
Conformal Prediction under

Hypergraphical Models

Valentina Fedorova, Alex Gammerman,
Ilia Nouretdinov, and Vladimir Vovk

{valentina,ilia,alex,vovk}@cs.rhul.ac.uk

praktiqeskie vyvody
teorii vero�tnoste�
mogut byt~ obosnovany

v kaqestve sledstvi�
gipotez o predel~no�
pri dannyh ograniqeni�h

slo�nosti izuqaemyh �vleni�

On-line Compression Modelling Project (New Series)

Working Paper #9

First posted July 3, 2013. Last revised July 25, 2013.

Project web site:
http://alrw.net

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28904298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Conformal predictors are usually defined and studied under the exchangeabil-
ity assumption. However, their definition can be extended to a wide class of
statistical models, called online compression models, while retaining their prop-
erty of automatic validity. This paper is devoted to conformal prediction under
hypergraphical models that are more specific than the exchangeability model.
Namely, we define two natural classes of conformity measures for such hyper-
graphical models and study the corresponding conformal predictors empirically
on benchmark LED data sets. Our experiments show that they are more efficient
than conformal predictors that use only the exchangeability assumption.
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1 Introduction

The method of conformal prediction was introduced and is usually used for pro-
ducing valid prediction sets under the exchangeability assumption; the validity
of the method means that the probability of making a mistake is equal to (or
at least does not exceed) a prespecified significance level ([6], Chapter 2). How-
ever, the definition of conformal predictors can be easily extended to a wide class
of statistical models, called online compression models (OCMs; [6], Chapter 8).
OCMs compress data into a more or less compact summary, which is interpreted
as the useful information in the data. With each “conformity measure”, which,
intuitively, estimates how well a new piece of data fits the summary, one can
associate a conformal predictor, which still enjoys the property of automatic
validity. Numerous machine learning algorithms have been used for designing
efficient conformity measures: see, e.g., [6] and [2].

This paper studies conformal prediction under the OCMs known as hyper-
graphical models ([6], Section 9.2). Such models describe relationships between
data features. In the case where every feature is allowed to depend in any way
on the rest of the features, the hypergraphical model becomes the exchange-
ability model. More specific hypergraphical models restrict the dependence in
some way. Such restrictions are typical of many real-world problems: for ex-
ample, different symptoms can be conditionally independent given the disease.
A popular approach to such problems is to use Bayesian networks (see, e.g.,
[3]). The definition of Bayesian networks requires a specification of both the
pattern of dependence between features and the distribution of the features.
Usual methods guarantee a valid probabilistic outcome if the used distributions
of features are correct. Several algorithms (see, e.g., [3], Chapter 9) are known
for estimating the distribution of features; however, the accuracy of such ap-
proximations is a major concern in applying Bayesian networks. The conformal
predictors constructed from hypergraphical OCMs use only the pattern of de-
pendence between the features but do not involve their distribution. This makes
conformal prediction based on hypergraphical models more robust and realistic
than Bayesian networks. (The notion of a hypergraphical model can be regarded
as more general than that of a Bayesian network: the standard algorithms in
this area transform Bayesian networks into hypergraphical models by “marrying
parents”, forgetting the direction of the arrows, triangulation, and regarding the
cliques of the resulting graph as the hyperedges; see, e.g., [3], Section 3.2.)

As far as we know, conformal prediction has been studied, apart from the
exchangeability model and its variations, only for the Gauss linear model and
Markov model (see [6], Chapter 8, and [4]). Hypergraphical OCMs have been
used only in the context of Venn rather than conformal prediction (see [6],
Chapter 9).

The rest of the paper is organised as follows. Section 2 formally defines
hypergraphical OCMs and briefly reviews their basic properties. Section 3
describes the method of conformal prediction in the context of hypergraphi-
cal models and introduces two conformity measures for hypergraphical OCMs.
Section 4 reports the performance of the corresponding conformal predictors on
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benchmark LED data sets. Section 5 concludes.

2 Background

Consider two measurable spaces X and Y; elements of X are called objects and
elements of Y are called labels. Elements of the Cartesian product X ×Y are
called examples. A training set is a sequence of examples (z1, . . . , zl), where
each example zi = (xi, yi) consists of an object xi and its label yi. The general
prediction problem considered in this paper is to predict the label for a new
object given a training set. We focus on the case where X and Y are finite.

