
Logical Foundations of Services
Ionuţ Ţuţu1,2

1 Department of Computer Science, Royal Holloway University of London
2 Institute of Mathematics of the Romanian Academy, Research group of the

project ID-3-0439
ittutu@gmail.com

Abstract
In this paper we consider a logical system of networks of processes that interact in an asyn-
chronous manner by exchanging messages through communication channels. This provides a
foundational algebraic framework for service-oriented computing that constitutes a primary fac-
tor in defining logical specifications of services, the way models of these specifications capture
service orchestrations, and how properties of interaction-points, i.e. points through which such
networks connect to one another, can be expressed. We formalise the resulting logic as a pa-
rameterised institution, which promotes the development of both declarative and operational
semantics of services in a heterogeneous setting by means of logic-programming concepts.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Formal methods, Service-oriented computing, Institution theory

Digital Object Identifier 10.4230/OASIcs.xxx.yyy.p

1 Introduction

Service-oriented computing is a recent paradigm focusing on computation in data processing
infrastructures that are globally available, and in which software applications can discover
and bind dynamically to services offered by providers. The present paper builds on earlier
theoretical work on algebraic structures that capture the way services are orchestrated [8, 6],
and on the mechanisms that formalise the discovery of services that can be bound to a client
application in terms of logical specifications of required/provided services [9, 7]. It explores
one of the most technical aspects of a recent approach proposed in [3] that describes how
aspects specific to the logic-programming paradigm can be used to capture the declarative
and operational semantics of service-oriented computing.

To this purpose, we advance an integrated algebraic framework that constitutes the
primary factor in defining logical specifications of services, as well as models of these specifi-
cations that correspond to orchestrations of components depending upon externally provided
services. Our work upgrades the formalism considered in [3] by making a clear distinction
between specifications of services and their orchestrations, which results in a framework that
we consider to be more appropriate for addressing aspects such as heterogeneity.

Since the logic-programming semantics of services is technically based on an underlying
logical system that is formalised as an institution [10], we will concentrate our efforts on
proving that the proposed logic of networks of processes constitutes an institution. We recall
that the theory of institutions is a categorical abstract model theory [4] that promotes a
universal approach to the study of logics by abstracting the notion of truth, which is supposed
to be invariant with respect to the change of notation. Formally, an institution is a quadruple
I =

〈
SigI ,SenI ,ModI , |=I〉 that consists of

– a category SigI of signatures and signature morphisms,
© Ionuţ Ţuţu;
licensed under Creative Commons License CC-BY

Conference/workshop/symposium title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28904754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Logical Foundations of Services

– a sentence functor SenI : SigI → Set defining for every signature Σ the set SenI(Σ) of
Σ-sentences, and for every signature morphism ϕ : Σ→ Σ′ the sentence translation map
SenI(ϕ) : SenI(Σ)→ SenI(Σ′),

– a model functor ModI : (SigI)op → Cat defining for every signature Σ the category
ModI(Σ) of Σ-models and Σ-homomorphisms, and for every morphism ϕ : Σ→ Σ′, the
reduct functor ModI(ϕ) : ModI(Σ′)→ ModI(Σ),

– a family of satisfaction relations |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ), indexed by signatures,

such that the following satisfaction condition holds:

M ′ |=I
Σ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M ′) |=I

Σ ρ,

for every signature morphism ϕ : Σ→ Σ′, Σ′-model M ′ and Σ-sentence ρ.

2 Asynchronous Relational Networks

The first step towards the formulation of the logical framework for service orchestrations is
the introduction of a parameterised construction of a category 〈Sig, L〉-ARN of asynchronous
relational networks. In the subsequent sections of the present paper this will serve as
foundation for both the syntactic and the semantic dimensions of the proposed logical system.

Throughout this section we will consider
– a fixed category Sig (of signatures and signature morphisms) and
– a behavioural labelling functor L : |Sig| → Cat assigning to every signature Σ∈ |Sig| a
category L(Σ) of behavioural Σ-labels.

For presentation purposes, we will assume Sig to be the category of signatures of linear
temporal logic, and L(Σ) to be the category of Σ-presentations, i.e. of sets of Σ-sentences.

