
Comorphisms of Structured Institutions

Ionuţ Ţuţua,b

aDepartment of Computer Science, Royal Holloway University of London
bInstitute of Mathematics of the Romanian Academy, Research group of the project ID-3-0439

Abstract

In this paper we formalise the intuition of encoding an institution of structured specifications into another one by ex-
tending the concept of institution comorphism to the abstract framework of structured institutions. This allows us to
define a category of comorphisms of structured institutions, and supports in this way the development of heterogeneous
specification languages in which the actual structuring mechanisms may vary, in addition to the base logical systems.
We consider a number of properties with practical relevance for the comorphisms between base institutions and discuss
their implications in the structured setting.

Keywords: Formal methods, Specification languages, Structured specifications, Institution theory

1. Introduction

Over the last few decades areas of theoretical com-
puting science such as formal specification have led to a
rising number of logics that provide the underlying foun-
dations of various specification languages. The fact that
different aspects of the specified systems are most accu-
rately captured through a combination of different logics
has encouraged the development of heterogeneous specifi-
cation languages built on top of fixed graphs of logics and
translations between logics. Two of the most prominent
specification languages of this type are CafeOBJ [9] and
HetCasl [20]. Each of them considers a particular struc-
turing mechanism that is defined over an arbitrary logic
formalised as an institution [12]. While the underlying
logics of specifications can change through logic transla-
tions (formalised as maps between institutions: institution
morphisms in the case of CafeOBJ,1 and institution co-
morphisms in the case of HetCasl), the structuring mech-
anism is fixed. For this reason, both CafeOBJ and Het-
Casl can be regarded as specification languages that rely
on a lower-level institution-independent theory of struc-
turing specifications.

Following recent developments on the axiomatisation
of structured specifications [7], we advance in this paper a

Email address: ittutu@gmail.com (Ionuţ Ţuţu)
1Based on ideas from [19, 5], in more recent papers such as [6]

the institution-theoretic semantics of CafeOBJ has been equivalently
described in terms of institution comorphisms.

concept of translation between logics of structured specifi-
cations presented formally as a comorphism of structured
institutions. This could set the foundations for hetero-
geneous specification languages with an additional upper
level of institution independence in which one can change
not only the underlying logic of specifications, but also
the considered structuring mechanism.

The paper is organised as follows. In the first sections
we recall the notions of institution and structured institu-
tion together with a couple of examples. Section 4 intro-
duces the main concept that supports the additional level
of institution independence for heterogeneous structured
specifications, and details the connection between the co-
morphisms of base institutions (which are given as com-
ponents of comorphisms of structured institutions) and the
induced comorphisms of institutions of structured specifi-
cations. Lastly, we investigate a series of properties of
institution comorphisms that can be lifted from the lower
level of the underlying logics to the upper level of struc-
tured specifications.

2. Preliminaries

The theory of institutions, introduced by Goguen and
Burstall [12], promotes a universal model-theoretic ap-
proach to the study of logics by abstracting the notion of
truth, which is supposed to be invariant with respect to the
change of notation. Since institutions are formalised using
category theory, we assume that the reader is familiar with
basic notions of category theory [16], as adopted in recent

Preprint submitted to Information Processing Letters September 22, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28904755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

works on institutions [5] and algebraic specifications [24].
In what follows we recall the concept of institution, which
formalises the intuitive notion of logical system, including
syntax, semantics and the satisfaction between them.

Definition 2.1. An institution I consists of

– a category SigI whose objects are called signatures,

– a sentence functor SenI : SigI → Set defining for
every signature Σ the set SenI(Σ) of Σ-sentences
and for every signature morphism ϕ the sentence
translation map SenI(ϕ),

– a model functor ModI :
(
SigI

)op
→ Cat defining

for each signature Σ the category ModI(Σ) of Σ-
models and Σ-model homomorphisms, and for each
signature morphism ϕ the reduct functor ModI(ϕ),

– for every signature Σ, a binary Σ-satisfaction rela-
tion |=I

Σ
⊆ |ModI(Σ)| × SenI(Σ),

such that the satisfaction condition

M′ |=IΣ′ SenI(ϕ)(ρ) iff ModI(ϕ)(M′) |=IΣ ρ

holds for any signature morphism ϕ : Σ → Σ′, any Σ′-
model M′ and any Σ-sentence ρ.

We may omit the superscripts or subscripts from the
notations of the components of institutions when there is
no risk of ambiguity. For example, if the considered in-
stitution and signature are clear, we may denote |=I

Σ
by

|=. We may also denote the sentence translation SenI(ϕ)
by ϕ() and the reduct functor ModI(ϕ) by �ϕ. For M =

M′�ϕ, we say that M is the ϕ-reduct of M′ and that M′ is
a ϕ-expansion of M.

There are numerous examples of logics formalised as
institutions, used as foundation for both specification and
programming languages. One of the most widely used is
(many-sorted) first-order logic, which was first presented
as an institution in [12]. We recall here from [5] the equa-
tional fragment of first-order logic obtained by discarding
the relation symbols.

