
ar
X

iv
:1

31
0.

26
31

v1
 [

cs
.F

L
]

 9
 O

ct
 2

01
3

Saturation of Concurrent Collapsible Pushdown Systems

M. Hague

Royal Holloway University of London, and LIGM, Marne-la-Vallée
matthew.hague@rhul.ac.uk

Abstract

Multi-stack pushdown systems are a well-studied model of concurrent computation

using threads with first-order procedure calls. While, in general, reachability is unde-

cidable, there are numerous restrictions on stack behaviour that lead to decidability.

To model higher-order procedures calls, a generalisation of pushdown stacks called col-

lapsible pushdown stacks are required. Reachability problems for multi-stack collapsible

pushdown systems have been little studied. Here, we study ordered, phase-bounded and

scope-bounded multi-stack collapsible pushdown systems using saturation techniques,

showing decidability of control state reachability and giving a regular representation of

all configurations that can reach a given control state.

1 Introduction

Pushdown systems augment a finite-state machine with a stack and accurately model first-
order recursion. Such systems then are ideal for the analysis of sequential first-order pro-
grams and several successful tools, such as Moped [25] and SLAM [3], exist for their analysis.
However, the domination of multi- and many-core machines means that programmers must
be prepared to work in concurrent environments, with several interacting execution threads.

Unfortunately, the analysis of concurrent pushdown systems is well-known to be un-
decidable. However, most concurrent programs don’t interact pathologically and many
restrictions on interaction have been discovered that give decidability (e.g. [5, 6, 26, 14, 15]).

One particularly successful approach is context-bounding. This underapproximates a
concurrent system by bounding the number of context switches that may occur [24]. It is
based on the observation that most real-world bugs require only a small number of thread
interactions [23]. Additionally, a number of more relaxed restrictions on stack behaviour
have been introduced. In particular phase-bounded [29], scope-bounded [30], and ordered [7]
(corrected in [2]) systems. There are also generic frameworks — that bound the tree- [20]
or split-width [10] of the interactions between communication and storage — that give
decidability for all communication architectures that can be defined within them.

Languages such as C++, Haskell, Javascript, Python, or Scala increasingly embrace
higher-order procedure calls, which present a challenge to verification. A popular ap-
proach to modelling higher-order languages for verification is that of (higher-order recursion)
schemes [11, 21, 16]. Collapsible pushdown systems (CPDS) are an extension of pushdown
systems [13] with a “stack-of-stacks” structure. The “collapse” operation allows a CPDS
to retrieve information about the context in which a stack character was created. These
features give CPDS equivalent modelling power to schemes [13].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28904335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1310.2631v1

These two formalisms have good model-checking properties. E.g, it is decidable whether
a µ-calculus formula holds on the execution graph of a scheme [21] (or CPDS [13]). Al-
though, the complexity of such analyses is high, it has been shown by Kobayashi [15] (and
Broadbent et al. for CPDS [9]) that they can be performed in practice on real code examples.

However concurrency for these models has been little studied. Work by Seth considers
phase-bounding for CPDS without collapse [27] by reduction to a finite state parity game.
Recent work by Kobayashi and Igarashi studies context-bounded recursion schemes [17].

Here, we study global reachability problems for ordered, phase-bounded, and scope-
bounded CPDS. We use saturation methods, which have been successfully implemented by
e.g. Moped [25] for pushdown systems and C-SHORe [9] for CPDS. Saturation was first
applied to model-checking by Bouajjani et al. [4] and Finkel et al. [12]. We presented a
saturation technique for CPDS in ICALP 2012 [8]. Here, we present the following advances.

1. Global reachability for ordered CPDSs (§5). This is based on Atig’s algorithm [1] for
ordered PDSs and requires a non-trivial generalisation of his notion of extended PDSs
(§3). For this we introduce the notion of transition automata that encapsulate the
behaviour of the saturation algorithm. In Appendix F we show how to use the same
machinery to solve the global reachability problem for phase-bounded CPDSs.

2. Global reachability for scope-bounded CPDSs (§6). This is a backwards analysis based
upon La Torre and Napoli’s forwards analysis for scope-bounded PDSs, requiring new
insights to complete the proofs.

Because the naive encoding of a single second-order stack has an undecidable MSO theory
(we show this folklore result in Appendix A) it remains a challenging open problem to
generalise the generic frameworks above ([20, 10]) to CPDSs, since these frameworks rely on
MSO decidability over graph representations of the storage and communication structure.

2 Preliminaries

Before defining CPDSs, we define 2 ↑0 (x) = x and 2 ↑i+1 (x) = 22↑i(x).

2.1 Collapsible Pushdown Systems (CPDS)

For a readable introduction to CPDS we defer to a survey by Ong [22]. Here, we can only
briefly describe higher-order collapsible stacks and their operations. We use a notion of
collapsible stacks called annotated stacks (which we refer to as collapsible stacks). These
were introduced in ICALP 2012, and are essentially equivalent to the classical model [8].

Higher-Order Collapsible Stacks An order-1 stack is a stack of symbols from a
stack alphabet Σ, an order-n stack is a stack of order-(n− 1) stacks. A collapsible stack of
order n is an order-n stack in which the stack symbols are annotated with collapsible stacks
which may be of any order ≤ n. Note, often in examples we will omit annotations for clarity.
We fix the maximal order to n, and use k to range between n and 1. We simultaneously
define for all 1 ≤ k ≤ n, the set Stacksnk of order-k stacks whose symbols are annotated
by stacks of order at most n. Note, we use subscripts to indicate the order of a stack.
Furthermore, the definition below uses a least fixed-point. This ensures that all stacks are
finite. An order-k stack is a collapsible stack in Stacksnk .

Definition 2.1 (Collapsible Stacks) The family of sets (Stacksnk)1≤k≤n is the smallest
family (for point-wise inclusion) such that:

2

1. for all 2 ≤ k ≤ n, Stacksnk is the set of all (possibly empty) sequences [w1 . . . wℓ]k with
w1, . . . , wℓ ∈ Stacksnk−1.

2. Stacksn1 is all sequences [a1
w1 . . . aℓ

wℓ]1 with ℓ ≥ 0 and for all 1 ≤ i ≤ ℓ, ai is a stack
symbol in Σ and wi is a collapsible stack in

⋃

1≤k≤n

Stacksnk .

An order-n stack can be represented naturally as an edge-labelled tree over the alphabet
{[n−1, . . . , [1,]1, . . . ,]n−1} ⊎ Σ, with Σ-labelled edges having a second target to the tree
representing the annotation. We do not use [n or]n since they would appear uniquely at
the beginning and end of the stack. An example order-3 stack is given below, with only a
few annotations shown (on a and c). The annotations are order-3 and order-2 respectively.

• • • • • • • • • • • • • • • • •
[2 [1 a b]1]2 [2 [1 c]1]2 [1 d]1

Given an order-n stack w = [w1 . . . wℓ]n, we define topn+1(w) = w and

topn([w1 . . . wℓ]n) = w1 when ℓ > 0
topn([]n) = []n−1 otherwise

topk([w1 . . . wℓ]n) = topk(w1) when k < n and ℓ > 0

noting that topk(w) is undefined if topk′(w) = []k′−1 for any k′ > k.
We write u :k v — where u is order-(k − 1) — to denote the stack obtained by placing

u on top of the topk stack of v. That is, if v = [v1 . . . vℓ]k then u :k v = [uv1 . . . vℓ]k, and
if v = [v1 . . . vℓ]k′ with k′ > k, u :k v = [(u :k v1) v2 . . . vℓ]k′ . This composition associates
to the right. E.g., the stack [[[awb]1]2]3 above can be written u :3 v where u is the order-2
stack [[awb]1]2 and v is the empty order-3 stack []3. Then u :3 u :3 v is [[[awb]1]2[[a

wb]1]2]3.

Operations on Order-n Collapsible Stacks The following operations can be per-
formed on an order-n stack where noop is the null operation noop(w) = w.

On = {noop, pop1} ∪
{

rewa, push
k
a, copyk, popk | a ∈ Σ ∧ 2 ≤ k ≤ n

}

We define each o ∈ On for an order-n stack w. Annotations are created by pushk
a, which

pushes a character onto w and annotates it with topk+1(popk(w)). This, in essence, attaches
a closure to a new character.

1. We set popk(u :k v) = v.
2. We set copyk(u :k v) = u :k u :k v.

3. We set collapsek

(

au
′

:1 u :(k+1) v
)

= u′ :(k+1) v when u is order-k and 1 ≤ k < n; and

collapsen(a
u :1 v) = u when u is order-n.

4. We set pushk
b (w) = bu :1 w where u = topk+1(popk(w)).

5. We set rewb(a
u :1 v) = bu :1 v.

For example, beginning with [[a]1[b]1]2 and applying push2
c we obtain [[c[[b]1]2a]1[b]1]2. In this

setting, the order-2 context information for the new character c is [[b]1]2. We can then apply
copy2; collapse2 to get [[c[[b]1]2a]1[c

[[b]1]2a]1[b]1]2 then [[b]1]2. That is, collapsek replaces the
current topk+1 stack with the annotation attached to c.

Collapsible Pushdown Systems We are now ready to define collapsible PDS.

Definition 2.2 (Collapsible Pushdown Systems) An order-n collapsible pushdown sys-
tem (n-CPDS) is a tuple C = (P ,Σ,R) where P is a finite set of control states, Σ is a finite
stack alphabet, and R ⊆ (P × Σ×On × P) is a set of rules.

3

We write configurations of a CPDS as a pair 〈p, w〉 ∈ P × Stacksnn. We have a transition
〈p, w〉 −→ 〈p′, w′〉 via a rule (p, a, o, p′) when top1(w) = a and w′ = o(w).

Consuming and Generating Rules We distinguish two kinds of rule or operation:
a rule (p, a, o, p′) or operation o is consuming if o = popk or o = collapsek for some k.

Otherwise, it is generating. We write RP,Σ
Gn

for the set of generating rules of the form
(p, a, o, p′) such that p, p′ ∈ P and a ∈ Σ, and o ∈ On. We simply write RGn

when no
confusion may arise.

2.2 Saturation for CPDS

Our algorithms for concurrent CPDSs build upon the saturation technique for CPDSs [8]. In
essence, we represent sets of configurations C using a P-stack automaton A reading stacks.
We define such automata and their languages L(A) below. Saturation adds new transitions
to A — depending on rules of the CPDS and existing transitions in A — to obtain A′ repre-
senting configurations with a path to a configuration in C. I.e., given a CPDS C with control
states P and a P-stack automaton A0, we compute Pre∗C(A0) which is the smallest set s.t.
Pre∗C(A0) ⊇ L(A0) and Pre∗C(A0) ⊇ {〈p, w〉 | ∃〈p, w〉 −→ 〈p′, w′〉 s.t. 〈p′, w′〉 ∈ Pre∗C(A0)}.

Stack Automata Sets of stacks are represented using order-n stack automata. These
are alternating automata with a nested structure that mimics the nesting in a higher-order
collapsible stack. We recall the definition below.

Definition 2.3 (Order-n Stack Automata) An order-n stack automaton is a tuple A =
(Qn, . . . ,Q1,Σ,∆n, . . . ,∆1,Fn, . . . ,F1) where Σ is a finite stack alphabet, Qn, . . . ,Q1 are
disjoint, and

1. for all 2 ≤ k ≤ n, we have Qk is a finite set of states, Fk ⊆ Qk is a set of accepting
states, and ∆k ⊆ Qk × Qk−1 × 2Qk is a transition relation such that for all q and Q

there is at most one q′ with (q, q′, Q) ∈ ∆k, and
2. Q1 is a finite set of states, F1 ⊆ Q1 is a set of accepting states, and the transition

relation is ∆1 ⊆
⋃

2≤k≤n

(

Q1 × Σ× 2Qk × 2Q1

)

.

States in Qk recognise order-k stacks. Stacks are read from “top to bottom”. A stack

u :k v is accepted from q if there is a transition (q, q′, Q) ∈ ∆k, written q
q′

−→ Q, such that
u is accepted from q′ ∈ Q(k−1) and v is accepted from each state in Q. At order-1, a stack
au :1 v is accepted from q if there is a transition (q, a,Qcol, Q) where u is accepted from all
states in Qcol and v is accepted from all states in Q. An empty order-k stack is accepted
by any state in Fk. We write w ∈ Lq(A) to denote the set of all stacks w accepted from q.
Note that a transition to the empty set is distinct from having no transition.

We show a part run using q3
q2
−→ Q3 ∈ ∆3, q2

q1
−→ Q2 ∈ ∆2, q1

a
−−−→
Qcol

Q1 ∈ ∆1.

q3 q2 q1 Q1 · · · Q2 Q3 Qcol · · ·
[2 [1 a b]1]2 [2

Long-form Transitions We will often use a long-form notation (defined below) that

captures nested sequences of transitions. E.g. we can write q3
a

−−−→
Qcol

(Q1, Q2, Q3) to represent

the use of q3
q2
−→ Q3, q2

q1
−→ Q2, and q1

a
−−−→
Qcol

Q1 for the first three transitions of the run

above. Note that this latter long-form transition starts at the very beginning of the stack

4

and reads its top1 character. Formally, for a sequence of transitions q
qk−1

−−−→ Qk, qk−1
qk−2

−−−→

Qk−1, . . . , q1
a

−−−→
Qcol

Q1 in ∆k to ∆1 respectively, we write q
a

−−−→
Qcol

(Q1, . . . , Qk).

P-Stack Automata We define P-automata [4] for CPDSs. Given control states P , an
order-n P-stack automaton is an order-n stack automaton such that for each p ∈ P there
exists a state qp ∈ Qn. We set L(A) =

{

〈p, w〉
∣

∣ w ∈ Lqp(A)
}

.

The Saturation Algorithm We recall the saturation algorithm. For a detailed ex-
planation of the saturation function complete with examples, we refer the reader to our
ICALP paper [8]. Here we present an abstracted view of the algorithm, relegating details
that are not directly relevant to the remainder of the main article to Appendix B.

The saturation algorithm iterates a saturation function Π that adds new transitions to a
given automaton. Beginning with A0 representing a target set of configurations, we iterate
Ai+1 = Π(Ai) until Ai+1 = Ai. Once this occurs, we have that L(Ai) = Pre∗C(A0).

We define Π in terms of a family of auxiliary saturation functions Πr (defined in Ap-
pendix B) which return a set of long-form transitions to be added by saturation. When r is
consuming, Πr(A) returns the set of long-form transitions to be added to A due to the rule
r. When r is generating Πr also takes as an argument a long-form transition t of A. Thus
Πr(t, A) returns the set of long-form transitions that should be added to A as a result of the
rule r combined with the transition t (and possibly other transitions of A).

For example, if r = (p, a, rewb, p
′) and t = qp′

b
−−−→
Qcol

(Q1, . . . , Qn) is a transition of A,

then Πr(t, A) contains only the long-form transition t′ = qp
a

−−−→
Qcol

(Q1, . . . , Qn). The idea is

if 〈p′, bu :1 w〉 is accepted by A via a run whose first (sequence of) transition(s) is t, then by
adding t′ we will be able to accept 〈p, au :1 w〉 via a run beginning with t′ instead of t. We
have 〈p, au :1 w〉 ∈ Pre∗C(A) since it can reach 〈p′, bu :1 w〉 via the rule r.

