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Figure 1. Representative Feynman graphs for the Higgs signal prdtefgsand theqq- (centre) andyg-
initiated (right) continuum background processes at LO.

1. Introduction

Higgs production in gluon fusion with subsequent decay amteeak boson pair is an impor-
tant element of the Higgs search at the LHC. The signal pso(féig.[1, left) has been calculated
and studied up to NNLO (see Reff] [[L}11] and referencesither€ontinuum weak boson pair
production is the dominant irreducible background and te&s lzeen studied extensively. For the
leading quark scattering subprocess (Ifjig. 1, centre) raneg at NLO are available, in part based
on earlier calculations (see Reff.][12} 14] and referertverein). Here, we focus on the gluon
scattering subprocess (F[§. 1, right) and its interferemitie the signal procesgig — VV contin-
uum production formally enters at NNLO and was calculate®Réfs. [I-{18]. Off-shell weak
boson decays and the possibility to interface with showegiams were subsequently included
[L3,[£$ {2F]. At the LHC, the importance of gluon-indudéd continuum production and decay is
enhanced by the large gluon-gluon flux and experimental $igg@grch selection cuts. Resonance-
continuum interference has been studiedgg(— H) — VV in Refs. [1L[1p] 17 24, 4, p6] and
for related processes in Refg.J[2[ }29]. Here, results faaay Higgs boson witMy = 400 GeV
are presented. The search for a heavy Higgs boson at hadtioleisohas been examined in Refs.

[B3-331

2. Calculational details

The results presented in Sectidn 3 have been calculatedthethrograms gg2WW 20, P2]
and gg27Z[[2B]. Representative graphs for gge— H — VV signal process and thgg — VV
continuum process are displayed in Hig. 1. In addition to fomologies in principle also triangle
topologies contribute to thgg-initiated continuum processes (see IF]g. 2). But, in thét lafivan-
ishing lepton masses the triangle graphs do not contribéie:. cross checks, two amplitude codes
have been used based on the methods described in[Ref. [2RKB&hd Refs. [34[35] (Form-
Calc). Off-shell weak boson contributions and masslessedsas massive quarks are taken into
account. Third quark generation contributions increaseatalgg — WW — leptons continuum
cross section by 12% and the double-resomggnt> ZZ — leptons continuum cross section by 65%
(pp, v/S= 14 TeV). ForZ-pair production and decay, the contributions are taken into account.
For W-pair production and decay, the BCKK code approximadgas = 1. The FormCalc code
was used to confirm at the amplitude level that this is an eeapproximation as CKM effects

INote that thegg — Z triangle graphs do contribute for non-zero lepton masséschwas verified by explicit
calculation.
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Figure 2: Representative triangle graphs that formally contribatgltion-induced/'V continuum produc-
tion and decay.

are smaller than .01%. The gg2VV programs allow for the simultaneous caléuabf cross
sections for multiple scales as well as the PDF €&ror.

As both amplitude implementations employ Passarino-\@ttitype tensor integral reduc-
tion methods, a discussion of numerical stability is watedn The box amplitudes are affected
by spurious singularities, which are caused by inverse ppwethe Gram determinant dét=
2s(tu— M\%f M\Z,z*), because d& — 0 aspry — 0. For phenomenologically relevant cross sections,
the error caused by numerical instabilities should be se@mihpared to practical MC integra-
tion errors, which are typically of order.D6. After the symbolic cancellation of Gram deter-
minants, the BCKK amplitude code evaluated in quadrupleigian is numerically stable in the
above sensé. On the other hand, numerical instability is observed for FoemCalc amplitude
code when evaluated in quadruple precision for a relevaasglspace (PS) configuration with
prv = 0.007 GeV. Using the stable BCKK code as benchmark, the foligwiiagnostic algorithm
was devised to detect problematic PS points with the Form€adle and quadruple precision:
First, we exploit that instabilities spoil Lorentz invamize by comparing.#|> evaluated at the PS
point and the PS point boosted along the beam axis pighst= (1,0,0,0.001+ 0.1r1) GeV with
randomr; € [0,1].* The relative deviation is assessed using refdey = [x —y|/min(x,y). If
reldeV(|.# |2, | #oosted?) > 104 the PS point is classified as unstable. The same criteridreis t
applied again, except now with a random boost in the oppdsietion. If the PS point is still con-
sidered stable another test is performed, which explodsitistabilities occur at exceptional PS
configurations. One therefore compaje#|? evaluated at the PS point (in double precision) and
the PS point mapped to single precision. If reldex |2, | #singiel®) > 1 the PS point is classified
as unstable. Unstable PS points are discarded. Only in catidn allow these tests to detect all
instabilities. As indicated above, this has been verifieddoimparison with the stable BCKK code.
One can thus also assess the error introduced by discar8ipgiRts that are wrongly classified as
unstable. The parameters have been adjusted to minimierttor. For integrated cross sections,
it is approximately 0.03%.

2Sample output: scalel: 10.5817 M&0.0063 (-0.059%) scale(2): —2.5573 (-24%) +3.6967 (+35%) PDF:
—0.2723 (2.6%) + 0.2382 (+2.3%) fb, sym. scale errer28%, sym. PDF error+2.4%, scale2: 19.121 MCt0.012
(£0.061%) fb

3Differential distributions are smooth, even when caldataextreme cross sections likg pry < 1 GeV).