Example 2.2 (First-Order Equational Logic – FOEQL).
A first-order equational signature (S , F) consists of a set
S of sorts and a family F = {Fw→s | w ∈ S ∗, s ∈ S } of sets
of operation symbols indexed by arities and sorts.

Signature morphisms ϕ : (S , F) → (S ′, F′) reflect the
structure of signatures. They are defined by functions
ϕst : S → S ′ between the sets of sorts, and families of
functions

{
ϕ

op
w→s : Fw→s → F′

ϕst(w)→ϕst(s) | w ∈ S ∗, s ∈ S
}

between the sets of operation symbols.

For every signature (S , F), a model M interprets each
sort s ∈ S as a set Ms, and each operation symbol σ ∈
Fw→s as a function Mσ : Mw → Ms, where Mw = Ms1 ×

· · · × Msn for w = s1 · · · sn. Homomorphisms h : M → N
are families of functions {hs : Ms → Ns | s ∈ S } such that
hs

(
Mσ(m)

)
= Nσ

(
hw(m)

)
for all σ ∈ Fw→s and m ∈ Mw,

where hw : Mw → Nw denotes the canonical extension of
h to w-tuples.

With respect to model reducts, for a morphism of sig-
natures ϕ : (S , F) → (S ′, F′) and an (S ′, F′)-model M′,
M′�ϕ is defined as the (S , F)-model M given by Mx =

M′ϕ(x) for every sort or operation symbol x of (S , F).
The sentences are usual first-order sentences built over

equational atoms as follows. For every signature (S , F)
and sort s ∈ S , the set TF,s of F-terms of sort s is the
least set such that σ(t) ∈ TF,s for all σ ∈ Fw→s and all
tuples t ∈ TF,w, where TF,w = TF,s1 × · · · × TF,sn for
w = s1 · · · sn. Then the set of (S , F)-sentences is the small-
est set containing the equational atoms t =s t′ (for s ∈ S
and t, t′ ∈ TF,s) that is closed under Boolean connectives
and quantification over sets of first-order variables, which
are triples

(
x, s, Fε→s

)
,2 often denoted x : s, where x is

the name of the variable (distinct from the names of other
variables) and s ∈ S is its sort.

The translation of sentences along a signature mor-
phism ϕ : (S , F) → (S ′, F′) is defined inductively on the
structure of (S , F)-sentences and naturally renames the
sorts and operation symbols of (S , F) according to ϕ. Note
that on variables ϕmaps (x, s, Fε→s) to

(
x, ϕst(s), F′

ε→ϕst(s)

)
.

The satisfaction between models and sentences is the
usual Tarskian satisfaction defined inductively on the struc-
ture of sentences and based on the valuation of terms in
models. For instance, given an (S , F)-model M and a
universally quantified (S , F)-sentence (∀X) ρ, it holds that
M |=(S ,F) (∀X) ρ if and only if M′ |=(S ,F∪X) ρ for all ex-
pansions M′ of M along the inclusion (S , F) ⊆ (S , F ∪X),
where (S , F ∪ X) denotes the extension of (S , F) with the
elements of X as new symbols of constants.

Building on the work of Russell on mathematical logic
and type theory [22], higher-order logic with Henkin se-
mantics has been developed in [2, 14], and later integrated
into the framework of algebraic specifications in [18]. As
in [18] and in more recent institution-theoretic works such
as [24, 3] we consider here a simplified version of higher-
order logic that only takes into account λ-free terms; this
does not limit the expressive power since for any term
λ(x : s). t we can consider a new constant σ and a uni-

2ε denotes the empty sequence.

2

versal sentence of the form (∀x : s)σ x = t.3

Example 2.3 (Higher-Order Logic with Henkin Seman-
tics – HNK). A higher-order signature (S , F) consists of a

set S of basic types or sorts and a family F = {Fs | s ∈
−→
S }

of sets of constant (operation) symbols, indexed by S -
types s ∈

−→
S , where

−→
S is the least set such that S ⊆

−→
S

and s1→ s2 ∈
−→
S whenever s1, s2 ∈

−→
S .

A signature morphism ϕ : (S , F)→ (S ′, F′) comprises
functions ϕst : S →

−→
S ′ and

{
ϕ

op
s : Fs → F′

ϕtype(s) | s ∈
−→
S
}
,

where ϕtype :
−→
S →

−→
S ′ is the canonical extension of ϕst

given by ϕtype(s1→ s2) = ϕtype(s1)→ϕtype(s2).
The models M of a higher-order signature (S , F) in-

terpret the types s ∈
−→
S as sets Ms, the constant symbols

σ ∈ Fs as elements Mσ ∈ Ms, and define injective maps
~ �M

s1→ s2
: Ms1→ s2 → [Ms1 → Ms2], where [Ms1 → Ms2]

denotes the set of functions from Ms1 to Ms2 , for types
s1, s2 ∈

−→
S . Model homomorphisms h : M → N are fam-

ilies of functions {hs : Ms → Ns | s ∈
−→
S } such that

hs(Mσ) = Nσ for any s ∈
−→
S and σ ∈ Fs, and the following

diagram commutes, for all s1, s2 ∈
−→
S and f ∈ Ms1→ s2 .