2.1 Hypergraphical Structures

In this paper we assume that examples are structured, consisting of variables.
Hypergraphical structures describe relationships between the variables. For-
mally a hypergraphical structure1 consists of three elements (V, E ,Ξ):

1. V is a finite set; its elements are called variables.

2. E is a finite collection of subsets of V whose union covers all variables:⋃
E∈E E = V . Elements of E are called clusters.

3. Ξ is a function that maps each variable v ∈ V into a finite set (of the
values that v can take).

A configuration on a set E ⊆ V (we are usually interested in the case where E
is a cluster) is an assignment of values to the variables from E; let Ξ(E) be the
set of all configurations on E. A table2 on a set E is an assignment of natural
numbers to the configurations on E. The size of the table is the sum of values
that it assigns to different configurations. A table set is a collection of tables on
the clusters E , one for each cluster E ∈ E . The number assigned by a table set
σ to a configuration on E is called its σ-count.

2.2 Hypergraphical Online Compression Models

The example space Z associated with the hypergraphical structure is the set of
all configurations on V . One of the variables in V is singled out as the label
variable, and the configurations on the label variable are denoted Y. All other
variables are object variables, and the configurations on the object variables are
denoted X. Since Z = X × Y, this is a special case of the prediction setting
described at the beginning of this section.

An example z ∈ Z agrees with a configuration on a set E ⊆ V (or the
configuration agrees with the example) if the restriction z|E of z to the variables

1The name reflects the fact that the components (V, E) form a hypergraph, where a hyper-
edge E ∈ E can connect more than two vertices.

2Generally, a table assigns real numbers to configurations. In this paper we only consider
natural tables, which assign natural numbers to configurations, and omit “natural” for brevity.
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in E coincides with the configuration. A table set σ generated by a sequence of
examples (z1, . . . , zn) assigns to each configuration on each cluster the number
of examples in the sequence that agree with the configuration; the size of each
table in σ will be equal to the number of examples in the sequence, and this
number is called the size of the table set. Different sequences of examples
can generate the same table set σ, and we denote #σ the number of different
sequences generating σ.

The hypergraphical online compression model (HOCM) associated with the
hypergraphical structure (V, E ,Ξ) consists of five elements (Σ,2,Z, F,B), where:

1. The empty table set 2 is the table set assigning 0 to each configuration.

2. The set Σ is defined by the conditions that 2 ∈ Σ and Σ\{2} is the set of
all table sets σ with #σ > 0. The elements σ ∈ Σ are called summaries.

3. The forward function F (σ, z), where σ ranges over Σ and z over Z, updates
σ by adding 1 to the σ-count of each configuration which agrees with z.

4. The backward kernel B maps each σ ∈ Σ\{2} to a probability distribution
B(σ) on Σ× Z assigning the weight #(σ ↓ z)/#σ to each pair (σ ↓ z, z),
where z is an example such that, for all configurations which agree with
z, the corresponding σ-counts are positive, and σ ↓ z is the table set
obtained by subtracting 1 from the σ-counts of the configurations that
agree with z. Notice that B(σ) is indeed a probability distribution, and
it is concentrated on the pairs (σ ↓ z, z) such that F (σ ↓ z, z) = σ.

We will use “hypergraphical models” as a general term for hypergraphical struc-
tures and HOCMs when no precision is required. When discussing hypergraph-
ical models we will always assume that the examples z1, z2, . . . are produced
independently from a probability distribution Q on Z that has a decomposition

Q({z}) =
∏
E∈E

fE(z|E) (1)

for some functions fE : Ξ(E)→ [0, 1], E ∈ E , where z is an example and z|E its
restriction to the variables in E.

2.3 Junction Tree Structures

An important type of hypergraphical structures is where clusters can be ar-
ranged into a “junction tree”. For the corresponding HOCMs we will be able
to describe efficient calculations of the backward kernels. If one wants to use
the calculations for a structure that cannot be arranged into a junction tree it
can be replaced by a more general junction tree structure before defining the
HOCM.

