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Figure 1: Representative Feynman graphs for the Higgs signal process(left) and theqq̄- (centre) andgg-
initiated (right) continuum background processes at LO.

1. Introduction

Higgs production in gluon fusion with subsequent decay intoa weak boson pair is an impor-
tant element of the Higgs search at the LHC. The signal process (Fig. 1, left) has been calculated
and studied up to NNLO (see Refs. [1 – 11] and references therein). Continuum weak boson pair
production is the dominant irreducible background and has also been studied extensively. For the
leading quark scattering subprocess (Fig. 1, centre), programs at NLO are available, in part based
on earlier calculations (see Refs. [12 – 14] and references therein). Here, we focus on the gluon
scattering subprocess (Fig. 1, right) and its interferencewith the signal process.gg → VV contin-
uum production formally enters at NNLO and was calculated inRefs. [15 – 18]. Off-shell weak
boson decays and the possibility to interface with shower programs were subsequently included
[13, 19 – 25]. At the LHC, the importance of gluon-inducedVV continuum production and decay is
enhanced by the large gluon-gluon flux and experimental Higgs search selection cuts. Resonance-
continuum interference has been studied forgg (→ H)→VV in Refs. [11, 16, 17, 22, 24, 26] and
for related processes in Refs. [27 – 29]. Here, results for a heavy Higgs boson withMH = 400 GeV
are presented. The search for a heavy Higgs boson at hadron colliders has been examined in Refs.
[30 – 33].

2. Calculational details

The results presented in Section 3 have been calculated withthe programs gg2WW [20, 22]
and gg2ZZ [23]. Representative graphs for thegg → H → VV signal process and thegg → VV
continuum process are displayed in Fig. 1. In addition to boxtopologies in principle also triangle
topologies contribute to thegg-initiated continuum processes (see Fig. 2). But, in the limit of van-
ishing lepton masses the triangle graphs do not contribute.1 For cross checks, two amplitude codes
have been used based on the methods described in Ref. [22] (BCKK) and Refs. [34, 35] (Form-
Calc). Off-shell weak boson contributions and massless as well as massive quarks are taken into
account. Third quark generation contributions increase the totalgg → WW → leptons continuum
cross section by 12% and the double-resonantgg → ZZ → leptons continuum cross section by 65%
(pp,

√
s = 14 TeV). ForZ-pair production and decay, theγ∗ contributions are taken into account.

For W -pair production and decay, the BCKK code approximatesVCKM = 1. The FormCalc code
was used to confirm at the amplitude level that this is an excellent approximation as CKM effects

1Note that thegg → Z triangle graphs do contribute for non-zero lepton masses, which was verified by explicit
calculation.
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Figure 2: Representative triangle graphs that formally contribute to gluon-inducedVV continuum produc-
tion and decay.

are smaller than 0.01%. The gg2VV programs allow for the simultaneous calculation of cross
sections for multiple scales as well as the PDF error.2

As both amplitude implementations employ Passarino-Veltman-type tensor integral reduc-
tion methods, a discussion of numerical stability is warranted. The box amplitudes are affected
by spurious singularities, which are caused by inverse powers of the Gram determinant detG =

2s(tu−M2
V ∗

1
M2

V∗
2
), because detG → 0 aspTV → 0. For phenomenologically relevant cross sections,

