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Abstract

A profinite group G is just infinite if it is infinite and every non-trivial closed normal
subgroup of G is open, and hereditarily just infinite if every open subgroup is just
infinite. Hereditarily just infinite profinite groups that are not virtually pro-p were first
described by J. S. Wilson, in his recent paper ‘Large hereditarily just infinite groups’,
in 2010. These profinite groups are inverse limits of finite groups that are iterated
wreath products. The iterated wreath products are constructed from finite non-abelian
simple groups, using two types of transitive actions; one of which is specified and the
other is left unspecified.

The main results of this thesis are the complete characterisation of the closed normal
subgroups and the closed subnormal subgroups of such hereditarily just infinite profinite
groups, introduced by Wilson. Using positive finite generation work of M. Quick, we
see that these profinite groups, in the majority of instances, are positively finitely
generated and therefore finitely generated. Recent results by N. Nikolov and D. Segal
show that all the normal and subnormal subgroups of such a hereditarily just infinite
group, described by Wilson, are automatically closed provided the profinite group is
finitely generated. Therefore the characterisations of normal and subnormal subgroups
cover all normal and subnormal subgroups of the majority of Wilson’s groups.

The characterisation of the subnormal subgroups is interesting because it is de-
pendent on the choices for the unspecified transitive actions, used to construct these
profinite groups. A starting point for describing the subnormal subgroups is to make
a choice for the unspecified transitive actions. In this way, some restricted construc-
tions of Wilson’s groups have all their subnormal subgroups forming chains, where the
subnormal subgroups are squeezed between consecutive normal subgroups.

We have examined the possibility of describing maximal subgroups of Wilson’s
hereditarily just infinite groups. M. Bhattacharjee has worked on maximal subgroups
of iterated wreath products of alternating groups with degree > 5, constructed using the
natural actions of the alternating groups. We have applied Bhattacharjee’s techniques
and described maximal subgroups for certain first finite iterated wreath products, in
the construction of Wilson’s groups. In so doing, we indirectly extend Bhattacharjee’s
work, whose view point is that of finite generation. This is because we count the exact
number of conjugacy classes of maximal subgroups and the exact number of maximal

subgroups, for a very small subclass of Bhattacharjee’s wreath products.
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Chapter 1

Introduction

This thesis is built on a recent paper by J. S. Wilson, entitled ‘Large hereditarily just
infinite groups’; see the reference [32]. We are particularly interested in hereditarily
just infinite profinite groups. For the general theory of profinite groups there are two
books, both of which are entitled ‘Profinite Groups’. One book is by J. S. Wilson [30]
and the other book is by L. Ribes and P. Zalesskii [26].

A profinite group G is just infinite if it is infinite and every non-trivial closed normal
subgroup of G is open. It is hereditarily just infinite if every open subgroup of G is just
infinite. The simplest examples of abstract! hereditarily just infinite groups are the
infinite cyclic group and the infinite dihedral group Do, = (x,y : 2% = y? = 1). More
complicated examples are the groups SL(n,Z) modulo their centre, for n > 3, refer
to [20]. Examples of profinite hereditarily just infinite groups are Z, and SL(n,Z,)
modulo their centre, for n > 3. Many of the groups introduced by R. I. Grigorchuk [9]
and N. Gupta and S. Sidki [10] that act on trees are just infinite. A readable account
describing the first Grigorchuk group is given by P. de la Harpe, in [6, Ch. VIII].

For profinite groups, a just infinite group is the analogue of a simple group in the
setting of finite groups. Therefore it is natural that we want to classify just infinite
profinite groups or, if this is not possible, describe them in some suitable fashion.

It has been shown, refer to [29] and [31], that certain just infinite groups can
be embedded, as subgroups of finite index, in permutational wreath products of a
hereditarily just infinite group and a finite group. Therefore the study of these just
infinite profinite groups reduces to the study of hereditarily just infinite profinite groups.

For some prime p, a profinite group is pro-p if every open normal subgroup has index
equal to some power of p. A profinite group is virtually pro-p if it has an open normal

subgroup that is pro-p. All hereditarily just infinite profinite groups prior to Wilson’s

! An abstract group is a group without a topology.
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recent construction, in [32], were virtually pro-p groups. The following theorem by

Wilson shows that there are hereditarily just infinite profinite groups of a new kind.

Theorem 1.1 (Wilson [32]). There exists a hereditarily just infinite profinite group with
the property that all composition factors of finite continuous images are non-abelian.

In particular, the group is not virtually pro-p.

Every finitely generated profinite group is countably based. See [30, pg. 54] for the
general definition of a countably based profinite group. The following corollary is also

given by Wilson.

Corollary 1.2 (Wilson [32]). There exists a hereditarily just infinite profinite group

in which every countably based profinite group can be embedded, as a closed subgroup.

Therefore the groups that arise from Theorem 1.1 are also notable because they are
very ‘large’; since every countably based profinite group can be embedded in at least
one of them.

A result similar to Corollary 1.2 has featured, in the pro-p setting, where the Not-
tingham group already existed as a hereditarily just infinite group. R. Camina [4]
proved that every countably based pro-p group can be embedded, as a closed sub-
group, in the Nottingham group. The Nottingham group was introduced to group
theory by D. L. Johnson [12] and I. O. York [34], themselves motivated by an article
of S. A. Jennings [11].

In this thesis, we shall call the groups of Theorem 1.1 Wilson groups and their
construction Wilson’s construction. Wilson groups and their construction are explained
in detail in Section 4.1. The hereditarily just infinite profinite group of Corollary 1.2
is a specific Wilson group, as given in Section 4.2. Wilson groups are new and their

construction is very interesting, therefore they deserve further investigation.

1.1 Contributions

This thesis has set about to investigate structural properties of Wilson groups.

1.1.1 Normal and subnormal subgroups of Wilson groups

Our main contribution is a complete classification of the closed subnormal subgroups
of an arbitrary Wilson group. As a subcase, we have completely classified the closed
normal subgroups of an arbitrary Wilson group. In fact, for a finitely generated? Wilson

group all subnormal subgroups are automatically closed and therefore, for these groups,

2A finitely generated profinite group means it is topologically finitely generated, see Section 2.5.
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we have completely classified all their subnormal subgroups. We determine that the
majority of Wilson groups are finitely generated, refer to Chapter 9.

In order to lay out these results, we first briefly describe Wilson’s construction
from which Wilson groups arise; refer to Section 4.1 for further details of Wilson’s
construction.

Let Xg, X1, X9, ... be an infinite sequence of finite non-abelian simple groups. Set
Gy = Xy. We construct the finite groups G,,, for n € N, from iterated wreath products
of the groups Xg, X1, Xo,... . Each wreath product G, is formed via two types of
actions. One of which is unspecified and the other type of action is specified.

Suppose a group G,,_1, for n € N, with a faithful transitive permutation representa-

)

tion of degree d,, has been constructed. Let L, = X}ld" , for n € N, the direct product

of d,, copies of X,,. Wilson defines a specified transitive permutation representation of
the group L, G,—1 on the set L,, (see the action (4.1) in Section 4.1). Let M,, = X,(LlL"l)7

for n € N, the direct product of |L,| copies of X,,. Form
Gn = X1, (Xnlo,, Gn-1),
where Q4, = {1,2,...,d,}. That is, written as semidirect products,
Gn =My % (Ly % Gp_1).

A Wilson group is an inverse limit of such finite groups Gy, for n > 0, as described
above. We call the groups G,, Wilson quotients. This becomes evident later when the
infinite groups ... My4oLp oMyt Lpy1, for n > 0, are found to be normal subgroups
of a Wilson group.

Corollary 5.3 displays the result of the complete classification of the closed normal
subgroups of an arbitrary Wilson group. This is derived from the complete classification
of the normal subgroups of the finite groups G, as in Theorem 5.1. For the purpose
of what follows we define My = Gj.

Theorem 5.1. Let Gy, for n > 0, be the finite groups as defined above. For j &€
{0,1,...,n}, define
Pj' = Mp x ... % (Mjy1 % Ljya)

and define
Q" = My % ... % (M1 % (Ljpq x M;)).

Then the normal subgroups of G,, are precisely the groups P]” and Q?. In particular,
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they form a complete chain
[} =PI CQICPL, C...CQIC R CQL—GChn

Corollary 5.3. Let G = lim(Gy,)n>0 be the inverse limit of the groups G, as defined
m >
above. For j > 0, define

Py = l(gn(P]n%—wo

and define

Qj = @(Q?)n%OCH

regarded as subgroups of G.
Then the non-trivial closed normal subgroups of G are precisely the groups Pj

and Q;. In particular, they form a complete chain
e CQu CPiCQuC P S . CQUECRC Q=G

The normal subgroups of a Wilson group forming such a rigid chain is noteworthy
and the same property is shared by the groups Z, and SL(n,Z,). The Nottingham
group, in comparison, say, has its normal subgroups almost forming a chain (see Re-
mark 5.4 in Section 5.1).

We found that the determination of the subnormal subgroups of a Wilson group
depended directly on the nature of the unspecified permutation representations of the
groups G,. That is, whether the subnormal subgroups of the groups Gy, for n € N,
have all their orbits containing at least two elements.

Here we only present the results of an easier situation, where the subnormal sub-
groups of the groups G, are guaranteed to have all their orbits containing at least
two elements. This is achieved, for instance, by taking the unspecified permutation
representations of the groups G,, to be the actions of the groups on themselves by right
multiplication. The complete characterisation of the closed subnormal subgroups of
these particular Wilson groups is displayed in Corollary 6.6.

The complete characterisation of the closed subnormal subgroups of a general Wil-
son group has been achieved and the results can be found in Section 6.4. It is not
presented here because it involves additional notation that is difficult to read, which
indicates orbits containing at least two elements.

Again, the description of the closed subnormal subgroups of these particular Wilson
groups relies on the description of the subnormal subgroups of the finite groups G,.
Theorem 6.4 lays out the complete classification of the subnormal subgroups of the

groups G, having the right regular action in Wilson’s construction. Their characteri-

10
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sation involves recalling the normal subgroups Py and Q?, for j € {0,1,...,n}, of Gy,

as defined above.

Theorem 6.4. Let G, for n > 0, be the finite groups as defined above. In the Wilson
construction, assume that the unspecified action of the group G,, for n > 0, is taken
to be right multiplication on itself.

For j €{0,1,...,n— 1}, define

I,
SP(Ig,.,) = Q1 X ngl“ < P}, where 0 # Iy, € Qq,,,,

and define
Sy ={1}.

Forje{1,2,...,n}, define
I,
T} (Ir;) = Pj' % XjLJ < Qf, where 0 # I, C Ly,
and define
Ty = Gp.

Then the subnormal subgroups of Gy, are precisely the groups S7(1a;,,), Sy, T} (IL,)

and Ty'. In particular, for all 14,, I, ... , I, and I, , they form chains

n

Sy =B ST (L) < Qn &Sy 1(a,) SP 1 &

The subnormal length in G, of the group S;?(Id 18

1)

L if g, = Qa,,, (implying that S;‘(Idjﬂ) = Pj”),
2 iflg, CQay -
The subnormal length in Gy, of the group T}'(I;) is
1 if I, = Lj (implying that T}'(IL;) = Q7F),
2 if I, C L.

Recall the normal subgroups P; and @);, for j > 0, of a Wilson group, as defined

above.

Corollary 6.6. Let G = @(Gn)nzo be the inverse limit of the groups G, as defined

11
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above. In the Wilson construction, assume that the unspecified action of the group Gy,
forn >0, is taken to be right multiplication on itself.
For j >0, define

Si(la;,,) = I'&n(Sy(Idﬁl))n_)oo, where ) # 1q,,., € Qa;.,,

regarded as subgroups of G.
For j > 1, define

Ti(Ir;) = T (T7 (Ir;))nsoo, where O 7 Ir; C Lj,

and define

Ty = {iin(T(?)nﬁoo;

regarded as subgroups of G.
Then the non-trivial closed subnormal subgroups of G are precisely the groups

Si(1q

), Tij(IL,) and To. In particular, for all Ig,, Ir,, .., Ly, In,, laypys - s

they form chains

e G Sn(Idn+l) C P, CTalL,) CQn & Sp1(la,) S P11 & ...
Sy SR Tl(ILl) C @ - SO(Ich) Ch.

The subnormal length in G of the group S;(I4; ) is

L if g, = Qq,,, (implying that S;(1a, ) = Pj),
2 iflg,, S

= J+1°

The subnormal length in G of the group T;(Iy;) is

L if Iy, = Lj (implying that T;(I1,) = Q;),
2 if I, C Ly

For these restricted Wilson groups, the subnormal subgroups form chains where the
subnormal subgroups are squeezed between consecutive normal subgroups. A pictorial

description of this conclusion is shown in Figure 6.1 of Section 6.2.

12
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1.1.2 Normal and subnormal subgroup growth of Wilson groups

A type of normal subgroup growth and subnormal subgroup growth has been measured
for an arbitrary Wilson group, using a lower bound for the size of the finite groups Gy,

as follows:

Theorem 7.1. Let Gy, for n > 0, be the finite groups as defined in Section 4.1.
Suppose there exists a constant ¢ such that | X;| < ¢, for all i > 0.
Then

4 &

4" <Gl <&,
S~—~— N~~~
n+2 2n+2

where ¢ = 3c.

The number of normal subgroups of a Wilson group G of index at most |G| is

for n > 0. This growth is very slow, that is slower than the functions loglog...log |G,,|
N———

M
for any fixed r.

The number of subnormal subgroups of a Wilson group G of index at most | L, Gp,—1],

for n > 1, that is S|<L]jGn_1|(G)’ is less than or equal to the number

n n
2|Xn|dn + Z de + Z 2(1]'—2(2‘Xj—1|d]71 _ 2),
=1 =2

which is roughly the size of the group G, although somewhat smaller.

1.1.3 Maximal subgroups of Wilson groups

We now summarise the little information that we have obtained towards maximal sub-
groups of Wilson groups. In Theorem 8.11, we have described the maximal subgroups

of certain Wilson quotients GG;. That is, the first Wilson quotients
G1 = X1, (X1, Go)

such that the finite non-abelian simple groups Gog = Xy and X are taken to be the al-
ternating group A,, with degree m > 5, and the unspecified permutation representation

of the group Gy is chosen to be the natural action of the alternating group.

Theorem 8.11. Let G1 = Ay, Ly(m) (Am =01 Am), where Q' = {1,2,...,m}, for

)

some m > 5. Denote the base group Aﬁl;“m"” =: B and the permuting top group

13
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A%n)Am =:T. The group T acts on the set Aﬁ,’f) according to the action defined in
(4.1) (see Section 4.1). Therefore Gi = B xT.
Define
My(K) = B x K, where K is a mazimal subgroup of T'.

Consider the normaliser
Ng, (D1 X Dy x ... x Dy),

with the equivalence classes Q;, for 1 < i < s and s # |An|™, of a T-congruence on
Al having |Q;| =1, and where

Di = {(@i, pii—1yi42(®i), 0i—1)i43(T0)s - - (i) : 5 € A}, for 1 <i <s,

and
; € Aut(Ay,), for (1 —1)14+2 < j <il.

Define
My (L) = LUAnI™) e T, where L is a mazimal subgroup of Ap,.

Then the groups Mo(K) and My(L)9, where g € B, are mazimal subgroups of G
and every mazimal subgroup of G1 is one of the groups My(K), Ng,(D1xDax...x Dy)
or Ma(L)9, where g € B.

This initial step was taken with a view to describing the maximal subgroups of
Wilson groups where the finite non-abelian simple groups X;, for ¢ > 0, are taken
to be the alternating group A,, with degree m > 5, and the unspecified permutation
representations of the groups G,,, for n > 0, are chosen to be the natural actions of the
alternating groups. We do have some idea of what these maximal subgroups look like
even though this work has been left unfinished.

The techniques used to find these maximal subgroups has lain in M. Bhattachar-
jee’s work on maximal subgroups of iterated wreath products of alternating groups of
degree m > 5, constructed using the natural actions of the alternating groups; see the
reference [3]. M. Quick generalised Bhattacharjee’s work to iterated wreath products
of arbitrary finite non-abelian simple groups; refer to papers [24] and [25].

Bhattacharjee’s work required her to obtain upper bounds for the number of con-
jugacy classes of maximal subgroups of the wreath products that she considers. In
studying the wreath product Wi = A, lg«n) A, where o = {1,2,...,m} and
m > 5, which is a small subcase of Bhattacharjee’s wreath products, we contribute a
little more information regarding counting the precise number of conjugacy classes of

maximal subgroups of W1 .

14
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In Theorem 8.3, we have classified the maximal subgroups of the wreath product
W1 up to conjugation. They are conjugates of three types of subgroups and it is enough
to conjugate by elements of the base group. The proof of this theorem uses a result
by C. Parker and M. Quick [23] to exclude the possibility of maximal subgroups of W

which complement the base group.

Theorem 8.3. Let Wi = Ay, g« Am, where ol ={1,2,...,m}, for somem >5

and m # 6. Denote the base group A,(fln) =: B and the permuting top group A, =: T.

Therefore Wy = B x T.

Define
My(L) = B x L, where L is a mazimal subgroup of Ap,.
Define
M, ={(z,z,...,x):x € A} xT.
Define

My(L) = LU s T, where L is a mazimal subgroup of Ap,.

Then the groups Mo(L), MY, where g € B, and My(L)9, where g € B, are mazimal

subgroups of W1 and every mazimal subgroup of W1 is one of these.

We count exactly one conjugacy class in Wi of maximal subgroups of the form MY,
where g € B (see Remark 8.7, Section 8.2). We finalise Bhattacharjee’s work and
prove that the number of conjugacy classes in W of maximal subgroups of the form
M5(L)Y, where g € B, is the same as the number of conjugacy classes in A4,, of maximal
subgroups L of A, (see Remark 8.8, Section 8.2).

Additionally, due to classifying all the maximal subgroups of W by conjugation,

we have been able to count them precisely.

Corollary 8.4. Let W1y be the group as defined in Theorem 8.3. Then the number of

mazimal subgroups of the form:
o M{, where g € B, is |Ap|™L;

e My(L)9, where L is a mazimal subgroup of A, and g € B, is

Z |Am : L|m_17

LSn\axAm

where the summation runs over all maximal subgroups of A,.

15



1.2. Thesis outline 1. Introduction

1.1.4 Finite generation for Wilson groups

Using M. Quick’s work [25], we see that the Wilson groups lim(G,),>0 such that
m >

|Go| > 35! are positively finitely generated by two elements. Therefore any Wilson

group is finitely generated provided |Gp| > 35!.

1.2 Thesis outline

We now set out to the reader how the material of this thesis is organised within the
chapters. Notations, definitions and basic group theory results, required for the under-
standing of this thesis, are contained in Chapter 2.

Chapter 3 considers a motivating example of just infinite profinite groups, which
are not hereditarily just infinite, that are not virtually pro-p. We denote these groups,
which are infinite iterated wreath products of alternating groups, by W. Their con-
struction is very similar to that of Wilson’s construction.

The techniques used to characterise the normal subgroups of the groups W are the
same techniques that are used to characterise the normal subgroups of an arbitrary
Wilson group. In chapter 3, we completely characterise the normal subgroups of the
groups W and in so doing show that these groups are just infinite. We give an expla-
nation as to why the groups W are not hereditarily just infinite and are not virtually
pro-p.

In chapter 4 we give a detailed description of Wilson’s construction, as described
by J. S. Wilson in his paper [32]. Chapter 4 then explains how an arbitrary Wilson
group arises from such a construction. The proofs of Theorem 1.1 and Corollary 1.2,
found in [32], are briefly discussed. In particular, it is reasoned why the Wilson groups
are not virtually pro-p.

We look at the structure of Wilson groups by first finding their normal subgroups.
Chapter 5 contains a complete characterisation of the closed normal subgroups of any
arbitrary Wilson group.

Since a normal subgroup of a group is also a subnormal subgroup of that group, to
continue investigating the structure of Wilson groups, it is natural to consider subnor-
mal subgroups. Every open subgroup of a pro-p group is subnormal. Therefore it is
also appropriate to study subnormal subgroups of Wilson groups because we are not
in the pro-p setting, where studying all the open subgroups provides all the subnormal
subgroups.

Work concerning the subnormal subgroups of Wilson groups is contained in Chap-
ter 6. This is the prime chapter of the thesis. The chapter is formed in three parts, since

describing subnormal subgroups of Wilson groups was found to be rather complicated.

16



1.2. Thesis outline 1. Introduction

The results of the section after the introduction, Section 6.2, only applies to partic-
ular Wilson groups. That is, Wilson groups where the unspecified permutation repre-
sentations of the finite groups G,,, in Wilson’s construction, are taken to be the action
of the groups on themselves by right multiplication. This guarantees that subnormal
subgroups of the groups G, have all their orbits containing at least two elements. The
closed subnormal subgroups of these particular Wilson groups are completely charac-
terised in Section 6.2. In fact, this characterisation holds for all Wilson groups such
that the actions of the subnormal subgroups of the groups G, in their construction,
have all their orbits containing at least two elements.

In Section 6.3, to give an indication of the path to take for finding subnormal
subgroups of a general Wilson group, we find the subnormal subgroups of the just
infinite profinite groups W first described in Section 3.2. We do this because the
actions of subnormal subgroups of the finite groups W,,, involved in the construction
of groups W, can have orbits of one element. Section 6.3 completely classifies the
subnormal subgroups of the groups W. In particular, a recursive formula is given to
calculate subnormal length.

The main results of this thesis are contained in Section 6.4. Here the closed sub-
normal subgroups of any arbitrary Wilson group have been completely classified. For
an arbitrary Wilson group, the actions of subnormal subgroups of the finite groups
G, involved in the construction may have orbits of one element. The characterisa-
tion has been achieved by using Corollary 6.9, which has been developed previously in
Section 6.3.

The normal subgroup growth and the subnormal subgroup growth of a Wilson group
have been worked on, in Section 7.1 of Chapter 7. Since the normal subgroups and the
subnormal subgroups of the finite Wilson quotients G,, have been completely classified,
it was natural to count the number of normal subgroups and subnormal subgroups of
a Wilson group up to index at most |G|, for n > 0. We give upper and lower bounds
for the size of GG, in order to make statements about the rate of types of growth.

In Section 7.2, the number of subnormal subgroups of the infinite iterated wreath
products W constructed from the alternating group A,,, have been counted by using
a correspondence to the number of subtrees of the infinite m-regular rooted tree.

Another type of subgroup of a group is a maximal subgroup. We would have
liked to have investigated the structure of Wilson’s groups further by finding their
maximal subgroups. Chapter 8 looks at maximal subgroups of Wilson groups. Again,
to gain ideas of how to proceed, we resort to examining the maximal subgroups of the
easier example of the infinite iterated wreath products of alternating groups W first

described in Section 3.2. In particular, Section 8.2 examines the maximal subgroups

17



1.2. Thesis outline 1. Introduction

of the finite group Wj used to construct W and Section 8.3 goes on to examine the
maximal subgroups of the finite group Ws used to construct W.

In Section 8.4, information from Section 8.2 and Section 8.3 is used to describe
the maximal subgroups of the first Wilson quotients G1 = X1 i1, (X1 1, Go) such
that Go = Xo and X; are taken to be the alternating groups, and the unspecified
permutation representation of the group Gg is chosen to be the natural action of the
alternating group.

Chapter 9 concerns positive finite generation, and therefore finite generation of
Wilson groups. As an analogy, the finite generation of the infinite iterated wreath
products W is considered.

Open problems which have evolved from the work produced in this thesis are listed
in Chapter 10. They are referred to within the body of the thesis when they come to
light.

18



Chapter 2

Preliminaries

The purpose of this chapter is to set out the notations, definitions and basic group

theory results required for the understanding of the thesis.

2.1 Wreath products

Both the just infinite groups in Chapter 3 and the Wilson groups are constructed from

permutational wreath products, therefore it is beneficial to recall the definition.

Definition 2.1. Let U be a finite permutation group acting on a finite set €). Let X

V=]] X

weN

be a finite group. Define

where X, & X for all w € .
The wreath product of X by U, denoted X 1 U, is the semidirect product V x U.
The group U acts on V' by

(xw)wéﬁu = (xw-u*1 )UJEQv

where u € U and (x,),ecq € V. The normal subgroup V is called the base group of the
wreath product. The group U is sometimes referred to as the top group of the wreath

product.

Let X and Y be permutation groups acting on the sets €2; and {2y respectively.
The wreath product constructed from the permutation groups X and Y is again a
permutation group and it acts on the set 1 x 5. When we wish to view the wreath

product as such, it is called the permutational wreath product.
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2.1. Wreath products 2. Preliminaries

2.1.1 Minimal normal subgroups of some wreath products

In this subsection, we consider wreath products only where the base group is a product
of finite non-abelian simple groups. The fact (3.1) in [32] describes minimal normal
subgroups of these wreath products when the action is transitive. Lemma 2.3, below, is
a generalisation of this fact (3.1), since it does not assume that the action is transitive.
It says that the minimal normal subgroups of such wreath products XqU are contained
in V and each corresponds to a U-orbit. This lemma is applied in Proposition 6.8 for
the classification of subnormal subgroups of Wilson groups and subnormal subgroups
of the just infinite iterated wreath products W considered in Chapter 3.

First we need a preliminary lemma to help in the proof of Lemma 2.3. (Lemma 2.2

is also used later in the proof of Proposition 6.2.)