Let (U, S) denote an undirected tree with U the set of vertices and S the set
of edges. Then (U, S) is a junction tree for a hypergraphical structure (V, E ,Ξ)
if there exists a bijective mapping C from the set of vertices U of the tree to the
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set E of clusters of the hypergraphical structure that has the following property:
Cu∩Cw ⊆ Cv whenever a vertex v lies on the path from a vertex u to a vertex w
in the tree (we let Cx stand for C(x)). Not every hypergraphical structure has
a junction tree, of course: an example is a hypergraphical structure with three
clusters whose intersection is empty but whose pairwise intersections are not.
See, e.g., [3], Section 4.3, for further information on junction trees; intuitive
examples of junction trees will be given in Section 4.

If s = {u, v} ∈ S is an edge of the junction tree connecting vertices u and v
then Cs stands for Cu∩Cv. It is convenient to identify vertices u and edges s of
the junction tree with the corresponding clusters Cu and sets Cs, respectively.

If E1 ⊆ E2 ⊆ V and f is a table on E2, the marginalisation of f to E1 is the
table f∗ on E1 assigning to each a ∈ Ξ(E1) the number f∗(a) =

∑
b f(b), where

b ranges over the configurations on E2 such that b|E1 = a. If σ is a summary
then for u ∈ U denote σu the table that σ assigns to Cu, and for s = {u, v} ∈ S
denote σs the marginalisation of σu (or σv) to Cs. We will use the shorthand
σu(z) for the number assigned to the restriction z|Cu

by the table for the vertex
u and σs(z) for the number assigned to z|Cs

by the marginal table for the edge
s. Consider the HOCM corresponding to the junction tree (U, S). We use the
notation Pσ(z) for the weight assigned by B(σ) to (σ ↓ z, z). It has been proved
([6], Lemma 9.5) that

Pσ(z) =

∏
u∈U σu(z)

n
∏
s∈S σs(z)

, (2)

where n is the size of σ. If any of the factors in (2) is zero then the whole ratio
is set to zero.

3 Conformal Prediction for HOCM

Consider a training set (z1, . . . , zl) and an HOCM (Σ,2,Z, F,B). The goal is
to predict the label for a new object x.

A conformity measure for the HOCM is a measurable function A : Σ×Z→
R. The function assigns a conformity score A (σ, z) to an example z w.r. to a
summary σ. Intuitively, the score reflects how typical it is to observe z having
the summary σ.

For each y ∈ Y denote σ∗ ∈ Σ the table set generated by the sequence
(z1, . . . , zl, (x, y)) (the dependence of σ∗ on y is important although not reflected
in our notation). For z ∈ Z such that σ∗ ↓ z is defined denote the conformity
scores as αz := A (σ∗ ↓ z, z) (notice that α(x,y) is always defined). The p-value

for y, denoted p(y), is defined by

p(y) :=
∑

z:αz<α(x,y)

Pσ∗(z) + θ ·
∑

z:αz=α(x,y)

Pσ∗(z) (3)

(cf. (8.4) in [6]), where θ ∼ U[0, 1] is a random number from the uniform
distribution on [0, 1], Pσ∗(z) is the backward kernel, as defined above, and the
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sums involve only those z ∈ Z for which αz is defined. Then for a significance
level ε the conformal predictor Γ based on A outputs the prediction set

Γε(z1, . . . , zl, x) := {y ∈ Y : p(y) > ε}.

(Such randomized conformal predictors were referred to as “smoothed” in [6].)
We will describe two conformity measures for HOCMs in Subsection 3.1.

These conformity measures optimise different criteria for the quality of confor-
mal predictors. Subsection 3.2 will describe the criteria used in this paper.

3.1 Conformity Measures for HOCM

Consider a summary σ and an example (x, y). The conditional probability con-
formity measure is defined by

A(σ, (x, y)) := Pσ∗(y | x) :=
Pσ∗ ((x, y))∑

y′∈Y Pσ∗ ((x, y′))
, (4)

where σ∗ := F (σ, (x, y)) and Pσ∗ ((x, y)) is the backward kernel. In other words,
A(σ, (x, y)) is the conditional probability Pσ∗(y | x) of y given x under Pσ∗ . The
conditional probability Pσ∗(y | x) can be easily computed using (2).

Define the predictability of an object x ∈ X as

f(x) := max
y∈Y

Pσ∗(y | x), (5)

the maximum of conditional probabilities. If the predictability of an object
is close to 1 then the object is “easily predictable”. Fix a choice function
ŷ : X→ Y such that

∀x ∈ X : f(x) = Pσ∗(ŷ(x) | x).