the error caused by numerical instabilities should be smallcompared to practical MC integra-
tion errors, which are typically of order 0.1%. After the symbolic cancellation of Gram deter-
minants, the BCKK amplitude code evaluated in quadruple precision is numerically stable in the
above sense.3 On the other hand, numerical instability is observed for theFormCalc amplitude
code when evaluated in quadruple precision for a relevant phase space (PS) configuration with
pTV = 0.007 GeV. Using the stable BCKK code as benchmark, the following diagnostic algorithm
was devised to detect problematic PS points with the FormCalc code and quadruple precision:
First, we exploit that instabilities spoil Lorentz invariance by comparing|M |2 evaluated at the PS
point and the PS point boosted along the beam axis withpboost= (1,0,0,0.001+0.1r1) GeV with
randomr1 ∈ [0,1].4 The relative deviation is assessed using reldev(x,y) = |x− y|/min(x,y). If
reldev(|M |2, |Mboosted|2)> 10−4 the PS point is classified as unstable. The same criterion is then
applied again, except now with a random boost in the oppositedirection. If the PS point is still con-
sidered stable another test is performed, which exploits that instabilities occur at exceptional PS
configurations. One therefore compares|M |2 evaluated at the PS point (in double precision) and
the PS point mapped to single precision. If reldev(|M |2, |Msingle|2) > 1 the PS point is classified
as unstable. Unstable PS points are discarded. Only in combination allow these tests to detect all
instabilities. As indicated above, this has been verified bycomparison with the stable BCKK code.
One can thus also assess the error introduced by discarding PS points that are wrongly classified as
unstable. The parameters have been adjusted to minimize this error. For integrated cross sections,
it is approximately 0.03%.

2Sample output: scale1: 10.5817 MC:±0.0063 (±0.059%) scale(×2): −2.5573 (−24%) +3.6967 (+35%) PDF:
−0.2723 (−2.6%) + 0.2382 (+2.3%) fb, sym. scale error:±28%, sym. PDF error:±2.4%, scale2: 19.121 MC:±0.012
(±0.061%) fb

3Differential distributions are smooth, even when calculating extreme cross sections likeσ(pTV < 1 GeV).
4The PS point is assumed to be given in the rest frame ofpboost. The PS point is boosted to the frame in which

pboost is given.
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σ [fb], pp,
√

s = 7 TeV,MH = 400 GeV interference

process cuts |MH |2 |Mcont|2 |MH +Mcont|2 R1 R2

gg (→ H)→WW stand. 4.361(3) 6.351(4) 10.582(7) 0.9879(8) 0.970(2)

gg (→ H)→WW Higgs 2.502(2) 0.633(1) 3.007(3) 0.959(2) 0.949(2)

gg (→ H)→ ZZ stand. 0.3654(4) 0.3450(4) 0.7012(8) 0.987(2) 0.975(3)

gg (→ H)→ ZZ Higgs 0.2729(3) 0.01085(2) 0.2867(3) 1.010(2) 1.011(2)

Table 1: Cross sections in fb forgg (→ H) → W−W+ → lν̄l l̄′νl′ and gg (→ H) → ZZ → ll̄l′ l̄′ in pp
collisions at

√
s = 7 TeV for MH = 400 GeV and a single lepton flavour combination calculated atLO.

Standard cuts and Higgs search cuts are applied (see main text). Interference effects are illustrated through
R1 = σ(|MVV |2)/σ(|MH |2+ |Mcont|2) andR2 = σ(|MH |2+2Re(MHM ∗

cont))/σ(|MH |2).

3. Results

Parton-level cross sections forgg (→ H)→ W−W+ → lν̄l l̄′νl′ andgg (→ H)→ ZZ → ll̄l′ l̄′

(l: charged lepton) inpp collisions at
√

s = 7 TeV are presented in Table 1. Results are given for
a single lepton flavour combination, e.g.l = e−, l′ = µ−. Lepton masses are neglected. The input
parameter set of Ref. [36], App. A, is used with NLOΓV andGµ scheme. For the Higgs resonance,
we setMH = 400 GeV andΓH = 29.16 GeV [37]. The renormalisation and factorisation scales are
set toMH/2. The PDF set MSTW2008LO with 1-loop running forαs(µ2) andαs(M2

Z) = 0.13939
is used. The fixed-width prescription is used for Higgs and weak boson propagators. ForZZ
production and decay, the virtual photon contributions have been included.