Definition 2.4 (The Saturation Function Π) For a CPDS with rules R, and given an
order-n stack automaton Ai we define Ai+1 = Π(Ai). The state-sets of Ai+1 are defined
implicitly by the transitions which are those in Ai plus, for each r = (p, a, o, p′) ∈ R, when

1. o is consuming and t ∈ Πr(Ai), then add t to Ai+1,
2. o is generating, t is in Ai, and t′ ∈ Πr(t, A), then add t′ to Ai+1.

In ICALP 2012 we showed that saturation adds up to O(2 ↑n (f(|P|))) transitions, for
some polynomial f , and that this can be reduced to O(2 ↑n−1 (f(|P|))) (which is optimal)
by restricting all Qn to have size 1 when A0 is “non-alternating at order-n”. Since this
property holds of all A0 used here, we use the optimal algorithm for complexity arguments.

3 Extended Collapsible Pushdown Systems

To analyse concurrent systems, we extend CPDS following Atig [1]. Atig’s extended PDSs
allow words from arbitrary languages to be pushed on the stack. Our notion of extended
CPDSs allows sequences of generating operations from a language Lg to be applied, rather
than a single operation per rule. We can specify Lg by any system (e.g. a Turing machine).

Definition 3.1 (Extended CPDSs) An order-n extended CPDS (n-ECPDS) is a tuple
C = (P ,Σ,R) where P is a finite set of control states, Σ is a finite stack alphabet, and

R ⊆ (P × Σ×On × P) ∪
(

P × Σ× 2(R
P,Σ

Gn
)
∗

× P
)

is a set of rules.

5

As before, we have a transition 〈p, w〉 −→ 〈p′, w′〉 of an n-ECPDS via a rule (p, a, o, p′)
with top1(w) = a and w′ = o(w). Additionally, we have a transition 〈p, w〉 −→ 〈p′, w′〉 when
we have a rule (p, a,Lg, p

′), a sequence (p, a, o1, p1) (p1, a2, o2, p2) . . . (pℓ−1, aℓ, oℓ, p
′) ∈ Lg

and w′ = oℓ(· · · o1(w)). That is, a single extended rule may apply a sequence of stack
updates in one step. A run of an ECPDS is a sequence 〈p0, w0〉 −→ 〈p1, w1〉 −→ · · · .

3.1 Reachability Analysis

We adapt saturation for ECPDSs. In Atig’s algorithm, an essential property is the decid-
ability of Lg ∩ L(A) for some order-1 P-stack automaton A and a language Lg appearing
in a rule of the extended PDS. We need analogous machinery in our setting. For this, we
first define a class of finite automata called transition automata, written T . The states of
these automata will be long-form transitions of a stack automaton t = q

a
−−−→
Qcol

(Q1, . . . , Qn).

Transitions t
r
−→ t′ are labelled by rules. We write t

−→r
−→∗ t′ to denote a run over −→r ∈ (RGn

)∗.
During the saturation algorithm we will build from Ai a transition automaton T . Then,

for each rule (p, a,Lg, p
′) we add to Ai+1 a new long-form transition t if there is a word

−→r ∈ Lg such that t
−→r
−→∗ t′ is a run of T and t′ is already a transition of Ai.

For example, consider (p, a,Lg, p
′) where Lg = {(p, a, rewb, p

′)}. A transition
(

qp
a

−−−→
Qcol

(Q1, . . . , Qn)

)

(p,a,rewb,p
′)

−−−−−−−−→

(

qp′
b

−−−→
Qcol

(Q1, . . . , Qn)

)

will correspond to the fact that the presence of qp′
b

−−−→
Qcol

(Q1, . . . , Qn) in Ai causes qp
a

−−−→
Qcol

(Q1, . . . , Qn) to be added by Π. A run t1
r1−→ t2

r2−→ t3 comes into play when e.g. Lg = {r1r2}.
If the rule were split into two ordinary rules with intermediate control states, Π would first
add t2 derived from t3, and then from t2 derive t1. In the case of extended CPDSs, the
intermediate transition t2 is not added to Ai+1, but its effect is still present in the addition
of t1. Below, we repeat the above intuition more formally. Fix a n-ECPDS C = (P ,Σ,R).

Transition Automata We build a transition automaton from a given P-stack au-
tomaton A. Let A have order-n to order-1 state-sets Qn, . . . , Q1 and alphabet Σ, let TA

be the set of all q
a

−−−→
Qcol

(Q1, . . . , Qn) with q ∈ Qn, for all k, Qk ⊆ Qk, and for some k,

Qcol ⊆ Qk.

Definition 3.2 (Transition Automata) Given an order-n P-stack automaton A with al-

phabet Σ, and t, t′ ∈ TA, we define the transition automaton T A
t,t′ =

(

TA,R
P,Σ
Gn

, δ, t, t′
)

such

that δ ⊆ TA ×RP,Σ
Gn

× TA is the smallest set such that t1
r
−→ t2 ∈ δ if t1 ∈ Πr(t2, A).

We define L
(

T A
t,t′

)

=
{

−→r
∣

∣

∣
t

−→r
−→∗ t′

}

.

Extended Saturation Function We now extend the saturation function following the
intuition explained above. For t = qp

a
−−−→
Qcol

(Q1, . . . , Qn), let top1(t) = a and control(t) = p.

Definition 3.3 (Extended Saturation Function Π) The extended Π is Π from Defini-
tion 2.4 plus for each extended rule (p, a,Lg, p

′) ∈ R and t, t′, we add t to Ai+1 whenever
1. control(t) = p and top1(t) = a, 2. t′ is a transition of Ai with control(t′) = p′, and

3. Lg ∩ L
(

T Ai

t,t′

)

6= ∅.

6

Theorem 3.1 (Global Reachability of ECPDS) Given an ECPDS C and a P-stack
automaton A0, the fixed point A of the extended saturation procedure accepts Pre∗C(A0).

In order for the saturation algorithm to be effective, we need to be able to decide Lg ∩

L
(

T Ai

t,t′

)

6= ∅. We argue in the appendix that number of transitions added by extended

saturation has the same upper bound as the unextended case.

4 Multi-Stack CPDSs

We define a general model of concurrent collapsible pushdown systems, which we later
restrict. In the sequel, assume a bottom-of-stack symbol ⊥ and define the “empty” stacks
⊥0=⊥ and ⊥k+1= [⊥k]k+1. As standard, we assume that ⊥ is neither pushed onto, nor
popped from, the stack (though may be copied by copyk).

Definition 4.1 (Multi-Stack Collapsible Pushdown Systems) An order-n multi-stack
collapsible pushdown system (n-MCPDS) is a tuple C = (P ,Σ,R1, . . . ,Rm) where P is a
finite set of control states, Σ is a finite stack alphabet, and for each 1 ≤ i ≤ m we have a
set of rules Ri ⊆ P × Σ×On × P.

A configuration of C is a tuple 〈p, w1, . . . , wm〉. There is a transition 〈p, w1, . . . , wm〉 −→
〈p′, w1, . . . , wi−1, w

′
i, wi+1, . . . , wm〉 via (p, a, o, p′) ∈ Ri when a = top1(wi) and w′

i = o(wi).
We also need MCPDAutomata, which are MCPDSs defining languages over an input

alphabet Γ. For this, we add labelling input characters to the rules. Thus, a rule (p, a, γ, o, p′)
reads a character γ ∈ Γ. This is defined formally in Appendix D.

We are interested in two problems for a given n-MCPDS C.

Definition 4.2 (Control State Reachability Problem) Given control states pin, pout of
C, decide if there is for some w1, . . . , wm a run 〈pin,⊥n, . . . ,⊥n〉 −→ · · · −→ 〈pout, w1, . . . , wm〉.

Definition 4.3 (Global Control State Reachability Problem) Given a control state
pout of C, construct a representation of the set of configurations 〈p, w1, . . . , wm〉 such that
there exists for some w′

1, . . . , w
′
m a run 〈p, w1, . . . , wm〉 −→ · · · −→ 〈pout, w′

1, . . . , w
′
m〉.

We represent sets of configurations as follows. In Appendix D we show it forms an
effective boolean algebra, membership is linear time, and emptiness is in PSPACE.

Definition 4.4 (Regular Set of Configurations) A regular set R of configurations of a
multi-stack CPDS C is definable via a finite set χ of tuples (p,A1, . . . , Am) where p is a
control state of C and Ai is a stack automaton with designated initial state qi for each i. We
have 〈p, w1, . . . , wm〉 ∈ R iff there is some (p,A1, . . . , Am) ∈ χ such that wi ∈ Lqi(Ai) for
each i.

Finally, we often partition runs of an MCPDS σ = σ1 . . . σℓ where each σi is a sequence
of configurations of the MCPDS. A transition from c to c′ occurs in segment σi if c′ is a
configuration in σi. Thus, transitions from σi to σi+1 are said to belong to σi+1.

7

5 Ordered CPDS

We generalise ordered multi-stack pushdown systems [7]. Intuitively, we can only remove
characters from stack i whenever all stacks j < i are empty.

Definition 5.1 (Ordered CPDS) An order-n ordered CPDS (n-OCPDS) is an n-MCPDS
C = (P ,Σ,R1, . . . ,Rm) such that a transition from 〈p, w1, . . . , wm〉 using the rule r on stack
i is permitted iff, when r is consuming, for all 1 ≤ j < i we have wj =⊥n.

Theorem 5.1 (Decidability of Reachability Problems) For n-OCPDSs the control state
reachability problem and the global control state reachability problem are decidable.

We outline the proofs below. In Appendix E we show control state reachability uses
O
(

2 ↑m(n−1) (ℓ)
)

time, where ℓ is polynomial in the size of the OCPDS, and we have at most
O(2 ↑mn (ℓ)) tuples in the solution to the global problem. First observe that reachability
can be reduced to reaching 〈pout,⊥n, . . . ,⊥n〉 by clearing the stacks at the end of the run.

Control State Reachability Using our notion of ECPDS, we may adapt Atig’s in-
ductive algorithm for ordered PDSs [1] for the control state reachability problem. The
induction is over the number of stacks. W.l.o.g. we assume that all rules (p,⊥, o, p′) of C
have o = pushn

a .
In the base case, we have an n-OCPDS with a single stack, for which the global reacha-

bility problem is known to be decidable (e.g. [4]).
In the inductive case, we have an n-OCPDS C with m stacks. By induction, we can

decide the reachability problem for n-OCPDSs with fewer than m stacks. We first show
how to reduce the problem to reachability analysis of an extended CPDS, and then finally

we show how to decide Lg ∩ L
(

T Ai

t,t′

)

6= ∅ using an n-OCPDS with (m− 1) stacks.

Consider the mth stack of C. A run of C can be split into σ1τ1σ2τ2 . . . σℓτℓ. During the
subruns σi, the first (m − 1) stacks are non-empty, and during τi, the first (m − 1) stacks
are empty. Moreover, during each σi, only generating operations may occur on stack m.

We build an extended CPDS that directly models the mth stack during the τi segments
where the first (m−1) stacks are empty, and uses rules of the form (p, a,Lg, p

′) to encapsulate
the behaviour of the σi sections where the first (m−1) stacks are non-empty. The Lg attached
to such a rule is the sequence of updates applied to the mth stack during σi.

We begin by defining, from the OCPDS C with m stacks, an OCPDA CL with (m − 1)
stacks. This OCPDA will be used to define the Lg described above. CL simulates a segment
σi. Since all updates to stack m in σi are generating, CL need only track its top character,
hence only keeps (m− 1) stacks. The top character of stack m is kept in the control state,
and the operations that would have occurred on stack m are output.

Definition 5.2 (CL) Given an n-OCPDS C = (P ,Σ,R1, . . . ,Rm), we define CL to be an
n-OCPDA with (m− 1) stacks

(

P × Σ,Σ,R′
1 ∪R′,R′

2, . . . ,R
′
m−1

)

over input alphabet RGn

where for all i

R′
i = {((p, a), b, (p, a, noop, p′), o, (p′, a)) | a ∈ Σ ∧ (p, b, o, p′) ∈ Ri } , and

R′ = {((p, a), b, r, noop, (p′, c)) | b ∈ Σ ∧ r = (p, a, rewc, p
′) ∈ Rm } ∪

{((p, a), b, r, noop, (p′, a)) | b ∈ Σ ∧ r = (p, a, copyk, p
′) ∈ Rm } ∪

{

((p, a), b, r, noop, (p′, c))
∣

∣ b ∈ Σ ∧ r =
(

p, a, pushk
c , p

′
)

∈ Rm

}

∪
{((p, a), b, r, noop, (p′, a)) | b ∈ Σ ∧ r = (p, a, noop, p′) ∈ Rm } .

8

We define the language Lb,i
p,a,p′

(

CL
)

to be the set of words γ1 . . . γℓ such that there exists

a run of CL over input γ1 . . . γℓ from 〈(p, a), w1, . . . , wm−1〉 to 〈(p′, c),⊥n, . . . ,⊥n〉 for some
c, where wi = pushn

b (⊥n) and wj =⊥n for all j 6= i. This language describes the effect on
stack m of a run σj from p to p′. (Note, by assumption, all σj start with some pushn

b .)
We now define the extended CPDS CR that simulates C by keeping track of stack m in

its stack and using extended rules based on CL to simulate parts of the run where the first
(m− 1) stacks are not all empty. Note, since all rules operating on ⊥ (i.e. (p,⊥, o, p′)) have
o = pushn

b , rules from R1, . . . ,Rm−1 may only fire during (or at the start of) the segments
where the first (m− 1) stacks are non-empty (and thus appear in RLg

below).

Definition 5.3 (CR) Given an n-OCPDS C = (P × Σ,Σ,R1, . . . ,Rm) with m stacks, we
define CR to be an n-ECPDS such that CR = (P ,Σ,R′) where R′ = Rm ∪RLg

and

RLg
=

{(

p, a,Lb,i
p1,a,p2

(

CL
)

, p2
)

| a ∈ Σ ∧ (p,⊥, pushn
b , p1) ∈ Ri ∧ 1 ≤ i < m

}

Lemma 5.1 (CR simulates C) Given an n-OCPDS C and control states pin, pout, we have
〈pin, w〉 ∈ Pre∗CR(A), where A is the P-stack automaton accepting only the configuration
〈pout,⊥n〉 iff 〈pin,⊥n, . . . ,⊥n, w〉 −→ · · · −→ 〈pout,⊥n, . . . ,⊥n〉.

Lemma 5.1 only gives an effective decision procedure if we can decide Lg ∩L
(

T Ai

t,t′

)

6= ∅

for all rules (p, a,Lg, p
′) appearing in CR. For this, we use a standard product construction

between the CL associated with Lg, and T Ai

t,t′ . This gives an ordered CPDS with (m − 1)
stacks, for which, by induction over the number of stacks, reachability (and emptiness) is
decidable. Note, the initial transition of the construction sets up the initial stacks of CL.

