

Context-based Anomaly
Detection in Critical In-
frastructures

A Study in Distributed Systems

Thomas Richard McEvoy

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

1

Standard logo

The logo should be reproduced in the primary colour,
Pantone 660c, on all publications printed in two or
more colours. Refer to the ‘Branded merchandize’
sheet for guidelines on use on promotional items etc.

The text, ‘University of London’, is set as a 50%
transparency of white.

Do not use a keyline see ‘Non standard backgrounds’
for exceptions.

The College name has been specially drawn; please
use the original digital artwork and do not try to
re-set.

xx

x

Clear area

No graphic or text should be placed in an area
around the logo equivalent to the width of the base
of the clocktower silhouette as shown.

≤ 30mm
Minimum size

The logo should be never be reproduced at less than 30mm in width. The
text, ‘University of London’, should be reproduced as 100% white ie. no
transparency

Printing on absorbent and unusual surfaces

The text, ‘University of London’, should be reproduced
as 100% white ie. no transparency. When it is printed on
absorbent paper ie newsprint, or any unusual surface ie metal
fabric or plastic.

Non standard backgrounds

A keyline should only be used if the logo is
placed on a background other than white or
the primary or secondary colours.
The width of the keyline is the width of the
letter ‘l’.

x

x

Royal Holloway logo guidelines

Reversed logo

A white logo may only be used on
Pantone 660 or black. Refer to the
‘Branded merchandize’ sheet for
guidelines on use on promotional items
etc.

‘Royal Holloway’ and the clocktower
silhouette should be reproduced in
the background colour. ‘University of
London’ prints 50% white.

2013

2

Context-based Anomaly Detection
in Critical Infrastructures

Department of Mathematics
Royal Holloway, University of London

Most cats, when they are out want to be in, and visa versa, and often
simultaneously.

(Louis J. Camuti)

To my wife, Lesley Anne McEvoy, for her dedication and hard work.

Declaration of Authorship

I, Thomas Richard McEvoy, hereby declare that this thesis and the work
presented in it is entirely my own. Where I have consulted the work of oth-
ers, this is always clearly stated.

Signed:

(Thomas Richard McEvoy)

Date:

Preface

This thesis examines the problem of detecting malicious software in industrial con-
trol systems. This is a growing problem since such systems are increasingly ex-
posed to attack as modernization heightens the degree of system interconnectivity.
At the same time, such systems are ill-equipped with suitable security mechanisms
to allow them to fend off these attacks.

The approach adopted assumes that the attacker will make no egregious proto-
col errors which would reveal the fact of penetration before that phase of the attack
completes. Instead, the detection problem is one of uncovering an attack during
the exploitation phase by drawing on a rich set of potential data relationships and
using these, if possible, to locate the source of the attack and manage its outcome.
The future direction of this work should permit us to detect integrity attacks in a
timely fashion and use the results to bring control systems back under operator
supervision, at least, for a subset of such systems.

We consider this research will be valuable to individuals working to defend
control systems – and distributed systems in general – against malicious software
attacks.

Abstract

The modernization of critical infrastructure exposes a large attack surface in a set of
systems, key to the sustainability of civilization, at a time when targeted malicious
attacks are growing in sophistication, particularly with regard to stealth techniques,
which are particularly difficult to uncover in distributed systems due to multiple
possible orderings of state.

We argue that by making use of a set of known relationships (which we label
a context) between states in disparate parts of a distributed system and the provi-
sion of suitable concurrent (or near-concurrent) observation and comparison mech-
anisms, we can provide the means to detect such anomalies and locate their source
as a precursor to managing outcomes.

As a necessary prerequisite to our research, we establish an adversary capability
model which allows us to make explicit statements about the feasible actions and
subsequent impacts of adversary and demonstrate the validity of any detective
methods.

We focus primarily on integrity attacks. The first technique we present is a se-
curity protocol, using traceback techniques, which allows us to locate processes
which manipulate message content between an operator and a control unit. The
second technique allows us to model algebraically possible sequences in host sys-
tem states which may be indicative of malicious activity and detect these using a
multi-threaded observation mechanism. The third technique provides a process
engineering model of a basic non-linear process in a biochemical plant (pasteur-
ization in a brewery) which shows how the provision of, even minimal, additional
sensor information, outside of standard telemetry requirements, can be used to de-
termine a failure in supervisory control due to malicious action. This last technique
represents an improvement over previous approaches which focused on linear or
linearized systems.

All three techniques pave the way for more sophisticated approaches for real-
time detection and management of attacks.

Thanks go to my supervisor, Stephen Wolthusen, for his encouragement and
counsel, and to my examiners, Keith Mayes and Emiliano Cassalichio, for their
comments and questions. I am also grateful to the anonymous reviewers of the
papers submitted for publication as part of the work for this dissertation for their
comments, advice and corrections and to Diageo PLC for access to data on their
beer pasteurization process. Finally, I would like to thank my wife and family for
their patience and support over the past seven years.

iv

Contents

1 Introduction 1
1.1 Preamble . 1
1.2 Threats to Distributed Systems in Critical Infrastructures 1
1.3 Research Questions . 2
1.4 Research Approach . 2
1.5 Research Contributions . 4
1.6 Original Papers . 5
1.7 Outline of Dissertation . 5
1.8 Summary . 6

2 Notation, Conventions and Definitions 7
2.1 Preamble . 7
2.2 Set and Algebraic Operations . 7
2.3 Distributed Systems . 7
2.4 Process Algebra and Calculi . 8
2.5 Terminology . 9
2.6 Summary . 10

3 Literature Review 11
3.1 Preamble . 11
3.2 Background Material . 11
3.3 Process Algebras and Calculi . 11
3.4 Threat Models . 12
3.5 Developments in Malicious Software Techniques 14
3.6 Intrusion Detection . 17
3.7 Summary . 23

4 Problem and Approach 24
4.1 Preamble . 24
4.2 Research Issues . 24
4.3 Research Approach . 26
4.4 Summary . 29

5 Attack/Defense Analysis in Distributed Systems 30
5.1 Preamble . 30
5.2 Threat Model . 30
5.3 Applied Process Calculi . 39
5.4 Instantiating a System Model . 44

v

CONTENTS

5.5 Instantiating the Adversary Capability Model 45
5.6 Attack Construction Based on the Adversary Model 50
5.7 Incorporating Impact Analysis in the Model 54
5.8 Summary . 61

6 Traceback Protocols for Defending Communications Integrity 63
6.1 Preamble . 63
6.2 A Traceback Protocol for Adversary Detection 63
6.3 Co-ordinated Attacks, Anomaly Detection and Communication In-

tegrity . 74
6.4 Summary . 92

7 Expected Behavior and Multithreaded Observation Mechanisms In Mul-
tiprocessor Systems 93
7.1 Preamble . 93
7.2 Expected Behavior Model . 93
7.3 Concurrent Observation Mechanism 104
7.4 “Proof of Concept” Mechanism . 109
7.5 Summary . 121

8 Kinetic Models and Adversary Detection 122
8.1 Preamble . 122
8.2 Example Selection . 122
8.3 Approach . 123
8.4 Model . 123
8.5 Simulink Construction . 125
8.6 Proxy Discovery . 135
8.7 Experiments . 136
8.8 Summary . 142

9 Conclusions and Future Work 143
9.1 Preamble . 143
9.2 Research Overview . 143
9.3 Contributions . 145
9.4 Discussion . 145
9.5 Future Work . 150
9.6 Summary . 153

A Mathematical Pre-requisites 154
A.1 Preamble . 154
A.2 Process Control . 155
A.3 Process Algebra . 156
A.4 Process Calculus: the π-calculus . 160
A.5 State Transition Diagrams . 166

B Distributed Environments 168
B.1 Preamble . 168
B.2 Notation . 168

vi

CONTENTS

B.3 Modeling Distributed Systems . 169
B.4 Multi-Processor Operating Systems . 177
B.5 Process Control Networks . 180

Nomenclature 186

Index 188

Bibliography 192

vii

List of Figures

5.1 Transformation Dependencies . 59

6.1 Packet Collection in Obs(R) . 68
6.2 Detection Efficiencies in the the SubgraphR 70

7.1 Expected Behavior Graph Showing Legal States and Transitions of x . . 95
7.2 Expected Behavior Graph with Dependencies 97
7.3 Detection Probabilities Under Stress . 120

8.1 Beer Pasteurizer - Courtesy of Diageo PLC, 2009 125
8.2 Simulink Model of a Beer Pasteurizer . 126
8.3 Simulink Key . 127
8.4 Basic Heat Exchange Calculation . 127
8.5 Contraflow Heat Exchanger . 128
8.6 Dual Heat Exchange in Contraflow . 129
8.7 Basic Heat Exchange Calculation . 129
8.8 Calculate Rate of Heat Exchange . 130
8.9 Heating Section . 131
8.10 Cooling Unit . 132
8.11 Initial Beer Temperature . 133
8.12 Tank Level Generation . 133
8.13 Calculate Flow Rate based on Tank Level 134
8.14 Calculate Hotside Setpoint . 134
8.15 Calculate Pasteurization Units . 134
8.16 Adapted Functional Causal Model . 135
8.17 PU Profiles for Flow Rate v Temperature 138
8.18 Cooled Product Temperature as a Proxy for Flow Rates 139
8.19 Nominal, Degraded and Divert PU Values where Tank Level = 180 . . . 140
8.20 Hiding in Signal “Noise” - Pasteurization Rate Alteration 141
8.21 Hiding in Signal “Noise” - Product Temperature 141
8.22 Detecting Flow Adjustments in “Noise” using Hot- and Cold- side Tem-

peratures . 142

A.1 Process Control Loop (Source: Tikz Examples) 155
A.2 Heat Exchange Block Diagram in Simulink 156
A.3 Actions Relations(1) . 160
A.4 Action Relations (2) . 160

B.1 Run in happened before Model . 170
B.2 Run in a Potential Causality Model . 171

viii

LIST OF FIGURES

B.3 A Poset on States with No Valid Event Based Poset 172
B.4 An illustration of a clock assignment . 174

ix

List of Tables

5.1 Adversary Capabilities . 33
5.2 π-Calculus Summands and Processes . 40
5.3 π-Calculus Summands and Processes . 41
5.4 G{π}-Calculus Syntax . 43

7.1 Axiomization of SCTA . 99
7.2 File Object Alteration – 10ms Hiatus . 111
7.3 File Object Orientation – 20ms Hiatus . 112
7.4 File Object Orientation – 30ms Hiatus . 112
7.5 File Object Orientation – 40ms Hiatus . 112
7.6 Read/Write Flag Alteration – 10ms Hiatus 113
7.7 Read/Write Flag Alteration – 20ms Hiatus 113
7.8 Read/Write Flag Alteration – 30ms Hiatus 113
7.9 Read/Write Flag Alteration – 40ms Hiatus 114
7.10 System Table Alteration – 10ms Hiatus . 115
7.11 System Table Alteration – 20ms Hiatus . 115
7.12 System Table Alteration – 30ms Hiatus . 115
7.13 System Table Alteration – 40ms Hiatus . 115
7.14 Characteristic Vector Detection – 10ms Hiatus 117
7.15 Characteristic Vector Detection – 20ms Hiatus 117
7.16 Characteristic Vector Detection – 30ms Hiatus 117
7.17 Characteristic Vector Detection – 40ms Hiatus 118
7.18 Self Observation Test – 10ms Hiatus . 119
7.19 Self Observation Test – 20ms Hiatus . 119
7.20 Self Observation Test – 30ms Hiatus . 119
7.21 Self Observation Test – 40ms Hiatus . 119

A.1 BPA Axioms . 157
A.2 Action Relations for BPA . 159
A.3 π-Calculus Summands and Processes . 161
A.4 The axioms of structural congruence . 164
A.5 The rules of equational reasoning . 164
A.6 The reduction rules . 165
A.7 The transition relations . 167

B.1 Notation . 168

x

List of Theorems

5.1 Image Finiteness . 58
5.2 ω-finiteness . 58
5.3 Number of Impacts in a System . 58
6.1 Search Validity . 71
A.1 Term Rewriting . 158

xi

List of Definitions

4.1 δ-Congruence . 27
5.1 Process . 30
5.2 Set of Malicious Processes . 31
5.3 Goal . 31
5.4 Goal Domain . 32
5.5 Agent . 32
5.6 Agent Domain . 32
5.7 Agent Subdomain . 32
5.8 Malicious Agent . 32
5.9 Closed Network . 36
5.10 Initial Attack Surface . 37
5.11 Secondary Attack Surface . 37
5.12 Indistinguishability Assumption – P . 49
5.13 Loss of Confidentiality . 55
5.14 Loss of Integrity . 55
5.15 Loss of Availability . 55
5.16 Image Finiteness . 58
5.17 ω Finiteness . 58
5.18 Attack Equivalence . 60
5.19 Defensive Intervention . 61
5.20 Countermeasure Effectiveness . 61
5.21 Countermeasure Efficiency . 61
5.22 Countermeasure Equivalence . 61
5.23 Countermeasure Congruence . 61
5.24 Countermeasure Set Equivalence . 61
5.25 Countermeasure Set Congruence . 61
6.1 Observation Range . 68
7.1 Conditional Dependency . 96
7.2 Strong Causal Dependency . 96
7.3 Weak Causal Dependency . 96
A.1 Equational Specification . 156
A.2 Substitution . 162
A.3 Context . 164
A.4 Congruence . 164
A.5 Structural Congruence . 164
A.6 Actions . 166
A.7 Transition Relations . 166
B.1 Interleaving Model . 169

xii

LIST OF TABLES

B.2 Happened Before Relation . 170
B.3 Potential Causality Relation . 171
B.4 Deposet . 172
B.5 Sequence of Global States . 173
B.6 Logical Clock . 173
B.7 Vector Clock . 175
B.8 Consistent Cut . 175

xiii

List of Algorithms

6.1 Observe . 67
6.2 New Key . 71
6.3 Compare . 90
6.4 Path Marking . 90
6.5 Unmark Paths . 91

7.1 Observe(measure(), NTasks, Period,OwnId)* 105

B.1 Logical Clock . 174
B.2 Vector Clock Algorithm . 176
B.3 Global Snapshot Algorithm . 177

xiv

Chapter 1

Introduction

If you hold a cat by the tail you
learn things you cannot learn
any other way.

Mark Twain

1.1 Preamble

The modernization of industrial control systems has left them exposed to exploita-
tion by the increasingly sophisticated malicious software threats. We show how we
can address these issues through novel detective methods which make use of the
context created by data relationships between disparate parts of a distributed sys-
tem. We introduce a proof method based on the instantiation of a formal adversary
capability model for malicious software using the π-calculus.

1.2 Threats to Distributed Systems in Critical
Infrastructures

In industrial control systems (ICS) , isolated computing systems, using proprietary
operating systems and network protocols have been displaced over recent decades
by Internet-facing, commercial-off-the-shelf systems (COTS), incorporating open
network protocols. ICS are key to the to the preservation of critical infrastructures
(CI), such as energy production, transport, waste disposal and food production
which sustain human civilization. These alterations create security exposures in
such systems for which they are intrinsically ill-prepared to cope [67, 17, 65, 43].

The modernization of ICS has rendered the devices, which we use to support
our existence, exposed to the threat of software-borne malicious attack – for ex-
ample, [41, 11] – which have the potential to arbitrarily alter system behavior,
threatening our environment . Faster, high bandwidth networks with tighter inter-
connections also result in the potential for malicious software to propagate faster
than signature updates or patch updates – especially in ICS, where the real-time
demands and lengthy nature of production runs (whose duration can be mea-
sured in months, or even years) create services which cannot economically bear
unplanned disruptions caused by security hot fixes and have difficulty adapting to
patching strategies more suitable to enterprise security architectures for business
systems [21]. Meanwhile the sophistication of delivery and payload mechanisms

1

1.3 RESEARCH QUESTIONS

in malicious software advances continually in rivalry to the development of effec-
tive defenses[106]. In particular, for our research, we consider the capability of
malicious software to hide its presence and actions by undermining the integrity
of state reporting and state reporting mechanisms [117, 29]. Adversaries rapidly
deploy stealth techniques shortly after injection, leading to, at best, momentary
anomalies, which may be undetectable to human operators, or to normal system
mechanisms. Such techniques not only conceal malicious acts, but may also allow
malicious agents to present themselves as legitimate actors in the system[41].

Additional factors which advantage the attacker are the intrinsic lack of global
time and state information and delays in processing and communication on dis-
tributed networks which lead to multiple possible legitimate linearizations in state
– a feature which, to some extent, is also true of multiprocessor hosts as a result of
how memory writes are handled – see Appendix B and [46] – and the capability,
not only to deceive operators and system defenses, but also to undermine the latter
by direct or indirect attack [117, 93].

We further acknowledge malicious software detection is an undecidable prob-
lem in terms of determining the integrity of software [28]. Any approach to detec-
tion is necessarily additive in nature rather than representing a complete solution –
although we may choose to judge the efficiency and effectiveness of techniques by
the generality of their application – see section 5.7.3.

Finally, in ICS , we are necessarily constrained in our solutions by the computa-
tional limitations which exist in such environments.

1.3 Research Questions

Our research question is, therefore, can we develop successful detection methods
in relation to integrity attacks in the face of identified constraints?

• Increasing sophistication of stealth methods

• Direct and indirect attacks on security and state reporting mechanisms

• Intrinsic characteristics of distributed environments in relation to the order-
ing of states

• Environmental constraints on computational performance and capacity

In doing so, we must take consider the difficulty of modeling an adversary
which can act arbitrarily to alter the behavior of those environments. Indeed, we
should account for the possibility of multiple adversaries and the interventions
of defending agencies. Ideally, we should go beyond the mere detection of the
presence of malicious activity to being able pinpoint its location and facilitate the
management of attack outcomes.

1.4 Research Approach

We define a formal threat model , based on the Dolev-Yao model [74, 38], to repre-
sent the use of malicious software by knowledgeable and experienced adversaries,

2

1.4 RESEARCH APPROACH

whose existence we assume. Our particular approach to modeling adversary be-
havior is based on [74], but with clear differences in emphasis and outcome as our
subject is the consideration of malicious behavior in systems rather than the secu-
rity of key exchange protocols.

We assume the adversary may, using malicious messages, subvert a subset of
processes to act maliciously (or else inject such a process) in a system, but not un-
dermine the integrity of the whole system. As a result, subverted processes may
selectively manipulate messages in accordance with adversary goals. We make the
nature of such manipulations explicit, allowing us to create feasible attack scenar-
ios. Such processes may also have the ability, through messaging (whether overt
or covert), to co-ordinate actions between different parts of the system in achieving
overall goals. They could also compete, or possibly, co-operate with processes be-
longing to other malicious agents. Obviously, the impacts of such actions should be
considered, along with the effects of operator interventions and egregious system
events in determining adversary success or failure.

We assume that the adversary is perfectly stealthy until he acts. So we focus on
providing early warning of a damaging attack in progress rather than detecting ini-
tial penetration and subversion – though these could be modeled by our approach.

We use two variants of the applied π-calculus to instantiate our threat model,
selecting the appropriate variant depending on application. The family of pro-
cess algebras and calculi form a well-known and well-defined tool set [121, 7, 34]
for these purposes. The π-calculus has the particular advantage of taking account
of the intrinsic characteristics of distributed systems, while also allowing the re-
specification of systems “on the fly”.

Turning to detective methods, we adopt an approach which we label, though
not originally, context-based anomaly detection. In this approach, we provide a state-
ful comparison of related data sets in disparate parts of the distributed environ-
ment, using a suitable concurrent observation mechanism. The information from
such processes is collated and compared, not necessarily centrally, to uncover anoma-
lies based on the expected behavior of the system. In our research, we created three
such models.

The first model uses copies of messages passing through communication chan-
nels to create a model of its own expected behavior, i.e., the integrity of commu-
nication between source and destination. Comparing a data packet early in the
communication stream with itself at some later point provides an obvious oppor-
tunity to discover anomalies as the result of malicious packet manipulation. At the
same time, we can make use of encrypted routing information in packets to locate
the source of the manipulation within two routing hops. We designed and formally
proved (using our π-calculus) a security protocol, based on IP Traceback techniques
[66], for carrying out this operation. We also show how it could be used not only
to locate subverted processes, but also to manage systems under attack. This lat-
ter example demonstrates, in passing, the ability to model co-ordination between
attacking agents, using our techniques.

The second approach makes use of a stochastic, causal model of system ac-
tion instantiated using a process algebra variant similar to CCS (the calculus of
communicating systems[88]) and an associated order-isomorphic variant of process
graphs. We use this approach to create a negative model of system behavior which

3

1.5 RESEARCH CONTRIBUTIONS

captures potentially malicious behavior semantically by creating a set of lineariza-
tions which are legitimate and subsequently considering all non-feasible lineariza-
tions to be potentially malicious. In addition, we can augment this model using
known semantic patterns, which we label characteristic vectors to increase our abil-
ity to detect attacks. We create an observation mechanism for host-based anomaly
detection which allowed us to use multiple observer threads, distributed between
CPUs, to concurrently observe transitions in state at different levels of abstraction
in the system and in disparate, but related, kernel structures. The nature of such
transitions can be compared with the expected behavior expressed (negatively) by
the model. We demonstrated this approach using a “proof of concept” based on
rootkit detection using a Linux Kernel Module (LKM) and using sample rootkit
techniques to devise and test some basic observational possibilities.

The third approach makes use of classic process control engineering modeling
techniques to demonstrate how additional sensors could be included in a plant (on
an “out of band” (OOB) channel) and used to validate outputs from the sensors
used for the control of the plant. Again, the presence of anomalies enables us to
detect potentially malicious behavior. This approach is not unique, but, in this
case, was applied to a non-linear chemical process, which is an improvement over
previous techniques which only considered linear or linearized systems.

In each case, we seek to demonstrate that our techniques are resilient in the
face, not only of known intrinsic difficulties with establishing state in distributed
systems, but also of direct and indirect attempts by the adversary to undermine our
efforts.

Overall, the three techniques which we describe, taken together, form a method
for end-to-end observation and monitoring of network and host integrity in indus-
trial control systems (ICS). The threat model we devise and the associated algebraic
modeling techniques provide a means of formally proving such methods for spe-
cific attack scenarios.

Our approach is limited at this stage in its development by a lack of suitable
model checking tools (which represents another kind of research challenge). In
addition, we focused primarily on the development of initial models and further
testing and simulation to relate our results to real-world worlds, including address-
ing limitations on the performance and capability of industrial control systems, is
required. At this point, such limitations are only dealt with theoretically.

Future development will focus on enhancing these basic techniques using tim-
ing information and more sophisticated approaches to state estimation. Our final
goal is to demonstrate that we can detect integrity attacks, despite adversary so-
phistication in stealth techniques, in sufficient time to provide a managed interven-
tion for a significant subset or category of industrial control systems. Each of the
techniques individually also warrants additional research.

1.5 Research Contributions

Our work makes the following original contributions:

• A formal adversary capability model, adapted from Dolev-Yao, suitable for
dealing with the action of malicious processes/agents with a suitable π-calculus

4

1.6 ORIGINAL PAPERS

instantiation

• A traceback technique for detecting the source of integrity attacks in networks

• A causal model for creating linearizations of host behavior and an associated
observation mechanism for detecting kernel-level rootkits

• A “proof of concept” approach to identify aberrations in non-linear plants
under control, using basic systems engineering techniques

1.6 Original Papers

Our research is based on several original papers which we summarize here. In
[77], we define a formal adversary capability model which would be capable of
representing the action of malicious software in systems. We extended this model
to include the ability to reason about groups of processes co-operating to achieve
malicious goals in [76]. We used variants of the π-calculus to express our theory.
The approach is primarily geared to proving security protocols and we provide
examples drawn from [76, 78] but can also be used for research in risk analysis and
attack modeling [79].

In [80], [83] and [85] we set out our approach to modeling expected behavior in
networked and multiprocessor systems. We also model and demonstrate the use
of multi-threaded observer process to monitoring such environments, using the
relatively simple example of a multiprocessor host to illustrate our approach [85].

Finally, we made use of process control engineering disciplines to create a math-
ematical model of how a specific non-linear biochemical process should physically
behave given certain reported observations from the SCADA system and compar-
ing these, using independent secondary measurements, with actual behavior. We
used a basic process control model to demonstrate the concept [84, 81]. We further
suggest that the two approaches of causal and data models can be conjoined [86],
providing the basis for future work in using process algebra with timing and so-
phisticated state estimation techniques to prove the success of detective approaches
for, at least, a subset of such systems.

1.7 Outline of Dissertation

Chapter 2 describes notational conventions and nomenclature.
Chapter 3 provides a literature review, including some background reading on

distributed systems and the mathematical prerequisites for understanding our re-
search.

Chapter 4 sets out in detail our research problems and our approach. We pro-
vide an overview of the difficulties of modeling adversaries and distributed sys-
tems and taking into account the actions of operators and of environmental factors.
We discuss the difficulties of detecting such an adversary and state our assump-
tions. We describe context-based anomaly detection and its application in our re-
search.

Chapter 5 presents the adversary capability model . We discuss the conceptual
models relating to distributed systems and to malicious adversaries making use of

5

1.8 SUMMARY

software attacks. We describe our approach to modeling adversaries in such en-
vironments. We provide two formal instantiations of the threat model, using the
π-calculus variants which we developed for the purposes of this research. Addi-
tionally, we provide a technique, using our approach, which can be used to calcu-
late impact analysis in such systems.

Chapter 6 is a direct follow on from chapter 5 and provides two examples of
how our formal modeling techniques may be used while giving an account of a
suitable security protocol, based on IP Traceback techniques, for anomaly detection
and locating potentially malicious processes. This chapter provides, therefore, both
a demonstration of how we can model processes and agents in systems and also our
first detective technique based on context-based reasoning.

In chapter 7, we focus on the question of host integrity and presents a process
algebra and a process graph variant, order-isomorphic to the algebra, which may
be used for specifying probabilistically the set of possible traces of a host system.
We provide a “proof of concept” observation mechanism for observing such traces
on a multiprocessor Linux host to demonstrate the validity of the approach. The
code may be provided in electronic format on request.

In chapter 8, we show how we can utilize additional sensor readings in a non-
linear control system which permit us to detect aberrations in its behavior which
may indicate potential system subversion. We provide a simulation of the process
control system to illustrate our approach.

Chapter 9 sets out our conclusions, discussing both the contributions and cur-
rent limitations of our approach, and suggests how each of the individual topics
covered in the previous chapters may be followed up as well as discussing the pos-
sibility of combining these approaches to develop real-time detection and response
capabilities, using sophisticated state estimation techniques for anomaly detection
in distributed environments, and proving these methods using a combination of a
process algebra with timing and process control techniques.

1.8 Summary

In this chapter, we have outlined our research questions and the approach we have
taken to them. We have also listed our original contributions and the papers which
form the basis of this dissertation.

6

Chapter 2

Notation and Definitions

One Mathematical Cat, Please!

Dr. Carol J.V. Fisher Burns

2.1 Preamble

This chapter outlines the mathematical conventions followed in the text and defines
key terminology. A glossary and appendices supplement this chapter with further
detail.

2.2 Set and Algebraic Operations

We use conventional notation for set representation and operations. Sets are gener-
ally assumed to be finite and naı̈ve set theory is sufficient as a theoretical founda-
tion. Capital letters are used to represent sets A,B, We use A to refer to a set
with sets as its members where members are distinguished by subscript notation,
hence A = ∪iAi. Membership is denoted by a ∈ A or Ai ∈ A. Let A be a set, then
2A is the power set of A.

Arithmetic and algebraic conventions are followed. Variable names x, y, z, . . .
or U, T,R, . . . may be upper- or lower-case in line with conventions for represent-
ing engineering calculations and subscripted, if required. The normal operations
{+,−, ./} are used with their expected meaning. Where it is clear ab is substituted
for a.b to indicate a product.

Dot notation (Newtonian) is used to represent differential products. Let x be
formula then ẋ represents first-order differentiation over x and ẍ represents second
order differentiation over x.

2.3 Distributed Systems

A formal introduction to distributed systems, along with the examples used in our
research is provided in appendix B. Such systems consist of processes and chan-
nels. Processes consist of non-deterministic choices of sequences of functions. The
most basic functions are communication functions - for sending and receiving mes-
sages. Other functions may be introduced for transforming the content of mes-
sages. Channels are not treated separately from processes in this thesis. They are
represented by corresponding functions for sending and receive messages between

7

2.4 PROCESS ALGEBRA AND CALCULI

distinct processes. Messages may be assumed to represent data items or vectors of
data items.

In general, we use capital letters P,Q,R . . . to represent individual processes
which may be subscripted using the index set P1, P2, . . . , PN , where N is the num-
ber of processes. P may also represent a set of processes, where subscripts are
going to be employed 1. The meaning is clarified by the context.

Messages are treated as variables which are represented by lower case letters
u, v, w, . . . which again may be subscripted. A message may stand for a single data
item such as the name of a process or channel or a data value or for a complex data
structure such as a packet. A vector of messages is represented by using ṽ. The
usage should again be made clear by the context.

We use subscripted variables si and ei to refer to states and events in distributed
systems and correspondingly refer to the set of states Si for a process Pi or set of
events Ei. A set S is the set of all states of all processes P (likewise E,though we
treat only with states in our research).

In general, states are treated as partially ordered sets or posets. We also define
and create de-composed partially ordered sets or deposets which are partial orders
de-composed as lattice structures with each state having an infimum and supre-
mum (inf and sup). Various partial orders may be used in relation to states– a total
order or chain, “happened before”, potentially caused and caused2.

Order relations may be represented by the notation (S;≤) or (S,;). We say,
under a given order, that a state s precedes a state t, written s � t, or vice versa t � s
else we write s‖t meaning that s and t are incomparable. We may also distinguish
between s � t in a local process, written s → t, and s � t in communication
between two , written s; t.

2.4 Process Algebra and Calculi

We provide a more lengthy introduction to process algebra and calculi in appendix
A. In general, we prefer the term “process algebra” to describe both algebras and
calculi as these theories of processes represent the same family of mathematics [5]
where distinctions between different algebra depending on choices over functions,
concurrency and binding of operators. The algebraic representation of processes
in process algebra bears a strong relation to the use of notation in dealing with
distributed systems.

In general, processes and sub-processes are represented using capital letters
P,Q,R and may be subscripted. The term sub-process is used loosely here. A
process may consist of a single sum of non-deterministic sequences of functions or
a set of concurrent processes. But a non-deterministic sum in a process may also
be regarded as a subprocess. Processes consist of functions which may be regarded
as the names of states which are constant 0-ary functions or n-ary functions over
names (where names are messages as defined in section 2.3).

The operators we use to express order relations between states are dot a.b to
indicate sequence, which may be written ab where there is no ambiguity, p + q to
indicate non-deterministic choice, which may be exclusive for two sequences p and
q and p|q to indicate that states p and q are concurrent. We also use ā . . . |a . . . to

1We do not use P here as P is not a set of sets.
2The last is generally not used because the cost of computation is too high.

8

2.5 TERMINOLOGY

indicate sending and receiving of messages along a channel a, i.e., a communication
function.

In the π-calculus, we also use the period x(s).y(z) to indicate a sequence of
events. We expand the set of operators to distinguish between exclusive choice
p⊕ q, which indicates either p or q but not both, and contingent choice p+ q, which
means either p, or skip, followed by either q, or skip, dependent on the validity
of the action. We also add silent functions which are indicated by Greek letters
α, β, . . .′ or symbols, e.g., ↑, and defined for each modeling application. We used
brackets 〈. . .〉c for names which are being sent and (. . .)c for receiving names. Char-
acteristics c which may be associated with names are shown as a subscript external
to the brackets as they may also relate to a characteristic of the communication
function such as routing which are free until a name is received and only bound to
the characteristics of the name received. The process definition operator for the π-
calculus is ::= and for individual process states during a proof by :=. Just = is used
for the process algebra defined in chapter 7. Action relations or transitions between
states are represented by a→ where a is the event which causes the transition. In a
proof reduction, each succeeding set of equations representing state is preceded by
→.

We define n-ary functions in the π-calculus algebraically and functions result,
written ⊃, in a vector of names, which may be empty. The ⊃ operator symbol was
selected to avoid confusion with the proof reduction symbol→ , which would be
caused either by using→ or else 7→.

In the process algebra, proofs relating to bisimilarity are not required in our re-
search. Our aim is to create a set of traces which represent the linearizations of a de-
fined set of concurrent processes using term re-writing to create a sum of alternate
possible sequences and their probabilities. We use⇒ to show a concurrent process
implies a non-deterministic sequential trace. We formally prove π-calculus expres-
sions using the techniques of reduction and actions relations. These are explained
in appendix A and we introduce these sections by PROOF, though no theorem may
precede them.

2.5 Terminology

We have already discussed the terminology of distributed systems and process al-
gebra in sections 2.3 and 2.4 respectively. Further information may be found in
appendices A and B. The two example distributed systems we use in our research
are also covered in appendix B along with associated terminology. A glossary of all
terms is provided at the rear of this work, but we cover the basic usage of terms in
this section.

Critical infrastructure systems here refers to any system where a computer is
used to control physical phenomenon in order to ensure not just our prosperity but
also our survival as a civilization (using this term in the proper sense of “living in
cities”). Without industrial systems ensuring energy, communication, transporta-
tion, waste disposal, water purification and so forth on a large scale, modern society
could not function. As a corollary, attacks on such systems can disrupt and, in some
cases, seriously threaten our well-being. There are various kinds of systems with
distinct control infrastructures.

9

2.6 SUMMARY

In our research, we focus in particular on industrial control systems (ICS) which
are often, slightly misleadingly, referred to as SCADA (supervisory control and
data acquisition) systems. The term “SCADA” is somewhat misleading because a
SCADA system represents only a part of a control network. A complete control
network will also contain a distributed control system (DCS). A SCADA system
communicates with a DCS, also known as a field system, on a best effort basis, both
to update telemetry and also to issue instructions to, for example, alter system set-
tings by opening or closing valves or solenoids in actuators . The DCS executes in-
structions on a real-time basis and provides updated readings, either on a planned
schedule, on update or on request, back to the SCADA system. The distinctions are,
perhaps, less important today than they were in the past and sometimes we simply
refer to process control networks (PCN) to emphasize the system under control.
In the same way, remote terminal units (RTU) and process logic controllers (PLC)
may be referred to as process control devices (PCD) to conflate what is now a less
meaningful distinction in the devices’ operating philosophy. We may also, more
simply, talk about control units.

A final note on the use of the word “process” is that clearly computer processes
and process control represent two distinct semantic meanings, the first referring to
ICT systems and the second to kinetic processes. To make this distinction clear, we
frequently use the term “plant” or “plant under control”. Plant is also used as a
term to mean a set of differential equations representing the (kinetic) process under
control. The distinction is not all that important for our purposes and the reader
may simply regard the plant as the control unit plus the kinetic process which it
controls.

2.6 Summary

This chapter summarizes the mathematical conventions followed and basic con-
ventions with regards to terminology. Where appropriate, the reader is referred to
relevant appendices, which contain additional detail.

10

Chapter 3

Literature Review

Isn’t there always a cat napping
on whatever you’re reading?

Anonymous

3.1 Preamble

This chapter reviews the relevant literature and compares and contrasts approaches.
The review has been divided by subject. We discuss our modeling approach and
related work on the use of process algebras, software agency, risk analysis, net-
work attack/defense modeling and formal threat models. We also outline the re-
cent history of malicious software development and its detection. We examine, in
general, approaches to intrusion and anomaly detection in relation to both SCADA
systems and host-based intrusion detection strategies and the use of IP Traceback
techniques for tracing the location of malicious activity. We list background reading
material covering the prerequisites for reading this thesis.

3.2 Background Material

The material in this thesis on the nature of distributed systems was taken from [46].
The discussion of multiprocessor systems was based on [16] and is summarized
in appendix B. The following books provide a thorough grounding in industrial
control systems and related security issues - [67, 17, 65]. A summary, based on
these sources, is provided in appendix B. The process engineering techniques were
derived from [13].

3.3 Process Algebras and Calculi

Automated testing is one basis for specifying systems and proving the validity of
protocols or the safety and liveness of system behavior [12]. However, a process
algebra allows us to create an abstract specification which may also be verified
using equational reasoning or using model checking or a combination of both [7].
Our algebraic formulation of the protocol uses an applied π calculus [34] which
was developed from CCS (calculus of communicating systems) by Robert Milner
[88], along with Davide Sangiorgi and David Walker.

The development of process algebra and calculi during the 70s and 80s pro-
vided a theory for the development of concurrent and distributed systems in the

11

3.4 THREAT MODELS

same period from early beginnings in the 60s. Previously, only Petri nets provided
a theory of concurrency or message passing and program semantics were cemented
into a input/output model which did not take account of non-deterministic aspects
of concurrent and distributed programming. Our use and variation on these mod-
els represents a long line of continuing evolution [5].

One variation to the π-calculus was to make use of the concept of silent actions
to represent explicitly actions which are unobserved, but which may, in fact, be
vital for an operator to observe in order to take appropriate action w.r.t. the state
of system. This is clearly distinguished from the normal use of a silent action to
abstract from an interaction between processes which need not be observed. In
addition, we also extended the use of the silent action to functions which could
act over names (e.g., loss, delay) or processes (e.g., subversion). This extension was
particularly useful in developing a means of calculating the impact of agent actions
on systems in terms of their security characteristics.

The other variation to the π-calculus was transforming processes or sub-processes
into goals which could be grouped as families to create agents. This alteration al-
lows us to reason at a higher level about the potential outcomes (in terms of success
and failure) of the actions of agents. At the same time, we can transform this higher
order calculus into our usual π-calculus variant to check explicitly conditions for
success or failure of goals within the system.

The distinction between + and ⊕ operators in our π-calculus variants, repre-
senting contingent and exclusive choices, which is not present in the original, was
primarily introduced as a convenience for dealing with re-ordering of summations
under priority, but also allowed us to deal neatly with algebraic subclauses which
could be feasible or unfeasible under different conditions. It also provides greater
flexibility in specifying conditional branching structures.

Our algebraic specification for a causal interpretation of distributed systems
was based on a variant of CCS [88]1, with graph-theoretical elements clearly drawn
from work on finite state automata and process graphs. Our primary motivation
in developing this approach was to abstract away from communication considera-
tions when dealing with disparate parts of a distributed or multi-threaded concur-
rent system and focus on causal links.

3.4 Threat Models

We base our algebraic approach to the formal modeling of adversary capabilities
on [74]. However, we altered assumptions about communication and access capa-
bilities in the network. From the beginning we were not concerned with the secure
exchange of key material in systems, but with the feasible behavior of adversaries
in systems. Moreover, we broke sharply with normal assumptions regarding such
threat models by stating that our work focused on what we defined as closed dis-
tributed systems, not open networks. Importantly, our model is not monolithic -
meaning that malicious processes are not automatically the recipient or communi-
cator of all messages in the network [23][10]. In other words, we do not assume
a single adversary, but multiple potential adversaries or, at least, malicious pro-
cesses which are necessarily distributed in action and affected by the same issues

1Or basic process algebra (BPA), depending on the reader’s taste.

12

3.4 THREAT MODELS

as other agents in such an environment – a lack of knowledge of global state and
time, process failure or delay and communication loss or delay.

We expanded our model to include the concept of agency. Software agents
may act on autonomous decisions based on their perception of the environment
[129], possibly including learning behaviors. In recent years, malicious code has
exhibited increasingly agent-like behavior. This trend is likely to continue [87, 98].
Software agency also permits the attacker to launch more sophisticated attacks,
including co-ordinated attacks. There are several advantages to the attacker in im-
plementing this class of attacks [20, 19]. Dealing with such attacks also requires op-
erators to make dynamic interventions in the face of changing adversary behavior
as the result of agent cooperation. This requirement is underlined by the intrinsic
nature of critical infrastructure systems [17, 65] which may require to continue op-
erations, even in a compromised state. Finally, the scale and complexity of SCADA
systems makes dealing with a co-ordinated attack unfeasible by human operators.
The use of agents to respond autonomically in relation to a wide range of security
tasks provides a distinct advantage in countering agent-based attacks and could be
considered a long term goal of our research [118].

Our approach also lends itself to applications in risk analysis and attack/de-
fense analysis. Attacks and countermeasures have been modeled using attack/de-
fense trees. These techniques impose a logical order of alternating attack and de-
fense moves which counter each other. Game-theoretical approaches can be shown
to be equivalent in outcome [75, 63, 15]. However, such approaches do not nec-
essarily capture the (logical temporal) ordering of events or order dependencies
between sub-goals [75]. In our approach, it is possible to capture these orderings.

Another approach uses attack graphs to model and calculate exposures to net-
work attacks. However, in critical infrastructure networks, such techniques would
be limited due to the requirement, in many cases, to use vulnerability scans to cal-
culate attack reachability and limitations in scale and complexity for many such
approaches [55, 72]. Such approaches also appear to assume that the subversion
of a critical host is a requirement for attack success, whereas we argue that in dis-
tributed control system the subversion of any host or network node may – due to
the transitive effects of loss of data integrity, availability or confidentiality – turn
out to be critical.

In contrast, the use of attack coordination graphs addresses the issue of dis-
covering coordinated attacks and allows the generation of novel attacks, but again
appears to ignore the possibilities offered by the transitive effects of attacks on in-
formation flows in the system [19].

Our approach is based on the formal adversary capability model and the associ-
ated applied π-calculus [34, 77] used to define the capabilities’ action algebraically.
However, we extend the approach using a new class of silent functions which al-
low us to capture manipulated, diverted or denied traffic flows and determine the
impact on the system by considering the impact on application functionality in
support of the business processes. This is most similar to the use of Petri nets to
model penetration attacks [130, 32] in the sense that we can model attacker access
and communication within the network and determine subversion paths. At the
same time, however, we have the advantage of being able to consider direct data
manipulation and subsequent impacts on the business processes the system sup-

13

3.5 DEVELOPMENTS IN MALICIOUS SOFTWARE TECHNIQUES

ports.

3.5 Developments in Malicious Software Techniques

It is difficult to discuss the development of malicious software techniques without
immediately discussing intrusion detection methods and vice versa. The develop-
ment of each drives the advancement of the other. However, this section primarily
focuses on the development of stealth techniques and the threat to critical infras-
tructure systems which results. Subsequently, we will discuss the methods used to
detect the presence of malicious activity on host systems and in networks.

3.5.1 Background

Szor [117] provides a definitive and relevant account of the design and implemen-
tation of malicious software in the form of viruses, trojans, logic bombs and worms
and so forth. Various attack vectors are addressed – such as boot sector viruses,
overwriting viruses, appending and prepending viruses, parasitic strategies, ob-
fuscation, metamorphic and polymorphic techniques, in-memory techniques and
self-protection strategies – which constitute a fairly complete picture of how mali-
cious software has developed from early days. All of these techniques continue to
be of interest, not simply because history repeats itself – for example, boot sector
viruses migrating to CDs. DVDs and USBs – but also because even attacks with
novel features are likely to incorporate previous tactics [29].

3.5.2 Goals

The goals of malicious software writers vary from gaining kudos, winning IRC chat
wars, competing for resources such as botnets through fraud or other criminal gain,
to supporting political or state-sponsored goals [117]. In all cases, they represent a
threat to the confidentiality, integrity and availability of systems.

A notable trend in modern malicious software development is a move towards
targeted, or semi-targeted, attacks which may be state-sponsored in origin. These
attacks are known as APT (advanced persistent threats) and make use of social en-
gineering techniques to achieve their goals, an example being [69] – with relevant
ICS-related examples being [41] and [11]. Using either email or media, victims are
persuaded to take actions which load a dropper program for the malicious pay-
load onto their devices. Once the main payload has been downloaded, it can act
arbitrarily with regard not only to the host system it is on, but also, in general, in
relation to the network of which that host system is part, since many systems focus
primarily on perimeter defenses and ignore the enemy within. The “social engi-
neering” angle could be said not just to cover the human angle, but also target trust
mechanisms in systems, for example, using forged certificates to pass malicious
software programs as legitimate.

Such attacks can aim to steal information [69]. More serious and more pertinent
to our analysis, Stuxnet [41] represented the first highly public attempt to cause
damage to an ICS by manipulating control parameters and it has been followed
by other similar attempts such as Shamoon [44]. The key danger to such systems
lies in the loss of availability and loss of integrity due to attacker manipulation of

14

3.5 DEVELOPMENTS IN MALICIOUS SOFTWARE TECHNIQUES

hosts and the subsequent manipulation of communication between operators and
control units which hides the attack until too late [43].

3.5.3 Stealth Techniques

A key goal of attackers – and most relevant to our research – is the desire to hide
themselves from defenders. This effort can be divided into two phases –

• Concealment during initial penetration

• Hiding the fact or nature of the attack

• Maintaining a stealthy presence on systems

Original techniques for detecting malicious software during penetration pri-
marily relied on what is known as misuse detection. These techniques make use of
characteristic signatures representing short sequences of code or data strings which
could be used to identify a malicious program. These methods are still employed
today by commercial antivirus software (along with some of the others we will de-
scribe). Such techniques are bypassed by malicious software writers making use of
software obfuscation techniques, similar to those employed in digital rights protec-
tion [101]. Malicious software writers frequently encrypt their code during transit
and decrypt and execute it on successful insertion. Signature based techniques can
still work against decrypted code, so, in addition, polymorphic viruses introduce ob-
fuscation into the decryption algorithm – for example, introducing multiple NOPs
or changing the order but not the effect of instructions. Malicious software writers
may also alter the complete structure of viruses (metamorphism) and also obfuscate
the virus simply by adding further functionality [28, 90, 107].

Furthermore, during an ongoing attack, malicious software retains a true view
of the system state and presents defenders with a falsified picture of its state. Vari-
ous categories of attack behavior enable this. An attacker can hijack the control flow
of a program so that legitimate code is not executed, but only a malicious version of
that code. By control interception, the adversary may alter the control flow graph
(CFG) of code so that it acts maliciously. The adversary may also create software
which does not directly hook attack code but “taps” into its usage, for example,
manipulating the execve command in Linux systems. Furthermore, it is possible
for the attacker to contaminate kernel data (direct kernel object manipulation or
DKOM), for example, to reduce the effectiveness of random number generation or
to manipulate data structures producing inconsistent views of kernel states such
a process or module hiding or manipulating cache structures in security software
modules [9, 93, 100].

Detecting these contradictions, after concealment techniques have been applied,
represents a severe problem in commonly used computational models (see, e.g.,[91,
24]) as any illegitimate states are subsequently indistinguishable from legitimate
ones. The level of difficulty is increased because multiprocessing operating sys-
tems are characterized by non-determinism – that is, computation on such systems
must be regarded as a set of partial orders where memory management may force
one of a set of potential linearizations on the outcome.

15

3.5 DEVELOPMENTS IN MALICIOUS SOFTWARE TECHNIQUES

Either during or after an initial attack, malicious software writers and hackers
may also seek to establish a more permanent presence on a system by using rootkits
– so-called because the attacker needs to have escalated his privileges to superuser
(or root access) level to be able to deploy them fully. Like other malicious soft-
ware techniques, such methods have evolved over time as detection methods have
improved. Rootkits first appeared during the early 1990s. The sophistication of
such concealment techniques continues to grow and its evolution could be char-
acterized as an attempt to work “below the radar” in the literal sense of burying
malicious payloads at lower and lower levels of abstraction in operating systems.
Various kinds of rootkit exist. Applications at user level can conceal such code.
Software libraries used during compilation time may be affected. More recently,
attackers have focused on creating various means of hiding in kernels making use
of loadable kernel modules (in Linux) and dynamic linked libraries in Windows
[52, 56, 29]. These attacks make similar, but ongoing use, of the concealment tech-
niques we addressed above. They may also introduce backdoors into systems, al-
lowing continued ease of access, continue to attack the system (for example, using
key loggers or password crackers) and may also be used to attack other systems.
The presence of such software is characterized by the layering of techniques to cre-
ate an “offense in depth” capability which renders it difficult to be certain such
code has been successfully removed, particularly since it works actively to remove
evidence of its existence and to undermine detection mechanisms [29].

Novel techniques also continue to be developed [119]. Researchers in this area
have also demonstrated that virtual machines and hardware components or oper-
ating characteristics can also be used as a means of concealing the presence of ma-
licious code. In [50], the writer demonstrates how the ACPI BIOS can be altered to
download malicious software during the boot sequence with minimal alteration of
kernel structures. Rutkowska [105] shows that it may be even be possible to defeat
hardware-based monitoring and forensics techniques such as [8]. Virtual machines
become another way of hiding malicious code, either operating as a separate guest
on a hypervisor or making using of virtual machine manipulation techniques to al-
ter state undetectably in [106]. The operating characteristics of hardware on certain
processors may also be manipulated to create hiding places for such software by
manipulating memory spaces [33].

Finally, attack concealment applies not only to how malicious software obscures
the presence of its artifacts on systems, but also how it can attempt to conceal its
behavior from system operators by manipulating signals. Relevant to our research
are attacks, or potential attacks, which specifically target ICS [120, 116, 23]. ICS
are publicly known to have been subject to attacks incorporating the use of con-
cealment techniques with the capability to manipulate process signals on control
units [26], or communication routes [120] on a long term basis. Such attacks may
prevent an operator from acting to a relevant alteration in system’s state, or, alter-
natively, cause an operator to act inappropriately in response to a falsified report of
the systems state. The work by Svendsen et al. [116] is of particular interest since it
demonstrates that a naı̈ve use of statistical techniques can yield a misleading result
because attackers would be capable of “hiding in the noise”, something we also
demonstrate in our research in chapter 8. This requirement is underlined by the
introduction of sophisticated control processes which rely on multivariate controls

16

3.6 INTRUSION DETECTION

and hence require more complex forms of supervision [110] and by the alteration
in turnover rates in the labor market which means that experienced operators who
might be capable of sensing a change in system state due to their expertise in a
given system are likely to operate such systems and detect faults intuitively [43].

Clearly such attacks provide a strong motivation for research into defense tech-
niques due to the potential damage which could be caused, particularly in relation
to industrial control systems (ICS) [65].This can be split into the analysis of the in-
tegrity of communication on the one hand and the integrity of process control units
as hosts, on the other, including the integrity of signals communicated by sensors.

3.6 Intrusion Detection

In general, intrusion detection systems may be classified as host-based or network-
based [42]. They may use signature-based identification or heuristics [68]. They
may depend on statistical analysis for anomaly detection [59], or specify accept-
able system behaviors, thus identifying unwanted behaviors [62]. There has been
an emphasis on switching analysis from examining usage anomalies to process
anomaly detection - see [51] for an early example. Our work carries similarities
to this approach, but we distinguish it by focusing on the computational outcomes
of processes rather than their operation and thus we abstract away from architec-
tural considerations.

Our approach is most closely related to techniques in semantics- and specification-
based detection - for example, [1], but draws on the current context of systems be-
havior, including non-computational aspects, to overcome the limitations currently
imposed by considering program behavior in isolation [28]. We call this context-
based anomaly detection after [113].

3.6.1 Network-based Intrusion Detection on ICS

ICS form a vital part of the critical infrastructure and are attractive targets for ad-
versaries. Such systems are increasingly vulnerable to cyber attack due to modern-
ization and exposure to untrusted networks [124, 92, 65, 22] leading to increased
interest in intrusion detection [104]. As for conventional network systems, exist-
ing work divides between signature-based approaches, generally at perimeter de-
fenses, and anomaly-based approaches which address the insider threat and direct
attacks against control processes [43, 132, 71].

Our approach to detection is based on discovering anomalies in data content in
the network which are traceable to potentially malicious hosts or processes. Two
techniques are presented. The first is based on IP Traceback methods, normally
used for detecting the source of distributed denial of service attacks, and the sec-
ond on using process engineering techniques to uncover sensor anomalies. Unlike
much intrusion detection research which targets large-scale manifestations of ma-
licious activity such as worm infections [60], our work considers low-level covert
data manipulation – which over the lifetime of a system may be ultimately more
damaging to systems performance [73, 40].

17

3.6 INTRUSION DETECTION

3.6.1.1 Traceback Techniques to Uncover Integrity Attacks

Although the study of IP Traceback mechanisms was originally motivated by the
existence of denial-of-service attacks, as noted in [36, 109] there are other potential
uses for these techniques such as the analysis of legitimate traffic in a network, con-
gestion control, robust routing algorithms and dynamic network reconfiguration.
Nonetheless we have not encountered in the literature examples of the use of Trace-
back techniques for other purposes. Our example of using Traceback mechanism
to determine traffic integrity and to trace threats to traffic integrity appears to be
relatively unique.

We originally proposed the use of Traceback techniques in [86]. But we compli-
cated our approach by the requirement to compare sensor readings and the content
of instructions concurrently. The approach we set out here, based on [76], divides
the problem of considering network integrity from the issue of sensor integrity, and
consequently makes fewer assumptions. If we can determine where node subver-
sion has taken place, the use of state estimation techniques [114], can be confined
(except possibly for initial detection of anomalies) to consideration of the integrity
of control systems, hence lowering the overall computational burden on our ap-
proach.

In our work, we adopt the assumptions established in [109] for DOS attacks
regardless of a specific target domain:

1. Packets may be lost or reordered

2. Attackers send numerous packets

3. The route between attacker and victim is fairly stable

4. Network nodes are both CPU and memory limited

5. Network nodes are not widely compromised.

6. An attacker may generate any packet

7. Multiple attackers may conspire

8. Attackers may be aware they are being traced

9. A compromised router can overwrite any upstream information.

Clearly, these assumptions, with some change of emphasis, are as relevant with
regard to packet manipulation, dealing with loss of message integrity in a SCADA
environment, as they are to tracing the source of (possibly distributed) denial of
service attacks. We further augment these assumptions using a formal adversary
capability model we have developed for SCADA systems which postulates an ad-
versary which can subvert processes to work as “agents” on its behalf – see chapter
5.