Lemma 2.2. Let U be a finite permutation group acting on a finite set Q0 with orbits
Q1,Q9,...,Q,.. Let X be a finite non-abelian simple group. Define the permutational
wreath product G = X 1q U. Denote the base group of the wreath product as V =
[Toco Xw, where X, = X for all w € Q.
Define
Ni={(zw)wea €V iz, =11 w & Q;},

for eachi=1,2,...,r. Suppose that N is a normal subgroup of G.
To show that N contains N;, for each i = 1,2,...,r, it is sufficient to prove that

N contains the coordinate subgroup

Vir = {(Y)wca €V iyw = 1if w# wi}

for at least one wy € §2;.

Proof. Since N; = [, cq,

subgroups V,,, for every w; € ;. In fact, it is enough to show that NV contains V,, for

Vi, it is enough to show that N contains the coordinate

at least one wy € ;. This is because U acts transitively on the orbit §2; and, for any
u € U, we have V! =V, ,-1. O

Lemma 2.3. Let group G = X 1q U be the permutational wreath product as defined in
Lemma 2.2.
Then the minimal normal subgroups of G are contained in V and are precisely the
groups
N ={(zw)we €V :ixpy=1ifw ¢ O},

N2:{(xw)w€ﬁev:xw:1 lfw¢92},
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2.1. Wreath products 2. Preliminaries

Ny ={(zp)wen €V iz, =1ifw ¢ Q,}.

Proof. We want to show that the minimal normal subgroups of G are precisely the
groups Ny, Na, ..., N,. Obviously, this will imply that the minimal normal subgroups
of G are contained in V.

Let i € {1,2,...,7}. Since G = VU, to check that N; is normal it is sufficient to
show that [N;,V] C N; and [N;, U] C N;.

To show [N;, V] C Ny, let 2 = (2u)weq € N; and y = (yu)weo € V. Setting
A = Q\Q; we have z = ((Zw)weq;, (1)wea) and y= (Yw)wes (Yu)wen)- So [z, 7] =
([Tw, Yw])wen can be written as

(([JUw,yw])wEQ“ ([17 yw])weA) = (([xW?gW])WGQN (1)w€A) € N;.

To show [N;, U] C N;, let £ = (z)weq € N; and u € U. Setting A := Q\Q; we have
2 = ((Tw)weq,, (wea). Since Q; is a U-orbit, this allows us to write [z,u] = 27! - 2%

as

((xojl)UJEQiﬂ (171)WEA) ) ((xwu*l)WEQi? (1)WEA) - ((‘T;lxwu*l)uﬁﬁw (1)WGA) € N;.

Next we show that IV; is minimal normal in G. For this, we need that the normal

closure in G of any non-trivial element x = (z,),cq € NV; is equal to N;.

(%) Choose wy € Q; such that z,, # 1. Since X is non-abelian simple it has trivial
centre and we can find y € X such that [z, ,y] # 1. Consider y = (yu)wen € V
with g, = y if w = w1 and y, = 1 otherwise. Then [z,y] € (z)@ can be written

as (([Tw, Ywefwr}s (Dwea\fwi}) # 1. As X is simple, the normal closure of [z, y]
in V is equal to V,,. Therefore V,,, C ()¢ and Lemma 2.2 proves the claim.

It remains to prove that every minimal normal subgroup of G is one of N1, Ns, ..., N,.
Let N be a minimal normal subgroup of G.

Suppose N C V. We can find 1 # z = (2,)weq € N. Replacing ()¢ by N in
argument (x) implies V; C N, for one i = 1,2,...,7.

Now suppose N € V. Then we can find uz = u(zy)weq € N with u € U\{1}
and x € V. Since u # 1, we can obtain w; € € such that wy := wy - u # wy. Choose
y € X\{1}. Consider y = (y,) € V with y, =y if w = w1 and y,, = 1 otherwise. Then
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2.2. Subnormal subgroups 2. Preliminaries

ly, uz] = g‘l(z_ly“g) € N can be written as

((y_l)w=w1 ) (1)w=w2 ) (DwGQ\{wl,wg}) ’
1

((az;ﬁ.l.ajwl )w=w17 (xojg 'y'xw2)w=w2> (xgl'l'xw)weﬂ\{whwg})

= ((y_l)w:w17 (y% )w:wza (1>weﬂ\{w1,w2})' (2'1)

Since y # 1, we have (<y—1)w:w17 (Y72 )= (1)w€Q\{w1,w2}) # 1. As X is simple,
the normal closure of [y,uz] in V contains V,,,. Therefore V,,, € N and Lemma 2.2

proves the claim. O

2.2 Subnormal subgroups

A subgroup T of a group G is subnormal in G if there exists subgroups
G:T()ZTl > ... ZTk:TSUChthat Tiﬂnfl,

for each ¢ = 1,2,..., k. When £ is the smallest possible number with this feature one
says that T is subnormal of length k in G.
2.2.1 Normal subgroups of some direct products

To describe subnormal subgroups in Chapter 6, we will need to know the normal
subgroups of a direct product of finite non-abelian simple groups. Therefore we will

frequently make use of the following fact.

Lemma 2.4. A normal subgroup of a direct product of non-abelian simple groups is a

direct product of some of its factors.

2.3 Maximal subgroups

A proper subgroup M of a group G is mazimal in G if there exists no proper subgroup
L of G strictly containing M.
2.3.1 The alternating groups

In Chapter 8, the classification of the maximal subgroups of wreath products of alter-
nating groups involves the maximal subgroups of alternating groups. The O’Nan-Scott

Theorem can be used to classify all the maximal subgroups of A,,, the alternating
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2.4. The normaliser of a direct product in a wreath product 2. Preliminaries

group of degree m; see [33, Sec. 2.6] for a very readable version. It appeared as a clas-
sification of the maximal subgroups of the symmetric group at a conference in Santa
Cruz on finite groups [28]. A maximal subgroup L of A,, is of one of the following six

types.
(a) (81 x Sg)N Ay, with m =1+ k and | # k (intransitive type);
(b) (S;1Sk) N Ay, with m =1k, 1 > 1 and k > 1 (imprimitive type);
(¢c) AGLg(p) N Ay, with m = p* and p a prime (affine type);

(d) (H*.(Out(H) x Si)) N Ay, with H a non-abelian simple group, k& > 2 and m =
|H|*=1 (diagonal type);

(e) (S;1Sk) N Ay, with m = 1¥, 1 > 5 and k > 1, excluding the case where L is

imprimitive on Q*) = {1,2,...,m} (product action type);

(f) H< L < Aut(H), with H a non-abelian simple group, H # A,, and L acting
primitively on Q*] = {1,2,...,m} (almost simple type).

Here, S; denotes the symmetric group of degree I; AGLg(p) denotes the affine
general linear group over the field of order p; Out(H) denotes the outer automorphism
group of H; and Aut(H) denotes the automorphism group of H.

However, not all the subgroups of type (a) to (f) may be maximal in A,,. The
paper [16] by M. W. Liebeck, C. E. Praeger and J. Saxl says that such groups L are in

general maximal and gives an explicit list of exceptions.

2.4 The normaliser of a direct product in a wreath prod-

uct

The following result occurs in the proof of Theorem 8.3, in Section 8.2, where the
maximal subgroups of the groups Wi = A, 1g+n) A, where o = {1,2,...,m} and
m > 5, are characterised up to conjugation. The result shows that the normaliser in
the wreath product X o U of the direct product H, where H is a subgroup of X, can

be computed from the normaliser of H in X.

Lemma 2.5. Let U be a finite permutation group acting on a finite set Q = {1,2,...,n}.
Let X be a finite group. Define the permutational wreath product G = X 1q U.
Suppose H is a subgroup of X. Then

Na(H®) = (Nx(H)?U = (Nx(H))® x U.
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2.5. Profinite groups 2. Preliminaries

Proof. Now (g1, 2, - gn)s € Ne(H®)

if and only if (H®?)@192:90)8 — (9 % H92 % ... x H9)® = HY,
if and only if H% = H, for all i € Q,

if and only if g; € Nx(H), for all i € ,

if and only if (g1,92,...,9n) € (Nx(H))%

Then Ng(H®) = (Nx(H))®U. Further, (Nx(H))*U = (Nx(H))® x U as (Nx(H))%
is the intersection of Ng(H®) with the base group X*. O

2.5 Profinite groups

In this section, we define the concept of profinite groups and give some basic properties.
There are many characterisations of a profinite group; see [15, Ch. I] for a readable
overview of profinite theory that is more specific to profinite groups. However, the
prevalent one of this thesis is that of a profinite group being an inverse limit of finite
groups.

A directed set is a partially ordered set I with respect to < with the property that
for all 7, j € I there exists k € I such that ¢ < k and j < k. For our work any directed
set is taken to be the set NU {0} with respect to the ordinary order-relation <.

Definition 2.6. An inverse system (G}, ;;) of topological groups indexed by a directed
set I consists of a collection G;, for i € I, of topological groups and a collection of
continuous group homomorphisms ¢;; : G; —+ G; defined whenever ¢ < j, for 4,5 € I,
satisfying

i = idg, and @0k = Pik
whenever 1 < j < k, for i,j,k € I.

Definition 2.7. An inverse limit of an inverse system (Gj, ¢;;) of topological groups
is a topological group G with a collection of continuous group homomorphisms ¢; :
G — Gy, for all i € I, such that

PijPj = Pi
whenever ¢ < j, for i,j € I.
In addition, the inverse limit has the following universal property: whenever H is
a topological group and v; : H — G, for all ¢ € I, is a collection of continuous group
homomorphisms satisfying ¢;;1; = 1; whenever ¢ = j, for i,j7 € I, then there is a

unique continuous group homomorphism 1 : H — G such that ;1) = 1; for each i.
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2.5. Profinite groups 2. Preliminaries

The inverse limit is denoted by lim(G;);er.
(_

The maps ¢; : G — G; of the inverse limit are not necessarily surjective, however,
without loss of generality, the maps ¢; can be defined as being surjective. Therefore

the inverse limit im(G;);er is the group
—

{(gi)iel € HGi : ij(g9j) = gi whenever i < J} ;
i€l
which is a subgroup of the direct product [[;c; Gi. We will see that for the profinite

groups considered in our work the maps (; are always surjective.

Definition 2.8. A profinite group is the inverse limit of an inverse system of finite

groups.

Finite groups G;, for ¢ € I, are regarded as topological groups with the discrete
topology. Then the direct product [[,.; G; is a topological group when given the
product topology. In this way, the inverse limit lim(G});er, with the induced topology,
becomes a topological group. Hence profinite grgps are topological groups.

Another characterisation is that a profinite group is a compact Hausdorff topological
group such that every open neighbourhood of the identity element contains an open
subgroup. Therefore the open subsets of a profinite group G are precisely those sets

which can be written as unions of cosets g/N of open normal subgroups N <, G.

Let G be any group. Define
I ={N <G : N has finite index in G}

with respect to reverse inclusion. That is, N < M if and only if M C N. Now [
is a directed set because the intersection of two normal subgroups of finite index is a

normal subgroup of finite index. Define the natural projections

NCRINS;
SDNM-M N

whenever N < M. The finite quotients G/N and maps ¢y form a natural inverse

system. The inverse limit G := lim(G/N) of this inverse system is a profinite group.
%

The group G is called the profinite completion of G.

Let p be a fixed prime. The normal subgroups of Z whose index is a power of p are
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2.5. Profinite groups 2. Preliminaries

of the form p'Z, for i € N. The finite quotient groups Z/p‘Z and natural projections

it nin T oz

whenever p/Z C p'Z form an inverse system. The inverse limit Zy = limZ/ p'Z of this
(—

inverse system is called the group of p-adic integers. Each element of Z, has a unique

p-adic expansion

ap +a1p + a2p2 +...= ( .. agalao)p,
where a; € {0,1,...,p — 1} are called p-adic digits.

Definition 2.9. Let p be a fixed prime. A pro-p group is a topological group that is

isomorphic to the inverse limit of finite p-groups.

Lemma 2.10. Let G be a profinite group.

Then every open subgroup of G is closed.

The contrapositive of the following result is used in Section 3.3 to prove that the in-
finite iterated wreath products W, constructed from alternating groups, are not heredi-
tarily just infinite. The result is also used in showing that the groups W (in Section 3.4)

are just infinite.

Lemma 2.11. Let G be a profinite group. Suppose H is a closed subgroup of G.
Then H is an open subgroup of G if and only if H has finite index in G.

The following result, found in [30, Lem. 0.3.1 (h)], is used to describe normal sub-

groups and subnormal subgroups of the profinite groups present in the thesis.

Lemma 2.12. Let G be a compact topological group. Suppose X;, for i € I, is a
collection of closed subsets of G with the property that for alli,j € I there exists k € 1
such that X3, C X; N X;.

If Y is a closed subset of G then

(ﬂ&)yzﬂxr
i€l el

Let X be a subset of a profinite group G. We say that X generates G (topologically)
if the subgroup generated by X is dense in G. The profinite group G is finitely generated
(topologically) if it contains a finite subset X that generates G (topologically). We
usually refer to topological generating sets as generating sets because we mostly consider

profinite groups as topological groups.
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2.6. Subgroup growth 2. Preliminaries

A profinite group has a property virtually if it has an open normal subgroup with
that property.

A profinite group G is just infinite if it is infinite and every non-trivial closed normal
subgroup of G is open. It is hereditarily just infinite if every open subgroup of G is

just infinite.

2.6 Subgroup growth

Studying subgroup growth of a group G involves considering the growth rate of the
function

n — sn(G),

where s, (G) denotes the number of subgroups of index at most n in G. Subgroup growth
gives a rough classification of groups into growth types.
A group G has polynomial subgroup growth of degree c if there exists a constant ¢
such that
sn(G) < n€ for all n.

In particular, we say that the growth type is linear if the constant ¢ = 1. In this thesis,

we are concerned with other subgroup counting functions, which are:

<

Sn

(G) denotes the number of normal subgroups of index at most n in G,

<4

Sn

(G) denotes the number of subnormal subgroups of index at most n in G
my(G) denotes the number of mazimal subgroups of index n in G.

The language of growth types is extended to these functions in a natural way.

2.7 Positive finite generation

A profinite group G has a natural compact topology, induced by the discrete topology on
the finite groups in the inverse system. Therefore it has a finite Haar measure p, which
is determined uniquely by the algebraic structure of G. We normalise this measure so

that 4(G) =1 and we can consider G as a probability space. Thus we can define
P(G,k)=pu {(gl,gg, k) €GW g ga. ..., gi topologically generate G} ,

for any positive integer k, where u also denotes the product measure on G*). The

Haar measure on profinite groups is discussed in [8, Ch. 18].
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A profinite group G is positively finitely generated (PFQG) if, for some k, the probabil-
ity P(G, k) that k randomly chosen elements of G topologically generate G is positive.
This term was formally introduced with A. Mann’s paper [18] and PFG groups were
surveyed in [17, Ch. 11].
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Chapter 3

Infinite iterated wreath products
AR VALY VA, Where m > 5

3.1 Introduction

Until recently all known hereditarily just infinite profinite groups were virtually pro-p
groups. However, if one looks at just infinite profinite groups then it is not difficult
to construct some that are not virtually pro-p groups. This chapter briefly describes
some such just infinite profinite groups, which have been studied, in particular, by
M. Bhattacharjee [3]. This is useful because their construction has similarities with
that of Wilson’s construction. The same techniques used to show that these groups
are just infinite will be used to show that the groups constructed by Wilson are just
infinite.

The just infinite profinite groups in this chapter are constructed from inverse limits
of iterated wreath products of alternating groups. The properties described below
remain true whether the alternating groups involved in the construction are allowed
to vary or not. However, for ease of reading, the alternating groups are taken to be
the same. In fact, the properties described still hold if the alternating groups are
generalised to any arbitrary finite non-abelian simple group. The actions of these non-

abelian simple groups would be required to be faithful and transitive.
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3.2 The construction

We now construct the just infinite profinite groups. Fix the alphabet A = {1,2,...,m},
where m > 5. We define the sets

Q*[]] — {i1i2--~ij:i17i27“'7ij EA};

for each j = 1,2,.... Here 4143 ...4; denotes a sequence of numbers and not a product
of numbers. The symbol * used for concatenation is written in order to remind the
reader of this.

Set Wy = Ay, the alternating group of degree m. The group A,, acts naturally on
the set Q*1 = {1,2,...,m}. We form the permutational wreath product A, Lo+] Am,
which we denote by Wj. This group is described as the semidirect product Wi =
AS,T ) Wo, where Wy acts on A%n ) by permuting the factors.

We observe that W acts naturally on the finite m-regular rooted tree of length 2.
This has been depicted in Figure 3.1 for m = 5. In this action the root vertex () is fixed

and the group Wj acts by coordinate permutations on the bottom layer of 25 vertices.

Figure 3.1: The wreath product A5 A5 = (A5 x As x A5 x A5 x As) x As acting
naturally on the 5-regular rooted tree of length 2.

Now the group W; acts naturally on m? elements. We can then form the permu-

tational wreath product A,, i1 Am Lo+n] Am, which we denote by Ws. This is the
2

semidirect product Wy = AS@n ) % W1. The process can be continued to form the nth

iterated wreath product

Wi = Am e - - - Ug+12) Am e Am.
This is the same as the semidirect product W,, = A%n R Why_1, for n > 1.

We construct a group W as the inverse limit of a sequence of finite groups (Wy)n>0
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and the natural projections

O, : Wy, = AU e W,y — Wi_1,

m

for n > 1. The limit W = lim(W,,),,>0 has the natural projections ¢,, : W — W,,, for
Jm >
n > 0.
We give a pictorial description of the inverse limit W in Figure 3.2, below. The

limit is indexed by the set N U {0} with respect to the ordinary order-relation <.

W=1lmW, _________
=

\ \\\\ \\\\
\ \\ \\\ \‘\
\ N DN RS
' On « P2 S L o
| \\ \\ AN
v ~ A ~

Ont1 Wh 0, 03 Wy 02 Wi 01 >

—_ _ — — Wy

Figure 3.2: A pictorial description of the inverse limit W.

3.3 Verifying not hereditarily just infinite and not virtu-
ally pro-p

We now verify that all such groups W, as defined above, are not hereditarily just
infinite. Fix m > 5. Define

U =ker(¢g: W — Wo) = WM,

where W (™) denotes the direct product of m copies of W. Now U is an open subgroup of
W because ¢y is a continuous map. However, N = W("=1 is a closed normal subgroup
of U such that the index U/N = W is infinite. The contrapositive of Lemma 2.11
implies that N cannot be open in U.

The fact that the groups W are not virtually pro-p, for some prime p, is because

the groups W,, are constructed from wreath products of non-abelian simple group A,,.
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3.4 Verifying just infinite

The rest of this chapter is concerned with determining the normal subgroups of the
profinite groups W, as defined above. This is completed in Corollary 3.3. In particular,
this shows that the profinite groups W are just infinite.

In Corollary 3.3, the non-trivial closed normal subgroups of a group W are denoted
by Vj, for j > 0. Due to the definition of these subgroups Vj, their indices in W can
easily be calculated. We have the indices |W : V;| = |W;_4|, for j > 1, and the index
|[W : Vo| = 1. All the indices are finite. The profinite group W is just infinite using
Lemma 2.11.

Our work has been restricted in Corollary 3.3 to closed normal subgroups because we
rely on Lemma 2.12, which only applies to normal subgroups that are closed. However,
a result by N. Nikolov and D. Segal [22, Cor. 1.15] shows that all normal subgroups
of a group W, since it is finitely generated (see Chapter 9), are automatically closed.
Therefore the characterisation of normal subgroups, in Corollary 3.3, covers all the

normal subgroups of the groups W.

3.4.1 The normal subgroups

Initially, we proceed in Theorem 3.2 by determining all the normal subgroups of the

finite groups W,,. The construction of W, = Aﬁ,T ")

x W,,_1 gives an indication of the
outcome.

The proof of Theorem 3.2 uses the following lemma.

Lemma 3.1. Let the finite groups W, for n > 0, be as defined above.
)

The unique minimal normal subgroup of Wy, is the group Aﬁl?" .

This lemma comes directly from a standard fact about permutational wreath prod-
ucts, see [32, (3.1)] or Lemma 2.3. That is because W,,_; acts transitively on m"

elements and also the kernel of the action of W,, on AS@% R is A%ﬂ n).

Theorem 3.2. Let Wy, for n > 0, be the finite groups as defined in Section 3.2. For
je{1,2,...,n+ 1}, define
VI = ker(Wy, — Wi_1) = AT s (AT 50 Al < Wy,

and define
Vit = W

Then the normal subgroups of Wy, are precisely the groups V" and Vi*. In particular,
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they form a complete chain

{=ViacVyc...cV'CVi =W,
Proof. We first prove that V" are normal subgroups of W,. The homomorphisms
Wy, — Wj_1 have kernels V", for j € {1,2,...,n+1}.

We now prove, by induction on n, that VJ” are the only normal subgroups of W,,.
Suppose N < W,,. For n = 0, all the normal subgroups of Wy are V° = {1} and
VOO = Wy holds as Wy is simple.

Now suppose n > 1. If N = {1} then N = V' ;. Assume N # {1}. We have
Ag,T ") C N, since the group A%n ") is the unique minimal normal subgroup of W,,, by
Lemma 3.1. Then there are two possibilities: A%nn) = N and A%nn) C N.

For Ag,T ") = N we are done, as N = V. We now look at the other possibility
A%n "= Vv € N. The group V" is the kernel of the homomorphism 6,, : W,, — W, _;.
Then there is a one-to-one correspondence between the set of normal subgroups of W,,
containing V, and normal subgroups of W,_;. By induction, we know that N is one

of the groups V™. O
Corollary 3.3. Let W = {iiH(Wn)nzo be the inverse limit of the groups Wy, as defined
in Section 3.2. For j > 0, define

regarded as subgroups of W.
Then the non-trivial closed normal subgroups of W are precisely the groups Vj. In

particular, they form a complete chain

o C Va2 SVt SV C . SV C V=W

=

Proof. Theorem 3.2 showed that V", for j € {0,1,...,n + 1}, are all the normal
subgroups of W,, and that they form the chain

{B=VincVi'c...cV" SV =W,

We recall that there is an inverse system of surjective homomorphisms 6,, : W,, —
W1, for n > 1, such that

vl for0<j <n,
On(V]') =1 ’ (3.1)
{1} for j =n+1.
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Let M <9 W be a non-trivial closed normal subgroup of W. Since W is an inverse
limit, we can find n > 0 such that the image of M in W, under the natural projection
¢n + W — W, is non-trivial. (This argument is used in the proof of (2.2) in [32].)
Therefore ¢, (M) = V', for some j € {0,1,...,n}.

We claim that M = Vj. Since M is closed, it is enough to show that ¢, (M) = V",
for all m > n. Then ¢, (M) = ¢ (V) implies ker ¢, M = ker ¢,,,V;, for all m > n.

Thus

M= (ﬂ kerd>m>M: () (ker ¢ M)

m>n m>n
= () (ker ¢ Vj) = < N kergbm)Vj =V,
m>n m>n

using Lemma 2.12.

Clearly ¢, (M) = V™ is true for m = n. Now suppose m > n. From

{1} # ij_l = ¢m-1(M) = O (¢ (M))

and mapping (3.1), we conclude ¢, (M) = V™. O

Remark. The non-trivial normal subgroups of W can be written as Vji1 = ker(¢; :
W — W), for j > 0, and Vp = ker(W — {1}).

34



Chapter 4

Wilson groups

4.1 Wilson’s construction

We now describe the hereditarily just infinite profinite groups constructed by Wilson
in [32], which are not virtually pro-p. This construction provides numerous examples
of groups with the properties described in Theorem 1.1.

Let Xo, X1, X2,... be any infinite sequence of finite non-abelian simple groups.
Set Gg = Xo. The group Gg has a faithful transitive permutation representation of
some degree dj. For instance, when G acts on itself by right multiplication, and then
dy = |Go|.

Suppose a group G,_1, for n € N, with a faithful transitive permutation representa-
tion of degree d, has been constructed. We construct the group G, by two operations
of taking permutational wreath products.

First let L, = XY(Ld"), for n € N, the direct product of d,, copies of X,,. We form

the first permutational wreath product
Xn,, Gn-1, where Qg ={1,2,...,d,}.

This group is described as the semidirect product L, x G,,_1, where G,,_1 acts on L,
by permuting the factors.

Next we define a transitive permutation representation ¢ of L,G,_1 on the set L,
with the subgroup L,, transitive. The ingredients are the action of L,, on itself by right

multiplication and the action of G,,_1 on L, by conjugation. The action ¢ is
lo(I'g) = (II')9, where l € L,, and l'g € L,Gy,—1. (4.1)

Let M, = X,(JL"D, for n € N, the direct product of |L,| copies of X,,. Now we form
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the second permutational wreath product
Xn 2Ln (LnGn—1)7

which we denote by G,,. The group G, is described as the semidirect product M, x
(LpGpn—1), where the group L, G,_1 permutes the factors of M,, according to the per-
mutation representation ¢.

We now form the inverse limit G of the groups G, as described above. The resulting
group G is one of the groups having the properties stated in Theorem 1.1. We will refer
to the groups arising from such a construction as Wilson groups. More specifically, a
Wilson group G is the inverse limit of a sequence (Gj,),>0 of finite groups as defined

above and the natural projections
0, :G, = (MnLn) X Gpo1 — Gp1,

for n > 1. The limit G = lim(Gy)n>0 has the natural projections ¢, : G — G, for
p— >
n > 0.
The following, Figure 4.1, illustrates Wilson’s construction in detail, passing from

the finite group 7 to the finite group Gy.

1 01

1 :del)

Figure 4.1: A pictorial description of Wilson’s construction at level Gy.
We give an overview of the inverse limit G of a Wilson group in Figure 4.2, below.
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The limit is indexed by the set NU {0} with respect to the ordinary order-relation < .