Definition 5.4 (C∅) Given the non-emptiness problem Lb,i
p1,a,p2

(

CL
)

∩ L
(

T Ai

t,t′

)

6= ∅, where

top1(t) = a, CL = (P × Σ,Σ,R1, . . . ,Rm−1) and T Ai

t,t′ = (TAi
,RGn

, δ, t, t′), we define an

n-OCPDS C∅ =
(

P∅,Σ,R∅
1, . . . ,R

∅
i ∪RI/O, . . . ,R

∅
m−1

)

where, for all 1 ≤ i ≤ (m− 1),

P∅ = {p1, p2} ⊎ {(p, t1) | t1 ∈ TAi
∧ control(t1) = p} ,

RI/O = {(p1,⊥, pushn
b , (p1, t))} ∪ {((p2, t),⊥, noop, p2) | t ∈ TAi

} , and

R∅
i = {((p, t1), c, o, (p

′, t2)) | ((p, top1(t1)), c, r, o, (p
′, top1(t2))) ∈ Ri ∧ (t1, r, t2) ∈ ∆}

Lemma 5.2 (Language Emptiness for OCPDS) We have Lb,i
p1,a,p2

(

CL
)

∩L
(

T Ai

t,t′

)

6= ∅

iff, in C∅ from Definition 5.4, we have that 〈p2,⊥n, . . . ⊥n〉 is reachable from 〈p1,⊥n, . . . ,⊥n〉.

Global Reachability We sketch a solution to the global reachability problem, giv-
ing a full proof in Appendix E. From Lemma 5.1 (CR simulates C) we gain a represen-
tation Am = Pre∗CR(A) of the set of configurations 〈p,⊥n, . . . ,⊥n, wm〉 that have a run to
〈pout,⊥n, . . . ,⊥n〉. Now take any 〈p,⊥n, . . . ,⊥n, wm−1, wm〉 that reaches 〈pout,⊥n, . . . ,⊥n〉.
The run must pass some 〈p′,⊥n, . . . ,⊥n, w

′
m〉 with 〈p′, w′

m〉 accepted by Am. From the prod-
uct construction above, one can (though not immediately) extract a tuple (p,Am−1, A

′
m)

such that wm−1 is accepted by Am−1 and wm is accepted by A′
m. We repeat this reasoning

down to stack 1 and obtain a tuple of the form (p,A1, . . . , Am). We can only obtain a finite
set of tuples in this manner, giving a solution to the global reachability problem.

9

6 Scope-Bounded CPDS

Recently, scope-bounded multi-pushdown systems were introduced [30] and their reachabil-
ity problem was shown to be decidable. Furthermore, reachability for scope- and phase-
bounding was shown to be incomparable [30]. Here we consider scope-bounded CPDS.

A run σ = σ1 . . . σℓ of an MCPDS is context-partitionable when, for each σi, if a transition
in σi is via r ∈ Rj on stack j, then all transitions of σi are via rules in Rj on stack j. A round
is a context-partitioned run σ1 . . . σm, where during σi onlyRi is used. A round-partitionable
run can be partitioned σ1 . . . σℓ where each σi is a round. A run of an SBCPDS is such that
any character or stack removed from a stack must have been created at most ζ rounds
earlier. For this, we define pop- and collapse-rounds for stacks. That is, we mark each stack
and character with the round in which it was created. When we copy a stack via copyk,
the pop-round of the new copy of the stack is the current round. However, all stacks and
characters within the copy of u keep the same pop- and collapse-round as in the original u.

E.g. take [u]2 where u = [ab]1, u and a have pop-round 2, and b has pop-round 1.
Suppose in round 3 we use copy2 to obtain [uu]2. The new copy of u has pop-round 3 (the
current round), but the a and b appearing in the copy of u still have pop-rounds 2 and 1
respectively. If the scope-bound is 2, the latest each a and the original u could be popped
is in round 4, but the new u may be popped in round 5.

We will write pw for a stack w with pop-round p and p,ca for a character with pop-round
p and collapse-round c. Pop- and collapse-rounds will be sometimes omitted for clarity.
Note, the outermost stack will always have pop-round 0. In particular, for all u :k v in the
definition below, the pop-round of v is 0.

Definition 6.1 (Pop- and Collapse-Round) Given a round-partitioned run σ1 . . . σℓ we
define inductively the pop- and collapse-rounds. The pop- and collapse-round of each stack
and character in the first configuration of σ1 is 0. Take a transition 〈p, w〉 −→ 〈p′, w′〉 with
〈p′, w′〉 in σz via a rule (p, a, o, p′). If o = noop then w = w′, otherwise when

1. o = copyk and w = pu :k v, then w′ = zu :k (pu :k v) where zu = z[p1
u1 . . . pℓ

uℓ]k−1

when pu = p[p1
u1 . . . pℓ

uℓ]k−1.

2. o = pushk
b , then w′ = z,cb

(p′u) :1 w where p′u = topk+1(popk(w)) and c is the pop-
round of topk(w). (Note, when k = n, we know p′ = 0 since the topn+1 stack is
outermost.)

3. o = popk, when w = u :k v then w′ = v.

4. We set collapsek

(

a(pu
′) :1 u :(k+1) v

)

= pu
′ :(k+1) v when u is order-k and 1 ≤ k < n;

and collapsen
(

a(0u) :1 v
)

= 0u when u is order-n.

5. o = rewb and w = p,ca
(p′u) :1 v, then w′ = p,cb

(p′u) :1 v.

Definition 6.2 (Scope-Bounded CPDS) A ζ-scope-bounded n-CPDS (n-SBCPDS) C is
an order-n MCPDS whose runs are all runs of C that are round-partitionable, that is σ1 . . . σℓ,
such that for all z, if a transition in σz from 〈p, w〉 to 〈p′, w′〉 is

1. a popk transition with 1 < k ≤ n and w = pu :k v, then z − ζ ≤ p,
2. a pop1 transition with w = p,ca

u :1 v, then z − ζ ≤ p, or
3. a collapsek transition with w = p,ca

u :1 v, then z − ζ ≤ c.

La Torre and Napoli’s decidability proof for the order-1 case already uses the saturation
method [30]. However, while La Torre and Napoli use a forwards-reachability analysis, we
must use a backwards analysis. This is because the forwards-reachable set of configurations
is in general not regular. We thus perform a backwards analysis for CPDS, resulting in a
similar approach. However, the proofs of correctness of the algorithm are quite different.

10

Theorem 6.1 (Decidability of Reachability Problems) For n-OCPDSs the control state
reachability problem and the global control state reachability problem are decidable.

In Appendix E we show our non-global algorithm requires O(2 ↑n−1 (ℓ)) space, where
ℓ is polynomial in ζ and the size of the SBCPDS, and we have at most O(2 ↑n (ℓ)) tuples
in the global reachability solution. La Torre and Parlato give an alternative control state
reachability algorithm at order-1 using thread interfaces, which allows sequentialisation [19]
and should generalise order-n, but, does not solve the global reachability problem.

Control State Reachability Fix initial and target control states pin and pout. The
algorithm first builds a reachability graph, which is a finite graph with a certain kind of path
iff pout can be reached from pin. To build the graph, we define layered stack automata. These
have states qip for each 1 ≤ i ≤ ζ which represent the stack contents i rounds later. Thus,
a layer automaton tracks the stack across ζ rounds, which allows analysis of scope-bounded
CPDSs.

Definition 6.3 (ζ-Layered Stack Automata) A ζ-layered stack automaton is a stack
automaton A such that Qn =

{

qip | p ∈ P ∧ 1 ≤ i ≤ ζ
}

.

A state qip is of layer i. A state q′ labelling q
q′

−→ Q has the same layer as q. We require

that there is no q
q′

−→ Q with q′′ ∈ Q where q is of layer i and q′′ is of layer j < i. Similarly,
there is no q

a
−−−→
Qcol

Q with q′ ∈ Q ∪Qcol where q is of layer i and q′ is of layer j < i.

Next, we define several operations from which the reachability graph is constructed. The
Predecessorj operation connects stack j between two rounds. We define for stack j

Predecessorj(A, qp, qp′) = Saturatej

(

EnvMove

(

Shift(A), q1p1
, q2p2

))

where definitions of Shift, EnvMove and Saturatej are given in Appendix G. Shift moves

transitions in layer i to layer (i+1). E.g. q1p
q
−→

{

q2p′

}

would become q2p
q
−→

{

q3p′

}

. Moreover,
transitions involving states in layer ζ are removed. This is because the stack elements in layer
ζ will “go out of scope”. EnvMove adds a new transition (analogously to a (p1, a, rewa, p2)
rule) corresponding to the control state change from p1 to p2 effected by the runs over the
other stacks between the current round and the next (hence layers 1 and 2 in the definition
above). Saturatej gets by saturation all configurations of stack j that can reach via Rj the
stacks accepted from the layer-1 states of its argument (i.e. saturation using initial states
{

q1p | p ∈ P
}

, which accept stacks from the next round).
The current layer automaton represents a stack across up to ζ rounds. The predecessor

operation adds another round on to the front of this representation. A key new insight in
our proofs is that if a transition goes to a layer i state, then it represents part of a run where
the stack read by the transition is removed in i rounds time. Thus, if we add a transition
at layer 0 (were it to exist) that depends on a transition of layer ζ, then the push or copy
operation would have a corresponding pop (ζ+1) scopes away. Scope-bounding forbids this.

The Reachability Graph The reachability graph Gpout

C = (V , E) has vertices V and
edges E . Firstly, V contains some initial vertices (p0, A1, p1, . . . , pm−1, Am, pm) where pm =
pout, and for all 1 ≤ i ≤ m we have that Ai is the layer automaton Saturatei(A) where for
all w, A accepts 〈pi, w〉 from q1pi

. Furthermore, we require that there is some w such that
〈pi−1, w〉 is accepted by Ai from q1pi

. That is, there is a run from 〈pi−1, w〉 to pi. Intuitively,
initial vertices model the final round of a run to pout with context switches at p0, . . . , pm.

11

The complete set V is the set of all tuples (p0, A1, p1, . . . , pm−1, Am, pm) where there is
some w such that 〈pi−1, w〉 is accepted by Ai from state q1pi−1

. To ensure finiteness, we can
bound Ai to at most N states. The value of N is O(2 ↑n−1 (ℓ)) where ℓ is polynomial in ζ

and the size of C. We give a full definition of N and proof in Appendix G.
We have an edge from a vertex (p0, A1, . . . , Am, pm) to (p′0, A

′
1, . . . , A

′
m, p′m) whenever

pm = p′0 and for all i we have Ai = Predecessori

(

A′
i, qpi

, qp′
i−1

)

. An edge means the two

rounds can be concatenated into a run since the control states and stack contents match up.

Lemma 6.1 (Simulation by Gpout

C) Given a scope-bounded CPDS C and control states
pin, pout, there is a run of C from 〈pin, w1, . . . , wm〉 to 〈pout, w′

1, . . . , w
′
m〉 for some w′

1, . . . , w
′
m

iff there is a path in Gpout

C to a vertex (p0, A1, . . . , Am, pm) with p0 = pin from an initial vertex
where for all i we have 〈pi−1, wi〉 accepted from q1pi

of Ai.

Global Reachability The (p0, A1, p1, . . . , pm−1, Am, pm) in Gpout

C reachable from an
initial vertex are finite in number. We know by Lemma 6.1 that there is such a vertex
accepting all 〈pi−1, wi〉 iff 〈p0, w1, . . . , wm〉 can reach the target control state. Let χ be the
set of tuples (p0, A1, . . . , Am) for each reachable vertex as above, where Ai is restricted to
the initial state q1pi−1

. This is a regular solution to the global control state reachability
problem.

7 Conclusion

We have shown decidability of global reachability for ordered and scope-bounded collapsible
pushdown systems (and phase-bounded in the appendix). This leads to a challenge to find a
general framework capturing these systems. Furthermore, we have only shown upper-bound
results. Although, in the case of phase-bounded systems, our upper-bound matches that of
Seth for CPDSs without collapse [27], we do not know if it is optimal. Obtaining matching
lower-bounds is thus an interesting though non-obvious problem. Recently, a more relaxed
notion of scope-bounding has been studied [18]. It would be interesting to see if we can
extend our results to this notion. We are also interested in developing and implementing
algorithms that may perform well in practice.

Acknowledgments Many thanks for initial discussions with Arnaud Carayol and to
the referees for their helpful remarks. This work was supported by Fond. Sci. Math. Paris;
AMIS [ANR 2010 JCJC 0203 01 AMIS]; FREC [ANR 2010 BLAN 0202 02 FREC]; VAPF
(Région IdF); and the Engineering and Physical Sciences Research Council [EP/K009907/1].

References

[1] M. F. Atig. Model-checking of ordered multi-pushdown automata. Logical Methods in
Computer Science, 8(3), 2012.

[2] M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is
2etime-complete. In Developments in Language Theory, pages 121–133, 2008.

[3] T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via static
analysis. In POPL, pages 1–3, Portland, Oregon, Jan. 16–18, 2002.

[4] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:
Application to model-checking. In CONCUR, pages 135–150, 1997.

12

[5] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of
concurrent programs with procedures. SIGPLAN Not., 38(1):62–73, 2003.

[6] A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic
networks of pushdown systems. CONCUR 2005 - Concurrency Theory, pages 473–487,
2005.

[7] L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-push-down lan-
guages and grammars. Int. J. Found. Comput. Sci., 7(3):253–292, 1996.

[8] C. H. Broadbent, A. Carayol, M. Hague, and O. Serre. A saturation method for col-
lapsible pushdown systems. In ICALP, pages 165–176, 2012.

[9] C. H. Broadbent, A. Carayol, M. Hague, and O. Serre. C-shore: a collapsible approach
to higher-order verification. In ICFP, pages 13–24, 2013.

[10] A. Cyriac, P. Gastin, and K. N. Kumar. MSO decidability of multi-pushdown systems
via split-width. In CONCUR, pages 547–561, 2012.

[11] W. Damm. The io- and oi-hierarchies. Theor. Comput. Sci., 20:95–207, 1982.

[12] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking
pushdown systems. In INFINITY, volume 9, pages 27–37, 1997.

[13] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown automata
and recursion schemes. In LICS, pages 452–461, 2008.

[14] A. Heußner, J. Leroux, A. Muscholl, and G. Sutre. Reachability analysis of commu-
nicating pushdown systems. In Proc. 13th Int. Conf. Foundations of Software Science
and Computation Structures (FOSSACS’10), Paphos, Cyprus, Mar. 2010, volume 6014
of Lecture Notes in Computer Science, pages 267–281. Springer, 2010.

[15] V. Kahlon. Reasoning about threads with bounded lock chains. In CONCUR, pages
450–465, 2011.

[16] T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars and panic
automata. In ICALP, pages 1450–1461, 2005.

[17] N. Kobayashi and A. Igarashi. Model-checking higher-order programs with recursive
types. In ESOP, pages 431–450, 2013.

[18] S. La Torre and M. Napoli. A temporal logic for multi-threaded programs. In IFIP
TCS, pages 225–239, 2012.

[19] S. La Torre and G. Parlato. Scope-bounded multistack pushdown systems: Fixed-point,
sequentialization, and tree-width. In FSTTCS, pages 173–184, 2012.

[20] P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In POPL, pages
283–294, 2011.

[21] C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes.
In LICS, pages 81–90, 2006.

[22] L. Ong. Recursion schemes, collapsible pushdown automata and higher-order model
checking. In LATA, pages 13–41, 2013.

13

[23] S. Qadeer. The case for context-bounded verification of concurrent programs. In Pro-
ceedings of the 15th international workshop on Model Checking Software, SPIN ’08,
pages 3–6, Berlin, Heidelberg, 2008. Springer-Verlag.

[24] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In
TACAS, pages 93–107, 2005.