There are a variety of traceback techniques. A useful, if brief, survey can be
found in [66] which summarizes currently researched techniques and the payoffs
in terms of storage and complexity. Such techniques are easily adapted to trac-
ing manipulated packets in distributed networks such as SCADA systems [128].

18

3.6 INTRUSION DETECTION

Each technique normally represents a payoff between router storage, packet length
and form and message complexity. Protocols may either use “pipeline” techniques
where packet routing information is stored as partial message copies at routers and
forwarded later to reduce throughput, or else linked lists inside packets containing
routing information. Such lists clearly grow rapidly in size. These payoffs may be
reduced using hybrid techniques and probabilistic packet marking [96, 3]. iTrace
is a variant ICMP based traceback [115, 57] where a copy of the packet is and sent
to both the originator and destination addresses (in the context of detecting nodes
causing denial of server) – and is related to our technique which also uses a form of
message passing. Another interesting approach is an algebraic alternative using a
finite field GF (p) and solving for a polynomial of degree d with at most d+ 1 hops
[36]. Another similar technique requires solving a linear equation over a field Fq
[108], but allowing a number of router nodes to be stored, bringing results similar to
those we achieve in terms of reduced complexity. A paper which demonstrates the
advantage of gathering information about sets of nodes, i.e., paths, rather than in-
dividual nodes, is [61]. These results are also comparable with [39] which similarly
uses node authentication information to reduce the number of packets required to
trace subverted nodes during DOS attacks. Better results are obtainable by deter-
ministic marking schemes – for example, [131].

The advantage of our approach is that, since both the origin and destination
of packets are known, it enables us to efficiently pinpoint agent processes using a
two-directional process of elimination . It also identifies packet injection as well
as manipulation. Compared with probabilistic packet marking where the expecta-
tion of the number of packets required to trace an attack is given by a hypergeo-
metric probability distribution and is in the order O(n log n) [109], we are able to
use knowledge of network routes and operations (defined algebraically) to rapidly
eliminate valid nodes with notable economies. Although it is possible to apply
our approach deterministically, we selected against this approach because the ex-
tra load on communication could undermine some performance sensitive indus-
trial control systems.

The packet encryption scheme we use is not original and is based closely on the
one proposed in [115]. This approach is resilient to attack since insufficient time
exists for guessing keys while both the packet identity and its contents are hidden
from the attacker [133], hence packets cannot be directly manipulated and may only
be arbitrarily delayed, dropped, re-routed or vandalized. However, these forms of
attack only delay rather than disrupt discovery – section 6.2.6.

The traceback protocol developed was an example of what we call a context-
based anomaly detection technique – making use of the identity relation between
message packets in a distributed system. In common, with the other techniques
we develop, it requires multiple, concurrent observers. In this cases, all feasible
process nodes in the system may be be implicated, albeit probabilistically, in the
observation of messages as they pass through the system. The development of a
traceback protocol for checking the integrity of communication channels yielded
some nice results in terms of how the additional information garnered could be
employed to locate the adversary or to retain control of a system under attack. The
work is incomplete in the sense that no particular existing protocol was identified
as a candidate for the approach or tested in a simulation in contrast to normal test-

19

3.6 INTRUSION DETECTION

ing procedures such as examples in [12]. However, our aim at this stage was to
establish the principle formally that such techniques could be used, opening up the
way for future research into practical applications.

3.6.1.2 Using Sensor Measurements to Uncover Integrity Attacks

Recent research on the security of SCADA and DCS systems has focused on anomaly
detection at the protocol level, since traffic on networks interconnecting SCADA or
DCS components should be well-characterized and hence particularly amenable
to such techniques, e.g., Coutinho et al. [30]. The predictable nature of SCADA
protocol and usage is perceived to be an advantage in detecting system anomalies
[27, 132, 120], but the limitations of this approach in the face of knowledgeable at-
tackers capable of manipulating computational states or utilizing signal “noise” to
obfuscate attacks, based on legitimate commands, making non-anomalous use of
ICS protocols – have been clearly recognized [132, 120, 116, 23] – that is, in the pres-
ence of channel compromise, adversaries may use protocols correctly and present
both syntactically and semantically correct messages, resulting in a failure to sig-
nal anomalies by conventional detection techniques. We regard this as particularly
true of non-linear systems [77].

Approaches using physical state estimation techniques have also been researched
[113], but these have been limited to linear systems. But many industrial systems,
including biological and chemical processes, however, exhibit non-linear behavior
or require non-linear control laws. This result in limited accuracy or less well-
defined conventional models [43]. Real-time detection techniques are an important
area for research in this context [25].

The use of additional sensors [14, 30] which make use of differing points of view
for anomaly detection [120] has been proposed. Taking this approach, we show that
success can be achieved even with a small number of such sensors. We use func-
tional models to map systems [99] and identify suitable redundant characteristics for
evaluating process behavior. We combine readings of these values with a simula-
tion of process operation to detect signal manipulation [13]. This approach obviates
the need for linear approximations found even in explicit control models as used,
e.g., by Lin et al. [70]. This approach has strong parallels to fault detection strate-
gies in SCADA environments [123], but in contrast to fault detection approaches,
sensors cannot be assumed to be – in general – reliable. It also requires us to have
reliable models of system’s behavior which we can base on well known process
engineering techniques [13] and, in future, advanced state estimation techniques
such as non-linear Kalman filters [114].

3.6.2 Host-based Malicious Software Detection

As we have seen in section 3.5, intruders on computer systems may make use of
a variety of concealment techniques on hosts in both user space and kernel space
to hide their presence and to disguise alterations to distributed operations in net-
works. It is known that malware detection is undecidable[28] which explains the
co-evolution of malicious software techniques and detection methods [101]. It is
also clear, therefore, that there is no “silver bullet” in terms of detecting malicious
software and techniques are necessarily additive.

20

3.6 INTRUSION DETECTION

No one detection mechanism will be capable of detecting all potential attack
vectors, although we will argue in this thesis that attackers are forced to reveal
themselves, especially during the early stages of attack, by alterations to the state
of security mechanisms and business logic.

In addition, a primary concern has become to protect the detection mechanism
itself from attacks which would seriously compromise its ability to perform, using
both obfuscation techniques and by isolating it from direct tampering, while, at the
same time, ensuring that the “semantic gap” between the knowledge of host state
by the monitoring system and the real-time state of the host does not become too
wide [135, 58].

On host systems, co-processors for general security applications have been pro-
posed in [134] and for intrusion detection in [135] and [89]. The advantages of such
approaches are that they render the ID mechanism in general immune to tamper-
ing and they enable the use of various ID techniques such as sampling memory
areas, process flow and memory shadowing. Their disadvantages are that they are
unable to interpose themselves between the malicious process and the operating
system and because they operate asynchronously, they suffer limitations in their
ability to reconstruct kernel states [135].

More recently, VMM-based (virtual machine manager) approaches have proven
popular such as proposed by [45] and [125]. VMM permits techniques such as
memory shadowing as discussed by Riley [103] and tracking instructions and calls
as exemplified in [37] and [54]. Techniques also include seeking to reconstruct state
based on a VMM “snake’s eye view” of operating system actions [58] and tracking
changes to control flow induced by malware [100]. Advantages include once again
isolation from attack (although some data-based attacks may theoretically be pos-
sible) and, in this case, VMM approaches are capable of interposing themselves in
the way of malignant alterations to the kernel either through preventing such al-
terations directly or by redirecting kernel space invocations to a known good copy
of the kernel, thus passively foiling the success of any alterations. Disadvantages
relate to the additional overheads placed on processing tasks and the cost of recon-
structing a picture of kernel activity from observations of hardware state and the
subsequent loss of granularity.

Multiprocessor approaches to intrusion detection have been described in [127],
applying the co-processor approach to a multiprocessor environment monitoring
execution through dividing up security and productions tasks between processors.
A multithreading-based approach to monitoring system reliability is shown in [95],
similar to that in [94], proposing the use of speculative execution and paralleliza-
tion of security checks on multiple concurrent processing units. These approaches
lose the advantage of complete isolation from malicious software, though they re-
tain some aspects of it. They gain greater granularity in their view of the kernel,
although this has to be weighed against costs in performance overheads. They are
also able to interpose themselves between malicious software and its target, but to
do so must block processing at certain key stages. Other approaches include sam-
pled execution of kernel modules before loading to determine malignancy [126]
similar to “sandboxing” processes used by anti-virus software [117], this traces the
control flow of the module and uses naı̈ve Bayesian inference to determine whether
or not the module is malicious.

21

3.6 INTRUSION DETECTION

An alternative to both co-processors and VMM is the use of PCI cards and soft-
ware engineering tools such as Daikon for both automated inference of data invari-
ants and detection of violations . This approach can be undermined by malicious
manipulation of hardware and does suffer, as do other off-operating system meth-
ods, from asynchronous readings of state [105][8].

A key handicap in specification-based approaches to intrusion and anomaly
detection is that the static analysis of systems is limited by the constraint that it is
problematical to generate and test all possible inputs to a system [101]. Work has
been carried out on overcoming this limitation [8].

Another approach which uses kernel resident software uses pro-active memory
guarding techniques to prevent rootkits from loading [18, 102].

Our approach to host-based detection in chapter 7 is based on semantic anal-
yses and makes use of multiprocessor technology, but in a way which is intrinsic
the environment rather than as a security “add-on”. We do not rely on obfuscation,
concealment or isolation to prevent attacker tampering. Rather we utilize the in-
trinsic advantages of operating in a concurrent, non-deterministic environment to
render our mechanism unfeasible of prediction and control and benefit from hav-
ing a potentially large number of simultaneous observers monitoring both attacks
and the defensive mechanism itself. We deal with asynchronous OS states – which
we argue are an intrinsic feature of modern OS – by recognizing the need to have
a strong model of the environment to deal with such states and associated dynam-
ically altering structures [80, 93, 122, 49]. Our proof-of-concept implementation
benefits from having direct access to kernel states in contrast to both co-processor
and VMM approaches, allowing us greater granularity of analysis, yet without the
performance overheads associated with utilizing speculative threads. In addition,
our model includes determining from the outset where attacks will be focused, thus
reducing the overall burden of kernel integrity monitoring, which we underline by
utilizing lightweight threads and a message passing architecture which does not
place undue burdens on operating system performance in current systems. A cur-
rent limitation is the inability to intervene in process flows.

We combine this concurrent observation mechanism with a semantic model of
system behavior which uses the process algebra to specify cause and effect be-
tween, possibly disparate, parts of the operating system [83]. This allows us to
define violations of rules regarding data structure consistency [9, 122, 8] which
can subsequently be detected by our concurrent, multi-threaded observer mech-
anism. However, with the difference, that instead of inferring invariants from data
structures, we propose to use the relationship between data structures to infer ex-
pected behavior. For example, in a Linux system, if all tasks alters, then we can
also reasonably expect run list to alter. We base some features of our approach
– such as the use of monitors and vector clocks on [112], but our approach may
be distinguished by the creation of a language for specifying behavior across dis-
tributed systems as opposed to a single multi-threaded application and the pro-
posed techniques calculating potentially malicious behavior and the creation of an
external observation mechanism rather than one which is intrinsic to the applica-
tion observed (and hence less vulnerable to subversion). Our approach is imple-
mented as a kernel driver and focuses on semantically significant events similar
to [97], but, unlike this approach, does not use multiple kernel drivers, but a sin-

22

3.7 SUMMARY

gle loadable kernel module with multiple observer threads. These methods are
also self-guarding since they allow the observation mechanism to, at least, quasi-
autonomously, observe its own action. This allows us take the more risky approach
of directly engaging in intrusion detection in the kernel rather than isolating our-
selves from it, hence closing the “semantic gap”, but protecting ourselves through
the numerical superiority our observation mechanism and its ability to self ob-
serve. The following papers [122, 9, 8] provide further examples of attacks which
this approach may be used to detect. We argue our approach is also applicable to
distributed network systems - though the practical aspects remain a problem for
future work [48].

3.7 Summary

In this chapter, we have provided a review of related literature and clearly de-
lineated where we have made an original contribution to information security re-
search. Our research could be characterized as applying previously discovered
techniques to novel domains. We use a formal adversary capability model, a tech-
nique normally applied to the analysis of cryptographic protocols, to characterize
the behavior of malicious software in networks. We make use of traceback tech-
nique, normally used to trace the source of denial of service attacks, to trace the
source of an integrity attack. We exploit process graphs and process algebra to sup-
port modeling causality in systems between disparate, but related structures and
process, rather than considering direct process interaction. Finally, we apply the
use of additional sensors and a knowledge of control laws to show how we can
predict non-linear system behavior in ICS for the purposes of anomaly detection
– in contrast to previous approaches which focused only on linear systems and
tended to rely on already extant signals.

23

Chapter 4

Problem and Approach

Honest as a cat when the meat’s
out of reach.

Old English saying

4.1 Preamble

We provide a formal statement of the research issues. Our aim is detecting and,
ultimately, responding to the action of malicious software in ICS, even though the
latter goal is outside of the scope of this current research effort. To do this, we need
to be able to effectively model the action of malicious processes in distributed sys-
tems and to reason over its outcomes and the outcomes of any detective measures
and subsequent interventions or the applicaton of preventative techniques. Subse-
quently, we can use an instantiation of this model to prove any detective counter-
measures. We outline the three techniques we have selected.

4.2 Research Issues

We consider the following research issues: first, the ability of the adversary to con-
ceal his presence and actions in systems, both at host and at network level; second,
the arbitrary nature of adversary actions and systems; third, the issues we face in
demonstrating the success and survivability of any detective techniques in the face
of adversary knowledge or direct adversary attack, and, fourth (throughout), the
additional constraints imposed on us by the nature of distributed systems and by
the particular examples of distributed systems, industrial control systems, we have
selected for our research.

In chapters 1 and 3, we describe the increasing sophistication of malicious soft-
ware in disguising its presence on systems and undermining detective efforts. –
including the ability to conceal the presence and action of malicious software on
systems. For the purposes of our research, we assume an adversary which makes
no protocol errors and has the ability to conceal system states from the operator.
The difficulty of detection is increased in distributed systems and multiprocessor
systems (which imitate their characteristics [46]), since a system run may result in
multiple valid linearizations – see appendix B – while, at the same time, syntac-
tic clues are obfuscated by techniques such as polymorphism and metamorphism
and, equivalently, in kinetic systems, where the adversary may take advantage of
“noise” to hide their presence in the signal [116]. Hence we require novel forms of

24

4.2 RESEARCH ISSUES

detection which do not rely on unforced errors in adversary behavior, but can be
used to interpret system states, so as to uncover his presence.

This leads onto the second issue. An adversary’s goals are, at least, initially un-
knowable and hence their actions unpredictable. How can we predict the effects of
his behavior and know how and where to apply any observation and monitoring
methods? Malicious agents may be potentially found in any part of a distributed
system. The effects of their attack will likewise be distributed across the system and
may be transitive or recursive in nature. Examples of possible goals are: stealing
system resources, using systems as communication relays, undermining process
logic, stealing information or carrying out denial of service attacks. Even within
these categories, there are numerous variations. These factors alone make predict-
ing the possible range of anomalies difficult. We must consider not just what the
adversary can do, but what the adversary must do. The ability to set up multi-
ple possible scenarios with some degree of ease also contributes to understanding
potential adversary actions.

It is not just the adversary which is unpredictable, but also the environment
and its defenders. An adversary may not always succeed in subverting processes.
Their goals, as the result of artifacts in the environment, may not always be suc-
cessful. Operator actions and system defenses may prevent, or aid, the adversary
in achieving his aims. Additionally, the system may be attacked simultaneously by
multiple foes who can compete, or cooperate, to gain system resources. Any model
of incursion and its effects should allow us to consider the actions of all agents in
the system.

We need also consider the resilience of any detective techniques to attack. Since
a primary goal of the adversary is to resist detection, an obvious means of achieve-
ment is to undermine or disable detective mechanisms. We assume that the adver-
sary has a complete knowledge of such mechanisms and hence any method must
be resistant to adversary subversion despite the knowledge the adversary has of
the system and its defenses.

The final set of constraints under which we must operate are obvious, in the
sense that they are natural to any computational problem – that is, any approach we
propose should not exceed the performance or capacity of the systems for which
it is proposed and should be of manageable computational complexity. However,
it is worth noting that in ICS, these constraints are emphasized by the low compu-
tational capacity of the equipment, which is dedicated in nature and is intended
to have decadal lifetimes, which means that we may have to use legacy computa-
tional devices which are not generally able to bear the implementation of modern
security mechanisms that place high performance demands on the system, partic-
ularly in a real-time environment. This points to using techniques which have low
complexity to implement.

To summarize, we are required to solve, at least partially, the following prob-
lems:

• How to model distributed systems under arbitrary interventions by multiple
agents

• Develop formal or experimental techniques, at least, to “proof of concept” for
anomaly detection in distributed systems

25

4.3 RESEARCH APPROACH

• Demonstrate that these techniques are resistant to adversary attack

• Show the techniques created are low in computational complexity

• Prove, formally or by experiment, that our methods take account of dealing
with multiple linearizations of state.

4.3 Research Approach

We begin by setting out a threat model for the action of malicious software in sys-
tems. This adversary is characterized by the possession of data manipulation ca-
pabilities typical of Dolev-Yao type models – such as message replay, falsification
and so forth – but differs from that approach by limiting adversary communication
to a small subset of processes in the system rather than making the adversary the
recipient and sender of all messages in the system. Hence the adversary is required
to subvert additional processes and endow them with suitable capabilities in or-
der to increase his control over the system. We can interpret these actions at the
level of both individual processes and groups of processes (or goals) belonging to
malicious agents which collaborate with each other.

We formally instantiate this model using two variants of the π-calculus . This
modeling technique allows us to naturally consider the interaction of processes,
whether malicious or friendly, in a distributed environment. It also allows us to
freely mutate processes as they are subverted by the adversary. Adversary capa-
bilities are considered to be functions in the system which affect how messages are
treated. Hence we can set up various feasible scenarios and play out the result-
ing behavior of the system, including any potential interventions by operators, or
friendly software agents which can also be represented functionally. This approach
becomes the basis for developing any security protocols or methods we might use
as it allows us to formally prove the outcome of our techniques.

For the purposes of our research, since we recognize the adversary may choose
from a wide range of possible attacks, we choose to focus our attention on a smaller
subset of integrity attacks. This is driven by the greater importance of integrity
over confidentiality in critical infrastructure systems and, since we are considering
stealth methods, attacks on availability, such as large scale denial of service at-
tempts, do not qualify by their obviousness. We select three examples of integrity
attacks where stealth techniques must be applied:

• Manipulation of messages in the network between the operator and the con-
trol unit

• Manipulation of state reporting in operating systems (on a putative host such
as an RTU)

• Concealment of alterations in sensor signals at a control unit

The logic of our choice is that the adversary in addition to manipulating mes-
sages to control units must also conceal the results of his actions from operators.
There are two places in which this could be done – first, at a point in network com-
munications, second, at the control unit itself. The control unit will also have a host

26

4.3 RESEARCH APPROACH

operating system and associated state reporting mechanisms that the adversary
must undermine to conceal his presence on the system.

Intuitively, our approach attack detection is based on the fact that integrity at-
tacks alter data and business logic in the system, but that related data, which may
not have been subverted (since we assume the adversary may not subvert all pro-
cesses in a system), exists in other parts of the environment at the same time and,
additionally, updates to such data are subject to the vagaries of process delay and
message loss, providing a potential gap in time for detection of anomalies to take
place. By placing a suitable set of concurrent observer processes in the system, we
can observe these data artifacts and determine if the relations which exist between
them are consistent or anomalous. Where anomalous, this information can be used
in turn to detect the loci of attack.

We refer to our overall approach as context-based anomaly detection – though
we do not claim to be original in our phrasing [113]. We regard this concept –
in modeling terms – to be closely related to semantics-based intrusion detection ,
specification-based intrusion detection and model-based intrusion detection [101].
Indeed, in many cases, the methods will overlap. The difference lies in the fact that
the systems we deal with are distributed and represent a mixture of computational
and non-computational data sources.

In algebra, a context is a hole [·] in a system where if we substitute one process,
say P , for another, say Q, and the behavior of the system does not change, we say
that P is congruent toQ and write P ∼= Q. In our approach, we expand this concept
to include systems which can send messages – W,V – where two processes P (W)
and Q(V) may be of different kinds (for example, kinetic versus computational)
and the messages W,V they process of different natures, yet nonetheless we can
establish a map between the expected behavior of P over W and the expected be-
havior of Q over V , at least, for the messages they have received to date. We have
the choice of comparing P (W) and Q(V), if they are system processes (preferable),
or else P (W) may be a model (or anti-model) of Q(V). Normally, we consider such
messages in terms of system transitions (which we denote by using δ). Hence we
talk of δ-context and δ-congruence. This notion has similarities to Galois connec-
tions, since the behavior of P (W) may be an abstraction of the behavior of Q(V)
and the behavior is considered to be order-preserving with respect to cause and
effect, and so we use similar notation.

Formally, we define the concept of δ-congruence which is the relation which
underpins any contextual relationship between disparate parts of a distributed sys-
tem.

Definition 4.1 (δ-Congruence)
Let P,Q be two distinct sets of processes. Let W and V be messages sent to P and Q
respectively where there is a map φ : W 7→ V and a map ϕ : V 7→W . We write P (W)
δ

Q(V) and say P is δ-congruent withQ where there exists a map α : P (W) 7→ Q(V) and a
map β : Q(V) 7→ P (W) which expresses the expected behavior of P and Q over messages.
The δ notation transitions in state.

The behavior of P and Q is determined both by the process functionality and
by the messages they receive. The reason we refer to this as a congruence is the

27

4.3 RESEARCH APPROACH

maps are order-preserving with regard to causality, though the messages may not
be ordered. The map may be total or partial.

We provide some sample cases.

Case (1) We may consider some restriction of the respective message sets Wr, Vs
when considering subsets of processes associated with P,Q where r ∼ s.

Case (2) If there is a defined delay of j units such that Vk+j = Wk we can assert
Pk(W)�δ Q(V)k+j .

Case (3) If V ' W , for example, in a kinetic system, there exist minor differences
due to signal disturbances, then we can hold that P (W) �δ Q(V) for a distance
function φ such that φ(W,V) = ε 6 D where D is a threshold value and ε is an
n-ary vector returned by φ.

Case (4) We can assert that case 3 also exists due to an approximate delay rather
than a specified delay as in case 2, thus Pk(W)�δ Q(W)Ω(k+j) where Ω represents
a probability distribution over the time at which V ∼W . This model applies where
there are minor differences in message delivery timing in the system.

Case (5) We may also devise a negative case for any of the above instances where
P (W) �δ ¬(¬Q(V)). This negative relation means that given the messages W
which P receives, Q should not receive the messages V .

Using δ-congruence for context-based anomaly detection requires us to identify
suitable relationships and model these. The model may be trivial or complex to
derive. We also need a suitable concurrent observation mechanism to monitor the
behavior of P (W) and Q(V) in relation to each other, taking account of potential
delays in processing or communication to ensure we preserve the contextual re-
lationship. We have developed three techniques during our research which we
outline.

Traceback Protocol We make use of the applied π-calculus to define and prove a
traceback protocol to be used during network communication to locate subverted
processes. This made use of the trivial fact that a message sent between two known
endpoints should retain integrity during transmission. Monitoring for a loss of
integrity along the chain of communication allows us to identify and locate po-
tentially malicious processes and, also, to instruct the operator to ignore falsified
messages.

Multi-threaded Observation Our second method focuses on the issue of mali-
cious software detection in operating systems in multiprocessing hosts. We show
how we can build a model, using a process algebra variant, of cause and effect be-
tween disparate data structures and processes in the system. We also illustrate how
we can create a suitable observer mechanism with an associated message-passing

28

4.4 SUMMARY

architecture for detecting state transitions. Inconsistent readings indicate the pres-
ence of potentially malicious activity.

Sensor Augmentation Finally, we show how additional sensors placed on a plant
could be used to detect inconsistencies in the control relations based on a knowl-
edge of the relationships between sensor readings. We use a simple example of a
heat exchanger used for flash pasteurization for these purposes. This use of sensor
is not novel, but we extend its use to the simulation of non-linear systems and show
how a small number of sensors can achieve the task – a key point where, as in ICS,
cost savings are a priority.

Mathematically, the proposed models represent different cases of δ-congruence .
In terms of attack resilience, in each case, we can demonstrate that either the pro-
tocols are secure – for example, by the deployment of out of band channels or the
use of suitable encryption techniques – or else that the technique makes use of both
numerical advantage , in terms of the number of observing processes, or stochastic
techniques which render the adversary incapable of knowing when they are being
observed. In the case of the host observation technique, we additionally can use
the mechanism to, quasi-autonomously, observe its own action. These advantages,
particularly taken in combination, render our techniques, if not immune, at least,
highly resilient to attacker subversion.

4.4 Summary

In this chapter, we have set out the key problems we face and our approach to them.
We consider the following research issues: first, the ability of the adversary to con-
ceal his presence and actions in systems, both at host and at network level; second,
the arbitrary nature of adversary actions; third, the issues we face in demonstrating
the success and survivability of any detective techniques, fourth (throughout), the
additional constraints imposed on us by the nature of distributed systems and by
the particular examples of distributed systems we have selected for our research.

We create a formal model of adversary action in systems to enable us to prove
any detective (and, ultimately, defensive) countermeasures. We identify relation-
ships in our environment between disparate datasets and use these relationships
to detect anomalies. Our approach is based on the assumption that the adversary
cannot subvert all parts of the system simultaneously and that process and commu-
nication delays allow a gap for detecting inconsistent data transitions which break
the “context” of the system.

29

Chapter 5

Attack/Defense Analysis in Distributed
Systems

I have seen the enemy and she is
my cat.

Humorously corrupted
quotation

5.1 Preamble

We set out a conceptual threat model which we instantiate using the π-calculus.
This allows us to demonstrate the interaction between multiple adversaries and
operators in a distributed system environment, including the impact of various in-
terventions. A primary characteristic of such systems is that they mutate over time.
We propose extensions to the π-calculus which enable us to capture this complexity.

5.2 Threat Model

We begin by defining our threat model conceptually and set out the assumptions
underlying its construction. A conceptual construction frees other researchers and
ourselves to consider other forms of instantiation. Our threat model represents an
adversary with the capability to inject malicious software into systems and manip-
ulate process behavior. In fact, we define two models,the malicious process model
and, its extension, the malicious agency model . The fundamental units of the mod-
els are respectively processes and goals – which are very similar in construction, but
ultimately differ in capability. The latter allow us to reason over agency in systems.

5.2.1 Malicious Process Model

The malicious process model forms the basis for the malicious agency model. We
begin with the malicious process model. We start by defining a process:

Definition 5.1 (Process)
A process P is an entity which can:

1. Send messages

2. Receive messages

30

5.2 THREAT MODEL

3. Act conditionally on messages (i.e., make decisions)

A process in our definition is identical with a process as defined in a distributed
system – see appendix B. Clearly, a malicious process is one which does these ac-
tivities to nefarious ends. Acting conditionally on messages includes any uncondi-
tional actions (where the condition to act is set to >). We define the set of malicious
processes inductively.

Definition 5.2 (Set of Malicious Processes)
Let Ω be the initial malicious principal. Let P,Q be any system processes. Let > be the
relation subverts. Then

1. Ω is a malicious process.

2. If Ω > P then P is a malicious process.

3. If P > Q then Q is a malicious process.

We label the set of malicious processes Mal. There is no requirement to assume
that processes in Mal originate from the same adversary.

5.2.2 Malicious Agency Model

The malicious agency model is an extension of the malicious process model which
allows us to capture higher order relations between processes (which we redefine
as goals), regarding them as acting in a co-ordinated fashion where they belong to
the same agent, while goals belonging to different agents may act either coopera-
tively or competitively. Hence we can reason over alliances of agents. As a result,
the relationship “subvert” > is replaced by a relationship “recruit” . which not
only alters the intrinsic nature of a goal (e.g., from friendly to malicious), but also
alters its relationship with agents in the system (i.e., transferring it from operator
to malicious adversary control). We start by defining the nature of agency in our
theory.

We define agency informally as the ability to garner information about envi-
ronment by receiving messages, to make autonomous decisions based on the in-
formation in those messages and to influence the environment through taking ac-
tion by sending messages. An agent is, therefore, any entity capable of these three
feats[129]. More formally, we regard agents as subsets of goals in a goal domain,
where goals are a kind of process.

Definition 5.3 (Goal)
Let G be a goal then G:

1. Belongs to an agent

2. May be active or inactive

3. Receives messages from goals

4. Send messages to goals

31

5.2 THREAT MODEL

5. Acts conditionally on messages (i.e., makes decisions)

6. May invoke other goals belonging to the same agent

else let G be the null goal G0 which terminates itself.

Sending and receiving messages is defined as for processes. Acting condition-
ally is similarly defined where the truth or falsehood of a predicate may be used to
select subsequent goal action. The relationship “invoke” allows one goal to activate
another goal. Goals, unlike processes, may be initially active or inactive. Sending
a message to an inactive goal has a null effect in contrast to sending a message to
a process which has not previously acted. We include an null goal G0 for a goal
which allows other goals to terminate their action by invoking it. The domain of
goals and the domain of agents is related as shown in the following definitions.

Definition 5.4 (Goal Domain)
The goal domain is the set of all goals which form a distributed system S the universe of
discourse.

Definition 5.5 (Agent)
Let A be an agent then A is a subset of goals in a goal domain which may invoke each other.
Goal invocation is a partial ordering over the set of goals belonging to an agent.

It should be clear that a single goal may be an agent in its own right. We also
define the concepts of agent domain and agent subdomain.

Definition 5.6 (Agent Domain)
An agent domain is the set of all agents. Hence the agent domain is a mapping φ of the
universe of discourse from goals to agents.

Definition 5.7 (Agent Subdomain)
An agent subdomain is a subset of agents, selected depending on application.

For example, a malicious subdomain could consist of a set of agents which are
co-ordinating an attack on a system.

A primary application of using agent subdomains is the distinction of malicious
and non-malicious agents.

Definition 5.8 (Malicious Agent)
A malicious agent is an agent to which malicious goals are assigned and which must belong
to a malicious agent subdomain.

We sharply distinguish malicious and non-malicious agents. If a goal is re-
cruited by a malicious agent, it is also a malicious goal or agent (depending on the
application) belonging to the same agent subdomain as its recruiting agent. No
non-malicious agent may contain a malicious goal or belong to a malicious subdo-
main. It may be helpful to regard a particular agent as being the primary agent in
a malicious subdomain, responsible for co-ordinating the actions of other agents
belonging to that subdomain.

Malicious goals are capable of sending malicious messages to other goals (be-
longing to agents in other agent subdomains) and recruiting them to work on behalf

32

5.2 THREAT MODEL

ACC Reachability or access
COM Overt Communication
SUB,REP,MOB Create and send malicious messages
SP-PAR Spawn Additional Processes
MN Message Read
MV Message Diversion
MD Message Delay
MP Message Drop
MR Message Replay
MM Message Manipulation
MI Message Injection
CC Covert Communication
D-MAT Decision Making
LB Learning Behavior
COOP Cooperate
P Indistinguishability Assumption

Table 5.1: Adversary Capabilities

of the malicious agent. Recruiting an agent also acts to separate the goal from its
original agent subdomain, create it as a distinct agent, and transfer it to the agent
subdomain of the agent whose malicious goal recruited it. We note that there may
be more than one malicious agent in the system and there is no requirement for ma-
licious agents to belong to the same agent subdomain. In other words, it is possible
for more than one malicious agent to exist in the agent domain and be responsi-
ble for launching distinctive attacks. It is equally possible for malicious agents to
belong to the same subdomain and coordinate resources and actions in an attack.
Moreover agents belonging to distinct malicious agent subdomains may cooper-
ate. Finally, because a single goal may be an agent and by recruitment replicate
itself and subsequently terminate its previous instantiation, we consider it is pos-
sible for agents to be mobile in the agent domain. The malicious agent model can
map the set of malicious processes Mal to the set of malicious agent subdomains
MalS , converting processes to goals.

5.2.3 Towards A Formal Adversary Capability Model

Having defined malicious processes, goals and agents along with their subdomains
and their universes of discourse, we proceed to examine the capabilities of a single
malicious process or goal in more detail. These capabilities arise naturally from the
ability of the process (or goal) to participate in the action of a system by sending
and receiving messages and by acting (conditionally) on messages. We use a set of
labels – table 5.1 – to describe the capabilities which may be attributed to malicious
processes or goals. We show that these capabilities are derived by considering a
variant of the Dolev-Yao model for open distributed systems, but making the as-
sumption that the distributed systems we deal with are closed networks – a concept
which we define. We justify our assumptions in terms of our target environments.

We provide an informal description of these capabilities. These capabilities

33

5.2 THREAT MODEL

should be understood to be semantically distinct and we seek to make this distinc-
tion clear in our description of them. By considering memory which is accessed,
authorized or unauthorized, on a shared basis to be a communication channel (or
buffer, in the case of storage) the model can also be applied to host-based systems.
In the latter case, it is usually easier to refer to “data” rather than “messages”. So,
for example, a process may inject false data rather than false messages.

ACC represents the bounds set on the communication with a subset of processes
(or goals) in the network, directly or indirectly. These bounds are set by the
knowledge of process addresses available to a malicious process.

COM is the capability of sending and receiving messages with a subset of pro-
cesses in the network. COM should not be mistaken for ACC. It represents
the channels directly available to a process for sending messages, not the set
of channels known to a process.

SUB, also REP or MOB is the capability of a malicious process to subvert a legit-
imate system process. SUB is exercised by sending a malicious message m
from a malicious process to another process P which causes P to be overwrit-
ten “>” or “.” as a malicious process P ′ (goal). SUB is dependent on ACC and
COM. There is nothing to prevent one malicious process being overwritten
by another malicious process. REP refers to the ability of agents to replicate
themselves by subversion and MOB indicates that replication makes agents
mobile in distributed systems by changing ACC and COM relations. These
additional labels are occasionally useful for distinguishing some types of ma-
licious action.

SP-PAR means that an overwritten process may spawn other processes which also
act, possibly cooperatively (COOP) as malicious agents. The original process
may, in fact, be left untouched, but malicious processes are spawned in par-
allel with it.

MN refers to the capability of malicious processes to intercept messages not in-
tended for them. This capability is limited by COM. The malicious process
may only receive messages directed to or via the channels controlled by it.
This contrasts with other formal adversary capability models where the mali-
cious principal is assumed to receive all messages in the system and send all
messages in the system.

MV is the capability to divert messages to unintended destinations.

MD is the capability to delay messages from reaching their destination.

MP is the capability to prevent messages (by dropping them) from reaching their
destination.

MR is the capability to replay messages which have been previously received or
intercepted.

MM is the capability to manipulate the content or format of messages.

34

5.2 THREAT MODEL

MI is the capability to inject false messages.

CC is the capability for malicious processes to communicate covertly amongst them-
selves.

D-MAT is the capability of malicious processes to make decisions regarding mes-
sages. This is simply a repetition of the definition of a process or a goal to act
conditionally on messages.

LB is the capability of malicious processes to alter their behavior in response to
their environment. It does not necessarily imply a learning system in the com-
mon sense, nor is it necessarily an example of decision making. For example,
malicious processes which have their capabilities upgraded by another mali-
cious process or the adversary may be regarded as exhibiting learning behav-
ior.

COOP is the capability for malicious to cooperate with other malicious processes,
not necessarily associated with the same adversary process. 1

P is the assumption that a malicious process may appear to be a legitimate process.
More precisely P states that an agent will not make any egregious process
errors.

Our threat model is recognizably a variant of Dolev-Yao [38], but we make some
distinct assumptions which lead to the conclusion that an adversary must subvert
processes to act on its behalf.

The assumptions underpinning the Dolev-Yao model are [74, 38]:

• The environment consists of a large network of computers, devices and re-
sources (which we treat abstractly as a set of processes)

• The network is open, so that principals can join and starting send and receiv-
ing messages without authorization

• Malicious principals can:

– Eavesdrop on messages

– Alter messages

– Forge messages

– Duplicate messages

– Re-route messages

– Delete messages

– Inject messages

As a result, a malicious principal can:

• Obtain any message passing through the network
1This label has not appeared previously in published work, but it is a natural implication of that

work to include it here.

35

5.2 THREAT MODEL

• Act as a legitimate user

• Can initiate a conversation with any other user

• Can receive messages from any principal

• Can send messages to any principal by impersonating any other principal

This implies that in the Dolev-Yao model any message sent to the network can
be considered to have been sent to the adversary and any message sent by the
network can be considered to have been sent by the adversary. In other words, the
network can be considered to be the adversary. In addition, other restrictions on
computing power in the Dolev-Yao model are elided as they pertain to the security
of key exchange protocols which are outside the scope of this research. They may
be re-introduced if necessary.

These capabilities are a recognizable subset of those which we attribute to a ma-
licious process. Following the reasoning in [74], we have also included decision-
making capabilities and, based on [98], learning behaviors as well. The indistin-
guishability assumption P follows from our remarks on the evolution of stealth and
obfuscation techniques in malicious software development. Finally, we have added
the ability of processes (goals) to subvert (recruit) other processes (goals) to com-
plete our model.

But it does not follow that our model is a superset of the Dolev-Yao model.
The restrictions we introduce on sending and receiving messages differentiates our
model from the common Dolev-Yao model and, indeed, other monolithic threat
models [10]. We do not assume the adversary is the network. Furthermore, we
do not assume the adversary may subvert any process. Subversion attempts are
regarded as non-deterministic in outcome and, in particular, we assume that the
adversary may only act on a strict subset of processes, usually much smaller than
the number of processes in the system.

We formalize these notions by defining the distributed systems we deal with
as closed. In the following discussion, the word “process” may be substituted by
“goal”.

Definition 5.9 (Closed Network)
Let S be a distributed environment as defined in appendix section B.3.1. If

• Each process Pi ∈ S communicates with a strict subset Q ⊂ P of other processes

• Let P,Q be any processes in S, P and Q may only communicate if they share a
channel

• Every process must be authorized to interact with other processes in S.

We describe S as a closed network.

Let Ω be the adversary and external to S. It is easy to see that even if Ω can
persuade processes in S to interact with him that interaction is limited by COM,
that is the number of processes in S with which he shares channels, and by ACC,
the number of processes he knows which he can address directly or transitively by
COM. We consider a strict subset of processes W ⊂ P which may communicate
with systems which are outside of S, directly or indirectly.

36

5.2 THREAT MODEL

Definition 5.10 (Initial Attack Surface)
Let S be a closed network consisting of a set of processes P as before. Let W ⊂ P be the set
of processes which may communicate with other systems than S, either directly or indirectly
(as defined by ACC). We call W the initial attack surface of S.

Hence, if the adversary is located in a process which external to S, its access to
S is limited to the processes in W . Two possibilities exist:

• The adversary may engage in an apparently “legitimate” conversation with
a process in W and attempt to persuade this process to provide further in-
formation about other processes in the network, to pass messages or obey
instructions

• The adversary may attempt to subvert a process in W and use it to launch
further attacks against the other processes in S

The first option is limited. We assume any process Wi ∈ W will only be able
to carry out legitimate operations. For example, it will not manipulate messages
directly, though it may send messages to the adversary and, possibly, accept falsi-
fied messages in return. However, it can only be in receipt of messages which can
be legitimately sent to a process Wi or processes which it has informed the adver-
sary about. To increase control of the network, it is useful to subvert additional
processes to increase the range of messages which may be actively manipulated.
So it becomes more fruitful for the adversary to subvert a process Ω > Wi where
Wi is a process in W , the initial attack surface, creating a secondary attack surface,
exposing further processes for subversion until an attack goal may be achieved.

Definition 5.11 (Secondary Attack Surface)
Let S be a system consisting of a set of P processes as before. Let > be “subvert” as before.
Let Wi ∈ W be a process in the initial attack surface and let Vi ∈ V and be any processes
where V 6⊆ W . Then we can have Wi > Vi. We say that V forms a secondary attack
surface.

Any process once subverted may have the capability to subvert other processes,
so the attack surface increases as mediated by ACC and COM.

To maintain the constraint on the adversary that only a strict subset of pro-
cesses may be subverted, we treat subversion as non-deterministic with regards to
outcome (for any single attack). Hence, let P,Q be any processes then if P ≯ Q,
no further subversion attempt can be made on Q without justification, such as a
change in subversion method, or the appearance of a fresh attacker.

It should be clear that there are limitations on the action of malicious processes
in our model, including the adversary (or initial) processes, which are considered
to be neither omnipotent, nor omnipresent in the system, nor omniscient with re-
gard to messages. The presence and impact of malicious processes on a network is
constricted by ACC and COM – that is, the standard assumption, using for exam-
ining secure key exchange protocols, that a malicious process receives all messages
regardless of the intended recipient is held to be false in our model. A malicious
process may only receive messages intended for it. Likewise it may only send pro-
cesses by channels it owns and to processes it knows. This limits the size of the at-
tack surfaces, both initial and secondary. The capability to subvert another process

37

5.2 THREAT MODEL

by SUB is also limited non-deterministically. The capabilities for message manipu-
lation, including decisions over what to do with messages, are exactly those set out
in the Dolev-Yao model[38, 74]. Other aspects of Dolev-Yao such as the inability to
guess nonces in a sufficiently large random space are not generally required for our
analysis, but can be introduced if desired.

Our assumptions can be justified in terms of our target environments. A mul-
tiprocessor host may, of course, be considered as a single (heavyweight) process
which may be subverted and which communicates with a limited set of other such
hosts or network devices in a network. However, internally, it may also be mod-
eled as set of processes which communicate via memory. However, memory access
must be authorized and memory is segmented accordingly, closing the internal
“network”. An ICS system, on the other hand, is clearly a large network, consisting
of multiple processes. But access to this network is intended to be constrained to
legitimate users and there are a limited number of processes (i.e. hosts or network
devices) which can interact with other systems external to the network. Hence it
should be clear that the malicious process model and, by extension, the malicious
agency model, may be applied to both environments.

Finally, an obvious question is how do malicious processes inherit capabilities
from the malicious process which subverted them. This is not straightforward. It
is certainly not the case that if P and Q are processes and P is a malicious process,
then if P > Q that Q can only inherit the capabilities of P . For example, Q may
have greater access ACC to other processes than P . Q may be able to intercept
messages by MN while P may only communicate COM with Q. We also have
to consider that if malicious processes can communicate among themselves, then
such communication can be transitive. So if P,Q,R are malicious processes such
that P > Q > R then it is possible for P to send a message by Q which increases
the capabilities of R above those of Q. Hence we should consider that capabilities
are derived both from the process of creating a malicious process, upgrading a
malicious process and the degree of access and communication which a malicious
process enjoys in a network of such processes in relation to the overall system.

5.2.4 Operator Capabilities

As a final part of our conceptual model, we also need to understand operator capa-
bilities in a distributed system and what constraints exist on operator knowledge
of the system. In fact, we can turn our adversary threat model on its head and
consider that adversaries are simply malicious operators and that the capabilities
which they possess are identical to the capabilities which operators have. For ex-
ample, operators and operator processes are limited by ACC and COM. Operators
can “subvert” processes – though we normally call this upgrading or installation.
Operators and non-malicious processes can likewise manipulate messages, again
for non-nefarious ends, make decisions and exhibit learning behavior and, in a net-
work of networks, co-operate with other operators and processes outside of their
subdomain. Hence we can also define a non-malicious set of principals Sys which
corresponds to Mal and, in treating operators as agents with goals, we can replace
Sys by SysG which the agent subdomain for non-malicious principals.

The operator may also have some advantages over malicious agents in terms of
their knowledge of global time and state. Intrinsically distributed systems deny an

38

5.3 APPLIED PROCESS CALCULI

operator a knowledge of global time and state and limit knowledge of local states,
e.g., with regard to deadlock or other conditions. However, [46] also reveals that
there exist a number of possible approaches to resolving these issues using various
classes of distributed algorithm. For example, there exist algorithms which enable
us to solve questions with regard to the timing and ordering, even the causality, of
events.

We provide two examples of classes of algorithms for establishing time and
state (which may be skipped by the knowledgeable reader) in appendix B which
we take advantage of in our research. These show that operators may make special
efforts to gain knowledge of global state and time to provide themselves with the
ability to control and intervene in computations as required. However, these algo-
rithms are not suitable by themselves for solving the problems we present as they
assume that, while processes may be subject to error, they are not subject to delib-
erate tampering or attempts to conceal state. Nonetheless, where appropriate to
solving problems to do with detecting adversary presence in distributed systems,
we assume or explicitly make use of the existence of such algorithms.

5.3 Applied Process Calculi

We introduce an applied π-calculus and a higher order Goal TransformG{π}-calculus
to allow us to model the adversary (and other principals) in distributed environ-
ments. The basic π-calculus and associated techniques is described in appendix A.
In this section, we set out the capabilities of the applied π-calculus and the goal
transform calculus, and discuss the other extensions which appear during the the-
sis. This calculus is used to define formally the adversary capabilities we have
already discussed. It is also used to define the normal behavior of systems and op-
erator actions. In particular, we extend the π-calculus using silent functions which
give us the capability to express concretely concepts such as data loss or security
impacts which otherwise appear as inactions in the system which would normally
be shown as a skip or null value and to allow us to calculate the impact of adversary
actions on systems which would otherwise be difficult to track.

5.3.1 Capabilities, Summations and Processes

The prefixes which are its capabilities (for action) are:

π ::= x̄〈y〉c|x(z)c|f(z)c ⊃ ud|τ |[L]π

The meaning of the capabilities is given in table 5.2. The set of names is ex-
panded to include the names of data variables and constants as well as channels.
We also make a point of including a subscript, which represents the set of charac-
teristics associated with a name. In effect, we treat names as data packets and char-
acteristics describe attributes of those data packets such as data values, message
priority, probability that a message will be sent without loss and so forth. Charac-
teristics may only be potentially rather than directly observable - that is, they may
represent behavioral artifacts that cannot – without special efforts – be known by an
operator, such as message corruption. This is a key feature of our approach where
we seek to demonstrate the limits of what can be observed in the face of adversary

39

5.3 APPLIED PROCESS CALCULI

x̄〈y〉c Send a name, with its characteristics

x(z)c Receive a name, with its characteristics

f(z)c ⊃ ud A function over a name and its characteristics

τ Silent functions

[L]π Conditional exercise of any capability, except mismatch over channel names

Table 5.2: π-Calculus Summands and Processes

action to prevent such observation and how we may overcome these limitations, at
least partially.

We introduce an n-ary function over names which results in a new name being
created, or a current name (or set of names) being updated. Functions may be
defined by some suitable encoding. The addition of such functions enables us to
express adversary capabilities and to construct security protocols.

The use of silent actions or functions requires some comment. This takes on a
special meaning in our calculus. It is not an abstraction from the action of a process
as is conventional in process algebraic systems, rather it represents an action which
a process may take which may not be observable by the operator unless special ef-
forts are made. In some cases, they may not be observable at all. For example, mes-
sage loss λmay only be observed by the operator, or by other processes, if there is a
mechanism (assumed, or explicit) for detecting this condition. However, decision-
making τ by the adversary can never be observed by other processes. Other exam-
ples of silent actions are ω for “subversion option”, φ for “process failure” and so
forth. Such silent actions can also be treated as a class of n-ary functions for certain
applications.
L is defined to be any first-order logic with ordering and equivalence. There is

a restriction over the conditional capability. As with the π-calculus, where names
represent channels rather than messages, the mismatch prefix cannot include a 6=
sign to prevent processes losing capability for action. The formulation y 6= y where
y is the name of a channel is an example of this violation. The summations and
processes of the applied π-calculus are:

P ::= M |(P |P ′)|νz P |!P
M ::= 0|π.P |M +M ′|M ⊕M

The meaning of the processes and summations of the applied π-calculus are
given in table 5.3.

The primary difference in the processes and summations is the introduction of
a contingent choice operator, in which both sides of the operator may be selected
(normally, in sequence of appearance) and acted on. This adds the following action
relations:

40

5.3 APPLIED PROCESS CALCULI

0 Null action: a process which does nothing

M A sum over capabilities

M ⊕M ′ Alternate composition, exclusive - or

M +M ′ Contingent choice; a sequence of potential actions

π.P A process with a single capability;
the process cannot proceed until it executes

P + P ′ An exclusive choice between P and P ′

P |P ′ P and P ′ proceed independently;
but may interact by shared names

νz P The scope of the name z is restricted to P

!P Infinite composition of P |P |P , allowing process replication

Table 5.3: π-Calculus Summands and Processes

ASUM-L P
α−→P ′

P+Q
α−→P ′+Q

[1]P

XSUM-L Q
α−→Q′

P+Q
α−→Q′

[0]P

This contingent choice operator may, therefore, be regarded as a way of encod-
ing a sequence of “IF . . . THEN . . . ” statements. However, it is primarily introduced
to make it easier to deal with message prioritization on send or receive and to deal
with invalid code snippets created by re-writing processes or the nullification of
goals (see section 5.3.4). The ⊕ operator binds more tightly than the + operator.

Where message priorities are used, sequences formed using this operator may
be re-ordered in accordance with priority, which partly explains its inclusion – see
section 5.3.2. It also becomes useful where processes are modified on the fly or
goals invoked or nullified, so a feasible action in one version of a process may
become unfeasible when it is re-written, for example, to exclude the channel name
by which the action is carried out. Hence, the condition [1] placed on the process
P states that P may take its next action if and only if the conditions for P to act
exist. These conditions may be explicit (such as a boolean expression in front of the
sum P) or implicit, such as P containing valid actions like sending a name along
an existing channel. As soon as P ceases to be valid, for example, by terminating,
Q may act, provided it also is a valid sum.

We note that x̃may be used to indicate an n-tuple of names x1, x2, . . . , xn and we
use := as our defining operator for processes, e.g, P := (νz̃) Q. Conventionally, a
sum M can be represented using

∑
. We sometimes use the symbol

∐
to index an

array of concurrent processes.

41

5.3 APPLIED PROCESS CALCULI

5.3.2 Applied π-calculus with Priorities

A variant of the applied π-calculus, used in [84], characterizes messages with prior-
ities. This was used to discuss the effect of different communication strategies be-
tween messages in real-time and best effort systems on external hacking attempts.

Message priority is easiest explained by some examples of its use. For example,
equation 5.1 states that z should be sent along channel x after u is sent along channel
y.

P := x̄〈z〉2.0 + ȳ〈u〉1.0 (5.1)

This is regarded as being different from equation 5.2:

P ′ := x̄〈z〉2.ȳ〈u〉1.0 (5.2)

which states that z should be sent with priority 2 and u with priority 1, but
maintains a strict order of communication by “.”.

To make this clear, we re-order messages over +, e.g., equation 5.3 is structurally
congruent with equation 5.1.

P := ȳ〈u〉1.0 + x̄〈z〉2.0 (5.3)

We also give | a special meaning in this variant so that messages sent concur-
rently between any two processes are sent in priority order. In equation 5.4, the
process with the highest receive priority will obtain the message.

Q := ȳ〈u〉1.0|y(z)2.0|y(z)1.0 (5.4)

It should be noted that where the two processes are not in communication with
each other, the messages may be sent in arbitrary orders – see equation 5.5 where
the transmission of messages will be arbitrarily ordered.

R := x̄〈u〉1.0|ȳ(z)2.0|y(z).0|x(s).0 (5.5)

Priorities may be attached to both send and receive actions, although we nor-
mally select only one of these options. Messages of equal priority are sent in non-
deterministic order.

5.3.3 Applied π-calculus with Routing

Attaching a routing address to a name is another feature which was introduced in
[84]. In essence, every channel in a system is assigned a unique name. Uniqueness
(of channel names) must be retained under substitution, but substitution does not
require that identity be preserved – that is, if the name of a channel is changed,
any subsequent message routed to that name will either arrive with a new channel
bearing that name, or fail (if the name no longer exists). Unique channel names
can be assigned using numbered subscripts, or by labeling channels with process
names. Routing is performed by checking the routing address associated with a
name and conditionally forwarding it2.

2This represents an alteration from the original proposed semantics for routing used in [84] , but
is more convenient to use.

42

5.3 APPLIED PROCESS CALCULI

For example, equation 5.6

P := x̄Q〈a〉xR .0|x(z)Q.0 + (x̄S〈z〉[S].0⊕ x̄R〈z〉[R].0) (5.6)

routes a to channel xR. The routing is conditional and this is shown by using
the square brackets “[]” in the subscript, but could also be expressed using dotted
notation, e.g., [z.r = R]x̄R〈z〉R.0 where r is the channel address. The latter syntax
would be useful in the context of creating a scripting language equivalent to the
calculus.

5.3.4 Goal Transform Calculus

The goal transform or G{π} Calculus is a variant of the applied π-calculus which
makes the calculation of the interaction of agents and goals rather than processes
central to the abstraction. An agent is defined as a set of goals. The capabilities and
action relations of the calculus subsequently allow goals to act sequentially or con-
currently, goals to invoke other goals conditional on success or failure, goals to send
messages to goals by channels and choices to be made between goals or whether
goals may be validly exercised. This calculus was introduced in the context of ana-
lyzing co-ordinated attacks and multi-agent defenses and is intended to be applied
to variants of multi-agent attack/defense scenarios in distributed environments.

