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Abstract. In this paper we describe an unsupervised, deterministic al-
gorithm for segmenting DJ-mixed Electronic Dance Music (EDM) streams
(for example; podcasts, radio shows, live events) into their respective
tracks. We attempt to reconstruct boundaries as close as possible to
what a human domain expert would engender. The goal of DJ-mixing
is to render track boundaries effectively invisible from the standpoint of
human perception which makes the problem difficult.
We use Dynamic Programming (DP) to optimally segment a cost matrix
derived from a similarity matrix. The similarity matrix is based on the
cosines of a time series of kernel-transformed Fourier based features de-
signed with this domain in mind. Our method is applied to EDM streams.
Its formulation incorporates long-term self similarity as a first class con-
cept combined with DP and it is qualitatively assessed on a large corpus
of long streams that have been hand labelled by a domain expert.
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1 Introduction

Electronic Dance Music tracks are usually mixed by a DJ, which sets EDM
streams apart from other genres of music. Mixing is the modus operandi in
electronic music. We first transform the audio file into a time series of features
(grouped into tiles) and transform those tiles into a domain where any pair
from the same track would be distinguishable by their cosine. Our features are
based on a Fourier transform with kernel filtering to accentuate instruments
and intended self-similarity. We create a similarity matrix from these cosines
and derive from it a cost matrix showing costs of a fitting a track at a given
time with a given width. We use Dynamic Programming (DP) to create the
cost matrix and again to perform the most economical segmentation of the cost
matrix to fit a predetermined number of tracks.

A distinguishing feature of our algorithm is that it focuses on long term self
similarity of segments rather than short term transients. Dance music tracks
have the property that they are made up of repeating regions, and the ends are
almost always similar to the beginning. For this reason we believe that some tech-
niques from structural analysis fail to perform as well for this segmentation task
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because we focus on the concept of self-similarity ranging over a customisable
time horizon. Our method does not require any training or tenuous heuristics to
perform well.

The purpose of this algorithm is to reconstruct boundaries given a fixed
number of tracks known in advance (their names and order are known). This is
relevant when one has recorded a show, downloaded a track list and needs to
reconstruct the indices given a track list. The order of the indices reconstructed
is critical so that we can align the correct track names with the reconstructed
indices. If the track list was not known in advance the number of tracks could
be estimated in most cases.

To mix tracks DJs always match the speed or BPM (beats per minute) of
each adjacent track during a transition and align the major percussive elements
in the time domain. This is the central concept of removing any dissonance from
overlapping tracks. Tracks can overlap by any amount. DJs increase adjacent
track compatibility further by selecting adjacent pairs that are harmonically
compatible and by applying spectral transformations (EQ).

The main theme of the early literature was attempting to generate a nov-
elty function to find points of change using distance-based metrics or statistical
methods. Heuristic methods with hard decision boundaries were used to find
the best peaks. A distinguishing feature of our approach is that we evaluate
how well we are doing compared to humans for the same task. We compare our
reconstructed indices to the ones created by a human domain expert.

J. Foote et al ([1] [2] [3] [4] [5]) have done a significant amount of work in
this area and the first to use similarity matrices. Foote evaluated a Gaussian
tapered checkerboard kernel along the diagonal of a similarity matrix to create
a 1d novelty function. One benefit to our approach is that our DP allows any
range of long-term self similarity (which relates to the fixed kernel size in Foote’s
work).

Goodwin et al. also used DP for segmentation ([6] and [7]). Their intriguing
supervised approach was to perform Linear Discriminant Analysis (LDA) on the
features to transform them into a domain where segmentation boundaries would
be emphasised and the feature weights normalised. They then reformulated the
problem into a clustering DP to find an arbitrary number of clusters. We believe
the frame of mind for this work was structural analysis, because it focuses on
short term transients (mitigated slightly by the LDA) and would find segments
between two regions of long term self similarity. Goodwin was the first to discuss
the shortcomings of novelty peak finding approaches. Goodwin’s approach is not
optimized to work for a predetermined number of segments and depends on the
parametrization and training of the LDA transform.