[25] S. Schwoon. Model-checking Pushdown Systems. PhD thesis, Technical University of
Munich, 2002.

[26] K. Sen and M. Viswanathan. Model checking multithreaded programs with asyn-
chronous atomic methods. In CAV, pages 300–314, 2006.

[27] A. Seth. Games on higher order multi-stack pushdown systems. In RP, pages 203–216,
2009.

[28] A. Seth. Global reachability in bounded phase multi-stack pushdown systems. In CAV,
pages 615–628, 2010.

[29] S. L. Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive lan-
guages. In LICS, pages 161–170, 2007.

[30] S. L. Torre and M. Napoli. Reachability of multistack pushdown systems with scope-
bounded matching relations. In CONCUR, pages 203–218, 2011.

14

A Undecidability of MSO Over The Naive Encoding of
Order-2 Stacks

We show that the naive graph representation of an order-2 stack leads to the undecidability of
MSO. By naive graph representation we mean a graph where each node is a configuration on
a run of the CPDS, and we have an edge labelled S between c1 and c2 if the configurations
are neighbouring on the run. We have an further edge labelled 1 if c2 was obtained by
popping a character via pop1 that was first pushed on to the stack by a pushk

a at node c1.
More formally, we define the originating configuration for each character.

Definition A.1 (Originating Configuration) Given a run as a sequence of configura-
tions c1, c2, . . . we define inductively the originating configuration of each character. The
originating configuration of each character in c1 is 1. Take a transition ci −→ ci+1 via a
rule (p, a, o, p′). If

1. o = copyk, then each character copied inherits its originating configuration from the
character it is a copy of. All other characters keep the same originating configuration.

2. o = pushk
b , all characters maintain the same originating configuration except the new

b character that has originating configuration i.

3. o = rewb, all characters maintain the same originating configuration except the new b

character that has the originating configuration of the a character it is replacing.

4. o = noop, popk or collapsek, all originating configurations are inherited from the pre-
vious stack.

Thus, from a run c1, c2, . . . we define a graph (V , E1, E2) with vertices V = {c1, c2, . . .}
and edge sets E1 and E2, where E1 = {(ci, ci+1) | 1 ≤ i} and E2 contains all pairs (ci, cj)
where cj was obtained by a pop1 from cj−1 and the originating configuration of the character
removed is i.

Now, consider the CPDS generating the following run

〈p0, [[⊥]1]2〉 −→ 〈p1, [[a ⊥]1]2〉 −→ 〈p2, [[a ⊥]1[a ⊥]1]2〉 −→ 〈p2, [[⊥]1[a ⊥]1]2〉 −→

〈p0, [[a ⊥]1]2〉 −→ 〈p1, [[aa ⊥]1]2〉 −→ 〈p2, [[aa ⊥]1[aa ⊥]1]2〉 −→ 〈p2, [[a ⊥]1[aa ⊥]1]2〉 −→
〈p2, [[⊥]1[aa ⊥]1]2〉 −→

〈p0, [[aa ⊥]1]2〉 −→ 〈p1, [[aaa ⊥]1]2〉 −→ 〈p2, [[aaa ⊥]1[aaa ⊥]1]2〉 −→ 〈p2, [[aa ⊥]1[aaa ⊥]1]2〉
−→ 〈p2, [[a ⊥]1[aaa ⊥]1]2〉 −→ 〈p2, [[⊥]1[aaa ⊥]1]2〉 −→

〈p0, [[aaa ⊥]1]2〉 −→ · · · .

That is, beginning at 〈p0,⊥2〉 the CPDS pushes an a character, copies the stack with a
copy2 and removes all as. After all as are removed, it performs pop2 the obtain the stack
below containing only a. It pushes another a onto the stack and repeats this process. After
each pop2 it adds one more a character, performs a copy2, pops all as and so on. This
produces the graph shown below with E1 represented with solid lines, and E2 with dashed
lines. Furthermore, nodes from which an a is pushed are the target of a dashed arrow, and
nodes reached by popping an a are the sources of dashed arrows.

15

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 · · ·

In this graph we can interpret the infinite half-grid. We restrict the graph to nodes that
are the source of a dashed arrow. We define horizontal and vertical edges to obtain the grid
below.

...

c13 · · ·

c8 c14 · · ·

c4 c9 c15 · · ·

There is a vertical edge from c to c′ whenever (c′, c) ∈ E1. There is a horizontal edge from
c to c′ whenever we have c′′ such that

1. (c′′, c) ∈ E2 and (c′′, c′) ∈ E2, and

2. there is a path in E1 from c to c′, and

3. there is no c′′′ on the above path with (c′′, c′′′) ∈ E2.

Thus, we can MSO-interpret the infinite half-grid, and hence MSO is undecidable over this
graph.

This naive encoding contains basic matching information about pushes and pops. It
remains an interesting open problem to obtain an encoding of CPDS that is amenable to
MSO based frameworks that give positive decidability results for concurrent behaviours.

B Definition of The Saturation Function

We first introduce two more short-hand notation for sets of transitions.
The first is a variant on the long-form transitions. E.g. for the run in Section 2 we

can write q3
q1
−→ (Q2, Q3) to represent the use of q3

q2
−→ Q3 and q2

q1
−→ Q2 as the first two

transitions in the run. That is, for a sequence q
qk−1

−−−→ Qk, qk−1
qk−2

−−−→ Qk−1, . . . , qk′

qk′−1

−−−→ Qk′

in ∆k to ∆k′ respectively, we write q
qk′−1

−−−→ (Qk′ , . . . , Qk).

The second notation represents sets of long-form transitions. We writeQ
a

−−−→
Qcol

(Q1, . . . , Qk)

if there is a set {t1, . . . , tℓ} of long-form transitions such that Q = {q1, . . . , qℓ} and for all

1 ≤ i ≤ ℓ we have ti = qi
a

−−−→
Qi

col

(

Qi
1, . . . , Q

i
k

)

and Qcol =
⋃

1≤i≤ℓ Q
i
col ⊆ Qk′ for some k′,

and for all k′, Qk′ =
⋃

1≤i≤ℓ Q
i
k′ .

16

Definition B.1 (The Auxiliary Saturation Function Πr) For a consuming CPDS rule
r = (p, a, o, p′) we define for a given stack automaton A, the set Πr(A) to be the smallest
set such that, when

1. o = popk, for each qp′

qk−→ (Qk+1, . . . , Qn) in A, the set Πr(A) contains the transition

qp
a
−→
∅

(∅, . . . , ∅, {qk} , Qk+1, . . . , Qn),

2. o = collapsek, when k = n, the set Πr(A) contains qp
a

−−−−→
{qp′}

(∅, . . . , ∅), and when

k < n, for each transition qp′

qk−→ (Qk+1, . . . , Qn) in A, the set Πr(A) contains the

transition qp
a

−−−→
{qk}

(∅, . . . , ∅, Qk+1, . . . , Qn),

For a generating CPDS rule r = (p, a, o, p′) we define for a given stack automaton A and
long-form transition t of A, the set Πr(t, A) to be the smallest set such that, when

1. o = copyk, t = qp′
a

−−−→
Qcol

(Q1, . . . , Qk, . . . , Qn) and Qk
a

−−−→
Q′

col

(Q′
1, . . . , Q

′
k) is in A, the

set Πr(t, A) contains the transition

qp
a

−−−−−−−→
Qcol∪Q′

col

(

Q1 ∪Q′
1, . . . , Qk−1 ∪Q′

k−1, Q
′
k, Qk+1, . . . , Qn

)

,

2. o = pushk
b , for all transitions t = qp′

b
−−−→
Qcol

(Q1, . . . , Qn) and Q1
a

−−−→
Q′

col

Q′
1 is in A with

Qcol ⊆ Qk, the set Πr(t, A) contains the transition

qp
a

−−−→
Q′

col

(Q′
1, Q2, . . . , Qk−1, Qk ∪Qcol, Qk+1, . . . , Qn) ,

3. o = rewb or o = noop, t = qp′
b

−−−→
Qcol

(Q1, . . . , Qn) the set Πr(t, A) contains the

transition qp
a

−−−→
Qcol

(Q1, . . . , Qn) (where b = a if o = noop).

As a remark, omitted from the main body of the paper, during saturation, we add
transitions qn

a
−−−→
Qcol

(Q1, . . . , Qn) to the automaton. Recall this represents a sequence of

transitions q
qk−1

−−−→ Qk ∈ ∆k, qk−1
qk−2

−−−→ Qk−1 ∈ ∆k−1, . . . , q1
a

−−−→
Qcol

Q1 ∈ ∆1. Hence, we

first, for each n ≥ k > 1, add qk
qk−1

−−−→ Qk to ∆k if it does not already exist. Then, we add
q1

a
−−−→
Qcol

Q1 to ∆1. Note, in particular, we only add at most one q′ with (q, q′, Q) ∈ ∆k for

all q and Q. This ensures termination.
Also, we say a state is initial if it is of the form qp ∈ Qn for some control state p or if

it is a state qk ∈ Qk for k < n such that there exists a transition qk+1
qk−→ Qk+1 in ∆k+1.

A pre-condition (that does not sacrifice generality) of the saturation technique is that there
are no incoming transitions to initial states.

C Proofs for Extended CPDS

We provide the proof of Theorem 3.1 (Global Reachability of ECPDS). The proof is via the
two lemmas in the sections that follow. A large part of the proof is identical to ICALP 2012
and hence not repeated here.

17

C.1 Completeness of Saturation for ECPDS

Lemma C.1 (Completeness of Π) Given an extended CPDS C and an order-n stack
automaton A0, the automaton A constructed by saturation with Π is such that 〈p, w〉 ∈
Pre∗C(A0) implies w ∈ Lqp(A).

Proof. We begin with a definition of Pre∗C(A0) that permits an inductive proof of complete-
ness. Thus, let Pre∗C(A0) =

⋃

α<ω
PreαC (A0) where

Pre0C(A0) =
{

〈p, w〉
∣

∣ w ∈ Lqp(A0)
}

Preα+1
C (A0) = {〈p, w〉 | ∃〈p, w〉 −→ 〈p′, w′〉 ∈ PreαC (A0)}

The proof is by induction over α. In the base case, we have w ∈ Lqp(A0) and the existence
of a run of A0, and thus a run in A comes directly from the run of A0. Now, inductively
assume 〈p, w〉 −→ 〈p′, w′〉 and an accepting run of w′ from qp′ of A.

There are two cases depending on the rule used in the transition above. Here we consider
the case where the rule is of the form (p, top1(w),Lg, p

′). The case where the rule is a
standard CPDS rule is identical to ICALP 2012 and hence we do not repeat it here (although
a variation of the proof appears in the proof of Lemma G.2).

Take the rule (p, top1(w),Lg, p
′) and the sequence (p0, a1, o1, p1) . . . , (pℓ−1, aℓ, oℓ, pℓ) ∈

Lg that witnessed the transition, observing that p0 = p and pℓ = p′. Now, let wi =
oℓ(· · · oi+1(w

′)) for all 0 ≤ i ≤ ℓ. Note, w = w0 and w′ = wℓ.

Take t′ = qp′
b

−−−→
Qcol

(Q1, . . . , Qn) to be the first transition on the accepting run of 〈p′, w′〉.

Beginning with tℓ = t′, we are going to show that there is a run of 〈pi, wi〉 beginning with ti
and thereafter only using transitions appearing in A. Since, by the definition of Π, we add
t0 = t to A, we will obtain an accepting run of A for 〈p0, w0〉 = 〈p, w〉 as required. We will
induct from ℓ down to 0.

The base case i = ℓ is trivial, since tℓ = t′ and we already have an accepting run of
A over 〈pℓ, wℓ〉 beginning with tℓ. Now, assume the case for 〈pi, wi〉 and ti. We show the
case for i − 1. Take (pi−1, ai, oi, pi), we do a case split on oi. A reader familiar with the
saturation method for CPDS will observe that the arguments below are very similar to the
arguments for ordinary CPDS rules.

1. When oi = copyk, let wi−1 = uk−1 :k · · · :n un. We know

wi = uk−1 :k uk−1 :k uk :(k+1) · · · :n un .

Let ti = qpi

a
−−−→
Qcol

(Q1, . . . , Qk, . . . Qn) and Qk
a

−−−→
Q′

col

(Q′
1, . . . , Q

′
k) be the initial tran-

sitions used on the run of wi (where the transition from Qk reads the second copy of
uk−1).

From the construction of T A
t,t′ we have have a transition ti−1

(pi−1,ai,oi,pi)
−−−−−−−−−→ ti where

ti−1 = qpi−1

a
−−−−−−−→
Qcol∪Q′

col

(

Q1 ∪Q′
1, . . . , Qk−1 ∪Q′

k−1, Q
′
k, Qk+1, . . . , Qn

)

.

Since we know uk :(k+1) · · · :n un is accepted from Q′
k via Qk+1, . . . , Qn, and we know

that uk−1 is accepted from Q1, . . . , Qk−1 and Q′
1, . . . , Q

′
k−1 via a-transitions labelling

annotations with Qcol and Q′
col respectively, we obtain an accepting run of wi−1.

18

2. When oi = pushk
c , let wi−1 = uk−1 :k uk :k+1 · · · :n un. We know wi = pushk

c (wi−1) is

cuk :1 uk−1 :k · · · :n un .

Let ti = qpi

c
−−−→
Qcol

(Q1, . . . , Qn) and Q1
a

−−−→
Q′

col

Q′
1 be the first transitions used

on the accepting run of wi. The construction of T A
t,t′ means we have a transition

ti−1
(pi−1,ai,oi,pi)
−−−−−−−−−→ ti where ti−1 = qpi−1

a
−−−→
Q′

col

(Q′
1, Q2, . . . , Qk ∪Qcol, . . . , Qn). Thus

we can construct an accepting run of wi−1 (which is wi without the first c on top of the
top order-1 stack). A run from Qk ∪Qcol exists since uk is also the stack annotating
c.

3. When oi = rewc let qpi

c
−−−→
Qcol

(Q1, . . . , Qn) be the first transition on the accepting run

of wi = cu :1 v for some v and u. From the construction of T A
t,t′ we know we have a

transition ti−1
(pi−1,ai,oi,pi)
−−−−−−−−−→ ti where ti−1 = qpi−1

a
−−−→
Qcol

(Q1, . . . , Qn), from which we

get an accepting run of wi−1 = au :1 v as required.

4. When oi = noop let qpi

a
−−−→
Qcol

(Q1, . . . , Qn) be the first transition on the accepting run

of wi = au :1 v for some v and u. From the construction of T A
t,t′ we know we have a

transition ti−1
(pi−1,ai,oi,pi)
−−−−−−−−−→ ti where ti−1 = qpi−1

a
−−−→
Qcol

(Q1, . . . , Qn), from which we

get an accepting run of wi−1 = au :1 v as required.

Hence, for every 〈p, w〉 ∈ Pre∗C(A0) we have w ∈ Lqp(A). �

C.2 Soundness of Saturation for ECPDS

As in the previous section, the soundness argument repeats a large part of the proof given in
ICALP 2012. We first recall the machinery used for soundness, before giving the soundness
proof.

First, assume all stack automata are such that their initial states are not final. This is
assumed for the automaton A0 in and preserved by the saturation function Γ.

We assign a “meaning” to each state of the automaton. For this, we define what it means
for an order-k stack w to satisfy a state q ∈ Qk, which is denoted w |= q.