We describe the G{π}-calculus.If G is a goal then

G ::= 0|π.G|νz G|G.G|G+G|G⊕G|(G|G′)|!G|[L]G (5.7)

where the possible actions α of G are defined in Table 5.4.

Term Semantic
0 Null action

π.G Exercise a π-calculus capability
νz G Declare a new goal and its (restricted) names
G.G Execute goals sequentially

G+G′ Execute feasible goals in order
G⊕G′ Execute exclusive goals
G|G′ Execute two goals concurrently

!G Replicate goal action
[L]G Execute a goal, based on a first order logic condition

Table 5.4: G{π}-Calculus Syntax

where L is a first order logic with equivalence and ordered relations and π is a
capability of the π-calculus which we have defined in 5.3. Goal actions are, there-
fore, the capabilities of the applied π- calculus – see section 5.3.1. The action re-
lations of sums and goals remain the same as for sums and processes with the
exception of goal invocation.

By convention, G0 is the null goal which terminates itself without invoking
other goals. Hence

43

5.4 INSTANTIATING A SYSTEM MODEL

||G.G0||A → ||0||A (5.8)
||G0.G||A → ||0||A (5.9)

With respect to action relations, it should be noted that a goal does not terminate
unless it invokes the null goal G0, but may invoke a countably infinite number of
other goals.

An agent is defined as a set H of goals ‖H‖Agentname. As well as names which
are restricted to the scope of goals, names may be declared within the scope of an
agent using the conventional syntax (νz) ‖H‖Agentname. Since not all goals will be
activated when an agent initially activates, we may use the syntax •G to indicate
which goals are initially, or currently, active. The goals for each agent are defined
using applied π-calculus statements and any associated constants, variables and
functions are defined (formally or informally).

As with the π-calculus, proof is by reduction or the use of action relations. A
proof reduction is indicated using the notation in equation 5.10.

||Goal.Subgoal.Action||Agent → ||Goal.Subgoal.NextAction||Agent (5.10)

where NextAction is any capability or a goal invocation. This reduction tech-
nique is identical to that of the π-calculus [34], except that goal labels are used to
limit the consideration of the reduction to the active (•) goals of each agent. It
should be noted that where a goal is not active, it may for convenience be elided
from the listing of any proof. It is re-inserted when, or rather if, it is invoked.

5.4 Instantiating a System Model

We illustrate how a simple SCADA system can be specified using the π-calculus.
We assume that a SCADA environment consists of a set of processes P – partitioned
hierarchically into supervisor processes S, one or more generations of communi-
cation processes M and control loops consisting of controllers C, sensors R and
actuators A. The set of names N = {W,X, Y, Z} are names of channels which are
indexed to show assignments. We use the notation ν X to indicate ν x1, x2, . . . , xn.
U is the set of names for commands and data values.

P := ν WXY ZU(!S1| . . . |!Si|!M1,1| . . . |!Mi,j |!C1,1,1| . . . |
!Ci,j,k|!A1,1,1| . . . |!Ai,j,k|!R1,1,1| . . . |!Ri,j,k) (5.11)

We map channel names to processes as follows:

S 7→W,X M 7→W,X, Y C 7→W,Y,Z A,R 7→ Z

In general, channelsX,Y, Z process SCADA data and commands in U andW is
used for network supervision and interprocess requests such as routing. All names
are free (i.e. unique) in the scope of the system, but we assume that each process

44

5.5 INSTANTIATING THE ADVERSARY CAPABILITY MODEL

only has access to a limited set of named channels and that name assignments are
stable. We assume some redundancy in processes and channels.

Message addressing may be achieved by routing. In addition, where a sys-
tem requires processes to meet both hard and soft real time process targets we can
represent this, we can use message priorities. Lost or delayed messages can be rep-
resented using silent functions. The internal function of individual processes can
be represented by the communication and other functions which we specify in our
calculus. We provide a couple of simple examples.

For example, an operator which is an entity is defined by:

Operator := x̄u.0⊕ x(u).0⊕ τ.0|!Operator (5.12)

An operator can send messages, receive messages and make decisions by τ
about messages. In line with sections 5.2.4 and 5.5.1, an operator is regarded as
having equivalent, if non-malicious, capabilities to a malicious principal and is de-
fined identically.

A controller may be specified likewise:

Controller := ν u, p, k, e !((z(e)1.z̄〈e〉.Control(p, k, e, i) ⊃ z̄〈u〉1.0
+y(s̃)2.UpdateControl(p, k, s̃) ⊃ (p′, k′).0)⊕ ω) (5.13)

This simple example shows a control function for a plant which responds to an
error signal e and produces a control signal u. In addition, the control parameters
can be updated by a message s̃ from the operator. Note, the use of priorities to
indicate real and best effort traffic communication:

Functions may be specified informally as here or may be more formally defined
using pseudo-code. Obviously, it is possible to build more complex examples of ICS
components using this approach. We can also instantiate other kinds of standalone,
distributed and mobile systems using the same approach.

5.5 Instantiating the Adversary Capability Model

In this section, we provide a definition of a malicious agent and provide examples
of how we can instantiate individual capabilities in the model for subverted pro-
cesses, using the applied π-calculus defined in section 5.3. In section 5.6, we show
how these capabilities may be used to build an attack. Our examples are based on
the malicious process model, but equally apply to the malicious agency model.

5.5.1 Defining the Adversary

An adversary is defined in the same way as an operator – see section 5.4. Indeed,
one view of an adversary is that they are simply a malicious operator. Hence, for
the channels available by ACC and COM (section 5.5.2.1), an adversary may send
messages to the system, receive messages from the system and by τ make decisions
about messages. This definition matches that used in [74], but for the π-calculus
rather than for CCS. Subsequently, we show how our approach departs from that
proposed in [74].

45

5.5 INSTANTIATING THE ADVERSARY CAPABILITY MODEL

Let S be a distributed system. Let Ω be an initial malicious process (the adver-
sary process). Using the π-calculus notation, the adversary is defined by equation
5.14

Ω := ν(m̃) x̄〈m〉r ⊕ x(z)⊕ τ |!Ω (5.14)

where m is a malicious message, x is a channel, r is a routing address and z is
a placeholder for any messages received by Ω. τ is a silent function representing
the decision-making capability of Ω. By τ , the adversary Ω may exercise any other
capability – manipulating messages, replaying message and so forth – in the model.
In fact, we assume that Ω can have any number of channels

∑
i xi which it shares

in common with processes Pi ∈ S forming the initial attack surface.

5.5.2 Instantiating Individual Adversary Capabilities

The adversary definition acts as a starting place. However, it is clearly not useful for
either a source adversary process nor any subverted process to have its malicious
actions defined by τ as by τ it can exercise any capability over messages. Instead,
we want to instantiate attack scenarios by attributing various individual capabil-
ities, which we encode as interacting functions,to such processes. We show how
this may be done by feasible encodings of such capabilities using the π-calculus.

5.5.2.1 Access and Communication – ACC and COM

Communication, COM, follows straightforwardly from the functions send x̄〈a〉 and
receive x(z) of the π-calculus. For any process, these define the channels by which a
process may communicate. Access, ACC, is the ability of a malicious agent to send
any message to any other process, not just those defined by the channels available.
It depends on the messages a process has received or what a process already knows
about the existence of other processes in a system. In other words, ACC defines the
attack surface available to a malicious process. Let P,Q,R be processes such that

P := x̄〈a〉.0|!P (5.15)
Q := x(z).0 + ȳ〈z〉.0|!Q (5.16)
R := y(z).0|!R (5.17)

then COM(P) = {xQ} while ACC(P) = {xQ, yR}. So while P may only com-
municate with Q directly, it may send any message to R as this is implicit in Q.
Routing may also be used to code such knowledge explicitly.

5.5.2.2 Subversion – SUB

Defining an adversary as before – equation 5.14 – Let us also assume that P shares
a channel x with Ω and hence can send or receive messages with respect to Ω. We
define P in equation 5.18.

P := ν(ã)!(x(z).P1 + ω) (5.18)

46

5.5 INSTANTIATING THE ADVERSARY CAPABILITY MODEL

where ã is the set of names, possibly empty, in the scope of P , x(z) is the ac-
tion of receiving a message, possibly malicious, and P1 is the continuation of the
process. ω is a silent function which indicates that P is non-deterministically vul-
nerable to subversion by a malicious process.

Equations 5.14 and 5.18 state that a malicious process can send a message to any
process P ∈ S, possibly leading to the subversion of that process. We define the
effect of m on P in equation 5.19.

ω(m,P) ⊃ P ′ (5.19)

where P ′ is a malicious process P ′ ∈Mal.
The key difference between subversion under the malicious process model and

subversion in the malicious agency model is that subversion is equivalent to re-
cruiting processes from one agency subdomain to another. For example, an agent
with two goalsX,Y such that ||X|Y ||good is separated into two agents ||X||good, ||Y ′||bad.
The “bad” agent is recruited to a malicious subdomain.

5.5.2.3 Spawning Concurrent Malicious Process – SP PAR

By τ , a malicious agent may consist of additional concurrent processes to the origi-
nal process P which is subverted, i.e., ω(m,P) ⊃∐

i P
′
i .

5.5.2.4 Message Interception(MN) and Message Diversion(MV)

By definition of COM – see section 5.5.2.1 – any malicious process P will intercept
messages sent to it. Message diversion, MV, is based on message interception, MN.
Any message received by a malicious process can be diverted to another process.
For example, in equations P |Q|R be processes.

P := x̄〈a〉.0 + ω|!P (5.20)
Q := x(z).0 + ω|!Q (5.21)

R := y(z).0|!R (5.22)

P is a process which normally sends messages a to Q and is re-written P ω→ P ′

where P ′ is defined in equation 5.23 to send messages to R.

P ′ := ȳ〈a〉.0|!P ′ (5.23)

5.5.2.5 Message Delay and Message Replay – MD, MR

Using appropriate variables in the scope of the process,store and receive functions,
it is possible to delay and replay messages. We include these functions, informally
defined, in P ′ in equation 5.24.

P ′ := ν(ṽ0, t) !(x(s).0+store(ṽ, s) ⊃ ṽn+1.0+. . .⊕retrieve(ṽ) ⊃ ṽn−1, s′.0+ȳ〈s′〉.0)
(5.24)

We can also set conditions on the release of messages - see section 5.5.2.10.

47

5.5 INSTANTIATING THE ADVERSARY CAPABILITY MODEL

5.5.2.6 Message Drop – MP

Let P be a process which we define in equation 5.25

P := x(z).0 + . . .+ ȳ〈z〉.0 + ω|!P (5.25)

we can reduce P by ω to P ′ as shown in 5.26. P ′ will selectively filter messages
received by x. We could equally redefine P ′ to filter messages sent by y. Let φ be
the filter condition.

P ′ := x(z).0 + [φ]drop(z) ⊃ ∅.0 + . . .+ ȳ〈z〉.0|!P ′ (5.26)

5.5.2.7 Message Manipulation – MM

Let P be a process which we partially define in equation 5.27.

P := x(z).0 + . . .+ ȳ〈z〉.0 + ω|!P (5.27)

We can reduce P ω→ P ′ so that P ′ manipulates messages, possibily selectively.
φ is the, possibly empty, filter condition.

P ′ := x(z).0 + [φ]alter(z) ⊃ z′.0 + . . .+ ȳ〈z′〉.0|!P ′ (5.28)

5.5.2.8 Message Injection – MI

Let P be a process, partially defined in equation 5.29, as before. P may be re-written
to inject messages. shown in equation 5.30.

P := x(z).0 + . . .+ ȳ〈z〉.0 + ω|!P (5.29)

P :=!ν(a) x(z).0⊕ [φ]inject(a) ⊃ a.0 + . . .+ [φ]ȳ〈a〉.0 + [6 φ]ȳ〈z〉.0 (5.30)

5.5.2.9 Covert Communication – CC

There are various means of covert communication such as encrypting messages, us-
ing dead space in protocols, timing information and so forth. Hence, in the model,
covert communication means that two malicious processes can communicate using
a set of channels which are not available to the operators or legitimate processes in
the system. Since a malicious process represents an arbitrarily re-written process,
we could do this directly by simply sharing channel names outside the scope of
the set of channels known to other system principals. This would, however, as-
sume all channels were pre-assigned. A more interesting approach is to use the
π-calculus technique for extrusion of scope. Extrusion of scope allows one process to
share a name, previously only known to it, with another process and use that name
to communicate.

Let S := ν(c̃) P |Q be processes where P has a set of channel names unknown
to Q and a channel x which is shared with Q. Let Q be subverted so that it contains

48

5.5 INSTANTIATING THE ADVERSARY CAPABILITY MODEL

the capability to receive and communicate by channel names sent from P – shown
in equation 5.31,

Q′ := Q+ x(s).0 + s̄a.0⊕ s(z).0|!Q′ (5.31)

then Q′ can receive a channel name by s and use it to communicate message
a covertly to P . We could extend this functionality to enable channel name s to
be stored until a further substitution is made. This creates a much more flexible
approach to modelling covert channels.

5.5.2.10 Decision Making – D-MAT

We have already given examples above of using a logical condition to filter the ap-
plication of functions to messages. Clearly, this can be extended to allow complex
autonomous decision-making behavior in malicious processes.

5.5.2.11 Learning Behavior – LB

Since we accept that malicious processes may overwrite other processes, it follows
that a malicious process may also revise another malicious process. This include the
ability for a process to upgrade itself. For example, an agent could try an exploita-
tion method and, on failing, interrogate a database of other exploitation methods
to select a novel approach [98].

5.5.2.12 Co-operation – COOP

It is implicit in the model that malicious processes created by a single adversary
will act in a coordinated fashion to achieve their goals. It is also possible for ma-
licious processes from different adversaries to co-operate if their decision making
capability allows it. However, to model this explicitly requires a higher order of
semantics. To do this, we have subsequently developed a goal-transform calculus
for which the applied π-calculus is a sub-calculus to enable us to reason explic-
itly about interactions between cooperating agents in a distributed system, where
agents are defined as a set of goals (which are a special kind of process). We show
an example of a coordinated attack in section 5.6.2 in this chapter and continue with
it in chapter 6.

5.5.2.13 Indistinguishability – P

Definition 5.12 (Indistinguishability Assumption – P)
Let P be a process and let P ′ be the process which results from the subversion of P . We
assume that P ′ can act identically to P . We call this the indistinguishability assumption.

This assumption states two things. First, we assume that any subverted agent
can continue to act like its former legitimate version, in addition to selectively ex-
ercising its new malicious capabilities. Second, we assume any subverted agent
will make no egregious protocol errors in interacting with other principals in the
network.

49

5.6 ATTACK CONSTRUCTION BASED ON THE ADVERSARY MODEL

The first assumption may be considered reasonable for the range of persistent,
covert attacks. The second assumption, however, renders the adversary stronger
than most current experience w.r.t the detection of malicious activity in networks
where the presence of protocol errors is a key factor in such detection [27].

5.6 Attack Construction Based on the Adversary Model

Each individual capability by itself is unlikely, except in unusual circumstances, to
form a complete attack. Capabilities will normally have to be grouped construc-
tively to form an attack with a significant impact in any system of scale. A simple
example of this principle is a “man in the middle” (MITM) attack. Another more
complex example is a co-ordinated attack which can be built using the goal trans-
form calculus.

5.6.1 Man in the Middle Attack

In this attack, there are four processes. Two processes, say P and Q are supposed
to be communicating directly with each other. Through process subversion and the
re-writing of channels, a third process R is able to eavesdrop on the conversation
and send the information to the adversary process Ω.

We define P and Q in equations 5.32 and 5.33. P sends a message a to Q, while
Q sends a message u to P .

P := νa x̄〈a〉.x(z).0 + w(s).0 + ω|!P (5.32)
Q := νu x(s).x̄〈u〉.0 + w(t).0 + ω|!Q (5.33)

Let Ω be the adversary and assume that Ω shares the externally facing chan-
nel w with P and Q. By SUB and ACC, Ω sends a malicious message m to Q which

rewritesQ and spawns a malicious processR by SP-PAR so thatQ
COM,ACC,SUB,SP−PAR→

Q′|R – see equations 5.34 and 5.35.

Q′ := νu y(s).ȳ〈u〉.0 + w(t).0|!Q (5.34)
R := (x(s).0⊕ ȳ〈s〉.0)⊕ (y(s).0 + x̄〈s〉.0) + w̄〈s〉.0 (5.35)

The resulting subsystem P |Q′|R|Ω diverts copies of messages between P and
Q to Ω by R which we show in proof reduction 1 where messages a and u are
intercepted by R and sent to the adversary process (not shown) by channel w.

50

5.6 ATTACK CONSTRUCTION BASED ON THE ADVERSARY MODEL

PROOF
νa x̄〈a〉.x(z).0|νu y(s).ȳ〈u〉.0|
(x(s).0⊕ ȳ〈s〉.0)⊕ (y(s).0 + x̄〈s〉.0) + w̄〈s〉.0|!Q′|!P |!R′
→ COM,P

νa x(z).0|νu y(s).ȳ〈u〉.0|
ȳ〈a〉.0 + w̄〈a〉.0|!Q′|!P |!R
→MN

νa x(z).0|νu ȳ〈u〉.0|w̄〈a〉.0|!Q′|!P |!R
→MV,MR

νa x(z).0|νu ȳ〈u〉.0|
(x(s).0⊕ ȳ〈s〉.0)⊕ (y(s).0 + x̄〈s〉.0) + w̄〈s〉.0|!Q′|!P |!R
→ COM,P

νa x(z).0|Q′|
x̄〈u〉.0 + w̄〈u〉.0|!Q′|!P |!R
→MN,MV,MR

P |w̄〈u〉.0|Q′|!P |!Q′|!R
�

5.6.2 Coordinated Attack

In keeping with the malicious process model in the malicious agency model, goals
belonging to one agent may subvert, or rather recruit, goals belonging to another
agent, causing them to switch agent sub-domains and behave in favor of the mali-
cious agent whose recruit they are. Since a single goal may be an agent, we refer to
this as the malicious agency model. In practice, we normally deal with larger alliances
of agents working together to subvert, or defend, a system.

To demonstrate how this works in practice, we model a co-ordinated attack.
The approach is quite flexible, allowing us to plan the attack at agent sub-domain
level before applying a transform to translate the attack into its π-calculus form.
The latter form enables us as before to reason over channels and goals (processes)
explicitly.

We provide an example of a co-ordinated attack using the goal transform cal-
culus. We use both the goal calculus for planning and providing outline proofs of
the attack’s validity and go on to show how it can be translated into the π-calculus
syntax. The example is based on [76].

We define the agent domain D in equation 5.36 where D represents an ICS, for
example, the control system in a chemical plant:

D := ||〈Sys〉||〈Mal〉||〈Observers〉|| (5.36)

The domain consists of three sub-domains: Sys which may be considered to be
the operator, any network hosts or nodes and the control units;Mal which is the set
of malicious agents and Observers which represent some specialist agents tasked
with observing network traffic. For the moment, we can ignore the presence of the
Observers domain, whose role will become clear in chapter 6.

51

5.6 ATTACK CONSTRUCTION BASED ON THE ADVERSARY MODEL

We define the agent sub-domains in equations 5.37 and 5.38.

Mal := ||
3∐
j=1

Ωj || (5.37)

Sys := ||Operator|
∐
i

Xi|
∐
k

Ck| (5.38)

where
∐3
j=1 Ωj is a set of three (initial) malicious agents, the Operator agent

represents the operator,
∐
iXi is a set of network nodes (whose representation is

simplified by treating them as peers) and
∐3
k=1Ck are three controllers which are

responsible for the settings on three kinetically related valves V 1, V 2, V 3 in a con-
trol system for a chemical process.

The three malicious agents are assumed to exist in a network external to the
main Sys sub-domain. They attack the control system by subverting goals belong-
ing to Sys in order to issue commands to set one of the values V 3 to a steady state,
to shut down one of the valves V 1 and to open the remaining valve V 3 to its max-
imum extent. This process, if achieved in the right order, will result in a serious
health and safety threat arising in the chemical plant. We assume the valves nor-
mally operate dynamically and the attack depends on maintaining the states for a
prolonged period of time. So each agent will seek to conceal the nature of the attack
from the operator by transmitting false information about the state of the system.
These actions will maintain the impression that the valves are continuing to alter
state over the course of the attack.

The first malicious agent Ω1 is defined in equations 5.39 and 5.40.

‖Ω1‖ := ‖ · P |X‖ (5.39)

where

‖P‖Ωi :=
4∑

i=12

(Pi + ([φ]I ⊕ [¬φ]J + [∼ φ]G0) (5.40)

φ is used as a placeholder for a predicate which here indicates the success or
failure of the goal. For the moment, X is defined informally to be an agent which
will wait for a signal and subsequently close V 1, while concealing the result from
the operator. X will replace and Xi in Sys as the result of a series of attempted
subversions (subgoal) Pi. Success or failure of the overall attempt will be signalled
to the third malicious agent Ω3 by subgoals I and J respectively and, on either
success or failure, the goal will terminate itself by invoking the null goal G0.

The second agent is similarly defined except that in its case the job of goal X
is to open a valve. For simplicity, we assume that the agents will subvert separate
goals in Sys.

‖Q‖Ω2 :=

12∑
i=4

(Qi + ([φ]I ⊕ [¬φ]J) + [∼ φ]G0) (5.41)

The third agent Ω3 waits W for the other two agents to report whether or not
they have succeeding in subverting a node Xi . The goal of X in the third agent

52

5.6 ATTACK CONSTRUCTION BASED ON THE ADVERSARY MODEL

Term Rewriting System

P +G→ P.G⊕ P ⊕G⊕ 0
P |G→ PG⊕GP
[φ]G→ G⊕ 0 !G→ G.G.G . . .

is to set the valve to a steady state and, on achieving this, to signal the other two
valves to activate.

‖ •W |R|X‖Ω3 := (W + ([ϕ]R⊕ [¬ϕ]G0)

+ [∼ ϕ]G0|!W |
12∑
i=4

(Ri

+ [φ]I ⊕ [¬φ]J) + [∼ φ]G0)) (5.42)

We can use the following term re-writing system – table 5.6.2 – to allow us to
show the valid set of outcomes for this attack without having to transform the goal
calculus to the π-calculus.

Hence, we can re-write ‖P‖Ω1 – see equation 5.43.

‖P‖Ω1 := P4.I.G0 ⊕ P4.P5.I.G0 ⊕ . . .⊕ P4 . . . P12.(I ⊕ J)G0 (5.43)

The transitions of ‖Q‖Ω2 are similar. ‖W‖Ω3 either succeeds or fails, equation
5.44,

W →W . . .W.R⊕W . . .W.G0 (5.44)

‖R‖Ω3 functions similarly to ‖P‖Ω1 and ‖Q‖Ω2 .
Taking this approach enables us to demonstrate in outline that the attack launched

by the sub-domain Mal is valid, but does not provide any detail on the channels
and capabilities exercised during the attack phase we have illustrated, or provide
information on the success or failure conditions. We use a transform of a goal to
the π-calculus to provide this additional detail. We can only accept the validity
of a proof after the transform using reduction techniques or labeled transitions as
appropriate.

For example, we can transform ||P ||Ω1 as shown in equation 5.45.

ν(m) ||P ||Ωi :=

4∑
i=12

(x̄9〈m〉xi .0 + ([φ]ȳ3〈s〉.0⊕ [¬φ]ȳ3〈f〉.0 + [∼ φ]G0) (5.45)

where m is a malicious message, each xi is a channel shared with processes Xi

in Sys. y3 is the channel shared with Ω3 and s and f indicate success and failure flags
respectively. The malicious messages are routed via x9 which is the only channel
exposed to the agent, forming the initial attack surface W . To complete the exam-
ple, we model the system which is under attack and take the attack through to the
point where it is fully implemented in chapter 6.

53

5.7 INCORPORATING IMPACT ANALYSIS IN THE MODEL

Of course, we could further extend this example by considering other adver-
saries also attacking the system in parallel and the potential for clashes or for coop-
eration between such adversaries and their malicious cohorts. This is a key advan-
tage of the algebraic approach as it allows us to easily introduce multiple concur-
rent alterations to processes and consider the effects of different subversion orders.
We may also be able to extend these results by considering timing or probability
within such models as well.

5.7 Incorporating Impact Analysis in the Model

An obvious requirement of an attack to be successful, from the point of view of
the attacker, is that it must have the desired impact on the system. But impacts
on the system are unpredictable. First, a poorly planned or executed attack may
not succeed in achieving the goal of the attacker. Second, security countermea-
sures on the system or interventions by operators may prevent the full impact of
the attack from occurring. Third, the actions of other adversaries may interfere in
the attack. Attackers who subvert computer systems are known, for example, to
install countermeasures against further subversion by others [29]. Fourth, attack-
ers as much as operators are subject to the difficulties of establishing control over
distributed systems due to lack of knowledge of global time or state and process
or communication delays or process failures. Finally, distributed systems normally
encompass large, complex and frequently geographically extensive infrastructures
which may have multiple exposures in any part of the system to entry and subver-
sion by attackers. Access and subversion attempts by attackers may also be limited
by zoning restrictions internal to such systems. Any of these factors may be present
concurrently in a distributed system which makes the impact of an attack difficult
to model. In turn, understanding the impact of feasible attacks is a necessary pre-
cursor to network attack and defense analysis and to business risk analysis (which
is used to prioritize security investment in systems).

5.7.1 Impact Source and Sink Functions

One of the applications of our approach is to introduce into our models silent func-
tions – see section 5.3 – that allow us to calculate impact reachability and to in-
troduce concurrently into our analysis of such systems any and all of the factors
which may affect the outcome of an attack. The analysis is possibilistic in nature. It
demonstrates that an attack has an impact and characterizes the impact in terms of
confidentiality, integrity and availability – treating these characteristics as binary in
nature. It demonstrates how the impact is realized in the system, including imme-
diate, transitive and recursive (including reflexive) impacts. In π-calculus terms,
the impact is analyzed in terms of functions over names, that is the transformation
of names to names. Excluding the creation of new names by replication (which
can be subsumed in the analysis of transitive effects), this limits the analysis to a
finite set of functions. The approach also allows us to demonstrate that distinct at-
tacks may be equivalent in impact and to define the effectiveness and efficiency of
security countermeasures or defensive interventions.

54

5.7 INCORPORATING IMPACT ANALYSIS IN THE MODEL

Let K = {C(onfidentiality), I(ntegrity), A(vailability} be the set of security
characteristics. Let ↑κ (n̄)P be a source function where κ ⊆ K and n̄ is a vector over
names in a process P . When introduced to a process in associated with a subversion
function, the source functions mark the names over which they are invoked with
the security characteristics which are lost for that name, written n̄κ, r̄ where r̄ is a
vector which captures routing information.

Let ↓κ (m̄)Q be a sink function where m̄ is a vector over names and Q is a pro-
cess. The introduction of a sink function marks where a process has a function
which makes use of a name which has been previously subverted. Any names gen-
erated by the process will also be considered to be subverted, meaning that impacts
can be calculated transitively by inserting a new source function. These names are
called subverted names. A subversion function is any function introduced or altered
by the attacker so as to manipulate names or the behavior of names in the sys-
tem. Recursive (including reflexive) effects may be captured by paying attention to
routing information in association with subverted names. Finally, we may also, by
inserting dummy processes, capture conjoint impacts where impacts in disparate
parts of the system create an overall impact which is greater than the sum of its
parts.

Impact sinks are defined as follows. Let S be a system:

Definition 5.13 (Loss of Confidentiality)
Loss of confidentiality arises where any subverted processW receives a name it is not autho-
rized to receive. In particular, if it is an adversary process outside the bound of the system.

Definition 5.14 (Loss of Integrity)
Loss of integrity arises where any process P ∈ S receives a subverted name whose content
has been altered by the adversary.

Definition 5.15 (Loss of Availability)
Loss of availability arises where a process consistently fails to receive a name which it
would receive in normal processing. Loss of availability may be direct as the result of name
dropping or process failure, or indirect due to channel starvation.

Various cases arise from our calculation which we outline here:

Case 1 – A source may be a sink without any further steps after subversion, that
is, attack initiation has an immediate impact within a process. In this outcome,
the only impacts are loss of availability and loss of integrity as the process by def-
inition in inside the boundary of the system, so loss of confidentiality may not be
considered. All the action is also within the process and there are no transitive
computational effects.

Case 2 – A single source may lead to a single sink. The loss of all security charac-
teristics may be considered. The impact is a single impact on another process.

Case 3 – A single source may lead to multiple sinks. Multiple impacts occur pos-
sibly for the loss of all security characteristics.

55

5.7 INCORPORATING IMPACT ANALYSIS IN THE MODEL

Case 4 – Multiple sources may lead to a single sink. This outcome gives rise to
being able to consider attack variants which are equivalent w.r.t. impact or multiple
attacks from independent sources which cooperate to produce a single impact.

Case 5 – Multiple sources may lead to a multiple sinks. This outcome is an obvi-
ous extension of the fourth case.

Case 6 – A sink may transitively become an impact source (not necessarily with
the same characteristics) for further sink

Case 7 – A source may act recursively becoming a sink for itself after a number of
intervening steps

Case 8 – A source may act transitively resulting in a further sink acting recur-
sively

Case 9 – An attack may result, under different orderings, in different impacts.
This outcome reveals a situation where an attack starting with apparently identical
conditions can result in multiple possible impacts, depending on event ordering
given a projection over events. Part of the strength of our approach is it enables
structural reasoning over these possible outcomes by considering all orderings of
events, rather than imposing an artificial order on attack and defense maneuvers
or outcomes.

Let P,Q,R be processes as defined in equations 5.46, 5.47 and 5.48 such that
P sends a name a to Q which in turn transmits it to R and returns it to P . Two
transformations occur over the name in P and R.

P := x̄〈a〉.0 + s(u).(f(u) ⊃ a).0|!P (5.46)
Q := x(z).ȳ〈z〉.0 + ω|!Q (5.47)
R := y(t).(f(t) supsetv).s̄〈v〉.0|!R (5.48)

We assume an attacker inserts a malicious function which subverts Q, shown in
equation 5.49

Q′ := x(z).MI(z) ⊃ z′. ↑I (z){Q}.ȳ〈zI,{Q}〉.0|!Q′ (5.49)

We can summarize the subsequent transitions using the action relations shown
in the set of transitions in the proof reduction. P sends a to Q by channel x. Subse-
quently, the name is manipulated by the malicious function and passed to R.

56

5.7 INCORPORATING IMPACT ANALYSIS IN THE MODEL

PROOF

P
x̄a−→ P1

P1 := s(u).(f(u) ⊃ a).0|!P
Q′

xa−→ Q1′

Q1′ := MI(a) ⊃ a′. ↑I (a){Q}.ȳ〈a〉I,{Q}.0|!Q′

Q1′
MI(a)−−−−→ Q2′,

a
↑I−→ aI,{Q}

Q2′
ȳaI{Q}−−−−→ Q3′

Q3′ := ȳ〈a〉I,{Q}.0|!Q′

R
yaI{Q,R}−−−−−→ R1

R1 :=↓I (a){Q,R}.(f(a)I,{Q,R} ⊃ v). ↑I (v){Q,R}.s〈v〉I,{Q,R}.0|!R
�

This set of actions results in R1 being redefined to include a sink function with
a transitive source function in relation to the name v which depends on a. Further
transitions result in a recursive impact on P . We remind ourselves of the state of P
in equation 5.50.

P1 := s(u).(f(u) ⊃ a).0|!P (5.50)

P receives the subverted name vI,{Q,R} by the action relations R1
s̄vI,{Q,R}−−−−−−→

R2, P1
svI,{Q,R}−−−−−−→ P2 fromR1 and is subsequently re-defined with a sink and source

function respectively.

P := x̄〈a〉I,{P,Q,R}.0 + s(u).(↓ (u)I,{P,Q,R}.(f(u)I,{P,Q,R}) ⊃ aI,{P,Q,R}).0|!P (5.51)

This example shows us how source and sink functions can be identified in
the system by considering action relations amongst processes and re-defining pro-
cesses accordingly. It should be noted that any source or sink function once inserted
is considered to be stable until an explicit action is taken to remove its effect. In
some cases, for example, where a process receives the same name from a number
of different sources, this may require distinguishing between subverted names re-
ceived from malicious sources and names which have not been affected. Algebraic
notation supports distinguishing cases using routing information and the function
+ which excludes actions which may not occur due to the falsification of any con-
ditions associated with those actions. Indeed, it is recommended practice to insert
source and sink functions using the + notation to permit conditional exercise of the
functions and it is only avoided here for simplicity.

5.7.2 Search Space

An important consideration in analyzing attacks and defenses is the size of the
search space. Here we show that the search space is of order O(n) and is con-
strained by the number of fresh names (i.e., variables) in the system.

57

5.7 INCORPORATING IMPACT ANALYSIS IN THE MODEL

We assume the number of processes in a system is finite. Let L be the set of
fresh names (data variables) in a system. Fresh names may be initiated, sent and
received and acted on by functions. We say that names are transformed by functions,
allowing us to distinguish between the same name where the value associated with
the name has been updated.

Definition 5.16 (Image Finiteness)
Let Act be the set of action relations over inputs and outputs of a process. For any process
P let there be finitely many processes Q for which P α→ where α ∈ Act. This is property is
called image finiteness.

Definition 5.17 (ω Finiteness)
Let F be the set of functions in a process which are not input or output functions. We
assume F is finite (by construction). These are functions which transform names to names.
Let Actω = Act ∪ F . For any process P let there be finitely many processes Q for which
P

α→ where α ∈ Actω. We call this property ω-finiteness.

We need the notion of ω finiteness as, in our theory, functions may be substi-
tuted for functions and functions may be inserted arbitrarily into processes.

Lemma 5.1 (Image Finiteness)
All processes are image-finite.

PROOF Any process may be shown to be image-finite up to structural congruence
[34]. The proof shows that there are finitely many names per process which can be
subject to input and output actions.

Corollary 5.2 (ω-finiteness)
Since Actω is finite and all processes are image finite, it follows that all processes are ω-
finite.

PROOF Obvious. �

Hence our search space is finite since there are finitely many names per process
which may be subject to input and output actions and functional transformations.

Theorem 5.3 (Number of Impacts in a System)
The maximum number of impacts in a system is equal to 8 times the number of names in the
system and hence is order O(n) , including any transitive, recursive and reflexive impacts.

PROOF Ω finiteness tells us that there are a finite number of actions over names
per process up to structural congruence. Ignoring communication function, the
remaining functions are transformations of names to names. Let N = |L| be the
number of fresh names in the system. We can easily see that the maximum number
of transformations of names to names is N , including the possibility of the trans-
formation ∅ → l ∈ L on initiation.

LetL be the set of names. Let 2L be the power set ofL. LetH be a Hesse diagram
which represents 2L. Let each set in H represent a possible grouping of names in

58

5.7 INCORPORATING IMPACT ANALYSIS IN THE MODEL

a process (i.e., the names forming the input to a process, or the names generated
or transformed by a function in the process). We trace the set of transformations of
names to names by navigating the edges of H and eliminating any edges which do
not represent a dependency of names on names - that is we only consider sets of
names which are included in a function in the system. We include the initiation of
names (which is considered a transformation of the ∅ to a name l ∈ L. Let G be the
set of sets of names on the graph formed by eliminating edges from H .

For example, let L = {a, b, c}. Let P be a process with a function f such that
f(a, b) ⊃ c. Let f be the only function in the system which is not an input or an
output, but a transformation of names to names. It is easy to see that there exist
transformations ∅ → {a} and ∅ → {b}. There is no transformation {a} → {a, b}
or {b} → {a, b} as these sets result from inputs or outputs to processes. There is a
transformation {a} → {a, b, c} and correspondingly for {b}. Finally, c cannot exist
except in the presence of both a and b. The corresponding graph is shown in figure
5.1.

{a,b,c}

{a,b}

{b,c}

{a,c}

{a} {b}

Ø

{c}

Figure 5.1: Transformation Dependencies

This approach allows us to easily see that the maximum number of possible
transformations in system which, including the null transformations (on initiation)
from ∅ → l where l ∈ L is the same as the number of fresh names |L|.

Let K be the set of security characteristics as before. We assume the characteris-

59

5.7 INCORPORATING IMPACT ANALYSIS IN THE MODEL

tics are binary in nature. Let 2K be the power set of K. Let N = G×2K be the cross
product which represents all possible groups of names in L and all possible associ-
ated impacts. It is easy to see that the total number of impacts to be considered in
any system is |L| × |2K | = 8|L|which is of order O(n) as required.

. �

This proof suggests a technique for limiting the search for impact sources and
sinks to considering only processes which contain functions which transform names
to names and making appropriate use of routing information. However, this is only
initially useful as the effectiveness of the attack must be considered under all lin-
earizations (or runs) of the system which could be done by model checking the sys-
tem specification (or, more laboriously, as a manual proof) . In particular, once we
start to consider security countermeasures and defensive interventions, the search
must be extended to all possible runs of the system. But our proof demonstrates
that the search space is finite for any initial impact analysis regarding an attack
scenario.

This approach – searching all potential orderings of events – which is one of
the advantages of an algebraic method, ensures that we take into account events
extraneous to the processes under attack which may nonetheless affect the outcome
of such attacks and includes effects such as process failure and communication
losses and delays as well as operator actions, which may or may not be related to
the actions of the attacker.

5.7.3 Attack and Countermeasure Equivalence

By the pigeon hole principle, assuming the number of potential attacks is larger
than the number of potential impacts, theorem 5.3 implies that there may be attacks
which are impact equivalent. In this section, we define what it means for attacks
to be equivalent to each other. We also define equivalence with regard to coun-
termeasures and the notions of effectiveness and efficiency of countermeasures.
Countermeasures are considered to mean both defenses already implemented in a
system and any dynamic interventions by system operators or automated agents
in defense of the system.

Definition 5.18 (Attack Equivalence)
Let I, J be two distinct attacks. Two attacks I and J are held to be equivalent I ∼ J if the
maximum impact of I is the same as the maximum impact of J , written im(I) ≈ im(J)
for a given system S.

Informally, equivalence says that both I and J affect the loss of the same secu-
rity characteristics in K for the same set of names ñ ∈ L. This is qualified under
the requirement that equivalence only applies to the maximum impact detected
when considering all linearizations of the system. It may be that under certain lin-
earizations attacks are less effective or indeed more effective than intended by the
attacker or on the initial review of their potential impact sinks. Seeking to establish
equivalence between attacks with different impact sources as a result of different
event orderings is considered too fine a distinction. In other words, we only con-
sider worst case scenarios.

60

5.8 SUMMARY

We also define defensive interventions which are countermeasures, which may be
static or dynamic and what it means for countermeasures to be effective, efficient
and equivalent.

Definition 5.19 (Defensive Intervention)
An defensive intervention is a programmed action or countermeasure by the operator
which may be applied prior to or during an attack may result in an impact reduction.

Definition 5.20 (Countermeasure Effectiveness)
An intervention is considered effective if it reduces to zero, the impact of an attack I .
Partial effectiveness is present where the the impact of the attack is reduced, but not to zero.

Definition 5.21 (Countermeasure Efficiency)
An intervention is considered to be efficient if for an equivalence class [I] of attacks, it is
equally effective.

Definition 5.22 (Countermeasure Equivalence)
Two interventions E and F are equivalent E ∼ F , if for the same attack I on the same
system S(P), they are equally effective.

Definition 5.23 (Countermeasure Congruence)
Two interventions E and F are congruent E ∼= F , if for the same attack class [I] on the
same system S(P), they are equally effective.

Definition 5.24 (Countermeasure Set Equivalence)
Two sets of countermeasures E and F are equivalent E ∼ F , if for the same attack I on the
same system S(P), they are equally effective.

Definition 5.25 (Countermeasure Set Congruence)
Two sets of countermeasures E and F are congruent E ∼= F , if for the same attack class [I]
on the same system S(P), they are equally effective.

We note that unlike attacks, where only worst case scenarios are considered,
we may consider countermeasures to be equivalent (or congruent) based on partial
outcomes with respect to the reduction of impacts. This approach respects tradi-
tional approaches to security where attacks are normally analyzed on a worst case
basis, while it is not required that countermeasures be wholly effective for them to
be deployed. Nevertheless, our definitions are intended to encourage the design
of efficient and effective countermeasures and to encourage choice between equiv-
alent countermeasures and sets of countermeasures. The latter, in particular, are
defined to encourage thinking in terms of “defense in depth”.

5.8 Summary

In this chapter, we have defined a conceptual threat model which allows us to at-
tribute malicious capabilities to processes or goals belonging to agents. These are
comparable to the capabilities assumed in the Dolev-Yao model but differ since
they may only be exercised locally, constraining the adversary to the same level of
knowledge of the system as operators or other processes. The model is formally

61

5.8 SUMMARY

instantiated in our research, using two variants of the π-calculus, depending on
our application, as we believe this is the most appropriate technique, based on its
past usage, for capturing the complexities of a dynamic, interactive and mutating
environment. We illustrate the use of the model by, first, providing suitable encod-
ings of each of the capabilities we ascribe to the adversary and, second, showing
how these capabilities may be built into realistic attack scenarios. Applications in-
clude exploring possible adversary behavior for the purposes of attack and defense
and risk analysis and demonstrating the safety or liveness of security protocols and
techniques for dealing with malicious software incursions. Basic examples are pro-
vided in this chapter and, in chapter 6, as part of the discussion on the use of trace-
back protocols , we provide two extended examples of this approach. We discuss
this work in relation to other contributions in chapter 9

62

Chapter 6

Traceback Protocols for Defending
Communications Integrity

The best material model for a cat
is another cat, or preferably the
same cat.

Norbert Wiener

6.1 Preamble

In chapter 5, we set out our approach to algebraic modeling of adversaries in sys-
tems. This chapter may be regarded as an extended example of that approach in
action. We also use this chapter to address the issue of maintaining the integrity of
network communications in ICS between the operator and the controller. We intro-
duce a security protocol based on the use of IP Traceback methods, normally used
for detecting the source of denial of service attacks, to detect integrity attacks and
locate the subverted processes implicated. We describe the protocol in section 6.2.
We show how it may be used to detect an adversary who manipulates messages
(man-in-the-middle attack) in an ICS network and, in section 6.3, we demonstrate
how it can be used to filter falsified messages. We prove the safety of the protocol.
We also show how the approach continues to function under dynamic network
alteration where the adversary becomes mobile in the network.

6.2 A Traceback Protocol for Adversary Detection

One means of undermining an ICS system is to manipulate network communi-
cation between the operator at an HMI and the control unit. This can be used to
manipulate the controller while hiding the results from the operator . Alternatively,
it may be used to convince the operator to carry out unnecessary, potentially dan-
gerous, actions. This approach may also be combined with the direct manipulation
of the control unit , perhaps to prevent side effects showing up elsewhere in a sys-
tem as symptoms of manipulating a plant. Hence we see a potential association
between such techniques and a coordinated attack against an ICS. Our purpose is
to locate a subverted process which is responsible for undermining the integrity of
network communications.

We limit our consideration to integrity attacks which result from the subversion
of processes in the communication and control network [120]. We also only con-

63

6.2 A TRACEBACK PROTOCOL FOR ADVERSARY DETECTION

sider attacks which are subject to manipulation of the data package and assume
that attacks on timing or ordering of messages are taken care of by other protocols
such as message synchronization or timestamps (though our protocol may support
their application).

6.2.1 Assumptions

We identify the subverted process with a network node and, as a simplifying as-
sumption, treat all nodes as peers in the system. We also assume, momentarily, that
we have some other means of detecting anomalies in the system – for example, by
employing the techniques in chapter 8 – which allows us to initiate the protocol. So
our goal, at this point, is not initial detection, but to discover the subverted node
or, at least, a small set of candidates for investigation. As a further simplification,
we focus on a single process along a single communication channel. The technique
will be extrapolated later to cover multiple processes and routes. It should be noted
that our technique is based on IP Traceback protocols, but we do not limit ourselves
to IP communication as a category. The protocol is defined algebraically and could
be applied to other SCADA protocols. We simply wish to establish the principle
that such techniques may be used to establish message integrity, opening up a new
area for original research.

We adopt the assumptions established in [109] for messages sent by the adver-
sary:

1. Packets may be lost or reordered,

2. Attackers will send numerous packets (i.e., manipulation is constant, not ar-
bitrary)

3. The route between attacker and victim is fairly stable,

4. Network nodes are both CPU and memory limited, and

5. Network nodes are not widely compromised.

6. An attacker may generate any packet,

7. Multiple attackers may conspire,

8. Attackers may be aware they are being traced,

9. A compromised router can overwrite any upstream information in the direc-
tion of communication

Clearly, these assumptions are valid in terms of our threat model as set out in
chapter 5. Therefore, if we detect an anomaly by other means, we may assume
that there exists a subverted process which either falsely inject messages MI or
manipulates them in transit MM, whether they are instructions from the operator
or else sensor readings from control units. The protocol may be applied to both.
We simplify the argument, at least initially, by considering only the latter. But we
also avoid any assumption that the subverted processes used to manipulate signals
from the controller to the operator also manipulate commands from the operator

64

6.2 A TRACEBACK PROTOCOL FOR ADVERSARY DETECTION

to the controller. Finally, we also assume that the adversary is “protocol perfect” in
their interaction with other processes which is the indistinguishabilty assumption
P from chapter 5, i.e., that subversion is only detectable by using anomalies in data
values and not by other means.

6.2.2 Outline of Protocol Action

On detecting an anomaly in the physical behavior of the system, we initiate the
protocol by sending a suitably encoded message1 to activate all nodes between
the operator and the implicated control unit(s). We assume the control unit pro-
vides each message it sends with a unique identifier (for example, based on packet
characteristics). On initiation of the protocol, each node will, in addition, attach
its identity, suitably hashed, to messages as they pass through the network, thus
marking the route the message took.

Each node between the controller and the operator, subsequent to the initiation
of the protocol, will probabilistically make and forward a copy of any flagged mes-
sages, which it encrypts using a rotating key algorithm which we describe in sec-
tion 6.2.5. Subsequently, the keys will be released to the operator and may be used
to decrypt the message packets. Confirmation of anomalous messages is trivial us-
ing simple comparison. However, the routing information associated both with the
message and the message copy enables us to reason about the location of subverted
processes in the network. In essence, a message which has not been subverted has
transitioned across a set of non-malicious process nodes, while a message which
has been manipulated or falsely injected has passed through or originated in a sub-
verted node. By comparing routes we can through a process of elimination identify
to within two process nodes the malicious process.

We exclude the endpoint control units from the initial scope of consideration.
Where the control unit has been subverted, no conflicts in messages would appear
in the network data stream. However, subsequent to applying our technique, sub-
verted control units may be detected negatively – by considering the nature of the
physical anomalies report and the lack of message conflicts on channels relevant to
these control processes, leading to the conclusion that particular control units have
been subverted rather the communication channels which map to them. Where the
operator is acting maliciously, our approach is invalidated.

The advantage of our approach is that it enables us to efficiently pinpoint sub-
verted processes. Compared with probabilistic packet marking where the expecta-
tion of the number of packets required to trace an attack is given by a hypergeomet-
ric probability distribution and is in the order O(n log n) [109], we are able to use
knowledge of network routes, source and origin (here defined algebraically, though
not necessarily so), to rapidly eliminate valid nodes with notable economies, reduc-
ing the messaging complexity to O(n).

6.2.3 Algebraic Specification

We provide a formal description of process action and define it using the π-calculus.
We begin by describing the action of the protocol, assuming that the adversary is
attacking the system, rather than seeking to undermine the protocol directly. Under

1for example, requesting setting a flag in all consequent packets sent from the control unit

65

6.2 A TRACEBACK PROTOCOL FOR ADVERSARY DETECTION

this assumption, we seek to show that the protocol will allow us to determine to
within two nodes, which node is involved in the manipulation of data traffic.

Let V be any node which is not an operator , nor a endpoint control unit . Ini-
tially, for all packets, we set a flag f = 0 and packet observation does not occur.
We assume an anomaly in physical system responses causes the operator to initiate
the protocol for relevant processes V1, V2, . . . by setting f = 1 on message packets
and the controller corresponds. Packets include information about origin, iden-
tity and routing. On receiving flagged packets, whether inputs or outputs, nodes
determine, based on some uniform probability p, to copy identified packets. The
Observe() function – equation 6.2 – copies the packet and encrypts its contents, the
packet identity. Then it sends the copied packet, which we label observed, to the
operator.

Finally, after a period of time, each node Vi, Vi+1, . . . publishes a previous key
(in sequential order) used for encrypting packets to the operator and generates a
new key in such a way that subsequent (and previous, unrevealed) keys cannot be
predicted – section 6.2.5. This action is controlled by the function NewKey() – see
equation 6.3 – and it should be noted that the names used by this function for keys
and time are restricted to the scope of the function. Hence these values can only be
known to the adversary in nodes which he has already subverted.

On receiving copied packets whose identities match, the operator can compare
the data contents of copied packets with the original, noting its origin and rout-
ing. Hence where packet contents differ due to adversary manipulation, it can be
determined from several packets which routes may have been subverted by the ad-
versary, simply by observing the hashed routing information of observed packets
and whether or not they have been manipulated.

A process of elimination over each route leads to an approximate determination
of which nodes have been subverted on which routes – see section 6.2.4 – which is
sufficient to reduce the scope of investigation to a couple of processes, say V and
U .

Formally, we define the action of V in equation 6.1

V := ν(a, k̃, t, p) (B.K + C)|!V (6.1)

where a is the node identity, k̃ are a set of keys (see section 6.2.5) and t is a logical
clock based on message passing events. B is the summation which receives and
observes packets and is defined in equation 6.2. K is the summation which creates
keys and releases them after a period of time to the operator and is defined in
equation 6.3. C is the summation (equation 6.4) which forwards packets, marking
them (not shown) with the node identity.

B :=
∑

xi(u)(r,f,d,α).Mark(r) ⊃ u(r′,f,d,α).Observe(p, V, f, t, u, ki) ⊃ x̄〈w〉〈r,0,d,α〉.0
(6.2)

where xi is a set of channels, p is the observation probability, u is a placeholder
for names (i.e. packets) to be received, r is the final address to which the packet
is routed, d is the packet identity and α is vector of node identities created during
the onward transmission of the packet by S. V is the node identity and f is the
current flag value. x is a reserved channel (one of xj – see equation 6.4) used to

66

6.2 A TRACEBACK PROTOCOL FOR ADVERSARY DETECTION

send observed packets to the operator andw represents an observed and encrypted
copy. ki is the current key. TheObserve function is defined by algorithm 6.1 though
this is really just a feasible coding and other more efficient algorithms may exist. It
determines if the observation flag is set to 1 and consequently determines based on
the marking probability whether or not to copy and encrypt the packet and forward
it to the operator:

Algorithm 6.1: Observe

1

Parameters: Prob,NodeIdentity,ObservationMode, T ime, Packet, CurrentKey

Var: HashedPacket,HashedAddress,HashedData

If ObservationMode 6= 0

If Prob 6 Rand()

Increment(Time);

HashedAddress := Hash(NodeIdentity, CurrentKey);

HashedData := Hash(Packet, CurrentKey);

HashedPacket := Concatenate(HashedAddress,HashedData);

Return(HashedPacket)
Endif

Endif

The t or Time variable is a simple integer value which is incremented every
time a packet is copied.

In equation 6.3, t is the logical clock as before, k is the fresh key to the operator
which is generated by the functionNewKey defined (again trivially) in algorithm 1.
However, kt−δ is a previous key used for encryption being forward to the operator.
f is the observation mode flag. x is the reserved channel for communicating to the
operator. r is the routing address of the packet as before. Note that we set the flag
to 0 for packets which need not be observed.

K := NewKey(t, k, k̃, f) ⊃ (x̄〈k〉〈r,0,t−δ〉.0) (6.3)

The C summation (equation 6.4) contains the set of channels to which the node
V sends packets xj , a placeholder u for the packet to be forwarded. The character-
istics are defined as for previous equations.

S :=
∑

x̄j〈u〉〈r,f,d,α′〉.0 (6.4)

6.2.4 Protocol Complexity

We now consider the average number of observation packets required for the de-
tection of a subverted process. In fact, it is not possible to fully fix a subverted
process, but we may reduce our search to a small number, possibly two.

67

6.2 A TRACEBACK PROTOCOL FOR ADVERSARY DETECTION

Defining the network topology as a graph, let R be a single route (or path)
which is part of a larger subgraph of routes R between an operator and a control
process and consider the detection of a single subverted process. We initially limit
our consideration to the manipulation of a single output signal. The equivalent
technique used to check input commands originating with the operator is omitted
for simplicity. First, we define the observation range of R:

Definition 6.1 (Observation Range)
OnR, we label the process directly adjacent to the operator S and the control unit T respec-
tively. We call the set of processes from S to T , but not including T and S, the observation
range of R and we write Obs(R).

Let < be the relation “follows” in (a total) order of communication. We require
observation packets to be sent by the processes in Obs(R). If we determine on a
new S′ or a new T ′ then we have a new observation range for R which is Obs(R′).
For convenience, we label the processes in Obs(R) which are not S or T as a set V ,
possibly empty, with members {V1, V2, . . . , Vn−1} in order of communication, e.g.,
V2 < V1. We also note that if the number of processes from S to T inclusive is n
then the number of processes in Obs(R) is n− 2.

If we can already see mismatches between observation packets and original
packets, we assume that, at least, process S is producing a manipulated packet.
Hence we use S to designate the set of processes which communicate invalid pack-
ets. Likewise, we assume that T (for the moment) is producing valid packets and
use T to designate the set of nodes which communicate valid packets. To find out
how many processes are in S and how many are in T we need to collect information
about every process in R.

