig et al.,
2013); however, in this study, we introduce the partitioning of ca-
rotenoid precursors from their biosynthetic enzymes as another
means of regulating pathway flux. The formation of b-carotene infers
that the lycopene produced by the desaturase/isomerase complex
can be used by the cyclase. However, the process would appear to
be inefficient, with lycopene accumulating and crystalline structures
arising. Concurrent analysis of the transgenic variety expressing CrtB
and CrtI indicates that the bacterial phytoene synthase is membrane
associated but can still synthesize and influence phytoene levels.
Therefore, geranylgeranyl pyrophosphate must still be accessible.
Although the procedure may not be optimal, it is still operational. The
reduction in phytoene present in the membrane and plastoglobule
suggests that the bacterial desaturase can act on the phytoene,
providing further evidence that the phytoene is not efficiency chan-
neled to desaturation. The interaction of the CRTI with the endog-
enous pathway has important fundamental implications, as it is the
gene product that drives b-carotene production in Golden rice, a
paradigm-changing resource of humanitarian benefit (Beyer, 2010).
The increased b-carotene content in the presence of the bacterial
desaturase indicates that the pool of lycopene generated by the
nonendogenous enzymes is more accessible to the endogenous
b-cyclase than the lycopene produced by the endogenous de-
saturase/isomerase complex. Adaptation of the membrane to ac-
commodate these increases in b-carotene and-lycopene arises via
the modulation of MGDG content.

Despite modification of the membrane, it would appear that,
at a certain concentration, carotenoid will crystallize. Presumably,
storage of carotenoids in this manner makes them metabolically
and osmotically inert and probably less prone to oxidative deg-
radation than in solution. However, in this state, it is unlikely that
carotenoids can be used by carotenoid cleavage dioxygenases.
Shumskaya and Wurtzel (2013) proposed that carotenoid is res-
olubilized and transported to the outer envelope. This seems unlikely
in tomato. It is more likely that the carotenoid cleavage dioxyge-
nases act on the carotenoid in the membrane/or plastoglobule prior
to crystallization. The molar ratios between carotenoid and derived
volatiles also suggest this pattern of events, as the carotenoid
content is at least two orders of magnitude more than the volatiles.

In conclusion, the use of transgenesis to modulate the carot-
enoid pathway has revealed important regulatory mechanisms: (1)
how pathway transcription can respond to perturbations in path-
way metabolites, (2) how altering the partition of precursors from
the biosynthetic enzymes on a subplastid level can modulate
pathway flux, and (3) how metabolite composition can direct
cellular structures. The latter has a generic implication to all en-
gineering approaches across genera, as it illustrates the need for
concurrent sequestration/deposition with pathway engineering.

METHODS

Plant Material and Cultivation

The control (AC) variety of tomato (Solanum lycopersicum) had been
previously transformed with the CrtB construct (Fraser et al., 2002), the

CrtI construct (Römer et al., 2000), and the CrtE construct, which corre-
sponds to the CrtB vector only with the CrtE gene from Pantoea ananatis
(D90087.2) using theAgrobacterium tumefaciens strain LBA 4404. The lines
were crossedby cross pollination using a small paintbrush. The plants were
greenhouse grown (25°C day/15°C night) with supplementary lighting (6-h
light/8-h dark). Three plants each of three to four separate cross-pollination
events were grown for each transgenic line concurrently with AC.

Confirmation of Gene’s Presence by PCR

The Crt genes in the crossed lines were detected by PCR, using the set of
primers shown in the Supplemental Table 4 online. PCR reactions were
performed using Illustra puReTaq Ready-to-Go PCR beads (GE Health-
care), with reagents prepared to the manufacturer’s guidelines. Reactions
contained 10 pmol each of the respective template’s forward (5939) and
reverse (3959) primers and 50 ng of genomic DNA. Tubes were incubated at
95°C for 5 min to denature the template before 30 cycles of PCR ampli-
fication (denaturation 94°C for 30 s, annealing 50°C for 30 s, and extension
72°C for 30 s). A final incubation of 5 min at 72°C completed the reaction.
Reactions were performed using a Techgene thermo cycler (Techne). PCR
products were analyzed by agarose gel electrophoresis.

Determination of the CrtB+I Homozygous Line

The CrtB+I homozygous line was screened by real-time PCR. The CrtB
and CrtI genes in the potential CrtB+I homozygous lines were quantified
and compared to the same genes in known hemizygous and homozygous
lines and normalized to Pds. The D-D cycle threshold method was used to
calculate the ratios. Three young leaves (63-cm long) from three in-
dependent plants of the same line were harvested, pooled, and frozen in
liquid nitrogen. Leaf material was homogenized using a Tissue Lyser LT
(Qiagen) for 1 min at 50 Hz, while keeping the samples frozen. DNA was
extracted from leaf powder (100 mg) using the DNeasy reagents and
protocol (Qiagen). TheQuantiFast SYBRGreen PCR kit (Qiagen) was used
to quantify the gene of interest using a 25-ng sample of DNA. Primers
were added to a final concentration of 1 mM in a reaction volume of 20 mL.
Reactions were performed on a Rotor-Gene 3000 thermocycler (Qiagen).
Thermocycling conditions were 95°C for 15 min followed by 40 cycles of
15 s at 94°C, 30 s at 50°C, and 15 s at 72°C. Melt curve analysis verified
the reactions’ specificity. For quantification, calibration curves were run
simultaneously, using actin as a housekeeping gene to normalize the data.