Definition C.1 (w |= q) For any Q ⊆ Qk and any order-k stack w, we write w |= Q if
w |= q for all q ∈ Q, and we define w |= q by a case distinction on q.

1. q is an initial state in Qn. Then for any order-n stack w, we say that w |= q if
〈q, w〉 ∈ Pre∗C(A0).

2. q is an initial state in Qk, labeling a transition qk+1
q
−→ Qk+1 ∈ ∆k+1. Then for any

order-k stack w, we say that w |= q if for all order-(k + 1) stacks s.t. v |= Qk+1, then
w :(k+1) v |= qk+1.

3. q is a non-initial state in Qk. Then for any order-k stack w, we say that w |= q if A0

accepts w from q.

19

By unfolding the definition, we have that an order-k stack wk satisfies an initial state

qk ∈ Qk with q
qk−→ (Qk+1, . . . , Qn) if for any order-(k+1) stack wk+1 |= Qk+1, . . . , and any

order-n stack wn |= Qn, we have wk :(k+1) · · · :n wn |= q.

Definition C.2 (Soundness of transitions) A transition q
a

−−−→
Qcol

(Q1, . . . , Qk) is sound

if for any order-1 stack w1 |= Q1, . . . , and any order-k stack wk |= Qk and any stack
u |= Qcol, we have au :1 w1 :2 · · · :k wk |= q.

The proof of the following lemma can be found in ICALP 2012 [8].

Lemma C.2 ([8]) If qp
a

−−−→
Qcol

(Q1, . . . , Qn) is sound, then any transition qk
a

−−−→
Qcol

(Q1, . . . , Qk)

contained within the transition from qp is sound.

Definition C.3 (Soundness of stack automata) A stack automaton A is sound if the
following holds.

• A is obtained from A0 by adding new initial states of order < n and transitions starting
in an initial state.

• In A, any transition q
a

−−−→
Qcol

(Q1, . . . , Qk) for k ≤ n is sound.

Unsurprisingly, if some order-n stack w is accepted by a sound stack automaton A from
a state qp then 〈p, w〉 belongs to Pre∗C(A0). More generally, we have the following lemma
whose proof can be found in ICALP 2012.

Lemma C.3 ([8]) Let A be a sound stack automaton A and let w be an order-k stack. If
A accepts w from a state q ∈ Qk then w |= q. In particular, if A accepts an order-n stack w

from a state qp ∈ Qn then 〈p, w〉 belongs to Pre∗C(A0).

We also recall that the initial automaton A0 is sound.

Lemma C.4 (Soundness of A0 [8]) The automaton A0 is sound.

We are now ready to prove that the soundness of saturation for extended CPDS.

Lemma C.5 (Soundness of Π) The automaton A constructed by saturation with Π and
C from A0 is sound.

Proof. The proof is by induction on the number of iterations of Π. The base case is the
automaton A0 and the result was established in Lemma C.4. As in the completeness case,
the argument for the ordinary CPDS rules is identical to ICALP 2012 and not repeated here
(although the arguments appear in the proof of Lemma G.3).

We argue the case for those transitions added because of extended rules (p, a,Lg, p
′).

Hence, we consider the inductive step for transitions introduced by extended rules of
the form (p, c,Lg, p

′). Take the t, t′ and (p0, a1, o1, p1) (p1, a2, o2, p2) . . . (pℓ−1, aℓ, oℓ, pℓ) ∈

Lg ∩ L
(

T Ai

t,t′

)

with t′ being a transition of Ai that led to the introduction of t. Note p = p0

and p′ = pℓ.
Let t0, . . . , tℓ be the sequence of states on the accepting run of T Ai

t,t′ . In particular t0 = t

and tℓ = t′. We will prove by induction from i = ℓ to i = 0 that for each ti, letting

ti = qpi

a
−−−→
Qcol

(Q1, . . . , Qn) ,

20

and for all u |= Qcol, w1 |= Q1, . . . , wn |= Qn that for wi = au :1 w1 :2 · · · :n wn we
have oℓ

(

· · · oi+1

(

wi
))

|= qp′ . Thus, at t0 = t , we have oℓ
(

· · · o1
(

w0
))

|= qp′ and thus

〈p′, oℓ
(

· · · o1
(

w0
))

〉 ∈ Pre∗C(A0). Since the above sequence

(p0, a1, o1, p1) (p1, a2, o2, p2) . . . (pℓ−1, aℓ, oℓ, pℓ)

is in Lg, we have 〈p0, w0〉 ∈ Pre∗C(A0) and thus w0 |= qp, giving soundness of the new
transition t0.

The base case is tℓ = t′. Since t′ appears in Ai, we know it is sound. That gives us that
wℓ |= qp′ as required.

Now assume that ti satisfies the hypothesis. We prove that ti−1 does also. Take the

transition ti−1
(pi−1,ai,oi,pi)
−−−−−−−−−→ ti. We perform a case split on oi. Readers familiar with

ICALP 2012 will notice that the arguments here very much follow the soundness proof for
ordinary rules.

1. Assume that oi = copyk, that we had

ti = qpi

a
−−−→
Qcol

(Q1, . . . , Qn) and Qk
a

−−−→
Q′

col

(Q′
1, . . . , Q

′
k)

where the latter set of transition are in Ai and therefore sound, and that

ti−1 = qpi−1

a
−−−−−−−→
Qcol∪Q′

col

(

Q1 ∪Q′
1, . . . , Qk−1 ∪Q′

k−1, Q
′
k, Qk+1, . . . , Qn

)

.

To establish the property for this latter transition, we have to prove that for any
w1 |= Q1 ∪ Q′

1, . . ., any wk−1 |= Qk−1 ∪ Q′
k−1, any wk |= Q′

k, any wk+1 |= Qk+1, . . .,
any wn |= Qn and any u |= Qcol ∪ Q′

col, we have for wi−1 = au :1 w1 :2 · · · :n wn that
oℓ
(

· · · oi
(

wi−1
))

|= qp′ .

Let v = topk
(

wi−1
)

= au :1 w1 :2 · · · :(k−1) wk−1.

From the soundness of Qk
a

−−−→
Q′

col

(Q′
1, . . . , Q

′
k) and as u |= Q′

col, w1 |= Q′
1, . . . , wk |= Q′

k,

we have v :k wk |= Qk.

Then, from w1 |= Q1, . . . , wk−1 |= Qk−1, and v :k wk |= Qk, and wk+1 |= Qk+1, . . . , wn |=

Qn and u |= Qcol and the induction hypothesis for ti = qpi

a
−−−→
Qcol

(Q1, . . . , Qn) we get

oℓ(· · · oi+1(copyk(w))) = oℓ
(

· · · oi+1

(

v :k v :k wk :(k+1) · · · :n wn

))

|= qp′

as required.

2. Assume that oi = pushk
b , that we have

ti = qpi

b
−−−→
Qcol

(Q1, . . . , Qn) and Q1
a

−−−→
Q′

col

(Q′
1)

where the latter set of transitions is sound, and that we have

ti−1 = qpi−1

a
−−−→
Q′

col

(Q′
1, Q2, . . . , Qk ∪Qcol, . . . , Qn) .

To prove the induction hypothesis for the latter transition, we have to prove that
for any w1 |= Q′

1, any w2 |= Q2, . . ., any wk−1 |= Qk−1, any wk |= Qk ∪ Qcol, any

21

wk+1 |= Qk+1, . . ., any wn |= Qn and any u |= Q′
col, that we have for wi−1 = au :1

w1 :2 · · · :n wn that oℓ
(

· · · oi
(

wi−1
))

|= qp′ .

From the soundness of Q1
a

−−−→
Q′

col

(Q′
1) and as u |= Q′

col and w1 |= Q′
1 we have au :1

w1 |= Q1.

Then, from au :1 w1 |= Q1, w2 |= Q2, . . . , wn |= Qn, and topk+1(popk(w)) = wk |=

Qcol, and induction for ti = qpi

b
−−−→
Qcol

(Q1, . . . , Qn), we get

oℓ
(

· · · oi+1

(

pushk
b

(

wi−1
)))

= oℓ(· · · oi+1(b
wk :1 au :1 w1 :2 · · · :n wn)) |= qp′

as required.

3. Assume that o = rewb, that we have ti = qpi

b
−−−→
Qcol

(Q1, . . . , Qn) and that

ti−1 = qp
a

−−−→
Qcol

(Q1, . . . , Qn) .

To prove the hypothesis for this later transition, we have to prove that for any
w1 |= Q1, . . . , for any wn |= Qn and any u |= Qcol, we have that for wi−1 = au :1
w1 :2 · · · :n wn we have oℓ

(

· · · oi
(

wi−1
))

|= qp′ .

From w1 |= Q1, . . . , wn |= Qn, and u |= Qcol, and the hypothesis for ti = qpi

b
−−−→
Qcol

(Q1, . . . , Qn), we get

oℓ
(

· · · oi+1

(

rewb

(

wi−1
)))

= oℓ(· · · oi+1(b
u :1 w1 :2 · · · :n wn)) |= qp′

as required.

4. Assume that o = noop, that we have ti = qpi

b
−−−→
Qcol

(Q1, . . . , Qn) and that

ti−1 = qp
a

−−−→
Qcol

(Q1, . . . , Qn) .

To prove the hypothesis for this later transition, we have to prove that for any
w1 |= Q1, . . . , for any wn |= Qn and any u |= Qcol, we have that for wi−1 = au :1
w1 :2 · · · :n wn we have oℓ

(

· · · oi
(

wi−1
))

|= qp′ .

From w1 |= Q1, . . . , wn |= Qn, and u |= Qcol, and the hypothesis for ti = qpi

a
−−−→
Qcol

(Q1, . . . , Qn), we get

oℓ
(

· · · oi+1

(

rewa

(

wi−1
)))

= oℓ(· · · oi+1(a
u :1 w1 :2 · · · :n wn)) |= qp′

as required.

This completes the proof. �

C.3 Complexity of Saturation for ECPDS

We argue that saturation for ECPDS maintains the same complexity as saturation for CPDS.

22

Proposition C.1 The saturation construction for an order-n CPDS C and an order-n stack
automaton A0 runs in n-EXPTIME.

Proof. The number of states of A is bounded by 2 ↑(n−1) (ℓ) where ℓ is the size of C and A0:
each state in Qk was either in A0 or comes from a transition in ∆k+1. Since the automata are
alternating, there is an exponential blow up at each order except at order-n. Each iteration
of the algorithm adds at least one new transition. Only 2 ↑n (ℓ) transitions can be added.
�

The complexity can be reduced by a single exponential when runs of the stack automata
are “non-alternating at order-n”. In this case an exponential is avoided by only adding a
transition qp

a
−−−→
Qcol

(Q1, . . . , Qn) when Qn contains at most one element.

We refer the reader to ICALP 2012 for a full discussion of non-alternation since it relies on
the original notion of collapsible pushdown system that we have not defined here. ICALP
2012 describes the connection between our notion of CPDS (using annotations) and the
original notion, as well as defining non-alternation at order-n and arguing completeness for
the restricted saturation step. It is straightforward to extend this proof to include ECPDS
as in the proof of Lemma C.1 (Completeness of Π) above.

D Definitions and Proofs for Multi-Stack CPDS

D.1 Multi-Stack Collapsible Pushdown Automata

We formally define mutli-stack collapsible pushdown automata.

Definition D.1 (Multi-Stack Collapsible Pushdown Automata) An order-n multi-
stack collapsible pushdown automaton (n-OCPDA) over input alphabet Γ is a tuple C =
(P ,Σ,R1, . . . ,Rm) where P is a finite set of control states, Σ is a finite stack alphabet,
Γ is a finite set of output symbols, and for each 1 ≤ i ≤ m we have a set of rules Ri ⊆
P × Σ× Γ×On × P.

Configurations of an OCPDA are defined identically to configurations for OCPDS. We
have a transition

〈p, w1, . . . , wm〉
γ
−→ 〈p′, w1, . . . , wi−1, w

′
i, wi+1, . . . , wm〉

whenever r = (p, a, γ, o, p′) ∈ Ri with a = top1(w), w
′
i = o(wi).

D.2 Regular Sets of Configurations

We prove several properties about Definition 4.4 (Regular Set of Configurations).

Property D.1 Regular sets of configurations of a multi-stack CPDS

1. form an effective boolean algebra,

2. the emptiness problem is decidable in PSPACE,

3. the membership problem is decidable in linear time.

23

Proof. We first prove (1). We recall from [8] that stack automata form an effective boolean
algebra. Given two regular sets χ1 and χ2, we can form χ = χ1 ∪ χ2 as the simple union of
the two sets of tuples. We obtain the intersection of χ1 and χ2 by defining χ = χ1 ∩ χ2 via
a product construction. That is,

χ =

{

(p,A1 ∩ A′
1, . . . , Am ∩ A′

m)

∣

∣

∣

∣

(p,A1, . . . , Am) ∈ χ1 ∧
(p,A′

1, . . . , A
′
m) ∈ χ2

}

.

It remains to define the complement χ of a set χ. Let χ = χ1 ∪ · · · ∪ χℓ where each χi is a
singleton set of tuples. Observe that χ = χ1 ∩ · · · ∩ χℓ. Hence, we define for a singleton χi

its complement χi. Let A be a stack automaton accepting all stacks. Furthermore, let χi

contain only (p,A1, . . . , Aℓ). We define

χi = {(p′, A, . . . , A) | p 6= p′ ∈ P } ∪
{(

p,A, . . . , A,Aj , A, . . . , A
)

| 1 ≤ j ≤ m
}

.

That is, either the control state does not match, or at least one of the m stacks does not
match.

We now prove (2). We know from [8] that the emptiness problem for a stack automaton
is PSPACE. By checking all tuples to find some tuple (p,A1, . . . , Am) such that Ai is non-
empty for all i, we have a PSPACE algorithm for determining the emptiness of a regular set
χ.

Finally, we show (3), recalling from [8] that the membership problem for stack automata
is linear time. To check whether 〈p, w1, . . . , wm〉 is contained in χ we check each tuple
(p,A1, . . . , Am) ∈ χ to see if wi is contained in Ai for all i. This requires linear time. �

E Proofs for Ordered CPDS

E.1 Proofs for Simulation by CR

We prove Lemma 5.1 (CR simulates C) via Lemma E.1 and Lemma E.2 below.

Lemma E.1 Given an n-OCPDS C and control states pin, pout, we have

〈pin,⊥n, . . . ,⊥n, w〉 −→ · · · −→ 〈pout,⊥n, . . . ,⊥n〉 .

only if 〈pin, w〉 ∈ Pre∗CR(A), where A is the P-stack automaton accepting only the configu-
ration 〈pout,⊥n〉.

Proof. Take such a run

〈pin,⊥n, . . . ,⊥n, w〉 −→ · · · −→ 〈pout,⊥n, . . . ,⊥n〉

of C. Observe that the run can be partitioned into τ0σ1τ1 . . . σℓτℓ where during each τi, the
first (m−1) stacks are ⊥n, and, during each σi, there is at least one stack in the first (m−1)
stacks that is not ⊥n. Let p1i be the control state of the first configuration of τi, p

2
i be the

control state in the final configuration of τi, p
3
i be the control state at the beginning of each

σi, and p4i be the control state at the end of each σi. Note, p4ℓ = pout and p11 = pin. Next,
let ri be the rule fired between the final configuration of τi−1 and the first configuration of
σi (if it exists). Finally, let wi be the contents of stack m in the final configuration of each
τi. Note wℓ = w.