Operator V4 V3 V2 V1 Controller

S TObs(R)

Attack

Locus

Observation 1

Figure 6.1: Packet Collection in Obs(R)

If we observe a valid packet from a previously unobserved node Vi then we
can designate Vi ∈ T and also all nodes Vi−1, Vi−2, . . . which sent the packet to Vi.
We can determine which nodes are in S using similar reasoning regarding invalid
packets. Hence we can designate the process Vi to be the new endpoint for the
search (either the new S′ or a new T ′). This means that the next valid observa-
tion operation will take place in the new observation range Obs(R′). This situation
is shown, after an observation has already been taken, in figure 6.1. The action
of observation is strictly monotonic since we ignore observations from any nodes
already designated part of S or T .

68

6.2 A TRACEBACK PROTOCOL FOR ADVERSARY DETECTION

Once we have determined membership of S and T , we consider that any two
adjacent nodes in S and T are potentially subverted. This depends on whether the
subverted process manipulates the data from the control process before or after it
is observed. If it is subverted before it is observed, then the first process in S is
the subverted process. If it is subverted after it is observed, then the last process
in T is the subverted process. Obviously, this can only be determined by forensics
analysis.

The protocol’s complexity is related to the card collector’s problem which is
encountered in IP traceback using probabilistic packet marking for detecting the
source of DOS attacks [96], but with strong efficiencies, assuming a uniform obser-
vation probability. These arise because each packet observation inside Obs(R) may
allow the elimination of a random number of packets in Obs(R).

Let Xi be a random variable which is the number of observations required to
observe a packet in Obs(R)i where i = 1, 2, 3, . . . is the number of previous obser-
vations inside each successive Obs(R). On each observation, the number of pro-
cesses in Obs(R) shrinks by a random amount di. Since the probability of a process
making an observation is uniform, it follows that the (independent) probability of
making an observation inside Obs(R)i is n−

∑
i di

n . (The number of actual packets
observed will be a ratio 1

p of the observation probability). Let Yj be the number
of observations required to acquire total knowledge (w.r.t membership of S and
T) of the processes in Ri ∈ R then the expectation of Yj which is E(Yj) is calcu-
lated (based on a geometric probability distribution function) as shown in equa-
tion 6.5 since the observation range shrinks randomly by a distance of di nodes for
which a determination has been made on each observation and d0 = 2 and the sum∑

j dj = n− 1 where j ≥ 0 (because we exclude S and T from Obs(R)).

E(Yj) =
∑
i

E(Xi) =
n

n− d0
+

n

n− (d0 + d1)
+

n

n− (d0 + d1 + d2)
+. . .+

n

n− (
∑
j
dj)

(6.5)
The sum

∑′
j d
′
j = n − 3 where is j′ > 0 (i.e., excluding the constant d0 = 2)

implies that we have positive integer solutions d1 + d2 + . . . + dr = n − 3 for each
r ∈ {1..n − 3}. Hence there are Q =

∑n−3
r=1 (n−4

r−1) possible sums each of which is
equally likely to occur. Let Y be a random variable which indicates the average
total number of packets required to take complete observation of the set of nodes
R, then we have

E(Y) :=

Q∑
j=1

1

Q
[E(Yj)] (6.6)

We should also consider the interesting situation where a single process is im-
plicated for the adjacent nodes S and T (at the end of our procedure) along more
than one one route Ri. Implication in more than one such relationship for a single
process increases the likelihood that the implicated process is also the subverted
one. This situation is illustrated in figure 6.2 where detection along dual routes
gives a clear indication of the subverted node.

Considering detection for all routes Ri in a subgraphR connecting an operator
with a single control process, we see that further efficiencies may be gained where

69

6.2 A TRACEBACK PROTOCOL FOR ADVERSARY DETECTION

Operator V4 V3 V2 V1 Controller

S TObs(R)

Attack

Locus

W3

Observation 1

Observation 2

Figure 6.2: Detection Efficiencies in the the SubgraphR

routes are not edge-disjoint since node validity may be determined along several

routes simultaneously. Hence the maximum expectation
m∑
k=1

[E(Y)max]k needed

for observation occurs when each route Ri ∈ R is edge-disjoint. Hence we reach
the surprising conclusion that increasing complexity in the subgraph R need not
necessarily increase the protocol’s complexity required by our search but that this
depends on the degree of edge-disjointedness. This finding has implications for the
design of ICS systems since it implies that while having multiple routes is obviously
useful for resilience, lowering the degree of edge-disjointedness has advantages for
detection using traceback techniques.

6.2.5 Time-Sequenced Key Value Release

We describe the key generation and release procedures . In essence, A network
node V generates or is supplied (not shown here) an initial sequence of keys k̃ and
subsequently generates a fresh key based on a nonce using a randomly selected key
from its key chain, using a suitable one-way function. The fresh key becomes part of
its key chain, randomly replacing another key, and is used for packet observation
from that point. Depending on some time period, or set of discrete events (e.g.,
observing n packets), the network node generates another fresh key by hashing a
randomly selected key from its key chain with the current key and replacing one
of the keys, again at random. It subsequently publishes the previously used key to
the operator. Subsequent keys are released in the order in which they are used.

This scheme is similar to the one proposed in [115]. This approach is resilient to
attack since insufficient time exists for guessing keys while both the packet identity
and its contents are hidden from the attacker [133], hence packets cannot be directly
manipulated and may only be arbitrarily delayed, dropped, re-routed or vandal-
ized. However, these forms of attack only delay rather than disrupt discovery –
section 6.2.6. In some cases, they may accelerate it by providing further packet-
based anomalies, hence detracting from agent capability to conceal their presence
using protocol forgery. Algorithm 1 provides a feasible encoding.

70

6.2 A TRACEBACK PROTOCOL FOR ADVERSARY DETECTION

Algorithm 6.2: New Key

1

Parameters: Time,CurrKey,KeyChain[0 . . . n], ObservationMode

Const: Limit, PrivateKey,OperatorIP
Var: PreviousKey
Static: Index
If Time > Limit&&ObservationMode = 1

PreviousKey := Keychain[Index];

CurrKey := Hash(PreviousKey,Rand());

Index := IntegerRand(n);

Replace(KeyChain[Index], CurrKey);

Sign(PreviousKey, PrivateKey);

Return PreviousKey

Return

6.2.6 Protocol Safety

The key property of the protocol is that it enables us to reduce the task of identifying
a specific malicious attack to a search of neigboring nodes. We demonstrate this
property for the protocol. We also prove the safety of the protocol in the face of
direct action by the adversary. We show that any form of message manipulation
does not change the result.

The safety property of the protocol may be expressed by the recursive equations
6.7 and 6.8 which say that xk represents a stopping state where either S′ and T ′

are pairwise adjacent written (S′|T ′), or k significantly exceeds E(Y) losing the
adversary the characteristic of indistinguishability (P). The nature of an anomaly
(where it exists) allows us to identify candidate adjacent nodes, based on reasoning
over the behavior of the protocol. In other words, we can deduce a total knowledge
of the state of nodes. We refer the reader to the threat model shown in table 5.1 in
chapter 5.

x0 = R (6.7)

In the state x0, all we know is that there is a subverted node somewhere between
S and T

xt = Observe(xt−1),¬((S′|T ′) ∧ t >> E(Y)) (6.8)

In this state, we know that either S′ or T ′ is the subverted node, or else that we
have exceeded the expectation for the number of observation rounds and that there
exists candidate modes for S′ and T ′ which are pairwise adjacent.

Proposition 6.1 (Search Validity)
There is a xk such that ¬(k >> E(Y)) and (it can be shown) ∃(i, j) : {Vi ∈ S, Vj ∈
T |S′ 7→ Vi, T

′ 7→ Vj , (S
′|T ′)}

71

6.2 A TRACEBACK PROTOCOL FOR ADVERSARY DETECTION

The proof is supplied using the techniques from the extended π-calculus. There
are several cases and a complete proof reduction would be burdensome without
the aid of a model checker. However, we can outline such a proof by considering
the action relations and an impact analysis on the names in the model.

PROOF Initially, we establish that action relations in the model conserve the direc-
tion of communication. Hence let Vi, Vj be pairwise adjacent nodes, we need to

show for each i and j and message m that there is an action relation Vi
x̄j〈m〉→ V ′i and

an action relation Vj
xj(u)→ V ′j and, w.l.o.g, provide a partial ordering for over xi and

xj which shows that if xi ≤ xj then xj follows xi in the direction of communication.
This is established by the routing map which the system operator owns or may be
shown by induction over processes since all processes are regarded as networked
peers. Without loss of generality, we assume that a node Vj is subverted in the fol-
lowing discussion and that Vi ≤ Vj ≤ Vk in the direction of communication. We
should also show that the encoding of Mark(),Observe() and NewKey() are feasi-
ble, which is trivial. Each case may be shown to apply both to a single route R and
to a set of routes R by considering each Ri ∈ R separately, although, as discussed
in section 6.2.4, there are potential economies in considering the subgraphR.

Case 1 – Normal Operation Assuming a manipulation attack, we initiate the
protocol and mark S and T . If (S|T) are pairwise adjacent then we are done. Oth-
erwise, for a node Vj we can show that for each message m received there is an
source function ↑I (m) and a corresponding sink function with the operator ↓I (m)
follows from the conservation of communicating action relations. The action re-

lations Vj
x̄k〈mI〉→ V ′j and Vk

xk(m)I→ V ′k forward a message with the impact of loss
of integrity while the corresponding action relations following the exercise of the

observe(), function Vi
x̄j〈w〉→ V ′i and corresponding action relations in Vj and Vk, send

a message w to the operator such that if we compare each mI and its correspond-
ing observational copy w, a mismatch is trivial to detect. Since the action relations
preserve the order of communication S < T , we can safely mark all Vk such that
Vk < Vj as part of S in the case of a mismatch and otherwise mark all Vi such that
Vj > Vi part of T . We correspondingly mark the new position of S′ or T ′ in xt+1

and |V | is reduced accordingly. If |V | = 0 then we are done and (S′|T ′) are again
pairwise adjacent, else we continue as before.

Case 2 – Message Drop – As before, we assume the order of communication is
preserved. Consider that there exists a V ′j ∈ V which is a subverted node that drops

(MP) all observed messages. This means that there is no action relation Vj
x̄k〈w〉→ V ′j .

Or that such a relation only exists for the process itself (an attempted deception!).
An impact analysis shows that Vj is a source ↑A (w) for all messages w ∈W where
W is observed prior to being routed to Vj . This shows that no Vi−n where n is a
non-negative integer, which precedes it in order of communication can be marked
as part of T . However, when k >> E(Y), it is clear that all nodes which precede
the node V ′i in the direction of communication remain unobserved (no copies exist
of these nodes on this route). Hence we can mark Vj part of S and the adjacent
node Vi part of T .

Case 3 – Message Diversion – Assume a subverted node Vj diverts packets
(MV) to valid nodes on other routes after manipulating them. We also assume for

72

6.2 A TRACEBACK PROTOCOL FOR ADVERSARY DETECTION

the sake of argument that the subversion function can freely manipulate routing
information in unencrypted messages. To maintain consistency in spoofing packet
contents, it cannot forward them to its own legitimate successor nodes, otherwise
the malformed packet may be observed. So, as in case 2, the corresponding action

relations Vj
x̄k〈m〉→ V ′j and Vj

x̄k〈w〉→ V ′j do not exist. As well as recreating the situation
for case 2, this also results in no node Vi+l where l is a non-negative number being
marked as part of S producing an additional anomaly which is the mirror image of
case 2. Alternatively, any re-routing of messages may break the operator’s under-
standing of how system communication is routed, violating the indistinguishability
assumption P.

Case 4 – Message Manipulation/Injection – This case does not require us to
consider action relations. Spoofing or manipulating observed packets is prevented
by the encryption technique. Packet vandalism is possible, but does not prevent
successor nodes being observed forming the set S. In fact, packet vandalism reveals
the subverted process by breaking the indistinguishability assumption P.

Case 5 – Message Replay – This case does not require us to consider action
relations. Even in the absence of a freshness protocol (which we have assumed
since packets are marked based on the characteristics), the expiration on keys and
packet identity will foil attempts at message replay. Since the subverted node has
to replay messages from all nodes which precede it and possibly itself, we can place
all nodes associated with replayed packets in T and proceed as before.

Case 6 - Message Delay – Considering the other capabilities in the formal model,
delaying messages (MD) will slow the action of the protocol, but not halt it. A sim-
ilar statement may be made about any denial of service attack. Such techniques
may also be countered by increasing the probability pwith which observations take
place. A similar payoff between message injection by the adversary and selection
of the probability value was explored in [96].

Case 7 - Replication – Obviously, the adversary may also replicate itself to other
processes by REP. These increase the number of nodes to detect. However, repli-
cation does not prevent detection of subverted nodes. The other capabilities in the
model are not relevant as attacks to undermine the protocol’s action.

Case 8 - Preventing Initiation – it may be argued that the adversary can prevent
process initiation by resetting message flags so that observation does not take place
by message manipulation (MM). Again, this removes from the system any action
relations forwarding w to the operator, creating the availability impact as before.
This form of attack will not succeed because a failure of a chain of nodes to return
copied packets on exceeding E(Y) would reveal the initial node in the chain as
the attacker, similar to case 3, upholding the security characteristic claimed for the
property. Moreover, and, trivially, received messages where the observation mode
flag is set to 0 instantly shows the presence of an adversary in the system, again,
breaking the indistinguishabilty assumption P.

Hence, based on feasible attacks in the adversary capability model and consid-
ering the action relations and impact analysis (effects on names) of such attacks,
we can show that the protocol is resilient in the face of an process subversion and
message manipulation.

73

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

6.2.7 Space and Storage Requirements

An important advantage of probabilistic marking protocols is the constant space
requirement for packet header size and that storage requirements on routers were
not overburdened [109]. These advantages are retained for this protocol for record-
ing packet identity , but with the overhead of marking routes and creating a new
packet on each observation. However, the protocol is only activated when required,
minimizing the associated cost. Further economies could be gained in space re-
quirements by utilizing a knowledge of the network topology [115].

Online storage requirements, aside from space required for storing hash value
key chains (see section 6.2.5), are assumed to be met by the operational control
center capacity and not to affect network node storage. Storage requirements are
anyway minimal set by the observation probability whereX is the number of pack-
ets per route (or routing subgraph) required before an observation takes place and
E(X) = 1

p . Once an observation has taken place, unobserved packets can be dis-
carded and observed packets archived for forensic purposes.

6.3 Co-ordinated Attacks, Anomaly Detection and
Communication Integrity

We extend the work of previous sections by presenting an extended example, based
on the co-ordinated attack the start of which we illustrated in chapter 5 and using
the traceback protocol set out in section 6.2 which shows how we might maintain
observability and controllability of a network under attack. This example also
demonstrates how we can reason over the roles of agents and alliances of agents
in attack and defense and is an example of an application of the goal transform
calculus.

The attack represented is based on [47]. Three key valves in a control system
when set to the values of open, closed and a steady state for a short period of time
(measured in minutes) result in a critical health and safety failure at the plant. The
original attack was conceived for an attacker acting externally on the system and it
could be shown that the attack arbitrarily failed due to network physics, such jitter,
traffic delay or message loss which are characteristic of a distributed system and
make external control of such systems difficult.

Here we re-conceive the attack as a malicious software attack where the initial
attacking processes which are agents in our conceptual model – chapter 5 – insert
three hostile agents in processes in the ICS system. These agents act internally and
are not affected by network physics. These agents set the valves to the appropriate
values, while manipulating messages to confuse observers over the state of the
system (i.e., a naı̈ve observer would perceive the state of the valves as altering
dynamically). The obfuscation strategy would be short lived and unsuccessful, if
its intent was to conceal the fact of manipulation long term, but it is only meant to
create confusion until the attack succeeds. The attack is necessarily co-ordinated to
insure events occur in the correct order.

We subsequently show how three autonomous agents can act on behalf of the
operator to calculate the true state of the system despite these obfuscations by uti-
lizing the protocol we have already described – see section 6.2. We use the exam-

74

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

ple as a further proof of the protocol’s effectiveness by calculating linearizations
of the attack and the detection using the goal transform calculus which we have
proposed for reasoning about agent interactions. Obviously, a full defense would
involve creating intervening software agents who could act autonomically to repair
the system. However, this extension lies outside the scope of our current research.
For simplicity, we also assume the observer agents are inviolate. An extended ver-
sion of the protocol would introduce additional means of comparing observational
readings (see chapters 7 and 8) which would underpin the validity of any observer
views.

6.3.1 Co-ordinated Attack

We begin by formally defining the full set of agents involved in the co-ordinated at-
tack - the three Insertion agents, the three Attack agents and the System agent which
represents the ICS with which they interact. In the following, if the names of vari-
ables are not specifically restricted by the agent declaration, then they are assumed
to be universal in scope. In this application of the protocol, it is implemented from
the initiation of the system.

The system agent consists of the 15 network nodes which are a set of goals∑15
i=1Xi (which can represent various objects such as servers, routers, switches and

so forth) and 3 controllers – see equation 6.9. We define each channel Xi ∈ X by
by defining a Send goal on a per node basis. We take note at this stage that every
node participates in the Mark and Observe goals which respectively mark mes-
sages with node address information and probabilistically take copies of messages
for comparison with the originals, using appropriately defined functions. These
are forwarded both to the operator and to a set of observer goals, whose action we
will define subsequently.

System ::= || •
15∐
i=1

Xi| •
3∐
j=1

Cj || (6.9)

Each goal Xi may be defined in terms of equation 6.10

15∐
i=1

Xi := ν kc (xi(z).0

+([(z ∈ Ci ∨ z ∈ Op](Mark + [Rand() 6 p)]Observe)

+Sendi ⊕ ω|!Xi) (6.10)

whereMark := Mk(xi, k, z) ⊃ z′ andMk is a function which adds a hash of the
the channel identity to the current routing information. Observe := Bv(z, k) ⊃ ν c
is a function which probabilistically copies and forwards messages. Rand() is a
function which generates a random number in the range (0 . . . 1). p is the observa-
tion probability. ω is the subversion option. z is any message. c is a copy of any
message. Ci is a set of messages from controller Ci. Op is a set of messages from
the operator. So each network node Xi receives messages and probabilistically ob-
serves those sent by the operator or controller Sendi is a goal which appropriately
routes message for each Xi. A full listing is provided in equations 6.11 to 6.28.

75

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

Send1 := δ + x̄Op〈z〉[Op].x̄B1〈z〉.x̄B2〈z〉x̄B3〈z〉.0
⊕x̄4〈z〉[C].0⊕ x̄5〈z〉[C].0⊕ x̄9〈z〉[X].0

+x̄Op〈c〉.x̄B1〈c〉.x̄B2〈c〉x̄B3〈c〉.0 (6.11)

Send2 := δ + x̄Op〈z〉.[Op].x̄B1〈z〉.x̄B2〈z〉x̄B3〈z〉.0
⊕x̄5〈z〉[C].0⊕ x̄6〈z〉[C].0⊕ x̄10〈z〉[X].0

+x̄Op〈c〉x̄B1〈c〉.x̄B2〈c〉.x̄B3〈c〉.0 (6.12)

Send3 := δ + x̄Op〈z〉[Op].x̄B1〈z〉.x̄B2〈z〉x̄B3〈z〉.0
⊕x̄6〈z〉[C].0⊕ x̄7〈z〉[C].0⊕ x̄9〈z〉[X].0

+x̄Op〈c〉x̄B1〈c〉.x̄B2〈c〉x̄B3〈c〉.0 (6.13)

Send4 := δ + x̄1〈z〉[Op].0⊕ x̄9〈z〉[C].0

⊕x̄10〈z〉[X].0 + x̄1〈c〉Op.0 (6.14)

(6.15)

Send5 := δ + x̄1〈z〉[Op].0⊕ x̄2〈z〉[Op].0⊕
x̄8〈z〉[C1,C2].0⊕ x̄10〈z〉[C].0⊕ x̄9〈z〉[X].0

+x̄1〈c〉Op.0 (6.16)

Send6 := δ + x̄3〈c〉Op.0 + x̄2〈z〉[Op].0⊕ x̄3〈z〉[Op].0
⊕x̄9〈z〉[C1,C2].0⊕ x̄11〈z〉[C].0⊕ x̄10〈z〉[X].0 (6.17)

Send7 := δ + x̄3〈c〉Op.0 + x̄3〈z〉[Op].0
⊕x̄10〈z〉[C].0⊕ x̄9〈z〉[X].0 (6.18)

Send8 := δ + x̄5〈c〉Op.0 + x̄5〈z〉[Op].0
⊕x̄13〈z〉[C1,C2].0 ⊕ x̄10〈z〉[X].0 (6.19)

(6.20)

76

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

Send9 := δ + x̄4〈c〉Op.0 + x̄4〈z〉[Op].0⊕ x̄6〈z〉[Op].0
⊕x̄12〈z〉[C1].0⊕ x̄14〈z〉[C2,C3].0

⊕
15∑
i=1

x̄i〈z〉[Xi].0 + x̄Ad〈u〉[Ad].0 (6.21)

Send10 := δ + x̄5〈c〉Op.0 + x̄5〈z〉[Op].0
⊕x̄7〈z〉[Op].0⊕ x̄11〈z〉[C1,C2].0

⊕x̄15〈z〉[C3].0⊕
15∑
i=1

x̄i〈z〉[Xi].0

+x̄Ad〈u〉[Ad].0 (6.22)

Send11 := δ + x̄6〈c〉Op.0 + x̄6〈z〉[Op].0
⊕x̄14〈z〉[C2,C3].0⊕ x̄9〈z〉[X].0 (6.23)

Send12 := δ + x̄9〈c〉Op.0 + x̄9〈z〉[Op].0
⊕x̄C1〈z〉[C1].0⊕ x̄10〈z〉[X].0 (6.24)

(6.25)

Send13 := δ + x̄8〈c〉Op.0 + x̄8〈z〉[Op].0⊕ x̄10〈z〉[Op].0
⊕x̄C1〈z〉[C1].0⊕ x̄C2〈z〉[C2].0

⊕x̄9〈z〉[X].0 (6.26)

Send14 := δ + x̄11〈c〉Op.0 + x̄9〈z〉[Op].0⊕ x̄11〈z〉[Op].0
⊕x̄C2〈z〉[C2].0⊕ x̄C3〈z〉[C3].0

⊕x̄10〈z〉[X].0 (6.27)

Send15 := δ + x̄10〈c〉[Op].0 + x̄10〈z〉[Op].0
⊕x̄C3〈z〉[C3].0⊕ x̄9〈z〉[X].0 (6.28)

The controller goals are defined generically in equation 6.29.

Ci := (νy)xCi(z) + Control + Send|!Ci (6.29)

where the sub-goal are defined as follows:

Ci.Control := C(ũ, z) ⊃ y′, CiV ALV E′ (6.30)
C1.Send := x̄12〈y〉Op.0⊕ x̄13〈y〉Op.0 (6.31)
C2.Send := x̄13〈y〉Op.0⊕ x̄14〈y〉Op.0 (6.32)
C3.Send := x̄14〈y〉Op.0⊕ x̄15〈y〉Op.0 (6.33)

77

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

For all Ci, ũ is a vector of names holding the gain and setpoint parameters
used by the control function. y is a vector holding the report state of a controller.
C is the control function used by a controller to alter valve settings. z is any
message.Ci.V ALV E are state variables for each control valve

The Launch agents have three tasks. The first two agents send malicious soft-
ware to overwrite network nodes recruiting them for the adversary. The third agent
waits until the first two are successful before launching its own attack.

We define the first agent L1

L1 ::= ν s, i,m, g || • Stage1|| (6.34)

where

Stage1 := s(⊥).
12∑
i=4

(x̄9〈g2〉Xi .xS1(s).0 + [s]G0 + [i > 12]Fail) (6.35)

and the second agent similarly by:

L2 ::= ν s, j,m, g || • Stage2|| (6.36)

Stage2 := s(⊥).
4∑

j=12
(x̄10〈g3〉Xj .xS2(s)

+[s].G0 + [j 6 4]Fail) (6.37)

The third agent represents a more complex goal progression in equations 6.38
to 6.42:

L3 ::= ν a, k(0), l, n, s,m, g || • InitialSuccess|Stage3|
DetectSuccess|UpdateAttack|| (6.38)

InitialSuccess := xAd(u).0 + [u ∈ Ack]UpdateAttack + [a]Stage3

+[k > 2]G0|!InitialSuccess (6.39)

Stage3 := s(⊥).
12∑
l=4

(x̄9〈g1〉Xl .s(>).0

+[s].DetectSuccess+ [l > 12]G0)) (6.40)
DetectSuccess := xAd(w).0 + [w ∈ Xl ∧ w]G0|!DetectSuccess (6.41)
UpdateAttack := Update(u) ⊃ a′.(k + +).0 (6.42)

For each agent:

Fail := (x̄Ad〈s〉.0).G0 (6.43)
gi := (x̄X∗〈mi〉X∗ ⊕ δ).0⊕ φ (6.44)

and m̃ is the set of subverted messages sent by each gi which are goals that tem-
porarily rewrite X9 and X10 to re-route the subverted messages to their final desti-
nations. s is a boolean variable indicating success or failure of a subversion attempt.

78

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

i, j, k, l are integers. u,w are any message from the system. a is a boolean predicate
which is defined as (InP lace(Agent2, Agent3)). Update is a function which up-
dates the boolean predicate. Ack is the set of message acknowledgments indicating
a successful goal achievement during the attack. We use k+ + as a shortened from
of Increment(k) ⊃ k′ purely for convenience. δ indicates a potential delay in mes-
saging and φ a failure condition.

We show some initial proof reductions over the action of the System agent. We
need to show that each network node Xi responds appropriately to messages. We
show this for node X1 in equation set 7. The action of each node is chiefly differ-
entiated by the Sendi goal. The X1, similar to X2 and X3, passes messages from
the operator and routes them to controllers and also passes messages from the con-
trollers to the operators, but it also passes messages to observer agents. Any mes-
sages intended for other network nodes are routed by X9. The node also marks all
messages between the operator and controllers and copies messages for compari-
son by the observers with the original.

PROOF
||X1.x1.(z)||System
→Message received
||X1.Mark||System (z ∈ Ci ∨ z ∈ Op)
→ ∗Mark the message with the node information
||X1.Observe|| (Rand() 6 p)∗
→ Copy it, depending on a random outcome
||X1.Send.x̄4〈z〉[C]||System
→ Forward the message to various destinations
||X1.Send.x̄5〈z〉[C]||System
or
→ ||X1.Send.x̄9〈z〉[X]||System
or

79

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

||X1.Send.x̄Op〈z〉[Op]x̄B1〈z〉.x̄B2〈z〉.x̄B3〈z〉||System
→ Send message to the observers
||X1.Send.x̄B1〈z〉.x̄B2〈z〉.x̄B3〈z〉||System
→
||X1.Send.x̄B2〈z〉.x̄B3〈z〉||System
→
||X1.Send.x̄B3〈z〉||System
→ ∗∗
or
→
||X1.x̄Op〈c〉.x̄B1〈c〉.x̄B2〈c〉x̄B3〈c〉||System ∃(c)
∗∗ →
||X1||System
→ Or message delayed
X1.δ

We can now prove the action of the launch agents in more detail. It should be
noted is that by explicitly naming channels we introduce potential constraints on
adversary action – for example, if only one system node formed the initial attack
surface, rather than two as in our example. This shows why the goal transform
calculus requires a transform to the applied π-calculus during the course of any
proof reduction.

80

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

PROOF

||Stage1.s(⊥)||L1

||Stage2.s(⊥)||L2

→ Initial state
||Stage1.x̄9〈g2〉Xi ||L1 (i = 4)

||Stage2.x̄10〈g3〉Xj ||L2 (j = 12)

||X9.x9(z)||System
||X10.x10(z)||System
→ Send messages systematically until a successful subversion occurs
||Stage1.xS1(s)||L1

||Stage2.xS2(s)||L2

||X9.(x̄i〈m2〉Xi .x̄S1〈>〉 ⊕ φ.x̄S1〈⊥〉S1)||Agent0
||X10.((x̄j〈m2〉Xj .x̄S2〈>〉 ⊕ φ.x̄S2〈⊥〉S2)||Agent00

||Xi.xi(z)||System
|Xj .xj(z)||System
→ Case 1 ∗ Both attempts succeed
||Stage1.xS1(s)||L1

||Stage2.xS2(s)||L2

||X9.x̄S1〈>〉S1||Agent0
|X10.x̄S2〈>〉S2||Agent00

||Xi
′|G||Agent2

|Xj
′|G||Agent3

→ Case 2.1 Xi succeeds, while Xj fails and is re - attempted
||Stage1.G0||L1

||Xi
′|G||Agent2

||Stage2.x̄10〈g3〉Xj ||L2 (j = 11)

||X10.x10(z)||Agent00

→ Case 2.2 Xj succeeds, while Xi fails and is re - attempted
→ Case 3 Both attempts fail and are re - tried
||Stage2.x̄9〈g3〉Xi ||L1 (i = 5)

||Stage2.x̄10〈g3〉Xj ||L2 (j = 11)

→ (∗) Both attempts succeed

81

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

Up to this point we show the success conditions. We complete the proof by
considering the failure conditions.

→ (∗∗) One subversion fails
||Stage2.x̄10〈g3〉Xj ||L2 (j = 4)

||X10.x10(z)||System
→
||Stage2.xS2(s)||L2

||X10.((x̄i〈m2〉Xi .x̄S2〈>〉 ⊕ φ.x̄S2〈⊥〉S2)||Agent00

→
||Stage2.xS2(s)||L2

||X10.x̄S2〈⊥〉S2||Agent00

→
||Stage2.Fail||
||X10||System
→
||Stage2.Fail.s(⊥).x̄Ad〈s〉.G0||L2

. . .

→ (∗ ∗ ∗) Both attempts fail and the attack aborts

Signals to L1 from L2, L3 are negative while the acknowledgment signals from
the agents Agent2, Agent3 are positive. We also need to show that no matter what
order and what signals arrive that L1 responds correctly either by aborting or ini-
tiating the final phase of the attack. This leads to a requirement to show that the
third launch agent can abort or proceed for several different cases of fail on launch
or a successful outcome (from the point of view of the malicious agent).

82

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

PROOF

||InitialSuccess.xAd(u)||L3 (k = 0)

→ (1) Both attacks succeed
||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = m2, a = m2 ∧ ¬m3, k = 1)

||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = m3, a = m2 ∧m3, k = 2)

||Stage3||L3

or → (2) L3 sends a negative flag though Agent2 succeeds
||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = m2, a = m2 ∧ ¬m3, k = 1)

||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = ¬g3, a = m2 ∧ ¬m3, k = 2)

||G0||L3

→ (3) L2 and L3 send negative flags
||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = ¬g2, a = ¬m2 ∧ ¬m3, k = 1)

||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = ¬g3, a = ¬m2 ∧ ¬m3, k = 2)

||G0||L3

→ (4)Agent3 succeeds and L2 fails
||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = ¬g2, a = ¬m2 ∧ ¬m3, k = 1)

||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = m3, a = ¬m2 ∧m3, k = 2)

||G0||L3

→ (∗) We can swap the order of arrival to get the same result

We now formally define the Attack agents which are the malicious software pay-
loads inserted by the launch agents. It should be noted that while we effectively
treat this as a single attack, in fact, it could also represent an co-operative attack
from multiple different malicious sources, each of whom contributes one part of
the attack. Since each agent also waits for specific events to initiate the next phase
of the attack, this also means that the attack could be launched over a period of
time. Only the final insertion of launch agent L3’s payload completes the attack
initiation. The action of each agent is defined together with the subverted code
which mutates the system goals to send a command to the controller and obfuscate
messages to the operator reporting control state.

There are three agents. Agents 2 and 3 are launched first by launch agents L2
and L3 and wait for Agent 1 which is launched by L3 only when agents 2 and 3
are in place. The attack is completed when Agent 1 is installed and sets controller

83

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

C2 to a steady value and signals Agent 2 who sets controller C1 to Open, on suc-
cess, signalling Agent 3 who sets controller C3 to Closed, completing the attack and
sending a Success flag back to L3. It should be noted that each of the agents over-
writes a network node. The attack order is provable at goal level without resorting
to transforming the π-calculus, assuming there is no defensive intervention at this
point and the attack is only detected once it has commenced.

Agent1 is defined by the following equations:

Agent1 ::= || •Xk
′| • SetSteady| • Conceal|| (6.45)

Conceal := (xc(u).O(u) ⊃ u′.x̄c〈u′〉Op|!Conceal) (6.46)
SendToC := x̄c〈z′〉.xc(z′) (6.47)
SetSteady := set(u, Steady) ⊃ u′.x̄s〈u′〉C2.F lagSteady (6.48)
FlagSteady := xs(u) + [u = Steady]x̄s〈s〉X5 .G0|!Flagsteady (6.49)

along with its subverted version of the system agent,

X ′k := ν xsxckc (xk(z)
+[z ∈ Ci, z ∈ Op](Mark(xi, z, k) + [Rand() 6 p)]Observe)

+[z ∈ C2](SendToC + x̄s〈z〉) + xs(z)
+(Send⊕ δ)).0|!Xk) (6.50)

where C2 is defined as the set of messages which have the property that they
originate from controller C2, z is a message, s flags attack success toAgent3, Steady
is the desired value set by the attacker and O is a function which conceals the true
signal from the operator and observers.

Agent2 is defined similarly except that it sets the valve to open, waits for this
goal to succeed and subsequently signal the third

Agent2 ::= || •Xi
′| •Ack2| • Conceal|| (6.51)

Conceal := (xc(s).O(s) ⊃ s′.x̄c〈s′〉Op|!Conceal) (6.52)
SendToC := x̄c〈z′〉.xc(z′) (6.53)
Ack2 := ν v(>) (x̄s〈v〉Ad.Waitfor1) (6.54)

Waitfor1 := (xs(s) + [s = Steady]OpenV alve|!Waitfor1) (6.55)
OpenV alve := ν w (set(w,Open) ⊃ w′.x̄s〈w〉C1 .F lagOpen (6.56)
FlagOpen := ν w (xs(s) + [s = Open] x̄s〈u〉X7 .G0|!FlagOpen) (6.57)

where w is a real number, v is an acknowledgment that Agent2 is in place, u
is a signal to Agent3 that Agent2 is successful and the system replacement goal is
defined by:

84

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

Xi
′ := ν xsxckc (xi(z)

+[z ∈ Ci, z ∈ Op]Mark(xi, z, k)

+[z ∈ C2](x̄s〈z〉+ SendToC(z)) + xs(z)
+[(z′ ∈ Ci ∨ z ∈ Op) ∧ (Rand() 6 p)]Observe(z, k)

+(Send⊕ δ)).0|!Xi) (6.58)

where C1, C2 are sets of messages originating from those respective controllers
and c is a copy of a message.

Finally, we defineAgent3 which are, on receiving success messages from agents
1 and 2, launches the final part of the attack, setting the third valve to closed to
create the critical health and safety condition which is the end goal of the attack.
It should be noted that although we assume delays will disorder messaging, they
will not normally be significant enough to prevent the attack from succeeding.

Agent3 ::= || •Xj
′| •Ack3| • Conceal|| (6.59)

Conceal := xc(u).O(u) ⊃ u′.xc〈u′〉Op.0|!Conceal (6.60)
SendToC := x̄c〈z′〉.xc(z′) (6.61)
Ack3 := ν v(>) (x̄s〈v〉Ad.Waitfor2) (6.62)

Waitfor2 := xs(u) + [u ∧ FromAgent2(u)]CloseV alve|!Waitfor2(6.63)
CloseV alve := ν w (set(w,Closed) ⊃ w′.x̄sw′Op.F lagSuccess) (6.64)
FlagSuccess := ν s xs(u) +

([u = Closed]x̄s〈s〉Ad.G0)|!FlagSuccess) (6.65)

We also define the subverted system goal as before.

Xj
′ := ν xcxskc (x7(z)

+[z ∈ Ci, z ∈ Op](Mark + [Rand() 6 p)]Observe)

+[z ∈ C3](x̄s〈z〉+ SendToC(z)) + xs(z)

+[z ∈ Agent2]x̄s〈z〉
+(Send⊕ δ)).0|!Xj) (6.66)

where C2, C3 are sets of messages, u,w are real variables, v an acknowledgment
to the final launch agent thatAgent3 is in place, s is a boolean variable set to TRUE

The proof of the attack at goal level follows.

85

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

PROOF
||Xk

′|SetSteady|Conceal||Agent1
||Xi|Waitfor1|Conceal||Agent2
||Xj |Waitfor2|Conceal||Agent3
→
||Xk

′|SetSteady.set(u, Steady) ⊃ u′||Agent1
||Xi|Waitfor1||Agent2
||Xj |Waitfor2||Agent3
→
||Xk

′|SetSteady.x̄s〈u′〉C2||Agent1
||Xi|Waitfor1||Agent2
||Xj |Waitfor2||Agent3
→
||Xk

′.Send|FlagSteady||Agent1
||Xi|Waitfor1||Agent2
||Xj |Waitfor2||Agent3
. . .→
||Xk

′|FlagSteady.xs(u)||Agent1
||Xi|Waitfor1||Agent2
||Xj |Waitfor2||Agent3
→
||Xk

′|FlagSteady.[u = Steady]x̄s〈s〉X5 .G0||Agent1
||Xi|Waitfor1||Agent2
||Xj |Waitfor2||Agent3
→
||Xk

′.Send(u)|G0||Agent1
||Xi|Waitfor1.xs(s)||Agent2
||Xj |Waitfor2||Agent3
. . .→
||Xi|OpenV alve||Agent2
||Xj |Waitfor2||Agent3
→
||Xj |FlagSuccess||Agent3
→
||DetectSuccess||L3

�

6.3.2 Attack Detection

We define the Observer agents and the associated set of state variables.We detect
the attack using a distributed observation algorithm, made up from the actions of

86

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

the network nodes in the System agent in marking and copying messages and a
set of Observer agents who use this information to decide which routes to the con-
trollers may be trusted and make a state determination over the control valves only
over trusted routes. The Observers also send an alert to the Operator if the state
is critical. The Observer agents will store messages, compare copied messages to
stored messages and use a graph to mark untrusted nodes where there is a discrep-
ancy between the copied and stored message data. Subsequently, when determin-
ing state, any messages sent along routes with untrusted nodes are ignored.

The reduction of the observer agent falls into three parts -

1. Explaining the variant of distributed algorithm

2. Showing that the observers will block paths appropriately for 2 cases

a) Malicious manipulation before observation

b) Malicious manipulation after observation

3. Showing that a mobile agent will not cause the algorithm to function incor-
rectly

The operator employs observer agents to make a state determination over trusted
routes, alerting on critical conditions. Each network node (including adversary
agent nodes) through which a message passes will mark the route followed with
its address. Each node may also probabilistically forward a message copy to ob-
server agents for comparison.

Again, the capability to evaluate the environment and invoke goals provides
a key additional capability in our thinking about security protocols. We show
how the observer algorithm uses messages and copies to determine a trusted set
of paths. State determination is restricted to considering messages which arrive by
trusted paths. An observer is defined in equation 6.67 through equation 6.72. We
show the initial reduction of the Observer in equations 11 and 12.

ν k̃c̃, STORE, STATE,CRITICAL,CiTREE || •Observe|| (6.67)

87

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

Observe := xObj (z) + [z ∈M]UpdateState + [z ∈ C]UpdatePath (6.68)
UpdateState := ν p (Store(z, STORE) ⊃ STORE′

+
∑
i

[z ∈ Ci ∧ ¬(Marked(z.path)]Store(z, STATE) ⊃ STATE′

+([p 6 rand()]EvaluateState⊕Observe) (6.69)
EvaluateState := (Evaluate(STATE, c̃) ⊃ CRITICAL′

+[CRITICAL]Alert) +Observe (6.70)
UpdatePath := Compare(u, z, k̃, STORE) ⊃ w.∑

i

[¬w]MarkPath(u, z, CiTREE) ⊃ CiTREE′

+
∑
i

[w ∧Marked(z.path)]UnMarkPath(u, z, CiTREE) ⊃ CiTREE′

+Observe (6.71)
Alert := ν f(⊥) (x̄Op〈f〉Op) (6.72)

The first case is a copied message used to determine route trustworthiness. The
observer receives a message which it evaluates to be a copy and invokes the goals
UpdatePath which compares the message with the original. If no discrepancy is
found, it moves to the next message. If a discrepancy is found then it notes the route
and marks the forward neighboring node in order of communication as untrusted.
It can also remove marks – for example, taking account of interventions which
might return a node to a trusted state. We can represent marked messages using
a graph, defined algebraically for the purposes of the proof using ∨ to represent a
choice of routes and ∧ to represent a sequence of communication nodes on a single
route. For example, equation 6.73 shows that X8 is no longer a trusted node by
placing a bar over the node.

PROOF

|Xi.Send|| (i = 1, 2, 3)

||Observe.xobj (z)||Observerj (z ∈ C)

→
||UpdatePath.Compare(u, z, k̃, STORE) ⊃ w||Observerj
→ No discrepancy, message on unmarked path
||Observe||Observerj
→ No discrepancy, message on previously marked path
||UpdatePath.UnMarkPath(u, z, CiTREE) ⊃ CiTREE′||Observerj
{w = TRUE ∧Marked(z.path)}
or → Discrepancy found
||UpdatePath.MarkPath(u, z, CiTREE) ⊃ CiTREE′||Observerj (w 6= TRUE)

88

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

The proof that the path marking algorithm will respond correctly depending
on whether the message is marked before or after being manipulated follows. If
the message is copied before it is manipulated, then the malicious agent node will
appear to deliver trustworthy messages, but any subsequent node it sends the mes-
sage to will appear to be untrustworthy. Hence we always mark the next node up
in order of communication to the node transmitting the copy. Alternatively, any
previous node will appear to deliver a trustworthy copy and we will bar the agent
node. So either any node the agent node sends to will be marked as untrustworthy
or the agent node will be marked as untrustworthy. In either case, any message
traveling by the agent node will not be trusted for state determination.

C1TREE = Op ∨ (X1 ∨ (X4 ∧X9 ∧X12 ∧ C1)

∨(X5 ∨ (X̄8 ∨X10) ∧X13 ∧ C1))

∨(X2 ∨ (X5 ∨ (X̄8 ∨X10) ∧X13 ∧ C1)

∨(X6 ∧X9 ∧X12 ∧ C1))

∨(X3 ∨ (X6 ∧X9 ∧X12 ∧ C1)

∨(X7 ∧X10 ∧X13 ∧ C1))) (6.73)

PROOF

|Xi.Send|| (i = 1, 2, 3)

||Observe.xobj (z)||Observerj (z ∈M)

→
||UpdateState.Store(z, STORE) ⊃ STORE′||Observerj
→ Only if message is trusted
||Store(z, STATE)||Observerj
→ (p > rand())

||Observe||Observerj
→ (p 6 rand())

||EvaluateState.Evaluate(STATE, c̃) ⊃ CRITICAL′||Observerj
→ Not in a critical state
||Observe||Observerj
→ State is critical

The second case is an normal message and, depending on probability, a snap-
shot of state. The observer receives a message which is not a copy. It stores the
message in STORE which is use to log all messages. But only if the message ar-
rives on a trusted does it store the message in STATE which is the set of messages
used to make a determination over the state of the system. Finally, if the state is
detected to be critical (as in our attack) the operator is signaled by the Alert goal.

We include the pseudo-code of the functions for completeness. These are feasi-
ble encodings rather than necessarily the most efficient algorithms.

89

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

Algorithm 6.3: Compare

1

Compare(, u, z, k̃, STORE)

Decrypt(z, k̃)

FetchOriginalMessage(u, z)

CompareMessages(u, z) ⊃ w // Flag discrepancies
Return w

Algorithm 6.4: Path Marking

1

MarkPath(u, z, CiTREE)

V ar

path, node, i

path = z.path− u.path
i = z.message.origin

node = z.path.lastnode

// Search the CiTREE and mark each route with the untrusted node
// Don’t complete this process if an already marked node is encountered en route

MarkNode(node, CiTREE)

Return CiTREE

90

6.3 CO-ORDINATED ATTACKS, ANOMALY DETECTION AND COMMUNICATION

INTEGRITY

Algorithm 6.5: Unmark Paths

1

UnMarkPath(u, z, CiTREE)

V ar

path, node, i

path = z.path− u.path
path = path− path.lastnode

// We shorten the path by one node to avoid removing marks

i = z.message.origin

// Remove all marks up to the end of the path

UnMark(path, CiTREE)

Return CiTREE

The final aspect to examine is how this approach allows us to consider behav-
ioral aspects, that is, proofs over dynamic alterations to the system. Here we use
the simplified example of an agent node transmitting itself to another node and
deleting itself on the first node. The example is a little contrived, but intended to
demonstrate that the observer algorithm will function in a dynamic situation.

C1TREE = Op ∨ (X1 ∨ (X4 ∧X9 ∧X12 ∧ C1)

∨(X5 ∨ (X̄8 ∨X10) ∧X13 ∧ C1))

∨(X2 ∨ (X5 ∨ (X̄8 ∨X10) ∧X13 ∧ C1)

∨(X6 ∧X9 ∧X12 ∧ C1))

∨(X3 ∨ (X6 ∧X9 ∧X12 ∧ C1)

∨(X7 ∧X10 ∧X13 ∧ C1))) (6.74)
→

C1TREE = Op ∨ (X1 ∨ (X4 ∧X9 ∧X12 ∧ C1)

∨(X5 ∨ (X8 ∨X10) ∧X13 ∧ C1))

∨(X2 ∨ (X5 ∨ (X8 ∨X10) ∧X13 ∧ C1)

∨(X̄6 ∧X9 ∧X12 ∧ C1))

∨(X3 ∨ (X̄6 ∧X9 ∧X12 ∧ C1)

∨(X7 ∧X10 ∧X13 ∧ C1))) (6.75)

91

6.4 SUMMARY

Consider the graph transformation defined algorithmically in the equations
6.74 and 6.75. Various cases may arise, depending on ordering. The value of our
approach is to consider these various cases and the number of discrete steps which
may occur to establish them and the resulting (probabilistic) effect on state deter-
mination. The same results cannot be obtained purely from calculating the expec-
tation of the number of discrete steps to establish the various cases.

PROOF∐
i

||Observer||Obi

||C1.x̄13(y)xOp|X13.x13(z)||System
→
||X10.Mark.x̄〈y〉Op|X10.x10(z)|C1.x̄12〈z〉Op|X12.x12(z)||System
→
||X10.Mark.x̄8〈y〉Op|X12.Mark.x̄9〈y〉Op|X9.Mark.x9(z)|C1.x̄13〈y〉Op|X13.x13(z)||System
||X8

′.x8(z)||Agent2
→
||X8

′.Mark.x̄5〈y〉Op||Agent2
||X13.Mark.x̄10〈y〉Op|X9.Mark.Observe(y)|C1.x̄12〈z〉Op|X12.x12(z)|X10.x10(z)|X5.x5(z)||System
→
||X10.Mark.x̄7〈y〉Op|X5.Mark.x̄2〈y〉Op|X12.Mark.x̄9〈y〉Op|X9.Mark.x̄6〈y〉Op|C1.x̄13〈y〉||System
→ Case (1) X8 and X6 are marked∐
i

||UpdatePath.MarkPath(c, y, C1TREE)||Obi

→ Case (2) Neither node is marked
→ Case (3) X6 is marked but not X8 (6.76)

�

6.4 Summary

We have used this chapter as an extended example of the methods and techniques
developed in chapter 5, showing how we can incorporate both the adversary model
and impact analysis into the π-calculus to provide us with a demonstrate of the
validity of a security protocol. The protocol is itself of interest as an example of
the application of traceback techniques to a network where both the source and
origin of traffic are already known and the network is well-defined. This brings
considerable advantages in terms of reducing protocol complexity to the operator
and software agents working on his behalf. We illustrate how the protocol may be
used not just to locate adversary processes but also to enable continuing accurate
state determination over a system which has been subverted.

92

Chapter 7

Expected Behavior and Multithreaded
Observation Mechanisms In

Multiprocessor Systems

The mathematical probability of
a common cat doing exactly as it
pleases is the one scientific
absolute in the world.

Lynn M. Osband.

7.1 Preamble

Clearly, it would be desirable to avoid the recruitment of network nodes or con-
trol units by malicious adversaries in the first place. In this chapter, we set out an
approach to the early detection of the subversion of network hosts by malicious
software which takes advantage of the nature of multiprocessor operating systems
which are now ubiquitous in computer systems. In such systems, memory man-
agement introduces similar dis-orderings of process and communication to those
present in distributed systems at network level. Multiprocessor scheduling permits
observers associated with different CPUs to observe the action of other processes
in the system concurrently with that action and allows us to detect probabilistically
alterations in state of key processes, for example, security subsystems. These state-
ful observations may then be compared with a model of expected behavior, which
we specify using a variant of CCS (along with an associated approach using state
automata). We begin by defining the how the model is specified, since it captures
novel features in relation to understanding causation in such systems, and go on
to provide a description of the observation mechanism and a “proof of concept”
implementation of the method.

7.2 Expected Behavior Model

In this section, we set out our approach to modeling the expected behavior of a dis-
tributed computation. This model abstracts from the detail of implementation, so,
for example, it is irrelevant whether we are treating, as for our “proof of concept”,
a concurrent system as a distributed system or dealing with a network system. The
approach extends to both.

93

7.2 EXPECTED BEHAVIOR MODEL

As we have stated in appendix B, a distributed system consists of set P of N
processes, P = {P1, P2, . . . , PN}. Each process Pi , where 1 ≤ i ≤ N passes through
a finite sequence m of local states (s1, s2, . . . , s3) where m ≥ 1.

Let Si be the sequence of local states in Pi. Then S can be defined as

S =
∐
i

Si

A distributed computation trace can be modeled as a tuple (S1, S2, . . . , SN ,;),
where ; indicates a state in Si logically preceding a state in Sj (1 ≤ i ≤ j ≤ N).
This structure forms a decomposed partially ordered set (deposet).

We now apply this approach to a subset of elements in S. Let X ⊆ S be a
selected set of data elements in a distributed computation. For our purposes, the
elements of X are selected on the basis that they behave consistently (i.e. are in-
variant) under normal operating conditions, but behave arbitrarily under abnor-
mal conditions such as the incursion of malicious software 1. We term the set X ,
the set of semantic chokepoints within the application. The implication is, not simply
that these elements might behave differently under subversion, but that they must
do so – although, we can accept high probability cases as well.

Each element x ∈ X passes through a sequence of states Sx during a run of a
distributed computation. Let

SX =
∐
x∈X

Sx

It should be clear that SX also forms a deposet. It is not necessary that and
element sx ∈ SX be a complete ordering in relation to S. For example, it could be
a function which is repeatedly invoked and operates over a shorter period of time,
which can be designated a service period[53].

We may model the expected behavior of P in terms of the expected behavior of
X . X is an abstract representation of P . That is, since each data element x ∈ X is
associated with a process Pi ∈ P , there exists a function φ which such that φ : Si 7→
Sx. This mapping is surjective since for each state in Sx there exists, at least, one
state transition of Si (i.e., itself). φ is, therefore, a mapping between the global states
of S and the states SX . Hence the state of SX may be used to indicate the possible
states of Si. Clearly, the model of behavior derived will be less finely grained than
if we had direct access to the actual states of P , but we have the advantage of
reduced complexity. Moreover, the model proposed allows us to consider behavior
more directly relevant to the purposes of anomaly detection. Thus, if we record
the states of SX we may feasibly compare the resulting set of global sequences (or
parts thereof) with an equivalent set of predicted sequences and potentially use our
findings to uncover the presence of malicious software.

We also declare a probability distribution function over the states of φ : PX 7→
P . This approach is initially useful for determining if behavior matches expecta-
tion. It also enables us to abstract further from the action of P . For example, we
might deal with states which relate to the program environment rather than the
data states of P [101].

1Clearly, the selection criteria should be altered for different applications.

94

7.2 EXPECTED BEHAVIOR MODEL

7.2.1 Modelling Approach

We show how the behavior of PX may be modeled both as a graph and as a pro-
cess algebraic statement. The two representations are isomorphic. Although, for
reasons of economy, the algebraic approach is preferred for specifying complex dis-
tributed systems. The graph-theoretical approach is useful for illustrating action at
particular points.

7.2.1.1 Expected Behavior Diagram

We may specify the legal states and permitted transitions of an x ∈ X , denoted
xi → xj , using a modified state diagram, which we call an expected behavior graph.
The primary modifications are to eschew the use of loops and to label transitions
with probability values 2. For convenience, we may choose to represent replication
by an asterisk.We provide an example in figure 7.2.1.1.

astart

b

c

a∗

0.3

0.7

Figure 7.1: Expected Behavior Graph Showing Legal States and Transitions of x

This graph is useful as it enables us not only to distinguish between legal and
illegal behavior, but also to identify low probability behavior which may be indica-
tive of anomalous conditions. In effect, the specification serves not only as a de-
scription of the probability space Ω of the behavior of x, but also as a “fuzzy” partial
order for the relation “preferred successor state” which expresses what behaviors
are more likely that others to belong to a set of normal behaviors for the computa-
tion. This approach lends itself to a statistical analysis of the computational traces,
although our primary intent is to achieve an early warning of malicious behavior
by more granular analysis of causality. Nonetheless, there exist occasions where the
former technique is more useful than the latter, such as the unlikely high repetition
of error messages for a given function [9].