Peeters et al ([8] [9]) did some interesting work combining k-means and a
transformation of the segmentation problem into Viterbi (a dynamic program).

We compare our error to the relative error of cue sheets created by human
domain experts. We focus directly on DJ mixed electronic dance music.

In the coming sections we will describe the Data Set (Section 2), the Eval-
uation Criteria (Section 3), the Test Set (Section 4), Data Preprocessing (Sec-



tion 5), Feature Extraction (Section 6), Cost Matrix (Section 7), Computing
the Best Segmentation (Section 8), Experiment Methodology and Results (Sec-
tion 9), and finally Conclusions (Section 10).

2 Data Set

We have been supplied with several broadcasts from three popular radio shows.
These are: Magic Island, by Roger Shah (108 shows); A State of Trance with
Armin Van Buuren (110 shows); and Trance Around The World with Above and
Beyond (99 shows) (Total 317 shows). The show genres are a mix of Progressive
Trance, Uplifting Trance and Tech-Trance. We believe this corpus is the largest
of its kind used in the literature (see [10]). The music remains uninterrupted after
the introduction (no silent gaps). The shows come in 44100 samples per second,
16 bit stereo MP3 files sampled at 192Kbs. We resampled these to 4000Hz 16
bit mono (left+right channel) WAV files to allow us to process them faster. We
have used the SoX [11] (Sound eXchange) program to do this. These shows are
all 2 hours long. The overall average track length is 5 and a half minutes and
normally distributed. The average number of tracks is 23 for ASOT and TATW,
19 for Magic Island. There is a guest mix on the second half of each show. The
guest mix DJs show off their skills with some of the most technically convoluted
mixing imaginable.

3 Evaluation Criteria

We perform two types of evaluation: average track accuracy (in seconds) given

as 1
|P |
∑|P |
i=1 |Pi −Ai| (P is constructed indices, and A is the human indices) and

a measure of precision. The precision metric is the percentage of matched tracks
within different intervals of time (thresholds) {60, 30, 20, 10, 5, 3, 1}, in seconds
as a margin around any of the track indices we have been given. The precisions
metric is invariant to alignment of the constructed indexes.

4 Test Set

There is already a large community of people interested in getting track metadata
for DJ sets. CueNation ([12]) is an example of this. CueNation is a website
allowing people to submit cue sheets for popular DJ Mixes and radio shows. A
cue sheet is a text file containing time metadata (indices) for a media file.

We had our indices and radio shows provided to us and hand captured by
Dennis Goncharov ; a domain expert and one of the principal contributors to
CueNation. As a result of this configuration; we can assume the alignment be-
tween the cue sheet and the radio show recording is exact.

Dennis Goncharov provided us with this description of how he captures the
indices. To quote from a personal email exchange with Dennis:



The transition length is usually in factors of 8 bars (1 bar is 4 beats.
At 135 beats per minute, 8 bars is 14.2 sec). It is a matter of personal
preference which point of the transition to call the index. My preference is
to consider the index to be the point at which the second track becomes
the focus of attention and the first track is sent to the background.
Most of the time the index is the point at which the bass line (400Hz
and lower) of the previous track is cut and the bass line of the second
track is introduced. If the DJ decides to exchange the adjacent tracks
gradually over the time instead of mixing them abruptly then it is up
to the cuesheet maker to listen further into the second track noting the
musical qualities of both tracks and then go back and choose at which
point the second track actually becomes the focus of attention.

5 Data Preprocessing

We went through the dataset carefully and removed some of the indices given and
the corresponding audio when they did not correspond to actual musical tracks.
This was for the show introductions (at the beginning) or for the introductions
given to the guest mixes. The algorithm still performs similarly in the case of
removing just these indices and leaving the audio intact underneath. When we
removed audio from the shows because of extraneous introductions the following
indices were nudged accordingly so that they still pointed to the equivalent
locations in the audio stream. For those wishing to use this algorithm in practice
with pre-recorded shows; the introductions at the start of the shows can be
thought of as being fixed length (with a different length for each show type).