G=1lmG, - - _ ____ __
— T T ssSIIc--l_
\ > ‘~\ ~‘~\\
\ N \\\ RN
\ N \\ \\
\ A s S
\ Pn Rz NN} ~ %0
| \ N R
~ ~ A \\
9n+1 Gn Hn 93 G2 92 G 91 4
e — — e —— — —>G0
:MnLn X Gn—l :M2L2 A G1 :M1L1 X GO

Figure 4.2: A pictorial description of the inverse limit G of a Wilson group.

4.2 Veritying hereditarily just infinite and not virtually
pro-p

In this section, we briefly explain the proofs of Theorem 1.1 and Corollary 1.2, in
Chapter 1. For further details the reader may refer to the original source of Wilson’s
paper [32].

Wilson develops the criterion (2.2) in [32], which says that the inverse limit of
certain finite groups is either virtually abelian or hereditarily just infinite. Applying
this criterion to the groups G,, as defined above, he shows that the Wilson groups are
hereditarily just infinite by ruling out the possibility of them being virtually abelian. A
Wilson group has all the composition factors of the finite continuous images non-abelian
because the groups G, are constructed from semidirect products of direct products of
non-abelian simple groups X, X1, ..., X,.

We explain why the Wilson groups are not virtually pro-p, for some prime p. For
a contradiction, suppose that a Wilson group G is virtually pro-p. We find a pro-p
open normal subgroup N of G. Let K be an open normal subgroup of N. Then
N/K is a finite p-group. Therefore all the composition factors of N/K are cyclic of
order p. So G/K would have cyclic composition factors. That is G/K would have
abelian composition factors. This contradicts the fact that all composition factors of
finite continuous images of G are non-abelian.

It has been seen that every countably based profinite group can be embedded in
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4.2. Verifying hereditarily just infinite and not virtually pro-p 4. Wilson groups

the product

HAn:A5><A6 x A7 X ...

n>5
of alternating groups, refer to [30, (4.1.6)]. To prove Corollary 1.2, that every countably
based profinite group can be embedded in a specific hereditarily just infinite profinite
group, it suffices to embed the product [[, -5 Ay in a specific Wilson group. For this
embedding to take place, certain choices for tX'n are required in the construction of this
specific Wilson group. They are specified as X,, = A,,15, for each n > 0.

The following technical result is used to prove that the Wilson groups are heredi-

tarily just infinite, see [32, (3.2)].

Lemma 4.1 (Wilson [32]). Let the finite groups Ly,, M,, forn > 1, and Gy, forn > 0,

be as defined above.
(a) The unique minimal normal subgroup of Gy, for n > 1, is M,.
(b) The unique minimal normal subgroup of Ly,Gn—1, for n > 1, is Ly,

The proof is elementary, but an important ingredient used from the construction of
G, is that the wreath product actions are transitive. Alternatively, the proof follows
immediately from Lemma 2.3.

Lemma 4.1 is used in Chapter 5 to characterise the normal subgroups of the Wilson

groups.
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Chapter 5

Normal subgroups

5.1 General Wilson groups

In this chapter, we complete the characterisation of the closed normal subgroups of an
arbitrary Wilson group. The characterisation holds for any choice of X;, for ¢ > 0, and
for any choice of faithful transitive permutation representation of G, for n > 1, in the
construction of a Wilson group.

Our work has been restricted in Lemma 5.2 to closed normal subgroups because we
rely on Lemma 2.12, which only applies to normal subgroups that are closed. However,
a result by N. Nikolov and D. Segal [22, Cor. 1.15] shows that all normal subgroups of
a finitely generated Wilson group are automatically closed. Therefore the characteri-
sation of normal subgroups, in Corollary 5.3, covers all the normal subgroups of any
Wilson group provided the first group in Wilson’s construction has size |Gg| > 35! (see
Chapter 9).

In finding the normal subgroups, we can see directly that all the Wilson groups
are just infinite, which is implicit from [32, (3.3)]. Let G be a Wilson group arising
as an inverse limit of finite groups G,, as defined in Section 4.1. In Corollary 5.3, the
non-trivial closed normal subgroups of G' are denoted by P; and @);, for j > 0. Due to
the definition of these subgroups P; and @, their indices in G' can easily be calculated.
We have the indices |G : P;| = |G|, for j > 0, and |G : Q| = |L;G;j_1], for j > 1, and
the index |G : Qo| = 1. All the indices are finite. The profinite group G is just infinite
using Lemma 2.11.

To describe normal subgroups of G, our strategy will be to first determine the
normal subgroups of the finite groups G,. As a motivation, the description of G,, =
M,, % (L, x Gp—1) implies M,, < G,, and M, L, < G, for every n > 1. Therefore G,

has at least two types of normal subgroups.
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For the purpose of what follows we define My = Gy.

Theorem 5.1. Let G, for n > 0, be the finite groups as defined in Section 4.1. For
j€40,1,...,n}, define

P]’.’l = Mn XX (MjJrl X Lj+1)

and define
Qf =My x...x (M1 > (Ljp1 @ My)).

Then the normal subgroups of G,, are precisely the groups Pj" and Q?. In particular,

they form a complete chain

{L=P'CQ,CP 1 C...CQ1 C P C Q5 =GCn.
Proof. We first prove that P;' and )} are normal subgroups of Gp. The homo-
morphisms G, — G; have kernels P, for j € {0,1,...,n}. The homomorphisms
Gy — Gj/M; have kernels Q7, for j € {0,1,...,n}.

We now prove, by induction on n, that P} and Q? are the only normal subgroups
of G,,. Suppose N < G,,. For n = 0, all the normal subgroups of Gy are Py = {1} and
Qg = (G holds as Gy is simple.

Now supposen > 1. If N = {1} then N = P’. Assume N # {1}. We have M,, C N,
since the group M, is the unique minimal normal subgroup of G, by Lemma 4.1 (a).
Then there are two possibilities: M, = N and M,, C N.

For M, = N we are done, as N = Q). For M,, C N we have M, L, C N because
L,, is the unique minimal normal subgroup of L,G,_1, by Lemma 4.1 (b). From
M,L, € N we have two cases. That is M,L, = N implies N = P" , and we are
done. Alternatively M,L, = P} ; € N. Now P/_, is the kernel of the homomorphism
0, : G, — G,_1. Then there is a one-to-one correspondence between the set of normal
subgroups of G, containing P’ ; and normal subgroups of G\,—1. By induction, we
know that N is one of the groups P} or Q7. O

Figure 5.1, below, illustrates the chain of normal subgroups of the finite groups G,,,
for n > 0.
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****** s e Ghn=0g
Go Mo
,,,,,, ¢ Dy
G Ly
d o
Go M,
———————————— o PI'
Lo
* Qy
Ma
7777777777777777777 + PP
: P
Qn
{1} =P

Figure 5.1: The chain of normal subgroups of the finite group G,.
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Lemma 5.2 is required due to the two different types of notation for the normal

subgroups of G,,.

Lemma 5.2. Given finite groups Gy, for n > 0, in which all the normal subgroups
form a chain

and an inverse system of surjective homomorphisms 0, : G, — Gn_1, forn > 1, such
that
NPY o for 1 <i < 2n,

0u(NT) = |
{1} forie{2n+1,2n+2}.

(5.1)
Then the inverse limit G = @(Gn)nzo has non-trivial closed normal subgroups

precisely Ny = im(N;")y 00, for i > 1, regarded as subgroups of G.
<—

Proof. Let M <G be a non-trivial closed normal subgroup of G. Since G is an inverse
limit, we can find n > 0 such that the image of M in G, under ¢, : G — G, is
non-trivial. Therefore ¢, (M) = NJ*, for some i € {1,2,...,2n+ 1}.

We claim that M = Nj;. Since M is closed, it is enough to show that ¢, (M) = N,

for all m > n. Then ¢,,(M) = ¢ (N;) implies ker ¢, M = ker ¢,,, N;, for all m > n.
Thus

M= (ﬂ kerqu)M: () (ker ¢ M)

m>n m>n
= ) (ker ¢ N;) = (ﬂ kergﬁm)Ni = N,
m>n m>n

using Lemma 2.12.

Clearly ¢y, (M) = N/™ is true for m = n. Now suppose m > n. From

{1} # Nimil = gbmfl(M) = 9m(¢m(M))

and mapping (5.1), we conclude ¢, (M) = N™. O

1

Corollary 5.3. Let G = lim(Gy)n>0 be the inverse limit of the groups G, as defined
Jm >
in Section 4.1. For j > 0, define

Py = lm(PP ) soc

and define

Qj = {iin(@?)nﬁooy
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regarded as subgroups of G.
Then the non-trivial closed normal subgroups of G are precisely the groups Pj

and Q;. In particular, they form a complete chain
QI C P C QPG .S C R C Q=G

Proof. We apply Lemma 5.2 to the groups G,,, for n > 0, of Wilson’s construction and

their normal subgroups. Define

Qf(i—l)/m if 4 is odd,

PL"(FI)/2J if 7 is even,

Nj* =
where ¢ € {1,2,...,2n + 2}. For each n, these normal subgroups of G,, were defined
in Theorem 5.1. It was shown that these are all the normal subgroups of G, and they
form a chain.

The definition of the groups N;* also shows that the second condition for Lemma 5.2
is satisfied. For 1 <1 < 2n + 2,

o, (v = 3 O (@lan2) = Qi = N it is odd,
en(PI_TEifl)/Zj) = Pﬁ;_ll)/% = N 1if i is even.
We take Q"—1, pr—1, N;nlll and N;;B to be the trivial group {1}. O

Remark 5.4. Fix a prime number p and let K be a finite field of characteristic p > 2.
The Nottingham group over K is the group N (K) := t + t>K[[t]] of normalised formal
power series over K under substitution. For every i € N, the sets NV;(K) := t+t' T K[[t]]

are normal subgroups of A/(K) and they form a chain

L S AG(K) © NG(K) S M(K) = N(K).

The Nottingham group is a pro-p group. This is because it is the inverse limit of

the inverse system of finite p-groups N (K)/N;(K) and natural projections
N(EK) [Nis1(K) — N(K)/N;(K),

for i € N, recall Section 2.5. The Nottingham group is a hereditarily just infinite group;
see R. Camina [5].

For each r > 0, there are also p 4+ 1 non-trivial normal subgroups H of N (K) such
that Nprys(K) € H C Npry1(K); referred to by B. Klopsch in [14]. Therefore the

= =
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chain of normal subgroups of a Wilson group is more rigid than in the Nottingham

group, where the normal subgroups almost form a chain.

An analogy with the Nottingham group poses many interesting questions for the

Wilson groups and we include some of them in Question 2 of Chapter 10.
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Chapter 6

Subnormal subgroups

6.1 Introduction

This chapter works on the task of characterising the subnormal subgroups of Wilson
groups.

Let G be a Wilson group arising as an inverse limit of finite groups G,, as defined
in Section 4.1. As before when describing the normal subgroups, our strategy will
be to first determine the subnormal subgroups of the finite groups G,. For ease of
calculation, we will also consider a particular subgroup H,, of G, such that there exists

surjective homomorphisms G,, — H,, — G,,_1. That is, we define
Hy =Ly~ anla

for every n > 1.

Remark. Using the newly defined groups H,, the non-trivial normal subgroups of G
can be written as P; = ker(¢; : G — G;), for j > 0, Q; = ker(G — H;), for j > 1,
and Qo = ker(G — {1}).

The groups G,,, in the construction of a Wilson group, are formed from two types of
transitive actions. One type are the unspecified actions of the groups Gy,—1, for n > 1,
on a set of d,, elements. The other type of transitive actions are the groups L,G,_1,
for n > 1, acting on the sets L,, by the action defined in (4.1), from Section 4.1.

In the action (4.1), a subnormal subgroup of L,, acts on L,, by right multiplication
and therefore the orbits of a non-trivial subnormal subgroup have at least two elements.
However, the action of a subnormal subgroup of G,_1 on d,, elements may have orbits
of one element, that is the action has fixed points. We illustrate this latter conclusion

with the following example.

45
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Example 6.1. Take a transitive and faithful action of X,,_1 on a set A. Define Xr[fll =
Xp—1 and A; = {(\i) : A € A}, for ¢ = 1,2,...,|L,—1|, noting that A; = A as
X, _1-spaces. Let M, 1 = X,(Jff’ll) act on the set ULi’i’ll A;, where x b

n_1, for each

i=1,2,...,|Ly_1], acts on A; by the chosen action.

Recall Gp—1 = Xp—1,, , (Ln—1Grn—2) is a wreath product and the part L,,—1Gp—2
acts transitively on the set L,,_1, according to the action (4.1). Set ULi”l’l‘ A= Qq,.
Consequently, the group G,,—1 acts transitively on the set €13, by the natural permu-
tational wreath product action, as explained in Section 2.1.

Non-trivial elements of L,,_1G,_o acting on the set L,_1, according to the action
(4.1), can have fixed points. However, these elements do move at least one other point
and so this action is faithful. Consequently, the full action of the group G,_1 on the
set €1g,, is faithful.

Now the action of the subnormal subgroup X,,—1 x1x...x1C M,_1 of G,,_1 on

g4, has many fixed points.

The above observation has an effect on the characterisation of the subnormal sub-
groups of Wilson groups which we now explain. Suppose K is a subnormal subgroup
of H, = L,Gy—1 such that K € L,,. Then L, K /L, is isomorphic to a subnormal sub-
group U of G,,_1. We consider the orbits of the action of U on d,, elements. As shown
in Example 6.1, some orbits may have only one element. We see later in Corollary 6.9,
within Section 6.3, to satisfy the condition of normality, the subnormal subgroup K
must contain all the factors of L, = X,(Ld”) which correspond to the U-orbits that
contain at least two elements.

Section 6.2 characterises the subnormal subgroups of particular Wilson groups
where a choice for the unspecified actions of G,_1, for n > 1, on a set of d, ele-
ments is made. This choice guarantees that subnormal subgroups of G,_1 have all
their orbits containing at least two elements.

Later, in Section 6.4 we characterise the subnormal subgroups of an arbitrary Wilson
group, that is, where the actions of the groups G, _1 remain unspecified. Consider the
action of the groups G; on the sets Qq, , = {1,2,...,d;j11}, for j > 1. The description
of some subnormal subgroups of a general Wilson group (see Section 6.4) involves the
set

Ir,
{w € Q. :w'XjLJ # {w}},where@;&ILj C Ly;

I, I,
the notation w - X jLJ denotes the orbit of w under the action of the group X, M< Gj.
Let g € G. The support of g is the set of points of 24, , which are not fixed by g
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and it is denoted by supp(g). So we write
supp(g) = {w €Qg, 1w g ;éw}.

Therefore the reader could consider the set {w € Q4,,, : w- XjILj # {w}} as the support
of the group XjILj < Gj.

We make a short remark about notation, which occurs in the classification of sub-
normal subgroups of the Wilson groups (see Section 6.2 and Section 6.4) and subnormal
subgroups of the infinite iterated wreath products W of alternating groups (see Sec-
tion 6.3).

Let X be a group and let €2 be a set. Then

XP={fIf:Q — X} =2 {(#)weq : 2w € X}.

Let I C Q. Write A := Q\I. To define X' we extend all functions f from I to X by
setting f(A) = {1}. Therefore

X2 {(z)wer X (Voen : 2, € X}

In so doing, it is acceptable to write X1 C X,

6.2 Particular Wilson groups

In this section Wilson’s construction is limited by specifying that the group Gy _1, for
n > 1, acts on itself by right multiplication. Therefore d,, = |G,,—1|, for n > 1. Thisis a
faithful and transitive action and so satisfying the conditions of Wilson’s construction.
Implicitly, the action of a non-trivial subnormal subgroup of G,,_1 on d, elements
now has all its orbits containing at least two elements. Hence the characterisation of
subnormal subgroups has been simplified.

Theorem 6.4 determines the subnormal subgroups of the finite groups G,, for this
restricted construction. Then Corollary 6.6 completely classifies the closed subnormal
subgroups of the Wilson groups that arise from this particular construction.

The inductive argument of Corollary 6.7, using the result by N. Nikolov and D. Se-
gal [22, Cor. 1.15], shows that all subnormal subgroups of a Wilson group are automat-
ically closed provided the first group in Wilson’s construction has size |Go| > 35!, and
hence the Wilson group is finitely generated (see Chapter 9). Therefore the character-
isation of subnormal subgroups, in Corollary 6.6, covers all the subnormal subgroups

of our particular restricted Wilson groups provided |Gg| > 35!.
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For the restriction, it is found that the subnormal subgroups of these Wilson groups
are squeezed between consecutive normal subgroups. Therefore there are relatively
few compared to the Nottingham group, which is a pro-p group and here every open
subgroup is subnormal, refer to [27, 5.2.4]. At the end of this section, Figure 6.1 depicts
the subnormal subgroups of these Wilson groups lying between the normal subgroups.

Also, it is found that the subnormal length for a Wilson group is at most 3 (found
later in Corollary 6.17), and therefore is bounded. This is in contrast to the Nottingham
group, where the subnormal length is unbounded, and is proved with the following short
argument.

First note that there are finite p-groups G which have subnormal subgroups of
arbitrarily large subnormal length in G. Now fix a finite p-group G with a subnor-
mal subgroup H of subnormal length [ in G. By a theorem of C. Leedham-Green
and A. Weiss, see [4], G embeds as a subgroup into the Nottingham group N. So
we may assume that G < A. There is an open normal subgroup N of N such that
G N N = {1}, since G is finite and [30, Cor. 1.2.4 (iii)]. This implies GN/N = G and,
as HNN = {1}, also HN/N = H. Consider S = HN. Any chain

N=Tyohv>..bIT 1>T,=S
showing that S has subnormal length < k in N intersects to a chain
GN=ToNGNP>TINGN>...IT,_ 1NGN>T,NGN =S.

Therefore HN/N = H has subnormal length < k in GN/N = G. Thus k > [ and S
has subnormal length > [ in N.

To prove Theorem 6.4, determining the subnormal subgroups of the finite groups
G, of Wilson’s restricted construction, we use Proposition 6.2 concerning subnormal
subgroups of permutational wreath products as defined in Lemma 2.2 of Section 2.1.
We recall the definition. Let U be a finite permutation group acting on a finite set
Q with orbits Q1,Qs,...,Q,. Let X be a finite non-abelian simple group. Define the
permutational wreath product G = X o U. Denote the base group of the wreath
product as V.

In Proposition 6.2, the assumption is made that each of the U-orbits has at least
two elements. Then the subnormal subgroups K of G such that VK = G contain the
base group V. Proposition 6.2 can be readily applied to the circumstance where U is

taken to be a subnormal subgroup of G,,_; acting on G, _1 by right multiplication.

Proposition 6.2. Let group G = X 1q U be the permutational wreath product as de-
fined in Lemma 2.2. Assume that each of the U-orbits Q1,s, ..., has at least two
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elements. Suppose K is a subnormal subgroup of G such that VK = G.
Then V C K. In particular, this gives K = G.

Proof. We first show that we can assume K < G. Since K is subnormal in GG, we have
G=Ty>T>.. T, 1>T, = K. Without loss of generality, suppose this is a shortest
chain. This means G # T1,Th # T, ..., T 1 # K.

Consider the beginning of the chain G > Ti. Now VK = G implies VI = G.
We apply the proposition, which we assume to be true for the special case where the
subnormal subgroup is actually normal, to T;. This gives T} = G. Therefore there
is no such shortest chain involving the T;, for : = 1,2,...,k — 1, of subnormal length
greater than 1. Thus K <G.

To prove V' C K, it is sufficient to show that each of the minimal normal subgroups
of G is contained in K. Let i € {1,2,...,7}. Let wy,wa € §; such that w; and wo are
distinct. We can find v € U such that wj - u = wy because U acts transitively on €;.
As VK = G, we can obtain z € V such that uz = u(zy)weq € K. Choose y € X\{1}.
Consider y = (y,,) € V with y, =y if w = wy and y,, = 1 otherwise.

Then [y, uz] € K is similarly written as the element (2.1), in the final paragraph
of the proof for Lemma 2.3. Continuing the argument, as written in the proof of

Lemma 2.3 gives the required result. O

The proof of Theorem 6.4 (and later the proof of Theorem 6.15) also makes use of

the following result.

Lemma 6.3. Let G,, for n > 0, be the finite groups as defined in Section 4.1. Recall
that the group Gp—1 has a faithful transitive action on €1y, .

Then each of the M,,_1-orbits has at least two elements.

Proof. Since G,—1 acts transitively on g, and M,,_; <G),_1, all the M,;,_;-orbits have
the same size. This common size cannot be one because M,_1 is not trivial and G,_1

acts faithfully on Q; . Therefore each of the M,,_1-orbits has at least two elements. [

For the following, recall the normal subgroups P} and Q7, for j € {0,1,...,n},
of G, defined in Theorem 5.1.

Theorem 6.4. Let G, for n > 0, be the finite groups as defined in Section 4.1. In the
Wilson construction, assume that the unspecified action of the group Gy, for n >0, is
taken to be right multiplication on itself.
For j €{0,1,...,n— 1}, define
I,
S?(Idj+1) = Q;’LJrl XX e < Pjn; where () 7é Idj+1 - Qd

Jj+1 j+17
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and define
Sy ={1}.

For j € {1,2,...,n}, define
I
Tr(Ip,) =P % X;7 < QY where 0 # I, C Lj,

and define
10 = Gp.
Then the subnormal subgroups of Gy, are precisely the groups S} (1a, ), Sy, T7'(IL;)

and T§'. In particular, for all 14,, Ir,,, ... , I, and I, , they form chains

n

St =Pr CTMIL,) C QLS Spy(Ia,) SPL G ...
C P CT1IL,) € QF C Sp(I) € By

=

The subnormal length in G, of the group S]’-L(IdHl) 18

1 if Iy, = Qa,,, (implying that S} (1a,,,) = Pl'),

J
2 if Ly, Q.-

The subnormal length in Gy, of the group T}'(Ir;) is

L if Iy, = Ly (implying that T} (I1;) = QF ),
2 ifl, C L.

Proof. We first check that the groups S7(14;,,), Sy, T}'(I;) and T are all subnormal
subgroups of G,. Obviously S' = {1} < G,, and T} = G, < G,. For any 0 #

1, C Q.

i1 © Qa,,,, we have

I
S (Tt ) = Qfr @ X0 D Qg 2 Ly = Pf < Gy, (6.1)
Taj i,
as Xj+1 < Lji1. For any () # I, C Lj, we have

Ir,.
Tr(I,) =P = X;7 QPP M = Q7 < Gy, (6.2)

Ip,
as Xj 7 < M;.
If Iy,,, = Qq;,, then S7(I4,,,) = P} and the subnormal series (6.1) reduces to a

chain of length 1. Similarly, if Iy, = L; then T7'(Ir;) = Q7 and the subnormal series
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(6.2) reduces to a chain of length 1. For all other S7(l4,,,) we have displayed the
shortest length of a subnormal series (6.1) because Pj" is the smallest normal subgroup
of G, containing S7(I4;,,) and S} (14, ,)
holds for all other T7(Ir;).

Recall the definition of the groups H,, = L,G,_1, for n > 1, as defined at the

beginning of Section 6.1. Due to H, = G, /M,, the theorem we are currently proving

is not normal in G,. A similar argument

also implicitly makes a statement about the subnormal subgroups of H,. We now
prove, by induction on n, that every subnormal subgroup of GG,, is one of the groups
listed. Hence the subnormal subgroups of H,, are homomorphic images of the subnormal
subgroups of G, listed between @ and Qg under the canonical map G,, — H,.

For n = 0, all the subnormal subgroups of Gg are {1} = S) and G = T holds as
Gy is simple. Although it will also follow from the general argument below, we now
prove separately the implicit claim for Hj.

Suppose K is a subnormal subgroup of Hj. Then L K/L; is a subnormal subgroup
of Hi/L1 = Gy. Since Gy is simple, we know

LlK/Ll = {1} or LlK/Ll = Go.

For the case L1 K/L; = {1}, we have K C L;. Then K is subnormal in L; = del).
There are two possibilities, either K = {1} = M T} (I1,)/Mj, for any § # I, C Ly,
or, since L is a product of non-abelian simple groups X1, using Theorem 2.4, we have
K = del is the image of S§(1y,), for some () # Iy, C €4,, under the canonical map
G1 — H;. Due to Hy; = G1/M;, there are subnormal subgroups of H; of this form.

For the case L1 K/L1 = Gg, we have L1 K = L1 x Gy. Since Gy acts transitively
on (14, , there is exactly one Gy-orbit €24,. Proposition 6.2 gives L; C K. Therefore
K = Ly x Go 2T} /M. For n = 1, the result holds for H;.

Suppose that the result holds for GG,,_1. Now we prove the result for H,,. Let K be

a subnormal subgroup of H,. Then there are two cases:
K C L, (case 1), and K Z L,, (case 2).

Case 1.
For K C L,, we have K is subnormal in L,, = Xﬁbd”). There are two possibilities,
either K = {1} = M,T"(Ir,)/M,, for any O # I C L,, or, since L, is a
product of non-abelian simple groups X,,, using Theorem 2.4, we have K = Xéd"
is the image of S’ ;(I4,), for some () # I; C Qg , under the canonical map

G, — H,.
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6.2. Particular Wilson groups 6. Subnormal subgroups

Case 2.

Now suppose K ¢ L,. We know {1} % L,K/L,, is a subnormal subgroup of
H, /L, = G,—1. Then there are two possibilities:

and

L,K/L, C L,M,_1/L, (case 2a),

L,K/L, £ L,M,_1/L,, (case 2b).