Ms1

~ f �M
s1→ s2

//

hs1
��

Ms2

hs2
��

Ns1
~hs1→ s2 (f)�N

s1→ s2

// Ns2

The model reducts are defined likewise to FOEQL.
For any signature morphism ϕ : (S , F)→ (S ′, F′) and any
(S ′, F′)-model M′, the reduct M′�ϕ is the (S , F)-model M
given by Mx = M′ϕ(x) for any type or constant operation
symbol x of (S , F), and ~ �M

s1→ s2
= ~ �M′

ϕtype(s1)→ϕtype(s2) for
any types s1 and s2 of (S , F).

Given a signature (S , F), the family
{
TF,s | s ∈

−→
S
}

of
F-terms is the least family of sets such that Fs ⊆ TF,s for
all s ∈

−→
S , and (t t1) ∈ TF,s2 for all terms t ∈ TF,s1→ s2

and t1 ∈ TF,s1 . The sentences over (S , F) are built from
equational atoms t =s t′ (where s ∈

−→
S and t, t′ ∈ TF,s), by

repeated applications of Boolean connectives and quan-
tification over sets of higher-order variables. Their trans-
lation along signature morphisms is also defined in an in-
ductive manner by replacing every type and every constant
symbol by their images under the considered morphism.

3Note that the presence of λ-terms imposes the existence of certain
functions in Henkin models, which can generally be expressed in the
λ-free setting only through infinitely many universal sentences of the
form (∀x : s)σ x = t.

Similarly to FOEQL, the definition of the satisfaction
relation relies on the interpretation of terms in models,
which extends the interpretation of constant symbols as
follows: M(t t1) = ~Mt�

M
s1→ s2

(Mt1), for any (S , F)-model
M and any two terms t ∈ TF,s1→ s2 and t1 ∈ TF,s1 .

3. Structured institutions

The concept of structured institution was introduced
in [7] in the context of a uniform theory of structured spec-
ifications that is independent of any particular choice of
structuring operators, one that unifies the main institution-
independent approaches to structuring specifications: the
property-oriented approach of Goguen and Burstall [12,
10], and the model-oriented approach of Sannella and Tar-
lecki [23, 24]. This novel axiomatic framework of struc-
tured specifications considers an additional level of insti-
tution independence that corresponds to the model theory
of structured specifications and is related to the under-
lying logic through a particular type of institution mor-
phism [12].

Definition 3.1 (Structured institution). We say that an in-
stitution I′ = (Sig′,Sen′,Mod′, |=′) is structured over a
base institution I = (Sig,Sen,Mod, |=) through a struc-
turing functor Φ : Sig′ → Sig if

– Sen′(Σ′) = Sen
(
Φ(Σ′)

)
, for every I′-signature Σ′,

and Sen′(ϕ′) = Sen
(
Φ(ϕ′)

)
, for every I′-signature

morphism ϕ′,

– Mod′(Σ′) ⊆ Mod
(
Φ(Σ′)

)
is a full subcategory in-

clusion, for every I′-signature Σ′, and the diagram
bellow commutes, for every I′-signature morphism
ϕ′ : Σ′1 → Σ′2, and

Mod′(Σ′2)

�ϕ′

��

⊆
// Mod

(
Φ(Σ′2)

)
�Φ(ϕ′)

��

Mod′(Σ′1)
⊆
// Mod(Φ(Σ′1))

– for every I′-signature Σ′, every Σ′-model M′ and
every Σ′-sentence ρ′,

M′ |=′Σ′ ρ
′ iff M′ |=Φ(Σ′) ρ

′.

We usually denote structured institutionsI′ overI through
Φ as triples (I′,I,Φ). When the base institution I and
the structuring functor Φ can be easily inferred we may
choose to denote the structured institution simply by I′.

3

Closure under isomorphisms. We assume that all struc-
tured institutions I′ over I through Φ are closed under
isomorphisms, i.e. for any I′-signature Σ′ and any two
isomorphic Φ(Σ′)-models M and N, M is a Σ′-model if
and only if N is a Σ′-model.

Example 3.2 (Presentations). The presentations [12] of
an institution I = (Sig,Sen,Mod, |=) are pairs (Σ, E) con-
sisting of signatures Σ and sets of Σ-sentences E. They
form a category Pres whose arrows ϕ : (Σ, E) → (Σ′, E′)
are signature morphisms ϕ : Σ→ Σ′ such that E′ |= ϕ(E).

The institution Ipres = (Pres,Senpres,Modpres, |=pres)
of presentations over I is obtained by extending the sen-
tence functor, the model functor and the satisfaction rela-
tion from base signatures to presentations. Ipres is struc-
tured over I through the functor Sig : Pres → Sig that
maps every presentation (Σ, E) to Σ.