Measurement of Gene Expression by Real-Time Quantitative
RT- PCR

Measurement of expression by real-time quantitative RT-PCR was per-
formed as described by Enfissi et al. (2010) and using the primers reported
in Supplemental Table 4 online.

Extraction and Analysis of Metabolites

Carotenoids, tocopherols, chlorophylls, and lipids were extracted from
freeze-dried fruit and leaf tissue. Extractionsweremade fromsample powder
(15 mg) in 1.5-mL centrifuge tubes. Metabolites were extracted by the
addition of chloroform andmethanol (2:1). Samples were stored for 20min
on ice. Subsequently, water (1 volume)was added. Sampleswere centrifuged
for 5min at top speed in a Heraeus Pico21 centrifuge (ThermoScientific). The
organic phase, containing the pigment extract, was placed in a fresh cen-
trifuge tube, and the aqueous phase was reextracted with chloroform (32 by
volume). Organic phases were pooled and dried using the Genevac EZ.27.
Dried samples were stored at220°C and resuspended in ethyl acetate prior
to spectrophotometric and chromatographic analysis.

Total carotenoids and chlorophyll a and b were determined spectro-
photometrically, as described by Wellburn (1994).
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Chromatographic Analysis

Carotenoids were separated and identified by ultrahigh performance
liquid chromatography with photodiode array detection. An Acquity
ultrahigh performance liquid chromatography system (Waters) was used
with an Ethylene BridgedHybrid (BEHC18) column (2.13 100mm, 1.7mm)
with a BEH C18 VanGuard precolumn (2.1 3 50 mm, 1.7 mm). The mobile
phase used was A, methanol/water (50/50), and B, acetonitrile (ACN)/ethyl
acetate (75:25). All solvents used were HPLC grade and filtered prior to use
through a 0.2-mm filter. The gradient was 30% A:70% B for 0.5 min and
then stepped to 0.1% A:99.9% B for 5.5 min and then to 30% A:70% B
for the last 2 min. Column temperature was maintained at 30°C and the
temperature of samples at 8°C. Online scanning across the UV/visible
range was performed in a continuous manner from 250 to 600 nm, using
an extended wavelength photo diode array detector (Waters). Carotenoids
were quantified from dose–response curves. The HPLC separation, de-
tection, and quantification of carotenoids, tocopherols, and chlorophylls
have been described in detail previously (Fraser et al., 2000).

Lipid Analysis

Lipids were analyzed on high-performance thin layer chromatography
silica gel 60 F254 plates (Merck) using a solvent system of acetone/toluene/
water (91:30:7). They were visualized with iodine vapor and identified by
cochromatography with lipids of known composition. For quantitative
analysis, individual lipids were isolated from thin layer chromatography
plates and extracted in chloroform/methanol (1:1). Then, 50 mg of internal
standard (myristic acid D27) was added to the extract prior to drying. To
transmethylate the lipids, the samples were resuspended in hexane (2 mL)
and methanol (4 mL) plus 1% sulfuric acid and incubated at 85°C for 2 h.
Two milliliters of hexane and 1 mL of water plus 5% KCl were then added.
The hexane phase was dried and resuspended in 20 mL of methanol for
quantification by gas chromatography–mass spectrometry, as described
below.

Extraction, Derivatization, and Gas Chromatography–Mass
Spectrometry Analysis

Extraction and analysis of polar metabolites was performed as described
previously (Enfissi et al., 2010; Jones et al., 2012), with slight mod-
ifications. Freeze-dried powder (10 mg) was extracted in methanol
(400 mL)/water (400 mL)/chloroform (800 mL). An aliquot (20 mL) was
removed from the extract, the internal standard (ribitol, 10 mg) was added
to the aliquot, and the samples were dried. Six extractions were performed
on each biological replicate. Derivatization was performed by the addition
of methoxyamine hydrochloride (30 mL; Sigma-Aldrich) at 20 mg/mL, in
pyridine. Samples were incubated at 40°C for 1 h, after whichN-methyl-N-
trimethylsilyltrifluoroacetamide (Sigma-Aldrich; 70 mL) was added and the
samples incubated for 2 h at 40°C before analysis. Gas chromatography–
mass spectrometry was performed as described previously (Enfissi et al.,
2010), using a 20:1 split injector. To identify chromatogram components
found in the tomato profiles, a mass spectral (MS) library was constructed
from in-house standards, as well as the NIST08 MS library. Retention time
calibration was performed on all standards to facilitate the determination
of retention indices. Using the retention indices andMS, identification was
performed by comparison with the MS library. Relative quantification to
the internal standard was performed.