Case 2a.

For L,K/L, C L,M,_1/L,, we have {1} % L,K/L, is subnormal in
LnMn—l/Ln = Mn—l‘ So

LRK/LH = XiL—nl_l = Tr?:ll(ILn—l)7

for some ) # Ir,, , C Ly—1. Put 7"} (Iz, ,) =:T. Then L, K = L, x T.
Specifying that G,_1 acts on itself by right multiplication ensures that each
of the T-orbits has at least two elements. Also K C L, T and so K is sub-
normal in L,T. Proposition 6.2 gives L, C K. Therefore K = L, x T is
the image of 7, | (Ir,_,) under the canonical map G, — H,.

Case 2b.

I

For L,K/L, € L,My,_1/Ly,, we have L,K/L,, is subnormal in H, /L,
Gy—1 and is not contained in L, M,,_1/L,. By induction, we have L, K /L,
S5 (Ia;,,), for some j € {0,1,...,n—2}, or LyK /L, = T }(I1,), for some
je{1,2,...,n—2}, or L,K/L, =Ty "

We denote this isomorphic copy of L,K/L, in G,—1 by R. Then L,K =
L, x R. Observe that M,,_1 C R. Each of the orbits of M,,_1 in its action

upon {14, , and hence each of the orbits of R in its action upon €14, , has

I

at least two elements (see Lemma 6.3). Therefore Proposition 6.2 can be
applied irrespective of the chosen actions for the groups G,,—1 on {1, .

Also K C L, R and so K is subnormal in L,, R. Proposition 6.2 gives L,, C K
and so K = L, x R. Therefore K is the image of S} (l4;,,) under the
canonical map G,, — H,, for some j € {0,1,...,n—2}, or K is the image of
TJ’-"”(ILJ.) under the canonical map G,, — H,, for some j € {1,2,...,n—2},
or K =T /M,.

Suppose that the result holds for H,. Now we prove the result for G,,. Let K be a
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subnormal subgroup of G,,. Then there are two cases:
K C M, (case 1), and K Z M, (case 2).

Case 1.
For K C M,,, we have K is subnormal in M,, = XT(JL”D. There are two possibili-
ties, either K = {1} = S]!, or, using Theorem 2.4, we have K = Xfn = " (IL,),
for some () # I, C Ly,.

Case 2.
Now suppose K € M,,. We know {1} 2 M, K /M, is a subnormal subgroup of
Gn /M, = H,. Then there are two possibilities:

M, K /M, C M,L, /M, (case 2a),

and
M, K/M, € M,L, /M, (case 2b).

Case 2a.
For M,K/M, C M,L,/M,, we have {1} 2 M,K/M, is subnormal in
MyLn/M, 2 L. So
M, K/M, = Xy

for some () # I, C Qg,, which is the image of S]'_; (I4,) under the canonical
map G, — H,. Put S]'_,(Ig,) =: S. Then M, K = S.

Right multiplication by L, on itself in the action (4.1) implies that each
of the orbits of Xid" in its action upon L, has at least two elements. In
the action of Xfld" on L,, each non-trivial element of Xéd” acts fixed point
freely. Therefore this action is faithful.

Also K C S and so K is subnormal in S. Proposition 6.2 gives M,, C K.
Therefore K = S = S'_,(14,).

Case 2b.
For M,,K/M,, £ M, L, /M,, we have M, K /M, is subnormal in G,,/M,, =
H,, and is not contained in M, L,,/M,. By induction, we have M, K/M, =
T} (Ir,)/ My, for some j € {1,2,...,n — 1}, or M, K/M, = S} (la,,,)/Mn,
for some j € {0,1,...,n — 2}, or M,,K/M,, = T§ /M,
We denote this description of M,,K/M,, in H, by R/M,. Then M, K = R.
Again, right multiplication by L,, on itself in the action (4.1) implies that

93



6.2. Particular Wilson groups 6. Subnormal subgroups

each of the orbits of R/M,, in its action upon L,, has at least two elements.
In fact, since L,, C R, there is only one (R/M,)-orbit, that is L,.

In the action (4.1), non-trivial elements of R/M,, acting on L,, can have fixed
points however these elements do move at least one other point. Therefore
this action is faithful.

Also K C R and so K is subnormal in R. Proposition 6.2 gives M,, C K
and so K = R. Therefore K = T}'(I;), for some j € {1,2,...,n — 1}, or
K = 5% (1a,,,), for some j € {0,1,...,n —2}, or K =T{.

O

Similarly as for the normal subgroups, our work has been restricted in Lemma 6.5
to closed subnormal subgroups because we rely on Lemma 2.12, which only applies to
subnormal subgroups that are closed.

Lemma 6.5 is required due to the two different types of notation for the subnormal

subgroups of G,,.

Lemma 6.5. Given finite groups G,, for n > 0, in which all the normal subgroups
form a chain
{1} = N2nn+2 - Ngn—i-l C...C Ny SN =Gy,

and an inverse system of surjective homomorphisms 0y, : Gy, — Gp—1, forn > 1, such

that
Nin_l for1<i<2n,

{1} forie{2n+1,2n + 2}.

0u(NT') =

Let P, fori € {1,2,...,2n + 1}, be finite disjoint index sets.

Suppose the non-trivial subnormal subgroups K7 of G, are parameterised by I,
where O # I € P?, such that NIy C K}' C NI, and

K}t forTe P, P2 ... P,

On(KT) =
{1} for I € p?n p2ntl,

(6.3)
Then the inverse limit G = lim(Gy,)n>0 has non-trivial closed subnormal subgroups
p— >

precisely Ky = {iLn(K?)n_}OO, where O £ I € P! for i > 1, regarded as subgroups of G.

Proof. Let M be a non-trivial closed subnormal subgroup of G. Since G is an inverse
limit, we can find n > 0 such that the image of M in G,, under ¢, : G — G, is
non-trivial. Therefore ¢, (M) = K7, where () # I € P, for some i € {1,2,...,2n+1}.

We claim that M = K. Since M is closed, it is enough to show that ¢,,(M) = K",
for all m > n. Then ¢,,(M) = ¢, (K1) implies ker ¢,, M = ker ¢,, K, for all m > n.
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Thus

M= (ﬂ ker¢m>M: () (ker ¢, M)

m>n m>n
= () (ker ¢ K;) = (ﬂ kemm)m = K,
m>n m>n

using Lemma 2.12.

Clearly ¢, (M) = K" is true for m = n. Now suppose m > n. From

{1} 7é K}n_l = ¢m—1(M) = gm((bm(M))
and mapping (6.3), we conclude ¢,,(M) = K}". O

For the following, recall the normal subgroups P; and @Q;, for j > 0, of a Wilson
group G, defined in Corollary 5.3.

Corollary 6.6. Let G = lim(Gy,)n>0 be the inverse limit of the groups G, as defined
i Section 4.1. In the Wi%n construction, assume that the unspecified action of the
group Gy, for n >0, is taken to be right multiplication on itself.

For j >0, define

Sj(lde) = {EH(S?(Ide))naoo; where () # Id.+1 C Qq,

J j+17

regarded as subgroups of G.
For j > 1, define

Tj(I1,) = W(TJ (I1,))nsmc, where 0 # I, C L,

and define
Ty = @(T(?)n—)om
regarded as subgroups of G.

Then the non-trivial closed subnormal subgroups of G are precisely the groups
Si(la,,,), Tj(Ir,;) and Ty. In particular, for all 1g,, I, ..., 1g,, 11, Iq

J J 17t

they form chains

n+1) c Pn 9 Tn(ILn) - Qn - Sn—l(-[dn) C Pn—l Q oo

S P CTi(IL,) C Q1 € Solay) € .
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The subnormal length in G of the group S;(I4 ]

j+1)

L if g, = Qa,, (implying that S;(1a, ) = Pj),
2 if Iy, C

-= J+1°

The subnormal length in G of the group T;(Ir;) is

L if I, = Lj(implying that T;(I;) = Q;),
2 ifl, C L

Proof. We apply Lemma 6.5 to the groups G,,, for n > 0, of Wilson’s construction with
the specified actions, and to their subnormal subgroups.

For the finite index sets we take the power sets of {2y, and Lj, for 1 < j < n, and
note that P! = {1}. We remark that arbitrary sets A; and Az can be made disjoint
when the elements € A; and y € Ay are labelled as (1,z) and (2, y).

Define
58_2)/2(Id(i_2)/2+1) if 7 is even,

Ty oy ) if i i 0dd,

K} =

where ) # I € P! for i € {2,3,...,2n + 1}, and define K7 = T¢ for ) # I € PL. For
each n, these subnormal subgroups of GG,, were defined in Theorem 6.4. It was shown
that these are all the non-trivial subnormal subgroups of G, and they form chains.

The definition of the groups K7 also shows that the second condition for Lemma 6.5
is satisfied. For 2 < i < 2n + 1, where () £ I € P?,

9”(S8—2)/2<Id(i_2)/2+1)) =971 (Id(i—Q)/2+1) = K?_l if 7 is even,

On(KT) = (=22
On (T3 1) j0ULg sy 0)) = ng) oL n)) = K7~ tif i is odd.

We take S;'~ (Ig,), Ty (I1,), K} ™' for 0 # 1 € P?", and K7~ " for 0 # I € P> to
be the trivial group {1}. Also 0,(K7) =0,(I7) =Ty ' =Ky tfor 0 £T € P, O

Below, Corollary 6.7 tells us which Wilson groups we know to have all their sub-

normal subgroups closed.

Corollary 6.7. Let G = lim(Gy,)n>0 be the inverse limit of the groups Gy, as defined
p— >
in Section 4.1, such that |Go| > 35!.

Every subnormal subgroup of G is closed in G.

Proof. Let K be an abstract subnormal subgroup of G. We argue by induction on the
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subnormal length [ of K in G. So
G=Ny>Ni>...>N_1>N =K.

For [ = 1 we have K < G. Since |Gp| > 35!, we have that G is finitely generated
(see Chapter 9). Applying the result by N. Nikolov and D. Segal [22, Cor. 1.15], the
normal subgroup K is closed in G.

Suppose the result holds for [ > 1. Note that IN;_; has subnormal length [ —1 in G.
By induction, the subnormal subgroup N;_; is closed in G. From the classification
Corollary 6.17, all the closed subnormal subgroups of a general Wilson group have
finite index, therefore N; 1 is open in G. Then N;_; is a hereditarily just infinite
profinite group, since G is hereditarily just infinite, and also N;_; is finitely generated,
see [30, Prop. 4.3.1]. Applying again the result [22, Cor. 1.15], the subnormal subgroup
K is closed in N;_; and therefore K is closed in G. 0

The following diagram illustrates the chains of subnormal subgroups of Wilson
groups constructed such that G,,, for n > 0, acts on itself by right multiplication. The
diagram includes the chain of normal subgroups for any arbitrary Wilson group. Ad-
ditionally, these chains of subnormal subgroups hold for any Wilson group constructed
such that the actions of the non-trivial subnormal subgroups of the groups G, for

n > 1, have all their orbits containing at least two elements.

Remark. The subnormal subgroup lattice in Figure 6.1 is very symmetric. However,
there are no subnormal subgroups between the groups Py and G. This is because Gg
is a simple group. Wilson’s construction can be slightly modified to make the lattice
more symmetrical. Instead of starting the construction with Gy = Xy, set Gy to be a
direct product of the finite non-abelian simple group Xy. That is Gy = Xédo). All the
previous arguments hold while some extra normal subgroups are produced of the form
Py x Xédo, where 0 # I, € {1,2,...,do}.
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So(1a,)
T (ILl)
S1 (Id2)
an(]Ln,)
T”(,[;‘ rz)
T, (I
for I} C I, n(IL,)
Srz(](/n+|) < S”(an+1)
*qn (](/1,, 1 ) S
I
for I[Z“ O g Idnvl n( dn+1)

! Qn-‘,—l = Tn+1 (Ln+1)

Figure 6.1: The subnormal subgroup lattice of particular Wilson groups.
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6.3 Infinite iterated wreath products .. .1 A, A, 0... LA,

where m > 5

We recall the just infinite profinite groups W defined in Section 3.2. Fix the alphabet
A=1{1,2,...,m}, where m > 5. We define the sets

for each j = 1,2,..., where 7172 . ..7; denotes a sequence of numbers and not a product.
Set Wy = A,,,. We form the iterated wreath products

Wi = Ap dgetn -+ - et21 Am g1 A,
for n > 1. They are the same as the semidirect products W,, = A,(7T R Wh-1. A
group W = Eiin(Wn)nZQ is constructed as the inverse limit of a sequence of finite
groups (Wp)n>o0.

The action of a subnormal subgroup of W,,_1 on m" elements may have orbits of one
element, that is the action has fixed points. Similarly for a general Wilson group G, the
action of a subnormal subgroup of G,,—1 on d,, elements may have orbits of one element.
To progress in the characterisation of subnormal subgroups of a general Wilson group,
it would be most beneficial to describe the subnormal subgroups of the just infinite
groups W.

We recall the permutational wreath products X o U as defined in Lemma 2.2 of
Section 2.1. That is, where U is a finite permutation group acting on a finite set
Q with orbits 21,Qs,...,Q, and X is a finite non-abelian simple group. We need
a generalisation of Proposition 6.2, found in the previous section, which makes no
assumption as to the number of elements in each of the U-orbits. That is, a U-orbit
can have one element. Proposition 6.8 says that the subnormal subgroups K of X 1o U
such that VK = X g U contain all the minimal normal subgroups of X 1 U that

correspond to orbits which have at least two elements.

Proposition 6.8. Consider the permutational wreath product X 1q U as defined in
Lemma 2.2. The base group is denoted V =[], cq Xw, where X, = X for all w € Q.
Define

Y ={(twwea €V iz, =1ifw -U={w}};

the notation w - U denotes the orbit of w under the action of the group U. Let G be a
subgroup of X 1q U such thatY C G and VG =X 1qU.
Suppose K is a subnormal subgroup of G such that VK = X qU. ThenY C K.
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Proof. We first show that we can reduce to the case where the subnormal subgroup K
is normal in G. Since K is subnormal in G, we have G = Ty >T1>...DT,_ 15T, = K.
Without loss of generality, suppose this is a shortest chain. This means G # T1,T) #
To,....Tp 1 # K.

Consider the beginning of the chain GB>T;. Now VK = XU implies V11 = X1qU.
We apply the proposition, which we assume to be true for the special case where the
subnormal subgroup is actually normal, to T7. This gives Y C T;. Replacing G by T;
satisfies the conditions of the proposition. We inductively have Y C K.

Let Q1,9, ..., Q, be the U-orbits which have at least two elements. By Lemma 2.3,
we have the corresponding minimal normal subgroups Ny, Na,..., N, of X 1q U. Ob-
viously Y = Ny X Ny x ... x N,.. We now show that Ny, Na,..., N, are also minimal
normal subgroups of G. Let ¢ € {1,2,...,r}. Since N; CY C G C X qU and
N; < X U, we have N; <G.

Next we show that NV; is minimal normal in G. For this we need that the normal
closure in G of any non-trivial element z = (zy)u,eq € N; is equal to N;. Choose
w1 € Q; such that z,, # 1. We follow argument (*) in the proof of Lemma 2.3, which
supplies an element y with certain properties. Noting that since €2; is a U-orbit which
has at least two elements, we have y € Y C (. We take the normal closure of [z, y]
in Y to gain V,,, C @)G For all we € ; with w; # wy we can find u € U such that
w1 - u = we because U acts transitively on €;. As VG = X g U, we can obtain v € V
such that vu € G. Then V,, = V! = Vo C (@G

To prove Y C K, it is sufficient to show that each of the minimal normal subgroups
Ni,Na,...,N, of G is contained in K. Let i € {1,2,...,r}. Let wj,w2 € €; such
that wy and w9 are distinct. We can find v € U such that wy - © = w9 because U
acts transitively on ;. As VK = X o U, we can obtain z € V such that uz =
w(zy)wen € K. Choose y € X\{1} and consider y = (y,) € Y C G with y, = y if
w = wp and y,, = 1 otherwise.

Then [y, uz] € K is similarly written as the element (2.1), in the final paragraph of
the proof for Lemma 2.3. Now we know that K contains a non-trivial element from N;.
We have found that N; is a minimal normal subgroup of G and since K is a normal

subgroup of GG, we have N; is contained in K. O

The following corollary is a special case of Proposition 6.8, regarding subnormal

subgroups for a particular group G.

Corollary 6.9. Consider the permutational wreath product X 1o U as defined in
Lemma 2.2. The base group is denoted V = [, cq Xw, where X, = X for all w € €.
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Define
Y ={(twwea €V iz, =1ifw -U={w}};

the notation w - U denotes the orbit of w under the action of the group U.
Suppose K is a subnormal subgroup of X 1q U such that VK = X q U. Then
Y CK.

Proof. Apply Proposition 6.8 where G = X 1q U. O

Theorem 6.10 determines the subnormal subgroups of any arbitrary group W,,, for
n > 0. In the proof, Corollary 6.9 is applied to the circumstance where U is taken to
be a subnormal subgroup of W,,_1 acting on m™ elements.

At the end of this section, Corollary 6.11 completely classifies the subnormal sub-
groups of the inverse limits W of the finite groups W,,. The characterisation covers
all the subnormal subgroups of the groups W, as shown by Corollary 6.12. Then
Figure 6.2, also at the end of this section, gives a pictorial description of one such
subnormal subgroup.

For the description of subnormal subgroups, we now define some new notation which
is required. The reader can refer to Figure 3.1, in Section 3.2, to visualise the geometric
meaning of these concepts.

As before, fix the alphabet A = {1,2,...,m}. We have the set

for each j = 1,2,..., which can be interpreted as the vertices on the jth layer of the
m-regular rooted tree. In particular, this means that Q*[0) = {(Z)}
For j = 1,2,... , denote the orbits of the base group AS{“) of Wj, acting on the
(j 4 1)th layer QU+l as
*[74+1 .. .. .
11[]12]1] = {2112 S ili41 T4 € A},
where i1,142,...,1; € A are fixed. In particular, this means that the orbit of Wy = A,,
acting on Q*M is ng ={1,2,...,m}.
For the following, recall the normal subgroups Vj”, for j € {1,2,...,n+1}, and V]
of W,,, defined in Theorem 3.2.

Theorem 6.10. Let W,,, for n > 0, be the finite groups as defined in Section 3.2. For
j€{1,2,...,n}, define

I*nUA*n I* j UA* j I* j
U;L(I*[j],l*[j_,_l], . ,I*[n]) = Am[ ] ] X... X (Am[ﬁq] -+l X Amm) < Wn,
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where
0 # L C Ol
o *[j+1] x[j+1
A= U e Ly © @VPNA 0y,
i]_ig...ijEI*[j]
N *[j+2] x[j+2
A*[j+2] - U Qi1§2...ij+1’ I*[J""z] g Q [j+ ]\A*[]+2]’
ilig...ij+1EA*[j+1]UI*[j+1]
A*[TL] - U Qiliz...in71’ I*[n] < Q [ ]\A*[n]’
Z‘11'2“-2"”71eA*[n—l]UI*[n—l]
and define
r?+1 = {1}
and
Ul = W,

Then the subnormal subgroups of W, are precisely the groups U, ,, Uy
and UJn(I*[]], I*[j+1], e 71*[71])

The subnormal length in W, of the group U}“(I*[j], L - ,I*[n}) 18 bounded above
by n —j+ 2. (See Theorem 6.1}, later, which gives a recursive formula for the exact

subnormal length. )

Proof. We first check that the groups U}-l(I*[j],I*[jH], oo Lymy), Uplyq and UE are all
subnormal subgroups of W,,. Obviously U}, ; = {1} <W,, and U} = W,, I W,,.

We claim

n m")rm—1
UP (L) Lugjans - - - D) AT U N Loy, L)y - - > Lune1))
ﬁAS?Tn)AgT )U;L_Q(I*[j}?I*[J'Jrl]?---aI*[n72]> ...
mn mn—1 mitl ] n
SAGIAG) AU (L) SV AW (6.4)

It is sufficient to show, for k € {j + 1,7+ 2,...,n}, that

k
Ui (L L -+ Lagwy)
I UA, Lo 11UA Ly UA In
_ Am[k] [k] % (Am[k 1] [k—1] N (Am[JH] [7+1] % Am[al))

Lufj+1 VA«

(Am J+1] ><] A#L[jl))
mk —
Al )Uf YLy Ly - - > L))

X

k Lo 1UA—

62



6.3. Infinite iterated wreath products ... 0 Ay LAm U... VA, 6. Subnormal subgroups

Put
UJk_l(I*[j]a I*[j+1]7 cee aI*[k:—l}) =:U.

I UA,
From Lemma 2.3, we see that A ™

KU (k)

is a product of some minimal normal sub-
groups of A%n ") x U and so A{;{[ is normal in A%ﬂ *) x U. It is left to show
[A%n k), U] C A,I;{[k] VA Thig holds as U moves points in the set A, and fixes points
in the sets I, and Q*[k]\(l*[k] U Ayg)-

The subnormal length in W, of any group Ul (L}, Lijjs1), - - Lafn)) 18 S —j + 2
because the subnormal series (6.4) has length n — j + 2.

We now prove, by induction on n, that every subnormal subgroup of W, is one of
the groups listed. For n = 0, all the subnormal subgroups of Wy are {1} = UY and
Wy = Ug holds as Wy is simple.

Suppose that the result holds for W,,_1. Now we prove the result for W,,. Let K

be a subnormal subgroup of W,,. Then there are two cases:
K C A™) (case 1), and K € A" (case 2).

Case 1.
For K C A,(;n n), we have K is subnormal in A%n ") There are two possibilities,
either K = {1} = U}, , or, using Theorem 2.4, we have K = A{;["] = Up (L))
for some @) # I, € Q.

Case 2.
Now suppose K ¢ Ag,T ") We know {1} AgT " /A,(%n ") is a subnormal sub-
group of W, /A§,T = Wip—1. Then, by induction, we have

m" m") ~ rrn—1
AT K AT 2 U (L, Ly - - Ljneyy)s

for some j € {1,2,...,n— 1}, or A,(flnn)K/A%nn) = Ug‘fl.

We denote this isomorphic copy of A,(qT K /A,(%n ") in Wy_1 by U. Then Aq(%n K =
AT U KU = UP YLy, Ljjgags - - > L)), for some j € {1,2,...,n —
1}, then A1), Asjjta)s-- - Dyjn) are all defined. If U = Ur~! then we set
A = Q*". The elements of the set Q*[”]\A*M are fixed points for the action
of U on Q*M, Also K C A%nn)U and so K is subnormal in Aﬁ,Tn)U. Corollary 6.9
gives

{(:L‘w)wemn] e A g, =1ifw-U = {w}} = Aﬁ*[n] CK.
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We have found that

AL K=Alme

Inl g8 lnl gy (6.5)

: C N\AL Ly

To finalise the Cfﬁractensatlon o[f ]K , observe that K NAy, VA IU is a subnormal
Q*I\AL 1, Q*mI\AL, . .

subgroup of A, VAt U= A, \Befr x U and that it projects onto the factor U.

Using Lemma 2.4, there exists some subset I, C Q*[”]\A*M such that K N

QPI\AL L, Iin Iiin . Ayln
Am Vbl = AU =2 A" < U. From this and the fact that A, < K,

we establish K = A%["]Aﬁ*[”lU. Thus K = U;‘(I*[j],f*[jﬂ], -y L)), for some
je{l,2,...,n—1}, or K =U}.

O

For the following, recall the normal subgroups Vj;, for j > 0, of a group W, defined
in Corollary 3.3.

Corollary 6.11. Let W = lim(W,,),>0 be the inverse limit of the groups W,, as defined
Y >
in Section 3.2. For j > 1, define

Uj(Lagg)s Ly Lepjals -+ ) = W (U (L) Lagiaas -« o5 Lefng) ) nsoos
where
0 # Ly € QY
o *[j+1] *[j4+1
A= U iy i Lijon C UVPINA ),
ilig...ijel*[j]
— *[j+2] *[7+2
A*[]‘i‘Q} - U Qi1i2...ij+17 I*[]"FQ] g Q []+ ]\A*[]‘f‘z}’
11920541 EA*[j+1]UI*[j+1]
and define

Uy = @(Uén)n—)om

regarded as subgroups of W.

Then the non-trivial closed subnormal subgroups of W are precisely the groups
Uj (L) Lgj1)s Lupjg2)s - - ) and Uy,

The subnormal length in W of the group Uj(I*[j], Ly Lagjve)s - - .) is bounded above
byn—j+2 for Ly, Q*[”]\A*[n] and L1 = Q*["H}\A*[nﬂ].
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Proof. Let K be a non-trivial closed subnormal subgroup of W. The profinite group W
has the chain of open normal subgroups ... C Vo C Vi C Vj = W, see [26, Thm. 2.1.3].
These open normal subgroups form a base for the topology on W. Therefore, as K is
a closed subgroup, we have K = {iﬁl(%K/Vi)iﬁw, refer to [30, Thm. 1.2.5 (a)]. From
Theorem 6.10, we know that V; K/V; is determined by a finite chain of sets Lajy L)

-y Lyfi—1), for some j € {0,1,2,...,i}. Thus K is parametrised by the infinite chain
of sets L(j, Lufjr1)y Lujt2pr -+ - O

Remark (regarding the proof of Corollary 6.11). The infinite iterated wreath product
W, constructed from alternating groups A,,, can be encoded differently using m-adic
integers. (Refer to Section 2.5 for a description of the m-adic integers.)