Clearly, it is infeasible for the graph to express a complete set of global se-
quences (or even one), which might occur during an extended run of the compu-
tation. Rather, borrowing from order theory, we designate the initial condition as
the sup and the terminal state as the inf. We assume the sup is unique, but, clearly,
in some cases, an inf may not exist and we deal with set of minimal states. To deal

2Similar to the concept of “likely” and “unlikely” in Linux kernel programs used to deal with
error conditions.

95

7.2 EXPECTED BEHAVIOR MODEL

with replication, we may also term any state from which process behavior repli-
cates a sub-maximal and its immediate predecessors sub-minimals. A set of global
sequences may be modeled by chaining these bounded sequences, gluing a sub-
minimal and a sub-maximal element together. In effect, the sup and inf define a
service period.

We may extend this approach to specify the behavior of more than one data ele-
ment concurrently, showing each data element as distinct components of the same
expected behavior graph. This approach is well-defined where causal relations ex-
ist between the states of different elements. We formally define three such relations
– conditional dependency , strong causal dependency and weak causal dependency. These
relations may be used to specify where the relation “causes” (→c) occurs, with some
probability, in our model, allowing us to induce a partial order over the predicted
states of SX , and hence deduce a set of corresponding global sequences, or rather
parts thereof, which is consistent with the “happened before” relation [46]. This
differs from graphical representations of a deposet in distributed systems – see B
– because we claim, from state analysis, a more complete knowledge of cause and
effect in the program. Therefore, the relation is more granular than the “potentially
causes” (→p) relation – but correspondingly adds complexity to our analysis. So
we balance the increase complexity of understanding causality at a granular level
against the reduction in state space provided by only considering the set X .

Where a data element x ∈ X may only achieve a given state, say xj , concur-
rent with a state of another element y ∈ X ,say yk, xi is said to be conditionally
dependent on yk.

Definition 7.1 (Conditional Dependency)
Let x, y ∈ X be data elements. Let xi, xj ∈ Sx be states of x and yk ∈ Sy be a state of y
respectively. If xi may not transition to xj unless y is in yk, we say that xj is conditionally
dependent on yk.

We show this relation as a directed edge, which is dashed, on our expected
behavior graph from yk to xj . yk is called the permitting node of xj . xj is called
the dependent node of yk. A joint dependency may also exist, shown by linking
co-permitting nodes with an undirected dashed edge. This is called a permitting
component. Clearly, a permitting node is also a permitting component.

Two other forms of dependency may also exist where a transition in one com-
ponent mandates a transition in the other. We graph this by showing a graph with
both the “master” and “slave” components and directing an edge from the “mas-
ter” component to the “slave” component. We use colors to distinguish nodes.

Definition 7.2 (Strong Causal Dependency)
Let xi, xj ∈ Sx and yk ∈ Sy be states of x, y ∈ X . If the transition to yk forces xi to
transition to xj , and the transition to xj only occurs due to yk, we say that yk strongly
causes xj , and we call this a strong causal dependency.

The definition for weak causal dependency is similar, but removes the condition of
uniqueness.

Definition 7.3 (Weak Causal Dependency)
Let xi, xj ∈ Sx and yk ∈ Sy be states of x, y ∈ X . If the transition to yk forces xi to
transition to xj , and the transition to xj may also occur as a result of other conditions, we

96

7.2 EXPECTED BEHAVIOR MODEL

say that yk weakly causes xj , and we call this a weak causal dependency. This definition
extends to unique nodes whose forcing action has a probability p < 1 – that is other factors
in causation are unlisted.

Figure 7.2.1.1 provides an example representation.

astart

b c

d e f

a∗

h

gstart

i

j k

g∗

l

0.3
0.7

0.1
0.9

0.4
0.6

0.3
0.7

0.5
0.5

Figure 7.2: Expected Behavior Graph with Dependencies

We are capable of inducing a linearization over a predicted set of states which
when combined will allow us to model the possible global sequences of SX . We
denote this the predictor set RX . This will consist of a set of tuples (Rx, Ry, ...,;p)
– where ;c indicates the relation (remotely) “causes”, which is consistent with the
“happened before” relation [46]. This relation is defined stochastically in this case.

For example. Let (. . .) indicate an ordered, bounded n-tuple of states. Let [. . .]
indicate a permutation of states. Let 〈(. . .), (ωi)〉 be an ordered pair which indicates
the probability of an ordered tuple. Let ⊥ indicate process termination. Let ∗ in-
dicate a replication. Let X = {red, blue} be two distinct data elements with causal
relations between their respective states.

From figure 7.2.1.1, using + to signify or, the set of expected orders of red and
blue 3 are –

red = {〈(a, b, d,⊥), (0.03)〉,
+ 〈(a, b, e, a∗), (0.27)〉,
+ 〈(a, c, e, a∗), (0.28)〉,
+ 〈(a, c, f, a∗), (0.42)〉}

3shown as white and gray respectively

97

7.2 EXPECTED BEHAVIOR MODEL

blue = {〈(g, h, j, g∗), (0.3)〉,
+ 〈(g, i, j, g∗), (0.35)〉,
+ 〈(g, i, k, g∗), (0.35)〉}

while the set of partial orders for X , based on the causal relations which exist
between these sets of sequences, consists of

RX = {X1, X2, . . . , X6}
= {〈([ag], h, b, d, l,⊥), (0.03)〉,
+ 〈([ag], h, b, [ej], ∗), (0.27)〉,
+ 〈([ag], i, c, [ej], ∗), (0.14)〉,
+ 〈([ag], i, c, [ek], ∗), (0.14)〉,
+ 〈([ag], i, c, [fj], ∗), (0.21)〉,
+ 〈([ag], i, c, [fk], ∗), (0.21)〉}.

Taking the element of RX2 in the order shown as an example, using the inter-
leaving assumption, the set of linearized sequences is given by equation 7.1.

RX1 = {(a, g, h, b, e, j, ∗)+(g, a, h, b, e, j, ∗)+(a, g, h, b, j, e, ∗)+(g, a, h, b, j, e, ∗)0.675}
(7.1)

each of which may occur with p = 0.675. The boundary states are the sub-
maximals a and g and the sub-minimals d and l, including the inf and sup respec-
tively. The information provided is sufficient to model a global sequence.

7.2.2 Stochastic Casual Tracing Algebra

The approach shown in section 7.2.1.1 is consistent with the representation of sys-
tems as process diagrams. Accordingly, it also lends itself to more economical rep-
resentation using a process algebra – as we have anticipated in the creation of the
predictor set in section 7.2.1.1. We provide an axiomization of this algebra, which
is variant of CCS, in this section which allows us to define the predictor set without
the necessity of drawing a graph. We may subsequently use the model specified
by our algebra to reason about the expected states of processes. In fact, we may
go further and define a set of unacceptable linearizations as a language over fi-
nite words,i.e, state vectors whose occurrence is detectable as a reject condition by
monitors – whose existence we assume – which are formally or informally defined
processes [112]. In some cases, these words may be up to an identifiable seman-
tic “fingerprint” or “characteristic vector” for layered detection mechanisms. In
addition, using probabilities, we may give a quantitative as well as a quantitative
verdict w.r.t the “safety” of OS states 4. This is key because we not only iden-
tify invalid states, but also may detect where a set of superficially legitimate lin-
earizations of state conceal an improbable set of system operations exampled by

4Informally, “safety” means that bad things do not happen during a program and “liveness’
implies that good things do happen.

98

7.2 EXPECTED BEHAVIOR MODEL

xp + yq = yq + xp A1
(xp + yq) + zr = xp + (yq + zr) A2
(xp + yq)zr = xpzr + yqzr A3
zr(xp + yq) = zrxp + zryq A4
(xpyq)zr = xp(yqzr) A5
xpyq = xypq P1
xp + yq = (x+ y)p+q P2
(¬x)p = x(1−p) + (¬x)p P3
xp|yq = (xy + yx)pq PC1
x̄p|[x]yq = (xy)(pq) PC2
xp + ȳq|¬zs + [y]zr = (x¬z + ¬zx)(ps)′

+(xz + zx)(p(1−s))′ + yz(qr)′ + y¬z(q(1−r))′ PC3

Table 7.1: Axiomization of SCTA

[9] which result from malicious software obfuscating its presence using apparently
legitimate system responses. This approach is related to semantics-based detection
of malware [101], but allows the approach to be generalized to cover unexpected
behavior, which may not be immediately identifiable as an obfuscated malicious
software attack, but may be indicative of one (or, at least, of some systemic error
which should cause equal concern). This allows us not only to directly detect mali-
cious behavior , but also uncover side effects of such behavior.

7.2.2.1 Equational Specification

We begin immediately with the equational specification of our algebra SCTA (Stochas-
tic Causality Tracing Algebra): SCTA = (

∑
SCTA, ESCTA).

∑
SCTA has three bi-

nary operators, +, ·, | and three unary operators, ¬, ·̄ and [·]. It also has a set of con-
stants A denoted by ap, bq, cr, . . ., where p, q, r indicate variable probabilities. The
set of constants is denoted by A. A is not sized and may be considered a parameter
of our theory.

ESCTA consists of the equations shown in Table 7.1. We use the following nota-
tional conventions:

1. The operator ·may be omitted. Thus, xy means x · y.

2. Many brackets are omitted for legibility, and we follow operator precedence
conventions; in particular, · binds stronger than +, and + binds stronger than
|.

The equations contain variables xp, yq, zr, . . . which are assumed to be univer-
sally quantified. If M is a model for SCTA then the elements of its domain are
called stochastic states. So the variables stand for states in some arbitrary model of
SCTA.
· is product or alternative composition; xp · yq means that state x occurs with

probability p then state y occurs with probability q. In general, we may omit these
probabilities if they are equal to 1.

+ is sum or alternative composition; xp + yq means that either state x occurs
with probability p or state y occurs with probability q.

99

7.2 EXPECTED BEHAVIOR MODEL

| is concurrent composition; using the interleaving assumption [46] either x or y
may occur first. Note that, in probability terms, either ordering is regarded as the
same event by A3
¬ is negativity and is used to indicate the non-occurrence of a term, i.e., either

xp occurred or ¬x(1−p) occurred. Negative expressions may be avoided by a label
substitution σ or using a “skip” operator, i.e., A := A ∪ ε for null events.
·̄ cause indicates that the causal information in a state has been made available

for processing.
[·] effect indicates that causal information about another state may be processed

and determines whether the term right adjacent to it may occur.
The use of ′ with a probability value indicates the resulting process equation

may require to be normalized w.r.t probability using a Bayesian re-formulation.
We provide the specification SCTA with the following intuitive meaning. The

sets of constants with their variable probabilities are the probable states of selected
data elements under invariance:

• A1 (the commutativity of +) says that a choice between xp and yq is the same
as a choice between yq and xp;

• A2 (the associativity of +) says that a choice between xp and choosing be-
tween yq and zr is the same as a choice of zr and choosing between xp and
yq;

• A3 (the right distributivity of · over +) says that a choice between xp and
yq , followed by zr is the same as a choice between xp followed by zr and yq
followed by zr;

• A4 (the left distributivity of · over +) says that zr followed by a choice be-
tween xp and yq is the same as a choice between zr followed by xp and zr
followed by yq;

• A5 (the associativity of ·) should be evident;

• P1 the stochastic product of sequentially composed states;

• P2 (the sum of conjoint events) says that the probability of the alternate com-
position of two states is the sum of the probabilities of the individual states

• P3 (the failure condition) says that the probability of a state not occurring is
the complement of the probability of it occurring and implies that basic terms
should sum to unity;

• PC1 (the stochastic interleaving assumption) says that any concurrent causally
independent states may be modelled in any sequential order and this is re-
garded as the same logical event for stochastic purposes;

• PC2 (causal stochastic dependency of ·̄ and [·]) states that any states related
by causal dependency must occur in the order of causality;

100

7.2 EXPECTED BEHAVIOR MODEL

• PC3 (complementarity of the stochastic dependency of ·̄ and [·] says that
any causally dependent states occur with complementary probability to non-
causally related states and implies that causal effects override local probabil-
ities.

There are three aspects to note in the above definitions.
First, the full associativity of · over + is in contrast to most process algebras

where timing considerations permit a choice of alternatives expressed by only per-
mitting right distributivity. Here we are not interested in the timing of choices, but
only in trace semantics, so full associativity is required.

Second, observe that stochastic causality principle means that probability val-
ues do not obey P3 in the presence of ·̄ and [·], so terms containing these operators
are not basic terms. For example, equation 7.2

a0.5 + b̄0.5|(e0.3 + ε0.7) + [b]f1 (7.2)

implies that if b occurs then so must f , while if a occurs (or more precisely b
does not) f may not occur.

Third, binding rules are: . binds more closely than + and + binds more closely
than |. Thus, the binding is similar to the π-calculus.

Basic terms are defined inductively:

1. Every stochastic state ap is a basic term

2. If tω is a basic term and ap is an stochastic state then ap · tω is a basic term

3. If tω and sα are basic terms then sα + tω is a basic term

By substituting → for = in Table 7.1 for all equations except A1 and A2, we
create a Term Rewriting System for our SCTA. Traditionally, process algebras define
operational semantics. We are not interested in these aspects but rather in trace
semantics. Hence, after rewriting, our basic terms represent the set of all possible
traces (or linearizations) of the computation. Using a TRS is an easier means of
calculating linearizations than the approach presented in section 7.2.1.1.

We extend our algebra to include replication by making use of of labels and
recursive equations in SCTA following normal conventions e.g X = (xyp + zyq)X
and X1 := xypX and including axioms for recursion. But recursion is not well-
defined for single, non-causal states. We may also use superscripts or projection
functions to define finite recursion – though this is not done here.

In general, we can equate causal effects to the results of a communication carry-
ing information from one process to another process, not necessarily directly. More
specifically, we require a formal definition of the causal primitives which we previ-
ously defined in section 7.2.1.1.

• strong causality where a dependent state must occur as the result of a unique set
of precursor states;

• weak causality where a dependent state must occur as the result of several
alternative sets of precursor states;

101

7.2 EXPECTED BEHAVIOR MODEL

• conditional dependence where a dependent state is permitted to occur as the re-
sult of alternative sets of precursor states, which need not be uniquely defined

Formally, using our algebra, we define these causal primitives as conditional
equations, which can be derived from the set of equations in Table 7.1, in particular,
PC2 and PC3.

Strong causality (SC) is given by equation 7.3, while weak causality (WC) is
given by equation 7.4 with conditional dependence (CD) being defined in contra-
positive form in equation 7.5

x̄p|yq + [x]z1 ⇒ (xz)p(SC) (7.3)

x̄p|ȳq|ur + [x]z1 + [y]z1 ⇒ u′r + (xz)p′ + (yz)q′(WC) (7.4)

¬x̄(1)|yq + [x]zr ⇒ ((¬x)y + y(¬x))q(CD) (7.5)

where r < 1. That is, the absence of the precursor state x strongly causes ¬z.
Strong causality and conditional dependency are thus logically contrapositive. It
follows that terms containing conditional dependencies must sum to unity in the
absence of other causal relations.

Note that multiple causes (conjoint weak causality) may be shown by a vector of
states using the notation [−→v]x where the states are assumed to arrive in any order.
For example, in equation 7.6, let ṽ = {x, y}.

x̄p|ȳq|ur + [ṽ]z1 ⇒ u′r + (ṽz)pq′(CWC) (7.6)

Similarly, a single cause with multiple effects can be shown by a superscript
over the predecessor state ān where n is the number of concurrent effects, in what-
ever order, which may occur.

7.2.3 Anomaly Detection Using Linearizations of Process States

We have shown how a distributed computation may be modeled as a partially or-
der set of states (S,→c) – section 7.2 – where→c is the relation “causally happened
before” or simply “causes” [112]. We have extended this approach to considering
a subset of states SX whose sequences are considered to be security relevant. SX
is also a partial order. This partial orders may be linearized as a set of total orders
which may be calculated by our algebra or using an expected behavior graph as
convenient.

For the purposes of anomaly detection, we label the sequences Sx(i). An el-
ement of the sequence will be Sx(i, ε) and the order in which elements appear is
denoted by an ordered set Sx(i, C) where C is described as a permutating vector
clock of Sx(i). C may be calculated by indexing the order of each possible sequence
Sx(i, j) of a process using an equation described in our algebra. Each individual
sequence is denoted Sx(i, j, C). The clock value of an individual element of such
a sequence is denoted by Sx(i, j, ε, c) where c is the index order of ε. This allows

102

7.2 EXPECTED BEHAVIOR MODEL

us to distinguish sequences which share the same states, but where the transitions
between states occur in a different order.

A linearization in our model is a variform mapping ϕ of the sequences of Sx(i)
and Sx(j), where i 6= j, and ϕ is the set of all linearizations of Sx(i) and Sx(j) which
are causally consistent – that is, which obey the axioms of our algebra. We also
define a set of formless mappings φ which are the set of all possible linearizations
of the sequences of Sx(i) and Sx(j) where j 6= i, i.e., where all combinations of
ordered sequences are considered regardless of causality.

We may therefore define a set of inconsistent linearizations BX in our model as
the set φ−ϕ. We extend the set BX in practice to include linearizations which con-
tain any set of conditions which defy expectation under some threshold function
(which may indicate the use of apparently legitimate states to conceal subversion)
and any unique sequence of states which are known to be indicative of subversive
behavior which are defined in BX as an illegitimate word or characteristic vector
in a model language [101]. For identifying the characteristic vectors in BX , we
assume the existence of a set of monitors which are devices or programs which
may be formally defined as an automaton which accepts some language over finite
words [112]. The set BX , therefore, forms a negative context for the anomaly detec-
tion. Given a set P (W) of program states and ¬[Q(V)] of model states, the anomaly
intrusion context is defined by P (W)�δ ¬(¬[Q(v)]).

There are four cases to consider. Cases 1 through 4 may be detected by con-
sidering a set of concurrent observations TX (captured by some as yet undefined
mechanism) and matching words in TX with the characteristic state vectors of BX
using the set of monitors. The complexity of the computation is limited by the
lengthm of the longest characteristic vector inBX . We can also consider techniques
which increase search efficiency, e.g., including high probability characteristic vec-
tors indicative of malicious activity at the top of the search order. We may also give
consideration to partial matches using some probability threshold. Case 5 asks us
to consider the consistency of logical clock values (or physical timestamps where
available) with observed causal relations to eliminate false negatives. A simple
calculation over the clock values of precursor and dependent states provides the
conditions for an alert.

Case 1: Alien State Case 1 is trivial. The set of linearizations BX only contains
states which are consistent with SX or characteristic vectors associated with attacks.
An “alien state” will not exist in BX unless it forms part of a characteristic vector.
In either case, it reveals a potential attack.

Case 2: Inconsistent Linearizations An inconsistent linearization is a sequence,
belonging to a single process, which is a member f ∈ φ defined as the set of form-
less mappings which is not part of v ∈ ϕ the set of causally consistent mappings
and is detected by its presence in BX .

Case 3: Inconsistent Causality In Case 3, we make the assumption that causal
relations will be strongly synchronized. By this, we intend that the “pigeonhole
principle” applies and the number of effects must be less than or equal to the num-
ber of causes. Moreover, in considering cause and effect (and contrapositively, con-

103

7.3 CONCURRENT OBSERVATION MECHANISM

ditional dependency and effect), every preceding cause must be satisfied in vector
clock order (see Case 5).

We may observe two sub-cases:

1. A cause with no effect where the subsequent transitions in the dependent
sequence are not compatible with the precursor state;

2. An effect with no cause where the transitions in the preceding sequence are
not compatible with the observed effects.

Case 4: Known Subversive Behavior If we observe a unique set of states which
form a characteristic or feature vector associated with known subversive behavior,
we may raise an alert. We may also set a threshold value for probable candidates
which partially match such a vector in BX .

Case 5: Clock Violation A vector clock inconsistency where the last time stamp
in round of observations in which the dependent state is observed precedes the
earliest logical timestamp for the observation of the precursor state, i.e., the order
of cause and effect have been reversed without meeting the condition for the satis-
faction of causes. A physical timestamp will also provide the same condition. Let
p and q be precursor and dependent states respectively and c is a clock value. If
p(c) > q(c) then an alert is given. We may record a set R of causal relations pRq to
enable us to track such transactions.

7.3 Concurrent Observation Mechanism

Up until now we have defined two related means of specifying the behavior of a
subset of key processes and derived from this a means of calculating a set of char-
acteristic vectors BX which would be indicative of potential malicious activity in a
given distributed system. We have assumed the existence of an observation mech-
anism which is capable of collecting concurrent with the run of a system observa-
tions of state for each of the key processes and hence allows us to compare a set
of observations TX with BX to create anomaly detection events. We have also as-
sumed the existence of software agents as monitors which can detect semantically
significant traces.

In this section, we define a candidate mechanism for obtaining these observa-
tions on a multiprocessor host system. We provide a formal description of the
mechanism’s operation, its architecture and communication strategy. We also pro-
vide a probability model for observational success and conclude with an outline of
its resilience to attack. We go on to provide a “proof of concept” for the model’s
effectiveness using a multiprocessor host system. We use the π-calculus in its goal
transform variant to provide a formal demonstration of the mechanism’s operation.

7.3.1 Model and Architecture

On a multiprocessor system , we define a set of observers O. Each observer O ∈ O
is an instance Ou,v,w(m) where u is the observed (e.g. kernel) feature, v is the obser-
vation role, w is the instance of this function andm ∈M is a vector representing the

104

7.3 CONCURRENT OBSERVATION MECHANISM

measurement function and other role/task parameters, e.g., number of instances to
assign to this task. Each thread is assigned to a CPU. Ensuring that ensembles of
observers have different assignments allows them to concurrently observe state.
The outcome in terms of the ordering of observation depend on the coding syn-
chronization primitives and hardware memory handling features. Each observer
O ∈ O uses algorithm 7.1 in its basic operation.

Intuitively, the observer thread takes a measurement and communicates its find-
ings to all other concurrent observers assigned to equivalent observation roles as
itself, noting that such observers are to be distributed to as many independent pro-
cessing units as are available. Each observer also receives observations for every
corresponding observer and, after comparison, logs any inconsistencies in observa-
tion. Finally, it waits a random period up to a specified time limit before recurring.
The algorithm is set out in 7.1.

Algorithm 7.1: Observe(measure(), NTasks, Period,OwnId)*

1

Parameters: measure(), ntasks, period, ownid
Var: u
u := 0

while(continue())

u = measure()

. . .

send(u, ownid)

for i = 0 . . . ntasks

receive(w, jobid)

if(u 6= w)

. . .

log(u,w, ownid, jobid)

endif

endfor

wait(period− (period\rand())

endwhile

It should be noted that each observer is stateless. This enables the system to
scale well compared to potential future demands in multiprocessing systems [4] .

For large scale multiprocessing hosts – of the kind this approach is targeted
at, the utilization of synchronization primitives in shared memory for interprocess
communication is unfeasible. Instead, we substitute a communication model anal-
ogous to a best effort asynchronous system which we simulate in shared memory.
The reader will observe that this is, in effect, a distributed system.

105

7.3 CONCURRENT OBSERVATION MECHANISM

Let M be the observer mechanism which we use to implement our observer
processes. Hence M consists of a set of N processes {O1, O2, . . . , ON} which are
our observer threads and a set of unidirectional channels C. Each channel c ∈ C
connects two processes. We can view the topology of the resulting system as a di-
rected graph in which the vertices represent the processes and the edges represent
the channels. A bi-directional channel may be represented as two unidirectional
edges. We divideM into partitions of observers (ensembles) which are linked by
bi-directional channels. Let

−→
G = V (E) be a graph. Let V be an ensemble of ob-

servers. Let E be the set of channels of V . Let
−→
G be a complete graph

−→
K connected

by bi-directional channels. The implementation of this messaging architecture en-
ables the use of well-known algorithms for “weakly” synchronizing process action,
keeping logical time and taking global snapshots in state [46]. These may be real-
ized by additional coding to the basic algorithm 7.1 as required.

During observation, any inconsistency in measured states results in a log being
created. Let Oi and Oj be two communicating observers whose states differ dur-
ing a single round of observation, then Voi,oj = {(oi, oj), (oj , oi)} is a vector which
results from the comparison of states. In fact, Voi,oj consists of two ordered pairs of
observations from each observer Oi and Oj of their observed and received values.

Let VO and WO be the set of all such vectors which results from two distinct
rounds of observation. If we know the initial state, say T0, of the operating system
characteristic under observation, then VO and UO should provide us with sufficient
knowledge to determine a set of partial orders (T ′,;) resulting from T0 which are
the set of reported transitions in state, eliminating any repeated 2-tuples.

7.3.1.1 Observation Strategy

We may formally prove the validity of this approach using the π-calculus with re-
gards to its application to multiprocessor host devices. Assume two agents ‖P‖Q‖
which both invoke processes which report state. Let Ri and Rj be subprocesses
which return the state of a variable x, which we assume is significant in the secu-
rity of the system. Let P message Ri and Q message Rj and assume, w.l.o.g, that
i < j.

In an operating system, R0 will invoke a function with a query message q to
Ri+1, which is a subgoal, which in turn will invoke other subgoals until a goal Rn
is reached which returns the current value as a response r which provides the value
of a state variable x. Each invocation represents a call to a lower level of abstraction
in the system. Q acts likewise, but may access a lower level of abstraction directly.
Multiple processes Q1, Q2, . . . may exist..

P ::= R0|R1| . . . ‖Rn
Q ::= Rj |Rj+1| . . . |Rn

Ri ::= x̄〈q〉Ri+1 + x(r)Ri+1

Rn := f(q) ⊃ x̄〈r〉Rn−1〈x〉 (7.7)

It is easy to see that P and Q are competing for the same resource – knowledge
the state of x = r for any x defined – and that the result is non-determined, de-
pending on memory handling as to which subgoal retrieves the last written value

106

7.3 CONCURRENT OBSERVATION MECHANISM

of x from memory first. If we further subvert one of the subprocess in the system to
misreport x having altered its value,Rk for any of R1 to Rn. It should be clear that
if k > j then an alteration in x might at best be momentarily observable depending
on how memory reads and writes are ordered. However, it i < k ≤ j then the in-
consistency of x as reported by P |Q is readily spotted. In addition, both observers
will note any legitimate alteration in x.

Two possible results follow from this approach. First, we can easily observe
inconsistent reporting of state – in a method comparable to chapter 6 – including
probabilistically any momentary inconsistencies. Second, we can also otherwise
track the state of x and other such variables and determine from our expected be-
havior model if these are consistent with each other.

7.3.1.2 Observational Probabilities

For the lossless asynchronous messaging architecture we describe in relation to a
multiprocessor host, the probability distribution of observing a single transition is
given. Let L be the length of an observation round. Assume a transition event oc-
curs at some point duringL. Observer threads may take a measurement at any time
during Lwhere the linearization of transition and observation is non-deterministic,
owing to both randomness in scheduling processing and memory access sequenc-
ing. Let p be the probability of observing before the transition event T . Let q be the
probability of observing after the transition event T . Then the probability of detect-
ing P (T) is the same as the probability of at least one observation event occurring
before T and at least one observation event occurring after T . Let n be the number
of observer threads. It follows that P (T) = 1− (pn + qn) – that is, T is not observed
if all state measurements take place either before or after T .

Given a transition between a legitimate and an illegitimate state, which will
subsequently be reversed to give the appearance of legitimacy, what is the prob-
ability of detecting the malicious state? In fact, by letting q be the probability of
an observer taking a measurement during an illegitimate transition in state and p
be the probability of observing any legitimate state, we see that the same binomial
distribution applies. It follows that the probability of observing any transition in
state will in general increase as the number of concurrent observers. For large scale
multiprocessing systems, this probability may be rendered arbitrarily high.

However, such arbitrary increases in the probability of success are unlikely to be
achievable on small scale systems as constraints are naturally introduced for such sys-
tems where process scheduling overheads rapidly come to dominate. This obser-
vation technique is, therefore, primarily designed for observations of state in a host
system with larger numbers of independent processing units (hyper-threading,
dies,cores). On smaller platforms, optimum detection rates will be a trade-off be-
tween the frequency of observation rounds and the efficiency of the observational
functions, suggesting that observations for a given frequency will rise to a maxi-
mum and then either stabilize or even diminish. This is a limitation in the context
of ICS, but could be overcome by considering the additional use of co-processors
to augment the approach.

Finally, observational probabilities should not be confused with detection probabilities.
The results of observation are cumulative over several rounds, leading up to a

detection event – that is the creation of a characteristic vector in BX as defined in

107

7.3 CONCURRENT OBSERVATION MECHANISM

section 7.2.3. Detection probabilities are therefore much higher and detection can
take place even in the presence of missing observations, although confidence levels
in the results will be lowered. For example, if a characteristic vector consisted of six
elements with an observational probability of 50% for each element, the probability
of failing to observe any two out of three events yields p ≈ 0.02. Hence detection
levels can be raised to be comparable with any modern IDS. We consider that hav-
ing at least a 50% probability of observation is a requirement for any component
we wish to observe. Frequently, higher probabilities can be achieved.

7.3.1.3 Resilience to Attack

We show that the multiplicity of observers and the multiplicity of communication
channels results in raising the barrier to subversion of the mechanism. This primary
advantage is underpinned by the ability to self-observe.

Let n be the minimum number of observers per ensemble andN be the number
of processors. Let n > N . It follows, assuming that the subversion of each observer
is non-trivial, that an adversary has insufficient computational capability to simul-
taneously undermine the observers belonging to any ensemble in the mechanism,
i.e., assuming the adversary commandeers N processors, the condition that N is
strictly less than n prevents their concurrent subversion.

Let O be an observer ensemble. Let o1, o2, . . . , on ∈ O be observers. Each ob-
server oi communicates its findings with every other observer oj . Let |O| = n.
There exist n(n−1) ordered pairs of data readings. Any alteration of an already ob-
served value during a round will instantly reveal subversive activity. The attacker
must successfully subvert n(n − 1) individual channels to control the outcome for
a single ensemble. Clearly, we present the attacker with a combinatorial barrier to
subversion. The ability of the mechanism to self observe arises because it is pos-
sible to assign a set of independent observers to functions in relation to this task.
This underpins the advantages bestowed by self validation by providing further
integrity checks.

The multiplicity, independence and distinctness of the observers clearly pro-
vides a degree of resilience for the observer mechanism, although performance
and messaging overheads need to be taken into account in setting the number of
observers. In addition, if poor communications are an issue then some adjustments
would need to be made to the synchronizer algorithm to take account of undue
latency or communications failure, for example, a controlled time out on message
waiting periods.

Considering the possibility of direct attack on the mechanism [117], the ma-
jor advantage of our approach is that the independence of the observer processes
enables us to instantiate a subset of these processes to observe data elements as-
sociated with the observation mechanism itself. This enables periodic tests of the
integrity of the mechanism. Combined with the possession of a multiplicity of inde-
pendent observers, this acts as a deterrent to attack by requiring that the capability
to simultaneously subvert a set of processes which may not even share the same
logical or physical platform, or be functionally equivalent – even if observing the
same data element.

A partial subversion of the mechanism is likely to fail because even if a subset
of observers are subverted, or have their communications spoofed, this will appear

108

7.4 “PROOF OF CONCEPT” MECHANISM

to as a series of continual transitions in state whose permutations are unlikely to
be equivalent to the expected behaviors of our selected data elements. If instead
we consider an attack en masse where the attacker seeks to take advantage of a sin-
gle vulnerability across an ensemble (or more than one) of observers, we find that
this possibility is closed to them. Even within a single ensemble because the same
data is observed from different points of view (representing either different APIs
or different logical or physical platforms) requiring the use of distinct functionality,
the likelihood that a single exploitable vulnerability will result in the mass compro-
mise of the observer processes is low. The use of different platforms also implies
that coding or systems operation details may be distinct, further adding to the at-
tacker’s difficulties.

Thus, the probabilistic nature of our mechanism acts as a deterrent to attackers
since they may not easily predict where and when any actions of theirs may be
observed, nor is it computationally feasible for them to seek to control multiple ob-
servers which work at different points in process time and space and which possess
distinct functionality.

In other words, the constraints which we face in detecting malicious activity are
redoubled for the attacker considering the subversion of a distributed computation
which is guarded by our mechanism, even with full knowledge of the mechanism.
Effectively, we have turned the attacker’s apparent strength in being difficult to
detect in a distributed environment “jiu jutsu”-like against him5

7.4 “Proof of Concept” Mechanism

We implemented a basic version of the proposed mechanism as a loadable kernel
module (called KRAKEN) in Linux v2.6.21 on a VMware platform on a 2-core Intel
system. We used basic concealment techniques to evaluate functionality [56]. In
particular, we were interested in demonstrating: First, that it could implement con-
current observations of different APIs within the operating system. Second, that it
could observe distinct, but related, kernel features concurrently. Third, that it was
capable of self observation. We also wished to establish that we could arbitrarily
raise the probability of observation by increasing the number of observers up to
natural performance constraints (due to the limited nature of the platform). The
cumulative nature of observations subsequently raises the probability of detection.
In particular, the concurrent observation of distinct, but related, kernel features en-
ables this potential.

We describe in detail the experimental work. The program6 is is a loadable
kernel module (LKM) which declares and initiates a set of observer threads, di-
vided into various subsets which are categorized by the variables they observe.
Alterations in the value of these variables represent key events in relation to op-
erating system states which we call “semantic chokepoints”. A sequence of alter-
ations, which can be defined algebraically by a stochastic expression representing
the probable trace semantics, which we call a characteristic vector may be used ei-
ther to detect good behavior, i.e., “liveness”, or else to detect potentially malicious
behavior which violates “safety”. The observers work concurrently with the op-
erating system and with each other, exchanging and comparing information after

5If the reader prefers Chinese martial arts, then he should consider the example of Choy Li Fut,
where the student is trained to consider all objects in the local environment as weapons in the fight
against his opponent.

6The listing is available in electronic format on request. 109

7.4 “PROOF OF CONCEPT” MECHANISM

each round of observation in a strictly monotone sequence. Any comparison which
detects a non-equivalence in observations is flagged as a alteration in the value of
the variable. The observation is probabilistic in nature, meaning that some alter-
ations may be missed. But the overall sequence is deducible by reasoning over
causal relations. Some additional programming artifacts such as a logical clock
and a global snapshot algorithm were included to demonstrate that these features
could be incorporated into the mechanism to aid post-incident forensics. We also
provide listings for the two pseudo-rootkits used to test the observation module
and provide in full the results of the experiments and a version of the experimental
notes which have been edited to improve formatting and grammar.

7.4.1 Experiments and Results

In a cross-sectional view of operating states, we examine observations of semanti-
cally related values at different APIs and compare results. We selected the virtual
file system as an example of a kernel subsystem which consists of several layers
of abstraction. A classic attack is to “hook” the system call table functions which
invoke kernel functionality in this area to selectively hide static file structures. A
more sophisticated attack at a lower level of abstraction – demonstrated by e.g.
the adore ng rootkit – is to subvert the function pointers for the readdir() function,
leaving the system table unaltered.

We created 3 observer ensembles, which used clean copies of kernel code to
measure root directory size at 3 different APIs, including the system call table, get-
dents64() and readdir() functions. We could increase the numbers of observers in
each ensemble and also vary the period of time between observation rounds.

In an initial trial, we subverted the system call table. This resulted in immedi-
ate and ongoing reporting of inconsistencies, showing that where a lower level API
which retained integrity was compared with a subverted higher one, the anomaly
is invariably detectable, matching our formal model of the system, shown in sec-
tion 7.3.1.1. Subsequently, we selected to subvert the readdir() function to hide a
randomly named file in the root directory7. The simulated attack created and then
hid the file such that any subversion would cause a momentary transition in root
directory size, but would not be detectable thereafter, based on our system model.
100 transitions were observed per trial. For measuring a single characteristic, we
took as our hypothesis that observation rates greater than 50% would be acceptable
given likely constraints on performance – see 7.3.1.2.

The results, listed in the following subsections, show that it is possible to achieve
a satisfactory observational probability for observing transitions in values between
lower and higher level APIs and detecting any inconsistencies. The first three ex-
periments were used to demonstrate that we could detect changes for a single com-
ponent in the kernel. We then show that we can detect across a set of components
to create a “characteristic vector”. Finally, we created another Linux kernel module
which was able to destroy threads in the observation mechanism to test its ability
to self observe and alert on this attack.

7this feature is common to several attacks.

110

7.4 “PROOF OF CONCEPT” MECHANISM

No. CI CI
Threads % Min Max

3 75 66.51 83.49
5 72 63.20 80.80
7 79 71.02 86.98
9 77 68.75 85.25

n=100 Jobs = 3 Hiatus = 10

Table 7.2: File Object Alteration – 10ms Hiatus

7.4.1.1 File Object Alteration Detection

Hypothesis: Using a multiprocessor host based multisensor program (KRAKEN),
an ’concealed’ alteration in a file structure (in this experiment, a directory object on
a Linux system) could be detected with a probability greater than 50%.

Null Hypothesis: The detection rate would be lower than 50%.

Method: In this experiment, we generated sensor threads which used clean copies
of kernel code to read the file object size characteristic at different APIs within the
kernel. The sensor threads would read a value and communicate it to all other
threads for comparison. Any mismatches would be reported. The observations
were randomized over time periods of different lengths and the number of threads
increased systematically throughout. A second program which used rootkit tech-
niques to create and conceal the alteration was similarly written. This used the
technique from the rootkit Adore NG to conceal the file’s existence by pointing the
readdir() function address to malformed code which selectively read the directory
and ignored the file’s existence. The second module was inserted and removed
from the system using a Python program which created a randomly named file for
the ’rootkit’ program to conceal on insertion and reveal on removal. The procedure
was repeated 100 times with 5 second intervals between each activation. The mul-
tisensor program logged any detected differences in file size in the directory object
(the or root directory).

Results: The hypothesis is upheld for all variations in thread production and
maximum observation frequency with the exception of the lengthiest suspension
of activity between observation rounds where results were (and could have been
expected to be) less satisfactory. We would expect similar findings for any other file
object using equivalent clean code. The results are reproduced here.

We note that the greatest increase in observational success, based on the calcu-
lated averages, by decreasing the time period over which observations occurred.
However, on a constrained system such as the one we are using, we might expect
performance to level out beyond certain limits in thread generation or increases
in observational frequency due to performance hits and sensors literally getting in
each other way (communication periods being one part of this and competition for
CPU time the other between too few CPUs). This may explain the apparent drop
off in observational scores for higher numbers of threads, though it may simply

111

7.4 “PROOF OF CONCEPT” MECHANISM

No. CI CI
Threads % Min Max

3 65 55.65 74.35
5 72 63.20 80.80
7 65 55.65 74.35
9 67 57.78 76.22

n=100 Jobs = 3 Hiatus = 20

Table 7.3: File Object Orientation – 20ms Hiatus

No. CI CI
Threads % Min Max

3 54 44.23 63.77
5 67 57.78 76.22
7 76 67.63 84.37
9 70 61.02 78.98

n=100 Jobs = 3 Hiatus = 30

Table 7.4: File Object Orientation – 30ms Hiatus

No. CI CI
Threads % Min Max

3 53 43.22 62.78
5 58 48.33 67.67
7 70 61.02 78.98
9 64 54.59 73.41

n=100 Jobs = 3 Hiatus = 40

Table 7.5: File Object Orientation – 40ms Hiatus

be a statistical freak. The detection rate is not acceptable for intrusion detection
systems taken in isolation. However, the goal of the system is to provide a cumula-
tive detective effect. The probability scores displayed are more than acceptable in
this context where 50 % is taken to be the lowest acceptable probability for a given
sensor task.

7.4.2 Read/Write Flag

Hypothesis: Using a multiprocessor host based multisensor program (KRAKEN),
an alteration in a read/write flag for a kernel object (the system table) could be
detected with a probability greater than 50%

Null Hypothesis: The detection rate would be lower than 50%

Method: A multi-sensor program was written as a Linux Kernel Module in C.
It could generate sensor threads which used clean copies of kernel code to read
the flag value. The sensor threads would read a value and communicate it to all

112

7.4 “PROOF OF CONCEPT” MECHANISM

No. CI CI
Threads % Min Max

3 55.5% 48.61 62.39
5 56.5% 49.63 63.37
7 61% 54.24 67.76
9 64% 57.35 70.65

n=200 Jobs = 1 Hiatus = 10

Table 7.6: Read/Write Flag Alteration – 10ms Hiatus

No. CI CI
Threads % Min Max

3 44.5% 37.61 51.39
5 51.5% 44.57 58.43
7 57% 50.14 63.86
9 57% 50.14 63.86

n=200 Jobs = 1 Hiatus = 20

Table 7.7: Read/Write Flag Alteration – 20ms Hiatus

No. CI CI
Threads % Min Max

3 41.5% 34.67 48.33
5 51% 44.07 57.93
7 58% 51.16 64.84
9 56% 49.12 62.88

n=200 Jobs = 1 Hiatus = 30

Table 7.8: Read/Write Flag Alteration – 30ms Hiatus

other threads for comparison. Any mismatches would be reported. The observa-
tions were randomized over time periods of different lengths and the number of
threads increased systematically to improve detective performance. A second pro-
gram which used rootkit techniques to create and conceal the alteration was simi-
larly written. This used kernel code to change the flag status. The second module
was inserted and removed from the system using a Python program which cre-
ated a randomly named file for the ’rootkit’ program to conceal on insertion and
reveal on removal. The procedure was repeated 100 times with 5 second intervals
between each activation. This led to 200 alterations in flag status in total.

Results: The hypothesis is upheld for all variations in thread production and
maximum observation frequency except for 3 threads at 20,30 and 40m which rep-
resent the lowest observation values. The results are reproduced here.

We note that the greatest increase in observational success, based on the calcu-
lated averages, was for increasing the number of threads. We do not see the same
drop leveling off in performance as for experiment on file objects but this is because
fewer threads in total are being used. Performance could probably be further im-

113

7.4 “PROOF OF CONCEPT” MECHANISM

No. CI CI
Threads % Min Max

3 46% 39.09 52.91
5 52.5% 45.58 59.42
7 53.5% 46.59 60.41
9 73.5% 67.38 79.62

n=200 Jobs = 1 Hiatus = 40

Table 7.9: Read/Write Flag Alteration – 40ms Hiatus

proved until these limits are reached. Against this, a reduction in the period during
which a change in flag status is detectable could reduce this probability.

The detection rate is not acceptable for intrusion detection systems taken in iso-
lation. However, the goal of the system is to provide a cumulative detective effect.
Most of the probability scores displayed are more than acceptable in this context
where 50% is taken to be the lowest acceptable probability for a given sensor task.

The highest scores were recorded for the maximum number of threads with
the longest observation period. These scores were significant and suggest that this
represents an optimum strategy for detecting this kind of alteration. But further
research would be required to confirm this hypothesis. It may simply be a result of
the synchronization of timing between insertion and deletions and this time period
- a sinusoidal effect purely as a result of the nature of the experiment.

7.4.3 System Table alteration

Hypothesis: Using a multiprocessor host based multisensor program (KRAKEN),
an alteration in the system table could be detected with a probability greater than
50%.

Null Hypthesis: The detection rate would be lower than 50%.

Method: The multi-sensor program was written as a Linux Kernel Module in C.
It could generate sensor threads which took a hash of the system table pointer ad-
dresses. Any alteration in address values would lead to a different hash value being
calculated. Any mismatches would be reported. The observations were random-
ized over time periods of different lengths and the number of threads increased
systematically to improve detective performance.A second program which used
rootkit techniques to create and conceal the alteration was similarly written. This
used kernel code to change the system table pointer for the sys read address.The
second module was inserted and removed from the system using a Python pro-
gram which created a randomly named file for the ’rootkit’ program to conceal on
insertion and reveal on removal. The procedure was repeated 100 times with 5
second intervals between each activation. This led to 200 alterations in the system
table in total. The multi-sensor program logged any detected differences in file size
in the directory object (the ‘/’ or root directory).

114

7.4 “PROOF OF CONCEPT” MECHANISM

No. CI CI
Threads % Min Max

3 50% 43.07 56.93
5 58.5% 51.67 65.33
7 73% 66.85 79.15
9 67.5% 61.01 73.99

n=200 Jobs = 1 Hiatus = 10

Table 7.10: System Table Alteration – 10ms Hiatus

No. CI CI
Threads % Min Max

3 40.5% 33.70 47.30
5 52% 45.08 58.92
7 68% 61.53 74.47
9 66.5% 59.96 73.04

n=200 Jobs = 1 Hiatus = 20

Table 7.11: System Table Alteration – 20ms Hiatus

No. CI CI
Threads % Min Max

3 45.5% 38.60 52.40
5 52.5% 45.58 59.42
7 69% 62.59 75.41
9 70.5% 64.18 76.82

n=200 Jobs = 1 Hiatus = 30

Table 7.12: System Table Alteration – 30ms Hiatus

Results: The results are reproduced here. The hypothesis is upheld for all varia-
tions in thread production and maximum observation frequency except for 3 threads
at 20,30 and 40, representing the lowest observation values.

We note that the greatest increase in observational success was for increasing
the number of threads. We do not see the same leveling in performance as for
the file object alteration experimentation but this is because fewer threads in total

No. CI CI
Threads % Min Max

3 42.5% 35.65 49.35
5 64.5% 57.87 71.13
7 62.5% 55.79 69.21
9 69% 62.59 75.41

n=200 Jobs = 1 Hiatus = 40

Table 7.13: System Table Alteration – 40ms Hiatus

115

7.4 “PROOF OF CONCEPT” MECHANISM

are being used. However, the results are suggestive of two optimization points,
one for increasing number of threads and the other for increasing observational
frequency, suggesting that some internal constraints are present in performance
terms, possibly related to the ’inefficiency’ of the approach. The detection rate is
not acceptable for intrusion detection systems taken in isolation. However, the goal
of the system is to provide a cumulative detective effect. Most of the probability
scores displayed are more than acceptable in this context where 50 % is taken to be
the lowest acceptable probability for a given sensor task.

7.4.4 Detecting a Characteristic Vector

A characteristic vector is an ordered sequence of states which matches with a known
sequence of states associated with malicious software activity. The second exper-
iment represented an extension of the first in which we considered other related
kernel features which might be implicated in a concealment attack, but not neces-
sarily belong to the same kernel subsystem. This experiment is, in miniature, a trial
in raising detection probabilities through cumulative observations.

We added additional observer ensembles to measure the integrity of the sys-
tem call table used hashed values for comparison and also checked the read/write
permission flag for the table (which has to be altered to change the table).

For this experiment, we simulated a more complete attack where more than
one kernel substructure (i.e. the system call table, its read/write flag and the
readdir() functionality) might be altered and subsequently the alteration re-
versed. Each trail consisted of 100 transitions of the LKM simulating attacker
actions by first altering and then reversing the alteration to these structures. We
recorded a successful detection if 2 out of 3 of the characteristics were observed in
transition. It should be noted that additional opportunities were provided to ob-
serve the attack because the reversal of the system call table and read/write flags
was obvious to the mechanism. This is a characteristic of some concealment tech-
niques that we can happily take advantage of. We set the target for success higher
at 90% as we were taking advantage of cumulative observational probabilities. The
results are shown in section 7.4.4.

These results demonstrate how cumulative observations from distinct observer
groups result in acceptably high levels of detection. Here it is much clearer that in-
creasing the number of observers is the dominant strategy for increasing the prob-
ability of detection. These results show that we can concurrently measure seman-
tically related kernel structures and underscore the high cumulative probability of
detecting anomalous transitions.

Hypothesis: Using a multiprocessor host based multi-sensor program (KRAKEN),
an alteration in the system table, an alteration to system table read/write flag or an
alteration in file size could be detected with a probabilities greater than 90% on a 2
out of 3 combination. This characteristic vector detection has to be acceptable for
IDS systems.

Null Hypothesis: The detection rate would be lower than 90%.

116

7.4 “PROOF OF CONCEPT” MECHANISM

No. CI CI
Threads % Min Max

3 86 79.20 92.80
5 96 92.16 99.84
7 96 92.16 99.84
9 99 97.05 100.95

n=100 Jobs = 2 Hiatus = 10

Table 7.14: Characteristic Vector Detection – 10ms Hiatus

No. CI CI
Threads % Min Max

3 85 78.00 92.00
5 92 86.68 97.32
7 98 95.26 100.74
9 98 95.26 100.74

n=100 Jobs = 2 Hiatus = 20

Table 7.15: Characteristic Vector Detection – 20ms Hiatus

No. CI CI
Threads % Min Max

3 72 63.20 80.80
5 86 79.20 92.80
7 98 95.26 100.74
9 98 95.26 100.74

n=100 Jobs = 2 Hiatus = 30

Table 7.16: Characteristic Vector Detection – 30ms Hiatus

Method: The multi-sensor program was written as a Linux Kernel Module in C. It
could generate sensor threads to detect each condition. Any mismatches would be
reported. The observations were randomized over time periods of different lengths
and the number of threads increased systematically to improve detective perfor-
mance. A second program which used rootkit techniques to create and, where
appropriate, conceal the alterations was similarly written. The second module was
inserted and removed from the system using a Python program which created a
randomly named file for the ’rootkit’ program to conceal on insertion and reveal
on removal. The procedure was repeated 100 times with 5 second intervals be-
tween each activation. This led to 100 alterations in the characteristic vector. The
multi-sensor program logged any detected differences.

Results: The hypothesis is upheld for medium to high end variations in observa-
tional frequency and thread generation:

We note that the greatest increase in observational success, based on the cal-
culated averages, was for increasing the number of threads. We do not see any
apparent drop offs in performance as for this experiment. This may be because
observations did not rely on the success of single measurements. The results sug-

117

7.4 “PROOF OF CONCEPT” MECHANISM

No. CI CI
Threads % Min Max

3 59 49.36 68.64
5 86 79.20 92.80
7 93 88.00 98.00
9 98 95.26 100.74

n=100 Jobs = 2 Hiatus = 40

Table 7.17: Characteristic Vector Detection – 40ms Hiatus

gest that an optimization point is converging around 9 threads and between 20 and
30ms observational frequency for this particular system.

The detection rate is acceptable for intrusion detection systems, for higher end
variants. However, this is a detective effort for only a single characteristic vector,
not the accumulation that would be expected for a rootkit attack where several
vectors might be affected. Since this effort is directed at semantic chokepoints, it
has greater significance in system terms than a higher probability detection of less
important characteristics.

7.4.5 Self Observation Test

In a final experiment, we evaluated the ability of the mechanism to self-observe. A
LKM was created to delete observer threads in groups and replace them with inert
threads. 100 observer threads were instantiated as “sacrificial victims” in addition
to an ensemble of threads for self-observation. Observer threads measured a hash
of the mechanism’s process PIDS. Acceptable rates of observation were set as before
at 50% for the measurement of a single characteristic, given potential performance
constraints. Several trials were undertaken. The results are shown in section 7.4.5.

These results clearly demonstrate the feasibility of self-observation. However,
we also see scheduling constraints causing observational values to peak and then
fall off for increasing numbers of observer threads with a clear relation to the period
allowed for observation – see section 7.3.1.2 for an explanation. This is a predictable
result, which would not be encountered on larger-scale platforms (e.g. with 8 or
more cores).

Hypothesis: The sensor module would be capable of gathering observations about
changes to the number of processors it had when deleted in groups with greater
than 50% probability.

Method: The multi-sensor program was written as a Linux Kernel Module in
C. It could generate sensor threads which counted the number of threads in the
process queue associated with the module.The sensor threads would read a value
and communicate it to all other threads for comparison. Any mismatches would
be reported. The observations were randomized over time periods of different
lengths and the number of threads increased systematically during the experiment.
A second program which used rootkit techniques to delete threads and replace
them with dummy versions. The second module was inserted into the system and

118

7.4 “PROOF OF CONCEPT” MECHANISM

No. CI CI
Threads % Min Max

3 36.67% 19.42 53.91
5 63.33% 46.09 80.58
7 63.33% 46.09 80.58
9 60.00% 42.47 77.53

n=30 Jobs = 1 Hiatus = 10

Table 7.18: Self Observation Test – 10ms Hiatus

No. CI CI
Threads % Min Max

3 26.67% 10.84 42.49
5 23.33% 8.20 38.47
7 46.67% 28.81 64.52
9 73.33% 57.51 89.16

n=30 Jobs = 1 Hiatus = 20

Table 7.19: Self Observation Test – 20ms Hiatus

No. CI CI
Threads % Min Max

3 30.00% 13.60 46.40
5 20.00% 5.69 34.31
7 50.00% 32.11 67.89
9 56.67% 38.93 74.40

n=30 Jobs = 1 Hiatus = 30

Table 7.20: Self Observation Test – 30ms Hiatus

deleted threads in groups of 3 from the system 30 times. There procedure was re-
peated with 5 second intervals between each activation. The multi-sensor program
logged any detected differences in the number of threads.

Results: The hypothesis is upheld when considering group deletions for high
thread counts. The results are reproduced here.

It would be possible for an attacker to reduce this probability significantly by

No. CI CI
Threads % Min Max

3 23.33% 8.20 38.47
5 33.33% 16.46 50.20
7 43.33% 25.60 61.07
9 93.33% 84.41 102.26

n=30 Jobs = 1 Hiatus = 40

Table 7.21: Self Observation Test – 40ms Hiatus

119

7.4 “PROOF OF CONCEPT” MECHANISM

individually deleting threads with significant gaps between each deletion, but they
would be left with the difficulty of explaining anomalous results for still good
threads, whereas rapid deletion and replacement of a group of threads is a more
viable strategy. It should be noted that each KRAKEN thread reported its own
demise with 100% success, suggesting the adversary would need to alter the thread
code or the behavior of the reporting mechanisms before proceeding.