Subcellular Fractionation and Cellular Analysis

Electron Microscopy of Intact Chromoplasts

Tomato fruit was cut into 2-mm cubes using a new sharp razor blade in
a drop of cold fixative (2.5%glutaraldehyde in 100mMsodium cacodylate

buffer [CAB], pH 7.2) on dental wax. Pieces of tissue were transferred into
a glass vial (with a cocktail stick) containing cold fixative (;2 mL). Lids
were placed on the vials and tissue was fixed in the fridge (4°C) overnight.
Tissue was washed in CAB (23 10min) and then postfixed in 1% osmium
tetroxide in CAB for 1 h at room temp (20°C). Tissue was washed (23 10)
min in milliQ water. Tissue was then dehydrated in increasing concen-
trations of ethanol as follows: 50, 70, and 90% (10 min) and 3 3 100%
(15 min). Tissue was then washed (3310 min) in the transition solvent
propylene oxide. Tissue was then transferred into 50% propylene oxide
and 50% agar low-viscosity resin (Agar Scientific) for 30 min. Tissue was
then placed in 100% agar low-viscosity resin (2 3 1.5 h) with a vacuum
applied four times during the incubation. Tissue pieces were then placed
in labeled silicone molds and polymerized in the oven (60°C) for 24 h.
Polymerized blocks were sectioned (70 nm) on a RMC MTXL ultrami-
crotome, and sections were collected on 400 mesh copper grids. Sec-
tions were counterstained with 4.5% uranyl acetate in 1% acetic acid for
45 min and Reynolds lead citrate for 7 min. Sections were viewed in a Jeol
1230 transmission electron microscope with an accelerating voltage of
80 kV. Images were recorded with a Gatan digital camera. The images
shown in Figure 5 are representative of three biological replicates for each
line, from which 12 sections where taken per biological replicate. Volumes
of chromoplasts were measured using ImageJ software.

Electron Microscopy of Subplastidial Components of Chromoplasts

Two previous methods were combined (De Camilli et al., 1983; Angaman
et al., 2012). Subchromoplast fractions were pelleted in a microfuge tube
and fixed in 2.5% glutaraldehyde in 100 mM phosphate buffer (PB), pH
7.4, for 1 h at room temperature. Fixed subchromoplast components were
pelleted in a microfuge and washed (2 3 10 min) in PB. After the final
wash, components were resuspended in PB (100 mL). Aliquots (100 mL) of
fixed component were added to tubes immersed in a 54°C water bath.
After a 15-s interval, which allowed the suspension to warm up, 100 mL of
a solution (at 54°C) containing 3% agarose in 5 mM PB was added to the
subchromoplast suspension. The suspension obtained was quickly
mixed, while still immersed in the warm water bath, by forcing it up and
down through a Pasteur pipette prewarmed in a 60°C oven. Care was taken
to prevent foaming. Immediately afterwards, the agarose-subchromoplast
suspension was transferred by pipetting into a framemade from two glass
slides separated by a shaped acetate gasket and held together by bull dog
clips. The frame had also been prewarmed in a 60°C oven. The agarose
mixture was then allowed to cool and solidify. At this point, the two glass
slides were separated, and the agarose gel, attached to one of the glass
slides, was cut into 2-mmsquares with a razorblade. The gel squares were
then washed off the glass slide into a Petri dish by a stream of 0.1%Alcian
blue in 1% acetic acid from a Pasteur pipette. These agarose squares
were then transferred to glass vials and washed (2 3 10 min) in PB to
remove stain. The Alcian blue stain made the agarose squares visible and
aided subsequent processing and resin embedding. Sampleswere postfixed
in 1%OsO4 containing potassium ferricyanide (0.8%) in the same PB for 1 h
at room temperature. Then, after three washes in milliQ water, transmission
electron microscopy was performed as described. Fractions from three
technical replicates, which correspond to the mix of ;10 tomatoes, were
fixed and photographed. The procedures were repeated independently at
least three times. With eachCrtB+I preparation, an AC control preparation
was also performed concurrently and comparative cellular analysis
performed.

SUBCELLULAR FRACTIONATION OF CHROMOPLASTS

SYSTEM 1. All procedures were performed at 4°C. Approximately 10 fresh
tomatoes (Breaker + 3 to 5 d) were harvested and the pericarp was cut into
1-cm2 pieces (80 to 150 g) and stored at 4°C overnight. Tomato tissue was
added to extraction buffer (0.4 M Suc, 50 mM Tris, pH 7.8, 1 mM EDTA,
and 1 mM DTT) and homogenized for 2 3 3 s in a Waring blender. The
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homogenate was filtered through four layers of muslin. Extraction buffer
was added to the filtrate in a 500-mL centrifuge tube. Tubes were
centrifuged for 10 min at 5000g in a Sorvall RC5C centrifuge (Thermo
Scientific) with a GSA-3 rotor. The supernatant was discarded, and the
pellet was resuspended in extraction buffer and transferred into 50-mL
centrifuge tubes. The tubes were centrifuged for 10 min at 9000g with
a GSA-5 rotor. The supernatant was discarded. Pellets were resuspended
in 45%Suc buffer (45% [w/v] Suc, 50mMTricine, 2 mMEDTA, 2mMDTT,
and 5 mM sodium bisulphite, pH 7.9; 3 mL). The chromoplasts were
physically broken using a handheld potter homogenizer (10 times). The
solution was then resuspended in 45% Suc buffer (5 mL), and the 8 mL
was placed in a 38.5-mL Ultra-Clear centrifuge tube (Beckmann Coulter).
Subsequently, other layers of discontinuous Suc gradient were overlaid,
consisting of 38% Suc buffer (6 mL), then 20% Suc buffer (6 mL), 15%
Suc buffer (4 mL), and 5% Suc buffer (8 mL). Gradients were centrifuged
for 17 h at 100,000g and 4°C, using an L7 ultracentrifuge with an SW28
swing out rotor (Beckman Coulter). Fractions (1 mL) were collected, from
the top of the gradients using a Minipuls 3 peristaltic pump and FC203B
fraction collector (Gilson). Samples were dialyzed overnight against PB
(50 mM, pH 7.5) for electron microscopy analysis.