The group W is viewed as acting naturally on the infinite m-regular rooted tree,
that is where every vertex has m children (see P. de la Harpe [6, pg. 211-212]). However,
each path of the tree corresponds uniquely to an element of the m-adic integers Z,,.
Therefore the collection of all these paths is Z,.

For Uj( L), Lijj+1) Lufj+2]5 - - -), We can now think of each L, Ljt1), Lefj+o -
as prescribing a subset of the m-adic integers. In particular, each of these subsets of
the m-adic integers is a union of cosets because everything from some point onwards is
included. Unions of cosets are exactly the open subsets of Z,. Therefore I}, Lj11),
Lj42, - - - can be interpreted as open subsets of Zy,.

Corollary 6.11 can be proved from knowing that the m-adic integers has an infinite
number of open subsets. Whether one subnormal subgroup is contained in another can
be read off from the index sets I,(j, Ly[j11), L4[j+2), - -- - In the new interpretation of W,
one subnormal subgroup is contained in another when its open sets are contained in

the others open sets.

Below, Corollary 6.12 tells us that all the subnormal subgroups of the groups W
are closed. For this we note, a normal subgroup N of a profinite group G is virtually

dense in G if the closure of N is open in G.

Corollary 6.12. Let W = @(Wn)nzg be the inverse limit of the groups W,, as defined
in Section 3.2.

Every subnormal subgroup of W is closed in W.

Proof. Let K be an abstract subnormal subgroup of W. We argue by induction on the
subnormal length [ of K in W. So

W=Ny>N>..>N_, >N, =K.
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For [ = 1 we have K < W. Applying the result by N. Nikolov and D. Segal [22,
Cor. 1.15], the normal subgroup K is closed in W.

Suppose the result holds for [ > 1. Note that N;_; has subnormal length [ — 1
in W. By induction, the subnormal subgroup N;_; is closed in W. From the clas-
sification Corollary 6.11, all the closed subnormal subgroups of W have finite index,
therefore N;_; is open in W. Thus N;_; is a finitely generated profinite group, see [30,
Prop. 4.3.1].

Consider K < N;_1. The closure of K in N;_; has finite index in N;_1, by Corol-
lary 6.11, and so K is a virtually dense normal subgroup of N;_;.

Let U be an open subgroup of N;_;. Then U is a finitely generated profinite group.
So all its finite quotients are continuous quotients, refer to [21]. The normal subgroup

Corew (U) = () UY is open in W, as U is open in W and by Lemma 2.10. Therefore
gewW
Coreyp (U) has finite index in U, using Lemma 2.10.

If U had an infinite abelian quotient then Corey (U) would have an infinite abelian
quotient. But the only composition factors of finite quotients of Coreyy (U) are isomor-
phic to A,, because all the composition factors of W are isomorphic to A,.

If U had a quotient isomorphic to an infinite product of non-abelian finite simple
groups then Coreypy (U) would map onto an infinite product of non-abelian finite simple
groups, using Lemma 2.4. But then Corey (U) must map onto arbitrarily long products
A X Apy X ... X Ay and so Coreyy (U) cannot be finitely generated.

Finally, U cannot map onto any connected Lie groups because U is totally discon-
nected, see [30, Cor. 1.2.4 (iv)]. Thus the theorem of N. Nikolov and D. Segal [22,
Thm. 1.14 | implies that K has finite index in N;_;. So K is open in N;_1, refer to [21],
and hence K is closed in W, using Lemma 2.10. O

It is standard to view the group W as acting on the infinite m-regular rooted tree,
where every vertex has m children. P. de la Harpe [6, pg. 211-212] gives an introduction
to groups acting on these trees. Taking m = 5, we now use this tree to illustrate an

example of a subnormal subgroup of W. The following diagram is a pictorial description
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of the subnormal subgroup

X (A?S) X Ag’g) X AéSS) X A?g) X Aé53))
x (Ag52> x ({1} x As x As x As x As) x AP x A
X (A5 x A5 x {1} x A5 x As) X Aé“r’) X A?Z) X AéE’Q) X AéE’Z))
X (Aé5) x ({1} x A5 x A5 x {1} x {1}) x AéB) % Aé5) y AgS))
X (A5 x {1} x A5 x A5 x Ajp)

of W. It is represented by the black squares being the index sets which select the

factors As of the subnormal subgroup.
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Figure 6.2: A subnormal subgroup of W represented on the infinite 5-regular rooted
tree.
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6.3.1 The subnormal length

We have only seen an upper bound for the subnormal length in the profinite groups W,
refer to Theorem 6.10. The exact subnormal length of a subnormal subgroup of W,,,
and hence of W, is given by the recursive formula in Theorem 6.14. Later, we see some
examples, Figure 6.3 and Figure 6.4, to show how the formula works.

First, Lemma 6.13, below, is required. As a consequence of this lemma, the subnor-
mal subgroups of a direct product of iterated wreath products of non-abelian simple

groups are similarly direct products of the same form.

Lemma 6.13. Let W,,,, for n; > 0, be the groups as defined in Section 3.2. Recall
the normal subgroups V", for ji € {1,2,...,n; + 1}, and V" of Wy,, defined in
Theorem 3.2.

The normal subgroups of any direct product
Wiy X Wiy X000 x Wy,

are precisely the groups

ni n2 N
le ><Vj2 ><...><er.

Proof. Let N be normal subgroup of W, x Wy, x ... x W, . The normal subgroup N

projects onto a normal subgroup, say VX“, in the ith factor W,,. Clearly
ni n9 Uz
NQVJ-IXVJ-QX...XV;-T.

We claim
NDOVM" xV™x .. . xV".
J1 J2 Ir

It suffices to show, for all ¢ € {1,2,...,r},
N O {1} x.ox {1} x Vi x {1} x ... x {1}
Suppose VJ:“ # {1}. Since N projects onto V;:Z in the W, factor, there is an
x = (r1,22,...,2,) €N
such that z; € V]:“ but z; ¢ V;:fu

By considering [x,y]* for elements y = (1,...,1,y;,1,...,1) with y; € W, in the

1th position and arbitrary z, we see that N contains the subgroup
{13 > o {1 x (g, Wi )W x {1 x . ..ox {1},
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By the classification of normal subgroups of W,,,;, Theorem 3.2, it is left to show that
there exists y; € W,,, such that [z;,y;] & V;?fH

Now V' /Vit | = AN for some N and z; #Z 1 mod V' | gives a non-trivial element

Jitl —
of the factor group. As Z(Vj"/V/"i|) = Z(ANY = Z(A,,)N = 1, hence there exists
yi € Vj:“ such that [z;,v;] Z 1 mod V]:LfH and this y; will do. O

For the purpose of the following formula, set I,; = (0, for ¢« < 7, and Ay = 0, for
i <j,and L) UApy) = Oxln+1].

Theorem 6.14. Let W, for n > 0, be the finite groups as defined in Section 3.2. For

Jj€{1,2,...,n}, recall the subnormal subgroups
n L] UA L, Ly UAL I
Uj (I*[j]7I*[j+1}’ ce >I*[n]) = Am[ ! . M. XM (Am[]+l] e X Am[J])}
where
0 75 I*[j] C Q*[J]}
_ *[i+1] *[7+1
A= U i Ly S UPHNA
i1i2...ij€I*[]—]
— *[5+2] *[7+2
Asfjre) = U Uity iyin Lo S UV NAG ),

Q1820541 €A, i p1)U 4]

Ay = U Q Lin € Q [ ]\A*[n]z

11120 —1"
1182 0n—1 €A (1)UL [n—1]

of Wy, as defined in Theorem 6.10.

The subnormal length of Ul (L), Lujjs1)s - - - s Lupn]) 10 Wi is given by the formula
.max ‘{l()v lla ceey ln}| ’
1112...9n

where 119 . . . 1, runs through all paths in the rooted tree up to level n, and
lo=1(0),

Loy =1 + (ivig...0.), for 0 <r <mn,
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with

I(iriz ... i) =min{l | 0 <1 <n+1—k such that

./ ./ ./ L . ./ ./
Fij 15 Tpgs - - gy 2 0102+ Uy g - - - gy € Lyfpgq U A*[k+l]}-

Proof. We prove the formula for the subnormal length in W,, by induction on n. For

n = 1, the subnormal subgroups Ull(I*m) of W1 have subnormal length

1 if Iy = QW (implying that U (L)) = Vi),
2 if Iy, €

which are the same lengths given by the formula.

Suppose the formula holds for W,,, for m < n. Now we prove the formula for W,.
Let U;‘(I*[j],l*[jﬂ], -+, L)) be a subnormal subgroup of W, and we denote
Uf(I*[j],I*[j+1},...,I*[n]) =: U. The unique smallest normal subgroup of W,, that
contains the subnormal subgroup U is V}". The subnormal length of U in W), is equal
to

1+ the subnormal length of U in V}".

Notice
angT/Vn_j X Wn—j X ... X Wn—j-

mJ times

By Lemma 6.13, there is a unique smallest normal subgroup Ny of W,,_; x W;,_; x
... X Wy_; containing the subnormal subgroup U. Since N; is isomorphic to a direct
product of groups of the form W), using Lemma 6.13, there is again a unique smallest
normal subgroup N, of N containing U and we descend so on. The formula for the
subnormal length records how many steps this procedure requires until we reach U.

The subnormal length of U in V]" = Wyoj X Wiy x ... x Wy_; is computed
recursively as the maximum of the subnormal lengths of the intersection of U with each
factor isomorphic to W),_; in that factor isomorphic to W,,_;. The possible choices for

descending to such factors are parameterized by the paths i1is. .. 7,. O
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We apply the formula of Theorem 6.14, below, to calculate the subnormal length for
two examples of subnormal subgroups of W5. The subnormal subgroups are illustrated
using the simpler 2-regular rooted tree, since the formula does not depend on the degree
of the alternating groups used to construct W,,.

The subnormal subgroups are represented by the black squares being the index sets
which select the factors A, of the subnormal subgroup. The black dots on the rooted
trees remind the reader that for the purpose of the formula we take I, U A5 = Q161

/

.

v/

! \

Figure 6.3: A subnormal subgroup Uf(I*[l],I*[z], .oy Ly5)) of Ws represented on the
rooted tree of length 6.

Using the formula for the highlighted path i1is .. .75 on the far right of the tree, in
Figure 6.3, gives:

lo=1(0) =1,

l1 :lo—i-l(il) =14+3=4,

lo =01+ l(i1i2i3i4) =442 =6,

ls =1+ l(i1i2i3i4i5i6) =6+0=6.
This path produces the maximum [{ly,[1,...,I3}| = 3, and hence the subnormal length
is 3.
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The following example is to show how the subnormal length can grow with n. It

shows the largest possible subnormal length in Ws.

Figure 6.4: A subnormal subgroup of W5 of subnormal length 6.

Using the formula for the highlighted path i1is .. .75 on the far right of the tree, in
Figure 6.4, gives:

lo=1(0) =
Lh=Ilp+I(i1)=14+1=2,
lo =1 +1(i1ie) =2+1=3,
I3 = lo + I(iyigiz) = 3+1 =4,
lg =13+ 1(i1igizig) =4+ 1 =5,
(

Ils =14+1 21’62132415) =54+1=6.

This path produces the maximum [{ly,[1,...,l5}| = 6, and hence the subnormal length
is 6.
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6.4 General Wilson groups

In this section, we complete the characterisation of the subnormal subgroups of an
arbitrary Wilson group. The characterisation holds for any choice of X;, for ¢ > 0,
and for any choice of faithful transitive permutation representation of G,,, for n > 1,
in the construction of a Wilson group. Here we do not have the previously imposed
restrictions, of Section 6.2, for the groups G,_1, for n > 1, acting on themselves by
right multiplication. Thus the action of a subnormal subgroup of Gy,—1 on d,, elements
may have orbits of one element.

Theorem 6.15 determines the subnormal subgroups of the finite groups G,, for the
general Wilson construction. To prove this theorem, we apply Corollary 6.9. Taking U
to be a subnormal subgroup of G,—1 acting on d,, elements, the corollary holds when
the subnormal subgroup has orbits of one element.

Corollary 6.17 completely classifies the closed subnormal subgroups of a general
Wilson group. Then Corollary 6.7 shows that all subnormal subgroups of a Wilson
group are automatically closed provided the first group in Wilson’s construction has
size |Go| > 35!, and hence the Wilson group is finitely generated (see Chapter 9).
Therefore the characterisation of subnormal subgroups, in Corollary 6.17, covers all
the subnormal subgroups of any Wilson group provided |Gp| > 35!.

At the end of this section, Figure 6.5 gives a pictorial illustration of the subnormal
subgroups of a general Wilson group. In comparison with the particular Wilson groups
studied in Section 6.2, the subnormal subgroups are still squeezed between normal
subgroups, however not consecutively; recall Figure 6.1.

For the following, recall the normal subgroups P and Q7, for j € {0,1,...,n},
of Gy, defined in Theorem 5.1. We define Ly = {1} for the working of the subsequent

proof.

Theorem 6.15. Let G, for n > 0, be the finite groups as defined in Section 4.1.
For j €{0,1,...,n— 1}, define

ST (Ia,,) = Q' 1y X X Gt < P, where O # Iq,,, € Qq

j+1 j+17

and define
={1}.
Forje{l,2,...,n— 1}, define

UAd I

Q7 y ¥ (X i '3 X)) < QY where 0 £ I, C Lj,

T (IL J+1

J+1)
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Iy,
Ay ={w ey, 1w XjLJ #{w}ty and Iy, € Qg \Ag,,,

Ir; Iy,
(the notation w~XjLJ denotes the orbit of w under the action of the group XjLJ <G,),
and define
Ty (I,) = XéL", where O # I, C Ly,

and
15 = Gy,

Then the subnormal subgroups of Gy, are precisely the groups S;L(Idjﬂ), Sy,
71, 14;,,), T (IL,) and T¢.
In particular, for all j € {1,2,...,n — 1},Idj,IL]. and 1g;,, they form chains

Q]-I—ICT (ILj7Idj+]_)CQ cSs 1(Id) Pjn_l.

Also, for all 14, and Iy, , they form chains

The subnormal length in Gy, of the group S} (1a,.,) is

L if I, = Qa,,, (implying that S} (1a,,,) = P}'),

J
2 if Iy, C Q.-

The subnormal length in Gy, of the group T;*(Ir;, 1a;,,) is

L if I, = Lj(implying that T} (I, 1a;,,) = Q7 ),
2 ZfILj ng and I UAd

.41 18 a union of Mj-orbits,
3 uf I, C Ljand Iy

J+1

UAy

. 41 18 not a union of Mj-orbits.

The subnormal length in G, of the group T)'(Ir, ) is

1 if I, = Ly (implying that T (I1,,) = Q7 ),
2 if I, C L.

We remark in the above definition of Ay, , the dependency on I is implicit.

Proof. We first check that the groups S7(la;,), Sy, 1} (Ir;, La;,,), T3 (IL,) and Tg
are all subnormal subgroups of G,,. Obviously S = {1} < G,, and T}' = G,, < G,,. For
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any () # I, C L,, we have

Ti(Ip,) = Xab" S My, = Q2 < G, (6.6)
using Theorem 2.4. For any () # Iy, € Qq,,,, we have
1.
SMIayp,) = Qy % X, Q1 % Lijy = PP <Gy, (6.7)

I,
j+1 ,
as X, 1" dLjq.

For any () # I, € Lj and Iy, , € Qq;,,\Aq,,,, we show that

Ip,.
Ti(Ip, 1gy,,) S P> X" SQ7 <G, (6.8)

1)

IL- IL-
We have P}' x X, ﬂPj”xMj:Q?, as X, 7 d Mj. For

1., UA,. Iy,
_ +1 +1
T]n(ILj7Id = Q7 X (Xjﬁl XX )

1)

I, I,
Q1 ¥ (Ljs1 x X7 ) =P x X7,

Taj VA, 4y I Ir;
we need to show that X, x X, 7 9 Ljy x X; 7. From Lemma 2.3, we

1. Ag. . s
see that X, Jff 'Y s a product of some minimal normal subgroups of Ljii x

X; 7 and so X, " is normal in Ly x X, 7. It is now left to show that
I, Taj 41 VR, : Ir; e

[Lj+1, X; 7] € X, 4 . This holds as X, ¥ moves points in the set Ag;,, and

fixes points in the sets Iy, , and Qq; ,\({a;,, U Aqg, ).

We check that the subnormal lengths given in the statement of the theorem are

If I, = L, then T7(I;,) = Q" and
the subnormal series (6.6) reduces to a chain of length 1. Similarly, if Iy, = Qq,

then S7(l4;,,) = P} and the subnormal series (6.7) reduces to chain of length 1. For

correct for the groups T;'(Ir,) and ST (14, )-

all other T,'(Ir, ) we have displayed the shortest length of a subnormal series (6.6)
because @) is the smallest normal subgroup of G,, containing 7'(Ir, ) and T} (Iz,,) is
not normal in G. A similar argument holds for all other S7 (Ld; 4y )-

We check that the subnormal lengths given in the statement of the theorem are cor-
rect for the groups @”(ILj,Ide). If I, = Lj then Ay, = Qq4,,, because Lemma 6.3
implies that the action of ij-:j = Mj on Qd]-+1 has no fixed points. So T]”(ILj,Id

j+1) =
@’ and the subnormal series (6.8) reduces to a chain of length 1.

If I, C Ljand Iy, UAy, , is a union of Mj-orbits then the subnormal series (6.8)
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reduces to
Tjn(ILj7Idj+1) < Q? < Gm

. ) la; UAG, ..
a chain of length 2, as M; normalises X p el 77, This is the shortest length of
a subnormal series because Q7 is the smallest normal subgroup of G, containing
TJn(ILj, Idj+1) and T']n(ILj,Idj+1)
If IL]. C L; and Idj+1 U Adj+1

displayed the shortest length 3 of a subnormal series (6.8) for 17" (Ir;, l4;,,)-

is not normal in GG,,.
is not a union of Mj-orbits we check that we have
This

is because @7 is the smallest normal subgroup of Gy containing T]"(I L 1a Also

j+1 )
/l mn I I 3 t I ] ( ) LR 7‘1 d t I X Jj+1 Jj+1

j+1

Recall the definition of the groups H,, = L,G,_1, for n > jl, as defined at the
beginning of Section 6.1. Due to H,, = G,,/M,, the theorem we are currently proving
also implicitly makes a statement about the subnormal subgroups of H,. We now
prove, by induction on n, that every subnormal subgroup of G,, is one of the groups
listed. Hence the subnormal subgroups of H,, are homomorphic images of the subnormal
subgroups of G, listed between @ and @ under the canonical map G,, — H,.

For n = 0, all the subnormal subgroups of Gy are {1} = S and G = T§ = T (Iy,,),
where I1, = {1} (we have set Ly = {1}), holds as Gy is simple. Although it will also
follow from the general argument below, we now prove separately the implicit claim
for Hy.

Suppose K is a subnormal subgroup of H;. Then L K/L; is a subnormal subgroup
of Hi/L; = Gy. Since Gy is simple, we know

LlK/Ll = {1} or LlK/Ll = G().

For the case L1 K/Ly = {1}, we have K C Lj. Then K is subnormal in L; = del).
There are two possibilities, either K = {1} = M T} (I1,)/M, for any () # I, C Ly, or,
using Theorem 2.4, we have K = Xlld1 is the image of S{(I4,), for some 0 # Iz, € Qq,,
under the canonical map Gy — H;. Due to Hy = G;/M;, there are subnormal
subgroups of H; of this form.

For the case L1 K/L; = Go, we have L1 K = L1 x Gy. Since G acts faithfully and
transitively on €14, , there is exactly one Gy-orbit of size at least two. Proposition 6.2
gives L1 C K. Therefore K = L1 x Gy = Tol/Ml. For n = 1, the result holds for Hj.

Suppose that the result holds for G,,—1. Now we prove the result for H,,. Let K be

a subnormal subgroup of H,. Then there are two cases:

K C Ly, (case 1), and K Z L,, (case 2).
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Case 1.
For K C L,, we have K is subnormal in L,, = Xfld"). There are two possibilities,
either K = {1} = M, T(I1,)/M,, for any O # I, C L,, or, using Theorem 2.4,
we have K = X5 is the image of S (14,), for some O # I;, C Qg , under the

canonical map G, — H,.

Case 2.
Now suppose K € L,. We know {1} % L,K/L, is a subnormal subgroup of
H,/L, = G,_1. Then there are two possibilities:

L,K/L, C L,M,_1/L, (case 2a),

and
L,K/L, £ L,M,_1/L,, (case 2b).

Case 2a
For L,K/L, € L,M,_1/Ly, we have {1} % L,K/L, is subnormal in
LnMn—l/Ln = Mn—l- So

I
LnK/Ln = XnL—nl_l - Tr?—_ll(ILnf1)a
for some () # I, , € Ly—1. Put

Tn:11 (ILnfl) = T

n

Then L, K =L, xT.
The action of T on €y, may have fixed points. Also K C L, T and so K is

subnormal in L,T. Corollary 6.9 gives
{(xw)weﬂdn €L, z,=1ifw-T= {w}} = Xf‘i” CK.
We have found that

szdn \AdnK — Xf;ldn \Aay, Xﬁdn T. (69)

To finalise the characterisation of K, observe that K N Xf} an\Bdn P ig 3 sub-

normal subgroup of Xf} an A o X,? an\Adn o T and that it projects onto
the factor 7. Using Lemma 2.4, there exists some subset I;, C Qg \Ag,
such that KﬂX,?d"\Ad"T — Xlnp >~ xlin o T From this and the fact that

X524 < K we establish K = X4 X5 T'. Therefore K = X2V T is
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6.4. General Wilson groups 6. Subnormal subgroups

the image of T (I, ,,1l4,) under the canonical map G,, — H,.

Case 2b.

12

For L,K/L, € L,My,_1/Ly, we have L,K /L, is subnormal in H, /L,
Gy—1 and is not contained in L, M,,_1 /L,. By induction, we have L, K/L,, =
S5 (Ia;,,), for some j € {0,1,...,n =2}, or LyK/Ly, =T} (Ir;, Ia,.,),
for some j € {1,2,...,n—2}, or L, K/L, = TSL_I.

We denote this isomorphic copy of L,K/L, in G,—1 by R. Then L,K =
L, x R. Observe that M,,_1 C R. Each of the orbits of M,,_1 in its action
upon (24, , and hence each of the orbits of R in its action upon €14, , has at
least two elements (see Lemma 6.3). Also K C L, R and so K is subnormal
in L,R.

Proposition 6.2 gives L, C K and so K = L, x R. Therefore K is the
image of S?(Idj .,) under the canonical map G, — Hp, for some j €
{0,1,...,n — 2}, or K is the image of T} (IL,,1a;,,) under the canonical
map G, — H,, for some j € {1,2,...,n— 2}, or K =T /M,,.

Suppose that the result holds for H,. Now we prove the result for G,,. Let K be a

subnormal subgroup of G,,. Then there are two cases:

Case 1.

K C M, (case 1), and K Z M, (case 2).

For K C M, we have K is a subnormal subgroup of M, = XfllL"l). There

are two possibilities, either K = {1} = S, or, using Theorem 2.4 we have

K =

Case 2.

Xpn = Tn(I,), for some § # I, C Ly,.

Now suppose K ¢ M,,. We know {1} 2 M, K/M, is a subnormal subgroup of
Gn /M, = H,. Then there are the two possibilities:

and

M, K/M, C M,L, /M, (case 2a),

M, K/M, € M, L, /M, (case 2b).

Case 2a.

For M,K/M, C M,L,/M,, we have {1} % M,K/M, is subnormal in
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M, L, /M, = L,. So
M, K /M, = Xp™,

for some () # I, C Qg,, which is the image of SI'_; (I, ) under the canonical
map G, — H,. Put S]'_,(Ig,) =: S. Then M, K = S.

As said in the proof of the analogue case for Theorem 6.4, right multiplication
by L, on itself in the action (4.1) implies that each of the orbits of X
in its action upon L, has at least two elements. In the action of Xéd" on
L,,, each non-trivial element of Xéd” acts fixed point freely. Therefore this

action is faithful.

Also K C S and so K is subnormal in S. Proposition 6.2 gives M,, C K.
Therefore K =S5 = 5)_,(14,).

Case 2b.

For M, K/M,, € M,L,/M,, we have M, K /M, is subnormal in G, /M, =
H,, and is not contained in M, L, /M,. By induction, we have M, K/M, =
T7(Ir;s La;,, ) /Mn, for some j € {1,2,...,n — 1}, or M,,K/M,, =

S?(1a,,,) /My, for some j € {0,1,...,n 2}, or My, K/M,, =T /My.

We denote this description of M, K/M, in H, by R/M,. Then M,K = R.
Again, right multiplication by L,, on itself in the action (4.1) implies that
each of the orbits of R/M,, in its action upon L,, has at least two elements.

I
We claim separately that each of the (Xid”UAd" XnL"‘l)-orbits has at least

n—1

I

two elements. Obviously X" is not the trivial group because Ir, , # (.
I

The action of 1 # X,""~" on g, is faithful and therefore at least one point

is moved. So Ay, # 0. Thus X YBdn is 1ot the trivial group.

In the action (4.1), non-trivial elements of R/M,, acting on L,, can have fixed
points however these elements do move at least one other point. Therefore
this action is faithful.

Also K C R and so K is subnormal in R. Proposition 6.2 gives M,, C K
and so K = R. Therefore K = @“(IL].,Ide), for some j € {1,2,...,n—1},
or K = S}(I4,,,), for some j € {0,1,...,n -2}, or K =Tf.

O

Again, our work has been restricted in Lemma 6.16 to closed subnormal subgroups
because we rely on Lemma 2.12, which only applies to subnormal subgroups that are

closed.
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Lemma 6.16 is required due to the two different types of notation for the subnormal

subgroups of G,,.