Example 3.3 (Structured specifications). Given an insti-
tution I = (Sig,Sen,Mod, |=) and a class of signature
morphisms T , the T -structured specifications [1] of I
are obtained through the specification building operators
listed below. The semantics of every structured specifica-
tion SP is described by its signature Sig[SP] and its class
of models Mod[SP].

PRES. Any finite presentation (Σ, E) is a structured spec-
ification such that

Sig[(Σ, E)] = Σ,

Mod[(Σ, E)] = {M ∈ |Mod(Σ)| | M |= E}.

UNION. For any two specifications SP1 and SP2 with the
same signature Σ, their union SP1∪SP2 is also a struc-
tured specification, with

Sig[SP1 ∪ SP2] = Σ,

Mod[SP1 ∪ SP2] = Mod[SP1] ∩Mod[SP2].

TRANS. For any specification SP and any signature mor-
phism ϕ : Sig[SP]→ Σ in T , the ϕ-translation of SP,
denoted SP ? ϕ, is a structured specification having

Sig[SP ? ϕ] = Σ,

Mod[SP ? ϕ] =
{
M ∈ |Mod(Σ)| | M�ϕ ∈ Mod[SP]

}
.

The T -structured specifications over I form a category
Spec [8, 24] whose arrows ϕ : SP → SP′ are signature
morphisms ϕ : Sig[SP] → Sig[SP′] such that for every
model M′ ∈ Mod[SP′] it holds that M′�ϕ ∈ Mod[SP].

Similarly to the case of presentations, the sentence
functor, the model functor and the satisfaction relation can

be naturally extended from signatures to structured spec-
ifications. We obtain in this way the institution Ispec =

(Spec,Senspec,Modspec, |=spec) of T -structured specifica-
tions over I, which is structured over I through the func-
tor Sig : Spec→ Sig that maps every structured specifica-
tion SP to Sig[SP].

4. Moving between structured institutions

Institution comorphisms capture the intuitive notion
of embedding simpler logical systems into more complex
ones. They were originally discussed in [17] under the
name of plain maps, and in [25] under the name of insti-
tution representations.

Definition 4.1 (Comorphism of institutions). Given two
institutions Ii = (Sigi,Seni,Modi, |=i), with i ∈ {1, 2}, an
institution comorphism (Ψ, α, β) : I1 → I2 consists of

– a signature functor Ψ : Sig1 → Sig2,

– a natural transformation α : Sen1 ⇒ Ψ ; Sen2, and

– a natural transformation β : Ψop ; Mod2 ⇒ Mod1

such that the following satisfaction condition holds for
any I1-signature Σ, Ψ(Σ)-model M and Σ-sentence ρ.

M (|=2)Ψ(Σ) αΣ(ρ) iff βΣ(M) (|=1)Σ ρ

It is often the case that the codomain of an institution
comorphism is the institution of presentations of a logical
system that is simpler than the one given by the domain
of the comorphism. Such encodings I → I′pres are called
simple theoroidal comorphisms in [13].

The following encoding of higher-order logic into first-
order logic has been first outlined in [18]. More detailed
presentations can be found in [5, 3].

Example 4.2. There exists a comorphism of institutions
(Ψ, α, β) : HNK→ FOEQLpres that maps

– every HNK-signature (S , F) to the FOEQL-presen-

tation Ψ(S , F) =
(
(
−→
S ,
−→
F), E(S ,F)

)
, where

−→
S is the

(infinite) set of S -types,
−→
F is the family of sets of

operation symbols given by

−→
F w→s =


Fs if w is empty,{
applyw

}
if w = (s1 → s)s1

for some s1 ∈
−→
S ,

∅ otherwise,

4

and E(S ,F) is the set of (
−→
S ,
−→
F)-sentences of the form

(∀ f , g : s1→ s2)(
(∀x : s1) apply(f , x) = apply(g, x)

)
→ f = g,

– every
(
(
−→
S ,
−→
F), E(S ,F)

)
-model

−→
M to the (S , F)-model

β(S ,F)(
−→
M) = M defined by Mx =

−→
Mx for every type

or constant symbol x of (S , F), and

~ f �M
s1→ s2

(m) =
−→
Mapply(f ,m)

for every s1, s2 ∈
−→
S , f ∈ Ms1→ s2 and m ∈ Ms1 ,

– every sentence ρ of (S , F) to the sentence α(S ,F)(ρ)
of (
−→
S ,
−→
F) through the canonical extension of the

translations of terms
{
αtm

s : TF,s → T−→
F ,s
| s ∈

−→
S
}

given by αtm
s (σ) = σ for s ∈

−→
S and σ ∈ Fs, and

αtm
s2

(t t1) = apply
(
αtm

s1→ s2
(t), αtm

s1
(t1)

)
for s1, s2 ∈

−→
S ,

t ∈ TF,s1→ s2 and t1 ∈ TF,s1 .