This, in other words, was not the cleverest means of self observation, but it
still had relatively significant success with results favoring a longer hiatus and a
greater number of threads. This may suggest that rapidly repeated activity is better
detected by lowering the frequency with which observation rounds are repeated in
favor of increasing the number of observing threads and hence the probability of
interspersing a thread observation with a malformed write to memory.

7.4.6 Performance

We addressed two performance issues. The first was examine detection capabil-
ities under variable system loads. In Figure 7.3 we show the results of placing
different loads on the CPU, virtual memory, IO and hard disk access facilities using
a program called Stress 1.0.0 which creates suitable process hogs which loop over
suitable functions. The table indicates the number of hogs used and where differ-
ent emphases in the loading were placed on the system. Overall, there was a drop
in detection rates of around 10% but the system only appeared to suffer this initial
hit on detection probabilities compared with trial results and thereafter performed
consistently with minor non-significant variations.

3 (− Disk) 3 (− CPU) 4 5 (Vm) 6 (Vm) 6 (IO) 5 (CPU) 6 (CPU)
56

57

58

59

60

61

62

63

Process Hogs

D
et

ec
tio

n
P

ro
ba

bi
lit

y

Detection Performance Under Varying System Loads

Student Version of MATLAB

Figure 7.3: Detection Probabilities Under Stress

120

7.5 SUMMARY

We also ran the module increasing the number threads from 15 to 45 and mea-
suring the results using the vmstat utility. The average load on the CPU increased
from 10 to 20 percent as the frequency and number of observing threads were in-
creased. The load on i/o resources also increased gradually. There was a slight
decrease in the virtual memory available. This reflects the way the program op-
erates with i/o increasing for logging (snapshot reports) to the messages file and
state comparisons consuming virtual memory resources. However, the generated
processes frequently and voluntarily relinquish control of the CPU keeping down
performance costs for CPU time as well as maintaining some advantage in schedul-
ing by avoiding the appearance of being CPU bound. As would be expected for a
kernel module, the primary CPU load is for kernel usage.

7.5 Summary

In this chapter, we provide a process algebraic and a corresponding technique,
based on process diagrams, for specifying a distributed system and modeling its
trace semantics. We have shown how the set of trace semantics may be converted
to a set of unfeasible and malicious traces which we describe as characteristic vec-
tors. We subsequently provide, for a multiprocessor system, a model and a “proof
of concept” of an observational mechanism which can observe and report system
traces to a set of monitors, whose existence we assume. We also demonstrate for-
mally using the π-calculus our proposed mechanism. We selected examples in our
“proof of concept” which show how the observation mechanism can detect signifi-
cant changes in a subsystem and indeed link together alterations in state from dis-
parate components in that subsystem. While observation is probabilistic, we argue
that successful observation and detection figures may be driven arbitrarily high by
the addition of multiple observer threads, although in certain environments such
as ICS this would require the use of dedicated co-processors. The multiplicity of
observer threads and the probabilistic nature of their action conspire to render it
difficult for the adversary to subvert their action. In addition, the mechanism is
capable of guarding its own integrity through self observation.

121

Chapter 8

Kinetic Models and Adversary
Detection

You see, wire telegraph is a kind
of a very, very long cat. You pull
his tail in New York and his head
is meowing in Los Angeles. Do
you understand this? And radio
operates exactly the same way:
you send signals here, they
receive them there. The only
difference is that there is no cat.

Albert Einstein

8.1 Preamble

Kinetic interactions provide another context for determining whether or not ICS are
under attack. By taking additional sensor measurements, beyond current observ-
ability and controllability requirements, and communicating them to the operator
independently, we provide another layer of information about the behavior of such
systems which can be used to check whether its expected behavior. This approach
is not novel. However, in this case, we apply it to detecting anomalies in non-linear
systems and demonstrate that only a small amount of additional sensor informa-
tion is required to detect differences sufficiently significant to indicate the potential
presence of malicious activity.

8.2 Example Selection

We selected a heat exchanger in association with a beer pasteurizer as a simple,
but non-trivial, example. The actual process – beer pasteurization – does not, of
course, form part of a critical national infrastructure1, but represents a substitution
which, we believe, is useful for researching ICS in general. Frequently, on systems
which are key to critical infrastructures, organizations are unwilling or may even be
constrained for security reasons from providing researchers with the opportunity
to explore such systems directly. Hence, by substituting a “harmless” example of
a similar process, it is possible to derive results which, with some adaptation, can

1Except to the author.

122

8.3 APPROACH

be implemented on the original systems. In this case, we achieved a double sub-
stitution since pasteurization is a key process in pharmaceutical production, par-
ticularly of vaccines, and heat exchange, as well as being ubiquitous to industrial
processes, is key, in particular, to energy production and the prevention of serious
breaches in health and safety on a potentially national scale.

8.3 Approach

The operation of the pasteurizer consists of a series of heat exchanges which are
controlled to ensure specific targets are achieved for peak and trough flow values
for the product. A set of non-linear differential equations may be used to express
the behavior of the plant. An attack is defined abstractly as a manipulation of
messages which affect the behavior of these relations – chapter 5 – moving them
away from a desired steady state (the pasteurization rate). During an attack, key
process characteristics will be concealed by attackers. Other process characteristics
while not concealed may not aid analysis. The attacker can hide in the “noise” of
the system which disguises signal manipulations. However, using our knowledge
of the system and potential attacker behavior, we may identify suitable substitute
readings for measuring key process characteristics. Having identified these, we
may install additional sensors to take readings from these nodes and compare the
results in real time with expected values in relation to process states to detect any
anomalies.

8.4 Model

We describe the operation of a flash pasteurizer and model the identification of
potential substitute measurements. We use a simulation in MATLAB/SIMULINK
of the pasteurizer to develop a profile of the behavior of these readings under dif-
fering operating conditions (see section 8.7). We can subsequently use these for
detecting breaches in the expected behavior of the system.

8.4.1 Pasteurization and Heat Exchange

Pasteurization is achieved by a series of heat exchanges between hot and cold flu-
ids, where the hot side setpoint temperature is determined by flow rate, which is
dependent on the rate of packaging (in this case, kegging), and the cold side tem-
perature by packaging requirements. In flash pasteurization, the interaction of the
pasteurized (hot) and unpasteurized (cold) product is used as part of the temper-
ature cycle with target values being achieved through secondary heat exchanges
using steam-heated water on the hot-side and a refrigerant (in this case, glycol) on
the cold-side [82]. The basic equations for heat exchange are:

q̇ = UA(Tin,s − Tout,c) (8.1)

wCp
dT

dt
= ẇCp(Tin,c − Tout,c) + q̇ (8.2)

uCp
dTs
dt

= u̇CP (Tin,s − Tout,s)− q̇ (8.3)

123

8.4 MODEL

In equation 8.1 q̇ is the rate of heat exchange, U is the coefficient of heat ex-
change for the construction material and A is the area, Tin,s is the initial hot-side
temperature (Co), Tout,s is the final hot-side temperature, Tin,c is the initial product
temperature and Tout,c is the final product temperature. Equations 8.2 and 8.3 rep-
resent the respective energy balances of the cold and hot sides where ẇ, u̇ represent
the hot-side and cold-side flow rates respectively, w, u the liquid volume (m3), and
Cp is the specific heat capacity (kJ/kg −K) of the product.

Pasteurization units PU are derived from flow rate and temperature values us-
ing equation 8.4:

PU =
w

ẇ
(60)(1.393(T−60)) (8.4)

where w is the holding volume (HL), ẇ is the flow rate (HL/HR) and T is the
temperature. This is a dimensionless measure, which was derived by Dayharsh et
al. [35]. We observe the non-linear relationship between flow rates, temperature
and pasteurization values, which do not lend themselves to statistical analysis of
the control process or a straightforward state estimation technique, using linearized
equations (particularly where the same equipment may be used for different prod-
ucts).

The flow rate ẇ is derived as follows:

ẇ = ẇmax − ẇmin ×
(Lactual − Lmin)

Lmax − Lmin
(8.5)

where L is the tank level and ẇ is the flow rate as before. The minimum and
maximum tank levels for this specimen are 100 and 220 and the minimum and
maximum flow rates are 250 and 500 respectively. Flow rates are clamped to their
extrema when tank level values exceed their minimum or maximum values. Tank
levels change almost continuously during pasteurization due to alterations in pack-
aging (called “kegging”) rates. We add the appropriate calculators to our model to
simulate these set points.

The pasteurization process is dependent on the temperature and the rate (vol-
ume per second) at which the liquid, or material, to be pasteurized flows through
the system. In the example system, this is achieved by heat exchange using the hot
and cold liquids passing through a compartmented heat exchanger on a contraflow
arrangement. A model of the plant is shown in figure 8.1.

The actual heat exchanger is shown just right and up of the center of the dia-
gram. Unheated beer is pumped into the third chamber to the right and passed
through various compartments being heated by hot beer returning the other way.
The final part of the heating process is accomplished by using steam heated water
to bring the beer to the desired temperature, after which it flows through a series
of pipes to re-enter the heat exchanger being cooled by more beer entering the heat
exchanger. The final part of cooling the beer before it is kegged is achieved by using
glycol as a refrigerant.

Both the heating and refrigeration processes required to be controlled depend-
ing on the flow of beer through the plant. But the flow rate is determined by the
tank level in PPB2A which in turn is determined by the kegging process down-
stream of the plant. In effect, the water flows randomly at different rates. Hence

124

8.5 SIMULINK CONSTRUCTION

Figure 8.1: Beer Pasteurizer - Courtesy of Diageo PLC, 2009

the temperature of the water has to vary accordingly and likewise the amount of
cooling supplied by the glycol.

8.5 Simulink Construction

Model construction centered on the requirement to model the heat exchange pro-
cess and the “disturbances” caused by changes in tank level and hence water flow.
However, we also included in the model perturbances of the heating and cooling
rates and corresponding simulation of the control mechanisms (PIDs) which are
used to heat or cool the product. The modelling was done using Simulink. The
complete model is shown in figure 8.2 and the following sections provide an expla-
nation of its construction.

A key to the Simulink block symbols used are provided in figure 8.3.
In brief, the Input block provides the input value from another block. The Out-

put block corresponds. The Sum block is used to sum two values. The Gain block
provides multiplication by a constant. The Product block provides the product of
two (or more) values. The Constant block provides a constant value as an output.
The Random Number provides a probabilistically generated random number which
may be generated between set limits. The Saturation blocks sets upper (respec-
tively lower) limits on values. The Integrator sums values over time. Finally, the
Scope block provides a readout of the values sent to it. All values in Simulink are
also stored in matrices which can be used by MATLAB for subsequent calculations

125

8.5 SIMULINK CONSTRUCTION

Fl
ow

 R
at

e
pe

r s
ec

on
d

B
ee

r t
o

H
ot

si
de

B
ee

r t
o

C
oo

lin
g

B
ee

r t
o

S
pl

itt
er

W
at

er
/B

ee
r

H
x

qd
ot

1

W
at

er
/B

ee
r

H
X

 R
at

e
W

at
er

 H
ea

te
r

Ti Ts
p

w
do

t

TL

To Ts
o

qd
ot

W
at

erw

To
 P

B
B

T
C

ol
d

B
ee

r
Te

m
p

.

Ti
m

e
S

ig
na

l

t

Ta
nk

 L
ev

el

Ta
nk

 L
ev

TL
i

TL

C
TL

S
pl

itt
er

/R
eg

en
1

B
c

S
pl

itt
er

/R
eg

en
H

ea
t E

xc
ha

ng
e

R
at

e

S
pl

itt
er

/R
eg

en
C

S
/H

S
 S

co
pe

S
pl

itt
er

/R
eg

en

B
c1

S
pl

it
/R

eg
en

H
x

qd
ot

2

S
P

 C
al

cu
la

to
r

P
U

R
FR

Ts
p

R
eg

en
/S

pl
itt

er

Ts Ti w
do

t

To Ts
o

qd
ot

P
os

P
U

=4
0

P
U

=1

P
U

 E
st

im
at

or

R
FR Ts

P
U

P
B

B
 T

an
k

Le
ve

l
L

N
eg

In
iti

al
 B

ee
r T

em
p

.
In

iti
al

 B
ee

r T
em

p

Ti

H
ot

 S
id

e
S

P

H
ot

 S
P

Ts
p

H
ol

di
ng

P
ip

es

-K
-

H
S

 B
ee

r
/W

at
er

 T
em

p
.

H
S

 B
ee

r
2

B
h

2

H
S

 B
ee

r
1

B
h

1

G
ly

co
l T

em
p

g

Fl
ow

 R
at

e
pe

r s
ec

on
d

Fl
ow

 R
at

e
pe

r h
ou

r
FR

 p
er

 h
ou

r

FR
FR

 C
al

cu
la

to
r

TL
R

FR FR

E
st

. P
U

1

P
U

E
st

. P
U

C
oo

ls
id

e
H

x

qd
ot

3

C
oo

lin
g

S
ec

tio
n

H
ea

t E
xc

ha
ng

e
R

at
e

C
oo

lin
g

S
ec

tio
n

G
ly

co
l T

em
p

.

C
oo

lin
g

S
ec

tio
n

Ts w
do

t

To Ts
o

qd
ot

C
lo

ck

B
ee

r O
ut

To

B
ee

r F
ro

m
Ta

nkB
T

St
ud

en
t V

er
si

on
 o

f M
A

TL
A

B

Figure 8.2: Simulink Model of a Beer Pasteurizer

126

8.5 SIMULINK CONSTRUCTION

Input Block

Gain Block

Integration Block

Output block

Scope

Sum

Product

Constant

Saturation Random Number

Out1
1

Scope

Saturation Random
Number

Product
Integrator

1
s

Gain

1

Constant

1

In1
1

Student Version of MATLAB

Figure 8.3: Simulink Key

or to plot graphs. The reader should refer to a MATLAB/Simulink textbook – for
example [31] – for further information.

To

1

Product Integrator

1

s

Gain 1

1/w*Cp

Gain

Cp

qdot

3

Ti

2

wdot

1

Student Version of MATLAB

Figure 8.4: Basic Heat Exchange Calculation

To build a model of a compartmented heat exchanger, we first had to construct
a basic heat exchange unit to act as a compartment. The basic heat exchange equa-
tion is represented in Simulink in figure 8.4. This represents a (partial view) of the
transformation of equations 8.1, 8.2and 8.3 solving for the exit temperature Tout,c,
the hot side flow rate ẇ and the cold side flow rate u̇ respectively. Label substitu-
tions are provided in table 8.5.

127

8.5 SIMULINK CONSTRUCTION

To Tout,c Hotside Temperature
Ti Tin,s Coldside (Initial) Temperature
wdot ẇ Hotside Flow Rate
qdot q̇ Coldside Flow Rate
Cp Cp Specific Heat Capacity

This basic block is declared as a module in Simulink and subsequently used to
build a contraflow heat exchange mechanism with totals calculated for the overall
heat exchange process and heat exchange rate. The overall system is shown in
figure 8.5

Contraflow Heat Exchange

Contraflow Heat Exchange in Splitter /Regeneration

qdot
3

Tso
2

To
1

HeatX Section 3

Ti

Ts

wdot

To

qdot

Tso

HeatX Section 2

Ti

Ts

wdot

To

qdot

Tso

HeatX Section 1

Ti

Ts

wdot

To

qdot

Tso

HeatX Section 0

Ti

Ts

wdot

To

qdot

Tso

wdot
3

Ti
2

Ts
1

Student Version of MATLAB

Figure 8.5: Contraflow Heat Exchanger

In each contraflow heat exchange section, Ts is the initial hot side temperature
which is set by the heating control system, Ti is the initial cold side temperature, To
is the temperature of the heated product and Tso is the temperature of the cooled
product. We also show the flow rate wdot and the heat exchange rate qdot which,
along with the other outputs is totalized over each section. Note that the heated
output temperature To becomes the initial input temperature Ti for the next section
and the cooled product output temperature Tso becomes the heated input product
To for the next section, creating the contraflow.

The module breaks down into four sections as follows. First, we have dual heat
exchanges each controlled by the same flow rates and heat exchange calculations.
The first section is shown in figure 8.6.

The basic heat exchange calculation is repeated for both the hot and cold sides
and is identical for both – see figure 8.7.

The rate of the heat exchange qdot is determined using U and A as the parame-
ters to the module – see figure 8.8.

The end sections, heating and cooling units, of the heat exchanger respectively
are shown in figures 8.9 and 8.10.

In the hotside section, we simulate the action of the steam heated water by
using a PID block to control the water temperature Ts but taking into account the
temperature set point Tsp (which is calculated elsewhere), the beer temperature To
following the contraflow heat exchange. We found that the disturbances in the tank
level TL had an exaggerated effect on the model and introduced a compensating
linearization and a reduced level of “disturbance” to compensate.

128

8.5 SIMULINK CONSTRUCTION

Tso
3

qdot
2

To
1

Heat Transfer Rate

Ts

To
qdot

Energy Balance 1

wdot

Ts

qdot

Tso

Energy Balance

wdot

Ti

qdot

To

wdot
3

Ts
2

Ti
1

Student Version of MATLAB

Figure 8.6: Dual Heat Exchange in Contraflow

To
1

Product Integrator

1
s

Gain 1

1/w*Cp

Gain

Cp

qdot
3

Ti
2

wdot
1

Student Version of MATLAB

Figure 8.7: Basic Heat Exchange Calculation

129

8.5 SIMULINK CONSTRUCTION

qd
ot1

U
A

U
A

To2Ts1

St
ud

en
t V

er
si

on
 o

f M
A

TL
A

B

Figure 8.8: Calculate Rate of Heat Exchange

130

8.5 SIMULINK CONSTRUCTION

Beer In Beer Out

Flow Rate

 Water Temperature

Beer Temperature

Hotside Temperature
Setpoint

This equation is
used to compensate for shifts

in tank level and to perturb the
heat exchange proces .

Water/Beer Heater Simulation

qdot
3

Tso
2

To
1

Steam PID

PID

Product

Neg

K1

-0.016

Heat Exchanger

Ti

Ts

wdot

To

qdot

Tso

Avg 3.94

TL
4

wdot
3

Tsp
2

Ti
1

Student Version of MATLABFigure 8.9: Heating Section

The coldside section uses a similar approach to simulate the action of glycol in
cooling the product. “Disturbances” were introduced into the exit product temper-
ature and the heat exchange in the refrigeration of the glycol for the coldside PID
to handle.

It should be noted both the heating mechanism and the cooling mechanism
were only intended to approximate the actions of heating and cooling in the model
as a full representation would have required the addition of further heat exchange
units and PIDs to fully model the action of these mechanisms.

Other inputs to the process are generated in a reasonably straightforward way.
The initial beer temperature is around 10oC and is generated using a random num-
ber generator shown in figure 8.11.

The tank level was also generated randomly as shown in figure 8.12 allowing
the tank level TL to wander between its maximum and minimum values while
avoiding the requirement to create a full simulation of the tank level control mech-
anism.

The tank level is subsequently used to calculate the flow rate shown in figure
8.13. The details of this calculation are provided in chapter 8.

It should be noted that we calculate the FR in hectoliters per minute and sub-
sequently calculate the real flow rate RFR in hectoliters per second which is the
value which is used to calculate the hotside temperature set point based on the
required number of pasteurization units PU . This calculation is shown in figure
8.14.

This calculation is derived from 8.4. The final inputs to the model were per-

131

8.5 SIMULINK CONSTRUCTION

Cold Side Heat Exchange - Beer/Glycol

qdot
3

Tso
2

To
1

Perturbation

Heat Exchanger

Ti

Ts

wdot

To

qdot

Tso

Glycol PID

PID

Cold Side SP

Average 2 deg C

wdot
2

Ts
1

Student Version of MATLAB

Figure 8.10: Cooling Unit

turbations simulating adversary action which are shown in Simulink blocks in the
overall system model which alter tank level TL settings and pasteurization unit
PU readouts to conceal alterations in the production process. These inputs were
timed to occur partway through a pasteurization run.

The number of pasteurization units PU produced is calculated based on the
exit temperature of the beer from the heat exchanger Ts (with a minor downward
adjustment to allow for heat loss in the piping) as shown in figure 8.15.

The other outputs of interest are the exit temperatures on the hotside To and
coldside Tso of the beer and the heat exchange rate qdot for the total heat exchange
along with the hotside setpoint Tsp. All of these are measured using the Simulink
Scope blocks shown in the complete model in figure 8.2 and their use is explained
in chapter 8.

8.5.1 Model Validation and Application

The model as a whole as described is intended to allow the experimenter to sim-
ulate the action of the pasteurizer and, subsequently, to interfere in that action by
altering key values while concealing the fact of alteration from operators with ac-
cess to the normal output gauges. In chapter 8, we show how this limitation on

132

8.5 SIMULINK CONSTRUCTION

Cold Beer Temperature Generator

BT
1

Scope .

Random
Number

Student Version of MATLAB

Figure 8.11: Initial Beer Temperature

Tank Level Generator

CTL
2

TL
1

Scope 1

Scope

Saturation 1

Saturation

Random
Number

TLi
1

Student Version of MATLAB

Figure 8.12: Tank Level Generation

133

8.5 SIMULINK CONSTRUCTION

Flow Rate Calculation based on Tank Level

FR
2

RFR
1

Saturation 1Product

Min Level

100

Min FR

250

Max Level

220
Max FR

500

Gain

-K-

FR
Scope 1

FR
Scope

Divide

TL
1

Student Version of MATLAB

Figure 8.13: Calculate Flow Rate based on Tank Level

Hot side Temperature Set Point Calculation

Tsp
1

ln V X 60/Q

ln PU

ln

ln (V x 60/Q)

ln
V x 60

-C-
Scope

PU Constant

1/log (1.3932)

K

60
RFR

2

PU
1

Student Version of MATLAB

Figure 8.14: Calculate Hotside Setpoint

1

Pasteurization Units Estimation

PU
1Vol. HL

3.38

Product 1Product

PU
Scope

Math
Function

uv

K2

-C-

K

60

Divide

Ts
2

RFR
1

Student Version of MATLAB

Figure 8.15: Calculate Pasteurization Units

134

8.6 PROXY DISCOVERY

operator knowledge can be overcome by using additional gauges to validate the
model’s output, assuming we can communicate these readings safely to the opera-
tor. Obviously, the solution to this secondary problem is found in chapter 5 using
the proposed traceback protocol in full encryption mode.

The model was validated by Brian Furey, a control engineer at Diageo PLC, and
the beer product used in the example is a globally famous Irish stout. Discussions
with the engineers at Diageo PLC made it clear that the sensitivity of the product
to pasteurization plays a large factor in whether or not such an attack would be
successful. The non-linear nature of pasteurization and of product spoliation are
both factors in this process.

8.6 Proxy Discovery

PUSP

TL

FR TSP S W

HXWHXS

Tin

HXH PUestHXR

CSP

G

Tout

Figure 8.16: Adapted Functional Causal Model

We use an adapted functional causal model of the pasteurizer to visualize sig-
nificant relations and sensor values under specific attack conditions [99] as an aid in
uncovering potential substitute readings. This is a technique which we have found
to be suitable for analyzing small-scale configurations. For large-scale configura-
tions, an algebraic transform of the same technique may be used.

Let
−→
G = V (

−→
E) be a graph. Let each v ∈ V represent a characteristic aspect

of pasteurizer functionality, e.g., water temperature. Let each −→e ∈ −→E be a causal
relationship between distinct pasteurizer characteristics. We assume that we may
ask conditional questions about the state of a node v ∈ V where it is directly or
transitively linked to a node u ∈ V , except where v is also linked to a dominant

135

8.7 EXPERIMENTS

node w. Where a dominant node exists, its state determines the value of all slave
(or invariant) nodes which are tail adjacent . All other relations to invariant nodes
are represented as dotted lines. We assume, but do explicitly show in graph form,
that each node’s state is subject to unmeasured disturbances which create a proba-
bility distribution over node values. Under attack, these values will be perturbed,
but the perturbation will be concealed by the attacker by manipulating computa-
tional states or using process “noise”. Clearly, the attacker will conceal the value of
all nodes directly implicated in determining the success of pasteurization. Supervi-
sory access will also allow the manipulation of certain nodes. Potentially manipu-
lated nodes are shown in blue, whilst probabilistically concealed nodes are colored
red. All colored nodes belong to a the set of “covered” nodes whose values may
not be knowable under attack.

Figure 8.6 represents the pasteurizer under attack. Here, PUSP is the pasteur-
ization unit set point, TL the current tank level, FR the flow rate, TSP the hot-side
temperate set point, S the steam temperature,W the water temperature, Tin the ini-
tial product temperature,HXS the product temperature after heating in the splitter.
HXW is the product temperature after being heated by the water, HXH the prod-
uct temperature at the end of the holding pipe and pre-regeneration. PUest is the
estimated PU value. HXR is the product temperature post regeneration, Tout the
product temperature at the end of the process after glycol cooling, and finally CSP
is the cold-side set point and G the glycol temperature.

We observe temperature and flow rate determine the pasteurization value (see
equation 8.4). We also observe that these values are central to material and energy
balances in the heat exchange (eqs. 8.1, 8.2 and 8.3). These observations suggest
that it may be possible to estimate pasteurization values from heat exchange per-
formance and vice versa. Finally, we note that the heat exchange output values
are uncovered at HXS and HXR, potentially enabling their use as potential mea-
surements for determining the success of pasteurization. We proceed to show in
section 8.7 how we could use supplementary sensors to detect an attack.

8.7 Experiments

Based on assumptions about attacker capability and assuming no insider collusion,
there are three possible attack strategies w.r.t our specimen process:

• Lower the PU by spoofing a lower tank levels, thus increasing flow rates
relative to temperature, using negative error values
• Lower the PU by dropping the water and hence product temperature relative

to flow rates, using positive error values, or equivalently by resetting the PU
set point
• Combine these tactics in a single attack

For the first two attack strategies, the attacker is required to disguise all rele-
vant sensors so that they appear to show consistent values. In the third strategy,
the attacker may omit to disguise the hot-side temperature as a stepped approach
to jointly lower water temperatures and raise relative flow rates can be concealed
in process noise, i.e., the product temperature remains constant, but pasteuriza-
tion is still degraded as a process. We therefore need to show that we can use the

136

8.7 EXPERIMENTS

proxy measurements we have identified in to estimate both the flow rate and the
temperature and hence the pasteurization units.

As a preliminary step we show that there are distinct temperature to flow rate
ratios for each PU . Solving equation 8.4 for temperature [82], we plot temperature
values against flow rates for PU values of 40 (nominal value) and 20 (the fail or
divert value) and determine the PU value for 1o C alteration downwards for the
nominal value of PU = 40 which represents a significant loss of quality, i.e., we
also solve for T − 1 with the result PU = 28.7. The results are shown in figures
8.17.

The temperature of the cooled (pasteurized) product leaving the regenerator
tank allows us to estimate flow rates. To show this, we plot this temperature for
four distinct tank levels T = {120, 140, 160, 180}, representing distinct flow rates,
against the nominal pasteurization rate (40), the divert value (20) and the quality
loss value (28.7). The distinct banding of temperatures for the cooled product (color
coded by flow rate) temperatures shows that the flow rate and hence the tank level
can be estimated using this value – see figure 8.18. Confidence intervals are esti-
mated at ±10 HL/HR. It follows that we should be able to detect the first attack
tactic used to alter flow rate by spoofing false tank level readings.

We now show how a concealed alteration in temperature may be detected. Set-
ting the tank level at TL = 180 to lock in the flow rate, we show three different
runs with distinct pasteurization profiles as before. Given the non-linear relation-
ship between pasteurization levels, these temperature differences are on average
sufficiently significant so as, in combination with flow rate estimation to allow cal-
culation of process success with greater than 3σ confidence. Similar results are
found for other flow rates. Hence, we can determine what the current PU level is
modulo approximately 4 units.

Finally, we show how we can detect transitions concealed by signal “noise”.
We assume an attack where we drop the PU value gradually using a combination
of lowering water temperatures and raising flow rates in an effort to hide in the
process signal. We set the tank level to 220 and drop it in stages to 172, altering the
flow rate upwards. We drop the pasteurization target from 40 to 28.7 (equivalent
to quality loss) by altering the water temperature error signal or PU setpoint. We
see in figures 8.20 and 8.21 that product temperatures do not vary from their mean
value, while PU rates drop significantly in the same period. Obviously, the attacker
could continue this process until the divert or abort values were achieved.

In figures 8.20, 8.21 and 8.22, we see the difference to the heat exchange profile
as a result of these “concealed” adjustments. In fact, this result provides a greater
contrast in heat exchange profiles compared to other attacks as both the lower and
upper product temperatures alter simultaneously to create anomalous “steps” in
the heat exchange profile. It follows that we can estimate (even control) actual pas-
teurization rates from this profile. We estimate that we could achieve confidence
levels of ±4 PU , assuming we can achieve precision of ±0.5o C in hot-side temper-
ature values and ±10 HL/HR in flow rate estimations.

In conclusion, our simulation shows that by placing additional sensors in suit-
able locations in a heat exchange mechanism and by paying attention to differen-
tials in the physical process, we can detect alterations in the heat profile which may
be indicative of an attack, even where the attacker is manipulating sensor signals

137

8.7 EXPERIMENTS

250 300 350 400 450 500
69.5

70

70.5

71

71.5

72

72.5

73

73.5

74

Flow Rate (HL)

T
em

p.
 D

eg
. C

PU = 40
PU = 28.7
PU = 20

Student Version of MATLAB

Figure 8.17: PU Profiles for Flow Rate v Temperature

138

8.7 EXPERIMENTS

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
15

16

17

18

19

20

21

22

23

24

25

Time (Sec.)

T
e
m

p
.
D

e
g
.
C

Student Version of MATLAB

Figure 8.18: Cooled Product Temperature as a Proxy for Flow Rates

139

8.7 EXPERIMENTS

250 300 350 400 450 500
69.5

70

70.5

71

71.5

72

72.5

73

73.5

74

Flow Rate (HL)

T
em

p.
 D

eg
. C

PU = 40
PU = 28.7
PU = 20

Student Version of MATLAB

Figure 8.19: Nominal, Degraded and Divert PU Values where Tank Level = 180

140

8.7 EXPERIMENTS

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
20

25

30

35

40

45

Time Sec.

P
U

 R
at

e

Student Version of MATLAB

Figure 8.20: Hiding in Signal “Noise” - Pasteurization Rate Alteration

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
71.2

71.3

71.4

71.5

71.6

71.7

71.8

71.9

72

Time Sec.

H
ot

 S
id

e
B

ee
r

T
em

pe
ra

tu
re

Student Version of MATLAB

Figure 8.21: Hiding in Signal “Noise” - Product Temperature

141

8.8 SUMMARY

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
0

10

20

30

40

50

60

70

80

90

Time Sec.

H
ot

 a
nd

 C
ol

d
S

id
e

P
ro

xy
 T

em
p.

Student Version of MATLAB

Figure 8.22: Detecting Flow Adjustments in “Noise” using Hot- and Cold- side
Temperatures

and relying on the “noise” in the process to cover up his tracks. We noted, initially,
that we wish to avoid using a large number of additional sensors for cost and licens-
ing reasons. Our research here indicates that the use of two sensors would provide
suitable information. Whether this is a true minimum would require additional
work and may ultimately depend on the kind of plant we are dealing with.

8.8 Summary

In this chapter, we selected the example of a heat exchanger as a key process in
many industrial systems. We used an exchanger associated with a pasteurization
unit. While not strictly part of a critical infrastructure, many similar units would
form part of such systems. We show how an attacker could obfuscate his presence
in such systems by hiding alterations in the “noise” of the system. Consequently,
we describe how the use of additional sensors allows us to determine the state of
a plant independently of its operational signals provided we can securely commu-
nicate this information to the operator. Hence we have at our disposal an expected
behavior model for the plant based on processing engineering methods as well as
(from previous chapters) for the host and network.

142

Chapter 9

Conclusions and Future Work

Cat’s motto: No matter what
you’ve done wrong, always try
to make it look like the dog did
it.

Unknown

9.1 Preamble

In this chapter, we summarize our work and our contributions, identify any current
limitations, and draw conclusions. We also discuss the future development of our
research.

9.2 Research Overview

Our research was motivated by the issues raised by the problems of malicious soft-
ware attacks on critical infrastructure systems. The growth in sophistication in
malicious software techniques renders it increasingly difficult to observe such at-
tacks which increasingly disguise themselves by posing as legitimate activity on
systems, indistinguishable in terms of process behavior or protocol usage until af-
ter the fact, or making use of sophisticated obfuscation techniques. At the same
time, the existence of multiple possible linearizations of state due to the distributed
nature of such systems, at both macro- and micro- level, increases the difficulty in
detection. We seek to determine the requirements for malicious software detection
on such and what potential commonalities, whether advantages or disadvantages,
arise in tackling such problems in distributed systems in general. We assume a
“perfect” adversary who makes no egregious protocol errors and, hence, may only
be detected by observing anomalies in data artifacts.

Before tackling these issues, we required to produce a formal adversary capabil-
ity model (threat model) which would allow us to reason about adversary actions
and their effects in distributed systems. We note that such a model may be ana-
lyzed at process level or we may apply higher order reasoning regarding agency
in systems. Each process or (agent) goal may be imbued with one or more ad-
versary capabilities which, in combination, enable it to act maliciously in systems.
Our capabilities are based on the Dolev-Yao model but make different assumptions
about communication and connectivity in infrastructures, which force the insertion
of malicious processes or the subversion of current processes into the system by the

143

9.2 RESEARCH OVERVIEW

adversary, creating a distributed foe. One or more processes exercising these capa-
bilities may be used to construct attack scenarios. There equally existed friendly
processes or agents which can also interact with the system, creating a highly com-
plex, dynamically mutating environment.

We instantiated this model, using two closely related π-calculus variants de-
pending on whether we wished to analyze agent or process action, taking advan-
tage of the fact that such calculi, in the past, have been used naturally to model the
action in distributed (and mobile) systems – the latter, in particular, being subject
to change during a system run – and hence lent itself to our adversary definition.
We further made use of functions which allowed us to represent unknowable ef-
fects (from the point of view of the operator) such as process subversion or the
impacts of data manipulation attacks. This form of impact analysis allows us to
demonstrate the effects of attacks, including multiple attacks and for transitive and
recursive effects, and to formally prove, when necessary, that an attack may de-
tected or prevented by some method we wish to employ. Our instantiated model
represents a meta-model for each of our detective approaches – that is, we can for-
mally prove each approach within the applied π-calculus system we apply, though,
in some cases, it is trivial to do so.

We subsequently focused on developing three detective methods. Each method
is characterized by the context created by the system – that is we made use of the
fact that, in distributed systems, data artifacts in one part of the system have re-
lations, which may be trivial (for example, equivalence) or may be complex (for
example, ordering or cause and effect). These relations may also be time-bound in
the sense that they are held concurrently and may alter over time in response to
messages. We refer to this, therefore, as a δ-congruence which fills the δ-context. .
Each method is also, as a result, characterized by the use of a concurrent or near-
concurrent observation and monitoring technique.

The first method made use of techniques based on IP Traceback (though not
necessarily bound to that protocol) to show how we could make use of network
nodes already present in the system to provide us with potentially clean copies of
messages between the plant and the operator which could be used to detect where
a subverted process was located. We also adapted this method to show how soft-
ware agents acting on behalf of the operator could inform him which messages to
discount and which to consider when determining system state under a malicious
attack. We formally proved each case using the π-calculus variants. The contex-
tual relationship, in this case, was equivalence and the observation method was
the exercise of the protocol itself.

The second method applied an analogue of the first method to observing dif-
ferent layers of abstraction within a multiprocessor host system from the point of
view of different observation threads associated with different CPUs. The “ob-
servers” exchanged information with each other at random intervals over an ob-
servation round and noted any inconsistencies, initially, as an alteration in state.
As before, this approach could detect persistent inconsistencies in the return val-
ues of function calls to key operating system components used for reporting state
which would clearly indicate the presence of deception techniques in the system
and we demonstrated this technique using a “proof of concept” software module
in a Linux multiprocessor host. We augmented this approach by associating al-

144

9.3 CONTRIBUTIONS

terations in state with a negative specification of system behavior which would
identify a sequence of changes at the semantic level that was inconsistent with the
expected behavior of the system at a minimum and could, potentially, in some
cases, provide a clear indication and identification of a malicious software attack.
The advantage of using this cause and effect analysis was that it provided a view
of action in disparate, but causally connected, subsystems of the operating system.
This method would be particularly effective against DKOM attacks as well as pro-
cess alteration.

The third method we introduced made use of a unique feature of process con-
trol systems which is the ability to make use of the kinetic information supplied by
such systems by introducing additional sensors on secure and independent com-
munication channels. Hence, if an adversary was successful in undetectably sub-
verting a control unit, we could still show by examining the relationship between
physical signals inconsistencies in plant operation which could potentially indicate
the presence of malicious activity. We demonstrated the validity of this approach
using Simulink to model the relationships in the pasteurization system we used for
our example.

In each case, we sought to minimize computational complexity to fit to the low
performance and capacity ICS environment and to render our approaches highly
resilient to adversary attack.

9.3 Contributions

Our work makes the following original contributions:

• A formal adversary capability model, adapted from Dolev-Yao, suitable for
dealing with the action of malicious processes/agents with a suitable variant
π-calculus instantiation

• A traceback technique for detecting the source of integrity attacks in networks

• A causal model and associated observation mechanism for detecting kernel-
level rootkits

• A “proof of concept” approach to identify aberrations in plants under control,
using basic systems engineering techniques

9.4 Discussion

We discuss the nature of our contributions.

9.4.1 Formal Adversary Capability Model

Formal threat models are primarily used in relation to cryptographic analysis [74].
Formal methods have also been used to analyze the ability of attacks to penetrate
systems – for example, [130]. Our focus, however, is, at least, initially, on analyzing
potential adversary behavior and the possible impacts of attacks. We believe our
model allows us to divorce ourselves from making unnecessary assumptions about

145

9.4 DISCUSSION

attackers’ goals, which exist in some other methods such as attack trees [75], and
a narrow consideration of current system vulnerabilities (provided, for example,
by the results of penetration testing) and instead consider the results of potential
interventions. Although we frequently start from the position that the attacker has
already penetrated the system and constructed an attack, based on the capabilities
attributed to him, we are also in the position to consider impacts which depend on
the non-deterministic success of penetration attempts. Hence we gain the capability
to build up a set of possibilistic outcomes and use these to analyze the success of
security protocols, system defenses and also build up a deeper comprehension of
defensive priorities.

The choice of process over agency models depends on application. For example,
it would be wasteful to define an agency model for the definition and proof of the
working of the security protocol in chapter 6, but clearly an advantage to be able
to consider the interaction of such protocols with adversary behavior in the conse-
quent. Hence the ability to deal with agency in the model offers the opportunity
not just to gather further insights into potential adversary behavior, but to mean-
ingfully consider a range of interacting components in the system, including mo-
bility, and also externally, by considering potential updates to agents’ actions. This
further augments the ability to analyze attack/defense possibilities in the model.

The adversary capability model we provide is, to some extent, over defined
out of convenience. A necessary and sufficient model of attack behavior can be
built while eliding the indistinguishability assumption P, learning behavior LB and
COOP. The last two capabilities can be built from decision making D-MAT and the
M* capabilities, while the former is an assumption adopted for our research. It
is also over defined in the sense that we dealt only with integrity attacks during
our investigations and it could be argued that a smaller number of capabilities is
needed to define such attacks. However, the opportunity to open up further re-
search into the use of formal models to tackle a wider set of problems than the
security of key exchanges was a welcome one.

One weakness is that we elide from the definition the use of penetration meth-
ods. Penetration techniques are assumed and applied non-deterministically. This is
ultimately not satisfactory. Clearly, other possible models of attacker behavior still
wait to be created – including extensions of this one – which capture the complexity
jointly of penetrating and impacting on a system.

9.4.2 Applied π-calculus

The algebraic approach takes inspiration from [74], but is a natural choice, given
the arbitrary and dynamic nature of the environment we face, and the tasks we set
ourselves with regard to defining and proving security protocols and techniques.
In particular, the ability to deal with mutating processes via our syntactic and se-
mantic extensions made this choice an easy one. We don’t presume it is the only
choice and we look forward to seeing other researchers develop different options.
Candidate methods, in our opinion, include the use of Petri Nets, Bayesian prob-
ability graphs and functional causal models [99]. Our current method is limited
to considering ordering over events. We can extend the range of attack behaviors
we can model by using timing and probability characteristics associated with pro-
cesses, channels and variables.

146

9.4 DISCUSSION

The most obvious limitation to our approach is the lack of availability of a
suitable tool for model checking, automating the burden of proof. This is not to
de-value human-centric proof techniques, but process algebraic methods are, in
general, cumbersome to execute manually and prone to error. The most valuable
contributions, in general, however, stem from the ability to combine computer- and
human-based approaches together. Certain kinds of proof are likely to remain out-
side the scope of automation and there is no doubt that automated methods benefit
from the application of thought to optimize the search space In addition, since our
research interest was integrity attacks, we have not fully modeled how the loss of
confidentiality or availability can be made explicit using our techniques.

Another weakness is that the syntax and semantics require refinement. In par-
ticular, we want to be able to use silent functions such as loss or delay (or any
adversary function) over processes, channels and names while avoiding summa-
tion, as that can exclude an ever present possibility in the operation of a process or
a communication function. A limitation is also introduced by the fact that, at this
stage, we can only consider the order and not the timing of actions. In the context
of a real-time system response, this is a serious limitation.

9.4.3 Traceback Techniques

As with formal threat models, the concept of traceback techniques has a long his-
tory with the primary application being attack attribution during (distributed) de-
nial of service attacks. Our twist on the technique is not to introduce any novel
methods, but rather to apply known approaches to tracing the source of integrity
attacks in systems. Hence we open up a potentially large area of research into using
such protocols for this purpose. It equally raises the question as to whether other
areas of security – such as tracing loss of confidentiality – could also be tackled
similarly. In addition, even for our application, it could easily be argued that our
choice of using a messaging protocol introduces potential issues into performance
sensitive ICS. But there is a vast range of other techniques in the IP Traceback space
which could be considered and adapted to tracing integrity loss in distributed sys-
tems and ICS in particular. The other obvious limitation to our approach is that
we have only produced a theoretical model of its application. We have not shown
our approach working in relation to a real-world SCADA communication protocol.
There is no doubt that this, in turn, could force compromises on our methods and
lead to applying other techniques to its application. In principle, this approach is
also expandable to other forms of distributed systems where paths are well-defined
and the source and destination of messages is known.

9.4.4 Modeling Cause and Effect in Distributed Systems

The creation of the signature and axiomization of the process algebra we use in
chapter 7 is a reasonably straightforward exercise1. Again, the difference lies in the
application of the technique to modeling cause and effect, rather than the direct
interaction of processes. A communication event between ā and a could represent
a large subset of actual system events a ; a′ ; a′′ . . . transitioning multiple pro-
cesses and process subsystems. Nor is it necessary for the processes to belong to

1and often inflicted on students

147

9.4 DISCUSSION

the same subsystem – just that they are related by changes in state in a consistent
way. So, as in the examples provided in chapter 3, an alteration of the AVC cache in
SELinux can be related to changes in the access to privileged commands of a pro-
cess without either the cache or the process being linked by process interactions and
processes can be removed the the task struct list without being removed from the
process table, thus producing inconsistencies which could be potentially detectable
by our approach [93]. The approach is also applicable to network systems.

The concurrent observation mechanism which we presented as a “proof of con-
cept” puts a unique spin on the problem of defending intrusion detection systems
from attackers. In nearly every other approach, the emphasis is on obscuring and, if
possible, isolating monitoring mechanisms from attackers – for example, by virtual
machine introspection [45] or the use of co-processors [127] – with a concomitant
loss of granularity and considerable work being required to reconstruct states. In
our approach, we place the observation mechanism in plain view of the attacker
and in the heart of the system, making the re-construction of state trivial. We rely on
numerical superiority, dissimilarities in measuring techniques and self-observation
to make it difficult for an adversary to bypass the the approach. Obviously, we
could equally resort to the use of co-processors, VMI techniques or the use of off-
motherboard processing systems such as graphics and network cards to re-locate
the loci of observation or simply to augment the approach by having both intrinsic
and extrinsic observation methods working in conjunction with each other.

The limitations on our approach lie in the small number of multiprocessors on
current ICS hosts which does not allow us to take full advantage of the multiplicity
of observation threads – though this could be tackled using co-processors to sup-
plement the kernel threads. We also do not at this stage tackle the construction, dis-
tribution and protection of monitors which would collate observations and identify
rule violations in terms of expected system behavior. In fact, there is considerable
work to do in this area to create suitable algorithms to enforce the detection of out of
specification behaviors using monitors, in particular, around the dealing with miss-
ing and out of order data and the timing of events. We have really only sketched
the requirements for this.

This mechanism probably represents the most sophisticated form of observa-
tion in our research and is, appropriately, tied to the most sophisticated approach to
modeling system behavior. But there are clear limits on our ability to analyze such
behavior . Applying our techniques even to a consideration of operating systems
requires considerable and intimate knowledge of such systems to allow the ap-
propriate placement of sensors [9] as well as (see section 9.4.4) determining which
measurements to take and compare and with what frequency. The last point raises
the issue of needing to fine tune the mechanism through further experimental work
to determine optimal probabilities and timings for observations which we have not
undertaken. There may be an element of specificity over these with regards to ap-
plication or environment which could limit the application of the technique further,
at least, with regards to optimizing it.

9.4.5 Augmenting Sensor Measurements

The final technique we use is firmly founded in engineering disciplines in ICS,
again opening up research possibilities into using other techniques to model non-

148

9.4 DISCUSSION

linear systems and exploring more sophisticated models of expected behavior in
kinetic systems, such as the use of state estimation techniques [64], as well as be-
ing able to combine this knowledge with the information provided by the kind of
techniques used in chapters 6 and 7.

We readily acknowledge limitations to this approach. Limitations may be intro-
duced by physical constraints – for example, w.r.t. sensor emplacement (this is a
common issue in process control) [13] reducing confidence in results. Distinct pro-
cesses will be associated with different perturbation levels, reducing (or increasing)
confidence levels. However, in most cases, even the process models used to set up
the control systems are limited in precision and tuned based on experience rather
than physical, chemical, etc. models. We are ultimately limited, therefore, by the
precision of those models.

9.4.6 Context-based Anomaly Detection

We began our research by introducing the concept of context-based anomaly detec-
tion. The advantage of dealing with distributed systems is that multiple copies of
data or related data sets may be available, making for rich pickings to mine in terms
of uncovering anomalous behavior. However, the dependence of distributed sys-
tems on messages means that we need to note which messages have been sent and
received by both processes and take account of delays or loss in communication and
take account of these in our approach. This can create heavy computational bur-
dens. In our selected examples, we obviously seek to minimize these burdens and
place minimal reliance on requiring missing data to complete our analysis through
using probabilistic reasoning.

9.4.7 General Remarks

At such an early stage of researching anomaly detection in distributed systems us-
ing context-based models, it is, of course, difficult to draw general conclusions. But
some observations (forgive the pun!) may be made.

First, it is clear that context-based approaches in a distributed environment pro-
vide a rich seam of potential relations creating the possibility of measuring system
behavior in novel ways. Uncovering such techniques put the adversary at a disad-
vantage because it increases the difficulty of subverting a system if he must con-
sider all possible ways in which his behavior might be detectable – such as the
combination of considering kinetic and computational behavior – and all parts of
the system in which the data he manipulates could be available (widening the field
of discovery and the potential requirement for additional subversion). This latter
difficulty is expressed in very practical terms when we consider that, with the ex-
ception of our process engineering based method, we introduced large numbers
of potential additional observers into the system. Even, in the process engineering
example, there exists the potential for considering consistent control behavior on a
plant-wide basis.

The approach is data-centric, assuming a protocol perfect adversary, and this
could be considered a weakness as, in each case, the attack must already have
commenced before detection can take place. Of course, we argue that we have
no choice in this, given our assumptions. Still it could limit the applicability of

149

9.5 FUTURE WORK

the techniques to a specific subset of systems which are not immediately sensitive
to attack impacts. The timeliness of alerting (and subsequent intervention) could
also be reduced by the probabilistic nature of observation and, indeed, the result-
ing possibility of false negatives. This is countered by defense in depth, so that, in
an ICS (or other distributed system) we would argue that all techniques we have
illustrated (and others) should be used in combination. But, ultimately, we require
a means of demonstrating techniques that takes account of real-time factors.

Our work, for the moment, has concentrated on building models with some
basic “proof of concept” work. Obviously, practical considerations will need to be
taken into greater account as we move forward with developing our methods.

9.5 Future Work

We consider future work for each of the aspects of our research.

9.5.1 π-calculus

With regards to the π-calculus variants, we believe that further work is required to
tidy up the syntax and make the semantics more concrete. The scope of applica-
tion of silent functions should be clarified to show which apply at agent, process,
summation, function (including communication functions) and name level. The
current use of + or ⊕ with silent functions which characterized early papers (and
has been retained for that reason to avoid extensive re-writing of proofs) is unsat-
isfactory because such functions may only be exercised once (unless we want to
scatter them throughout our equations) until replication which may not be what
is required or intended. For example, writing a potentially subvertible process as
Pω instantly clarifies the meaning and avoids unnecessary ink. A satisfactory proof
which avoids the use of message priorities of the need for an adversary to act in-
ternally to a system could be provided by characterizing channels xδ, yδ as subject
to delay and assuming (or creating) a function which encapsulates a freshness re-
quirement that names be delayed no more than two δ’s, for example. In addition,
to fully realize the potential of our approach, we need to extend the capabilities of
our calculus to incorporate timing and probability and to create or adapt a suitable
model checking toolset. The combination of a process algebra (or calculus) with
timing and the use of process engineering techniques together is our ultimate goal,
allowing us both to model an attack and its impacts and determine whether an
intervention by an operator or system agent can prevent or reduce the impact in
real-time.

9.5.2 Adversary Capability Model

The adversary capability model is regarded as reasonably complete. However,
there are opportunities to consider other means of instantiating the model such
as the use of attack graphs or attack nets. We also note that the model was more
powerful than we required for our research. We focused primarily on integrity is-
sues. However, the model would have allowed us to explore loss of availability
and confidentiality and these remain as outstanding problems for creating detec-

150

9.5 FUTURE WORK

tion methods which, similar to our approach, enable us to trace the source of the
attack.

9.5.3 Traceback Techniques

There are several variations of the traceback techniques we used which are worth
exploring to see if they enhance our results:

Edge Observation – commonly used in IP traceback protocols, observing an edge
between two adjacent nodes may offer further search efficiencies.

Initiation on System Commencement – the node could be used in its own right
for anomaly detection by initiating on commencement of system operation, pos-
sibly operating with a lower probability p of observation to minimize complexity.
This removes reliance from other forms of anomaly detection while making discov-
ery trivial.

Deterministic Burst Mode – another option is, on an external detection event,
initiating a deterministic version of the protocol which sends (for a short period)
copies of all messages from every node in the subgraph R. Given the persistence
of message manipulation, this would lead to a more rapid revelation of subverted
nodes, but at a much higher computational cost. This may not be feasible on some
performance sensitive systems.

Bypass Mode – the protocol may also be used directly as a means to bypass an
attacker’s action on the system. In this case, the copied messages which exist before
the malicious processes in the direction of communication would be considered to
represent the true state of the system and be used instead of the original packets
to aid in the estimation of the state of the physical plant. This would again require
that the probability of observation was higher than if using the system in detection
node.

In addition, there are other traceback techniques which we should consider for
applicability to problems of this nature. Indeed, the consideration of other tech-
niques is likely to be forced on us by the limitations on performance and capacity
which exist in SCADA protocols.

One aspect we could explore is whether we may also exploit communication
between software agents as observers who collate the information to add a further
layer of validation. This would be the equivalent to the exchange of information
between observer threads at host level. For example, software agents could share
partially rather than fully overlapping paths, leading to requirements for collating
information between agents. Nor do we consider other forms of message exchange
with ICS systems such as management systems responsible for server maintenance.
Finally, we could also have multiple (possibly transitive) sources and destinations
of messages with different observer agents at each point all communicating via the
protocol – although we need a sufficiently large scale system to be able to exploit
this properly.

151

9.5 FUTURE WORK

Naturally, all results will need to be backed up by a “proof of concept” exercise
covering different kinds of SCADA protocols and purposes to show applicability.
This will include consideration of different kinetic systems to determine aspects
such as communication timing and probability values for observation.

9.5.4 Stochastic Algebra

We believe there are other applications for the stochastic algebra than the one shown
here – or for variants of this approach. In our application, we treat messages be-
tween processes as cause and effect, which is sensible – though we may abstract
from the messaging mechanism. However, we also have the option of treating
cause and effect as though it were a message between systems. For example, in the
context of a control system such as a smart grid, an increase in power generation
might be treated as a message to other parts of the grid. This mapping of process
algebraic systems to physical processes is not without precedent [6].

9.5.5 Host-based Observation Mechanism

We had the opportunity to demonstrate the host-based observation mechanism on
a system with only two processors. Ideally, we would wish to explore its use with
co-processors [127]. Another strand of research has already identified possibili-
ties for using other peripheral devices with independent processing capacity, using
cache snooping [111]. We could also use virtual machines [45] and use of reserved
memory spaces [37], extending the principle of cross-validation of observations to
create “extra-orbital” observation networks in miniature in association with each
host CPU.