SYSTEM 2. Chromoplasts were isolated as in system 1. However, instead
of resuspending the pellets obtained after the centrifugation step at
9000g, theywere resuspended in 0.6MSuc buffer (0.6MSuc, 50mMTris,
1 mM DTT, and 1 mM EDTA, pH 7.8; 3 mL) and homogenized using
a handheld potter homogenizer to break the chromoplasts. The solution
was then resuspended in 0.6 M Suc buffer to a final volume of 35 mL in
38.5-mL Ultra-Clear centrifuge tubes (Beckmann Coulter). Tubes were
centrifuged for 1 h at 100,000g and 4°C, using an L7 ultracentrifuge with
an SW28 swing-out rotor (Beckman Coulter). The red supernatants, which
correspond to the chromoplast crystals and plastoglobules, were
transferred into Eppendorf tubes and stored at 220°C. The pellets were
resuspended in 45% Suc buffer (8 mL) and placed in a 38.5-mL Ultra-
Clear centrifuge tube (Beckmann Coulter). The same gradient as that used
in system 1 was created; subsequently, the same protocol followed as
for the system 1. The two systems are represented in Supplemental
Figure 5 online.

ISOLATION OF DIFFERENT TYPES OF CHROMOPLASTS

SYSTEM 3. Chromoplast extraction was undertaken in a cold room at 4°C.
Fresh tomato fruits (200 g) were harvested from selected plants, cut into
pieces of ;1 cm2, covered in foil, and stored at 4°C overnight to reduce
starch content. Tomato tissue was homogenized in prechilled chromo-
plast buffer A (100 mM Tris-HCl, pH 8.2, 0.33 M sorbitol, 2 mM MgCl2,
10 mM KCl, 8 mM EDTA, 10 mM ascorbic acid, 5 mM L-Cys, 1 mM
phenylmethylsulfonyl fluoride, 1% polyvinylpyrrolidone, and 1 mM DTT),
twice for 3 s in a small laboratory blender (Waring Products). The resulting
slurry was filtered through four layers of muslin cloth and the liquid
decanted into a 500-mL screw cap centrifuge tube. Subsequently, tubes
were centrifuged for 15 min at 5000g and 4°C in a Sorval RC5C centrifuge
(Thermo Scientific) with a GSA-3 rotor. The supernatants were discarded.
The pellets were resuspended in buffer B (buffer A without poly-
vinylpyrrolidone) and transferred into 50-mL centrifuge tubes. The tubes
were centrifuged for 15 min at 5000g and 4°C with the GSA-5 rotor. The
supernatants were discarded. The pellets were resuspended in 4 mL of
buffer B. In 38.5-mL Ultra-Clear centrifuge tubes, a discontinuous Suc
gradient (Suc [w/v] in 50 mM Tris-HCl, pH 7.4, supplemented with 1 mM
DTT) with the following steps was constituted: 50% (9 mL), 40% (7 mL),
30% (7mL), and 15% (7mL) of Suc. The chromoplast solutions (4mL)were
placed on top of the gradients. Gradients were centrifuged for 1 h at
100,000g and 4°C, using an L7 ultracentrifuge with an SW28 swing-out
rotor (Beckman Coulter). The chromoplast fractions were recovered with
a Pasteur pipette in an Eppendorf tube, washed in 1 volume of buffer B
followed by centrifugation at 6000g for 10 min. The supernatants were
discarded and the pellets of chromoplasts kept at 220°C.

Protein Analysis

Extraction, separation, immunodetection, and liquid chromatography–mass
spectrometry (LC-MS) analysis of proteins were performed following the
protocols of Robertson et al. (2012) and Mora et al. (2013).

Extraction, Separation (SDS-PAGE), and LC-MS Analysis of Proteins

Proteins contained in the subplastidial fractions were precipitated with
methanol and resuspended in sample buffer solution (0.5 M Tris-HCl, pH
6.8, 10% [v/v] glycerol, 10% [w/v] SDS, 1.4% [v/v] b-mercaptoethanol,
and 0.05% [w/v] bromophenol blue). After a heat denaturation step at
95°C for 4 min, a volume of 5 mL of this solution was loaded into a 12.5%
acrylamide gel (Laemmli, 1970). The ProteoSilver Silver Stain kit (Sigma-
Aldrich) was used to develop the gel after running at 80 V. High-range
rainbow molecular weight marker (RPN756E) from GE Healthcare Life
Sciences was used.