The function maps each object x to one of the labels at which the maximum in
(5) is attained. The signed predictability conformity measure is defined by

A(σ, (x, y)) :=

{
f(x) if y = ŷ(x)

−f(x) otherwise.
(6)

3.2 Criteria for the Quality of Conformal Prediction

In this paper we study the performance of conformal predictors in the online
prediction protocol (Protocol 1). Reality generates examples (xn, yn) from
a probability distribution Q satisfying (1) for some hypergraphical structure.
Predictor uses a conformal predictor Γ to output the prediction set Γεn :=
Γε(x1, y1, . . . , xn−1, yn−1, xn) at each significance level ε.

Two important properties of conformal predictors are their validity and effi-
ciency; the first is achieved automatically and the second is enjoyed by different
conformal predictors to a different degree. Predictor makes an error at step n if
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Protocol 1 Online prediction protocol

for n = 1, 2, . . . do
Reality outputs xn ∈ X
Predictor outputs Γεn ⊆ Y for all ε ∈ (0, 1)
Reality outputs yn ∈ Y

end for

yn is not in Γεn. The validity of conformal predictors means that, for any signif-
icance level ε, the probability of error yn /∈ Γεn is equal to ε. It has been proved
that conformal predictors are automatically valid under their models ([6], Theo-
rem 8.1). In this paper we study problems where the hypergraphical model used
for computing the p-values is known to be correct; therefore, the predictions will
always be valid, and there is no need to test validity experimentally.

The efficiency of valid predictions can be measured in different ways. The
standard way is to count the number of multiple predictions Multεn over the first
n steps defined by

multεn :=

{
1 if |Γεn| > 1

0 otherwise
and Multεn :=

n∑
i=1

multεi

at each significance level ε ∈ (0, 1) (cf. [6], Chapter 3). Another way is to report
the cumulative size of the prediction sets

Sizeεn :=

n∑
i=1

|Γεi |

at each significance level ε ∈ (0, 1). We will also consider two ways to measure
the efficiency of conformal predictors that do not depend on the significance

level. Let p
(y)
n , y ∈ Y, be the p-values (3) used by the conformal predictor

for computing the prediction set Γεn at the nth step of the online prediction
protocol. The cumulative unconfidence Unconfn over the first n steps is defined
by

unconfn := inf {ε : |Γεn| ≤ 1} and Unconfn :=

n∑
i=1

unconfi;

the unconfidence unconfn at step n can be equivalently defined as the second

largest p-value among p
(y)
n , y ∈ Y. (Unconfidence is a trivial modification of

the standard notion of confidence: see [6], (3.66).) Finally, the efficiency can be
measured by the cumulative sum of p-values

pSumn :=

n∑
i=1

∑
y∈Y

p
(y)
i .

All four criteria work in the same direction: the smaller the better. As already
mentioned, the number of multiple predictions is a standard criterion; the three
other criteria are first used in this paper and [5].
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Figure 1: LED images for digits 7, 8, and 9 in the seven-segment display.

In our experiments we will use the following more intuitive versions of the
first two criteria: the percentage of multiple predictions Multεn/n and the average
size of predictions Sizeεn/n; we would like the former to be close to 0 and the
latter to be close to 1 for small significance levels.

It can be shown that, in a wide range of situations:

• the signed predictability conformity measure is optimal in the sense of
Multεn and in the sense of Unconfn;

• the conditional probability conformity measure is optimal in the sense of
Sizeεn and in the sense of pSumn.

See [5] for precise statements and proofs.

4 Experimental Results

4.1 LED Data Set

For our experiments we use benchmark LED data sets generated by a program
from the UCI repository [1]. The problem is to predict a digit from an image
in the seven-segment display.

Figure 1 shows several objects in the data set (these are “ideal images” of
digits; there are also digits corrupted by noise). The seven leds (light emitting
diodes) can be lit in different combinations to represent a digit from 0 to 9. The
program generates examples with noise. There is an ideal image for each digit.
An example has seven binary attributes s0, . . . , s6 (si is 1 if the ith led is lit)
and a label c, which is a decimal digit. The program randomly chooses a label
(0 to 9 with equal probabilities), inverts each of the attributes of its ideal image
with probability pnoise = 1% independently, and adds the noisy image and the
label to the data set.