24

We proceed by backwards induction from i = ℓ down to i = 0. Trivially it is the case
that 〈p4ℓ , wℓ〉 ∈ Pre∗CR(A).

In the inductive step, first assume 〈p4i , wi〉 ∈ Pre∗CR(A). We have the final configuration
of τi is 〈p4i ,⊥n, . . . ,⊥n, wi〉. Let 〈p3i ,⊥n, . . . ,⊥n, w

′〉 be the first configuration of τi. Note,
since we assume all rules of the form (p1,⊥, o, p2) have o = pushn

a for some a, and during τi
the first (m−1) stacks are empty, we know that no rule from R1, . . . ,Rm−1 was used during
τi. Thus, τi is a run of CR using only rules from Rm. Hence, we have 〈p3i , w

′〉 ∈ Pre∗CR(A).
Now consider σi with 〈p3i ,⊥n, . . . ,⊥n, w

′〉 appended to the end. Suppose we have that
ri−1 =

(

p4i−1,⊥, pushn
b , p

1
i

)

∈ Rj . We thus have a run

〈p1i , w
′
1, . . . , w

′
m−1, wi−1〉

r1

−→ · · ·
rℓ−1

−−−→ 〈p2i , w
′′
1 , . . . , w

′′
m〉

rℓ

−→ 〈p3i ,⊥n, . . . ,⊥n, w
′〉

where w′
j = pushn

b (⊥n) and w′
j′ =⊥n for all j′ 6= j. Since it is not the case that the

first (m − 1) stacks are empty, we know that only generating rules from Rm can be used
during this run. Let top1(wi−1) = a. From this run we can immediately project a sequence
(

p0, a1, o1, p1
) (

p1, a2, o2, p2
)

. . .
(

pℓ
′−1, aℓ, oℓ

′

, pℓ
′
)

∈ Lb,j
p1
i ,a,p

3
i

(

CL
)

such that we have w′ =

oℓ
′(

· · · o1(wi−1)
)

, p0 = p1i and pℓ
′

= p3i . Since we have 〈p3i , w
′〉 ∈ Pre∗CR(A) and a rule

(

p4i−1, a,L
b,j
p1
i
,a,p3

i

(

CL
)

, p3i

)

in CR, we thus have 〈p4i−1, wi−1〉 ∈ Pre∗CR(A) as required.

Hence, when i = 0, we have 〈pin, w〉 ∈ Pre∗CR(A), completing the proof. �

Lemma E.2 Given an n-OCPDS C and control states pin, pout, we have

〈pin,⊥n, . . . ,⊥n, w〉 −→ · · · −→ 〈pout,⊥n, . . . ,⊥n〉 .

whenever 〈pin, w〉 ∈ Pre∗CR(A), where A is the P-stack automaton accepting only the config-
uration 〈pout,⊥n〉.

Proof. Since 〈pin, w〉 ∈ Pre∗CR(A) we have a run of CR of the form σ1 . . . σℓ where the rules
used to connect the last configuration of σi to σi+1 are of the form (p′i, a,Lg, pi+1) and no
other rules of this form are used otherwise. Thus, let p′i denote the control state at the end
of σi and pi denote the control state in the first configuration of σi. Similarly, let w′

i denote
the stack contents at the end of σi and wi the stack contents at the beginning.

We proceed by induction from i = ℓ down to i = 1. In the base case, we immediately
have a run from 〈pℓ,⊥n, . . . ,⊥n, wℓ〉 to 〈p′ℓ,⊥n, . . . ,⊥n〉. Now, assume the we have a run
from 〈p′i,⊥n, . . . ,⊥n, w

′
i〉 to the final configuration. Since we have a run to this configuration

from 〈pi, wi〉 to 〈p′i, w
′
i〉 in CR that uses only ordinary rules, we can execute the same run

from 〈pi,⊥n, . . . ,⊥n, wi〉 to reach 〈p′i,⊥n, . . . ,⊥n, w
′
i〉.

Now consider the rule
(

p′i−1, a,Lg, pi
)

that connects σi−1 and σi. We have Lg =

Lb,j
p1
i
,a,pi

(

CL
)

for some p1i , b and j, and there is a rule
(

p′i−1,⊥, pushn
b , p

1
i

)

∈ Rj of C. Fur-

thermore, there is a sequence
(

p0, a1, o1, p1
) (

p1, a2, o2, p2
)

. . .
(

pℓ
′−1, aℓ, oℓ

′

, pℓ
′
)

∈ Lg such

that wi = oℓ
′(

· · · o1
(

w′
i−1

))

, p0 = p1i , and pℓ
′

= pi.
From the definition of CL, this sequence immediately describes a run

〈p′i−1,⊥n, . . . ,⊥n, w
′
i−1〉 −→ 〈p1i ,⊥n, . . . , push

n
b (⊥n), . . . ,⊥n, w

′
i−1〉

−→ · · ·
−→ 〈pi,⊥n, . . . ,⊥n, wi〉

of C. Thus we have a run from 〈p′i−1,⊥n, . . . ,⊥n, w
′
i−1〉 to the final configuration, to complete

the inductive case.

25

Finally, when i = 1, we repeat the first half of the argument above to obtain a run from
〈p1,⊥n, . . . ,⊥n, w1〉, and since p1 = pin and w1 = w we have a run of C as required. �

E.2 Proofs for Language Emptiness for OCPDS

We prove Lemma 5.2 (Language Emptiness for OCPDS) below.
Proof. By standard product construction arguments, a run of C∅ can be projected into

runs of CL and T Ai

t,t′ and vice-versa. We need only note that in any control state (p, t1) of

C∅, the corresponding state in CL is always (p, top1(t1)). �

E.3 Global Reachability

We provide an inductive proof of global reachability for ordered CPDS.
Proof. Take Am = Pre∗CR(A) from Lemma 5.1 (CR simulates C). Furthermore, let A⊥

be the stack automaton accepting only ⊥n from its initial state. For each control state p, we
have that (p,A⊥, . . . , A⊥, Am) represents all configurations 〈p,⊥n, . . . ,⊥n, wm〉 for which
there is a run to 〈pout,⊥n, . . . ,⊥n〉 when Am is restricted to have initial state qp.

Hence, inductively assume for i+1 that we have a finite set of tuples χ such that for each
configuration 〈p,⊥n, . . . ,⊥n, wi+1, . . . , wm〉 for which there is a run to 〈pout,⊥n, . . . ,⊥n〉
there is a tuple (p,A⊥, . . . , A⊥, Ai+1, . . . , Am) such that wj is accepted by Aj for each j.

Now consider any configuration 〈p,⊥n, . . . ,⊥n, wi, . . . , wm〉 that can reach the final con-
figuration. We know the run goes via some 〈p′,⊥n, . . . ,⊥n, w

′
i+1, . . . , w

′
m〉 accepted by some

tuple (p′, A⊥, . . . , A⊥, Ai+1, . . . , Am) ∈ χ. Furthermore, we know from the proof of correct-
ness of the extended saturation algorithm, that there is a run of the i stack OCPDS C∅ from
〈(p, ti+1, . . . , tm),⊥n, . . . ,⊥n, wi〉 to 〈

(

p′, t′i+1, . . . , t
′
m

)

,⊥n, . . . ,⊥n〉 where

1. t′j is the initial transition of Aj accepting w′
j , and

2. the sequence of stack operations to the jth stack o1, . . . , oℓ connected to this run give
w′

j = oℓ(· · · o1(wj)), and

3. wj can be accepted by first taking transition tj and thereafter only transitions in Aj .

Thus, let Ai be Pre∗C∅
(A) where A accepts 〈

(

p′, t′i+1, . . . , t
′
m

)

,⊥n〉. Restrict Ai to have

initial state q(p,ti+1,...,tm) and let A
tj
j be the automaton Aj with the transition tj added

from a new state, which is designated as the initial state. Thus, for each configuration

〈p,⊥n, . . . ,⊥n, wi, . . . , wm〉, there is a tuple
(

p,A⊥, . . . , A⊥, Ai, A
ti+1

i+1 , . . . , A
tm
m

)

such that

wi is accepted by Ai and wj is accepted by A
tj
j for all j > i. This results in a finite set of

tuples χ′ satisfying the induction hypothesis.
Thus, after i = 1 we obtain a finite set of tuples χ of the form (p,A1, . . . , Am) representing

all configurations that can reach 〈pout,⊥n, . . . ,⊥n〉, as required. �

E.4 Complexity

Assume n > 1. Our control state reachability algorithm requires 2 ↑m(n−1) (ℓ) time, where
ℓ is polynomial in the size of the OCPDS. Beginning with stack m, the saturation algorithm
can add at most O(2 ↑n−1 (ℓ)) transitions over the same number of iterations. Each of these
iterations may require analysis of some C∅ which has O(2 ↑n−1 (ℓ)) control states and thus

26

the stack-automaton constructed by saturation over C∅ may have up to O
(

2 ↑2(n−1) (ℓ)
)

transitions. By continuing in this way, we have at most O
(

2 ↑(m−1)(n−1) (ℓ)
)

control states
when there is only one stack remaining, and thus the number of transitions, and the total
running time of the algorithm is O

(

2 ↑m(n−1) (ℓ)
)

. This also gives us at most O(2 ↑mn (ℓ))
tuples in the solution to the global reachability problem.

F Phase-Bounded CPDS

Phase-bounding [29] for multi-stack pushdown systems is a restriction where each compu-
tation can be split into a fixed number of phases. During each phase, characters can only
be removed from one stack, but push actions may occur on any stack.

Definition F.1 (Phase-Bounded CPDS) Given a fixed number ζ of phases, an order-n
phase-bounded CPDS (n-PBCPDS) is an n-MCPDS with the restriction that each run σ

can be partitioned into σ1 . . . σζ and for all i, if some transition in σi by r ∈ Rj on stack j

for some j is consuming, then all consuming transitions in σi are by some r′ ∈ Rj on stack
j.

We give a direct1 algorithm for deciding the reachability problem over phase-bounded
CPDSs. We remark that Seth [28] presented a saturation technique for order-1 phase-
bounded pushdown systems. Our algorithm was developed independently of Seth’s, but our
product construction can be compared with Seth’s automaton Ti.

Theorem F.1 (Decidability of the Reachability Problems) For n-PBCPDSs the con-
trol state reachability problem and the global control state reachability problem are decidable.

In Appendix F.3 we show that our control state reachability algorithm will require
O
(

2 ↑m(n−1) (ℓ)
)

time, where ℓ is polynomial in the size of the PBCPDS, and we have
at most O(2 ↑mn (ℓ)) tuples in the solution to the global reachability problem.

Control State Reachability A run of the PBCPDSwill be σ1 . . . σζ , assuming (w.l.o.g.)
that all phases are used. We can guess (or enumerate) the sequence p0p1 . . . pζ of control
states occurring at the boundaries of each σi. That is, σi ends with control state pi, pζ is the
target control state, and p0 is the initial control state. We also guess for each i, the stack ιi
that may perform consuming operations between pi−1 and pi. Our algorithm iterates from
i = ζ down to i = 0.

We begin with the stack automata A1
ζ , . . . , A

m
ζ which each accept 〈pζ , w〉 for all stacks

w. Note we can vary these automata to accept any regular set of stacks we wish.
Thus, A1

i , . . . , A
m
i will characterise a possible set of stack contents at the end of phase i.

We show below how to construct A1
i−1, . . . , A

m
i−1 given A1

i , . . . , A
m
i . This is repeated until

we have A1
0, . . . , A

m
0 . We then check, for each j, that 〈p0,⊥n〉 is accepted by A

j
0. This is the

case iff we have a positive instance of the reachability problem.
We construct A1

i−1, . . . , A
m
i−1 from A1

i , . . . , A
m
i . For each j 6= ιi we build A

j
i−1 by

adding to A
j
i a brand new set of initial states qp and a guessed transition tj = qpi−1

a
−−−→
Qcol

(Q1, . . . , Qn) with Qcol, Q1, . . . , Qn being states of Aj
i and qpi−1

being one of the new states.
The idea is tj will be the initial transition accepting 〈pi−1, w〉 where w is stack j at the

1For PDS, phase-bounded reachability can be reduced to ordered PDS. We do not know if this holds for

CPDS, and prefer instead to give a direct algorithm.

27

beginning of phase i. By guessing an accompanying t′j of A
j
i we can build T

Aj
i

tj ,t′j
(by instanti-

ating Definition 3.2 (Transition Automata) with A = A
j
i , t = tj and t′ = t′j) for which there

will be an accepting run if the updates to stack j during phase i are concordant with the
introduction of transition tj.

Thus, for each j 6= ιi we have A
j
i−1 and T

Aj
i

tj ,t′j
. We now consider the ιith stack. We build a

CPDS Ci that accurately models stack ιi and tracks each T
Aj

i

tj ,t′j
in its control state. We ensure

that Ci has a run from 〈pi−1, w〉 to 〈pi, w′〉 for some w and w′ iff there is a corresponding
run over the ιith stack of C that updates the remaining stacks j in concordance with each
guessed tj . Thus, we define A

ιi
i−1 to be the automaton recognising Pre∗Ci

(Aιi
i) constructed by

saturation. The construction of Ci (given below) follows the standard product construction
of a CPDS with several finite-state automata.

Note Ci is looking for a run from pi−1 to pi concordant with runs of tj to t′j for each j. To
let Ci start in pi−1 and finish in pi, we have an initial transition from pi−1 to (pi−1, t1, . . . , tm).
Thereafter, the components are updated as in a standard product construction. When
(pi, t

′
1, . . . , t

′
m) is reached, there is a final transition to pi. To ease notation, we use dummy

variables tιi = t′ιi = tιi = tιi1 for the transition automaton component of the ιith stack (for
which we do not have a t and t′ to track).

In the definition below, the first line of the definition of Ri gives the initial and final
transitions, the second line models rules operating on stack ιi, and the final line models
generating operations occurring on the jth stack for j 6= ιi.

Definition F.2 (Ci) Given for all 1 ≤ j 6= ιi ≤ m a transition automaton Tj = T
Aj

i

tj ,t′j
and

a phase-bounded CPDS C = (P ,Σ,R1, . . . ,Rm) and control states pi−1, pi, we define the
CPDS Ci =

(

{pi−1, pi} ∪ P i,Ri,Σ
)

where, letting tιi = t′ιi = tιi = tιi1 be dummy transitions
for technical convenience, and letting tj for all j 6= ιi range over all states of Tj, we have

• P i contains all states
(

p, t1, . . . , tm
)

where p ∈ P, and

• the rules Ri of Ci are

{(pi−1, a, noop, (pi−1, t1, . . . , tm)) , ((pi, t
′
1, . . . , t

′
m), a, noop, pi) | a ∈ Σ} ∪

{

((

p, t1, . . . , tm
)

, a, o,
(

p′, t11, . . . , t
m
1

))

∣

∣

∣

∣

∣

(p, a, o, p′) ∈ Rιi

∀j′ 6= j . tj
′ (p, ,noop,p′)
−−−−−−−−→ t

j′

1

}

∪

(p1, a, o, p2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

p1 =
(

p, t1, . . . , tj , . . . tm
)

∧ p2 =
(

p′, t11, . . . , t
j
1, . . . t

m
1

)

∧ (p, b, o, p′) ∈ Rj ∧ tj
(p,b,o,p′)
−−−−−−→ t

j
1 ∧

∀j′ 6= j . tj
′ (p, ,noop,p′)
−−−−−−−−→ t

j′

1

.