IN-GEL DIGESTION OF PROTEIN BAND

Stained bands corresponding to the protein of interest were excised using
a scalpel and cut into 1 mm3 and then introduced in centrifuge tubes
(0.5 mL) and washed three times for 10 min with 50 mM ammonium
bicarbonate, pH 8.0 (50 mL). After that, gel pieces were dried three times
with ACN (50 mL) for 10 min. Once the gel pieces shrank and turned
opaque, 12.5 ng/mL of trypsin (10 mL) dissolved in 50 mM ammonium
bicarbonate, pH 8.0, was added. An additional 15 mL of 50 mM am-
monium bicarbonate was added to each tube in order to cover the gel
pieces. The tubes were incubated at 37°C overnight, and the supernatant
was transferred to a clean Eppendorf tube. Tryptic peptides were se-
quentially extracted with 25 mL of ACN/water (50:50, v/v) with 0.1% (v/v)
trifluoroacetic acid, while sonicating for 10 min (two times). The peptide
extracts were combined and dried in a GeneVac Ez-2 Plus rotary evaporator
and reconstituted in 5 mL of 0.1% (v/v) trifluoroacetic acid. The peptide
samples were cleaned with ZipTip C18 (Millipore) prior to the nano–liquid
chromatography–tandem mass spectrometry (nano-LC-MS-MS) analysis,
and peptideswere elutedwith 10mL ofwater:ACN (50:50, v/v) with 0.1% (v/v)
formic acid.

NANO-LC-MS-MS CONDITIONS

The nano-LC-MS-MS analysis was performed in an Ultimate 3000 rapid
separation liquid chromatography nanosystem from Dionex (Thermo
Fisher Scientific) coupled to an AmaZon ETD ion-trap mass spectrometer
equipped with a nanoelectrospray ionization source (Bruker Daltonik).

Twenty microliters of loading buffer (water:ACN [98:2, v/v] with
0.1% [v/v] formic acid) was added to the sample, and 2 mL was injected
into the LC-MS system using the autosampler. Sample was preconcentrated
on aDionex AcclaimPepMap 100 column (100mm32 cm,C18, 5mm, 100Å)
(Dionex, LC Packings) at a flow rate of 4 mL/min and using 0.1% of tri-
fluoroacetic acid as mobile phase. After 3 min of preconcentration, the trap
column was automatically switched in-line with a Dionex Acclaim PepMap
rapid separation liquid chromatography nanocolumn (75mm3 15 cm, C18, 2
mm, 100Å) (Dionex, LC Packings). Mobile phases consisted of solvent A,
containing 0.1% (v/v) formic acid in water, and solvent B, containing 0.1% (v/
v) formic acid in 100% ACN. Chromatographic conditions were a linear
gradient from95 to 60% (v/v) solvent A in 45min at a flow rate of 0.250mL/min
at 30°C.

The column outlet was directly coupled to a nanoelectrospray ion
source. The positive mass spectrum was recorded for a mass-to-charge
ratio range of 300 to 2000 followed by MS-MS scans of the three most
intense peaks. Typical ion spray voltage was in the range of 2.5 to 3.0 kV,
and nitrogen was used as the collision gas. The ion trap was used in
ultrascan mode with a maximum accumulation time of 200 ms and an
average of 5. Other source parameters and spray positions were opti-
mized with a tryptic digest of BSA protein.
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DATABASE SEARCH

Automated spectral processing and peak list generation were performed
using Mascot Distiller v2.4.2.0 software (Matrix Science). The database
search was done through Mascot Daemon software in combination with
the Mascot interface 2.2 (Matrix Science). Regarding searching param-
eters, Mascot searches were done with no enzymatic specificity and
a peptide tolerance on the mass measurement of 100 ppm and 0.6 Da for
MS-MS ions. Carbamidomethylation and oxidation of Met were used as
variable modifications. Identification of the protein origin of the identified
peptides was done using the UniProt protein database. BLAST was used
as a basic local alignment search tool to find regions of local similarity
between the identified proteins and the protein sequences of tomato (http://
blast.ncbi.nlm.nih.gov/Blast.cgi).

Immunodetection by Immunoblot Analysis

Proteins were separated by SDS-PAGE (12.5%) for 3 h at a constant
current of 80 mA. Proteins were transferred onto polyvinylidene difluoride
membranes, and immunodetection was performed as described by
Fraser et al. (1994).

Statistical Analysis

A minimum of three biological and three technical replicates were ana-
lyzed for every experiment unless stated otherwise. Metabolite levels from
the different technology platforms were combined. Principal component
analysiswas performed on these datamatrices. SIMCA-P+ software v. 13.0.2
(Umetrics) was used to carry out and display clusters derived from the
principal component analysis. GraphPadPrism software v.5 (GraphPad
Software) or Excel (Microsoft) embedded algorithms were used to perform
Student’s t tests or Dunnett’s test to determine significant differences
between the transgenic lines and the control AC. Where appropriate, P <
0.05, P < 0.01, and P < 0.001 are indicated by one asterisk, two asterisks,
and three asterisks, respectively.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL
databases under the following accession numbers: Ggpps-1: DQ267902;
Ggpps-2: SGNU223568; Psy-1: Y00521; Psy-2: L23424; Pds, X59948;
z-carotene desaturase, AF195507; carotene isomerase, AF416727;
e-lycopene cyclase, Y14387; Lcy-B, AF254793; fruit-specific b-lycopene
cyclase, Y18297; CrtR-b1, Y14809;CrtR-b2, DQ864755; Zep-1: Z83835.1;
CrtE, CrtB, and CrtI, D90087.2.
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Supplemental Figure 1. PCR confirmation of the presence of CrtE and CrtI genes in 

the CrtE+I lines. 