The asynchronous relational networks that we examine here follow closely the formalisation
from [3], and are similar to those defined in [6] except that we rely on hypergraphs [5, 2]
instead of graphs, and on abstract labels instead of signatures of linear temporal logic and
sets of traces. Just as in [6], the proposed concepts reflect the intuitive representation of
service components as networks of processes that interact asynchronously by exchanging
messages through communication channels. However, since the role of messages (organised
into structures called ports) is merely to provide a convenient description of certain signatures
of linear temporal logic, we choose not to introduce them explicitly, but to refer directly to
the signatures they designate, similarly to [9].

Processes are defined by sets of interaction-points labelled with port signatures and by
behavioural labels that correspond to the way the processes operate.

I Definition 1 (Process). A 〈Sig, L〉-process 〈X, (Σx
ιx−→ Σ)x∈X ,Λ〉 consists of a set X of

interaction-points, each point x∈X being labelled with a port signature Σx ∈ |Sig|, a process
signature Σ∈ |Sig| such that (Σx

ιx−→ Σ)x∈X is a coproduct in Sig, and a label Λ∈ |L(Σ)|.

In the actual situations the port signatures Σx are sets of actions that match either the
publication m! of an outgoing message m or the delivery m¡ of an incoming message m. The
process signature Σ is given by the disjoint union

⊎
x∈X Σx = {x.a | x∈X, a∈Σx}, while

the injections ιx are the obvious prefix maps x._ : Σx → Σ. The behaviour of the process is
specified through a set Λ of sentences of linear temporal logic over Σ.

I Example 2. In Figure 1a we depict a process JourneyPlanner that provides directions
from a source to a target location. The process interacts with the environment through two
interaction-points: JP1 and JP2. The first one is used for communicating with potential

I. Ţuţu 3

Journey
Planner

ΛJP

planJourney¡
directions!

JP1
getRoutes!
routes¡
timetables¡

JP2

(a)

getRoutes!
routes¡
timetables¡

JP2
getRoutes¡

routes!

R1

routes¡
timetables!

R2

C

ΛC

(b)

Figure 1 The ARN JourneyPlanner: (a) the process JourneyPlanner, (b) the connection C

client processes – the request for directions (including the source and the target locations)
is encoded into the delivery action planJourney¡, while the response is represented by the
publication action directions!. The second point defines actions that correspond to the
interaction between JourneyPlanner and other necessary processes – the publication action
getRoutes! can be seen as a query for all possible routes between the specified source and
target locations, while routes¡ and timetables¡ define the delivery of the result of the query
and of the timetables of the available transport services for the selected routes.

The behaviour of the process JourneyPlanner can be described as follows:
– Whenever it receives a request planJourney¡ it immediately initiates the search of available
routes through the publication action getRoutes!.

2 (planJourney¡ ⊃ © getRoutes!)

– Once it receives both the routes and the corresponding timetables it compiles the directions
and replies to the client.

2

(
getRoutes! ⊃

(
routes¡ R (routes¡ ⊃ (timetables¡ R (timetables¡ ⊃ 3 directions!))) ∨

timetables¡ R (timetables¡ ⊃ (routes¡ R (routes¡ ⊃ 3 directions!)))
))

Processes communicate by transmitting messages through channels. As in [1, 6], channels
are bidirectional, in the sense that they may transmit both incoming and outgoing messages.

I Definition 3 (Channel). A 〈Sig, L〉-channel 〈Σ,Λ〉 consists of a channel signature Σ∈ |Sig|
and a behavioural label Λ∈ |L(Σ)|.

Note that channels do not provide any information about the interacting entities, but only
on how the communication is realised. In order to enable the communication between given
processes, channels need to be attached to their interaction-points, thus forming connections.

I Definition 4 (Connection). A 〈Sig, L〉-connection 〈Σ,Λ, (Σ ιx←− Σ′
x
µx−−→ Σx)x∈X〉 between

the port signatures (Σx)x∈X , where X is a set of interaction-points, consists of a channel
〈Σ,Λ〉 and a family of attachment spans (Σ ιx←− Σ′

x
µx−−→ Σx)x∈X in Sig.

The channel signature Σ is given in general by a set of both publication and delivery
actions m! and m¡ determined by messages m. As in the case of processes, the behaviour of
the channel is specified through a set of sentences of linear temporal logic over Σ. The maps
ιx and µx are considered to be set-theoretic inclusions and polarity-preserving injections,
respectively, i.e. injective functions µx with the property that µx(a) is a publication action of
Σx if and only if a is a publication action of Σ, and for this reason they are often presented as

4 Logical Foundations of Services

partial maps µx : Σ ⇀ Σx; in addition, the signatures (Σ′
x)x∈X are usually chosen such that

for any point x∈X, m!∈Σ′
x (m¡∈Σ′

x) if and only if m¡∈Σ′
y (m!∈Σ′

y) for some y ∈X \ {x}.
This condition ensures an appropriate pairing of messages: every published message of Σx,
for x∈X, is paired with a delivered message of Σy, for some y ∈X \ {x}, and vice versa.