Definition 4.3 (Comorphism of structured institutions).
Let I′i =

(
Sig′i ,Sen′i ,Mod′i , |=

′
i
)

be a structured institution
over Ii = (Sigi,Seni,Modi, |=i) through Φi, for i ∈ {1, 2}.
A comorphism of structured institutions, or structured co-
morphism,

(
I′1,I1,Φ1

)
→

(
I′2,I2,Φ2

)
consists of

– a functor Ψ′ : Sig′1 → Sig′2, and

– a comorphism (Ψ, α, β) : I1 → I2 between the base
institutions I1 and I2

such that the diagram below is commutative,

Sig′1
Ψ′
//

Φ1

��

Sig′2
Φ2

��

Sig1 Ψ
// Sig2

and the following condition holds for every I′1-signature
Σ′ and every Φ2

(
Ψ′(Σ′)

)
-model M.

M ∈ |Mod′2(Ψ′(Σ′))| iff βΦ1(Σ′)(M) ∈ |Mod′1(Σ′)|

Example 4.4 (Representing structured specifications over
HNK as presentations over FOEQLpres). Let HNKspec be
the institution of T -structured specifications over HNK
(as described in Example 3.3), and FOEQL2-pres the insti-
tution of presentations over FOEQLpres (as described in
Example 3.2). The comorphism (Ψ, α, β) considered in

Example 4.2 can be extended to a comorphism of struc-
tured institutions (Ψ′,Ψ, α, β) : HNKspec → FOEQL2-pres

by defining, for every HNK-specification SP,

Ψ′(SP) =
(
Ψ(Sig[SP]), αSig[SP](Ax[SP])

)
where the set Ax[SP] of axioms of SP is given by

– Ax[(Σ, E)] = E for every HNK-presentation (Σ, E),

– Ax[SP1 ∪ SP2] = Ax[SP1]∪Ax[SP2] for every pair
of HNK-specifications SP1, SP2 with the same sig-
nature, and

– Ax[SP ? ϕ] = ϕ(Ax[SP]) for every HNK-specifica-
tion SP and every morphism ϕ : Sig[SP]→ Σ.

This extension relies on the essential property that every
specification SP over a given institution I is semantically
equivalent with the I-presentation (Sig[SP],Ax[SP]) [8].
In fact, the above comorphism of structured institutions
can be factored as the composition of two fundamentally
institution-independent constructions:

1. the flattening structured comorphism that maps ev-
ery structured specification over HNK to a semanti-
cally equivalent presentation, and

2. the canonical extension of (Ψ, α, β) to a structured
comorphism between the institutions of presenta-
tions built over HNK and FOEQLpres.

Proposition 4.5. The comorphisms of structured institu-
tions can be composed in a natural way in terms of their
components. The composition is associative and has left
and right identities given by identity comorphisms for the
base institutions and identity functors for the categories
of structured specifications. Therefore, the comorphisms
of structured institutions form a category coStrucIns.

Proposition 4.6. Under the notations and hypotheses of
Definition 4.3, any comorphism of structured institutions
(Ψ′,Ψ, α, β) :

(
I′1,I1,Φ1

)
→

(
I′2,I2,Φ2

)
determines a

comorphism of institutions (Ψ′, α′, β′) : I′1 → I
′
2 with

– α′ = Φ1α, and

– β′
Σ′

(X′) = βΦ1(Σ′)(X′), for every I′1-signature Σ′ and
every Σ′-model (or model homomorphism) X′.

Proof. We first show that α′ and β′ are natural transfor-
mations from Sen′1 to Ψ′ ; Sen′2 and from Ψ′op ; Mod′2 to
Mod′1, respectively. Since the naturality of α′ follows im-
mediately from its definition, we focus on β′.

5

Let us notice that by the definition of comorphisms
of structured institutions, for every I′1-signature Σ′ and
every Ψ′(Σ′)-model M′, β′

Σ′
(M′) = βΦ1(Σ′)(M′) is a Σ′-

model. Moreover, for any Ψ′(Σ′)-model homomorphism
h′ : M′ → N′, β′

Σ′
(h′) = βΦ1(Σ′)(h′) is a Φ1(Σ′)-model

homomorphism β′
Σ′

(M′) → β′
Σ′

(N′). Because Mod′1(Σ′)
is a full subcategory of Mod1

(
Φ1(Σ′)

)
(by the definition

of structured institutions), it follows that β′
Σ′

(h′) is a Σ′-
model homomorphism. Therefore, the map β′

Σ′
is a func-

tor Mod′2
(
Ψ′(Σ′)

)
→ Mod′1(Σ′) such that the following di-

agram is commutative.