9.5.6 Plant Model

We used a basic process control engineering technique to provide us with a model
of the plant. Obviously, there are other techniques available to exploit. In particu-
lar, we are interested in examining the use of non-linear state estimation techniques
such as the use of particle filters [114] which may enable us to do away with the
requirement for additional sensors and allow us to explore deviations in model
behavior purely from a consideration of state outputs from the plant. Again, as-
suming the adversary may not subvert all process control units in a plant, the ki-
netic relationships which exist and are well understood could reveal the presence
of the adversary and approximate their location in the system. We could then bring
other methods to bear, including those example in chapters 6 and 7 to locate and
eliminate adversary presence in such systems.

9.5.7 General Opportunities

Another are for research is how to make use of the conjoint operation of such tech-
niques, establishing algorithms for collating and analyzing information from dif-
ferent parts of the system, gathered by our different methods to produce a holistic
cross-sectional view of system behavior. Such a view would considerably raise the
difficulty for adversaries seeking to subvert the system since it would, in effect,

152

9.6 SUMMARY

employ a “great crowd of witnesses”2 to uncover potentially malicious behavior.
Finally, there still exists the opportunity to explore context-based anomaly detec-
tion both in these and other kinds of systems such as mobile and sensor networks.
This opens up considerable ground for future research and will provide validation
on whether the general principles we have detected hold in other kinds of systems
or there exist alternative principles or deeper themes which we can explore.

9.6 Summary

We provide an overall review of our research effort in this chapter, discuss our
achievements and describe future work. We have explored methods of uncover-
ing anomalies through concurrent observation and demonstrated that, armed with
suitable models of system behavior, we can highlight deviations in expected sys-
tems behavior, both computationally and kinetically. The techniques we developed
provide suitable monitoring mechanisms at network, host and sensor level, but we
have not demonstrated how we could join them together to form a holistic ap-
proach to detection. We also believe there is further work to be done in exploring
such techniques in other kinds of distributed or mobile systems. We believe that for
each technique we have uncovered there are further variations in its implementa-
tion and application which we have yet to consider. The most important strand of
work will be to join these techniques with a timing framework suitable for real-time
systems. In conclusion, we regard our work as a beginning rather than something
complete.

2Hebrews 12.1, Holy Bible, King James Version, 1664

153

Appendix A

Mathematical Pre-requisites

A.1 Preamble

We describe the fundamental mathematical approaches used in this thesis: state
diagrams; process algebras (also named calculi) and process control. In the main
matter of the thesis, we go on to describe variant approaches to utilizing these
techniques.

Taking these in reverse order, process control is used by Industrial Control Sys-
tems, also known as Supervisory Control and Data Acquisition (SCADA) systems
for real-time management of production values. An operator informs a controller
of a set point value (e.g., temperature) that must be used during production and the
controller uses process control which is effectively a set of differential equations
sometimes labeled the plant to determine in real-time how to alter the settings of
valves or pumps to maintain the set point. We encounter process control in chap-
ter 5 where we describe using additional observations of an industrial process to
determine if the process control model of the system is valid. We make use of MAT-
LAB and Simulink to simulate the behavior of the plant and incorporate the plant
equations into this model.

A process algebra is a model (or interpretation I) of an equational specification
〈ΣE〉which describes the behavior (observable actions) of a process. Since the pos-
sible set of observable behaviors is large, a process algebra necessarily represents
an abstract model of process behavior. Different behaviors may be observed for
distinct purposes, leading to choices over the expressiveness of an algebra. Such
choices result in different algebras, sometimes called calculi. Example choices are
selection of operators, binding conventions, constants and sets over which opera-
tors range.

State transition diagrams are a graph-theoretical approach to describing pro-
cess behavior which are closely related to the algebraic approaches outlined above.
Indeed, it may be argued that any behavior which may be expressed in a process al-
gebra could also be represented as automata in a state diagram. State diagrams are
distinguished by a starting (source) state and a set of finishing (sink) states which are
the vertices of the graph and a set of labeled transitions showing how the system
may move from one state to another (for example, by sending messages) which are
the edges of the graph. It is also possible to demonstrate the equivalence of state
diagrams. The disadvantage of state diagrams over algebraic methods expresses
itself when more complex structures (for example, involving infinite behavior or
multiple interacting processes) are required. State diagrams are not economical in
terms of expressing process complexity, whereas algebraic methods may be.

154

A.2 PROCESS CONTROL

Controller System

Disturbances

u

Measurements

r e y

−

ym

Figure A.1: Process Control Loop (Source: Tikz Examples)

A.2 Process Control

We outline what process control entails. In essence, each PCD obtains from the oper-
ator information on set points (e.g., temperature, pressure, flow rate) which should
be maintained by a physical process. These set points are translated into process in-
puts by sending signals to actuators to open or close valves, turn switches off or on,
set pump speeds and so forth. Signaling may be automatic or under operator con-
trol. These settings are calculated to produce a desired physical response, so they
are the controlled inputs to the process. Each process is also subject to disturbances
which are sometimes called “wild” signals. When outputs are measured by sensors
(and sensor readings are themselves subject to both signal noise and measurement
errors), the outputs are compared to the set points. Any significant difference be-
tween the set point and the outputs will lead to further adjustments to the input
signals to bring the process response back into line.

The desired physical response of the system is calculated based on a system
of differential equations describing how mass-energy balances change over time
in response to inputs and measured outputs [13]. In outline, controllers use vari-
ous kinds of calculation (proportional, integral or derivative), sometimes expressed
by Laplace transformations of the differential equations, either singly or in combi-
nation, to control the rate at which any corrections are applied. Various types of
control exist: open loop, closed loop, feedforward, feedback. These differences are
not particularly important for our research at this point. We show a simple example
of a controller in Figure A.1.

To simulate a controller, we make use of the MATLAB module Simulink [31].
To do this, we replicate the process followed by engineers designing the system
and reproduce the mass and energy balance equations. For example, the mass and
energy balance equation for a heat exchange is shown in equations A.1, A.2 and
A.3:

155

A.3 PROCESS ALGEBRA

To

1

Product Integrator

1

s

Gain 1

1/w*Cp

Gain

Cp

qdot

3

Ti

2

wdot

1

Student Version of MATLAB

Figure A.2: Heat Exchange Block Diagram in Simulink

q̇ = UA(Tin,s − Tout,c) (A.1)

wCp
dT

dt
= ẇCp(Tin,c − Tout,c) + q̇ (A.2)

uCp
dTs
dt

= u̇CP (Tin,s − Tout,s)− q̇ (A.3)

In equation 8.1 q̇ is the rate of heat exchange, U is the coefficient of heat ex-
change for the construction material and A is the area, Tin,s is the initial hot-side
temperature (Co), Tout,s is the final hot side temperature, Tin,c is the initial product
temperature and Tout,c is the final product temperature. Equations 8.2 and 8.3 rep-
resent the respective energy balances of the cold and hot sides where ẇ, u̇ represent
the hot-side and cold-side flow rates respectively, w, u the liquid volume (m3), and
Cp is the specific heat capacity (kJ/kg −K) of the product. The block diagram for
these equations is shown in Figure A.2.

Further details on modeling and simulating process control systems may be
found in [13].

A.3 Process Algebra

A process algebra is an algebra used to model process behavior, based on an equa-
tional specification which is a theory of process behavior. The choice in process al-
gebra is which behaviors to model as processes may exhibit a very large number
of behaviors and characteristics and it would be difficult to capture all of these in a
single theory and certainly not useful. Hence such choices lead to different algebra
(and calculi, the terms being synonymous) being used for distinct purposes.

A.3.1 Equational Specification

A process algebra is based on an equational specification over some arbitrary model.
We formally define this notion.

Definition A.1 (Equational Specification)
An equational specification (Σ, E) expresses a modelM (which can be arbitrary) where E
is a set of equations of the form t1 = t2 where t1 and t2 are terms and Σ is the signature

156

A.3 PROCESS ALGEBRA

x+ y = y + x A1
(x+ y) + z = x+ (y + z) A2
x+ x = x A3
(x+ y)z = xz + yz A4
(xy)z = x(yz) A5

Table A.1: BPA Axioms

which is the set of constant and function symbols which may appear in the specification. Σ
also gives the arity of each function symbol. Equations are often called axioms.

A.3.2 Basic Process Algebra

BPA (Basic Process Algebra) is the theory which we use as the basis for creating our
variant algebra (and, indeed, other theories). We provide the equational specifica-
tion of BPA(ΣBPA, EBPA, set out the proof technique and give a simple example
of its use.

ΣBPA has two binary operators + and · and a number of constants a, b, c, . . .
dependent on use. The set of constants is denoted A and is a parameter of the
theory.

EBPA consists of five equations given in table A.1.
The following notational conventions are used:

1. The operator · is often omitted. xy means x · y.

2. Brackets are omitted frequently and · binds more closely than +.

3. The equations in table A.1 contain universally quantified variables x, y, z, . . .

We provide an intuitive interpretation of the semantics for the specification
BPA. The constants a, b, c, . . . are atomic actions which are indivisible actions or
events in process behavior.

• the operator · represents sequential composition;x · y is a process which first
executes x then y;

• the operator + represents alternative composition; x + y is a process which
either executes x or y (but not both).

The axioms of BPA can, therefore, be explained as follows:

• A1 (the commutativity of +) says a choice between x and y is the same as
choice between y and x;

• A2 (the associativity of +) says that a choice between x and choosing be-
tween y and z is the same as a choice between z and choosing x or y; all three
alternatives are valid;

• A3 (the idempotency of + states that a choice between x and x is the same as
x;

157

A.3 PROCESS ALGEBRA

• A4 (the right distributivity of · over +) says that a choice between x and y,
followed by z, is the same as a choice between x followed by z and y followed
by z;

• A5 (the associativity of ·) should be clear.

A.3.3 Basic Terms

We define a set of terms called basic terms by induction:

1. every atomic action a is a basic term;

2. if t is a basic term, and a an atomic action, then a · t is a basic term;

3. if t, s are basic terms then t+ s is a basic term.

We consider terms that differ in the order of the summands to be identical work-
ing modulo axioms A1 and A2.

Proposition A.1 (Term Rewriting)
For every BPA term t, there is a basic term s such that BPA ` t = s.

PROOF

x+ x→ x

x(y + z)→ xz + yz

(xy)z → x(yz)

In effect, every closed term in BPA may be rewritten as a basic term. This term
rewrite system is confluent and strongly normalizing. Basic terms are, therefore,
useful in proofs since, to prove some statement valid for all closed terms, it is suf-
ficient to prove it valid for all basic terms by reducing the closed term to normal
form. This means we use structural induction as a proof technique.

A.3.4 Action Relations

Action relations provide an operational semantics for process expressions by which we
say which actions a process can perform.

Over the set of BPA terms we define binary relations a→ and unary relations
a→ √ for each a ∈ A:

• t a→ s denotes that t can execute a and turn into s;

• t a→ √ denotes that t can execute a and terminate.

Table A.2 provides an inductive definition. t a→ s if and only if it can be derived
from this table.

158

A.3 PROCESS ALGEBRA

a
a→ √

x
a→ x′ ⇒ x+ y

a→ x′ and y + a
a→ x′

x
a→ √ ⇒ x+ y

a→ √ and y + x
a→ √

x
a→ x′ ⇒ xy

a→ x′y

x
a→ √ xy

a
y

Table A.2: Action Relations for BPA

A.3.5 A Remark on Distributivity

We notice that the following axiom does not appear in BPA:

x(y + z) = xy + xz.

This axiom would give full distributivity and is rejected for BPA on the intuitive
grounds that the moment of choice is different between the two terms. In the first
term, x is chosen and then a choice is made between y and z. In the second, y or z
is chosen immediately on selecting one or other branch starting with x.

We can see the difference in branching structure from the possible action rela-
tions. In the first instance,

a(b+ c)
x→ (b+ c)

Case 1: b+ c
b→ √

Case 2: b+ c
c→ √

while, in the second,

Case 1: ab+ ac
a→ b

b√

Case 2: ab+ ac
a→ c

c√

The difference may also be seen by drawing graphs – shown in figures A.3 and
A.4:

A.3.6 An Example

We show the value of term re-writing as a proof in showing bisimilarity between
processes. Let

s = a(b+ c)d (A.4)
t = a(b+ c)(d+ d). (A.5)

We ask if s is bisimilar (i.e., an equivalent process) to t, written s↔t. By rewriting
the terms

159

A.4 PROCESS CALCULUS: THE π-CALCULUS

a(b + c) b + c

√

a b

c

√

Figure A.3: Actions Relations(1)

ab + ac b

c

√a b

a c

Figure A.4: Action Relations (2)

a(b+ c)d (A.6)
→ a(bd+ cd) (A.7)

and

a(b+ c)(d+ d) (A.8)
→ a(b+ c)d (A.9)
→ a(bd+ cd) (A.10)

which is clearly different from abd+acd (which would follow if full distributiv-
ity was allowed) and the result follows.

A.4 Process Calculus: the π-calculus

Process calculus is related to process algebra (see section A.3) with similar, though
parallel, beginnings [34]. It was designed to be used as a theory of mobile processes

160

A.4 PROCESS CALCULUS: THE π-CALCULUS

0 Null action: a process which does nothing

M A sum over capabilities

M +M ′ Alternate composition, exclusive - or

π.P A process with a single capability;
the process cannot proceed until it executes

P + P ′ An exclusive choice between P and P ′

P |P ′ P and P ′ proceed independently;
but may interact by shared names

νz P The scope of the name z is restricted to P

!P Infinite composition of P |P |P , allowing repetition

Table A.3: π-Calculus Summands and Processes

and, as such, enables us to also model distributed systems which share many of the
characteristics of mobile systems. Here we provide an outline summary of the basic
π-calculus based on [ibid.].

A.4.1 Capabilities and Processes

The prefixes which are its capabilities (for action) are:

π ::= x̄y|x(z)|τ |[x = y]π

The first capability is send a name y by a name x and the second to receive any
name by x. The third is the capability for unobservable action and the fourth is a
conditional capability exercised if x and y are the same.

The processes and summations of the π-calculus are given in table A.3:

P ::= M |(P |P ′)|νz P |!PM ::= 0|π.P |M +M ′.

The intended interpretations are:
We note that x̃ may be used to indicate an n-tuple of names x1, x2, . . . , xn. Fi-

nally, we use := as our defining operator, e.g, P := (νz̃) Q.

A.4.2 Binding

Names in the π-calculus may be free or bound. A name is bound if it occurs within
the scope of P as x(z).P or νz P . The free names of P circumscribe its capability
for action. In order for P to send x, send via x or receive via x, the name x must
occur free x ∈ fn(P) where f(n)P is the set of the free names of P . The bound oc-
currences of a name z indicate where a name received via x may be substituted for z

161

A.4 PROCESS CALCULUS: THE π-CALCULUS

(see section A.4.3). Because binding of the scope of the name prevents another pro-
cess excluded from that scope by interacting by that name, it is possible to extrude
the scope of a name by sending it to another process by a free name shared by two
processes and using substitution[ibid.]. In addition, binding has been used to rep-
resent covert, or encrypted, means of communication in variants of the π-calculus
– [2].

A.4.3 Substitution
Definition A.2 (Substitution)
A substitution σ is a function on names that is the identity except for the finite set.

If a name w does not occur in the process P then P{w/z} is the process obtained
by replacing each free occurrence of z in P by w. It is also possible to substitute for
a bound name with the same constraint. The constraint may be bypassed provided
a further suitable substitution is made for the bound names.

Processes which can be transformed into one another are called α-convertible.
Such processes are identified in the π-calculus. The mismatch prefix [x 6= y] is not
used in the π-calculus where names represent communication channels because
a substitution {y/x} would invalidate monotonicity w.r.t α-convertibility – that is
that substitution must not invalidate any process capabilities.

A.4.4 Operator Precedence

Parentheses are used to resolve ambiguity. We observe the conventions that pre-
fixing, restriction and replication bind more tightly than composition and prefixing
more tightly than sum. So π.P |Q is (π.P)|Q, νz P |Q is (νz P)|Q, !P |Q is (!P)|Q and
π.P +Q is (π.P) +Q. substitutions also bind more tightly than a process operator
so π.Pσ is interpreted π.(Pσ). Parentheses may also be inserted to aid reading, for
instance, (νx)P .

A.4.5 Examples of Binding and Substitution

Consider the process P where

P := (x(z).z̄a.0|x̄w.ȳw.0)|y(v).v(u).0.

Because the first and second components share the name x, they may inter-
act. Similarly, the second and third components contain y. But the first and third
components may not interact. The second and third components may not interact
immediately as the name y in the second component is under another capability.
The result of the interaction of the first and second components is

P ′ := (w̄a.0|ȳw.0)|y(v).y(u).0

Note the substitution w/z . This substitution would also have been valid if the
second component was defined as νw(x̄w.ȳw.0) and the scope of the process would
have been written νw P ′. Hence we see that we may extrude the scope of a name,
so that the name is shared between two processes.

The second component can now send the name w to the third component via y.

162

A.4 PROCESS CALCULUS: THE π-CALCULUS

P ′′ := (w̄a.0|0|w(u).0)

We also see that the first and third components may now further interact by w.
In contrast, let Q be a process such that

Q := νz (z̄x.0|z(s).0)|z(t).0
only has one action due to the restricted scope of the initial z which should be

distinguished from the other z which is not in the scope of the bound name with
which it shares a label.

A.4.6 Proof Techniques

While there are a number of proof techniques which may be used in relation to the
π-calculus, including structural induction (see section A.3), the basic techniques in
the calculus for demonstrating properties are reduction and the use of labeled transi-
tions which are very similar in concept and operation to operational semantics as used
in process algebra [ibid.]. Reduction describes the intra-action of processes, while
labeled transitions describe the interaction of processes with their environment.
The first approach makes use of structural congruence ≡ to alter the composition
of processes to a point where a reduction may take place using the axioms of reduc-
tion and the rules of equational reasoning . The second approach builds the proof of
process action from a set of transition rules which are applied hierarchically to any
two processes P and Q which interact with each other, first, addressing the indi-
vidual transition of each process and, subsequently, showing the joint outcome. We
outline these techniques and provide the rule sets. In practice, we regard reduction
as more useful to our purpose because we consider in our models sets of processes
which intra-act to form distributed computations whose actions undo or conserve
security properties.

A.4.7 Reduction

The reduction axioms are

(x̄y.P1 +M1)|(x(z).P2 +M2) → P1|P2{x/y} (A.11)
τ.P +M → P. (A.12)

Variant axioms which swap the order of expressions are not needed because of
the structural rule

from P1 ≡ P2 and P2 → P ′2 and P ′2 ≡ P ′1 infer P1 → P ′1 (A.13)

where ≡ is the structural congruence relation which we now define.
To define structural congruence, we define the notions of context and congru-

ence and provide the axioms of structural congruence. First, an occurrence of 0 is
degenerate if it is the left or right term in a sum M1 + M2 and non-degenerate other-
wise.

163

A.4 PROCESS CALCULUS: THE π-CALCULUS

SC-MAT [x = x]π.P ≡ π.P

SC-SUM-ASSOC M1 + (M2 +M3) ≡ (M1 +M2) +M3

SC-SUM-COMM M1 +M2 ≡M2 +M1

SC-SUM-INACT M + 0 ≡M

SC-COMP-ASSOC P1|(P2|P3) ≡ (P1|P2)|P3

SC-COMP-COMM P1|P2 ≡ P2|P1

SC-COMP-INACT P |0 ≡ P

SC-RES νz νw P ≡ νw νz P
SC-RES-INACT νz 0 ≡ 0
SC-RES-COMP νz(P1|P2) ≡ P1|νz P2, if z /∈ fn(P1)

SC-REP !P ≡ P |!P
Table A.4: The axioms of structural congruence

REFL P = P
SYMM P = Q impliesQ = P
TRANS P = Q and Q = R implies P = R
CONG P = Q implies C[P] = C[Q]

Table A.5: The rules of equational reasoning

Definition A.3 (Context)
A context differs from a process only in have a hole [·] in place of a non-degenerate occur-
rence of 0.

A context is written C[P] for the process obtained by replacing [·] in C by P .
The replacement is literal, so names free in P may be bound in C[P]. A context is
a syntactic entity which transforms processes to processes and contexts which are
α-convertible are not identified.

Definition A.4 (Congruence)
An equivalence relation S on processes is a congruence if (P,Q) ∈ S implies (C[P], C[Q]) ∈
S for every context C.

Definition A.5 (Structural Congruence)
is the smallest congruence on processes that satisfies the axioms in table A.4 and the rules
of equational reasoning A.5.

The axioms of structural congruence allow manipulation of the term structure
to enable reduction in accordance with the reduction rules shown in table A.6.

In general, we omit manipulations of the term structure which can be tedious
unless required to avoid ambiguity. For example, suppose M := x̄z.0, N := ȳw.0
and N ′ := x(v).0. Then

164

A.4 PROCESS CALCULUS: THE π-CALCULUS

R-INTER (x̄y.P1+M1)|x(z).P2+M2)→P1|P2{y/z}

R-TAU τ.P+M→P

R-PAR P1→P ′1
P1|P2→P ′1|P2

R-RES P→P ′
νz P→νz P ′

R-STRUCT P1≡P2→P ′2≡P ′1
P1→P ′1

Table A.6: The reduction rules

(N +N ′)|νz M ≡ νz((N +N ′)|M)

= νz((ȳw.0 + x(v).0)|x̄z.0)

using SC-RES-COMP; and using SC-COMP-COMM, SC-SUM-COMM and SC-
SUM-INACT, we get

νz ((N +N ′)|M) ≡ νz(M |(N +N ′))

≡ νz(M(N ′ +N))

≡ νz((M + 0)|(M ′ +N)),

where the last process is of the form of the first axiom of reduction

νz(x̄z.0 + 0)|(x(v) + 0 +N).

In this case, we would give the first term manipulation which resolves any am-
biguity with regards to the scope of z and the result of the last manipulation prior
to reduction and the interim steps are considered to be a well-normalized derivation
of the rules of structural congruence and equational reasoning. A well-normalized
derivation consists of an application of R-INTER or R-TAU and any number of
applications of R-PAR and R-RES, followed by an application of R-STRUCT and
without folding any sub-term under a term by applying SC-REP from right to left.
It can be shown 1 that there always exists a well-normalized derivation of any term.
Let P and P ∗ be terms such that P ≡ P ∗, we write P =⇒ P∗ for a well-normalized
derivation P to P∗. Hence, returning to our example, we would normally write

(N +N ′)|νz M ≡ νz((N +N ′)|M)

and

νz((N +N ′)|M) =⇒ νz((M + 0)|(M ′ +N))

.
1The proof is omitted due to length and technicality

165

A.5 STATE TRANSITION DIAGRAMS

A.4.8 Transition Relations

Transitions enable us to analyze the behavior of a system by dividing it into parts.
We find this useful in proving the interaction of components of distributed algo-
rithms in relation to their environment. We define the actions.

Definition A.6 (Actions)
The actions are given by

α ::= x̄y|xy|x̄z|τ.
We write Act for the set of actions.

The first action is ending the y by x. The second is receiving y via x. The third
is sending a fresh name by x. The last is an internal (unobserved) action.

The transition relation labeled by α will be written α→. For example, P
x̄y→ Q

expresses that P can send a name y by x and evolve to Q.

Definition A.7 (Transition Relations)
The transition relations, { α→ |α ∈ Act}, are defined by the rules in table A.7, excluding
symmetric rules such as SUM-R for SUM-L.

These rules reflect the informal account of the capabilities of the π-calculus. A
proof of the action of a process is given by considering the reduction of individual
processes and the joint outcome in accordance with the rules.

A.5 State Transition Diagrams

State Transition Diagrams(State Diagrams) are an abstract graph-theoretical rep-
resentation of the ordering of events, or states, in a process. There are various
representations. Here we use a directed graph representation.

Let α (pronounced “Act”) be a set of process actions, e.g., x := 1, if (x ==

1) then y := 2. Let
−→
G = V (

−→
E) be a state diagram. Each v ∈ V is a vertex, generally

labeled, representing one, or more, states in a process. Let each−→e ∈ −→E be a directed
edge, again normally labeled with an action a ∈ α.

We also mark one vertex as the starting state or source state, which may be
shown by an “arrow” or here by a double circle and we may mark one or more
states as accepting or sink states, in this thesis, shown by a thick circle.

Two examples of state transition diagram are provided in figures A.3 and A.4.
These examples show the close relationship between process modeling using state
diagrams and process algebras.

166

A.5 STATE TRANSITION DIAGRAMS

OUT
x̄y.P

x̄y−→P

INP
x(z).P

xy−→P{y/z}

TAU
τ.P

τ−→P ′

MAT π.P
α−→P ′

[x=x]π.P
α→P ′

SUM-L P
α−→P ′

P+Q
α−→P ′

PAR-L P
α−→P ′

P |Q α−→P ′|Q
bn(α) ∩ fn(Q) = ∅

COMM-L P
x̄y−→P ′ Q

xy−→Q
P |Q τ−→P ′|Q′

CLOSE-L P
x̄(z)−→P ′ Q

xz−→Q′

P |Q τ−→νz (P ′|Q′)
z /∈ fn(Q)

RES P
α−→P ′

ν P
α−→νz P ′

z /∈ n(α)

OPEN P
x̄z−→P ′

νz x̄zP ′ z 6= x

REP-ACT P
α−→P ′

!P
α−→P ′|!P

REP-COMM P
x̄y−→P ′ P

xy−→P ′
!P

τ−→(P ′|P ′′)|!P

REP-CLOSE P
x̄(z)−→P ′ P

xz−→P ′′
!P

xz−→(νz(P ′|P ′′))|!P
z /∈ fn(P)

Table A.7: The transition relations

167

Appendix B

Distributed Environments

B.1 Preamble

In this appendix, we discuss the distributed systems we have used as examples
during our research. We start with a generic discussion of the nature of distributed
system and some of the problems of observability and controllability. We go on to
provide two examples of environments which may be categorized as distributed
systems – first, multi-processor operating systems and, second, Process Control
Networks(PCN).

B.2 Notation

We define the notation used in this chapter, and subsequently, to describe dis-
tributed systems in Table B.1. The notation is taken from [46].

N The number of processes
P1, P2, . . . , PN Processes
G Global state
e, f, g Events
s, t, u Local states
≺im Immediately precedes
≺ Locally precedes
; Remotely precedes
→ Happened before
p→ Potential causality
‖ Concurrency
Si Sequence of states on Pi
next(e) Event immediately after e
prev(e) Event immediately before e
e.p Process on which event e occurred
s.p The process in which state s occurred
S Set of all local states
C,D Logical clocks
C The set of all logical clocks
s.c The logical clock value in state s
s.v The vector clock value in state s

Table B.1: Notation

168

B.3 MODELING DISTRIBUTED SYSTEMS

B.3 Modeling Distributed Systems

The text in this section is a summary of parts of [46], highlighting any particular
features of models of distributed systems relevant to our purpose.

B.3.1 Topology and Composition

We may model a distributed system “as a loosely coupled message-passing system
without any shared memory or a global clock”. The system may be described as a
set P of N processes, where P = |N |, where each process P1, P2, . . . , PN may send
messages along one, or more, directed channels C1, C2, . . . , CK in set of channels
C such that |C| = K ≥ N . We may represent the topology of a distributed system
D as a directed graph

−→
G = V (

−→
E), where G = D, V = P is the set of vertices

which are processes and
−→
C = E is the set of directed edges which are channels. A

bi-directional channel may be represented by two unidirectional edges.
Channels may be assumed to have infinite buffer and to be error free. No as-

sumptions are made about the ordering of messages, which may be subject to ar-
bitrary delays. The state of a channel is the sequence of messages sent along it. A
process is defined as a set of states, an initial condition and a set of events. Finite
processes may be described by state transition diagrams – see A.

In general, a distributed system D consists of a network of heavyweight pro-
cesses which send messages to each other to achieve the goals of the distributed
computation. Each process may be composed of multiple lightweight threads which
share memory and which work concurrently (taking advantage of the efficiencies
offered by parallelism in local processing). However, a distributed system can
mimic a parallel system and a parallel system may, using messaging structures
in shared memory, mimic distributed systems’ messaging architecture. One could
even argue that a parallel system is simply a special case of a distributed system
because it is a distributed system with only one channel – shared memory.

B.3.2 Basic Models

There three basic models of a distributed computation to which we refer in our
research - the interleaving model, the happened before model and the potential causality
model. All three models are useful for different purposes.

B.3.2.1 Interleaving Model

In the interleaving model, a run is a global sequence of events. All events on the run
are interleaved. A global state is a cross-product of the local states of the processes
1. The global state function nextG, e gives the next global state when the event e is
executed in global state G. The interleaving model defines a total order over the set
of events.
Definition B.1 (Interleaving Model)
A sequence of events seq = (ei : 0 ≤ i ≤ m is a computation of the system in the
interleaving model if there exists a sequence of global states (Gi : 0 ≤ i ≤ m+ 1) such that
G0 is an initial state and Gi+1 = next(Gi, ei) for 0 ≤ i ≤ m

1For convenience, we assume that processes also record the messages sent along channels and
hence hold the state of the channels as well.

169

B.3 MODELING DISTRIBUTED SYSTEMS

B.3.2.2 Happened Before Model

The interleaving model is important because all possible runs of a distributed com-
putation may be expressed as a total order (or linearization) using this model. This
leads to the interleaving assumption which effectively treats every event as instanta-
neous, but states that no two events may execute simultaneously. Given two events
e and f , either e executes first or f executes first. But, as the previous statements
imply, there may be more than one possible interleaving of events. Since, for some
process p, either e.p ≺ f.p else f.p ≺ e.p or, for any two processes, either e.p ; f.q
else f.q ; e.p or e.p‖f.q, distributed systems are more properly represented by a
partial order called the happened before relation denoted by→. This is defined as
the transitive closure of ≺im and ;.

Definition B.2 (Happened Before Relation)
The happened before relation (→) is the smallest relation that satisfies:

1. (e≺im ∨ (e; f)⇒ (e→ f), and

2. ∃g : (e→ g) ∧ (g → f)⇒ (e→ f)

Hence, a run or a computation in the happened before model is defined as a par-
tial order over the set of events E where all events in a single process are assumed
to form a total order. A happened before model may be presented as a space-time
diagram where the relation holds if there is a directed path from e to f - see Figure
B.1.

e1 e2 e3 e4 e5

f1 f2 f3 f4 f5

g1 g2 g3 g4 g5

P1

P2

P3

Figure B.1: Run in happened before Model

B.3.2.3 Potential Causality Model

While the order of events in a single process can be accurately determined, it does
not follow that they have a causal relationship. However, it may be expensive to
determine causality. Hence we can use the potential causality relation. This relation
respects the causality relation, but the converse may not hold. The happened before
model is a valid potential causality model because if e causes f then emust happen

170

B.3 MODELING DISTRIBUTED SYSTEMS

before f . But it is not true that a potential causality relation requires all events in a
single process to be ordered. The potential causality relation implies a partial order
on a single process.

Definition B.3 (Potential Causality Relation)
The potential causality relation on the event set is the smallest relation satisfying

• If an event e potentially causes another event f on the same process then e p→ f .

• If e is the send of a message and f is the corresponding receive, then e p→ f .

• If e p→ f and f p→ g then e p→ g

Events e and f are independent if ¬(e
p→ f) ∧ ¬(f

p→ e). A potential causality
diagram may be used to represent a run in a potential causality model – see figure
B.2.

e1

e2

e3

e4

e5

f1 f2 f3 f4 f5

g1

g2

g3 g4 g5

P1

P2

P3

Figure B.2: Run in a Potential Causality Model

B.3.3 Models Based on States

To this point, we have concentrated on models based on events. It is also possible
to use state-based models where – in a graph of the run – the nodes represent states
and the edges represent events. But some care is needed since not every partially
ordered set (or poset) of states represents a valid distributed computation and may
contain cycles in the induced graph – see fig B.3. To avoid having to check for these,

171

B.3 MODELING DISTRIBUTED SYSTEMS

the notion of a decomposed partially ordered set (deposet) of states is introduced.
The assumptions lying behind this model are –

• No event is assumed that no event is received before the initial state or sent
after the final state.

• Each event is either a send event, a receive event or an internal event.

• Messages may not be sent and received as a single event.

e f

g

Figure B.3: A Poset on States with No Valid Event Based Poset

Let Si be the sequence of local states in a process Pi. Let 2

S =
∐
i

Si.

The execution of the distributed computation, consisting of N concurrent pro-
cesses P1, P2, . . . , PN can subsequently be modelled as a tuple (S1, S2, . . . , SN ,;
). This tuple represents a deposet, provided we retain the assumptions outlined.
More formally, defining the initial and final states as initial(i) := min Si and
final(i) := max Si, a deposet may be defined as follows –

Definition B.4 (Deposet)
A deposet is a tuple (S1, . . . , SN ,;) such that (S,→) is an irreflexive partial order that
satisfies:

• ∀i : ¬(∃u : u; initial(i))

• ∀i : ¬(∃U : final(i) ; u)

• s ≺m t⇒ ¬(∃u : s; u) ∨ ¬(∃u : u; t)

2The notation differs from [46] at this point, but is consistent with the conventions used in other
parts of this thesis.

172

B.3 MODELING DISTRIBUTED SYSTEMS

B.3.3.1 Global Sequence of States

There are many total orders which are consistent with linearizations of a partial
order defined by a deposet (or run). A global sequence is a single linearization
which corresponds to a sequence of global states where a global state is a vector of
local states. The set of global sequences (S1, S2, . . . , SN ,;) consistent with a run r
is denoted linear(r). A global sequence g is a finite sequence of global states denoted
as g = g1 . . . gl where gk is a global state for 1 ≤ k ≤ l. So we define a global
sequence of a run as:

Definition B.5 (Sequence of Global States)
g is a global sequence of a run r (denoted by g ∈ linear(r) if and only if the following
constraints hold:

• ∀i: g is restricted to Pi = Si(or a stutter of Si, to be defined)

• ∀k:gk[i]‖gk[j] where gk[i] is the state of Pi in the global state gk

• ∀k:gk and gk+1 differ in the state of exactly 1 process

The initial constraint says that if an observer restricts his attention to a single
process Pi, then he would observer Si or a stutter of Si where a stutter of Si is
a finite sequence of repetitions of the state of Si. The second constraint requires
all states to be pairwise concurrent and the third constraint states the interleaving
assumption which is that, given two events e and f , either e occurs first or f occurs
first. This allows us to represent concurrency relatively simply.

B.3.4 Modelling Time in Distributed Systems

When the behavior of a distributed computation is viewed as a total order, the
actual order of events cannot be determined in the absence of accurately synchro-
nized physical clocks. Hence we provide mechanisms to give a set of total orders
in which events could have happened. The purpose of the clock is to provide an or-
der not to indicate duration. We define two such mechanisms: a logical clock and a
vector clock and we provide respective implementations, but omit proofs, for which
we refer the reader to [46].

B.3.4.1 Logical Clocks

We begin by defining a logical clock:

Definition B.6 (Logical Clock)
A logical clock C is a map from S (the set of all local states) to N (the set of natural
numbers) with the following constraint:

∀s, t ∈ S : s ≺im t ∨ s; t⇒ C(s) < C(t)

C is the used to denote the set of all logical clocks which satisfy the above con-
straint. This constraint models the sequential nature of execution for each process
and the physical requirement that any message take a non-zero amount of time to
transmit. This constraint may be satisfied by assigning clock values so that if two

173

B.3 MODELING DISTRIBUTED SYSTEMS

1 7 9 12 19

2 5 10 13 15

1 7 10 13 19

2 5 10 13 16

Figure B.4: An illustration of a clock assignment

local states are concurrent, then we may construct a logical clock such that both
states are assigned the same time stamp.

∀u, v ∈ S : u||v ⇒ ∃C ∈ C : (C(u) = C(v).

An example of such an assignment is provided in figure B.4 and we also give a
sample implementation.

Algorithm B.1: Logical Clock

1

Pi ::

var

c : integer initially 0;

send event (s, send, t);

//s.c is sent as part of the message
t.c := s.c+ 1;

receive event (s, receive(u), t);

t.c := max(s.c, u.c) + 1;

internal event (s, internal, t);

t.c = s.c+ 1;

174

B.3 MODELING DISTRIBUTED SYSTEMS

B.3.4.2 Vector Clocks

Logical clocks satisfy the following property:

s→ t⇒ s.c < t.c

But the converse is not true; s.c < t.c does not imply that s → t. Logical clocks
therefore do not provide complete information about the happened before relation. A
vector clock may be used to overcome this lacuna.

Definition B.7 (Vector Clock)
A vector clock is a map from S to N k(vectors of natural numbers) with the following
constraint:

∀s, t : s→ t⇔ s.v. < t.v.

where s.v is the vector assigned to the state s.

A vector clock allows the partial order of the happened before relation → to be
captured. Vectors of natural numbers are used to time stamp processes. Given two
vectors x and y of dimension N we compare them as follows:

x < y = (∀k : 1 ≤ k ≤ N : x[k] ≤ y[k]) ∧
(∃j : 1 ≤ jleqN : x[j] < x[j])

x ≤ y = (x < y) ∨ (x = y)

This order is partial for N ≥ 2.
Again, we provide a sample implementation in Figure 8:

B.3.5 Determining State in Distributed Systems

One of the difficult features of distributed systems is that no process has access to
the global state of the system. Although, for many applications, it is sufficient to
capture a past state, from which, for example, the computation could re-start after
failure, or else a stable property – such as the loss of a token. An algorithm which
captures a global state is a called a global snapshot algorithm. A consistent global
state is not simply a product of local states, but a consistent cut of such states.

Definition B.8 (Consistent Cut)
Let S be a deposet. Let G be a cut. A subset G ⊂ S is a consistent cut (or a consistent
global state) if and only if ∀s, t ∈ G : s‖t and |G| = N .

A global snapshot algorithm is an algorithm which computes a consistent cut
(or subcut) of a system. The algorithm assumes all channels are uni-directional
and satisfy the FIFO property with regard to messaging. An example algorithm,
shown in Figure B.3, shows how a special message called a marker is sent along all
channels. All processes are white before they receive the marker. Every process
which is white which receives the marker changes its color from white to red and
forwards the marker to other processes before sending any further messages. This
rule, along with the FIFO condition, guarantees that no white process ever receives

175

B.3 MODELING DISTRIBUTED SYSTEMS

Algorithm B.2: Vector Clock Algorithm

1

Pj ::

var

v : array[1 . . . N] of integer
initially(∀i : i 6= j : v[i] = 0) ∧ (v[j] = 1)

send event(s, send, t) :

t.v := s.v;

t.v[j] := t.v[j] + 1;

receive event(s, receive(u), t) :

for I := 1 to N do

t.v[i] := max(s.v[i], u.v[i]);

t.v[j] := t.v[j] + 1;

internal event(s, internal, t) :

t.v := s.v;

t.v[j] := t.v[j] + 1;

a message sent by a red process. This in turn guarantees that local states are mutu-
ally concurrent at the point of color change. Each process also captures the state of
messages in channels by recording any further messages from channels until they
have also turned red.

It should be noted that while global snapshot algorithms are useful for captur-
ing stable predicates, they are not useful for capturing unstable properties where
the state of the property may alter and the changes be reversed between two snap-
shots. It may also have the disadvantage of creating overheads if snapshots are
taken over-frequently.

B.3.6 Examples of Distributed Systems

In sections B.4 and B.5, we provide two concrete examples of distributed systems
which are commonly used today. First, a multi-processor operating system which
exists today on every computing device which can run software applications from
mobile phones to supercomputers. Second, process control networks which are
used throughout the modern world to control the supply of energy, manufacturing,
transport, communications and so forth.

Both of these systems are, to different extents, subject to the same non-linear
ordering of events and the potential for processing failure as we have described in
our abstract model of distributed systems and, hence, subject to similar difficulties
in determining global state. Multi-processor systems are not subject to the same

176

B.4 MULTI-PROCESSOR OPERATING SYSTEMS

Algorithm B.3: Global Snapshot Algorithm

1

Pi ::

var

color : {white, red} initially white;
// assume k incoming channels
chan : array [1 . . . k] of queues of messages initially null;
closed : array [1 . . . k] of boolean initially false;

turn red() enabled if (color = white) :

save local state;

color := red;

send (marker) to all neighbors;

Upon receive(marker) on incoming channel j;
if (color = white) then

turn red();

closed[j] := true;

Upon receive(program message) on incoming channel j:
if (color = red) ∧ ¬closed[j]then//append the message

chan[j] := append(chan[j], program message);

communication losses or delays which are found in process control networks.

B.4 Multi-Processor Operating Systems

In this section, we describe the principles on which multi-processor operating sys-
tems, to be specific, kernel programs are designed. We emphasize the features most
relevant to our research in our discussion. The operating system used in the re-
search was Linux, one of the Unix family, and kernel version 2.63 and this influences
our description. But the same principles can be found in the majority of commonly
available operating systems used today. This description is based on [16].

B.4.1 Basic Operating System Concepts

Every computer system includes a set of programs called the operating system.
The key program in this set is the kernel. The kernel is the first program loaded
into RAM on boot up and contains the critical processes required for the system

3Linux operating systems from 2.6.xx have used a number convention where if xx is even then
the operating is a beta build and if it is odd, it is an official release.

177

B.4 MULTI-PROCESSOR OPERATING SYSTEMS

to operate. Hence, the terms kernel and operating system are frequently used as
synonyms – as in this study.

The operating system must fulfill two goals:

• Interact with hardware components, services all low-level programmable el-
ements;

• Provide an execution context for the applications run on the system (the user
programs).

Some (early) operating systems allowed all user programs to interface directly
with hardware programs. Linux (and the majority of modern operating systems)
abstract away from the operation of low-level components and hardware interac-
tions. Hence to use an operating resource, user programs must make a request to
the kernel which evaluates the request and, if it chooses to grant it, interacts with
hardware components on behalf of the system. This mechanism is enforced by spe-
cialist hardware features which enforce, at least two, different execution modes in
the CPU – in Unix systems, these are called user mode and kernel mode.

B.4.2 Multiuser Systems

A multiuser system is a computer that can independently and concurrently execute
several applications belonging to one or more users. Concurrently means the ap-
plications can be active at the same time and contend for resources. Independently
means the application can perform its task without regard for the other applications
running on the system.

Multiuser systems must include several features:

• An authentication mechanism for verifying the user’s identity;

• A protection mechanism to prevent buggy programs blocking other applica-
tions;

• A protection mechanism against software which could spy on or interfere in
other user’s activities;

• An accounting mechanism which limits the resources assigned to each user.

Ensuring these mechanisms requires relying on the hardware protection in the
CPU to prevents user’s from imposing directly on the system’s circuitry and by-
passing these protections.

B.4.3 Users and Groups

In a multiuser system, each user has a private space on the machine. The operating
system must ensure that the private portion of a user space is visible only to its
owner. In particular, the operating system must ensure that no user can exploit a
system application for the purpose of violating the private space of another user.

Users can set access permissions on files in their private space which either
reserve files for their own use, allow them to be shared with a group or allow them

178

B.4 MULTI-PROCESSOR OPERATING SYSTEMS

to be shared universally. Files can have read, write or execute permissions set on
them for user, group or world permissions.

Operating systems also have a superuser or root account which is used by sys-
tem administrators to manage user accounts and perform maintenance tasks. The
root user can do almost everything, because the operating system does not apply
the usual protections, including accessing any file and manipulating any running
process.

B.4.4 Processes

All operating systems use the process as a fundamental abstraction. Multiuser sys-
tem must enforce an execution environment in which several processes may be
active concurrently and contend for shared system resources. Such systems are
called multiprocessing systems and must have a scheduler program which enforces
preemption (i.e. it forces processors to relinquish the CPU and ensures fairness in
access to processing resources). The model of processing on such operating sys-
tems is a kernel/process model where each process operates (in User mode) with
the illusion that it is the only processor on the system while the kernel manages
resources amongst processors as the system operates in Kernel mode. Whenever
a process makes a system call or invokes a hardware facility, the kernel activates
to service this request. At the same time, it can also force the process to relinquish
the CPU while the request is being serviced, allowing other processes to advance.
Modern operating system kernels are re-entrant – that is several programs may be
running in Kernel mode at the same time.

B.4.5 Kernel Architecture

Most modern operating systems in commercial use are monolithic. Each kernel
layer – and each kernel consists of multiple layers of process abstraction – runs as
part of a whole kernel program in Kernel mode. Micro-kernel systems, by contrast,
have a small set of functions, synchronization primitives and an interprocess com-
munication mechanism. Operating system functions are built and run in separate
layers based on this core. Such systems are very flexible and have increased secu-
rity, but the performance penalties are high. To get around this, modern kernels
allow modules to be linked to (and unlinked from) the kernel. Such modules can
be used to create a device driver or a file system. Modules are executed in Kernel
mode and, as for the kernel process (and root user), have wide spanning access to
the files and resources on the system.

B.4.6 Uniprocessor and Multiprocessor Systems

Multiprocessing can occur on both uniprocessor systems and multiprocessor sys-
tems. The advantage of the latter is clearly that more than one process can run
concurrently on the system, increasing performance while minimizing power re-
quirements. The cost of this advance is that operating systems must negotiate
resource allocation requests not only between processes, but also between CPUs.
In particular, memory resources may be shared or private, depending in part on
both software and hardware constraints. Access to memory may also be uniform

179

B.5 PROCESS CONTROL NETWORKS

(as on symmetric multiprocessing systems) or non-uniform (NUMA architectures).
Symmetric processing systems have homogeneous chip architecture. But it is also
possible for multiprocessor systems to have heterogeneous chip architecture. Fi-
nally, chip utilization can vary even during run time, depending on processing and
power saving requirements. [needs citation]

B.4.7 Multiprocessor Systems as Distributed Systems

We argue that multiprocessor systems may be considered to be a special case of a
distributed system. Or, at least, that it is possible on a multiprocessor system to
simulate the behavior of distributed systems by having multiple concurrent pro-
cesses – known in Linux as light weight threads – which use shared memory as a
communication channel. It is also possible for processes which do not share mem-
ory to communicate using files known as pipes. The difference between this model
and the model for a uniprocessor system which may also communicate by the same
means is that it is possible for communication to be concurrent, rather than wholly
asynchronous.

B.5 Process Control Networks

Process Control Networks (PCN), more normally call industrial control systems
(ICS), but here using this term to emphasis their commonalities, are divided into
two types: First, distributed control systems (DCS) and, second, supervisory con-
trol and data acquisition systems (SCADA). The distinction between the two is
sometimes blurred, depending on the application – and frequently a further term
ICS (Industrial Control Systems) is preferred instead [67]. But we use the term
PCN because our focus is on the control – to be specific, who is in control – of such
systems.

Essentially, distributed control systems are largely used in factories to provide
local, frequently granular, process control over local area networks (LAN) while
SCADA systems are used to provide remote supervisory process control over a va-
riety of long distance communication media such as Internet, WAN (wide area net-
works), telephony (including cellular and analogous systems) and radio. Having
said this, a large scale factory may benefit from SCADA control. PCNs are used in
all aspects of production, disposal, communications, power generation and trans-
port making them ubiquitous in modern life.

From our point of view, we treat the networks as analogous in function (they
both gather information about and issue instructions to control physical processes
over communication networks and both are supervised in real time by human op-
erators). Working at this level of abstraction, the techniques which we have uncov-
ered in our research may be applicable to each kind of system.

We use the rest of this section to describe the salient features of PCN, their de-
velopment over time. We distinguish the functions, operation, or construction of
SCADA and DCS, where necessary, and discuss the security issues which affect
them. The information in this section is primarily drawn from [17] and [65] with

180

B.5 PROCESS CONTROL NETWORKS

reference to SCADA and DCS. Where additional sources are used, they are cited
individually4.

B.5.1 Supervisory Control and Data Acquisition Systems(SCADA) - A
Description

SCADA refers to collecting data from one or more distant facilities and the abil-
ity to send limited control instructions to those facilities. SCADA is not normally
used to run factories, but some factories may be large enough to benefit from using
SCADA. SCADA systems tend to be large facilities such as a group of oil and gas
wells, an electric power transmission grid, or an irrigation system.

SCADA systems allow a human operator to make changes to distant controllers
in a large, geographically dispersed facility. This can include making set point
changes, opening and closing valves and gathering measurement information. The
economic benefits of such control are considerable as plants grow in scale and par-
ticularly where a component under control is not only at a distance, but physically
hard to reach.

Such technology is best applied to control processes which are geographically
dispersed and are relatively simple to monitor and control, but need frequent in-
tervention. Example uses are[17] –

• Groups of hydroelectric stations

• Oil or gas production facilities

• Oil or gas pipelines

• Electric transmission systems

• Irrigation systems

• A heavy oil upgrader 5

This does not mean that SCADA systems cannot apply more complex forms of
control (e.g., remote control or automated responses).

Typical signals gathered from remote locations include various kinds of alarms,
analog and digital values relating to valves and switches and totalized measure-
ments. Signals to SCADA systems are limited to bit and analog values addressed
to a particular device at the process. A digital signal sets one of two states (e.g., a
signal setting a switch from OFF to ON). An analog value might set the % aperture
of a valve. It should be noted that SCADA systems are not just telemetry systems
gathering data in the field, communication is always two-way with central systems
interrogating perimeter devices to receive updates on the system’s response and
being used by operators to send instructions.

The elements of a modern SCADA system are [17] –

• Human operator

• I/O device
4Some of the information is drawn from the author’s own experience in carrying out security

assessments on SCADA systems.
5Controlled by DCS, but far enough away from the control room that it would be expensive to

install dedicated data cables, leading to the use of SCADA communications.

181

B.5 PROCESS CONTROL NETWORKS

• Master Terminal Unit(MTU)

• Historian

• Other computer hosts and network devices

• Communication media and devices (e.g., modem or radio)

• Process control devices (RTU)

• Field devices (sensors or actuators)

We describe each of these elements in turn.

Operator The operator is an individual trained to control the system by consid-
ering data presented to him (or her) by the I/O device from the MTU and issuing
instructions to deal with any process control issues which arise.

I/O Device The I/O device is generally a computer workstation which presents
data to the operator from the MTU and issues instructions from the operator to the
MTU to be passed to the RTU and field devices. There may also be workstations,
accessed by the operators or other IT support staff, used to monitor telecommunica-
tion, network and host devices on the local, or wide area network, but technically
these are not part of the SCADA system as they are not involved in supervisory
control and data acquisition. Variants on I/O devices include large scale graphic
displays of the system state on control room walls and the use of lights and/or
audible alarms to ensure that certain messages from the system are not ignored by
operators. Terminal screen interfaces may hold text and graphics and input can be
supplied by keyboard or pointing device.

Master Terminal Unit (MTU) The MTU is a computer which can monitor and
control the process, using a scheduler to repeat instructions, even when the op-
erator is not present. For example, regularly requesting an update from an RTU.
Large-scale, complex SCADA systems may have more than one MTU, each one
controlling a different segment of the whole process.

Historian The historian is a database server which records the data acquired from
the SCADA system, for example, for trends analysis and other more complex sta-
tistical operations. It may be associated with other computer hosts which can apply
such analyses and present management information (i.e., a reporting and presen-
tation infrastructure layer) back to corporate networks associated with the SCADA
system.

Computer Hosts and Network Devices Modern SCADA systems do not exist in
isolation. They are generally linked to a corporate network and, as already stated,
may contain an analysis, reporting and presentation layer in addition to a supervi-
sory control layer. Other kinds of devices include not only network devices (such as
routers and switches) found on any local area network, but also protocol translators
which translate IP protocols into serial protocols and vice versa for communication

182

B.5 PROCESS CONTROL NETWORKS

with field equipment (including process control devices). There may also be secu-
rity appliances such as firewalls, IDS (intrusion detection systems)and AAA (Ac-
cess, Authentication, Accounting) servers. Such systems may be linked by WAN
to failover sites located at alternative operation centers which are used for disaster
recovery or business contingency purposes in the event of a large-scale destructive
security incident at the primary operations center (such as a fire). Finally, remote
access to the system may be supported where operators utilize a VPN to access
workstation functionality. RAS technology as well a terminal services and/or vir-
tual systems may support this access.

Communication Devices Example communication devices include LAN and WAN
routers and switches, radio and dial-up modems, satellite links, GPRS, cellular net-
works, telephony and Internet VPN. Communication is two-way and is normally
implemented using a master-slave protocol where the MTU initiates the communi-
cation and the RTU responds. Communication is scheduled to allow the MTU to
gather information from RTUs in a timely fashion. Hence, to use an analogy, MTUs
“sweep” PCDs like a radar to update their information on the state of the plant.
It should be noted, however, that this master-slave communication is starting to be
replaced by peer-to-peer techniques as PCDs become more powerful computation-
ally. In a peer-to-peer system, PCDs initiate communication and provide updates
using exception report (i.e., they report significant changes).

Process Control Devices SCADA use Remote Terminal Units (RTU) for control
(which may be PLCs) and which refer to as PCD. It should be noted that PCD
previously consisted of dedicated microprocessing units and these are replaced in
modern systems with programmable computers which operate a variety of propri-
etary and open source operating systems in support of their application logic. PCD
scan processes under control in real time, making continual adjustments to plant
settings to maintain values and set points determined by the operator.

Field Devices PCD are connected to sensors which gather data about the plant
under control. Sensors may be electronic, or use a combination of mechanical (e.g.,
hydraulic or pneumatic) and electronic components. In general, they send a vary-
ing current to the PCD inputs which is translated into analog or digital signals.
PCD also connect to actuators which are electro-mechanical devices which act on
the plant, e.g., altering the setting on a valve or changing a switch from ON to OFF.
Actuators may consist of solenoids or again translate varying electrical signals to
pneumatic or hydraulic forces. Both sensors and actuators may use electronics and
modern trends are seeing the replacement of customized microprocessors with pro-
grammable chips.