I Example 5. In order to illustrate how the process JourneyPlanner can interact with other
processes, we consider the connection C depicted in Figure 1b that moderates the flow of
messages between the port signature named JP2 and two other port signatures, R1 and R2.

The underlying channel of C is given by the set of actions Σ = {g!, g¡, r!, r¡, t!, t¡} together
with the set of sentences of linear temporal logic

ΛC =
{
2 (m!→©m¡) | m∈{g, r, t}

}
that specifies the delivery of all published messages without any delay. It is attached to the
port signatures JP2, R1 and R2 through the partial injections µJP2 , µR1 and µR2 given by
– µJP2 = {g! 7→ getRoutes!, r¡ 7→ routes¡, t¡ 7→ timetables¡},
– µR1 = {g¡ 7→ getRoutes¡, r! 7→ routes!} and
– µR2 = {r¡ 7→ routes¡, t! 7→ timetables!}.

Note that the actual senders and receivers of messages are specified through the attachment
injections. For example, the message g is delivered only to the port signature R1 (because
µR2 is not defined on g¡), while r is simultaneously delivered to both JP2 and R2.

We can now define asynchronous networks of processes as hypergraphs having vertices
labelled with port signatures and hyperedges labelled with processes and connections.

I Definition 6 (Hypergraph). An (edge-labelled) hypergraph 〈X,E, γ〉 consists of a set X of
vertices or nodes, a set E of hyperedges disjoint from X, and an incidence map γ : E → P(X)
defining for every hyperedge e∈E a non-empty set γe ⊆ X of vertices it is incident with.

A hypergraph 〈X,E, γ〉 is said to be edge-bipartite if E is partitioned into two subsets
F and G such that no adjacent hyperedges belong to the same partition, i.e. for every two
hyperedges e1, e2 ∈E such that γe1 ∩ γe2 6= ∅, either e1 ∈F and e2 ∈G, or e1 ∈G and e2 ∈F .

I Definition 7 (Asynchronous Relational Network – ARN). A 〈Sig, L〉-asynchronous relational
network A = 〈X,P,C, γ,Σ, ι, µ,Λ〉 consists of an edge-bipartite hypergraph 〈X,P,C, γ〉 of
points x∈X, computation hyperedges p∈P , communication hyperedges c∈C, together with
– a port signature Σx ∈ |Sig| for every point x∈X,
– a process

〈
γp,
(
Σx

ιpx−→ Σp
)
x∈ γp

,Λp
〉
for every hyperedge p∈P , and

– a connection
〈
Σc,Λc,

(
Σc

ιcx←− Σcx
µc

x−−→ Σx
)
x∈ γc

〉
for every hyperedge c∈C.

I Example 8. By putting together the process and the connection presented in Examples 2
and 5, we obtain the ARN JourneyPlanner depicted in Figure 1. Its underlying hypergraph
consists of the points JP1, JP2, R1 and R2, the computation hyperedge JP, the communication
hyperedge C, and the incidence map γ given by γJP = {JP1, JP2} and γC = {JP2,R1,R2}.

An interaction-point of a 〈Sig, L〉-ARN A is a point of A that is not bound to both
computation and communication hyperedges. We distinguish between requires-points and
provides-points, as follows.

I Definition 9 (Requires and Provides-point). A requires-point of 〈Sig, L〉-ARN A is a point
of A that is incident only with a communication hyperedge. Similarly, a provides-point of A
is a point incident only with a computation hyperedge.

I. Ţuţu 5

Morphisms of 〈Sig, L〉-ARNs can be defined as injective homomorphisms between their
underlying hypergraphs that preserve all labels, except those associated with requires-points.

I Definition 10 (Homomorphism of Hypergraphs). A homomorphism h between hypergraphs
〈X,E, γ〉 and 〈X ′, E′, γ′〉 consists of functions hv : X → X ′ and he : E → E′, usually denoted
simply by h, such that for any x∈X and e∈E, x∈ γe if and only if hv(x)∈ γ′

he(e).