Lemma 6.16. Given finite groups Hy, for n > 1, in which all the normal subgroups
form a chain
{1}:N§n+1 gN;ng gNggN}z:an

and an inverse system of surjective homomorphisms ¥, : H, — Hp_1, for n > 2,
such that
NPL o for1<i<on-—1,

{1} fori e {2n,2n+ 1}.

Let Pt, Q' and R, fori € {1,2,...,n}, be finite disjoint index sets.

Suppose the non-trivial subnormal subgroups K} and Kg, of Hy are parameterised

by p, q and 1, where ) #p e P', ) # q€ Q" and r € R', such that N3;,, C K, K] C
N3i_,, and
Kn—1 orpe PLP2... P,
wntry = {15 610)
{1} forpe P,

and

Kg;l forqe Q1,02 ..., 0" L andr e RL,R?,..., R 1,
{1} forqe Q" andr € R™.

Un(Kgr) = (6.11)

Then the inverse limit G = im(Hp)n>1 has non-trivial closed subnormal subgroups
m >

precisely K, = th(KI?)THOO and K, = l(iLn(K;fr)nHoo, where 0 Ap e P, 0 #qe Q

and r € R for i > 1, regarded as subgroups of G.

Proof. Let M be a non-trivial closed subnormal subgroup of G. Since G is an inverse
limit, we can find n > 1 such that the image of M in H,, under w, : G — H, is
non-trivial. Therefore 7, (M) = K} or m,(M) = K., where () # p € Pl #qe QF
and r € RY, for some i € {1,2,...,n}.

We claim that M = K, or M = K,,. Since M is closed, it is enough to show
that m, (M) = K*, for all m > n, or mp, (M) = K[, for all m > n. Then mp,(M) =

Tm (Kp) implies ker mp,, M = ker m, K, for all m > n, or m,, (M) = 7, (K,,) implies
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ker m, M = ker mp, Ky -, for all m > n. Thus

M= (ﬂ kemm>M: ) (kermy, M)

m>n m>n
= ﬂ (kerﬂpr) = (m ker7rm>Kp =K,
m>n m>n

or similarly M = K ,, using Lemma 2.12.
Clearly mp, (M) = K] or mp,(M) = K[, is true for m = n. Now suppose m > n.

q7’r
From

{1} # K" = 1 (M) = Y (i (M)

and mapping (6.10), we conclude mp, (M) = K}*. Or from

{1} # Ky = w1 (M) = Y (i (M)
and mapping (6.11), we conclude that 7, (M) = K. O

For the following, recall the normal subgroups P; and @Q;, for j > 0, of a Wilson
group G, defined in Corollary 5.3.

Corollary 6.17. Let G = @(Gn)nzg be the inverse limit of the groups G, as defined
in Section 4.1.
For j >0, define

Si(la;,,) = I'&n(Sy(Idﬁl))n_)oo, where ) # 1q,,, € Qa;.,,

regarded as subgroups of G.
For j > 1, define

Tj(ILijde) = hLH(TJn(ILwIde))n—MO, where () # IL]' c Ly,

Ag

]+1:{WEQd

j+1 1 € Qa0 \ Ay

Iy,
:w-XjLJ #{w}} and Iy

and define

Tp = Ein(T(?)n—)oo;

regarded as subgroups of G.
Then the non-trivial closed subnormal subgroups of G are precisely the groups
Sila; 1), Tyl La;, ) and Ty. In particular, for all j > 1, Iy, I, and Iy, ., they
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6.4. General Wilson groups 6. Subnormal subgroups

form chains
TJ'(IL]'?IdeA) - Qj - Sj_l(Idj) - F)j—l'

The subnormal length in G of the group S;(Ig,,,) is

L if Iy, = Qa,, (tmplying that S;(14,,,) = Pj),

2 if Iy, C Q.

The subnormal length in G of the group T;(IL;, 14 is

1)

1 if ILj = Lj (implyz'ng that Tj(ILjaIdj_H) = Qj),
2 ifILj C Lj and 14 UAg,

j+1
3 ifILj gLJ and Iy, UAy,

J+1

1 is a union of M;-orbits,

a1 is not a union of M;-orbits.

Proof. We apply Lemma 6.16 to the groups H,, for n > 1, of Wilson’s construction and
their subnormal subgroups. For the finite index sets we take the power sets of {24,, L;
and Q4. \Ag,,,, for 1 <j <n—1, and Qq,. Note that Q' = {1} and R? = (). We
remark that arbitrary sets A; and As can be made disjoint when the elements x € Ay
and y € As are labelled as (1,z) and (2,y).

Define K' = Sp|(Ig,)/M,, where § # p € P’ for i € {1,2,...,n}, K7,
TP (I, _ys1a;)/Mp, where § # g € Q" and r € R for i € {2,3,...,n}, and K, =
T8 /M, where () # q € Q! and r € R!. For each n, these subnormal subgroups of H,
were defined in Theorem 6.15. It was shown that these are all the non-trivial subnormal
subgroups of H,, and they form chains.

The definition of the groups K} and K|, also shows that the second condition
for Lemma 6.16 is satisfied. For 1 < i < n, where () # p € P!, we have Yo (K)) =
Un(S2y (1) /M) = SP5(10)/ Mooy = K270 We take S37(Iy,)/My-1 and K2~
for ) # p € P™ to be the trivial group {1}. For 2 < i < n, where () # ¢ € Q' and

r € RY, we have
%(K;L,r) = wn(Tin—l(ILi—NIdi)/Mn) = Tgi_ll(ILi—NIdi)/Mn—l = KZ;1

We take 707 (Ir,,_,, la,)/Mn—1 and K21 for () % g € Q™ and r € R™ to be the trivial
group {1}. Also v (K2,) = o (T /My) = T35 /My = K7t for 0 # g € Q' and
reRL O

Remark. The indices of the closed subnormal subgroups of the Wilson groups are finite,
due to the definition of the subnormal subgroups. Therefore the subnormal subgroups

of the Wilson groups are open, using Lemma 2.11.
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6.4. General Wilson groups 6. Subnormal subgroups

Remark. The results of this section, every closed subnormal subgroup of a Wilson group
is of finite index, provide an alternative proof to the proof of [32, (3.3)], Wilson groups
are hereditarily just infinite.

Let G be a Wilson group. Suppose H is an open subgroup of G and N is a closed
normal subgroup of H. So K = Coreg(H) is an open normal subgroup of G, using
Lemma 2.10. Then N N K is a closed subnormal subgroup of G. From Corollary 6.17,
we know that NV N K has finite index in G. Hence N has finite index in G and so H is

just infinite.

The following diagram illustrates the chains of subnormal subgroups of a general

Wilson group.
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for 1, C QdQ\AdQ

Tl (]fq ) 52(12\A(12>
Tl([Llsj(lz)

Ti(Iry,1a,)
for I ¢ Ir,, where A = E
1 |
{weq,,, w- X" #{w}} !
Ty Qi \ D) NGO = Tn(Ln, Qa, ,\Ad, )
T.(IF Qg . \A/
( L > fdnta \ dn+1 ) \ Tn(ILna Qn—i—l\AdnH)
To(In, . Ia,.,)

.

Qni1 = Tni1 (L1, Qn2\Ad,,,n)

kqn ('[({71+I )
kS*n (7[(/1” ‘1 )

for I C Iy

dpt1 = n+1

Figure 6.5: The subnormal subgroup lattice of an arbitrary Wilson group.
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Chapter 7

Subnormal subgroup growth

7.1 General Wilson groups

Let G be a Wilson group arising as an inverse limit of finite groups G,, as defined in
Section 4.1. The number of normal subgroups of the Wilson quotient G, is 2n + 2,
for n > 0. Therefore the Wilson group G has 2n + 2 normal subgroups of index at
most |Gp|.

Define the number of normal subgroups of G of index at most |G,,| as

for n > 0, which is a step function. This normal subgroup growth is very slow because
the number SfGnl(G) is much smaller than the number |Gy,| = | X, [P | X, |97 |G
By choosing carefully the finite non-abelian simple groups X;, for ¢ > 0, namely X;
very large, we could make this growth function S|<(]Jn\ (G) grow as slow as we like.

We give an alternative description of the normal subgroup growth of a Wilson
group. Recall the normal subgroups P, for n > 0, of a Wilson group G, defined in
Corollary 5.3. Define the number of normal subgroups of G of index at most |G : P,|
by S|<é:Pn|(G). So the growth function S@:Pn‘(G) = 2n + 2 is linear in n.

Theorem 7.1, below, gives an estimate for the size of the groups Gy, for n > 0.
Using the lower bound for |G,,| in this theorem, we can make a more precise statement
regarding normal subgroup growth of a Wilson group G. Since

4
2n +2 < éﬂ/ ,
n+2

we have that S

Gl (G) grows very slowly, that is slower than the functions
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7.1. General Wilson groups 7. Subnormal subgroup growth

loglog...log |G| for any fixed r.
—_———

r

Theorem 7.1. Let Gy, for n > 0, be the finite groups as defined in Section 4.1.
Suppose there exists a constant ¢ such that | X;| < ¢, for all i > 0.
Then

4 é
& <Gl <E
N~ N~~~
n+2 2n—+2

where ¢ = 3c.

Proof. First we confirm the lower bound
'4
4

——
n+2

for |G,|. We have |X,| > 60 > 2° because X,, is a finite non-abelian simple group.
Then

dn
‘Gn| = ‘Xn“xn‘ |Xn|dn|Gn—1|
> (20)7" |G,y
> (292" (7.1)

The degree d; of the faithful transitive action of Gy = Xy is such that dy > 5 > 4,
as the minimal degree of a faithful transitive permutation representation of As is 5.
Therefore d,, > 4, for n > 1. Now

|G1] < dp! < dyp (7.2)

because the permutation representation of GG,,_1 of degree d,, is faithful. Then

4,32 > dy(logy dy,) S logy |Gr—1]
- ) - )
> 2%4n-1using (7.1).

, using (7.2),

So d,, > 2(10/3)dn—1 > gdn—1  Therefore, by induction,

4
dy > 4% (7.3)

n
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and
4

|G| > 6090 > 4%
—~—
n+2

Now we confirm the upper bound

é
¢ where ¢ = 3c,

2n+-2
for |Gy|. Suppose there exists a constant ¢ such that |X;| < ¢, for all ¢ > 0. Then

|4n

’Gn‘ = ’Xn“Xn ‘Xn‘dn‘Gn—l‘
< c(cd"+d")\Gn_1\
< c(cd”+d")dnd", using (7.2),
— (c" tdntdn log, dn)
< B

< (3¢)B™

Now
dy < |Goi] < (3¢9

because the permutation representation of GG,,_1 of degree d,, is transitive. Therefore,

putting ¢ = 3¢, by induction,

and

"™

~—
2n+2

O

We now consider subnormal subgroup growth of Wilson groups. The following
theorem gives a formula for the number of subnormal subgroups of G,, in terms of d;
and X, for 1 < j < n. The power set notation P(X) is used to denote the set of all
subsets of the set X.

Theorem 7.2. Let G, for n > 0, be the finite groups as defined in Section 4.1. Then
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the number of subnormal subgroups of G, forn > 1, is

n n
2|Xn‘|9dn‘ +22|de\+z Z ol€a;\Aa; (1) ; (7.4)
j=1 j=2

Qq. Qq.
1eP(X; 5 7IO\0.X, 1)

Qa._
where 0 # 1 C X; 3 Pand Ag;(I) ={w e Qg - w- X! # {w}}.
Proof. We prove the result by induction on n. Recall the subnormal subgroups of G,
defined in Theorem 6.15. The subnormal subgroups of G are:

Tll(IL1) = X11L17 where () # Ip, C Ly;

Sé(Ich) = Q% A Xlldla where () 7é Idl - le;
S1 ={1} and T} = G.

The number of subnormal subgroups of Gy is |P(L1)\{0}| + |P(Qq,)\{0} + 2.
When recalling that L; = X?dl, this number can be written as \P(X?dl)\{@}] +
|P(Q4,)\{0}| + 2. Since X; and 4, are finite, the number of subnormal subgroups of

(1 becomes

1y

— olX1 | + 9l

Now putting n = 1 into the formula (7.4) shows that the result holds for Gj.

Suppose the result is true for G,,—1. The subnormal subgroups of G,, are:

(a)
" (IL,) = X} where () # Ir, C Ly;

(b)
" (Lg,) = Qn x X", where 0 # I, C Qq,;

()

Iy,

T (I 4y Day) = Qo (X3 5 X Fvt), where O # I, | € L1,

n

Adn = {w € an W XiL_nfl 75 {w}} and Idn - an\Adn;

and, by induction,
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(d)

MnLnS;?—l([de), where () # Iy, € Qq;.,,, for j €{0,1,...,n —2};

My LT}~ (11, 1y

1)

y where @ ;é IL]. - Lj,

Ay

J+1:{OJEQd

o1 © Qa0 \Ad
for j € {1,2,...,n—2};

41 17

I,
:w-XjLJ # {w}} and Iy

M, LSy~ 0

M,L, Ty ' = G, and T
n+=n

We count the number of subnormal subgroups of each type (a) to (d):
(a) [P(La)\{0};
(b) [P(24,)\{0};

(c) > P(Qa, \Ad, (IL,-1))| + 1;
ILn71 E’P(Lnfl)\{@,[/nfl}

(d) the number of subnormal subgroups of G,,—1 — |P(Lyn—1)\{0}|.

Qa,
Recalling that L; = X % the number of subnormal subgroups of G, is equal to

P(Xn )\ {0}]

+ [P(Q4,)\0)

+ > P(Qa, \Ag, (1))] + 1
TeP(X, )\ (0,X, 1)

Q
+ the number of subnormal subgroups of G,,_; — |P(X, 7" )\{0}|.
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Using that 2; and X, for 0 < j < n, are finite, this number can be written as

<2|an‘“dn' - 1)

- > P (R, \Ag, (I))| + 1

Qq, _ Qq,, _
IeP(X, 7\ {0,x, 1)

Q
n Q‘Xn—l“ dp_1!

+”szdj| .S > 019, \ A, (1]
. 2

Qd~ Qd'
TeP(X; 7\{0,.x; 471y

_ <2|Xn71\md"*1| - 1)

_ 2|Xn|mdn| I 2|an|
+ > P (Qa, \Ad, (1))]
Qq Qq
IeP(X, 217 O\0.X, 2171}
n—1 n—1
+ Z Q\Qdﬂ + Z Z Q‘de\Adj (Dl
= 72 \repx, oo, x,
_ 2|Xn|mdn| +Zn:2\9dj| 4 - Z 99, \Aa, ()]
j=1 j=2 Qq

. Qq.
1eP(X; 7I\{0.x, 7"y

O

Ir.
We now give an upper bound to the number (7.4). We have that X jijl_l, where
0 # ILj_l C Lj_1, acts faithfully on de because Gj_1 acts faithfully on de. So

Ir,
Ag, = {weQ tw- in]fl # {w}} contains at least two points. Therefore the
maximal size of Q4,\Ag; is [Qg;| — 2. Thus the Wilson quotient G, has less than or
equal to

n n
9| X |4n + Z 2dj 4 Z de—2(2|Xj—1|df’1 —2) (7.5)
j=1 =2
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subnormal subgroups.

Recall the definition of the groups H, = L,G,_1, for n > 1, as defined at the
beginning of Section 6.1. From the classification in Section 6.4, any subnormal subgroup
of a Wilson group G that has index at most |H,| contains @,, = ker(¢,, : G — H,,).
Thus the number of subnormal subgroups of a Wilson group of index at most |Hy|, for
n > 1, is less than or equal to the number (7.5).

In this expression (7.5), the term z;‘:l 2% is very small in comparison with the
other two terms. These two terms 2% and > o 2dﬂ'_2(2|XJ'—1‘dj71 —2) look similar in
size. Since the dj, for j > 1, increase in value (refer to (7.3) in the proof of Theorem 7.1),
the term 2" is the largest in the expression (7.5).

Define the number of subnormal subgroups of a Wilson group G of index at most
|Hy| as Sﬁfn|(G). Using Theorem 7.1, we can conclude that Sﬁfn‘(G), which is less
than the number (7.5), is roughly the size of the group G,,, although somewhat smaller.
Therefore for some constant d we have Sﬁfb‘(G) < d|Gy|, for n > 1.

7.2 Infinite iterated wreath products .. .1 A, A, ... LA,

where m > 5

Recall the just infinite profinite groups W = {iLn(Wn)nZO, where
Wi = A dgeind - - - 2ozl Am 2gett] Ams
for n > 1, and where
QU = {ivig. . ij 1,004 € {1,2,...,m}},

for each j = 1,2,..., and Wy = A,,, as defined in Section 3.2. It is standard to view
the group W as acting on the infinite m-regular rooted tree, that is where every vertex
has m children (see P. de la Harpe [6, pg. 211-212]). We denote this tree by 7.

The subnormal subgroups of these groups are completely characterised in Sec-
tion 6.3. Every non-trivial subnormal subgroup of W has index of the form |A,,|*,
for some k& > 1. The number of subnormal subgroups of W with index |A,,|*, for
k > 1, is equal to the number of subtrees of T that have the same root and k vertices
(or equivalently k£ — 1 edges). The following diagram is an example to illustrate this
statement.

For m = 5, we consider the same subnormal subgroup of W that has been depicted

previously in Figure 6.2, found towards the end of Section 6.3. Below, Figure 7.1
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Figure 7.1: The index of a subnormal subgroup of W represented as a subtree of 7.

represents the index of this subnormal subgroup as the highlighted subtree of the
infinite tree T. The index in W of this subnormal subgroup is | A5|".
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We denote the number of subnormal subgroups of W with index |A,,|* by a;/<(W).

The number of subtrees of T that have the same root and k vertices is the same as the

FTEETCE )

refer to [1, Prop. 3.1]. Therefore the number of non-trivial subnormal subgroups of W

Fuss-Catalan number

with index at most |A,,|", for some n, is equal to the sum

=Y e (1)

k=1

For further research concerning the subnormal subgroup growth of the groups W, see
Chapter 10, Question 3.
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Chapter 8

Maximal subgroups

8.1 Introduction

We now wish to investigate maximal subgroups of Wilson groups. Let G be a Wilson
group arising as an inverse limit of finite groups G,, as defined in Section 4.1. We would
first like to determine the maximal subgroups of the finite groups G,,.
Fix the alphabet A = {1,2,...,m}, where m > 5. For n > 1, recall the iterated
wreath products
Wi = A lgeinl - - - lge12) Am Lge11] Ams

first defined in Section 3.2, where
Q*[j] = {ilig .. .ij D11,12, .. - ,ij S A},

for each j =1,2,...,n. Here again 7172 ...%; denotes a sequence of numbers and not a
product of numbers.

The groups G, and W,, are both constructed from wreath products of finite non-
abelian simple groups using transitive actions. Therefore determining maximal sub-
groups of the groups G, is likely to involve the same techniques that are used to
determine maximal subgroups of the groups W,,.

M. Bhattacharjee [3] has produced information on maximal subgroups of iterated
wreath products that are constructed from alternating groups of degree at least 5. Her
wreath products are a little different from our wreath products W,,, in that the alter-
nating groups are allowed to vary giving A, 1.. .01 Am, L Am, , where mq,ma, ..., my > 5.
The natural action of the alternating groups is used to form Bhattacharjee’s wreath
products and the natural action of the alternating groups is used to form the wreath

products W,,.
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Bhattacharjee’s view point is that of finite generation of inverse limits of such wreath
products. Her method requires her to analyse maximal subgroups, of the wreath prod-
ucts, which modulo the base group project onto the top group. She obtains upper
bounds for the number of conjugacy classes of these maximal subgroups. Bhattachar-

jee’s results fall short of a complete classification of such maximal subgroups.

8.2 Finite wreath products A,,? A,,, where m > 5

We now consider the maximal subgroups of the finite groups W,,, for n > 1. As we
want to see how techniques can be applied to the groups Gy, the easiest step is to look
at the first wreath product Wy = A, g« Ar, where il = {1,2,...,m} and m > 5.

Theorem 8.3 describes the maximal subgroups of Wj. The proof of this theorem
is a special case of Bhattacharjee’s work in [3, pg. 316 - 321]. This is because she
works more generally applying to wreath products where the top group can also be an
iterated wreath product. There are differences, some very subtle, between our work
and Bhattacharjee’s work, which we now go on to explain.

The proof of Theorem 8.3 separates the possibilities for the maximal subgroups
of W1 into types, referred to as Case 1, Case 2a, Case 2b and Case 2c. The Case 1
type found in Theorem 8.3 does not occur in Bhattacharjee’s work because she is only
concerned with maximal subgroups that modulo the base group project onto the top
group.

In Theorem 8.3, the proof concerning the maximal subgroups of type Case 2a is
new and different from Bhattacharjee’s proof. It is also a little more self-contained
than Bhattacharjee’s, since it does not rely on Lemma 2.3 from [2] (alternatively, see
the Appendix of our thesis for this lemma). Instead, because we can specify double-
transpositions from A,, and work with them directly, we implicitly produce a proof
that the action of A,, on Q*1 = {1,2,...,m} is primitive, see Lemma 8.2. Later in
this section we go further to provide accurate results for the counting of these types
of maximal subgroups (see Remark 8.5) and the counting of conjugacy classes of these
types of maximal subgroups (see Remark 8.7).

The proof of the maximal subgroups of type Case 2b in Theorem 8.3 is contained
in Bhattacharjee’s work and we have possibly written it in a more readable fashion.
However, later in this section we do produce extra information regarding the counting
of these maximal subgroups (see Remark 8.6) and the counting of conjugacy classes of
these maximal subgroups (see Remark 8.8).

Our work on the maximal subgroups of type Case 2¢ in the proof of Theorem 8.3 is

new and different from Bhattacharjee’s proof. This is because we use the more recent
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results of C. Parker and M. Quick [23] to rule out the possibility of maximal subgroups
of this type. Theorem A(i) of [23] gives a set of conditions for a wreath product to
have a maximal subgroup which complements the base group. In Theorem 8.3, we will
show that one of these conditions fails to hold for our wreath product Wj.

To help the readers understanding, we now state the theorem of Parker and Quick.

Theorem 8.1 (Parker and Quick [23]). Let X and Y be groups with Y acting on the
finite set Q where || > 1. Let W = X q Y be the wreath product of X by Y with
respect to this action and let K be the base group of W.

The wreath product W has a mazimal subgroup which is a complement to K if and

only if the following conditions hold:
(a) X is a non-abelian simple group,
(b) Y acts transitively on €,

(c) there exists a surjective homomorphism ¢ : Sty (w) — X from the stabiliser of
apointw € QinY to X, and

(d) if we view ¢ as a map Sty (w) — Aut(X), identifying X with its group of inner
automorphisms, then ¢ is not the restriction of a homomorphism H — Aut(X)
for any subgroup H of Y properly containing Sty (w).

On several occasions, the following lemma is applied in the proof of Theorem 8.3.

Lemma 8.2. Let W1 = Ay, lg-n) Am, where o = {1,2,...,m}, for some m > 5.

Denote the base group A,(gl) =: B and the permuting top group A, =:T.

Suppose H is a subgroup of W1 such that

(i) HB = Wi, and
(i) H N B is a proper subdirect product in B.

Then
HNB={(z,p2(x), p3(x),...,om(x)) : x € A},

where p; € Aut(Ay,), for2 < j <m.

We remark that the group {(z,p2(x),p3(x),...,om(x)) : © € Ay}, where ¢; €
Aut(A,), for 2 < j < m, is referred to as a diagonal subgroup of the direct product
I, A of alternating groups.
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Proof. We claim that the first coordinate of an element of H N B determines all the

other coordinates of that element. For a contradiction, suppose
(T, 91, %, .., %), (T, y2,%,...,x) € HN B
such that y; # y2. Then
(az,yl,*,...,*)(a:,yz,*,...,*)_1 = (1,y1y51,*,...,*) €eHNB

with y1y2_1 # 1. Put y3 = y1y2_1.
For t = (13)(45) € T we find b = (b1,b2,...,by,) € B such that tb € H (using
condition (i)). So
(Lys, %, .., 6) = (x,482,1,%,...,%) € HN B.

Put g3 = y%. If [y, g3] = 1, for all h € A, then [k, 73] = 1, for all k € (y3)?m.
Now (y3)4m = A,,, since y3 # 1 and A,, is simple. Therefore g3 € Z(A,,) = {1}.
Contradicting g3 # 1, as y3 # 1. Thus there exists h € A,, such that [y, 3] # 1. We
can find (%, h,*,...,*%) € HN B because H N B projects onto A,, in each coordinate

(using condition (ii)). Then
(1,43, %, ..., %) BR5e) — (1 gh o %) e HNB

and
[(17y§7*7"‘7*)7(*7@3717*7"‘7*)]:(17[yg7g;v3]717*7"‘7*) GHQB

Put ya = [y3, 7).
For t = (14)(35) € T we find b = (b1, ba,...,by) € B such that tb € H. So

(1ay4717*7"'7*)tb:(*73/227*71717*)"'7*) EHQB'

Put gy = yZQ. There exists h € A,, such that [y, 74] # 1 and we can find (x, b, *,..., %) €
H N B because H N B projects onto A, in each coordinate. Then

(L,y4,1, %, .. .,*)(*’h’*""’*) = (l,yff, L,*,...,x) ¢ HN B
and

[(17y2717*7""*)7(*7@17*71?17*7‘"’*)] :(17[y27:/y\21]7171’1’*""’*) EHHB'
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The process can be iterated n — 3 times to obtain (1,y,,1,1,...,1) € HN B with
yn # 1. Since H N B projects onto A,, in each coordinate, we have (k,g,*,...,%) €
H N B, for all g € A,,. Then

Lyn,1,1,...,1 (hsge®) — 1,99,1,1,...,1) e HN B,
n
for all g € A,,. Therefore

{1} % (y) ™ x {1} x {1} x ... x {1}
={1} x A x {1} x {1} x ... x {1} C HN B,

as y, # 1 and A, is simple. For all ¢t € T we have tb € H, for some b € B, and
conjugating by tb € H implies AS,T ) C H N B. This contradicts B € H. Thus

HnNB={(z,p2(x),p3(x),...,om(x)) : x € An},

where ¢; : A,;, — A, are maps, for 2 < j < m. That is H N B = A,,.
In fact, H N B being a subdirect product in B implies that each of the maps ¢; is
surjective. Since ¢; are surjective maps between the same finite set, they are injective.