6 Feature Extraction

We used SoX [11] to downsample the shows to 4000Hz. We are not particularly
interested in frequencies above around 2000Hz because instrument harmonics
become less visible in the spectrum as the frequency increases. The Nyquist the-
orem ([13]) states that the highest representable frequency is half the sampling
rate, so this explains our reason to use 4000Hz. We will refer to the sample rate
as R. Let L be the length of the show in samples.

Fourier analysis allows one to represent a time domain process as a set of
integer oscillations of trigonometric functions. We used the discrete Fourier trans-
form (DFT) to transform the tiles into the frequency domain. The DFT given

as F (xk) = Xk =
∑N−1
n=0 xn · e−i2π

k
N n transforms a sequence of complex num-

bers x0, . . . , xN into another sequence of complex numbers X0, . . . , XN where
e−i2π

k
N n are points on the complex unit circle. Note that the fftw algorithm that

we used to perform this computation (see [14]) operates significantly faster when
N is a power of 2 so we zero pad the input to make that the case. Because we
are passing real values into the DFT fuction, the second half of the result is a
rotational copy of the first half. As we are not always interested in the entire



range of the spectrum, we use l to represent a low pass filter (in Hz) and h the
high pass filter (in Hz). So we will capture the range from h to l on the first half
of the result of F . We always discard the imaginary components of F .

Show samples are collated into a time series Qi, i ∈ {1, 2, . . . , b LMs
c} of con-

tiguous, non-overlapping, adjacent tiles of equal size. Samples at the end of the
show that do not fill a complete tile get discarded. We denote the tile width by
M in seconds (an algorithm parameter) and Ms in samples (Ms = M ×R). For
each tile ti ∈ Q we take the DFT F (ti) and place a segment of it into feature
matrix Di (|Q| feature vectors in D). For each DFT transform we select vector
elements dh× Ms

R e+ 1 to dl × Ms

R e+ 1 to allow effective spectral filtering.
To focus on the instruments and improve performance we perform convolu-

tion filtering on the feature vectors in D, using a Gaussian first derivative filter.
This works like an edge detection filter but also expands the width of the tran-
sients (instrument harmonics) to ensure that feature vectors from the same song
appear similar because their harmonics are aligned on any distance measure (we
use the cosines). This is an issue because of the extremely high frequency reso-
lution we have from having such large DFT inputs. Typically a STFT approach
is used which has smaller DFTs (for example [15]).

The Gaussian first derivative filter is defined as − 2G
B2 e

−G2

B2 where

G = {−b2Bc, b−2B + 1c, . . . , b2Bc}, B = b
(
N
R

)
. b is the bandwidth of the filter

in Hz and this is a parameter of the algorithm. After the convolution filter is
applied to each feature vector in D, we take the absolute values and normalize
each one

Di = |Di|,∀i ∈ D, Di =
Di

‖Di‖
,∀i ∈ D.

Because the application domain is well defined in this setting, we can design
features that look specifically for what we are interested in (musical instruments).
Typically in the literature; algorithms use an amalgam of general purpose feature
extractors. For example; spectral centroid, spectral moments, pitch, harmonic-
ity ([16]). We construct a disimilarity matrix of cosines S from D × D> (dot
products).

7 Cost Matrix

We now have a dissimilarity matrix S(i, j) as described in Section 6.
Let w and W denote the minimum and maximum track length in seconds,

these will be parameters.
Intuitively, features within the same track are reasonably similar on the

whole, while pairs of tiles that do not belong to the same track are signifi-
cantly more dissimilar. We define C(f, t), the cost of a candidate track from tile
f through tile t, to be the sum of the dissimilarities between all pairs of tiles
inside it, normalized on track length:

C(f, t) =

∑t
i=f

∑t
j=f S(i, j)

√
t− f + 1



As a first step, we pre-compute C for each 1 ≤ f ≤ t ≤ T . Direct calcula-
tion using the definition takes O(TW 3) time. However, we can compute the full
cost matrix in O(WT ) time using the following recursion for the unnormalized
quantity C̃(f, t) = C(f, t)(t− f) (for f + 1 ≤ t− 1)

C̃(f, t) = C̃(f + 1, t) + C̃(f, t− 1)− C̃(f + 1, t− 1) + S(f, t) + S(t, f).