The following experimental selection cuts are adopted [36,38]: As WW standard cuts, we
use pT l > 20 GeV,|ηl| < 2.5, p/T > 30 GeV andMll̄′ > 12 GeV. AsWW Higgs search cuts for
MH = 400 GeV, we use theWW standard cuts and in additionpT l,min > 25 GeV,pTl,max> 90 GeV,
Mll̄′ < 300 GeV and∆φll̄′ < 175◦. As ZZ standard cuts, we usepT l > 20 GeV,|ηl| < 2.5 and 76
GeV< Mll̄,Ml′ l̄′ < 106 GeV. AsZZ Higgs search cuts, we use theZZ standard cuts and in addition
|Mll̄l′ l̄′ −MH|< ΓH .

The significance of a Higgs or new physics observation is determined as function of the
number of signal eventsS ∝ σ(|Msig|2) and background eventsB ∝ ∑σ(|Mbkg|2). When signal
and background interfere the distinction becomes blurred.Here: |MVV |2 = |MH |2+ |Mcont|2 +
2Re(MHM ∗

cont). One can choose to include the interference term in the signal: Si ∝ σ(|MH |2+
2Re(MHM ∗

cont)).
5 We assess interference effects using two measures:R1=σ(|MVV |2)/σ(|MH |2+

|Mcont|2) andR2 = σ(|MH |2+2Re(MHM ∗
cont))/σ(|MH |2). As shown in Table 1, at

√
s = 7 TeV

interference effects can be as large as 5%. At
√

s = 14 TeV, interference effects can approach the
10% level: forWW production and standard cuts (Higgs search cuts) one obtains R1 = 0.9680(8)
(R1 = 0.940(2)) and R2 = 0.932(2) (R2 = 0.926(2)), and for ZZ production and standard cuts
(Higgs search cuts) one obtainsR1 = 0.969(2) (R1 = 1.011(2)) andR2 = 0.945(3) (R2 = 1.011(3)).
While the additional Higgs search cuts increase the negative interference forWW production, for
ZZ production the|Mll̄l′ l̄′ −MH | < ΓH cut limits the interference effect to about 1%. The latter

5In principle,Si can be negative, and this does affect phenomenologically relevant distributions [24].
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Figure 3: Differential cross section distributions forgg (→ H) → W−W+ → lν̄l l̄′νl′ in pp collisions at√
s = 7 TeV for MH = 400 GeV and a single lepton flavour combination calculated atLO. The pT l [GeV]

(left) andηl (right) distributions are shown. Standard cuts are applied(see main text). fb is used as cross
section unit.

Figure 4: pT l,min [GeV] (left) andpTl,max [GeV] (right) distributions. Other details as in Fig. 3.

traces back to the fact that the interference changes sign atMll̄l′ l̄′ = MH , as seen in Fig. 6 (left).

Differential distributions for phenomenologically relevant observables are shown in Figs. 3,
4 and 5 forWW production and in Fig. 6 forZZ production. The distributions demonstrate that
a compensation of positive and negative interference occurs for cross sections that are integrated
over most of the phase space. For this reason, the more exclusive selection cuts typically used in
Higgs and new physics searches can increase the size of the interference effects.

4. Conclusions

gg (→ H)→VV interference effects are not suppressed and can range from 1% to about 10%.
They can be enhanced by Higgs search selection cuts and should be taken into account in the LHC
data analysis.
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Figure 5: Mll̄′ [GeV] (left) and∆φll̄′ [◦] (right) distributions. Other details as in Fig. 3.

Figure 6: Differential cross section distributions forgg (→ H) → ZZ → ll̄l′ l̄′ in pp collisions at
√

s = 7
TeV for MH = 400 GeV and a single lepton flavour combination calculated atLO. TheMll̄l′ l̄′ [GeV] (left)
andMll̄ [GeV] (right) distributions are shown. Standard cuts are applied (see main text). fb is used as cross
section unit.
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