Let (S0, . . . , S6, C) be the vector of random variables corresponding to the
attributes and the label, and let (s0, . . . , s6, c) be an example. According to the
data-generating mechanism the probability of the example decomposes as

Q ({(s0, . . . , s6, c)}) = Q7 (C = c) ·
6∏
i=0

Qi (Si = si | C = c) , (7)
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where Q7 is the uniform distribution on the decimal digits and

Qi (Si = si | C = c) :=

{
1− pnoise if si = sci
pnoise otherwise,

i = 0, . . . , 6, (8)

(sc0, . . . , s
c
6, c) being the attributes of the ideal image for the label c. As usual,

examples are generated independently.

4.2 Hypergraphical Assumptions for LED Data Sets

We consider two hypergraphical models that agree with the decomposition (7).
These models make different assumptions about the pattern of dependence be-
tween the attributes and the label; they do not depend on a particular proba-
bility of noise pnoise or the fact that the same value of pnoise is used for all leds.
For both hypergraphical structures the set of variables is V := {s0, . . . , s6, c}.

Nontrivial Hypergraphical Model. Consider the hypergraphical structure
with the clusters E := {{si, c} : i = 0, . . . , 6}. A junction tree for this hyper-
graphical structure can be defined as a chain with vertices U := {ui : i = 0, . . . , 6}
and the bijection Cui

:= {si, c}. By saying that U is a chain we mean that there
are edges connecting vertices 0 and 1, 1 and 2, 2 and 3, 3 and 4, 4 and 5, and 5
and 6 (and these are the only edges). It is clear that this is a junction tree and
that Cs = {c} for each edge s. It is also clear from (7) that the assumption (1)
is satisfied; e.g., we can set

f{s0,c} (s0, c) := Q7 (C = c) ·Q0 (S0 = s0 | C = c) ;

f{si,c} (si, c) := Qi (Si = si | C = c) , i = 1, . . . , 6.

Exchangeability Model. The hypergraphical model with no information
about the pattern of dependence between the attributes and the label is the
exchangeability model. The corresponding hypergraphical structure has one
cluster, E := {V }. The junction tree is the one vertex associated with V and
no edges.

4.3 Experiments

For our experiments we create a LED data set with 10, 000 examples. The
data are generated according to the model (7) with the probability of noise
pnoise = 1%. The data generation programs are written in C, and our data
processing programs are written in R; in both cases we set the seed of the
pseudorandom number generator to 0. The text below assumes that the reader
can see Figures 2–5 in colour; the colours become different shades of grey in
black-and-white. We hope our descriptions will be detailed enough for the reader
to identify the most important graphs unambiguously.
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Figure 2: Cumulative unconfidence for online predictions. The results are for
the LED data set with 1% of noise and 10, 000 examples.

Table 1: The final values of the cumulative unconfidence in Figure 2 for the
black and blue graphs.

Seed (104) 0 1 . . . 99 Average St. dev.

pv: exch; CM: hgr CP 107.69 108.03 . . . 106.96 106.23 9.85
pv: hgr; CM: hgr CP 109.68 107.80 . . . 107.80 105.83 9.82
pv: exch; CM: hgr SP 83.40 90.26 . . . 89.09 82.19 7.07
pv: hgr; CM: hgr SP 84.89 90.56 . . . 89.45 82.39 6.81

Each of the figures corresponds to an efficiency criterion for conformal pre-
dictors; namely, Figure 2 plots Unconfn versus n = 1, . . . , 10000 in the on-
line prediction protocol, Figure 3 plots pSumn − n/2 versus n = 1, . . . , 10000,
Figure 4 plots Multε10000/10000 (the percentage of multiple predictions) versus
ε ∈ [0, 0.05], and Figure 5 plots Sizeε10000/10000 (the average size of predictions)
versus ε ∈ [0, 0.05]. We consider two conformity measures: the conditional prob-
ability (CP) conformity measure (4) and the signed predictability (SP) confor-
mity measure (6). The graphs corresponding to the former are represented in
our plots as lines with dots, and the graphs corresponding to the latter are
represented as lines with triangles.

Two of the plots in each figure correspond to idealized predictors and are
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Figure 3: Adjusted cumulative sum of p-values, pSumn − n/2, for online pre-
dictions. The results are for the LED data set with 1% of noise and 10, 000
examples.

Table 2: The final values of the adjusted cumulative sum of p-values in Figure 3
for the black and blue graphs.