I Definition 11 (Morphism of ARNs). Given two 〈Sig, L〉-ARNs A = 〈X,P,C, γ,Σ, ι, µ,Λ〉
and A′ = 〈X ′, P ′, C ′, γ′,Σ′, ι′, µ′,Λ′〉, a morphism ϕ : A→ A′ consists of
– an injective homomorphism ϕ : 〈X,P,C, γ〉 → 〈X ′, P ′, C ′, γ′〉 between the underlying

hypergraphs of A and A′ such that ϕ(P) ⊆ P ′ and ϕ(C) ⊆ C ′, and
– a family ϕpt of signature morphisms ϕpt

x : Σx → Σ′
ϕ(x), for x∈X,

such that
– for every non-requires-point x∈X, ϕpt

x = 1Σx ,
– for every hyperedge p∈P , Σp = Σ′

ϕ(p), Λp = Λ′
ϕ(p), and ιpx = (ι′)ϕ(p)

ϕ(x) for any point x∈ γp,
– for every hyperedge c∈C, Σc = Σ′

ϕ(c), Λc = Λ′
ϕ(c) and the following diagram is well-

defined and commutative, for any point x∈ γc.

Σc

1Σc

��

Σcx
µc

x //

1Σc
x

��

ιcxoo Σx

ϕpt
x

��
Σ′
ϕ(c) (Σ′)ϕ(c)

ϕ(x) (µ′)ϕ(c)
ϕ(x)

//
(ι′)ϕ(c)

ϕ(x)

oo Σ′
ϕ(x)

I Proposition 12. The morphisms of 〈Sig, L〉-ARNs form a category denoted 〈Sig, L〉-ARN.

3 An institution of ARNs

We now turn our attention to the main contribution of the paper: the presentation of a
logical framework for service orchestrations in an institutional setting. Similarly to the
construction detailed in the previous section, the concepts discussed here are parameterised
over an arbitrary logical system that satisfies a number of additional properties. More
precisely, we consider a fixed institution I =

〈
SigI ,SenI ,ModI , |=I〉 such that

– the category SigI of I-signatures is cocomplete,
– there exist cofree models along any signature morphism, i.e. the reduct functor ModI(ϕ)
of any signature morphism ϕ admits a right adjoint, and

– the category of models ModI(Σ) of any signature Σ has products.
An example of such institution is MA-LTL – a variant of linear temporal logic whose models
are not traces, but Muller automata [11], and in which an automaton satisfies a sentence if
and only if every trace accepted by the automaton satisfies the considered sentence. MA-LTL
was originally proposed in [3] as an alternative to conventional linear temporal logic with the
aim of capturing a more operational notion of service orchestration.

3.1 Signatures
We start by defining the category Spec-ARNI of signatures and signature morphisms of our
institution, which we denote SOCI . These are asynchronous relational networks determined

6 Logical Foundations of Services

by the category SigI of signatures and by the labelling functor SpecI : |SigI | → Cat that
assigns to every I-signature Σ the preorder category of Σ-presentations.

Spec-ARNI =
〈
SigI ,SpecI〉-ARN

3.2 Sentences and Sentence Translations
The sentences of SOCI express properties about the points of the considered ARNs.

I Definition 13 (Sentence). For any network A∈ |Spec-ARNI |, i.e. for any SOCI-signature
A, the set SenSOC

I (A) of (atomic) A-sentences is defined as the set of pairs 〈x, ρ〉, usually
denoted @x ρ, where x is a point of A and ρ is an I-sentence over Σx.

The translation of sentences is straightforward: for every morphism ϕ : A → A′ in
Spec-ARNI , the map SenSOC

I (ϕ) : SenSOC
I (A)→ SenSOC

I (A′) is given by

SenSOC
I (ϕ)(@x ρ) = @ϕ(x) SenI(ϕptx)(ρ)

for any point x of A and any I-sentence ρ over the signature of x.

I Proposition 14. SenSOC
I is a functor Spec-ARNI → Set.

3.3 Models and Model Reductions
The model functor of our institution assigns appropriate models of the underlying institution
to the computation and communication hyperedges of the considered ARNs, and ground
networks to their requires-points. Formally, we first define
– Mod-ARNI as the category

〈
SigI , |ModI |

〉
-ARN,

– Mod-ARNAI , for any ARN A = 〈X,P,C, γ,Σ, ι, µ,Λspec〉 ∈ |Spec-ARNI |, as the discrete
subcategory of Mod-ARNI given by networks α = 〈X,P,C, γ,Σ, ι, µ,Λmod〉 such that
Λmod
e |=I

Σe
Λspec
e for every computation or communication hyperedge e of A, and

– GARNI as the full subcategory of Mod-ARNI determined by ground networks, i.e. by
networks with no requires-points.