 

Amplication of CrtI (163 bp) and CrtE (142 bp) was performed by PCR on four 

plants of the CrtE+I genetic cross and visualized with a transilluminator. DNA was 

extracted from a pool of four representative leaves of each genotype. Purple numbers 

indicate biological replicates. NTC: non-template control; AC: Ailsa Craig tomato 

variety (wild type). The same approach was undertaken for CrtE+B and CrtB+I lines. 
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Supplemental Figure 2. Chromatographic profiles of carotenoids, chlorophylls and a-tocopherol of AC and CrtB+I tomatoes. 

Metabolites were extracted from fruits and leaves as described in Methods and separated by HPLC. Metabolites were identified by 

their retention times and absorption spectra and quantified by integration of peak areas. 1. lutein; 2. b-carotene; 3. lycopene; 4. 

phytofluene; 5. a-tocopherol; 6. phytoene; 7. violaxanthin; 8. chlorophyll b; 9. chlorophyll a. Grey numbers indicate peaks, which 

were not quantified at the wavelength stated. AC is a wild type control line (Ailsa Craig) and the CrtB+I genotype contains phytoene 

synthase (CrtB) and phytoene desaturase (CrtI) in a homozygous state in the Ailsa Craig background.  
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Supplemental Figure 3. Separation of chromoplast types on a sucrose gradient. 

(A) Photograph of the sucrose gradient. The numbers 1, 2 and 3 represent the bands of 

separated chromoplasts. 

(B) Carotenoid profile of AC and CrtB+I bands 1, 2 and 3. 

         Carotenoids contents are given as mg/volume of each band (mL). Methods used for 

determinations are described in Methods. Eight representative fruits from a combination of 

four plants were used. Three determinations were made per fruit, making eight biological 

and three technical replicates. The bars represent the mean ± SD. The CrtB+I homozygous 

line was used.   
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Supplemental Data. Nogueira et al. (2013). Plant Cell 10.1105/tpc.113.116210 

4



Supplemental Figure 4.  Schematic representation of the systems (1 and 2) used to fractionate 

chromoplasts and isolate their respective sub-membrane compartments.  

The scheme shows the different chromoplasts fractionation systems used. System 1 isolates intact 

chromoplasts, which are subsequently lysed and their sub-membrane compartments separated over the 

sucrose density gradient described. System 2 isolates intact chromoplasts initially, and subsequently, the 

chromoplast membranes (pellet) and the majority of the chromoplasts plastoglobules and crystals 

(supernatant). The sub-membrane compartments of the chromoplast membranes are then separated over 

the sucrose density gradient described. Grey rectangles correspond to the steps, which are unique to system 

2. Details of the respective methods are provided in the Methods section.  
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Supplemental Figure 5. Principal components analysis of all metabolites detected in AC and CrtB+I 

tomato lines. 

(A) in fruit; (B) in leaves. A minimum of three biological and three technical replicates were analyzed 

for each independent experiment. Metabolite levels from the different analytical platforms were 

combined. Lipid values correspond to the sum of the total fatty acid values obtained by GC-MS. The 

CrtB+I homozygous line was used.    
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Supplemental Figure 6.  Evidence and importance of the carotenoid crystals embedded in the chromoplast 

membranes.  

 A. Fractionation of AC and CrtB+I chromoplasts using two different systems. The sub-compartments of chromoplasts 

are separated on a discontinuous sucrose gradient in system 1 (tube 1). In system 2 (tube 2), before separation on the 

same sucrose gradient, the chromoplast sub-compartments are sedimented by centrifugation in a 0.6 M sucrose solution. 

A red sector (supernatant containing plastoglobules and crystals) was created at the top of the gradient while the 

chromoplast membranes pelleted. Only the membranes were separated on the second gradient. The fractionation systems 

are described in Methods and in Supplemental Figure 4. For both experiments, 150 g of breaker + 3 to 5 day tomatoes 

were used. B. Light microscopy photographs of the red sector obtained during the first step of the chromoplast 

fractionation system 2. Magnification 600X. x, membrane-free red crystal (possibly lycopene crystal); *, membrane-free 

orange crystal (possibly b-carotene crystal). C. Importance of crystals on carotenoid content. Phytoene, lycopene and b-

carotene contents have been quantified and compared in different sectors of the gradient from both systems. The analysis 

was performed on pooled samples from multiple fractionations. The technical error was within 10%. The ratio of 

plastoglobules to membranes with embedded crystals is determined for each carotenoid studied in system 1. The ratio of 

plastoglobules plus crystals to crystal-free membranes is then calculated for system 2. The CrtB+I homozygous line was 

used.   