4The PS point is assumed to be given in the rest frampygds: The PS point is boosted to the frame in which
PooostiS given.
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o [fb], pp, v/S=7 TeV,My = 400 GeV interference
process cuts | |.y|? | Meond® | My + Mo R R,
g9 (—H) —>WW | stand.| 4.361(3) 6.351(4) 10.582(7) | 0.9879(8) 0.970(2

—H)—WW | Higgs | 2.502(2)  0.633(1) 3.007(3) | 0.959(2) 0.949(2
—+H)—ZZ | stand.| 0.3654(4) 0.3450(4)  0.7012(8) | 0.987(2) 0.975(3
—H)—ZZ | Higgs| 0.2729(3) 0.01085(2)  0.2867(3) | 1.010(2) 1.011(2

Table 1: Cross sections in fb fogg (— H) - W W+ — v’y and gg (-H)—>2Z — 'l in pp
collisions at,/s= 7 TeV for My = 400 GeV and a single lepton flavour combination calculatedCat
Standard cuts and Higgs search cuts are applied (see mginitegrference effects are illustrated through
R = (| [P) /o (|ttu|? + | Mcond?) andRe = O (|4 [* + 2 REMn M o) | O (|4 ).

3. Results

Parton-level cross sections fgg (— H) —W-W* — lyl'y, andgg (— H) — ZZ — lII'lI"

(I: charged lepton) ipp collisions at,/s= 7 TeV are presented in Tadle 1. Results are given for
a single lepton flavour combination, elg=e .|’ = u~. Lepton masses are neglected. The input
parameter set of Ref. [B6], App. A, is used with NICQ andG,, scheme. For the Higgs resonance,
we setMy = 400 GeV and y = 29.16 GeV [37]. The renormalisation and factorisation scates a
set toMy /2. The PDF set MSTW2008LO with 1-loop running fag(u?) andas(M2) = 0.13939

is used. The fixed-width prescription is used for Higgs an@kvBoson propagators. F@Z
production and decay, the virtual photon contributionsehia@en included.

The following experimental selection cuts are adopfedl B#; As WW standard cuts, we
usepr > 20 GeV,|n | < 25, p; > 30 GeV andM,7 > 12 GeV. AsWW Higgs search cuts for
My = 400 GeV, we use thé/W standard cuts and in additiqe| min > 25 GeV, pri.max > 90 GeV,
M, < 300 GeV and\qr < 175°. As ZZ standard cuts, we uger > 20 GeV,|n| < 2.5 and 76
GeV < M|j; M7 < 106 GeV. AsZZ Higgs search cuts, we use tB& standard cuts and in addition
IMyjir = Mu| < Th.

The significance of a Higgs or new physics observation isrdeteed as function of the
number of signal eventS O o(|.#sig|?) and background even& 0 S 0(|-#ukg|?). When signal
and background interfere the distinction becomes bluritere: |.Zy |2 = | 4y |2 + | Mcond? +
2Re(. My M) One can choose to include the interference term in the lsigh& o (|74 | +
2Re( My My)).° We assess interference effects using two measRies:o (|4 |2) /o (|44 |?+
| Meont|?) andRy = O (|4 |? + 2 RE( M Mory)) ] (|4 |?). As shown in Tablg]1, ay/s= 7 TeV
interference effects can be as large as 5%./Bt 14 TeV, interference effects can approach the
10% level: forWW production and standard cuts (Higgs search cuts) one gtiRain: 0.968Q8)

(R1 = 0.940(2)) and R, = 0.932(2) (R, = 0.926(2)), and forZZ production and standard cuts
(Higgs search cuts) one obtaiRg= 0.9692) (R; = 1.011(2)) andR, = 0.9453) (R, = 1.011(3)).
While the additional Higgs search cuts increase the negatterference fo'ww production, for
ZZ production thelM,j;;i7 —Mn| < 'y cut limits the interference effect to about 1%. The latter

5In principle,§ can be negative, and this does affect phenomenologica#yamet distributions4].
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Figure 3: Differential cross section distributions fgg (— H) — W-W* — I\7|I7v|, in pp collisions at
\/s=7 TeV forMy = 400 GeV and a single lepton flavour combination calculatddatThe pr| [GeV]
(left) andn; (right) distributions are shown. Standard cuts are api{see main text). fb is used as cross

section unit.
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Figure4: pr min [GeV] (left) and pr max [GeV] (right) distributions. Other details as in Fﬂ. 3.

traces back to the fact that the interference changes sidijat= My, as seen in Fid] 6 (left).

Differential distributions for phenomenologically retext observables are shown in Fifjs. 3,
and[b folWW production and in Fig[]6 foZZ production. The distributions demonstrate that
a compensation of positive and negative interference sdaurcross sections that are integrated
over most of the phase space. For this reason, the more iechedection cuts typically used in
Higgs and new physics searches can increase the size otdiieiance effects.

4. Conclusions

gg (— H) — VV interference effects are not suppressed and can range #©ta dbout 10%.
They can be enhanced by Higgs search selection cuts andidtetdken into account in the LHC

data analysis.
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Figure5: M7 [GeV] (left) andAg7 [°] (right) distributions. Other details as in F. 3.
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Figure 6: Differential cross section distributions fgg (— H) — ZZ — M’ in pp collisions at,/s=7
TeV for My = 400 GeV and a single lepton flavour combination calculatddatThe M,j;,;7 [GeV] (left)
andM,i"[GeV] (right) distributions are shown. Standard cuts angligpl (see main text). fb is used as cross
section unit.
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