We state the correctness of our reduction, deferring the proof to Appendix F.2.

Lemma F.1 (Simulation of a PBCPDS) Given a phase-bounded CPDS C control states
p0 and pζ , there is a run of C from 〈p0, w1, . . . , wm〉 to 〈pζ , w′

1, . . . , w
′
m〉 iff for each 1 ≤ j ≤

m, we have that 〈p0, wj〉 is accepted by A
j
0.

F.1 Global Reachability

A1
0, . . . , A

m
0 were obtained by a finite sequence of non-deterministic choices ranging over a

finite number of values. Let χ be the therefore finite set of tuples (p0, A1, . . . , Am) for each

28

sequence as above, where Ai is A
i
0 with initial state qp0

. From Lemma F.1, we have a regular
solution to the global control state reachability problem as required.

F.2 Proofs for Control-State Reachability

In this section we prove Lemma F.1 (Simulation of a PBCPDS) via Lemma F.2 and Lemma F.3
below.

Lemma F.2 Given a phase-bounded CPDS C control states p0 and pζ , there is a run of C
from 〈p0, w1, . . . , wm〉 to 〈pζ , w′

1, . . . , w
′
m〉 only if for each 1 ≤ j ≤ m, we have that 〈p0, wj〉

is accepted by A
j
0.

Proof. Take a run of C from 〈p0, w1
0 , . . . , w

m
0 〉 to 〈pζ , w1

ζ , . . . , w
m
ζ 〉 and split it into phases

σ1 . . . σζ . Let pi be the control state at the end of each σi, and p0 be the control state at

the beginning of σ1. Similarly, let wj
i be the stack contents of stack j at the end of σi. We

include, for convenience, the transition from the end of σi to the beginning of σi+1 in σi+1.
Thus, the last configuration of σi is also the first configuration of σi+1.

We proceed by induction from i = ζ down to i = 1. In the base case we know by
definition that 〈pζ , w

j
ζ〉 is accepted by A

j
ζ .

Hence, assume 〈pi+1, w
j
i+1〉 is accepted by A

j
i+1. We show the case for i. First consider

ιi. Take the run

〈pi, w
1
i , . . . , w

m
i 〉 −→ · · · −→ 〈pi+1, w

1
i+1, . . . , w

m
i+1〉 .

We want to find a run

〈pi, w
ιi
i 〉 −→ 〈(pi, t1, . . . , tm), wιi

i 〉 −→ · · · −→ 〈(pi+1, t
′
1, . . . , t

′
m), wιi

i+1〉 −→ 〈p1, w
ιi
i+1〉

of Ci, giving us that 〈pi, w
ιi
i 〉 is accepted by Aιi

i . This is almost by definition, except we need
to prove for each j 6= ιi that there is a sequence t0, . . . , tℓ that is also the projection of the
run of Ci to the (j+1)th component (that is, the state of the jth transition automaton). In
particular, we require t0 = tj and tℓ = t′j . The proof proceeds in exactly the same manner as
the case of (p, a,Lg, p

′) in the proof of Lemma C.1 (Completeness of Π) for ECPDS. Namely,
from the sequence of operations o0, . . . , oℓ taken from the run t0, . . . , tℓ, we obtain a sequence
of stacks such that at each z there is an accepting run of the zth stack constructed from tz

and thereafter only transitions of Aj
i+1. Thus, since tj is added to A

j
i+1 to obtain A

j
i , we

additionally get an accepting run of Aj
i over 〈pi, w

j
i 〉. We do not repeat the arguments here.

Finally, then, when i reaches 1, we repeat the arguments above to conclude 〈p0, w
j
0〉 is

accepted by A
j
0 for each j, giving the required lemma. �

Lemma F.3 Given a phase-bounded CPDS C control states p0 and pζ , there is a run of
C from 〈p0, w1, . . . , wm〉 to 〈pζ , w′

1, . . . , w
′
m〉 whenever for each 1 ≤ j ≤ m, we have that

〈p0, wj〉 is accepted by A
j
0.

Proof. Assume for each 1 ≤ j ≤ m, we have that 〈p0, wj〉 is accepted by A
j
0.

Thus, we can inductively assume for each j we have 〈pi, w
j
i 〉 accepted by A

j
i and a run

of C of the form
〈p0, w1, . . . , wm〉 −→ · · · −→ 〈pi, w

1
i , . . . , w

m
i 〉 .

Taking w
j
0 = wj trivially gives us the base case. We prove the case for (i + 1).

29

From the induction hypothesis, we have in particular that 〈pi, w
ιi
i 〉 is accepted by Aιi

i

and hence we have a run of Ci+1 of the form

〈pi, w
ιi
i 〉 −→ 〈(pi, t1, . . . , tm), wιi

i 〉 −→ · · · −→ 〈(pi+1, t
′
1, . . . , t

′
m), wιi

i+1〉 −→ 〈p1, w
ιi
i+1〉

such that 〈p1, w
ιi
i+1〉 is accepted by Aιi

i+1. From this run, due to the definition of Ci we can
build a run

〈pi, w
1
i , . . . , w

m
i 〉 −→ · · · −→ 〈pi+1, w

1
i+1, . . . , w

m
i+1〉

of C where for all j 6= ιi, we define w
j
i+1 = oℓ

(

· · · o1
(

w
j
i

))

where

(

p0, a1, o1, p1
) (

p1, a2, o2, p2
)

. . .
(

pℓ−1, aℓ, oℓ, pℓ
)

is the sequence of labels on the run of T
Aj

i

tj ,t′j
. We have to prove for all j 6= ιi that 〈pi+1, w

j
i+1〉

is accepted by A
j
i+1. For the proof observe that the introduction of tj to A

j
i+1 to form A

j
i

followed the saturation technique for extended CPDS for a rule (pi, a,Lg, pi+1) where Lg

is the language of possible sequences of the form above. Thus, from the soundness of the
saturation method for extended CPDS, we have that there must be the required run of Aj

i+1

over 〈pi+1, w
j
i+1〉 beginning with transition t′j .

Alternatively, we can argue similarly to the proof of Lemma C.1 (Completeness of Π),
but in the reverse direction. That is, we start with the observation that the accepting run
of 〈pi, w

j
i 〉 uses tj = t0 for the first transition, and thereafter only transitions from A

j
i+1.

We prove this by induction for the stack obtained by applying o1 and t1, then for the stack
obtained by applying o2 and t2. This continues until we reach w

j
i+1, and since tℓ = t′j with

t′j being a transition of Aj
i+1, we get the accepting run we need. We remark that this is how

the soundness proof for the standard saturation algorithm would proceed if we were able
to assume that each new transition is only used at the head of any new runs the transition
introduces (but in general this is not the case because new transitions may introduce loops).
We leave the construction of this proof as an exercise for the interested reader, for which
they may follow the proof of the extended rule case for Lemma C.5 (Soundness of Π).

Thus, finally, by induction, we obtain a run to 〈pζ , w1, . . . , wm〉 such that 〈pζ , wj〉 is

accepted by A
j
ζ . �

F.3 Complexity

Assume n > 1. Our control state reachability algorithm requires 2 ↑ζ(n−1) (ℓ) time, where ℓ
is polynomial in the size of the PBCPDS. Beginning with phase ζ, the saturation algorithm
can add at most O(2 ↑n−1 (ℓ)) transitions over the same number of iterations to A

ιζ
ζ−1. Thus

we assume each A
j
i to have at most O

(

2 ↑(ζ−i)(n−1) (ℓ)
)

transitions. The largest automaton

A
j
i−1 construction is when j = ιi. For this we build a CPDS with O

(

2 ↑(ζ−i)(n−1) (ℓ)
)

control states and thus Aιi
i−1 has at most O

(

2 ↑(ζ−i+1)(n−1) (ℓ)
)

transitions. Hence, when

i = 0, we have at most O
(

2 ↑ζ(n−1) (ℓ)
)

transitions, which also gives the run time of the
algorithm. This also implies we have at most O(2 ↑ζn (ℓ)) tuples in the solution to the global
reachability problem.

30

G Proofs for Scope-Bounded CPDS

G.1 Operations on Layer Automata

Shift of a Layer Automaton The idea behind Shift is that all transitions in layer
i are moved up to layer (i + 1) and transitions involving states in layer ζ are removed.
Intuitively this is because the stack elements in layer ζ will “go out of scope” when the
context switch corresponding to the Shift occurs. In more detail, states of layer i are
renamed to become states of layer (i+1), with all states of layer ζ being deleted. Similarly,
all transitions that involved a layer ζ state are also removed.

We define Shift(A) of an order-n ζ-layer stack automaton

A = (Qn, . . . ,Q1,Σ,∆n, . . . ,∆1, ∅, . . . , ∅)

to be
A′ = (Q′

n, . . . ,Q
′
1,Σ,∆

′
n, . . . ,∆

′
1, ∅, . . . , ∅)

where defining

Shift(q) =

q if q ∈ Qk, n > k and q is layer i < ζ

qi+1
p if q = qip ∈ Qn and i < ζ

undefined otherwise

and extending Shift point-wise to sets of states, we have

∆′
n =

{

Shift(q)
q′

−→ Shift(Q)

∣

∣

∣

∣

q
q′

−→ Q ∈ ∆n and q is layer i < ζ

}

and for all n > k > 1

∆′
k =

{

q
q′

−→ Shift(Q)

∣

∣

∣

∣

q
q′

−→ Q ∈ ∆k and q is layer i < ζ

}

and

∆′
1 =

{

q
q′

−−−−−−−→
Shift(Qcol)

Shift(Q)

∣

∣

∣

∣

q
q′

−−−→
Qcol

Q ∈ ∆1 and q is layer i < ζ

}

.

In all cases above, transitions are only created if the applications of Shift result in a defined
state or set of states. This operation will erase all layer ζ states, and all transitions that go
to a layer ζ state. All other states will be shifted up one layer. E.g. layer 1 states become
layer 2.

Environment Moves Given an automaton A, define EnvMove(A, q, q′) of an order-n

ζ-layer stack automaton to be A′ obtained from A by adding for each transition q′
a

−−−→
Qcol

(Q1, . . . , Qn) the transition q
a

−−−→
Qcol

(Q1, . . . , Qn). This operation can be thought of as a

saturation rule that captures the effect of an external context, and could be considered as
rules (p, a, noop, p′) for each a ∈ Σ.

Saturating a Layer Automaton Given a layer automatonA, we define Saturatej(A)
to be the result of applying the saturation procedure with the CPDS (P ,Σ,Rj) and the stack
automaton A with initial state-set

{

q1p | p ∈ P
}

.

31

G.2 Size of the Reachability Graph

We define N .

Lemma G.1 The maximum number of states in any layer automaton constructable by re-
peated applications of Predecessorj is 2 ↑n−2 (f(ζ, |P|)) states for some computable poly-
nomial f .

Proof. A ζ-layer automaton may have in qn only the states qip for 1 ≤ i ≤ ζ and p ∈ P , and
thus at most ζ |P| = d states. There may be at most d transitions from any state at order-
n using the restricted saturation algorithm where Qn has cardinality 1 for any transition
added, and thus at most d · d states at order-(n− 1) (noting that the shift operation deletes
all states that would become non-initial if they were to remain).

Next, there may be at most 2d·d transitions from any state at order-(n− 1), and thus at
most d · d · 2d·d states at order-(n− 2) (noting that the shift operation deletes all states that
would become non-initial if they were to remain).

Thus, we can repeat this argument down to order-1 and obtain 2 ↑n−2 (f(ζ, |P|)) states
for some computable polynomial f . �

Take the automaton accepting any 〈pi, w〉 from q1pi
. This automaton has order-n states

of the form qip, and at most a single transition from each of the layer 1 states to ∅. Each
of these transitions is labelled by a state with at most one transition to ∅, and so on until
order-1.

Definition G.1 (N) Following Lemma G.1, we take N = 2 ↑n−2 (f(ζ, d)) for some com-
putable polynomial f .

G.3 Proofs for Control State Reachability

In this section, we prove Lemma 6.1 (Simulation by Gpout

C). The proof is split in to two
directions, given in Lemma G.2 and Lemma G.3 below.

Lemma G.2 Given a scope-bounded CPDS C and control states pin and pout, there is a run
of C from 〈pin, w1, . . . , wm〉 to 〈pout, w

′
1, . . . , w

′
m〉 for some w′

1, . . . , w
′
m only if there is a path

in Gpout

C from an initial vertex to a vertex

(p0, A1, p1, . . . , pm−1, Am, pm)

where for all i we have 〈pi−1, wi〉 accepted from the 1st layer of Ai and p0 = pin.

Proof. Take a run of the scope-bounded CPDS from 〈pin, w1, . . . , wm〉 to 〈pout, w′
1, . . . , w

′
m〉.

We proceed by induction over the number of rounds in the run. In the following we will
override the wi and w′

i in the statement of the lemma to ease notation.
In the base case, take a single round

〈p0, w1, . . . , wm〉 −→∗ 〈p1, w
′
1, w2, . . . , wm〉 −→∗ · · · −→∗ 〈pm, w′

1, . . . , w
′
m〉

where pi is the control state after the run on stack i, and w′
i is the ith stack at the end of

this run. Take an initial vertex

(p0, A1, p1, . . . , pm−1, Am, pm) .

32

We know Ai is constructed by saturation from an automaton accepting 〈pi, w′
i〉 and thus

〈pi−1, wi〉 is accepted by Ai from the 1st layer. This vertex then gives us a path in the
reachability graph to a vertex where for all i we have 〈pi−1, wi〉 accepted from the 1st layer
of Ai.

Now consider the inductive step where we have a round

〈p0, w1, . . . , wm〉 −→∗ 〈p1, w
′
1, w2, . . . , wm〉 −→∗ · · · −→∗ 〈pm, w′

1, . . . , w
′
m〉

and a run from 〈pm, w′
1, . . . , w

′
m〉 to the destination control state. By induction we have a

vertex in the reachability graph
(

p′0, A
′
1, p

′
1, . . . , p

′
m−1, A

′
m, p′m

)

with pm = p′0 that is reachable from an initial vertex and has for all i that 〈p′i−1, w
′
i〉 is

accepted from the 1st layer of A′
i.

By definition of the reachability graph, there exists an edge to this vertex from a vertex

(p0, A1, p1, . . . , pm−1, Am, pm) .

such that Ai = Predecessori

(

A′
i, qpi

, qp′
i−1

)

.

Since the run of C is scope-bounded, we know there is an accepting run of w′
i from q1p′

i−1

in A′
i that does not use any layer ζ states (by the further condition described below and

since layer ζ corresponds to the round out of scope for elements of w′
i). Therefrom, we have

an accepting run of w′
i from q2p′

i−1

in Shift(A′
i). Thus, there is an accepting run of w′

i from

p1i after the application of EnvMove. Since there is a run over stack i from 〈pi−1, wi〉 to
〈pi, w′

i〉 we therefore have an accepting run of wi from q1pi−1
in Ai.