B.5.2 Distributed Control Systems

DCS contain the following elements in common with SCADA systems –

• Human operator

• I/O device

183

B.5 PROCESS CONTROL NETWORKS

• Master Terminal Unit(MTU)

• Historian

• Other computer hosts and network devices

• Process control devices (RTU)

• Sensors or actuators

The primary difference (these days) is that DCS, in general, act locally rather
than remotely and can, therefore, exercise control at a more granular level (if re-
quired) using closed loop control because they are not limited in the same way
by the difficulties of communication over long distances, whereas SCADA exercise
supervisory control in general using open loop control techniques.

B.5.3 Historical Development

SCADA technology emerged from discoveries in telemetry through the develop-
ment of digital communication and radio technology leading ultimately to a de-
pendence on sophisticated computing and modern telecommunications technol-
ogy [17]. Initially, electronic control systems and control devices were confined to
a single local and the systems were not connected to external networks. Early sys-
tems would consist of a single minicomputer or PLC which interfaced with local
controllers (normally custom-built microprocessors), sensors and actuators, i.e., a
distributed control system architecture (DCS). Companies and vendors developed
various communication protocols, generally proprietary, to operate these systems.
As computer technology developed, business managers pushed to be supplied
with real-time information about remote operations and the attractions of remote
data acquisitions for organizations with geographically dispersed operations are
obvious, leading to the development of SCADA [65].

The evolution of SCADA and DCS, normally called industrial control systems
(ICS), has continued in the modern era as microprocessors have gradually been
replaced by RTUs and PLCs which are essentially microcomputers with proprietary
or open-source operating systems, running open communication protocols, or, at
least, adapted versions of such protocols. For example, Modbus, a serial protocol,
is being replaced by Modbus TCP/IP. At the same time, two other changes are
happening. Organizational management continues to drive for information in real-
time which can be incorporated into corporate decision-making. Hence PCN are
being increasingly linked to corporate networks as well as using the Internet as
an additional communication medium. In addition, the labor economy is changing
leading to increasing use of contractors and a reduction in reliance on full-time staff
[14].

B.5.4 ICS as Distributed Environments

Clearly, ICS fall into the category of distributed systems. Processing is carried out
at various nodes and the results communicated with other processes to achieve the
goal of the system. Distributed processing on ICS may be subject to failure and

184

B.5 PROCESS CONTROL NETWORKS

communications may be subject to both loss and delay leading to the non-linear
ordering of messages and process actions.

It should be noted, however, that the potential impact of these effects is damp-
ened by the design and operation of such systems. MTUs carry out scheduled
sweeps of RTUs to gather stored information about system state (i.e., the state of
the plant under control) at various points and this data collection is timed to pro-
vide meaningful information about changes in state. Loss of communication will
lead to repeated attempts to garner the information (in faster time) and delays are
generally compensated for by seeking or using fresh information. MTU applica-
tions are in general designed to cope with missing, or even delayed, data, using
estimation techniques to compensate. The systems themselves are subject to active
intervention in real time by systems administrators to compensate for equipment,
operating system, communications and applications failures. In short, such sys-
tems have been designed to be quasi-deterministic (rather than non-deterministic)
in their operation [65].

185

Nomenclature

α, β, . . .′ In π-calculus, silent functions.

(S;≤) or (S,;). In distributed systems, order relations.

+ In π-calculus, contingent choice.

2A Power set of A

::= In π-calculus, process definition operator.

x̄〈. . .〉c In π-calculus, send a name by channel x.

ẍ Second order differential product.

ẋ First order differential product.

A A set whose elements are sets

⊕ In π-calculus, the exclusive sum.

� In distributed systems, the relationship “precedes”.

→ In π-calculus, the “reduction” operator, used in proofs.

⊃ In π-calculus, the function output operator.

A Set

ab In algebra, the product a.b. In process algebra, a sequence of states.

ei In distributed systems, an individual event belonging to a process Pi

P,Q,R, . . . Processes

Si, si In distributed systems, set of states and an individual state belonging to
process Pi

U, T,R, . . . In engineering formulas, variable names.

x(ldots)c In π-calculus, receive a name by x.

x(s).y(z) In process calculus, a sequence of events are separated by the period op-
erator.

x, y, z, . . . Variable names

186

B.5 PROCESS CONTROL NETWORKS

Actuators Parts of control units which act on kinetic elements such as switches or
values in a plant.

CCS Calculus of Communicating Systems, a process algebra created by Robert
Milner [88].

CI Critical Infrastructure - refers to systems which provide vital services to en-
able human survivability.

COTS “commercial-off-the-shelf” refering to software applications or systems which
can be bought ready made rather than developed bespoke.

DCS Distributed control system, consisting of local control units and actuators.

Deposet De-composed partially order set.

field system Another name for a distributed control system.

ICS Industrial Control Systems

IP Traceback A technique using message routing information to trace message ori-
gins.

OOB Out of band, referring to communication channels not used by normal net-
work traffic and assumed secure.

PCD Process Control Devices - a categorical reference to multiple types of control
devices.

Plant A process under control or a set of differential equations representing a pro-
cess under control.

Plants Kinetic processes in ICS, controlled by computing systems.

PLC Process logical controller, a computational device used for process control.

Poset Partially ordered set. A set with a relation (P ;≤) defined over its elements.

Process Control Network A way of referring to SCADA and DCS systems jointly.

RTU Remote Terminal Unit, a computational device used for process control.

SCADA Supervisory control and data acquisition, a system which uses telemetry
and command signals to control kinetic processes.

VMM Virtual Machine Manager

187

Index

δ-congruence, 27, 29, 144
π-calculus, 3, 5, 6, 26, 30, 65, 144
“alien state”, 103
“pigeonhole principle”, 103

access, 46
additional sensors, 137
adversary capabilities, 143
adversary capability model, 5
agent, 31
agent domain, 32
agent subdomains, 32
agents, 31, 74
anomaly detection, 94
applied π-calculus, 39
attack agents, 83
attack equivalence, 60
attack loci, 27
attack strategies, 136
attack surface, 37
automata, 93

binding, 101

capabilities, 26, 39
capability, 50
capacity, 25
card collector’s problem, 69
causality, 95
CCS, 93, 98
characteristic vectors, 121
characteristics, 39
closed network, 36
co-operating agents, 49
co-operative attack, 83
co-ordinated attack, 51
coldside, 131
combinatorial barrier, 108
communication, 46

communication delays, 54
compartmented heat exchanger, 124,

127
complexity, 25
concurrent observation, 144
concurrent observation mechanism, 104
concurrent observations, 109
concurrent observers, 105, 107
conditional dependency, 96, 102
conjoint weak causality, 102
context, 144
context-based anomaly detection, 3
contraflow arrangement, 124
contraflow heat exchange, 128
control unit, 63, 65, 66
controllability, 74, 122
countermeasures, 54
covert communication, 48
CPU, 105
critical infrastructures, 1, 143
cross-sectional view, 110

deception techniques, 144
decision making, 49
defensive interventions, 54, 61
deposet, 94, 96
detection probabilities, 107
differential equations, 123
distributed computation, 93, 94
distributed foe, 144
distributed systems, 5, 93
disturbances, 125, 128, 136
DKOM, 145
Dolev-Yao, 26, 33, 35, 38, 143
dominant node, 136

encryption, 29
energy production, 123
ensemble, 108

188

INDEX

equational specification, 99
exit temperatures, 132
expected behavior, 93, 122, 123, 145
expected behavior graph, 95, 96, 102
expected behavior model, 107, 142
extrusion of scope, 48

flash pasteurizer, 123
flow rate, 123, 131
flow rates, 137
formal adversary capability model, 5,

143
formal threat model, 2
formless mappings, 103
functional causal model, 135

global sequence, 98
global state, 54
global time, 54
glycol, 124
goal actions, 43
goal domain, 32
goal transform calculus, 39, 43, 106
goals, 30, 75

health and safety, 123
heat exchange, 124, 132
heat exchange calculation, 128
heat exchange mechanism, 137
heat exchange profiles, 137
heat exchanges, 123
hot side setpoint, 123
hotside, 128

ICS, 2, 38, 51, 63
image finiteness, 58
impact analysis, 54, 144
impact sinks, 55
inconsistent linearization, 103
inconsistent linearizations, 103
indistinguishability, 49
indistinguishability assumption, 65
industrial control systems, 1
initial beer temperature, 131
integrity, 26
IP Traceback, 63, 64, 69, 144

kegging, 123
key generation, 70

key value release, 70
kinetic information, 145
kinetic interactions, 122

large scale multiprocessing systems, 107
launch agents, 83
learning behavior, 49
linearization, 97, 103
linearizations, 98
Linux Kernel Module, 4
linux kernel module, 110
loadable kernel module, 109
logical clock, 66, 67

malicious agency model, 30, 31
malicious agents, 25, 26, 52
malicious behavior, 99
malicious messages, 32
malicious process, 37
malicious process capabilities, 33
malicious process model, 30
malicious software, 5, 93, 94, 143
man-in-the-middle, 50, 63
MATLAB, 127
message delay, 47
message drop, 47
message injection, 48
message manipulation, 48
message priority, 41
message replay, 47
message routing, 42
metamorphism, 24
model checking, 60
monitors, 103, 121
multi-threaded, 28
multiplicity, 108
multiprocessing systems, 105
multiprocessor, 6, 38
multiprocessor host, 5, 144
multiprocessor operating systems, 93
multiprocessor system, 104
mutating environment, 144

names, 39
network communication, 63
network hosts, 93
network node, 64
network nodes, 64

189

INDEX

network topology, 68
non-linear relationship, 124
numeral advantage, 29

observability, 74, 122
observation, 5, 6
observation mechanism, 108, 110
observation probabilities, 107
observation round, 144
observer agent, 87
observer ensemble, 108
observer ensembles, 110
observer mechanism, 106
observer processes, 106
observers, 104, 105, 108, 109, 144
omega finiteness, 58
operator, 63, 66
operator capabilities, 38

packaging, 123
packets, 66, 68
pasteurization, 123
pasteurization process, 124
pasteurization rate, 123
pasteurization units, 124, 132
performance, 25, 120
permutating vector clock, 102
plant, 123
polymorphism, 24
process algebra, 6
process control, 4–6
process diagrams, 98
process failures, 54
processes, 30, 40
processors, 108
protocol, 71
protocol complexity, 70
protocol errors, 24, 49
protocols, 62
pseudo-rootkits, 110

reachability, 54
real-time, 1
recruit, 31
refrigerant, 124
resilience, 25, 108
run, 94

SCADA system, 44

search space, 57
security characteristics, 55
security protocols, 26
self observation, 109
self observe, 108, 110
sensor measurements, 122
sensors, 29
set of malicious processes, 31
signal manipulations, 123
silent actions, 40
silent functions, 40, 54
Simulink, 125, 127, 145
sink, 55
sink function, 55, 57
source, 55
source function, 55, 57
space requirement, 74
spawning processes, 47
state determination, 87
state diagram, 95
stealth techniques, 2
steam, 124
storage requirements, 74
strong causal dependency, 96
strong causality, 101
subversion, 29, 37, 46, 143
subversive behavior, 103, 104
subvert, 31
subverted processes, 65
summations, 40
supplementary sensors, 136
synchronization primitives, 105
system call table, 110

tank level, 131
term rewriting system, 101
threat model, 30, 35, 64, 143
threshold function, 103
trace, 94
trace semantics, 101
traceback, 28, 62
traceback protocol, 74
transform, 53

vaccines, 123
variform mapping, 103
virtual file system, 110
VMM, 21

190

INDEX

weak causal dependency, 96, 97
weak causality, 101

191

Bibliography

[1] AARAJ, N., RAGHUNATHAN, A., AND JHA, N. K. Dynamic Binary
Instrumentation-Based Framework for Malware Defense. In Proceedings of
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA 2008)
(Heidelberg, Germany, July 2008), D. Zamboni, Ed., vol. 5137 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 64–87. 17

[2] ABADI, M., AND GORDON, A. D. A calculus for cryptographic protocols:
The spi calculus. Inf. Comput. 148, 1 (1999), 1–70. 162

[3] AL-DUWAIRI, B., AND GOVINDARASU, M. Novel Hybrid Schemes Employ-
ing Packet Marking and Logging for IP Traceback. IEEE Transactions on Par-
allel and Distributed Systems 17, 5 (May 2006), 403 – 418. 19

[4] ASANOVIC, K., BODIK, R., CATANZARO, B. C., GEBIS, J. J., HUS-
BANDS, P., KEUTZER, K., PATTERSON, D. A., PLISHKER, W. L., SHALF,
J., WILLIAMS, S. W., AND YELICK, K. A. The landscape of parallel com-
puting research: A view from berkeley. Tech. Rep. UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, Dec 2006. Avail-
able from: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html. 105

[5] BAETEN, J., BASTEN, T., AND RENIERS, A. Process Algebra: Equational
Theories of Communicating Processes. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 2009. Available from: http:
//books.google.co.uk/books?id=P7MdQAAACAAJ. 8, 12

[6] BAETEN, J., VAN BEEK, D., CUIJPERS, P., RENIERS, M., ROODA, J., SCHIF-
FELERS, R., AND THEUNISSEN, R. Model-based engineering of embed-
ded systems using the hybrid process algebra chi. Electronic Notes in The-
oretical Computer Science 209, 0 (2008), 21 – 53. ¡ce:title¿Proceedings of
the {LIX} Colloquium on Emerging Trends in Concurrency Theory (LIX
2006)¡/ce:title¿. Available from: http://www.sciencedirect.com/
science/article/pii/S1571066108002181. 152

[7] BAETEN, J. C. M. A brief history of process algebra. Theor. Comput. Sci. 335,
2-3 (May 2005), 131–146. Available from: http://dx.doi.org/10.1016/
j.tcs.2004.07.036. 3, 11

[8] BALIGA, A., GANAPATHY, V., AND IFTODE, L. Detecting kernel-level rootk-
its using data structure invariants. IEEE Trans. Dependable Secur. Comput. 8,

192

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://books.google.co.uk/books?id=P7MdQAAACAAJ
http://books.google.co.uk/books?id=P7MdQAAACAAJ
http://www.sciencedirect.com/science/article/pii/S1571066108002181
http://www.sciencedirect.com/science/article/pii/S1571066108002181
http://dx.doi.org/10.1016/j.tcs.2004.07.036
http://dx.doi.org/10.1016/j.tcs.2004.07.036

BIBLIOGRAPHY

5 (Sept. 2011), 670–684. Available from: http://dx.doi.org/10.1109/
TDSC.2010.38. 16, 22, 23

[9] BALIGA, A., KAMAT, P., AND IFTODE, L. Lurking in the Shadows: Identi-
fying Systemic Threats to Kernel Data. In Proceedings of the 2007 IEEE Sym-
posium on Security and Privacy (S&P 2007) (Piscataway, NJ, USA, May 2007),
IEEE Press, pp. 246–251. 15, 22, 23, 95, 99, 148

[10] BASIN, D., AND CREMERS, C. From dolev-yao to strong adaptive corrup-
tion: Analyzing security in the presence of compromising adversaries, 2009.
cas.cremers@inf.ethz.ch 14301 received 12 Feb 2009, last revised 26 Feb 2009.
Available from: http://eprint.iacr.org/2009/079. 12, 36

[11] BENCSÁTH, B., PÉK, G., BUTTYÁN, L., AND FELEGYHAZI, M. Duqu: A
stuxnet-like malware found in the wild. Tech. rep., BME CrySyS Lab., Octo-
ber 2011. First published in cut-down form as appendix to the Duqu report
of Symantec. 1, 14

[12] BENETTI, D., MERRO, M., AND VIGANÒ, L. Model Checking Ad Hoc Net-
work Routing Protocols: ARAN vs. endairA. In SEFM (2010), pp. 191–202.
11, 20

[13] BEQUETTE, B. Process Control: Modeling, Design, and Simulation. Prentice-
Hall International Series in the Physical and Chemical Engineering Sciences.
Prentice Hall PTR, 2003. Available from: http://books.google.co.uk/
books?id=PdjHYm5e9d4C. 11, 20, 149, 155, 156

[14] BIGHAM, J., GAMEZ, D., AND LU, N. Safeguarding SCADA Systems with
Anomaly Detection. In Proceedings of the Second International Workshop on
Mathematical Methods, Models, and Architectures for Computer Network Secu-
rity (MMM-ACNS 2003) (St. Petersburg, Russia, Sept. 2003), V. Gorodetsky,
L. Popyack, and V. Skormin, Eds., vol. 2276 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 171–182. 20, 184

[15] BISTARELLI, S., PERETTI, P., AND TRUBITSYNA, I. Analyzing Security Sce-
narios Using Defence Trees and Answer Set Programming. Electron. Notes
Theor. Comput. Sci. 197, 2 (Feb. 2008), 121–129. Available from: http:
//dx.doi.org/10.1016/j.entcs.2007.12.021. 13

[16] BOVET, D. P., AND CESATI, M. Understanding the Linux Kernel, 3 ed. O’Reilly,
2005. 11, 177

[17] BOYER, S. SCADA: Supervisory Control and Data Acquisition. International
Society of Automation, 2009. 1, 11, 13, 180, 181, 184

[18] BRAVO, P., AND GARCIA, D. Proactive detection of kernel-mode rootkits. In
Availability, Reliability and Security (ARES), 2011 Sixth International Conference
on (2011), pp. 515–520. 22

[19] BRAYNOV, S., AND JADLIWALA, M. Representation and Analysis of Coordi-
nated Attacks. In Proceedings of the 2003 ACM Workshop on Formal methods in

193

http://dx.doi.org/10.1109/TDSC.2010.38
http://dx.doi.org/10.1109/TDSC.2010.38
http://eprint.iacr.org/2009/079
http://books.google.co.uk/books?id=PdjHYm5e9d4C
http://books.google.co.uk/books?id=PdjHYm5e9d4C
http://dx.doi.org/10.1016/j.entcs.2007.12.021
http://dx.doi.org/10.1016/j.entcs.2007.12.021

BIBLIOGRAPHY

Security Engineering (New York, NY, USA, 2003), FMSE ’03, ACM, pp. 43–51.
Available from: http://doi.acm.org/10.1145/1035429.1035434. 13

[20] BRAYNOV, S., AND JADLIWALA, M. Detecting Malicious Groups of Agents.
In IEEE First Symposium on Multi-Agent Security and Survivability, 2004 (aug.
2004), pp. 90 – 99. 13

[21] BYRES, E. Patching for control systems security - a broken model? In 68th
Annual Instrumentation Conference (2013). 1

[22] BYRES, E., AND HOFFMAN, D. The Myths and Facts behind Cyber Security
Risks for Industrial Control Systems. Tech. rep., Department of Computer
Science, University of Victoria, Victoria, BC, Canada, Apr. 2004. 17

[23] CARDENAS, A. A., ROOSTA, T., AND SASTRY, S. Rethinking security prop-
erties, threat models, and the design space in sensor networks: A case study
in scada systems. Ad Hoc Netw. 7, 8 (2009), 1434–1447. 12, 16, 20

[24] CAVALLARO, L., SAXENA, P., AND SEKAR, R. On the Limits of Information
Flow Techniques for Malware Analysis and Containment. In Proceedings of
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA 2008)
(Heidelberg, Germany, July 2008), D. Zamboni, Ed., vol. 5137 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 143–163. 15

[25] CHEE-WOOI, T., MANIMARAN, G., AND CHEN-CHING, L. Cybersecurity
for critical infrastructures: Attack and defense modeling. IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans 40, 4 (July 2010),
853 –865. 20

[26] CHEN, T. M., AND ABU-NIMEH, S. Lessons from Stuxnet. IEEE Computer
44, 4 (2011), 91–93. 16

[27] CHEUNG, S., DUTERTRE, B., FONG, M., LINDQVIST, U., SKINNER, K., AND

VALDES, A. Using Model-based Intrusion Detection for SCADA Networks.
In Proceedings of the SCADA Security Scientific Symposium (Miami Beach, FL,
USA, Jan. 2007), pp. 127–134. 20, 49

[28] CHRISTODORESCU, M., JHA, S., SESHIA, S. A., SONG, D., AND BRYANT,
R. E. Semantics-Aware Malware Detection. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy (S&P 2005) (Piscataway, NJ, USA, May
2005), IEEE Press, pp. 32–46. 2, 15, 17, 20

[29] CHUVAKIN, A. An Overview of Unix Rootkits. White Paper, iDefense Labo-
ratories, 2003. iDefence Inc., 14151 Newbrook Suite, Chantilly, VA 20151. 2,
14, 16, 54

[30] COUTINHO, M. P., LAMBERT-TORRES, G., DA SILVA, L. E. B., DA SILVA,
J. G. B., NETO, J. C., BORTONI, E., AND LAZAREK, H. Attack and Fault
Identification in Electric Power Control Systems: An Approach to Improve
the Security. In Proceedings of Power Tech 2007 (Lausanne, Switzerland, July
2007), IEEE Press, pp. 103–107. 20

194

http://doi.acm.org/10.1145/1035429.1035434

BIBLIOGRAPHY

[31] DABNEY, J. B., AND HARMAN, T. L. Mastering SIMULINK. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1997. 127, 155

[32] DAHL, O., AND WOLTHUSEN, S. Modeling and execution of complex attack
scenarios using interval timed colored petri nets. In Information Assurance,
2006. IWIA 2006. Fourth IEEE International Workshop on (2006), pp. 12 pp.–168.
13

[33] DAVID, F. M., CHAN, E., CARLYLE, J. C., AND CAMPBELL, R. H. Cloaker:
Hardware supported rootkit concealment. In IEEE Symposium on Security and
Privacy (2008), IEEE Computer Society, pp. 296–310. 16

[34] DAVIDE SANGIORGI AND DAVID WALKER. PI-Calculus: A Theory of Mobile
Processes. Cambridge University Press, New York, NY, USA, 2001. 3, 11, 13,
44, 58, 160

[35] DAYHARSH, C. A., AND DEL VECCHIO, H. W. Thermal Death Time Studies
on Beer Spoilage Organisms. Proceedings of the American Society of Brewing II
(1952), 48–52. 124

[36] DEAN, D., FRANKLIN, M., AND STUBBLEFIELD, A. An Algebraic Approach
to IP Traceback. ACM Transactions on Information System Security 5 (May 2002),
119–137. 18, 19

[37] DINABURG, A., ROYAL, P., SHARIF, M., AND LEE, W. Ether: Malware
Analysis via Hardware Virtualization Extensions. In Proceedings of the 15th
ACM Conference on Computer and Communications Security (CCS 2008) (New
York, NY, USA, Oct. 2008), P. Ning, P. Syverson, and S. Jha, Eds., ACM Press,
pp. 51–62. 21, 152

[38] DOLEV, D., AND YAO, A. On the security of public key protocols. IEEE
Transactions on Information Theory 29, 2 (Mar 1983), 198 – 208. 2, 35, 38

[39] DONG YAN, YULONG WAN, S. S., AND YANG, F. A Precise and Practical
IP Tracekback Technique Base on Packet Marking and Logging. Journal of
Information Science and Engineering 28, 3 (May 2012), 453–470. 19

[40] EMIGH, A. The Crimeware Landscape: Malware, Phishing, Identity Theft
and Beyond. Journal of Digital Forensic Practice 1 (2006), 245 – 260. 17

[41] FALLIERE, N., MURCHU, L. O., AND CHIEN, E. W32.Stuxnet Dossier. Tech.
rep., Symantic Security Response, Oct. 2010. 1, 2, 14

[42] FU, Y., HE, J., AND LI, G. A Distributed Intrusion Detection Scheme for
Mobile Ad Hoc Networks. COMPSAC ’07: Proceedings of the 31st Annual In-
ternational Computer Software and Applications Conference - Vol. 2- (COMPSAC
2007) 02 (2007), 75–80. 17

[43] GAMEZ, D., NADJM-TEHRANI, S., BIGHAM, J., BALDUCELLI, C., BURBECK,
K., AND CHYSSLER, T. Dependable Computing Systems: Paradigms, Perfor-
mance Issues, and Applications. John Wiley & Sons, New York, NY, USA, 2005,
ch. Safeguarding Critical Infrastructures. 1, 15, 17, 20

195

BIBLIOGRAPHY

[44] GARBER, L. Security, privacy, policy, and dependability roundup. Security
Privacy, IEEE 10, 6 (2012), 6–8. 14

[45] GARFINKEL, T., AND ROSENBLUM, M. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In Proceedings of the 10th Annual
Network And Distributed System Security Symposium (NDSS ’03) (San Diego,
CA, USA, Feb. 2003), Internet Society. 21, 148, 152

[46] GARG, V. Elements of Distributed Computing. Wiley-Interscience, 2002. Avail-
able from: http://books.google.co.uk/books?id=NlVBtVPeR0QC.
2, 11, 24, 39, 96, 97, 100, 106, 168, 169, 172, 173

[47] GENGE, B., AND SIATERLIS, C. Investigating the effect of network parame-
ters on coordinated cyber attacks against a simulated power plant. In Critis -
2011, 6th International Conference on Critical Information Infrastructures Security
(September 2011), vol. 6, pp. 143 – 153. 74

[48] GÖBEL, O., FRINGS, S., GÜNTHER, D., NEDON, J., AND SCHADT, D., Eds.
IT-Incidents Management & IT-Forensics - IMF 2008, Conference Proceedings,
September 23-25, 2008, Mannheim, Germany (2008), vol. 140 of LNI, GI. 23,
199

[49] HAO, J., HAO, Y.-J., DING, Z.-J., AND SONG, L.-T. A methodology to de-
tect kernel level rootkits based on detecting hidden processes. In Apperceiving
Computing and Intelligence Analysis, 2008. ICACIA 2008. International Confer-
ence on (2008), pp. 359–361. 22

[50] HEASMAN, J. Implementing and Detecting an ACPI BIOS Root Kit. Briefing
at Black Hat 2005 (Las Vegas, NV, USA), July 2005. 16

[51] HOFMEYR, S. A., FORREST, S., AND SOMAYAJI, A. Intrusion detection using
sequences of system calls. Journal of Computer Security, 1998 6, 3 (1998), 151–
180. 17

[52] HOGLUND, G., AND BUTLER, J. Rootkits: Subverting the Windows Kernel.
Addison-Wesley Professional, 2005. 16

[53] HRISCHUK, C. E., AND WOODSIDE, C. M. Logical clock requirements for
reverse engineering scenarios from a distributed system. IEEE Trans. Software
Eng. 28, 4 (2002), 321–339. 94

[54] HUANG, Y., STAVROU, A., GHOSH, A. K., AND JAJODIA, S. Efficiently Track-
ing Application Interactions using Lightweight Virtualization. In Proceedings
of the 1st ACM Workshop on Virtual Machine Security (VMSec 2008) (New York,
NY, USA, Oct. 2008), J. Nieh and A. Stavrou, Eds., ACM Press, pp. 19–28. 21

[55] INGOLS, K., CHU, M., LIPPMANN, R., WEBSTER, S., AND BOYER, S. Mod-
eling Modern Network Attacks and Countermeasures Using Attack Graphs.
In ACSAC ’09. Annual Computer Security Applications Conference, 2009. (dec.
2009), pp. 117 –126. 13

196

http://books.google.co.uk/books?id=NlVBtVPeR0QC

BIBLIOGRAPHY

[56] IVAN SKLYAROV. Programming Linux Hacker Tools Uncovered. A-LIST, LLC,
2007, ch. 21. 16, 109

[57] IZADDOOST, A., OTHMAN, M., AND RASID, M. Accurate icmp traceback
model under dos/ddos attack. In Advanced Computing and Communications,
2007. ADCOM 2007. International Conference on (2007), pp. 441–446. 19

[58] JIANG, X., WANG, X., AND XU, D. Stealthy Malware Detection through
VMM-based ”out-of-the-box” Semantic View Reconstruction. In Proceedings
of the 14th ACM Conference on Computer and Communications Security (CCS
2007) (New York, NY, USA, Oct. 2007), S. De Capitani di Vimercati and
P. Syverson, Eds., ACM Press, pp. 128–138. 21

[59] KACHIRSKI, O., AND GUHA, R. Effective intrusion detection using multiple
sensors in wireless ad hoc networks. In HICSS ’03: Proceedings of the 36th
Annual Hawaii International Conference on System Sciences (HICSS’03) - Track 2
(Washington, DC, USA, 2003), IEEE Computer Society, p. 57.1. 17

[60] KING, S. T., MAO, Z. M., LUCCHETTI, D. G., AND CHEN, P. M.
Enriching Intrusion Alerts Through Multi-host Causality. In Proceed-
ings of the Symposium on Network and Distributed Systems Security (NDSS)
(2005). Available from: http://www.isoc.org/isoc/conferences/
ndss/05/proceedings/papers/camera.pdf. 17

[61] KIREMIRE, A., BRUST, M., AND PHOHA, V. A prediction based approach
to ip traceback. In Local Computer Networks Workshops (LCN Workshops), 2012
IEEE 37th Conference on (2012), pp. 1022–1029. 19

[62] KO, C. Logic Induction of Valid Behavior Specifications for Intrusion Detec-
tion. SP ’00: Proceedings of the 2000 IEEE Symposium on Security and Privacy 00
(2000), 0142. 17

[63] KORDY, B., MAUW, S., RADOMIROVIĆ, S., AND SCHWEITZER, P. Foun-
dations of Attack-Defense Trees. In Proceedings of the 7th International Con-
ference on Formal aspects of Security and Trust (Berlin, Heidelberg, 2011),
FAST’10, Springer-Verlag, pp. 80–95. Available from: http://dl.acm.
org/citation.cfm?id=1964555.1964561. 13

[64] KRAUS, T., KUHL, P., WIRSCHING, L., BOCK, H., AND DIEHL, M. A Mov-
ing Horizon State Estimation Algorithm Applied to the Tennessee Eastman
Benchmark Process. In 2006 IEEE International Conference on Multisensor Fu-
sion and Integration for Intelligent Systems (Heidelberg, Germany, Sep. 2006),
pp. 377 –382. 149

[65] KRUTZ, R. Securing SCADA systems. Wiley Pub., 2005. 1, 11, 13, 17, 180, 184,
185

[66] KUMAR, P., AND SELVAKUMAR, S. Distributed denial-of-service (ddos)
threat in collaborative environment - a survey on ddos attack tools and trace-
back mechanisms. In Advance Computing Conference, 2009. IACC 2009. IEEE
International (2009), pp. 1275–1280. 3, 18

197

http://www.isoc.org/isoc/conferences/ndss/05/proceedings/papers/camera.pdf
http://www.isoc.org/isoc/conferences/ndss/05/proceedings/papers/camera.pdf
http://dl.acm.org/citation.cfm?id=1964555.1964561
http://dl.acm.org/citation.cfm?id=1964555.1964561

BIBLIOGRAPHY

[67] LANGNER, R. Robust Control System Networks: How to Achieve Reliable Control
After Stuxnet. Momentum Press, 2011. Available from: http://books.
google.co.uk/books?id=ucWTZwEACAAJ. 1, 11, 180

[68] LAUF, A. P., PETERS, R. A., AND ROBINSON, W. H. Embedded Intelligent
Intrusion Detection: A Behavior-Based Approach. AINAW ’07: Proceedings of
the 21st International Conference on Advanced Information Networking and Appli-
cations Workshops 1 (2007), 816–821. 17

[69] LI, F., LAI, A., AND DDL, D. Evidence of advanced persistent threat: A case
study of malware for political espionage. In Malicious and Unwanted Software
(MALWARE), 2011 6th International Conference on (oct. 2011), pp. 102 –109. 14

[70] LIN, Z.-S., CARDENAS, A., AMIN, S., HUANG, Y.-L., HUANG, C.-Y., AND

SASTRY, S. S. Model-based detection of attacks for process control sys-
tems. In 16th ACM Computer and Communications Security Conference (2009),
ACM, p. submitted. Available from: http://chess.eecs.berkeley.
edu/pubs/600.html. 20

[71] LINDA, O., VOLLMER, T., AND MANIC, M. Neural Network based Intrusion
Detection System for Critical Infrastructures. In Proceedings of the 2009 Inter-
national Joint Conference on Neural Networks (IJCNN 2009) (Atlanta, GA, USA,
June 2009), IEEE Press, pp. 1827–1834. 17

[72] LIPPMANN, R. P., AND INGOLS, K. W. An Annotated Review of
Past Papers on Attack Graphs, 1998. Available from: http://en.
scientificcommons.org/18618950. 13

[73] LOCASTO, M. E., PAREKH, J. J., KEROMYTIS, A. D., AND STOLFO, S. J. To-
wards Collaborative Security and P2P Intrusion Detection. In Proceedings of
the IEEE Information Assurance Workshop (IAW) (June 2005). 17

[74] MAO, W. A structured operational modelling of the dolev-yao threat model.
In Security Protocols, B. Christianson, B. Crispo, J. Malcolm, and M. Roe,
Eds., vol. 2845 of Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2004, pp. 34–46. Available from: http://dx.doi.org/10.1007/
978-3-540-39871-4_5. 2, 3, 12, 35, 36, 38, 45, 145, 146

[75] MAUW, S., AND OOSTDIJK, M. Foundations of Attack Trees. In International
Conference on Information Security and Cryptology ? ICISC 2005. LNCS 3935
(2005), Springer, pp. 186–198. 13, 146

[76] MCEVOY, R., AND WOLTHUSEN, S. Agent Interaction and State Determination
in SCADA Systems. Springer-Verlag, 2012. 5, 18, 51

[77] MCEVOY, T., AND WOLTHUSEN, S. A formal adversary capability model
for scada environments. In Critical Information Infrastructures Security, C. Xe-
nakis and S. Wolthusen, Eds., vol. 6712 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2011, pp. 93–103. Available from: http:
//dx.doi.org/10.1007/978-3-642-21694-7_8. 5, 13, 20

198

http://books.google.co.uk/books?id=ucWTZwEACAAJ
http://books.google.co.uk/books?id=ucWTZwEACAAJ
http://chess.eecs.berkeley.edu/pubs/600.html
http://chess.eecs.berkeley.edu/pubs/600.html
http://en.scientificcommons.org/18618950
http://en.scientificcommons.org/18618950
http://dx.doi.org/10.1007/978-3-540-39871-4_5
http://dx.doi.org/10.1007/978-3-540-39871-4_5
http://dx.doi.org/10.1007/978-3-642-21694-7_8
http://dx.doi.org/10.1007/978-3-642-21694-7_8

BIBLIOGRAPHY

[78] MCEVOY, T. R., AND WOLTHUSEN, S. Defeating Node Based Attacks
on SCADA Systems Using Probabilistic Packet Observation. In Proceed-
ings of the Sixth International Workshop on Critical Information Infrastructures
Security (CRITIS 2011) (Luzern, Switzerland, Sept. 2011), C. Xenakis and
S. Wolthusen, Eds., vol. 6712 of Lecture Notes in Computer Science, Springer-
Verlag. (in press). 5

[79] MCEVOY, T. R., AND WOLTHUSEN, S. Algebraic analysis of attack impacts in
critical infrastructures. In Critical Information Infrastructures Security, Lecture
Notes in Computer Science. 2012. 5

[80] MCEVOY, T. R., AND WOLTHUSEN, S. D. Using observations of invariant
behaviour to detect malicious agency in distributed environments. In Göbel
et al. [48], pp. 55–72. 5, 22

[81] MCEVOY, T. R., AND WOLTHUSEN, S. D. Trouble brewing: Using observa-
tions of invariant behavior to detect malicious agency in distributed control
systems. In CRITIS (2009), E. Rome and R. E. Bloomfield, Eds., vol. 6027 of
Lecture Notes in Computer Science, Springer, pp. 62–72. 5

[82] MCEVOY, T. R., AND WOLTHUSEN, S. D. Trouble Brewing: Using Observa-
tions of Invariant Behavior to Detect Malicious Agency in Distributed Con-
trol Systems. In Proceedings of the Fourth International Workshop on Critical
Information Infrastructure Security (CRITIS 2009) (Bonn, Germany, Sept. 2009),
E. Rome and R. Bloomfield, Eds., vol. 6027 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 62–72. 123, 137

[83] MCEVOY, T. R., AND WOLTHUSEN, S. D. An algebra for the detection and
prediction of malicious activity in concurrent systems. 2010 Fifth International
Conference on Systems 0 (2010), 125–133. 5, 22

[84] MCEVOY, T. R., AND WOLTHUSEN, S. D. Detecting sensor signal manipu-
lations in non-linear chemical processes. In Critical Infrastructure Protection
(2010), T. Moore and S. Shenoi, Eds., vol. 342 of IFIP Advances in Information
and Communication Technology, Springer, pp. 81–94. 5, 42

[85] MCEVOY, T. R., AND WOLTHUSEN, S. D. Host-based security sensor in-
tegrity in multiprocessing environments. In ISPEC (2010), J. Kwak, R. H.
Deng, Y. Won, and G. Wang, Eds., vol. 6047 of Lecture Notes in Computer Sci-
ence, Springer, pp. 138–152. 5

[86] MCEVOY, T. R., AND WOLTHUSEN, S. D. A plant-wide industrial process
control security problem. In Critical Infrastructure Protection (2011), J. Butts
and S. Shenoi, Eds., vol. 367 of IFIP Advances in Information and Communication
Technology, Springer, pp. 47–56. 5, 18

[87] MCLAUGHLIN, S. On Dynamic Malware Payloads Aimed at Programmable
Logic Controllers. In Proceedings of the 6th USENIX conference on Hot topics in
security (Berkeley, CA, USA, 2011), HotSec’11, USENIX Association, pp. 10–
10. Available from: http://dl.acm.org/citation.cfm?id=2028040.
2028050. 13

199

http://dl.acm.org/citation.cfm?id=2028040.2028050
http://dl.acm.org/citation.cfm?id=2028040.2028050

BIBLIOGRAPHY

[88] MILNER, R. Communicating and mobile systems: the π-calculus. Cambridge
University Press, New York, NY, USA, 1999. 3, 11, 12, 187

[89] MOLINA, J., AND ARBAUGH, W. Using Independent Auditors as Intrusion
Detection Systems. In Proceedings of the Information and Communication Secu-
rity (Heidelberg, Germany, Dec. 2002), R. Deng, S. Qing, F. Bao, and J. Zhou,
Eds., vol. 2513 of Lecture Notes in Computer Science, Springer-Verlag, pp. 291–
302. 21

[90] MOSER, A., KRUEGEL, C., AND KIRDA, E. Exploring multiple execution
paths for malware analysis. Security and Privacy, IEEE Symposium on 0 (2007),
231–245. 15

[91] MOSER, A., KRUEGEL, C., AND KIRDA, E. Limits of Static Analysis for Mal-
ware Detection. In Proceedings of the 23rd Annual Computer Security Applica-
tions Conference (ACSAC 2007) (Miami Beach, FL, USA, Dec. 2007), IEEE Press,
pp. 421–430. 15

[92] MOTTA PIRES, P. S., AND OLIVEIRA, L. A. H. G. Security Aspects of SCADA
and Corporate Network Interconnection: An Overview. In Proceedings of
the 2006 International Conference on Dependability of Computer Systems (Dep-
Cos – RELCOMEX 2006) (Szklarska Proeba, Poland, May 2006), IEEE Press,
pp. 127–134. 17

[93] NICK L. PETRONI, TIMOTHY FRASER, AARON WALTERS, WILLIAM A. AR-
BAUGH . An Architecture for Specification-Based Detection of Semantic In-
tegrity Violations in Kernel Dynamic Data. In Proceedings of the 15th USENIX
Security Symposium (2006). 2, 15, 22, 148

[94] NIGHTINGALE, E. B., PEEK, D., CHEN, P. M., AND FLINN, J. Parallelizing
Security Checks on Commodity Hardware. In Proceedings of the 13th Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS XIII) (New York, NY, USA, Mar. 2008), S. Eggers and
J. Larus, Eds., ACM Press, pp. 308–318. 21

[95] OPLINGER, J., AND LAM, M. S. Enhancing Software Reliability with Specu-
lative Threads. In Proceedings of the 10th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS XIII)
(New York, NY, USA, Oct. 2002), K. Gharachorloo, Ed., ACM Press, pp. 184–
196. 21

[96] PARK, K., AND LEE, H. On the Effectiveness of Probabilistic Packet Mark-
ing for IP Traceback Under Denial of Service Attack. In INFOCOM 2001:
Proceedings of the Twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies (2001), vol. 1, pp. 338 –347. 19, 69, 73

[97] PARK, S. Malware expert: Execution tracking. In Cybercrime and Trustworthy
Computing Workshop (CTC), 2012 Third (2012), pp. 48–55. 22

[98] PATSAKIS, C., AND ALEXANDRIS, N. New Malicious Agents and SK Virii. In
International Multi-Conference on Computing in the Global Information Technol-
ogy, 2007 (march 2007), p. 29. 13, 36, 49

200

BIBLIOGRAPHY

[99] PEARL, J. Causality: Models, Reasoning, and Inference, 2nd ed. Cambridge
University Press, Cambridge, United Kingdom, 2009. 20, 135, 146

[100] PETRONI, JR., N. L., AND HICKS, M. Automated Detection of Persistent
Kernel Control-Flow Attacks. In Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS 2007) (New York, NY, USA, Oct.
2007), S. D. C. di Vimercati and P. Syverson, Eds., ACM Press, pp. 103–115.
15, 21

[101] PREDA, M. D., CHRISTODORESCU, M., JHA, S., AND DEBRAY, S. A
Semantics-based Approach to Malware Detection. SIGPLAN Not. 42, 1
(Jan. 2007), 377–388. Available from: http://doi.acm.org/10.1145/
1190215.1190270. 15, 20, 22, 27, 94, 99, 103

[102] RHEE, J., RILEY, R., XU, D., AND JIANG, X. Defeating dynamic data kernel
rootkit attacks via vmm-based guest-transparent monitoring. In Availabil-
ity, Reliability and Security, 2009. ARES ’09. International Conference on (2009),
pp. 74–81. 22

[103] RILEY, R., JIANG, X., AND XU, D. Guest-Transparent Prevention of Kernel
Rootkits with VMM-Based Memory Shadowing. In Proceedings of the 11th In-
ternational Symposium on Recent Advances in Intrusion Detection (RAID 2008)
(Heidelberg, Germany, Sept. 2008), R. Lippmann, E. Kirda, and A. Tracht-
enberg, Eds., vol. 5230 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 1–20. 21

[104] RRUSHI, J., AND KANG, K.-D. Detecting Anomalies in Process Control Net-
works. In Critical Infrastructure Protection III (Hanover, NH, USA, Mar. 2009),
C. Palmer and S. Shenoi, Eds., Springer-Verlag, pp. 151–165. (Proceedings of
the Third Annual IFIP WG 11.10 International Conference on Critical Infras-
tructure Protection). 17

[105] RUTKOWSKA, J. Beyond the CPU: Defeating Hardware Based RAM Acquisi-
tion. Defcon 2007. 16, 22

[106] SAMUEL T. KING AND PETER M. CHEN AND YI-MIN WANG AND CHAD

VERBOWSKI AND HELEN J. WANG AND JACOB R. LORCH. SubVirt: Imple-
menting malware with virtual machines. In 2006 IEEE Symposium on Security
and Privacy (S&P’06) (Los Alamitos, CA, USA, 2006), vol. 0, IEEE Com-
puter Society, pp. 314–327. 2, 16

[107] SANDRA RING AND ERIC COLE. Taking a Lesson from Stealthy Rootkits.
IEEE Security and Privacy 02, 4 (2004), 38–45. 15

[108] SATTARI, P., GJOKA, M., AND MARKOPOULOU, A. A network coding ap-
proach to ip traceback. In Network Coding (NetCod), 2010 IEEE International
Symposium on (2010), pp. 1–6. 19

[109] SAVAGE, S., WETHERALL, D., KARLIN, A., AND ANDERSON, T. Network
Support for IP Traceback. IEEE/ACM Transactions on Networking 9, 3 (June
2001), 226 –237. 18, 19, 64, 65, 74

201

http://doi.acm.org/10.1145/1190215.1190270
http://doi.acm.org/10.1145/1190215.1190270

BIBLIOGRAPHY

[110] SCHLESSER, J. E., ARMSTRONG, D. J., CINAR, A., RAMANAUSKAS, P., AND

NEGIZ, A. Automated Control and Monitoring of Thermal Processing Using
High Temperature, Short Time Pasteurization. Journal of Dairy Science 80, 10
(Mar. 1997), 2291–2296. 17

[111] SEEGER, M., AND WOLTHUSEN, S. Observation mechanism and cost model
for tightly coupled asymmetric concurrency. In Systems (ICONS), 2010 Fifth
International Conference on (2010), pp. 158–163. 152

[112] SEN, K., ROŞU, G., AND AGHA, G. Online efficient predictive safety analysis
of multithreaded programs. Int. J. Softw. Tools Technol. Transf. 8, 3 (2006), 248–
260. 22, 98, 102, 103

[113] SHENG, S., CHAN, W., LI, K., XIANZHONG, D., AND XIANGJUN, Z. Context
information-based cyber security defense of protection system. IEEE Trans-
actions on Power Delivery 22, 3 (jul 2007), 1477–1481. 17, 20, 27

[114] SIMON, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Ap-
proaches. Wiley, 2006. Available from: http://books.google.co.uk/
books?id=UiMVoP_7TZkC. 18, 20, 152

[115] SONG, D. X., AND PERRIG, A. Advanced and Authenticated Marking
Schemes for IP Traceback. In INFOCOM 2001: Proceedings of the Twentieth An-
nual Joint Conference of the IEEE Computer and Communications Societies (2001),
vol. 2, pp. 878 –886. 19, 70, 74

[116] SVENDSEN, N. K., AND WOLTHUSEN, S. D. Modeling and Detection of
Anomalies in Critical Infrastructure Networks. In Critical Infrastructure Pro-
tection II (Arlington, VA, USA, Mar. 2008), M. Papa and S. Shenoi, Eds.,
Springer-Verlag, pp. 101–107. (Proceedings of the Second Annual IFIP WG
11.10 International Conference on Critical Infrastructure Protection). 16, 20,
24

[117] SZOR, P. The Art of Computer Virus Research and Defense. Addison-Wesley,
2005. 2, 14, 21, 108

[118] TESAURO, G., CHESS, D. M., WALSH, W. E., DAS, R., SEGAL, A., WHAL-
LEY, I., KEPHART, J. O., AND WHITE, S. R. ”a multi-agent systems approach
to autonomic computing”. In Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems - Volume 1 (Washington,
DC, USA, 2004), AAMAS ’04, IEEE Computer Society, pp. 464–471. Available
from: http://dx.doi.org/10.1109/AAMAS.2004.23. 13

[119] TSAUR, W., AND CHEN, Y.-C. Exploring rootkit detectors’ vulnerabilities
using a new windows hidden driver based rootkit. In Social Computing (So-
cialCom), 2010 IEEE Second International Conference on (2010), pp. 842–848. 16

[120] VERBA, J., AND MILVICH, M. Idaho National Laboratory Supervisory Con-
trol and Data Acquisition Intrusion Detection System (SCADA IDS). In
Proceedings of the 2008 IEEE Conference on Technologies for Homeland Security
(Waltham, MA, USA, May 2008), IEEE Press, pp. 469–473. 16, 20, 63

202

http://books.google.co.uk/books?id=UiMVoP_7TZkC
http://books.google.co.uk/books?id=UiMVoP_7TZkC
http://dx.doi.org/10.1109/AAMAS.2004.23

BIBLIOGRAPHY

[121] WAN FOKKINK. Introduction to Process Algebra. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2000. 3

[122] WANG, J. A rule-based approach for rootkit detection. In The 2nd IEEE Inter-
national Conference on Information Management and Engineering (ICIME) (april
2010). 22, 23

[123] WANG, X. R., LIZIER, J. T., OBST, O., PROKOPENKO, M., AND WANG, P.
Spatiotemporal Anomaly Detection in Gas Monitoring Sensor Networks. In
Proceedings of the 5th European Conference on Wireless Sensor Networks (EWSN
2008) (Bologna, Italy, Jan. 2008), R. Verdone, Ed., vol. 4913 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 90–105. 20

[124] WATTS, D. Security & Vulnerability in Electric Power Systems. In Proceedings
of the 35 North American Power Symposium (NAPS 2003) (Rolla, MO, USA, Oct.
2003), pp. 559–566. 17

[125] WEN, Y., HUANG, M., ZHAO, J., AND KUANG, X. Implicit detection of
stealth software with a local-booted virtual machine. In Information Sci-
ences and Interaction Sciences (ICIS), 2010 3rd International Conference on (2010),
pp. 152–157. 21

[126] WILHELM, J., AND CKER CHIUEH, T. A Forced Sampled Execution Approach
to Kernel Rootkit Identification. In Proceedings of the 10th International Sympo-
sium on Recent Advances in Intrusion Detection (RAID 2007) (Heidelberg, Ger-
many, Sept. 2007), C. Kruegel, R. Lippmann, and A. Clark, Eds., vol. 4637 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 219–235. 21

[127] WILLIAMS, P. D., AND SPAFFORD, E. H. CuPIDS: An Exploration of Highly
Focused, Co-Processor-based Information System Protection. Computer Net-
works 51, 5 (Apr. 2007), 1284–1298. 21, 148, 152

[128] WONG, T. Y., WONG, M. H., AND LUI, C. S. A Precise Termination Con-
dition of the Probabilistic Packet Marking Algorithm. IEEE Transactions on
Dependable and Secure Computing 5, 1 (Mar. 2008), 6–21. 18

[129] WOOLDRIDGE, M. An Introduction to MultiAgent Systems. Wiley, 2009. Avail-
able from: http://books.google.co.uk/books?id=X3ZQ7yeDn2IC.
13, 31

[130] WU, R., LI, W., AND HUANG, H. An attack modeling based on hierarchical
colored petri nets. In Computer and Electrical Engineering, 2008. ICCEE 2008.
International Conference on (2008), pp. 918–921. 13, 145

[131] XIANG, Y., ZHOU, W., AND GUO, M. Flexible Deterministic Packet Mark-
ing: An IP Traceback System to Find the Real Source of Attacks. IEEE
Trans. Parallel Distrib. Syst. 20, 4 (Apr. 2009), 567–580. Available from: http:
//dx.doi.org/10.1109/TPDS.2008.132. 19

[132] YANG, D., USYNIN, A., AND HINES, J. W. Anomaly-Based Intrusion Detec-
tion for SCADA Systems. In Proceedings of the 5th International Topical Meeting

203

http://books.google.co.uk/books?id=X3ZQ7yeDn2IC
http://dx.doi.org/10.1109/TPDS.2008.132
http://dx.doi.org/10.1109/TPDS.2008.132

BIBLIOGRAPHY

on Nuclear Plant Instrumentation, Control, and Human Machine Interface Tech-
nologies (NPIC&HMIT 06) (Albuquerque, NM, USA, Nov. 2006), American
Nuclear Society. 17, 20

[133] YE, F., YANG, H., AND LIU, Z. Catching “Moles” in Sensor Networks. In
ICDCS (2007), p. 69. 19, 70

[134] YEE, B., AND TYGAR, J. D. Secure Coprocessors in Electronic Commerce Ap-
plications. In Proceedings of the First USENIX Workshop on Electronic Commerce
(New York, NY, USA, July 1995), D. E. Geer, Ed., USENIX Press, pp. 14–14.
21

[135] ZHANG, X., VAN DOORN, L., JAEGER, T., PEREZ, R., AND SAILER, R. Se-
cure Coprocessor-Based Intrusion Detection. In Proceedings of the 10th ACM
SIGOPS European Workshop (New York, NY, USA, July 2002), G. Muller and
E. Jul, Eds., ACM Press, pp. 239–242. 21

204

	Introduction
	Preamble
	Threats to Distributed Systems in Critical Infrastructures
	Research Questions
	Research Approach
	Research Contributions
	Original Papers
	Outline of Dissertation
	Summary

	Notation, Conventions and Definitions
	Preamble
	Set and Algebraic Operations
	Distributed Systems
	Process Algebra and Calculi
	Terminology
	Summary

	Literature Review
	Preamble
	Background Material
	Process Algebras and Calculi
	Threat Models
	Developments in Malicious Software Techniques
	Intrusion Detection
	Summary

	Problem and Approach
	Preamble
	Research Issues
	Research Approach
	Summary

	Attack/Defense Analysis in Distributed Systems
	Preamble
	Threat Model
	Applied Process Calculi
	Instantiating a System Model
	Instantiating the Adversary Capability Model
	Attack Construction Based on the Adversary Model
	Incorporating Impact Analysis in the Model
	Summary

	Traceback Protocols for Defending Communications Integrity
	Preamble
	A Traceback Protocol for Adversary Detection
	Co-ordinated Attacks, Anomaly Detection and Communication Integrity
	Summary

	Expected Behavior and Multithreaded Observation Mechanisms In Multiprocessor Systems
	Preamble
	Expected Behavior Model
	Concurrent Observation Mechanism
	``Proof of Concept'' Mechanism
	Summary

	Kinetic Models and Adversary Detection
	Preamble
	Example Selection
	Approach
	Model
	Simulink Construction
	Proxy Discovery
	Experiments
	Summary

	Conclusions and Future Work
	Preamble
	Research Overview
	Contributions
	Discussion
	Future Work
	Summary

	Mathematical Pre-requisites
	Preamble
	Process Control
	Process Algebra
	Process Calculus: the -calculus
	State Transition Diagrams

	Distributed Environments
	Preamble
	Notation
	Modelling Distributed Systems
	Multi-Processor Operating Systems
	Process Control Networks

	Nomenclature
	Index
	Bibliography