Plastoglobules: membranes with 

embedded crystals 

Plastoglobules + crystals: crystal-free 

membranes 
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Supplemental Table 1. Carotenoid content in the pericarp, jelly and columella tissues of ripe fruit derived from the genetic crosses containing 

different gene combinations. 

 

Carotenoid contents are presented as g/g DW. Methods used for these determinations are described in Methods. Determinations were made 

from three independent pools of three fruits, each pool with three technical replicates. The mean data are presented with ± SD; Dunnett’s test 

was used to determine significant differences between the wild type background (AC) and the transgenic varieties for each compound. Values in 

bold indicate significant differences. P<0.05, P<0.01 and P<0.001 are designated by *, **, and ***, respectively. CAR., carotenoid. The CrtB+I 

homozygous line was used.   

  Pericarp   Jelly   Columella  

Line AC CrtB CrtI CrtB+I AC CrtB CrtI CrtB+I AC CrtB CrtI CrtB+I 

Lutein 155 ± 5 133 ± 1* 151 ± 2 158 ± 3 151 ± 1 146 ± 2 143 ± 6 144 ± 6 128 ± 1 123 ± 1* 135 ± 4 133 ± 4 

Lycopene 1155 ± 120 2021 ± 67* 1358 ± 58* 1201 ± 14 226 ± 31 249 ± 28 184 ± 11 192 ± 47 527 ± 26 1191 ± 22*** 491 ± 48 417 ± 60 

-Carotene 99 ± 4 85 ± 10 89 ± 10 88 ± 4 71 ± 6 61 ± 2 72 ± 5 70 ± 6 90 ± 2 68 ± 2** 80 ± 2* 77 ± 6 

-Carotene 344 ± 21 246 ± 8* 685 ± 38* 826 ± 69* 342 ± 28 302 ± 17 505 ± 45* 541 ± 44* 304 ± 20 230 ± 12 658 ± 18*** 775 ± 70*** 

Phytofluene 188 ± 6 199 ± 16 67 ± 3*** 67 ± 1** 0 ± 0 0 ± 0 0 ± 0 0 ± 0 113 ± 2 142 ± 6* 66 ± 3*** 67 ± 11* 

Phytoene 177 ± 5 145 ± 8 54 ± 5*** 60 ± 5*** 22 ± 2 21 ± 2 18 ± 1 19 ± 2 99 ± 2 89 ± 11 40 ±7* 40 ± 15* 

Total CAR 2118 ± 138 2828 ± 99* 2403 ± 235 2400 ± 81 811 ± 103 774 ± 16 922 ± 57 965 ± 62 1259 ± 34 1845 ± 39* 1472 ± 35* 1509 ± 62 

-Tocopherol 309 ± 16 309 ± 5 378 ± 61 421 ± 6* 209 ± 17 250 ± 8 274 ± 34 239 ± 20 291 ± 9 248 ± 15 313 ± 59 282 ± 25 
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Fatty acid PS/PC PE DGDG MGDG Triglycerides

12:0 - - - 0.48 ± 0.08 1.42 ± 0.61

14:0 0.45 ± 0.07 0.77 ± 0.10 0.68 ± 0.10 0.46 ± 0.08 1.70 ± 1.37

16:0 1.08 ± 0.03 1.02 ± 0.05 1.07 ± 0.07 10* 0.72 ± 0.24

16:1 cis-9 0.01# 0.01# - 10* 7.69 ± 0.48

18:0 1.00 ± 0.20 1.20 ± 0.45 0.83 ± 0.04 0.54 ± 0.18 1.42 ± 0.45

18:1 cis-9 0.64 ± 0.55 10* - 3.96 ± 1.92 0.99 ± 0.38

18:1 trans-9 10* 10* - - -

18:2 trans-9,12 1.06 ± 0.06 0.94 ± 0.06 1.17 ± 0.22 0.24 ± 0.14 0.95 ± 0.11

20:0 0.86 ± 0.09 0.67 ± 0.09 0.89 ± 0.79 1.23 ± 0.98 1.51 ± 0.39

22:0 - - - - 2.10 ± 0.37

22:2 cis-13,16  - - - - 1.45 ± 0.05

24:0 0.31 ± 0.03 0.52 ± 0.10 - 0.01# 1.51 ± 0.46

Ratio % in Crt B+I to % in AC

 
 

 

Supplemental Table 2. Changes in the composition (in percentage) of fatty acids 

present in the lipids species found in CrtB+I and control AC.  

 

Values represent the percentage ratio of each fatty acid in CrtB+I compared to the AC 

background. The ratio data are presented as ± SD. Student’s t-test was carried out. 