Mod′2
(
Ψ′(Σ′)

) β′
Σ′

//

⊆
��

Mod′1(Σ′)

⊆

��

Mod2
(
Φ2(Ψ′(Σ′))

)
=

Mod2
(
Ψ(Φ1(Σ′))

)
βΦ1(Σ′)

// Mod1
(
Φ1(Σ′)

)
This ensures that the top and bottom squares in the cube
diagram depicted below are commutative. In addition, by
the definition of structured institutions, we know that the
left and right squares are also commutative, for every I′1-
signature morphism ϕ′ : Σ′ → Ω′. The naturality of β
(in combination with the fact that the inclusion functor
Mod′1(Σ′) ⊆ Mod1

(
Φ1(Σ′)

)
is mono) completes the com-

mutativity of the entire diagram, and thus also the proof
of the naturality of β′.

Mod′2
(
Ψ′(Ω′)

) β′
Ω′

//

⊆ $$

�Ψ′(ϕ′)

��

Mod′1(Ω′)
⊆

$$

�ϕ′

��

Mod2
(
Ψ(Φ1(Ω′))

) βΦ1(Ω′)
//

�Ψ(Φ1(ϕ′))

��

Mod1
(
Φ1(Ω′)

)
�Φ1(ϕ′)

��

Mod′2
(
Ψ′(Σ′)

) β′
Σ′

//

⊆ $$

Mod′1(Σ′)
⊆

$$

Mod2
(
Ψ(Φ1(Σ′))

)
βΦ1(Σ′)

// Mod1
(
Φ1(Σ′)

)
In order to establish the satisfaction condition for the

comorphism (Ψ′, α′, β′), let Σ′ be an I′1-signature, M′ a
Ψ′(Σ′)-model and ρ′ a Σ′-sentence. We deduce that

M′ (|=′2)Ψ′(Σ′) α
′
Σ′(ρ

′)

iff M′ (|=′2)Ψ′(Σ′) αΦ1(Σ′)(ρ′)

(by the definition of α′)

iff M′ (|=2)Φ2(Ψ′(Σ′)) αΦ1(Σ′)(ρ′)

(by the structuring of I′2)

iff M′ (|=2)Ψ(Φ1(Σ′)) αΦ1(Σ′)(ρ′)

(because Ψ′ ; Φ2 = Φ1 ; Ψ)

iff βΦ1(Σ′)(M′) (|=1)Φ1(Σ′) ρ
′

(by the satisfaction condition of (Ψ, α, β))

iff βΦ1(Σ′)(M′) (|=′1)Σ′ ρ
′

(by the structuring of I′1)

iff β′Σ′(M′) (|=′1)Σ′ ρ
′

(by the definition of β′).

The following properties of comorphisms allow the
transfer of numerous features of institutions; for instance,
conservativeness implies the reflection of semantic conse-
quence, in addition to its preservation, which holds for any
comorphism. They have been studied in a series of works
on structured specifications [1], heterogeneity [4, 19], ex-
pressiveness of logical systems [15], interpolation [3] and
definability [11].

Definition 4.7. A comorphism (Ψ, α, β) between institu-
tions I1 and I2

is conservative or model-expansive if and only if βΣ is sur-
jective on models, for all I1-signatures Σ;

has model amalgamation if and only if for every I1-sig-
nature morphism ϕ : Σ → Ω, every Ω-model N1 and
every Ψ(Σ)-model M2 such that N1�ϕ = βΣ(M2), there
exists a unique Ψ(Ω)-model N2, called the amalga-
mation of N1 and M2, such that βΩ(N2) = N1 and
N2�Ψ(ϕ) = M2; if the amalgamation N2 is no longer re-
quired to be unique then (Ψ, α, β) is said to have weak
model amalgamation;

Mod2
(
Ψ(Ω)

) βΩ
//

�Ψ(ϕ)
��

Mod1(Ω)

�ϕ
��

Mod2
(
Ψ(Σ)

)
βΣ

// Mod1(Σ)

is persistently liberal if and only if for every I1-signature
Σ, the functor βΣ admits a left adjoint such that the unit
of the adjunction consists solely of isomorphisms.

Fact 4.8. Let (Ψ, α, β) : HNK → FOEQLpres be the co-
morphism defined in Example 4.2. For any HNK-signa-
ture (S , F) the model functor β(S ,F) is an isomorphism

ModFOEQLpres(
Ψ(S , F)

)
� ModHNK(S , F).

As a result, the comorphism (Ψ, α, β) enjoys trivially all
three properties considered in Definition 4.7.

6

Corollary 4.9. Under the notations and hypotheses of
Proposition 4.6, if the comorphism (Ψ, α, β) is conserva-
tive / has (weak) model amalgamation / is persistently lib-
eral then (Ψ′, α′, β′) has these properties as well.

Proof. Conservativeness. Let Σ′ be an I′1-signature and
N′ a Σ′-model. Since I′1 is structured over I1 through Φ1
it follows that N′ is also a Φ1(Σ′)-model. By the con-
servativeness of (Ψ, α, β) we deduce that there exists a
Ψ
(
Φ1(Σ′)

)
-model M′ such that βΦ1(Σ′)(M′) = N′, and thus

βΦ1(Σ′)(M′) ∈ |Mod′1(Σ′)|. Hence, by the definition of
comorphisms of structured institutions, M′ is a Ψ′(Σ′)-
model. Moreover, β′

Σ′
(M′) = βΦ1(Σ′)(M′) = N′.