Now

(IE, 902(1')7 903(1‘), e gom(:lt))(y, 902(3/)7 903(:’/)? s 780m(y))
= (zy, p2(2)p2(Y), p3(2)03(Y), - - -, om(¥)em(y)) € HN B

and, as the first coordinate of an element of H N B determines all its other coordinates,
this element is equal to (zy, p2(xy), p3(xy),...,¢m(zy)). Therefore p;(x)p;(y) =
pj(xy), for every z,y € Ay, for 2 < j < m, and the maps ¢; are homomorphisms.
Hence

;€ Aut(Ay,), for 2 < j <m.

O

Theorem 8.3 classifies the maximal subgroups of Wi up to conjugation. The max-
imal subgroups are conjugates of three types of subgroups and the theorem tells us
that it is enough to conjugate by the elements of the base group B. The degree of
the alternating groups has been restricted to m # 6 because the proof of the theorem
makes use of the fact that Aut(A4,,) = Sy, for m >4 and m # 6.

We now state Theorem 8.3 and we prove this theorem over the next several pages.
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Theorem 8.3. Let Wi = Ay, gen) Am, where Q= {1,2,...,m}, for some m >5

and m # 6. Denote the base group Aq(%n) =: B and the permuting top group A, =:T.

Therefore Wy = B x T.

Define
My(L) = B x L, where L is a maximal subgroup of Ay,.
Define
My ={(z,x,...,z) :x € Ay} x T.
Define

My (L) = LU s T, where L is a mazimal subgroup of Ay,.

Then the groups Mo(L), M{, where g € B, and Ms(L)9, where g € B, are mazimal

subgroups of Wi and every mazimal subgroup of W1 is one of these.

Proof. Let M be a maximal subgroup of Wj. Then there are two possibilities:
B C M (case 1), and B Z M (case 2).

Case 1.
Suppose B C M. Since B < Wi, we have the surjective group homomorphism
Wy — Wi /B =2 T. A group homomorphism preserves inclusion of subgroups.
Then there is a one-to-one correspondence between the maximal subgroups of
W1 containing B and the maximal subgroups of 1. Therefore M = BL, where
L is a maximal subgroup of 7. Now L normalising B and B N L = {1} implies
M = B x L. Hence M = My(L).

Case 2.
Suppose B € M. Obviously M C BM C Wj. Since M is a maximal subgroup
of Wi, we have M = BM or BM = Wy. However, M = BM contradicts B £ M.
Therefore
BM = Wj.

Then B < Wy, by the 2nd isomorphism theorem, gives
M/(MNB)2BM/B=(BxT)/B=T.

So for all t € T there exists b € B such that bt € M.

Let i, € Q*ll. We choose ¢t € T such that ti = j, since T acts transitively on
the set Q*[U. For this ¢ € T, we find b € B such that th € M. For 1 < i < m, let
7; be the projection map from B onto the ith factor of B. Then 7;((M N B)") =
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7;(M N B)%, where b = (by, b, ...,by) € B. Thus the projections of M N B into

the m factors of B are conjugate in A,,.
Define
K =m(MNB) <Ay, forl<i<m.

Therefore
MNB<K|x Ky x...xKy,.

Case 2 can be separated into three possibilities because the groups K; are all

conjugate subgroups of A,,.

(case 2a) Let the group Ky = A,,. Then K; = A% = A,,, for all
j e Q.

(case 2b) Let the group K; # {1} and K; # A,,. Then K, = Kfj £
{1} and K; = KV # A,,, for all j € Q*1,

(case 2c) Let the group K; = {1}. Then K; = {1}% = {1}, for all
j el

Case 2a.
Assume the groups K; = A, for all i € Q*J. Then M N B is a proper
subdirect product in B. Setting H = M, Lemma 8.2 tells us that

M N B ={(z,p2(x),03(x),...,om(x)) : x € Ap},

where ¢; € Aut(A,,), for 2 < j <m.

We first consider a special case where ¢; =1idy,,, for all 2 < j <'m. That is
MNB={(z,z,...,x):x € An}.

We prove that if M is a maximal subgroup such that MNB = {(z,z,...,x) :
x € Ay} then T is contained in M.

Let (z,z,...,x) € M N B and bt € M, where b = (by,ba,...,by) € B and
t € T. Then

(x,a:,...,a:)bt = (azbl,xsz...,azbm)t eEMnNB.

-1
Therefore 2% = 22 = ... = gbm. So 2%t = x, for all 7,5 € Q. Since

this holds for all # € A,,, we have bib; ' € Z(A,) = {1}, for all 4, j € Q*I!],
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Therefore b; = bj, for all 4,5 € Q*l. Now b = (by,b1,...,b;) € M and so
t =b~1(bt) € M. Since this holds for all t € T, we have T C M.

Therefore M = (MNB)T. Now B<IWj implies MNB<M, and BNT = {1}
implies (M N B)NT = {1}. In fact, T < M gives this particular maximal
subgroup as the semidirect product M = (M N B) x T.

Furthermore, T' < M because T acting by conjugation on the elements
(z,z,...,z) permutes the coordinates and, since the coordinates are all the
same, permuting them leaves the elements (x,z,...,z) unchanged. There-
fore we actually have the direct product M = (M NB) x T. Thus M = M,
recalling that M = {(z,z,...,2) 1z € A} x T.

We check that M; is a maximal subgroup of Wj. Clearly M; is a proper
subgroup of W; because it does not contain all the elements of the base
group B.

We now show, for all g € Wi\Mj, that ({g} U M;) = W;. Take g = bt €
Wi\Mj, where b € B and t € T. Then

g=gt ' =bec B\(Bn M),

as t € M;. Therefore g = (z1,22,...,2y,) with z; # x; for some j € Q.
Since
({gtu M) = ({g} U M),

we will consider the group ({g} U M;). For a contradiction, suppose that
({gtUM;) C Wi. We can apply Lemma 8.2 to the group ({g} U M), setting
H = ({g} U M;). Condition (i) holds because ' C M; C H. Condition (ii)
holds because it H N B = B we would not have H C Wj. Thus the first
coordinate of an element of H N B determines all the other coordinates of
that element. This contradicts g € H and (z1,21,...,21) € H.

Now we look more generally at the maximal subgroups M such that

MO B = {(z,p2(2),03(x), ..., om (7)) : 2 € Am},

where ¢; € Aut(Ay,), for 2 < j < m. For m > 4, with the exception
of m = 6, it is known that Aut(A,,) = S,,, where S,, acts on A,, by

conjugation. Therefore

MNB={(z,a%?,2%,...;29") :x € An},
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where g; € Sy, for 2 < j <m.
For t = (123) € T we find b = (b1, b2, ...,by) € B such that tb € M. Also

(:Bgmbmg';zl , (l.gmbmg’;bl )92 (xgmbmg;zl )gm—l , xgmbm)

g ey

is an element in M N B. Multiplying the inverse of this element by

(z,292,..., 297)% gives the element
gmbmg”;ml gmbmgq;LIQQ gmbmg;q,lgm—l gmbm -1
(x , T ey , X )
(x93b1’xb2’ x92b37x94b471.95b57 e xgmbm)

((J;gmbmgﬁ)—lmga»bl, (xgmbmg7_rL192)_l$b2’ (Igmbmg;fgs)—1$gzl>37
(xgmbmgalg4)—1xg4b4’ (xgmbmg;zlg5)_1$g5b5’ o

(l.gmbmg;lgmfl )*lxgmflbmfl , 1)7

which is in M N B, for all x € A,,. Since the mth coordinate of this element
is equal to 1, all the coordinates of this element are equal to 1. From the
1st coordinate, we deduce that g Imbmgm' x99 for all x € A,,. Then
Imbmgm! = gsbi because Cg, (A,,) = {1}. Considering this equation mod-
ulo A,,, we obtain that 1 = g3 (mod A,,), as by, b, € A,;,. Working sim-
ilarly, the 2nd coordinate gives go = 1 (mod A4,,) and the 3rd coordinate
gives g3 = g2 (mod A,,). This argument can be applied repeatedly, taking

in turn t as each of the 3-cycles in A,,. Therefore it is deduced that

1

g2 . = gm (mod A,).

So ¢2,93,--.,9m € A because 1 € A,,.

Now
MOB:{($’$7,,,’$):$€Am}gy

where g = (1, 92,93, .- -,9m) € B. Then

(MABY  '=M9 ' 'NnBY =M NB={(z,2,...,2): 2 € Anp}.

1

So M9 is a maximal subgroup of Wy such that M9 NB = {(z,z,...,z):
z € Ap}. Therefore T' C M9 " and M9 = M. Hence M = MY, where
9= (1’92793)-"agm) € B.
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Case 2b.
Assume the groups K; # {1} and K; # A,,, for all i € Q*[]. We choose
g = (91792) cee agm) S B such that

KW' =K@ =. . =KI"=L# Apn,

as the groups K; are all conjugate subgroups in A,,. Then m;((M N B)Y) =
mi(MI9NB) =L, for 1 <i<m, and so

MINB < LM,

Instead, we now study the maximal subgroup MY of Wj.

We claim that MY is contained in the normaliser of L(™) in Wi. Let
(Ii,la, ... Ly) € LU and bt € M9, where b = (b1,bs,...,b,) € B and
t € T. Then

(I, dg, .oy L)t = (151,152, 1o,

We need to show that l?i € L, for each i € Q*1). Since M9N B projects onto
L in each coordinate, in MY N B there will be elements (x,...,%,1;,*,..., %)
where [; is in the ith position, for each i € Q*}). Conjugating by the same

element bt € MY gives

O P Ly (R 1% % ..,x)te MINB.

s Ty lp 9™

Again since M9 N B projects onto L in each coordinate, we have proved that
li-” € L, for each i € Q1.
Now

M9 < Ny, (L) < Wy.

As M9 is a maximal subgroup of Wy, we have that M9 = Ny, (L(™) or
Ny, (L)) = Wy. If Ny, (L) = Wy then (N4, (L))™ x T = AT % T,
by Lemma 2.5. So Ny, (L) = Ay, and L < Ny, (L) = A,,. Since A, is
simple, this implies the contradiction that L = {1} or L = A,,. Therefore

M9 = Ny, (L) = (N4, (L)™ x T.

Obviously M9NB = (Na,,(L))™. So M9NB < L™ gives (N4, (L))™ <

104



8.2. Finite wreath products A, ! A,,, where m > 5 8. Maximal subgroups

L™ As L < Ny, (L), we have
Ny, (L) = L. (8.1)

Therefore M9 = L™ x T

Here L must be a maximal subgroup of A,, because if it was not then we
can find a maximal subgroup L’ lying between L and A,,. Then (L')(™ x T
is a group properly containing M9 but is not W;, and contradicting that
M9 is maximal in Wy. So M9 = My(L), recalling that My(L) = L™ % T,
where L is a maximal subgroup of A,,. Hence M = My(L)9" ', where g € B.
We check that any choice of maximal subgroup L of A4,, leads to M2 (L) being
a maximal subgroup of Wj. Clearly M(L) is a proper subgroup of Wi, since
L is maximal in A,, we can find x € A,,\L so that (z,1,1,...,1) & My(L).
We now show, for all g € Wi\My(L), that ({g} U My(L)) = Wi. Take
g =0bt € Wi\My(L), where b € B and t € T. Then

g=gt™' =be B\(BN M,(L)),

ast € My(L). Therefore g = (y1,y2, .. ., Ym) where without loss of generality
y1 € L. Since
{g} U My(L)) = ({g} U Ma(L)),

we will consider the group ({g}UMs(L)). We have (y1, L) = A, because L is
maximal in A,,. Therefore ({g} U M2(L)) contains elements (h, *,...,*) for
any h € Ap,. Since L # {1}, there exists (I,1,...,1) € L™ C ({g}UM>(L))
with [ # 1. Then

(1,1, 1)) = (17 1 1) e ({§ U My(L)),
for all h € A,,. Therefore
(A s {1} x . ox {1} = Ay x {1} x ... x {1} € ({3} U Ma(L)),

as | # 1 and A,, is simple. Applying the action of T implies that B C
({g} U Ms(L)). So ({g} U Ms(L)) = Wy and this confirms that My(L) is a

maximal subgroup of W7j.

Case 2c.
Assume the groups K; = {1}, for all i € Q*[). Therefore M NB = {1}. Also
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since BM = Wi, we have that in this case the maximal subgroup M is a
complement for the base group B in Wj.

We show that condition (c¢) of Theorem 8.1 does not hold. In applying
this theorem to our group Wi, we have that X = A,, and Y = A,,,. The
stabiliser of any point ¢ € *( under the action of A, is isomorphic to Ay,_1.
Thus there can be no surjective homomorphism from the stabiliser of a point
i € Q[ under the action of A,, to the group A,,. Hence W; has no maximal

subgroups which complement the base group and Case 2¢ does not occur.

O
Remark. Theorem 8.3 implies that there are three types of maximal subgroups of W7.

e Maximal subgroups M of the form My(L) have the property that M N B is equal
to B (Case 1).

Maximal subgroups M that are conjugates of:
e M have the property that M N B is a proper subdirect product in B (Case 2a);

e M>s(L) have the property that M N B projects onto a maximal subgroup of 4,

in each coordinate (Case 2b).

Remark. The groups My(L) are semidirect products of My(L) " B = B by L. The
groups MY, where g € B, are semidirect products of M{NB by T9. The groups Ma(L)Y,
where g € B, are semidirect products of Ma(L)? N B by TY.

Therefore all the maximal subgroups M of W are semidirect products of M N B

by a suitable non-trivial complement.

In [3], Bhattacharjee finds upper bounds for the number of conjugacy classes of
maximal subgroups of the wreath products that she is considering. We are able to
do a little more because our wreath products Wj are a very specific subclass of Bhat-
tacharjee’s wreath products. Since we have classified the maximal subgroups of W7 up
to conjugation, we can count explicitly the number of them using the orbit-stabiliser

theorem. These numbers are displayed below in Corollary 8.4.

Corollary 8.4. Let Wy be the group as defined in Theorem 8.5. Then the number of
mazimal subgroups M of W1 with the property that M N B:

e is equal to B is precisely the number of mazimal subgroups of A, (Case 1);

e is a proper subdirect product in B is precisely |A,|™ 1 (Case 2a);
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projects onto a maximal subgroup of Ay, in each coordinate is precisely

> A LM

LSmaXAm

where the summation runs over all maximal subgroups of Ay, (Case 2b).

Proof.

Case

Case

2a.

Maximal subgroups of Wj of the type in Case 2a are all of the form M7, where
g € B. We calculate the number of distinct maximal subgroups of this type.
The group B in W acts on the orbit {M7 : g € B} by conjugation. The orbit-
stabiliser theorem says that the length of this orbit is |B : Ng(Mj)|. Therefore

we compute the normaliser of M; in B.

To simplify workings we notice that a conjugate of an element of M; is in B if
and only if the element of M; is in B. We need to find elements (g1, 92, ..., 9m) €
B where for all x € A,, there exists y € A, such that (z9',292,... 29") =
(y,y,...,y). That is 29 = 29, for all + € A, and for all i,j € Q*I. So
299" =z, for all 2 € Ay, and gig; " € Z(Ay) = {1}, for all i,j € 1. Then
g; = gj, for all i, 5 € Q1.

We check that 7(91:91:-+91) C M. In fact T(91:91-+91) = T. Therefore

Np(Mi) = {(91,91,---,91) : g1 € A} = Ay,
The number of distinct conjugates M7, where g € B, is |Ap|™/|An| = | A |1

2b.

Maximal subgroups of W; of the type in Case 2b are all of the form May(L)Y,
where L is a maximal subgroup of A,, and g € B. We calculate the number of
distinct maximal subgroups of this type. For fixed L, the group B in Wj acts
on the orbit {Ms(L)Y : g € B} by conjugation. The orbit-stabiliser theorem
says that the length of this orbit is |B : Ng(M2(L))|. Therefore we compute the
normaliser of My(L) in B.

Again, to simplify workings we use the fact that a conjugate of an element of
Ms(L) is in B if and only if the element of My(L) is in B. We need to find
elements (g1, g2, - .,gm) € B where for all (I3,1s,...,1,) € L™ we have

(I, g,y .y Ly ) 919209m) — (191 192 19m) ¢ [(M),
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That is 1Y € L, for all [; € L and for all i € Q). So g; € Ny, (L), for all
i e Q.

From result (8.1), we know that N4, (L) = L. Then (91,92, - -, 9gm) € L) gives
T(91:92:29m) C My(L). Therefore Ng(My(L)) C (N4, (L)) = L),

Now Ms(L) C Ny, (M2(L)) implies
L™ = My(L) N B C Ny, (My(L)) N B = Np(Ma(L)),

Thus Np(Ms(L)) = L. The number of distinct conjugates M(L)9, where
g € B,is |Ay, : LI™.

The conjugacy class of My(L) in B, for another maximal subgroup L of A,,, may
be the same as the conjugacy class of My(L) in B. This will occur when Lis
a conjugate of L in A,,. The number of conjugates of L in A,, is |A,, : L|, by
result (8.1). Hence the total number of distinct maximal subgroups of W of the

type given in Case 2bis Y. |A,, : L|™ L
O

Remark. As was seen in Case 2a, the maximal subgroups M7 are parametrised by the
cosets {(z,z,...,x) : x € A }g, where g € B. Therefore we can describe them using
the coset representatives g; € B, for 1 <i < |A,,|™ L.

Similarly, as was seen in Case 2b, the maximal subgroups Ms (L)Y can be described

using the coset representatives g; € B, for 1 <i < |A,, : L|™.

Remark. It would be interesting to know which of the three types of maximal subgroups
of Wy is the largest class.

The number

> Ay Lt
L<maxAm

of maximal subgroups of type Case 2b is calculated by summing numbers that are at
least 1 as we run through all the maximal subgroups of A,,. Therefore the number of
maximal subgroups of type Case 2b is larger than the number of maximal subgroups
of type Case 1.

|m—1

It is left open as to whether the number |A,, of maximal subgroups of type

Case 2a is larger than the number of maximal subgroups of type Case 2b.

Remark 8.5. We analyse Bhattacharjee’s paper [3] with respect to counting the number
of maximal subgroups M of W7 with the property that M N B is a proper subdirect
product in B (Case 2a).
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Since the only non-trivial T-congruence' on Q*[! is Q*1!), Bhattacharjee describes

these maximal subgroups as Ny, (D), where

Dy, = {(ZL',QOQ(SL‘),QO;g({L‘), . '>§0m(x)) HE S Am}?

for some ¢; € Aut(A,,), for 2 < j < m. She estimates the number of conjugacy
classes of these maximal subgroups by calculating the number of conjugacy classes of
the groups D;. Instead, we use Bhattacharjee’s best description of Ny, (D;) to count
the number of possible maximal subgroups of this type.

The groups D; are uniquely determined by the maps s, (3, ... and ¢,,. However,
not all choices of ¢; € Aut(4,,) may lead to Ny, (D1) being maximal. Therefore
Bhattacharjee’s work only goes so far as to produce the overestimate of |S,,|™ !, for
m # 6, maximal subgroups of this type. Corollary 8.4 counts the exact number of these
maximal subgroups as |A,,|™ !. The difference of values occurs because Theorem 8.3
checks that the maximal subgroups are actually maximal and Bhattacharjee’s work
does not require such checking.

We comment further that subgroups of Bhattacharjee’s description Ny, (D7) which
are not maximal must therefore be contained in maximal subgroups of the form My (L) =
B x L. So Ny, (D) is maximal if BNy, (D) = Wj. The subgroups Ny, (D1) that are
not maximal are those which D; = {(z, p2(z), p3(x),...,om(x)) : x € A} for some
1 # ¢j € Aut(A4,,)/Inn(A4,,) = Out(An,).

Remark 8.6. We analyse Bhattacharjee’s paper [3] with respect to counting the number
of maximal subgroups M of W; with the property that M N B projects onto a maximal
subgroup of A, in each coordinate (Case 2b).

Bhattacharjee’s method and therefore best description of these types of subgroups
is the same as that of Theorem 8.3. She then estimates the number of conjugacy classes
of these maximal subgroups. Bhattacharjee’s usage does not necessitate her to conclude
that she has enough information to proceed in the counting of these types of groups.

Since Theorem 8.3 has shown that any maximal subgroup L of A,, leads to these
groups being maximal, Corollary 8.4 has counted the exact number of these types of

maximal subgroups as Y. |A,, : L|™L
LgmaxA"L

Remark 8.7. We use Theorem 8.3 to count the exact number of conjugacy classes of
maximal subgroups M of W; with the property that M N B is a proper subdirect
product in B (Case 2a).

Since Bhattacharjee conjugates maximal subgroups by elements of the whole group

YA T-congruence on Q is a T-invariant equivalence relation. That is, for ¢t € T and €, there exists
Q; such that ¢€; = Q;; where ); are the equivalence classes.
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and not just the base group, in order to compare with Bhattacharjee we conjugate by
elements of the whole group W;. We show that the maximal subgroups M7, where
g € B, as described in Theorem 8.3, form exactly one conjugacy class in Wj. For
bt € W1, where b € B and t € T, we have (M])" = Mf(tilgbt) = Ml(gb)t and (gb)! € B.

For W7, Bhattacharjee’s work leads to the maximal subgroups of the type in Case 2a
being Ny, (D), where

D, = {(13,4/32(55),(/33(55), .- -,‘Pm(l')) HEGES AM}7

for some p; € Aut(A,,), for 2 < j < m. The inner automorphisms of A,, give
rise to a single conjugacy class of groups Dy in B. Any 1 # ¢; € Out(4,,) leads
to a single distinct conjugacy class. Therefore the number of conjugacy classses of
subgroups of the form D; in B is | Out(4,,)|™ !. Since |Out(4,,)| = 2, for m # 6,
an upper bound for the number of distinct conjugacy classes of maximal subgroups of
type Case 2a is 2!, Therefore Bhattacharjee’s work only goes so far as to produce

this overestimate, whereas, our work calculates precisely one conjugacy class.

Remark 8.8. We use Theorem 8.3 to count the exact number of conjugacy classes of
maximal subgroups M of Wy with the property that M N B projects onto a maximal
subgroup of A, in each coordinate (Case 2b).

Since Bhattacharjee conjugates maximal subgroups by elements of the whole group
and not just the base group, in order to compare with Bhattacharjee we conjugate by
elements of the whole group W;. We claim that Ms(L;) is conjugate to My(Ls) in Wy
if and only if the maximal subgroups L; and Lo of A,, are conjugate in A,,.

Suppose My(L1) and Ma(Ls) are conjugate in Wi. Then Mo(Lq)" = My(Ls) for
some bt € Wy, where b = (b1, ba,...,by,) € Band t € T. So

(L 5 T)% = (L) 5 T = L™ « T.

Intersecting with B gives (Lgm) )bt = Lém). Therefore there exists some b; € A,, such
that L} = Ly.
Suppose L and Lo are conjugate in A,,. Then L{ = Ly for some g € A,,. Therefore

Moy(Ly)(999) = (Lgm))(g,gmg) ¢ T(9:9:-.9)
= (L9)™ T = (Ly)™ % T = My(Ls),

where (g,9,...,9) € B.
Thus the number of conjugacy classes in W; of maximal subgroups of the form

M5(L)Y, where g € B, is the same as the number of conjugacy classes in A, of maximal
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subgroups L of A,,. The number of conjugacy classes of maximal subgroups of A,,
can be worked out from the classification of maximal subgroups of A,, as set out in
Section 2.3.

Bhattacharjee states that finding an upper bound for the number of distinct con-
jugacy classes in W7 of these types of maximal subgroups reduces to finding an upper
bound for the number of distinct conjugacy classes in A, of maximal subgroups of A,,.
She overestimates the number of conjugacy classes because she is not required to prove

that her statement is necessary and sufficient, which we have done above.

8.3 Finite wreath products A,,? A, A,,, where m > 5

We continue the work of determining the maximal subgroups of the finite groups W,,
with a view to applying these techniques to the groups G,, of Wilson’s construction.

The next natural step is to look at the second wreath product
Wa = A lgez) (Am g1 Am),

where
QM =11,2, ... m} and QP = {iyig :i1,i0 € {1,2,...,m}},

and m > 5. The top group A, o« Ay, of this iterated wreath product is the group
Wy. Therefore we can write
Wa = Ap lqe2) Wh.

Theorem 8.10 describes the maximal subgroups of Wy. They are described by using
the work of Bhattacharjee [3], and Parker and Quick [23], and our analysis for proving
Theorem 8.3. Similarly, the proof of Theorem 8.10 separates the possibilities for the
maximal subgroups of Wy into types, referred to as Case 1, Case 2a, Case 2b and
Case 2c. The proof concerning the maximal subgroups of type Case 2a is taken from
Bhattacharjee’s work in [3]. To obtain a self-contained analogue for Case 2a, as in
W1 of the previous section, was found to be too complicated and seemed unnecessary
considering we have the work of Bhattacharjee. Therefore since we do not use the fact
that Aut(A,,) = Sy, for m > 4 and m # 6, Theorem 8.10 holds for m > 5.