I Definition 15 (Model). For any ARN A∈ |Spec-ARNI |, the category ModSOC
I (A) of

A-models or A-interpretations is defined as the comma category Mod-ARNAI /GARNI .

It follows that A-interpretations are morphisms of ARNs ν : α→ β such that α∈ |Mod-ARNAI |
and β ∈ |GARNI |, which can also be seen as collections of ground networks that are designated
to the requires-points of α. In order to explain this in more detail let us introduce the
following notions of dependency and ARN defined by a point.

I Definition 16 (Dependency). Let x and y be points of an ARN α. The point x is said
to be dependent on y if there exists a path from x to y that begins with a computation
hyperedge, i.e. if there exists an alternating sequence x e1 x1 · · · en y of (distinct) points and
hyperedges such that x∈ γe1 , y ∈ γen

, xi ∈ γei
∩ γei+1 for any 1 ≤ i < n, and e1 ∈P .

I Definition 17 (ARN Defined by a Point). The sub-ARN defined by a point x of an ARN α

is the full sub-ARN αx of α determined by x and the points on which x is dependent.

One can now see that any interpretation ν : α→ β of an ARN A∈ |Spec-ARNI | assigns to
each requires-point x of α the ground sub-ARN βν(x) of β defined by ν(x).

With respect to model reducts, one can easily see that every ARN morphism ϕ : A→ A′ in
Spec-ARNI and every network α′ ∈ |Mod-ARNA

′

I | determine a (unique) morphism of ARNs

I. Ţuţu 7

ϕ : α→ α′ in Mod-ARNI such that α∈ |Mod-ARNAI |. This observation allows us to define
the reduction of interpretations as the left composition with the considered ARN morphism.
Hence, for every ARN morphism ϕ : A→ A′, ModSOC

I (ϕ) is given by ModSOC
I (ϕ)(ν′) = ϕ; ν′

for A′-interpretations ν′ and ModSOC
I (ϕ)(ζ ′) = ζ ′ for A′-interpretation homomorphisms ζ ′.

I Proposition 18. ModSOC
I is a contravariant functor Spec-ARNop

I → Cat.

3.4 The Satisfaction Relation
The evaluation of SOCI sentences with respect to the interpretations relies on the concepts
of diagram of a network and of model defined by a point, whose purpose is to describe the
observable behaviour of a ground network through one of its points.
I Fact 19 (Diagram of an ARN). Every ARN α = 〈X,P,C, γ,Σ, ι, µ,Λmod〉 ∈ |Mod-ARNI |
defines a diagram Dα : Jα → SigI as follows:
– Jα is the free preorder category given by the set of objects

X ∪ P ∪ C ∪ {〈c, x, α〉 | c∈C, x∈ γc}

and the arrows
{x→ p | p∈P, x∈ γp} for computation hyperedges, and
{c← 〈c, x, α〉 → x | c∈C, x∈ γc} for communication hyperedges;

– Dα is the functor that provides the signatures of ports, processes and channels, together
with the appropriate mappings between them.
Since SigI is cocomplete, we can define the signature of a network based on its diagram.

I Definition 20 (Signature of an ARN). The signature of an ARN α∈ |Mod-ARNI | is the
colimiting cocone ξ : Dα ⇒ Σα of the diagram Dα.

The most important construction that allows us to define the satisfaction relation is the
one that defines the observed behaviour of a (ground) network at one of its points.

I Definition 21 (Model Defined by a Point). Let x be a point of a ground ARN β ∈ |GARNI |.
The observed model Λmod

x at x is given by the reduct ModI(ξx)(Λmod
βx

), where
– βx = 〈X,P,C, γ,Σ, ι, µ,Λmod〉 is the sub-ARN of β defined by x,
– ξ : Dβx

⇒ Σβx
is the signature of βx,

– Λmod
βx

is the product
∏
e∈P∪C Λmod

βx,e
, and

– Λmod
βx,e

is the cofree expansion of Λmod
e along ξe, for any hyperedge e∈P ∪ C.

We now have all the necessary concepts for defining the satisfaction of SOCI sentences
by interpretations. Let us thus consider an ARN A∈ |Spec-ARNI |, an A-interpretation
ν : α→ β and an A-sentence @x ρ. Then

ν |=SOC
I,A @x ρ if and only if ModI(νptx)

(
Λmod
ν(x)
)
|=I

Σx
ρ,

where Λmod
ν(x) is the observed model at ν(x) in β.