Note that the normalization step can be done independently of the DP procedure.
We discovered experimentally that normalizing using the square root of the track
length was advantageous. Doing so slightly discourages tracks of a larger length.

8 Computing Best Segmentation

We obtain the cost of a full segmentation by summing the costs of its tracks.
The goal is now to efficiently compute the segmentation of least cost.

A sequence t = (t1, . . . , tm+1) is called an m/T -segmentation if

1 = t1 < . . . < tm < tm+1 = T + 1.

m is the number of tracks we are trying to find and is a parameter of the
algorithm. We use the interpretation that track i ∈ {1, . . . ,m} comprises times
{ti, . . . , ti+1 − 1}. Let STm be the set of all m/T -segmentations. Note that there
is a very large number of possible segmentations

|STm| =

(
T − 1

m− 1

)
=

(T − 1)!

(m− 1)!(T −m)!
=

(T − 1)(T − 2) · · · (T −m+ 1)

(m− 1)!
≥
(
T

m

)m−1
.

For large values of T , considering all possible segmentations using brute force is
infeasible. For example, a two hour long show with 25 tracks would have more

than
(

602×2
25

)24
≈ 1.06× 1059 possible segmentations!

We can reduce this number slightly by imposing upper and lower bounds
on the song length. Recall that W is the upper bound (in seconds) of the song
length, w the lower bound (in seconds) and m the number of tracks. With the
track length restriction in place, the number of possible segmentations is still
massive. A number now on the order of 1056 for a two hour show with 25 tracks,
w = 190 and W = 60× 15.

Our solution to this problem is to find a dynamic programming recursion.
The loss of an m/T -segmentation t is

`(t) =

m∑
i=1

C(ti, ti+1 − 1)

We want to compute
VTm = min

t∈STm
`(t)



To this end, we write the recurrence

Vt1 = C(1, t)

and for i ≥ 2

Vti = min
t∈Sti

`(t) = min
ti

min
t∈Sti−1

i−1

`(t) + C(ti, t) =

min
ti

C(ti, t) + min
t∈Sti−1

i−1

`(t) = min
ti

C(ti, t) + Vti−1i−1

In this formula ti ranges from t−W to t− w. We have T ×m values of VTm
and calculating each takes at most O(W ) steps. The total time complexity is
O(TWm).

9 Methodology and Results

We created a validation set of the first 10 episodes from each radio show (30 total)
and found the best parameters with a continuous random search optimizing the
absolute average accuracy evaluation criterion. We explored 2000 permutations
in the search. We searched across the following parameter space:

M ∈ {1, 2, . . . , 25} w ∈ {120, 180, 240} b ∈ {1, 2, . . . , 20}

This search did not take long as running time is linear in the parameters. The
parameters we found are shown in Table 1. Running the algorithm once on a 2
hour long show takes a couple of seconds on a fast PC and almost all of that
time is loading the WAVE file for the show into memory. We had already batch
converted the shows into the WAVE files from MP3 and this process took signif-
icantly longer, perhaps 30 seconds per show. The parameters we have presented
here could be used immediately by an end user so no heavy computation is
required. The high and low pass filters h and l were fixed at 0Hz and 2000Hz
respectively (effectively were not used but would be useful parameters for spe-
cialized implementations). W was fixed at 630 Seconds which we selected by
taking the largest track present in the validation set with a 30 second margin
added on top.

There are no directly comparable methods in the literature ready to be used
for this task. We will construct a simple algorithm to test our algorithm against;
the naive algorithm. This algorithm constructs indices that are evenly spaced
apart across the show.

See Table 2 for the main results. We also provide results for the dataset
pruned of any shows with tracks smaller than 180 seconds on Table 3. Ostensibly
we would fail to find these tracks as we use 180 as the minimum track length
parameter w for the DP algorithm. Having a high value for w allows us to
perform robustly most of the time but suffer on the minority of shows that have
smaller tracks included. For these pruned results we did not remove the shows
used in the validation set.