In addition to the above, we need a further property that reflects the scope boundedness.
In particular, if no character or stack with pop- or collapse-round 0 is removed during the

zth round, then there is a run over wi that uses only transitions q
q′

−→ Q to read stacks u such
that no layer z state is in Q and, similarly, for characters a, the run uses only transitions
q

a
−−−→
Qcol

Q to read the instance of a where no layer z state appears in Q and no layer z state

appears in Qcol.
Note that the base case is for the automata accepting any stack, only containing tran-

sitions to the empty set, for which the property is trivial. In the inductive step, we prove
this property by further induction over the length of the run from 〈pi, wi〉 to 〈pi+1, w

′
i〉. In

the base case we have a run of length 0 and the property holds since, by induction, we can
assume that A′

i has the property (with the round numbers shifted) and it is maintained by
the Shift and EnvMove. Hence, assume we have a run beginning 〈p, w〉 −→ 〈p′, w′〉 and
the required run over w′. We do a case split on the stack operation o associated with the
transition.

1. If o = popk then we have w = u :k v and w′ = v. If z = 1 and u has pop-round 0
(i.e. appears in wi), then this case cannot occur because the transition we’re currently
analysing appears in round 1 and by assumption u is not removed in round 1. Hence,

assume z > 1. We had a run over w′ from q1p′

qk−→ (Qk+1, . . . , Qn) in Ai respecting the
property, and by saturation we have a run over w beginning with

q1p
a
−→
∅

(∅, . . . , ∅, {qk} , Qk+1, . . . , Qn)

that also respects the property, since qk is layer 1 and z 6= 1.

33

2. When o = copyk we havew = u :k v and w′ = u :k u :k v. Let q1p′

a
−−−→
Qcol

(Q1, . . . , Qk, . . . Qn)

and Qk
a

−−−→
Q′

col

(Q′
1, . . . , Q

′
k) be the initial transitions used on the run of w′. We know

neither these transitions, nor the runs from these transitions, pass a layer z state on
any component with pop- or collapse-round 0. Furthermore, we know the first u has
pop-round 1. The second u may have pop-round 0. If it does, we know Q′

k does not
contain any layer z states.

From the saturation algorithm, we have a transition

q1p
a

−−−−−−−→
Qcol∪Q′

col

(

Q1 ∪Q′
1, . . . , Qk−1 ∪Q′

k−1, Q
′
k, Qk+1, . . . , Qn

)

.

from which we have an accepting run of w that satisfies the property.

3. If o = collapsek, w = au
′

:1 u :(k+1) v and w′ = u′ :(k+1) v. When k = n, we have an
accepting run of w′ respecting the property, and from the saturation, an accepting run
of w beginning with a transition q1p

a
−−−−→
{

q1
p′

}

(∅, . . . , ∅) and w′ = u′. When z = 1 and

a has collapse-round 0, this case cannot occur because the transition we’re currently
analysing appears in round 1 (similarly to the popk case). Otherwise z > 1 and we
have a run over w respecting the property.

When k < n, we have an accepting run of w′ in beginning with q1p′

qk−→ (Qk+1, . . . , Qn)
that respects the property. By saturation, we have an accepting run of w beginning
with a transition q1p

a
−−−→
{qk}

(∅, . . . , ∅, Qk+1, . . . , Qn). If the collapse-round of a is 0 and

z = 1, this case cannot occur. Otherwise, the run over w satisfies the property since
the run over w′ does and qk is layer 1 and z > 1.

4. When o = pushk
c , let w = uk−1 :k uk :k+1 · · · :n un. We know w′ = pushk

c(w) is

cuk :1 uk−1 :k · · · :n un .

Let q1p′

c
−−−→
Qcol

(Q1, . . . , Qn) and Q1
a

−−−→
Q′

col

Q′
1 be the first transitions used on the ac-

cepting run of w′. If the pop-round of a is 0, we know there are no layer z states in Q′
1.

Similarly if the pop-round of uk is 0 we know that there are no layer z states in Qcol.
The saturation algorithm means we have q1p

a
−−−→
Q′

col

(Q′
1, Q2, . . . , Qk ∪Qcol, . . . , Qn)

leading to an accepting run that respects the property.

5. If o = rewb then w = au :1 v and w′ = bu :1 v. Note none of the pop- or collapse-

rounds are changed, and the run of w′ beginning q1p′

b
−−−→
Qcol

(Q1, . . . , Qn) and satisfying

the property implies a run of w beginning q1p
a

−−−→
Qcol

(Q1, . . . , Qn) and also satisfying

the property.

6. If o = noop then w = au :1 v and w′ = au :1 v. Note none of the pop- or collapse-
rounds are changed, and the run of w′ beginning q1p′

a
−−−→
Qcol

(Q1, . . . , Qn) and satisfying

the property implies a run of w beginning q1p
a

−−−→
Qcol

(Q1, . . . , Qn) and also satisfying

the property.

34

Finally then, by induction over the number of rounds, we reach the first round beginning
with 〈p0, w1, . . . , wm〉 and we know there is a path from an initial vertex to a vertex

(p0, A1, p1, . . . , pm−1, Am, pm)

with p0 = p and for all i we have 〈pi−1, wi〉 accepted from the 1st layer of Ai. �

Lemma G.3 Given a scope-bounded CPDS C and control states pin and pout, there is a run
of C from 〈pin, w1, . . . , wm〉 to 〈pout, w′

1, . . . , w
′
m〉 for some w′

1, . . . , w
′
m whenever there is a

path in Gpout

C from an initial vertex to a vertex

(p0, A1, p1, . . . , pm−1, Am, pm)

with p0 = pin and for all i we have 〈pi−1, wi〉 accepted from the 1st layer of Ai.

Proof. Note, in the following proof, we override the wi and w′
i in the statement of the lemma.

Take a path in the reachability graph. The proof goes by induction over the length of the
path. When the path is of length 0 we have a single vertex (p0, A1, p1, . . . , pm−1, Am, pm).
Take any configuration 〈pi−1, wi〉 accepted by Ai. We know Ai accepts all configurations
that can reach 〈pi, w〉 for some w. Therefore, from the initial configuration

〈p0, w1, . . . , wm〉

we first apply the run over the 1st stack to p1 to obtain

〈p1, w
′
1, w2, . . . , wm〉

for some w′
1. Then we apply the run over the 2nd stack to p2 and so on until we reach

〈pm, w′
1, . . . , w

′
m〉

for some w′
1, . . . , w

′
m. This witnesses the reachability property as required.

Now consider the inductive case where we have a path beginning with an edge of the
reachability graph from

(p0, A1, p1, . . . , pm−1, Am, pm)

to
(

p′0, A
′
1, p

′
1, . . . , p

′
m−1, A

′
m, p′m

)

.

By induction we have a run from

〈pm, w′
1, . . . , w

′
m〉

to the final control state for any w′
i accepted by A′

i from q1pi−1
.

Now, similarly to the base case, take any configuration 〈pi−1, wi〉 accepted by Ai. We
know Ai accepts all configurations that can reach 〈pi, w〉 for some w accepted from q2p′

i−1

in

Shift(A′
i) and therefore, from q1p′

i−1

in A′
i. Hence, from the initial configuration

〈p0, w1, . . . , wm〉

we first apply the run over the 1st stack to p1 to obtain

〈p1, w
′
1, w2, . . . , wm〉

35

for some w′
1. Then we apply the run over the 2nd stack to p2 and so on until we reach

〈pm, w′
1, . . . , w

′
m〉

for some w′
1, . . . , w

′
m and then, by induction, we have a run from this configuration to the

target control state as required.
We need to prove a stronger property that we can in fact build a scope-bounded run. In

particular, we show that, for all stacks u in wi, if the accepting run of wi uses only transitions

q
q′

−→ Q to read u such that no layer z state is in Q, then there is a run to the final control
state such that u is not popped during round z. Similarly, for characters a, if the accepting
run uses only transitions q

a
−−−→
Qcol

Q to read the instance of a where no layer z state appears

in Q, then a is not popped in round z. Similarly, if no layer z state appears in Qcol, then
collapse is not called on that character during round z. We observe the property is trivially
true for the base case where the automata accept any stack using only transitions to ∅. The
inductive case is below.

We start from 〈p, w〉 = 〈pi, wi〉. First assign each stack and character in w pop- and
collapse-round 0. Noting that A is obtained by saturation from A′ (after a Shift and
EnvMove — call this automaton B), we aim to exhibit a run from 〈p, w〉 to 〈pi+1, wi+1〉 (in
fact we choose wi+1 via this procedure) such that all stacks and characters in wi+1 with
pop- or collapse-round 0 do not pass layer z states in B. Since we have a run over wi+1 in
A′

i that does not pass layer 1 states for parts of the stack with pop- or collapse-round 0, we
know by induction we have a run from 〈pi+1, wi+1〉 that is scope bounded.

To generate such a run we follow the counter-example generation algorithm in [9]. We
refer the reader to this paper for a precise exposition of the algorithm. Furthermore, that
this routine terminates is non-trivial and requires a subtle well-founded relation over stacks,
which is also shown in [9].

Beginning with the run over 〈pi, wi〉 that has the property of not passing layer z states,
we have our base case. Now assume we have a run to 〈p, w〉 such that the run over w has no
transitions to layer z states reading stacks or characters with pop- or collapse-rounds of 0.
We take the first transition of such a run, which was introduced by the saturation algorithm
because of a rule (p, a, o, p′) and certain transitions of the partially saturated B. Let 〈p′, w′〉
be the configuration reached via this rule. We do a case split on o.

1. If o = popk, then we have w = u :k v and the accepting run of w begins with

q1p
a
−→
∅

(∅, . . . , ∅, {qk} , Qk+1, . . . , Qn)

where q1p′

qk−→ (Qk+1, . . . , Qn) was already in B. This gives us an accepting run of v
beginning with this transition. Note that qk is of layer 1. Thus, if u has pop-round 0
and z = 1, this case cannot occur. Otherwise, we have that the run of v visits a subset
of the states in the run over w and thus maintains the property.

2. If o = copyk, then we have w = u :k v and w′ = u :k u :k v. Furthermore, we had an
accepting run of w using the initial transition

q1p
a

−−−−−−−→
Qcol∪Q′

col

(

Q1 ∪Q′
1, . . . , Qk−1 ∪Q′

k−1, Q
′
k, Qk+1, . . . , Qn

)

and an accepting run ofB on w′ using the initial transitions q1p′

a
−−−→
Qcol

(Q1, . . . , Qk, . . . , Qn)

and Qk
a

−−−→
Q′

col

(Q′
1, . . . , Q

′
k) from which we have an accepting run over w′. Note that, to

36

prove the required property, we observe that for all elements of w′ obtaining their pop-
and collapse-rounds from w, the targets of the transitions used to read them already
appear in the run of w, hence the run satisfies the property. The only new part of
the run is to Q′

k after reading the new copy of u, which has pop-round 1. Thus the
property is maintained.

3. If o = collapsek then we have w = au
′

:1 u :(k+1) v and w′ = u′ :(k+1) v. When k = n,

the accepting run of w begins with a transition q1p
a

−−−−→
{

q1
p′

}

(∅, . . . , ∅) and w′ = u′. When

z = 1 and a has collapse-round 0, this case cannot occur because the initial transition
goes to a layer z state. Otherwise, we have a run over w′ that is a subrun of that over
w, and thus the property is transferred.

When k < n, the accepting run of w begins with q1p
a

−−−→
{qk}

(∅, . . . , ∅, Qk+1, . . . , Qn)

and we have an accepting run of w′ in B beginning with q1p′

qk−→ (Qk+1, . . . , Qn). If
the collapse-round of a is 0 and z = 1, this case cannot occur because qk is layer z.
Otherwise, the run over w′ is a subrun of that over w and the property is transferred.

4. If o = pushk
b then w′ = bu :1 w where u = topk+1(popk(w)) and the collapse-round of

b is the pop-round of topk(w). The run of w begins with a transition

q1p
a

−−−→
Q′

col

(Q′
1, Q2, . . . , Qk−1, Qk ∪Qcol, Qk+1, . . . , Qn)

and there is a run over w′ in B beginning with q1p′

b
−−−→
Qcol

(Q1, . . . , Qn) and Q1
a

−−−→
Q′

col

Q′
1.

Note that, to prove the required property, we observe that for all elements of w′

obtaining their pop- and collapse-rounds from w, the targets of the transitions used to
read them already appear in the run of w, hence the run satisfies the property. The
only new parts of the run are to Q′

1 after reading b, which has pop-round 1, and the
transition to Qcol on the collapse branch of b. Note, however, that b has the collapse-
round equal to the pop-round of topk(w) and hence we know that Qcol has no layer z
states if the collapse-round of b is 0. Thus the property is maintained.

5. If o = rewb then w = au :1 v and w′ = bu :1 v. Note none of the pop- or collapse-rounds
are changed, and the run of w beginning q1p

a
−−−→
Qcol

(Q1, . . . , Qn) and satisfying the

property implies a run of w′ in B beginning q1p′

b
−−−→
Qcol

(Q1, . . . , Qn) and also satisfying

the property.

6. If o = noop then w = au :1 v and w′ = au :1 v. Note none of the pop- or collapse-rounds
are changed, and the run of w beginning q1p

a
−−−→
Qcol

(Q1, . . . , Qn) and satisfying the

property implies a run of w′ in B beginning q1p′

a
−−−→
Qcol

(Q1, . . . , Qn) and also satisfying

the property.

Thus we are done. �

G.4 Complexity

Solving the control state reachability problem requires finding a path in the reachability
graph. Since each vertex can be stored in O(2 ↑n−1 (f(ζ, ℓ))) space, where f is a polynomial

37

and ℓ the number of control states, and we require O(2 ↑n−1 (f(ζ, ℓ))) time to decide the
edge relation, we have via Savitch’s algorithm, a O(2 ↑n−1 (f(ζ, ℓ))) space procedure for
deciding the control state reachability problem. We also observe that the solution to the
global control state reachability problem may contain at most O(2 ↑n (f(ζ, ℓ))) tuples.

38

	1 Introduction
	2 Preliminaries
	2.1 Collapsible Pushdown Systems (CPDS)
	2.2 Saturation for CPDS

	3 Extended Collapsible Pushdown Systems
	3.1 Reachability Analysis

	4 Multi-Stack CPDSs
	5 Ordered CPDS
	6 Scope-Bounded CPDS
	7 Conclusion
	A Undecidability of MSO Over The Naive Encoding of Order-2 Stacks
	B Definition of The Saturation Function
	C Proofs for Extended CPDS
	C.1 Completeness of Saturation for ECPDS
	C.2 Soundness of Saturation for ECPDS
	C.3 Complexity of Saturation for ECPDS

	D Definitions and Proofs for Multi-Stack CPDS
	D.1 Multi-Stack Collapsible Pushdown Automata
	D.2 Regular Sets of Configurations

	E Proofs for Ordered CPDS
	E.1 Proofs for Simulation by CR
	E.2 Proofs for Language Emptiness for OCPDS
	E.3 Global Reachability
	E.4 Complexity

	F Phase-Bounded CPDS
	F.1 Global Reachability
	F.2 Proofs for Control-State Reachability
	F.3 Complexity

	G Proofs for Scope-Bounded CPDS
	G.1 Operations on Layer Automata
	G.2 Size of the Reachability Graph
	G.3 Proofs for Control State Reachability
	G.4 Complexity