Seed (104) 0 1 . . . 99 Average St. dev.

pv: exch; CM: hgr CP 428.5 430.9 . . . 457.9 405.6 42.7
pv: hgr; CM: hgr CP 412.1 411.1 . . . 440.4 383.3 42.7
pv: exch; CM: hgr SP 694.3 755.9 . . . 772.4 674.8 69.9
pv: hgr; CM: hgr SP 684.7 738.7 . . . 756.5 656.0 69.2

drawn only for comparison, representing an unachievable ideal goal. In the
idealized case we know the true distribution for the data (given by (7), (8), and
pnoise = 1%). The true distribution is used instead of the backward kernel Pσ∗

in both (3) and (4) for the CP conformity measure and in both (3) and (6) for
the SP conformity measure. It gives us the ideal results (the two red lines in
our plots) for the two conformity measures, CP and SP. At least one of them
gives the best results in each of the figures (remember that for all our criteria
the lower the better).

For each of the two conformity measures we also consider four realistic pre-
dictors (which are conformal predictors, unlike the idealized ones). The pure
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Figure 4: The final percentage of multiple predictions for significance levels
between 0% and 5%. The results are for the LED data set with 1% of noise and
10, 000 examples.

Table 3: The final percentage of multiple predictions in Figure 4 for the signifi-
cance level 1% and for the black and blue graphs.

Seed (104) 0 1 . . . 99 Average St. dev.

pv: exch; CM: hgr CP 0.3720 0.4046 . . . 0.4109 0.3812 0.0905
pv: hgr; CM: hgr CP 0.3920 0.4047 . . . 0.4128 0.3815 0.0896
pv: exch; CM: hgr SP 0.1972 0.2425 . . . 0.2478 0.1919 0.0516
pv: hgr; CM: hgr SP 0.2034 0.2437 . . . 0.2502 0.1962 0.0489

hypergraphical conformal predictor (represented by blue lines in our plots) is
obtained using the nontrivial hypergraphical model both when computing p-
values (see (3)) and when computing the conformity measure ((4) in the case of
CP and (6) in the case of SP). Analogously we use the exchangeability model to
obtain the pure exchangeability conformal predictor (green lines in our plots).
The two mixed conformal predictors (black and yellow lines) are obtained when
we use different models to compute the p-values and the conformity scores.

The intuition behind the pure and mixed conformal predictors can be ex-
plained using the distinction between hard and soft models made in [7]. The
model used when computing the p-values (see (3)) is the hard model; the valid-
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Figure 5: The final average size of predictions for significance levels between
0% and 5%. The results are for the LED data set with 1% of noise and 10, 000
examples.

Table 4: The final average size of predictions in Figure 5 for the significance
level 1% and for the black and blue graphs.

Seed (104) 0 1 . . . 99 Average St. dev.

pv: exch; CM: hgr CP 1.512 1.501 . . . 1.509 1.535 0.124
pv: hgr; CM: hgr CP 1.520 1.477 . . . 1.492 1.513 0.122
pv: exch; CM: hgr SP 2.478 2.693 . . . 2.655 2.405 0.360
pv: hgr; CM: hgr SP 2.487 2.623 . . . 2.626 2.371 0.344

ity of the conformal predictor depends on it. The model used when computing
conformity scores (see (4) and (6)) is the soft model; when it is violated, validity
is not affected, although efficiency can suffer. The true probability distribution
(7) conforms to both the exchangeability model and the nontrivial hypergraph-
ical model; therefore, all four conformal predictors are automatically valid, and
we study only their efficiency. (In the context of this paper, it is obvious that
the exchangeability model is more general than the nontrivial hypergraphical
model, but we can also apply the criterion given in [6], Proposition 9.2.)

In the legends of Figures 2–5, the hard model used is indicated after “pv”
(the way of computing the p-values), and the soft model used is indicated after
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“CM” (the conformity measure); “exch” refers to the exchangeability model,
and “hgr” refers to the nontrivial hypergraphical model.

The most interesting graphs in Figures 2–5 are the black ones, corresponding
to the exchangeability model as the hard model and the nontrivial hypergraph-
ical model as the soft model. The performance of the corresponding conformal
predictors is typically better than, or at least close to, the performance of any
of the remaining realistic predictors. The fact that the validity of these con-
formal predictors only depends on the exchangeability assumption makes them
particularly valuable. The yellow graphs correspond to the nontrivial hyper-
graphical model as the hard model and the exchangeability model as the soft
model; the performance of the corresponding conformal predictors is very poor
in our experiments.