The construction of the institution of ARNs is completed by the following result, which
states that satisfaction is invariant with respect to changes of ARNs.

I Proposition 22. For every ARN morphism ϕ : A→ A′ in Spec-ARNI , any A′-interpretation
ν′ and any A-sentence @x ρ,

ν′ |=SOC
I,A′ SenSOC

I (ϕ)(@x ρ) if and only if ModSOC
I (ϕ)(ν′) |=SOC

I,A @x ρ.

I Corollary 23. SOCI =
〈
Spec-ARNI ,SenSOC

I ,ModSOC
I , |=SOC

I
〉
is an institution.

8 Logical Foundations of Services

4 Conclusions

In this paper we proposed a logical framework of networks of processes that can be used in
combination with concepts and results specific to the logic-programming paradigm [3] to offer
an integrated semantics for the static and dynamic aspects of service-oriented computing.
We distinguish between specifications of services and their models, which are orchestrations
of components that rely upon externally provided services. The resulting institution is
parameterised over an arbitrary logical system such that (a) its category of signatures is
cocomplete, (b) there exist cofree models along any signature morphism, (c) the category
of models of any signature has products. This level of generality encourages us to further
investigate the service-oriented computing paradigm over a variety of logics. An issue to be
pursued towards this heterogeneous setting is the way in which the change of the underlying
logics induces appropriate translations between the corresponding institutions of ARNs.

Acknowledgements. The author would like to thank José Fiadeiro for many useful dis-
cussions and feedback on the logic-programming semantics of services. This research has
been supported by a grant of the Romanian National Authority for Scientific Research,
CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0439.

References
1 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Journal of

the ACM, 30(2):323–342, 1983.
2 Roberto Bruni, Fabio Gadducci, and Alberto Lluch-Lafuente. A graph syntax for processes

and services. In Cosimo Laneve and Jianwen Su, editors, Web Services and Formal Methods,
Lecture Notes in Computer Science, pages 46–60. Springer, 2009.

3 Ionuţ Ţuţu and José L. Fiadeiro. A logic-programming semantics of services. In Reiko
Heckel and Stefan Milius, editors, Conference on Algebra and Coalgebra in Computer Sci-
ence, Lecture Notes in Computer Science, pages 299–313. Springer, 2013.

4 Răzvan Diaconescu. Institution-independent model theory. Studies in Universal Logic.
Birkhäuser, 2008.

5 Gian Luigi Ferrari, Dan Hirsch, Ivan Lanese, Ugo Montanari, and Emilio Tuosto. Synchro-
nised hyperedge replacement as a model for service oriented computing. In Frank de Boer,
Marcello Bonsangue, Susanne Graf, and Willem de Roever, editors, Formal Methods for
Components and Objects, Lecture Notes in Computer Science, pages 22–43. Springer, 2005.

6 José L. Fiadeiro and Antónia Lopes. An interface theory for service-oriented design. In Dim-
itra Giannakopoulou and Fernando Orejas, editors, Fundamental Approaches to Software
Engineering, Lecture Notes in Computer Science, pages 18–33. Springer, 2011.

7 José L. Fiadeiro and Antónia Lopes. A model for dynamic reconfiguration in service-
oriented architectures. Software and Systems Modeling, pages 1–19, 2012.

8 José L. Fiadeiro, Antónia Lopes, and Laura Bocchi. Algebraic semantics of service compo-
nent modules. In José L. Fiadeiro and Pierre-Yves Schobbens, editors, Workshop on Alge-
braic Development Techniques, Lecture Notes in Computer Science, pages 37–55. Springer,
2006.

9 José L. Fiadeiro, Antónia Lopes, and Laura Bocchi. An abstract model of service discovery
and binding. Formal Aspects of Computing, 23(4):433–463, 2011.

10 Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract model theory for specifica-
tion and programming. Journal of the ACM, 39(1):95–146, 1992.

11 Dominique Perrin and Jean Éric Pin. Infinite Words: Automata, Semigroups, Logic and
Games. Pure and Applied Mathematics. Elsevier Science, 2004.

	Introduction
	Asynchronous Relational Networks
	An institution of ARNs
	Signatures
	Sentences and Sentence Translations
	Models and Model Reductions
	The Satisfaction Relation

	Conclusions