In the previous section, for W; the maximal subgroups M of type Case 2a had
M N B equal to a single diagonal subgroup?. From paper [3, pg. 316], we see that

this is because A,, acts primitively on Q*1 = {1,2,...,m} and so O is the only

2The group {(z,p2(x), 3(x),...,om(x)) : © € Ay}, where p; € Aut(Ay), for 2 < j < m, is
referred to as a diagonal subgroup of the direct product []7"; AY of alternating groups.
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non-trivial A,,-congruence® on Q*. However, for Wy the subgroup A%n ) % A, acts
imprimitively on the set Q*2 = {iyiy : i1,iy € {1,2,...,m}}; see Lemma 8.9 below.

Therefore the maximal subgroups M, of Ws, of type Case 2a can have M N B equal to

a direct product of more than one diagonal subgroup.

Lemma 8.9. Let A%n) X Ay act naturally on QP = {iyig 21,0 € {1,2,...,m}}, for
m > 3. Then

{1i2:i2€{1,2,...,m}}, {Zig :126{1,2,...,m}}, e, {miQ:iQG{l,Q,...,m}}

is the only non-trivial system of blocks.

Proof. Fix 11 € O*2 Recall Wy = Aﬁ,’{‘ ) X Am. Since the group Wi acts transitively
on Q*2 there is a one-to-one correspondence between the non-trivial systems of blocks
and the subgroups H such that Sty, (11) € H C Wi, where Sty (11) is the stabiliser
of 11 in W7. Now

Sty (11) = Apq x (A7 5 A1), (8.2)

We claim H = AS,T) X Ap—1 is the only subgroup such that Sty (11) € H C Wi.
We write B = A,(fln ) for the base group of Wi.

If Ay,—1 = BStw,(11)/B C BH/B then BH/B = A,,, as A1 is a maximal
subgroup of A,,, for m > 3. A short calculation, similar to that used in the proof of
Lemma 8.2, shows that B C H. So we have the contradiction H = Wj.

Therefore B Styy, (11)/B = BH/B. Then Sty, (11) C H implies A1 x A7 =
Stw, (11)N B € HN B. We have B C H, since A,,—1 X A%n_l) is a maximal subgroup
of B, for m > 3. Hence the claim is proved. O

The proof of the maximal subgroups of type Case 2b in Theorem 8.10 is contained
in Bhattacharjee’s work. Our work on the maximal subgroups of type Case 2c in the

proof of Theorem 8.10 is new and makes use of the Theorem 8.1 of Parker and Quick.

Theorem 8.10. Let Wo = A, ez (Am lgei) Am), where QM = {1,2.... m} and

2
2l = {irig : 41,12 € {1,2,...,m}}, for some m > 5. Denote the base group A,(fln ) —.
B and the permuting top group W1 =:T. Therefore Wo =B x T.

Define

My(K) = B x K, where K is a mazimal subgroup of W.

3A T-congruence on Q is a T-invariant equivalence relation. That is, for ¢ € T and €, there exists
Q; such that t€2; = Q;; where ); are the equivalence classes.

112



8.3. Finite wreath products A,, ! A, U A,,, where m > 5 8. Maximal subgroups

Consider the normaliser
NW2 (D1)7

where
D, = {(x7902(x)7903(x)7 S @mz(x)) HEGES Am}

and
©; € Aut(Ap,), for 2 < j <m?

Consider the normaliser
NW2(D1 X DQ X ... X Dm),

where

D = {(%i, p(i—1yms2(Ti), Pli—Dym+3(Ti)s - -+, Pim(Ti)) 1 ¥ € A}, for 1 <i <m,
and
©; € Aut(Ay,), for (1 —1)m+2 < j < im.

Define
Ms(L) = LU s T, where L is a mazimal subgroup of Ap,.

Then the groups Mo(K) and My(L)Y, where g € B, are mazimal subgroups of Wo
and every mazximal subgroup of Wy is one of the groups Mo(K), Nw,(D1), Nw, (D1 %
Dy x ... x Dy,) or My(L)9, where g € B.

Proof. Let M be a maximal subgroup of Ws. Then there are two possibilities:
B C M (case 1), and B € M (case 2).

Case 1.
Suppose B C M. Using the same reasoning as Case 1 of the proof for Theo-
rem 8.10 gives M = B x K, where K is a maximal subgroup of Wj. The maximal

subgroups of W; have been classified in Theorem 8.3.

Case 2.

Suppose B € M. Since M is maximal, we have
BM = Ws.

Again using the facts M/(M N B) = T and T acts transitively on the set Q2
we see that the projections of M N B into the m? factors of B must be conjugate

in A,,.
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Denote K; as the projection of M N B into the ith factor of B, for 1 < i < m?.
Case 2 can be separated into three possibilities because the groups K; are all

conjugate subgroups of A,,.
(case 2a) The groups K; = A,,, for all i € Q*2,
(case 2b)  The groups K; # {1} and K; # A, for all i € Q1.
(case 2¢) The groups K; = {1}, for all : € Q*2,

Case 2a.
We follow Bhattacharjee’s work [3, pg. 316 - 317] to characterise the maximal
subgroups M such that M N B is a proper subdirect product in B.
Since M N B is a subdirect product of a collection of non-abelian simple

groups it can be written as
MNB=D1xXDyXx...xDyg,

where
O =, uU...UQ,

is a partition of Q*[2 and each D;(= A,,) is a diagonal subgroup of the direct
product A% (see [2, Lem. 2.3] or the Appendix of our thesis). The partition

of Q* gives rise to a T-congruence on Q*2.

Using Lemma 8.9, there are three possibilities for s: s = 1, s = m or

2

s = m?. The possibility of s = m? is excluded because we would have the

contradiction M N B = B. Therefore s =1 or s = m.

If s =1 then

M N B =D; ={(z,p2(x),p3(x),...,m2(x)) : x € A},

where
@; € Aut(A,,), for 2 < j < m?.

If s = m then each diagonal subgroup D; is of the form
Di = {(zi, 0(i—1ym+2(Ti)s Pli—1ym+3(Ti); - - -, im(¥0)) : T € A},

where
v; € Aut(Ap,), for (i —1)m +2 < j <im.
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So

MnB= {($17902($1)7 s a@m(l'l)a
'1"2,(10m+2(x2)7"' 7802m(x2)7

Tm, @(m—l)m—i—Q(*Im)a sy Pm2 (:Cm)) 1T1,%2,-..,Tm € Am}a

where ¢; € Aut(Ay,).

Now M N B < M implies that M is contained in the normaliser of M N B
in Wa. As M is a maximal subgroup of Ws, we have M = Ny,(M N B) or
Nw, (M N B) = Ws. If the normaliser equals Wy then

M N B < Ny, (M N B) = Ws.

Since T acts transitively on m? elements, there is only one T-orbit and
Lemma 2.3 gives M N B = B. This contradicts B € M.

Thus if there is a maximal subgroup M such that M N B = Dy, we must
have
M = Ny, (D).

and if there is a maximal subgroup M such that MNB = Dy X Dy X ... X Dy,
we must have

M:NWQ(Dlngx...xDm).

Case 2b.
Analogous methods of Bhattacharjee and of Case 2b of the proof for The-
orem 8.3 can be used to describe the maximal subgroups M such that
K; # {1} and K; # A, for all i € 2,
For B := A%TZ) and T := Wi, the same methods of Theorem 8.3 give

M = Ny, (L) = (N, (L)) % T)7" = (L) Ty

where L is a maximal subgroup of A,, and g € B. Bhattacharjee’s analysis
[3, pg. 318] gives
M:NWQ(Kl XKQ X...x K 2).

m

Choosing g = (91,92, - - - gm2) € B such that K{' = K = ... = Kgl”f =1L,
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we have

M = Ny, (K1 x Ko X ... x K,;2)
— Ny (L9 x L9 x ... x [%n?)
= Ny (L)
= (L") 5Ty
- (L(m2))g*1 « T9~
= (K1 x Ky x ... x K,2) xT9 .

1

The same methods of Theorem 8.3 check that these groups are maximal.

Case 2c.
Assume the groups K; = {1}, for all i € Q*l. Since M N B = {1}, the
maximal subgroup M is a complement for the base group B in Wy. We
show that condition (c) of Theorem 8.1 does not hold. In applying this
theorem to our group Ws, we have that X = A,,, and Y = Wj.

The stabilisers of any two points in Q*? under the action of W, are con-
jugate, since the action is transitive. The stabiliser of any point i € Q*2

under the action of W7 is conjugate to
A1 % (AU % A1) = At X (A D A1);

refer to (8.2).

We look at a potential surjective homomorphism ¢ from A,,_1 X (A, 0 Apm—1)
onto A,,. Now A,,_1 x {1} = A,,—1 is a normal subgroup of A4,,_1 x (4
Ap—1). Since ¢ is surjective, the normal subgroup A,,—; must be mapped
to a normal subgroup of A,,. The simple group A,, only has two normal
subgroups and A,,_1 cannot be mapped to A,, because it is too small.
Therefore A,,_1 maps to {1} and it is in the kernel of ¢.

It is now satisfactory to study the surjective homomorphism A,,2 A1 —
A,,. From the 1st isomorphism theorem, due to size, we see that this sur-
jective homomorphism has to have a non-trivial kernel. From Lemma 2.3,
since the natural action of A,, 1 is transitive there is only one orbit, the
unique minimal normal subgroup of A, A;,_1 is the direct product A,(n,T -b,
The kernel of this homomorphism, being a normal subgroup, must con-
tain Aﬁ,T ~U. Therefore a subgroup of A,,_1 would have to map onto A,

which is impossible.
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Thus there can be no surjective homomorphism from the stabiliser of a point
i € O*2] under the action of Wy to the group A,,. Hence W5 has no maximal

subgroups which complement the base group and Case 2c does not occur.

O

8.4 Particular first Wilson quotients G,

Let G, be the Wilson quotients as defined in Section 4.1. Recall that Xy and X; are
finite non-abelian simple groups. Also Gg = Xy has a faithful transitive action on
the set Qq, = {1,2,...,d1} and L; = X}dl). We would like to describe the maximal
subgroups of the first Wilson quotients

Gl = Xl 2L1 (Xl Zle GU)?

where the top group X 1, Gy = L1Gy acts on the set L1 according to the transitive
action defined in (4.1), found in Section 4.1.

In order to apply the same techniques that are used to determine maximal subgroups
of the groups Wi and W, we take Xg = X7 = A,,, where m > 5. We also take the
faithful transitive action of the group Gy = A,, to be the natural action. Therefore we

now study the first Wilson quotients
G1=Am Uyom (Am g1 Am),

where the top group A, lg-n Am = Ag,T )Am acts on the set A%n ) according to the
transitive action (4.1). These groups are more specific than the groups of Section 6.2
because, in their construction, the groups Xy and X; have been specified. Notice that

the top groups of the Wilson quotients (G; are the groups W; and therefore
Gi=A4,, ZA%”) Wwh.

Theorem 8.11 describes the maximal subgroups of these particular first Wilson
quotients G1. They are described by using the work of Bhattacharjee [3], and Parker
and Quick [23], and our analysis for proving Theorem 8.3. Similarly, the proof of
Theorem 8.11 separates the possibilities for the maximal subgroups of G; into types,
referred to as Case 1, Case 2a, Case 2b and Case 2c. The proof concerning the maximal
subgroups of type Case 2a is taken from Bhattacharjee’s work in [3]. The proof of the

maximal subgroups of type Case 2b in Theorem 8.11 is contained in Bhattacharjee’s
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work. Our work on the maximal subgroups of type Case 2c in the proof of Theorem 8.11

is new and makes use of the Theorem 8.1 of Parker and Quick.

Theorem 8.11. Let G1 = A (A Arm), where Q' ={1,2,...,m}, for some

AGm)
m > 5. Denote the base group Aﬁ,'f‘m‘m) =: B and the permuting top group Wi =: T.
The group T acts on the set AS,T) according to the action defined in (4.1). Therefore
Gi=BxT.
Define

My(K) = B x K, where K is a mazimal subgroup of Wi.

Consider the normaliser
Ng, (D1 x Dg x ... x Dy),
with the equivalence classes Q;, for 1 < i < s and s # |An|™, of a T-congruence on

Al having || =1, and where

Di = {(@i, pii—1yi42(Ti), 0i—1)i43(Ti)s - -, (i) w5 € A}, for 1 <i <s,

and
; € Aut(Ay,), for (1 —1)1+2 < j <il.

Define
My(L) = LUA™) 5o T where L is a mazimal subgroup of Ap,.

Then the groups My(K) and My(L)9, where g € B, are mazimal subgroups of G1
and every mazimal subgroup of G1 is one of the groups My(K), Ng,(D1xDax...x Dy)
or My(L)9, where g € B.

Proof. Let M be a maximal subgroup of G;. Then there are two possibilities:
B C M (case 1), and B € M (case 2).

Case 1.
Suppose B C M. Using the same reasoning as Case 1 of the proof for Theorem 8.3
gives M = Bx K, where K is a maximal subgroup of W;. The maximal subgroups
of W1 have been classified in Theorem 8.3.

Case 2.

Suppose B € M. Since M is maximal, we have
BM = Gs.
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Again using the facts M /(M NB) = T and T" acts transitively on the set A%n), we
see that the projections of M N B into the |A4,,|™ factors of B must be conjugate

in A,,.

Denote K; as the projection of M N B into the ith factor of B, for 1 <1 < |A,,|™.
Case 2 can be separated into three possibilities because the groups K; are all

conjugate subgroups of A,,.
(case 2a) The groups K; = A,,, for all i € A,
(case 2b)  The groups K; # {1} and K; # A,,, for all i € A,
(case 2¢) The groups K; = {1}, for all ¢ € A,

Case 2a.
We follow Bhattacharjee’s work [3, pg. 316 - 317] to characterise the maximal
subgroups M such that M N B is a proper subdirect product in B.

Since M N B is a subdirect product of a collection of non-abelian simple

groups it can be written as
MNB=D; xDyx...x Dy,
where the partition of

A — QU U...UQ,

is a T-congruence on Aﬁ,T ) and each D;(= A,,) is a diagonal subgroup of the

direct product A%%. We have s # |A,,|™ because B € M. Let ;| = I, say,
for all 1 <7 <s. Then

D; = {(i, <P(i—1)l+2(907;), <P(i—1)l+3($z')a (i) i € Apd,

where
@; € Aut(Ay,), for (1 — 1)1+ 2 < j <il.

Therefore

M N B = {(z1,p2(z1), ..., p1(1),
x2790l+2(x2)7'"79021($2)7"'7

Ts, Sp(s—l)l—l—Q(:L's)a oo a@sl(xs)) X1, X2, ..., T € Am}a
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where ¢; € Aut(A4y,).

Following the same argument in the proof for Case 2a of Theorem 8.10, if
there is a maximal subgroup M such that M N B = D1 X Dy X ... x Dy then
it is equal to the normaliser of D1 x Dy X ... X Dy in G1. That is

M = Ng,(Dy x Dy x ... x D).

Case 2b.
Analogous methods of Bhattacharjee and of Case 2b of the proof for The-
orem 8.3 can be used to describe the maximal subgroups M such that

K; # {1} and K; # A, for all i € A%n).

For B := A7(7|1Am\’") and T := Wi, the same methods of Theorem 8.3 give

M = Nay (LA — (N, (L) 147 sa Ty = (040 e Ty,

where L is a maximal subgroup of A,, and g € B. Bhattacharjee’s analysis

[3, pg. 318] gives
M = NGl(Kl X K2 X ... X KlAm|m).

The same methods of Theorem 8.3 check that these groups are maximal.

Case 2c.
Assume the groups K; = {1}, for all i € AI™ . Since M N B = {1}, the
maximal subgroup M is a complement for the base group B in Gi. In
this instance, we show that condition (c) of Theorem 8.1 does hold but
condition (d) of Theorem 8.1 does not hold. Applying the theorem to the
group G1 gives X = A,,, Y =Wj and Q = A%").

5,2” ) under the action of Wi are conju-

The stabilisers of any two points in A
gate, since the action is transitive. The stabiliser of the point (1,...,1) €
Aﬁff) under the action of W7 is the group of elements (g1, g2, - - -, gm )t € Wh,

where (91,92, ...,9m) € A$,T) and t € A, such that

(L,1,...,1)(91,92,- -, gm)t = (1,1,...,1).

That is (g1, 92,---,9m)" = (1,1,...,1) and so the stabiliser is the top group
Ay, of Wi. Therefore the stabiliser of any point of A%n ) in W1 is a conjugate
of A,,. Thus there are surjective homomorphisms ¢ from these stabilisers
to A,, and condition (c) holds.
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However we now show that condition (d) of Theorem 8.1 does not hold.
The stabiliser Aj,, for some y € Wi, satisfies W = A%n ) (A}). Any
surjective homomorphism ¢ : A}, — A,, can be formed as the restriction
of a homomorphism ASqT ) x Ay, — A,,, where the base group A,(fq,n ) lies
in the kernel. Hence condition d) is not satisfied and G; has no maximal
subgroups which complement the base group. Therefore Case 2¢ does not

occur.

O

For further research concerning the maximal subgroups of these first Wilson quo-

tients, refer to Chapter 10, Question 4.
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Chapter 9

Finite generation and PMSG

In [3], M. Bhattacharjee has produced a result regarding finite generation of an inverse
limit of iterated wreath products of finite alternating groups of degree at least 5 formed
using the natural action. That is, the profinite groups lim(A,, ¢.. .0 Ay LA, ), where
m; > 5, are generated by two random elements wit<h—positive probability and the
probability approaches 1 as the size of m; tends to infinity. Therefore the profinite
groups W, constructed from iterated wreath products of the same alternating group,
in Section 3.2 are positively finitely generated by two elements.

M. Quick [24] extends Bhattacharjee’s work by first replacing the alternating groups
in the wreath products with arbitrary finite non-abelian simple groups G;, for ¢ > 0.
The standard action is used when forming each iterated wreath product, that is the top
group of the wreath product acting on itself by right multiplication. Quick concludes
that the profinite groups, which are the inverse limits {in(Gk L... 0 G1 1 Gy) of these
iterated wreath products, are positively finitely generated. The probability of gener-
ating these profinite groups with two random elements is positive and approaches 1 as
the order of Gy tends to infinity.

In the paper [25], Quick generalises further to iterated wreath products of finite
non-abelian simple groups G;, for ¢ > 0, each constructed from any faithful transitive
actions. Similarly, the profinite groups lim(Gg ... G111 Gp) constructed from these
iterated wreath products are positively?nitely generated by two random elements
provided |Gg| > 35!. Again this probability approaches 1 as the order of G tends to
infinity.

Let G be a Wilson group arising as an inverse limit of finite groups G,, as defined
in Section 4.1. The iterated wreath products G,, = X, i1, (Ln,Gpn—1) are formed from
the transitive actions (4.1), found in Section 4.1, of the groups L,G,—1 on L,, for

n > 1. Non-trivial elements of the group L, G,_1 acting by (4.1) on the set L,, can
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9. Finite generation and PMSG

have fixed points however these elements do move at least one other point. Therefore
the action (4.1) is faithful. Thus all the wreath products G,, are constructed with
faithful transitive actions.

Hence Quick’s result, in [25], can be applied to the Wilson groups. That is, the
Wilson groups lim(Gy,),>0 such that |G| > 35! are positively finitely generated by two
elements. o

Consequently, these particular Wilson groups are finitely generated because there
must be at least one collection of two elements that generate them. For future research
concerning finite generation of Wilson groups, refer to Question 1 and Question 5,
Chapter 10.

Recall, from Section 2.6, that m,(G) denotes the number of closed maximal sub-
groups of a profinite group G with index n. A profinite group G has polynomial mazimal

subgroup growth (PMSG) if there exists a constant ¢ such that
m,(G) < n for all n.

A result by A. Mann and A. Shalev [19] implies that the Wilson groups such that |Go| >
35!, since they are positively finitely generated, have polynomial maximal subgroup
growth. Question 6 of Chapter 10 gives an idea of further work on polynomial maximal

subgroup growth of Wilson groups.
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Chapter 10
Open problems

1) We know that the Wilson groups lim(Gy, ), >0, as defined in Section 4.1, are finitely
p. >
generated provided |Gg| > 35!; refer to Chapter 9. Is any arbitrary Wilson group
finitely generated?

2) Remark 5.4, in Section 5.1, compares the Nottingham group to the Wilson groups
with regard to chains of normal subgroups. There are many interesting questions
that have been resolved for the Nottingham group and these could be investigated

for the Wilson groups. We outline a few below.

Let G be a Wilson group arising as an inverse limit of finite groups G, as defined

in Section 4.1.

e The lower central series is an important filtration for the Nottingham group
that gives a graded Lie ring, see [5]. Is there a similar chain of characteristic

subgroups for G and a substitute for an associated Lie ring for G?

e The Nottingham group is finitely presented; refer to M. V. Ershov [7]. Is

there a finite or countably recursive presentation for G?

e The automorphism group of the Nottingham group has been determined;
refer to B. Klopsch [13]. What are the automorphisms of G?7

3) Recall the just infinite profinite groups W = lim(W,,),,>0, where
P, >
Wi = Am lgsin) -+ doxi2) Am o) Am,
for n > 1, and where

OV = fiyig. iy iyyig, ... iy € {1,2,...,m}},
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10. Open problems

1)

5)

6)

for each j =1,2,..., and Wy = A,,,, as defined in Section 3.2.

In Section 7.2, it was found that the number of non-trivial subnormal subgroups

of W with index at most |A,,|", for some n, is equal to the sum
zn: 1 (mk‘)
— (m—1Dk+1\ k

What can be deduced about the subnormal subgroup growth of these groups?

In Section 8.4, we considered the first Wilson quotients

G1 = Am Lo (Am gy Am) = Am yom) Wi

The top group Ay, g« Apm = A,(TT)Am of G1 acts on the set A%n) according to

the transitive action (4.1).

The maximal subgroups of these Wilson quotients have been described in Theo-

rem 8.11. There are maximal subgroups of the form
Ng, (D1 X Do X ... x Dy),

with the equivalence classes €, for 1 < i < s and s # |A;,|™, of a (A%)Am)-
)

congruence on Alm having |Q;| = [, and where

Di = {(zi, pi—1yi42(Ti)s Pi—1)143(Ti), - - -, pir(@i)) * 71 € A},

for 1 <i <'s, and ¢; € Aut(Ay,), for (i —1)I+2 < j <l

Can we further describe these maximal subgroups by finding the (Aﬁl}"‘ )Am)—

congruence on A%ﬂ )?

The Wilson groups lim(Gy,)n>0, as defined in Section 4.1, are positively finitely
p— >

generated by two random elements provided |Gy| > 35!; refer to Chapter 9.

Allowing for a larger number of generators, is a general Wilson group positively

finitely generated?

Recall, from Section 2.6, that m,(G) denotes the number of closed maximal
subgroups of a profinite group G with index n, and G has polynomial maximal

subgroup growth if there exists a constant ¢ such that

mn(G) < n for all n.
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In Chapter 9, it was stated that the Wilson groups lim(Gj)n>0, as defined in
Section 4.1, such that |Gp| > 35!, have polynomial m;dmal subgroup growth.
What is the degree ¢ of the polynomial maximal subgroup growth of these Wilson
groups?
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Appendix A

Bhattacharjee’s Lemma

For the reader’s understanding we include the Lemma 2.3 from Bhattacharjee’s D. Phil.
Thesis [2].

Lemma A.1 (Bhattacharjee [2]). Let I := {1,2,...,m} and for everyi € I let G; be
a simple group. If H < G1 X Ga X ... X Gy, is a subdirect product then

HZ=DyxDyx...xDy,

with k < m and where there exist distinct 11,19, ...,1; € I such that D; = Gij for each
1=1,2,...,k.

Furthermore, if the groups G; are all non-abelian simple then there is a partition

k
I= UIj
j=1

of I such that all G; for i € I; are isomorphic and such that D; is the diagonal subgroup
Of HiEIj Gz

Proof. Let us proceed by induction on m. It is trivially true for m = 1. Let us assume
that the lemma is true for a family of less than m simple groups.
If G,, < H then

H=(HnN(G1 xGyx...xGp-1)) X Gn.

But the first term in this expression is itself a subdirect product involving m — 1 simple
groups and hence is a direct product by induction. (This is because [[,(H N(G1 x G2
. X Gm1)) =1L HNG; =G, for 1 <i<m—1.) So in this case the lemma holds.

Otherwise, G,,, € H so that G,,, N H = {1} as G, is simple and G, N H < G,,.
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Therefore, the projection
GixGaX...xGp — G xGax...xGm_q

maps H injectively into a subdirect product with fewer factors, which, by inductive
hypothesis, is a direct product. Hence the first part of the lemma is proved.

To prove the rest of the lemma, define
I; = {i € I : D; projects non-trivially onto G;} .

We need to show that this defines a partition on I. Clearly, I = U?:l I; as H is a
subdirect product. If possible, let ¢ € I; NI, for distinct j1, jo € {1,2,...,k}. Then the
groups Dj;, and Dj, both project non-trivially onto G;. Let y; € D;, and y» € Dj, be
such that their projection x; and x3 respectively in G; do not commute. Such elements
exist since (; is non-abelian and simple. But y; and y» commute as they belong to

distinct factors in a direct product. This contradiction proves the lemma. O
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