(Weak) Model amalgamation. We analyse the commuta-
tive cube of functors considered in the proof of Proposi-
tion 4.6. Let ϕ′ : Σ′ → Ω′ be a morphism ofI′1-signatures,
N′1 an Ω′-model and M′2 a Ψ′(Σ′)-model such that N′1�ϕ′ =

β′
Σ′

(M′2). Since I′1 and I′2 are structured over I1 and I2,
respectively, we deduce that N′1 is a Φ1(Ω′)-model and M′2
is a Ψ

(
Φ1(Σ′)

)
-model such that

N′1�Φ1(ϕ′) = N′1�ϕ′ = β′Σ′(M′2) = βΦ1(Σ′)(M′2).

It follows that there exists a (unique) Ψ
(
Φ1(Ω′)

)
-model

N2 such that βΦ1(Ω′)(N2) = N′1 and N2�Ψ(Φ1(ϕ′)) = M′2, be-
cause the comorphism (Ψ, α, β) has (weak) model amalga-
mation (by hypothesis). In addition, N2 is a Ψ′(Ω′)-model
because (Ψ, α, β,Ψ′) is a comorphism of structured insti-
tutions and βΦ1(Ω′)(N2) = N′1 ∈ |Mod′1(Ω′)|.

Liberality. For every I′1-signature Σ′ we know by hy-
pothesis that βΦ1(Σ′) admits a left adjoint δΦ1(Σ′) such that
the unit component ηΦ1(Σ′)

M : M → βΦ1(Σ′)
(
δΦ1(Σ′)(M)

)
is an

isomorphism, for every Φ1(Σ′)-model M.

Mod′2
(
Ψ′(Σ′)

) β′
Σ′

//

⊆

��

Mod′1(Σ′)

⊆

��

Mod2
(
Ψ(Φ1(Σ′))

)
βΦ1(Σ′)

00 Mod1
(
Φ1(Σ′)

)δΦ1(Σ′)
pp

Let us prove first that δΦ1(Σ′) can be restricted to a functor
Mod′1(Σ′)→ Mod′2

(
Ψ′(Σ′)

)
, which is equivalent to the fact

that δΦ1(Σ′)
(
Mod′1(Σ′)

)
is a subcategory of Mod′2

(
Ψ′(Σ′)

)
.

On objects, for every Σ′-model M′, it holds that

δΦ1(Σ′)(M′) ∈ |Mod′2(Ψ′(Σ′))| iff

βΦ1(Σ′)
(
δΦ1(Σ′)(M′)

)
∈ |Mod′1(Σ′)|

(by the definition of comorphisms of structured institu-
tions). Since M′ � βΦ1(Σ′)

(
δΦ1(Σ′)(M′)

)
(by hypothesis),

and M′ ∈ |Mod′1(Σ′)|, we deduce by the closure of struc-
tured institutions under isomorphisms that the equivalent
membership statements mentioned above are valid.
On arrows, for every Σ′-homomorphism h′ : M′ → N′ we
have that δΦ1(Σ′)(h′) is a Ψ

(
Φ1(Σ′)

)
-homomorphism be-

tween the Ψ′(Σ′)-models δΦ1(Σ′)(M′) and δΦ1(Σ′)(N′). It
follows that δΦ1(Σ′)(h′) is also a Ψ′(Σ′)-homomorphism
because Mod′2

(
Ψ′(Σ′)

)
⊆ Mod2

(
Ψ(Φ1(Σ′))

)
is full.

One can easily see now that the map δ′
Σ′

given by
δ′

Σ′
(X′) = δΦ1(Σ′)(X′), for every Σ′-model (or homomor-

phism) X′, defines a functor Mod′1(Σ′) → Mod′2
(
Ψ′(Σ′)

)
that is a left adjoint for β′

Σ′
. Furthermore, the components

of the unit and of the counit of this adjunction are inher-
ited from the adjunction

δΦ1(Σ′) : Mod1
(
Φ1(Σ′)

)
� Mod2

(
Ψ(Φ1(Σ′))

)
: βΦ1(Σ′).

Hence, the comorphism (Ψ′, α′, β′) is persistently liberal.

5. Conclusions

We have introduced comorphisms of structured insti-
tutions by extending the well-known concept of comor-
phism of (plain) institutions, and we have formalised in
this manner the embedding of simpler structuring mecha-
nisms into more complex ones.

The proposed framework supports the development of
heterogeneous specification languages with two levels of
institution independence, for the underlying institutions
and also for the structuring constructs. With respect to
this, we have studied properties of comorphisms that are
directly related to heterogeneity such as conservativeness,
model amalgamation and persistent liberality.

One of the issues to be further pursued is the enhance-
ment of the category coStrucIns of comorphisms of struc-
tured institutions with a non-trivial 2-categorical struc-
ture, which could help refine the possible translations be-
tween structured institutions. This can be achieved by up-
grading the concept of institution comorphism modifica-
tion [4, 21] to our structured setting.