Table 1. These are the parameter values that were obtained from the parameter search
described in Section 9.

w Minimum Track Length (DP) 180 Seconds

W Maximum Track Length (DP) 617 Seconds

M Tile Size 9 Seconds

b Bandwidth Filter 5 Hz

l Low Pass Filter 2000 Hz

h High Pass Filter 0 Hz

Table 2. Main results. The accuracy rows show the mean of the absolute differences
between the reconstructed tracks and the human indices (our test set). The thresholds
indicate the percentage of reconstructed indices that fall within given time horizons
centred around the actual indices. This is described in Section 3.

Dynamic By Show Overall

ASOT TATW MAGIC Dynamic Naive

Number Shows 101 89 98 288 288

60 Seconds (%) 92.3 96.9 97.9 95.7 42.1

30 Seconds (%) 74.9 90.4 89.8 85.1 22.0

20 Seconds (%) 63.7 82.0 74.4 73.4 14.9

10 Seconds (%) 55.7 70.9 53.2 59.9 7.6

5 Seconds (%) 43.9 51.5 32.9 42.8 4.0

3 Seconds (%) 29.7 35.3 21.2 28.7 2.6

1 Second (%) 11.6 13.9 8.3 11.3 0.9

Accuracy (Seconds) 49.4 40.1 26.5 38.6 112.2

Table 3. Results for the pruned set of shows (that do not contain tracks smaller than
180 seconds). The percentage figure given on the number of shows indicates how many
were discarded from the prune. Performance on TATW and Magic Island are robustly
improved. Magic Island achieved the improvement with a comparatively small prune
of 7.4%.

Dynamic By Show Overall

ASOT TATW MAGIC Dynamic Naive

Number Shows 64 (42.3%) 61 (38.4%) 100 (7.4%) 225 288

60 Seconds (%) 93.4 98.2 98.9 96.8 42.1

30 Seconds (%) 75.7 92.3 90.8 86.2 22.0

20 Seconds (%) 63.5 84.0 74.9 74.1 14.9

10 Seconds (%) 56.3 72.8 53.2 60.8 7.6

5 Seconds (%) 44.0 52.8 32.6 43.2 4.0

3 Seconds (%) 30.0 36.5 20.9 29.1 2.6

1 Second (%) 12.1 15.2 8.6 12.0 0.9

Accuracy (Seconds) 32.3 14.9 13.3 20.2 112.2



10 Conclusion and Further Work

We believe our algorithm would be useful for segmenting DJ-mixed audio streams
in batch mode. Our overall average is encouraging, taking into account the dif-
ficulty of the task at hand. The dissimilarity matrix we use is based solely on
instrument features. The most pervasive elements in EDM are the percussion
(the beats). We believe on balance that ignoring the percussive information was
advantageous, because DJs use percussion primarily to blur boundaries between
tracks. We tried to capture percussive based features and found that the transi-
tions between tracks and indeed groups of tracks appeared as stronger self-similar
regions in S than the actual tracks.

We would like to improve our cost function with one that has some domain
knowledge, perhaps using a machine learning algorithm. Currently our cost func-
tion has a weakness that the relative similarity of regions within a song matters
slightly, it should be independent. Let us consider the song structure {A,B,A}.
The problem is that our cost (summing/normalizing the S square) would some-
what take into consideration the similarity of A and B. Anyone interested in
optimizing the algorithm for a one specific radio show could consider modifying
the cost function to introduce a parameter α ∈ [0, 1] for fine tuned control over

the normalization bias placed on the length of songs; C(f, t) =
∑t
i=f

∑t
j=f S(i,j)

(t−f+1)α .

We would also like to implement some of the methods in the literature (which
were mostly designed for scene analysis) to see if we outperform them. It would
be tricky to get an exact comparison because we could not find a unsupervised
deterministic algorithm which finds a fixed number of strictly contiguous clus-
ters. We could however adapt existing algorithms to get a like for like comparison.
We would like to evaluate the performance of J Theiler’s contiguous K-means
algorithm in particular [17] and also similar algorithms. We have the property
of being deterministic but probabilistic methods should be explored. Theiler’s
algorithm would require some modification to work in this scenario because we
require strictly contiguous clusters, not just a contiguity bias.
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