The significant changes are shown in bold (p-value < 0.05). Lipids were extracted 

from a mix of 3 ripe tomato fruits. Lipids were then separated on a TLC plate. Three 

technical replicates were used. 10*, theoretical value when a fatty acid is unique to 

CrtB+I; 0.01#, theoretical value when a fatty acid is unique to AC, - indicates fatty 

acids not detected in both CrtB+I and AC at the sample concentration used; PS/PC, 

phosphatidylserine/phosphatidylcholine; PE, phosphatidylethanolamine; DGDG; 

digalactosyldiacylglycerol; MGDG, monogalactosyldiacylglycerol. CrtB+I 

homozygous line was used.   
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Band number

1
 Acc.No

2
 Protein Name Score

3
 Location

4
 

1 PG1_PEA 
Plastoglobulin-1, 

chloroplastic 
73 

Chloroplast › 

plastoglobules periphery 

2 LIPC_SOLTU 
Light-induced protein, 

chloroplastic 
750 

Chloroplast thylakoid 

membrane 

97% similarity with 
Q0ZPA3_SOLL

C 

Plastid lipid associated 

protein CHRC 
 Chloroplast 

3 ATPB_SOLLC ATP synthase subunit  750 

Chloroplast thylakoid 

membrane; Peripheral 

membrane protein 

4 PSAD_SOLLC 
Photosystem I reaction 

center subunit II 
187 

Chloroplast thylakoid 

membrane 

5 PSBS_SOLLC 
Photosystem II 22 kDa 

protein 
331 

Chloroplast thylakoid 

membrane 

6 PSBO_SOLLC 
Oxygen-evolving 

enhancer protein 1 
170 

Chloroplast thylakoid 

membrane 

7 PSBP_SOLLC 
Oxygen-evolving 

enhancer protein 2 
853 

Chloroplast thylakoid 

membrane 

8 HSP72_SOLLC 
Heat shock cognate 70 

kDa protein 2 
1003  N/A 

94% similarity with HSP7E_SPIOL 
70 kDa heat shock-

related protein 
 Chloroplast envelope 

9 RUBB_BRANA 
RuBisCO large subunit-

binding protein subunit  
501 Chloroplast 

 

 

Supplemental Table 3. Identification of proteins from the isolated fractions by 

nESI-LC-MS/MS. 

 

The protein band number refers to the number showed in Figure 6, B (i).
 1

 The 

homology of bands 2 and 8 with Solanum lycopersicum species was studied and the 

percentage of similarity and accession number of the closest protein are shown.
  2

 

Accession number according to SwissProt protein database.
  3

 Score obtained in 

Mascot search. Scores higher than 51 indicate identity or extensive homology 

(p<0.001).
4
 According to UniProt (http://www.uniprot.org/). 
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Gene ID 
Accession 

number 

Primers sequences 

Forward Reverse 

GGPPS-1 DQ267902 GACAGCATCTGAGTCCGTCA CTTGGCCAGGACAGAGTAGC 

GGPPS-2 SGNU223568 GGGATTGGAAAAGGCTAAGG AGCAATCAATGGAGCAGCTT 

PSY-1 Y00521 TGGCCCAAACGCATCATATA CACCATCGAGCATGTCAAATG 

PSY-2 L23424 GTTGATGGCCCTAATGCATCA TCAAGCATATCAAATGGCCG 

PDS X59948 GTGCATTTTGATCATCGCATTGA GCAAAGTCTCTCAGGATTACC 

ZDS AF195507 TTGGAGCGTTCGAGGCAAT AGAAATCTGCATCTGGCGTATAGA 

CRTISO AF416727 TTTTGGCGGAATCAACTACC GAAAGCTTCACTCCCACAGC 

LCY-E Y14387 AACACTTGCATTTGGTGCTG AGTACAGAGGCGCATTTTGG 

LCY-B AF254793 TCGTTGGAATCGGTGGTACAG AGCTAGTGT CCTTGCCACCAT 

CYC-B Y18297 GTTATTGAGGAAGAGAAATGTGTGAT TCCCACCAATAGCCATAACATTTT 

CRTR-B1 Y14809 CTCGAGGATGAGAAGCTGAAACCTC GCCAAGCGAGTAGCTAAGATCTGTT 

CRTR-B2 DQ864755 TTTCTCAGTCCAAAATCCGCCTCAA TCATTCTCCAGCACAAAACAAACCG 

ZEP-1 Z83835.1 TTGGGTTTTAGGAGGCAATG CCCGCAGGTAAAAGTAACCA 

CRTE D90087.2 AACTGCTGGACGATTTGACC TCACTGGCAAGCTGAAGA 

CRTB D90087.2 CGCCTGTGACCTTGGGCTGG GGCTCAGCGCCTGACGGTTT 

CRTI D90087.2 AGCCATATGGAAACGACAGG TCTGCAGTTTGTTGGACTGC 

 

Supplemental Table 4. Sequences of primers used in real-time PCR and PCR. 

GGPPS-1, 1-geranylgeranyl pyrophosphate synthase-1;  GGPPS-2, 1-geranylgeranyl pyrophosphate 

synthase-2;  PSY-1, phytoene synthase-1; PSY-2, phytoene synthase 2; PDS, phytoene desaturase; 

ZDS. -carotene desaturase; CRTISO, carotene isomerase; LCY-E, -lycopene cyclase; LCY-B, -

lycopene cyclase; CYC-B, -lycopene cyclase; CRTR-B1, carotene - hydroxylase 1; CRTR-B2, 

carotene -hydroxylase 2;  ZEP-1, zeaxanthin epoxidase-1; CRTE, geranylgeranyl pyrophosphate 

synthase; CRTB, phytoene synthase; CRTI, phytoene desaturase. 
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