Acknowledgements

The author would like to thank José Fiadeiro for care-
fully reading an early version of this work, and Răzvan
Diaconescu for helpful discussions about institution mor-
phisms and comorphisms. This research has been sup-
ported by a grant of the Romanian National Authority
for Scientific Research, CNCS-UEFISCDI, project num-
ber PN-II-ID-PCE-2011-3-0439.

7

References

[1] Tomasz Borzyszkowski. Logical systems for structured specifi-
cations. Theoretical Computer Science, 286(2):197–245, 2002.

[2] Alonzo Church. A formulation of the simple theory of types. The
Journal of Symbolic Logic, 5(2):56–68, 1940.

[3] Razvan Diaconescu. Borrowing interpolation. Journal of Logic
and Computation, 22(3):561–586, 2012.

[4] Răzvan Diaconescu. Grothendieck institutions. Applied Cate-
gorical Structures, 10(4):383–402, 2002.

[5] Răzvan Diaconescu. Institution-independent model theory. Stud-
ies in Universal Logic. Birkhäuser, 2008.

[6] Răzvan Diaconescu. Grothendieck inclusion systems. Applied
Categorical Structures, 19(5):783–802, 2011.

[7] Răzvan Diaconescu. An axiomatic approach to structuring spec-
ifications. Theoretical Computer Science, 433:20–42, 2012.

[8] Răzvan Diaconescu and Ionuţ Ţuţu. On the algebra of structured
specifications. Theoretical Computer Science, 412(28):3145–
3174, 2011.

[9] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ report:
the language, proof techniques, and methodologies for object-
oriented algebraic specification. AMAST series in computing.
World Scientific, 1998.

[10] Răzvan Diaconescu, Joseph A. Goguen, and Petros Stefaneas.
Logical support for modularisation. In Gerard Huet and Gor-
don Plotkin, editors, Logical Environments, pages 83–130. Cam-
bridge University Press, 1993.

[11] Răzvan Diaconescu and Marius Petria. Abstract beth definability
in institutions. The Journal of Symbolic Logic, 71(3):1002–1028,
2006.

[12] Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract
model theory for specification and programming. Journal of the
ACM, 39(1):95–146, 1992.

[13] Joseph A. Goguen and Grigore Roşu. Institution morphisms.
Formal Aspects of Computing, 13(3–5):274–307, 2002.

[14] Leon Henkin. Completeness in the theory of types. The Journal
of Symbolic Logic, 15(2):81–91, 1950.

[15] Hans-Jörg Kreowski and Till Mossakowski. Equivalence and dif-
ference between institutions: Simulating horn clause logic with
based algebras. Mathematical Structures in Computer Science,
5(2):189–215, 1995.

[16] Saunders Mac Lane. Categories for the working mathematician.
Graduate texts in mathematics. Springer, 1998.

[17] José Meseguer. General logics. In Heinz-Dieter Ebbinghaus, ed-
itor, Logic Colloquium ’87, Studies in Logic and the Foundations
of Mathematics Series, pages 275–329. North-Holland, 1989.

[18] Bernhard Möller, Andrzej Tarlecki, and Martin Wirsing. Alge-
braic specifications of reachable higher-order algebras. In Don-
ald Sannella and Andrzej Tarlecki, editors, Recent Trends in Data
Type Specification, volume 332 of Lecture Notes in Computer
Science, pages 154–169. Springer, 1987.

[19] Till Mossakowski. Comorphism-based Grothendieck logics.
In Krzysztof Diks and Wojciech Rytter, editors, Mathematical
Foundations of Computer Science 2002, volume 2420 of Lecture
Notes in Computer Science, pages 593–604. Springer, 2002.

[20] Till Mossakowski. HetCasl – heterogeneous specification. Lan-
guage summary. Technical report, CoFI: The Common Frame-
work Initiative, 2004.

[21] Till Mossakowski. Institutional 2-cells and Grothendieck institu-
tions. In Algebra, Meaning, and Computation, Essays Dedicated
to Joseph A. Goguen, volume 4060 of Lecture Notes in Computer
Science, pages 124–149. Springer, 2006.

[22] Bertrand Russell. Mathematical logic as based on the theory of
types. American Journal of Mathematics, 30(3):222–262, 1908.

[23] Donald Sannella and Andrzej Tarlecki. Specifications in an ar-
bitrary institution. Information and Computation, 76(2/3):165–
210, 1988.

[24] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic
Specification and Formal Software Development. Monographs
in Theoretical Computer Science. An EATCS Series. Springer,
2011.

[25] Andrzej Tarlecki. Moving between logical systems. In Magne
Haveraaen, Olaf Owe, and Ole-Johan Dahl, editors, Recent
Trends in Data Type Specification, volume 1130 of Lecture Notes
in Computer Science, pages 478–502. Springer, 1995.

8

	Introduction
	Preliminaries
	Structured institutions
	Moving between structured institutions
	Conclusions