Now we will comment on each of the figures, and the corresponding tables,
separately. In the case of the figures, the only available results are for the seed
0 of the pseudorandom number generator, but the corresponding tables and our
experiments not included in the paper confirm that our conclusions apply to
other seeds as well.

Figure 2 shows the cumulative unconfidence Unconfn, and so the right con-
formity measure to use is SP, as discussed at the end of Section 3; and indeed,
all SP graphs lie below their CP counterparts. The two bottom graphs are the
ones corresponding to idealized predictors; the graph corresponding to the CP
idealized predictor, however, has a suboptimal slope. Of the realistic predictors,
the lowest graph is the black SP one (but the blue SP graph, corresponding to
the pure hypergraphical conformal predictor, is very close).

Table 1 shows the final values of the cumulative unconfidence in Figure 2
for the four most important graphs (two black and two blue) for several seeds.
The values of the seed are given in the units of 10, 000 (so that 0 stands for
0, 1 for 10, 000, 2 for 20, 000, etc.), which is the minimal step to ensure that
different experiments are based on completely different pseudorandom numbers
(when the seed is initialized to n, the successive calls to the R pseudorandom
number generator produce the pseudorandom numbers corresponding to the
seeds n, n+1, n+2, etc.); the “104” in parentheses serves as a reminder of this.
The last two columns of this and other tables give aggregate values: column
“Average” gives the average of all the 100 values for the seeds 0–99, and column
“St. dev.” gives the standard estimate of the standard deviation computed from
those 100 values (namely, the square root of the standard unbiased estimate
of the variance). The table confirms that each black graph is very close to
the corresponding blue graph on average (see the penultimate column), but the
accuracy of our experiments is insufficient to say which tends to be lower: see
the last column (to obtain an estimate of the standard deviation of the average,
the value given in the last column should be divided by 10).

Figure 3 shows the adjusted cumulative sum of p-values pSumn − n/2. We
subtract n/2 since even for the best predictors the cumulative sum of p-values
is at least n/2, up to statistical fluctuations: indeed, summing only the p-values
for the true labels would already give n/2 (up to statistical fluctuations). For
this criterion the predictors based on the CP conformity measure outperform
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the predictors based on the SP conformity measure (the lines with dots are
below the lines of the same colour with triangles), as expected. The bottom
graph corresponds to the idealized CP predictor; the idealized SP predictor is
the second best most of the time, but at the end it is overtaken by the black
and blue graphs corresponding to the conformal predictors based on the CP
conformity measure using the nontrivial hypergraphical model. The black and
blue graphs are very close; the blue one is slightly lower but the conformal
predictor corresponding to the black one still appears preferable as its validity
only depends on the weaker exchangeability assumption. Table 2 confirms that
the black and blue graphs are close to each other on average, although there is
a clear tendency for the blue ones to be lower.

Figure 4 shows the percentage of multiple predictions after observing 10, 000
examples as function of the significance level. For small significance levels the
percentage of the multiple predictions is smaller for the predictors based on the
SP conformity measure, again as expected. The performance of the conformal
predictor corresponding to the black SP graph is again remarkably good, better
than that of any other realistic predictor, although very close to the blue SP
graph. According to Table 3, the accuracy of our experiments is insufficient to
tell whether the two blue graphs tend to be lower than the corresponding black
ones at the significance level 1% for our data-generating mechanism.

Figure 5 shows the average size of predictions after observing 10, 000 ex-
amples as function of the significance level. For small significance levels the
predictors based on the CP conformity measure perform better, again confirm-
ing the theoretical results mentioned earlier. The black CP graph is very close
to (or even better than) the blue CP graph, corresponding to the pure hyper-
graphical predictor, except for very low significance levels when the average size
exceeds 2. The closeness at the significance level 1% is confirmed by Table 4.

5 Conclusion

The main finding of this paper is that nontrivial hypergraphical models can be
useful for conformal prediction when they are true. More surprisingly, in our
experiments they only need to be used as soft models; the performance does
not suffer much if the exchangeability model continues to be used as the hard
model. This interesting phenomenon deserves a further empirical study.
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