
Adaptive Online Learning

Dmitry Adamskiy

Computer Learning Research Centre and

Department of Computer Science,
Royal Holloway, University of London,

United Kingdom

2013

A dissertation submitted in fulfilment of the degree of
Doctor of Philosophy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28903695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I declare that this dissertation was composed by myself, that the work contained
herein is my own except where explicitly stated otherwise in the text and that
this work has not been submitted for any other degree of professional qualification
except as specified.

Dmitry Adamskiy

1

Abstract

The research that constitutes this thesis was driven by the two related goals in
mind. The first one was to develop new efficient online learning algorithms and to
study their properties and theoretical guarantees. The second one was to study
real-world data and find algorithms appropriate for the particular real-world prob-
lems. This thesis studies online prediction with few assumptions about the nature
of the data. This is important for real-world applications of machine learning as
complex assumptions about the data are rarely justified. We consider two frame-
works: conformal prediction, which is based on the randomness assumption, and
prediction with expert advice, where no assumptions about the data are made at
all.

Conformal predictors are set predictors, that is a set of possible labels is issued
by Learner at each trial. After the prediction is made the real label is revealed and
Learner’s prediction is evaluated. In case of classification the label space is finite
so Learner makes an error if the true label is not in the set produced by Learner.
Conformal prediction was originally developed for the supervised learning task and
was proved to be valid in the sense of making errors with a prespecified probability.
We will study possible ways of extending this approach to the semi-supervised case
and build a valid algorithm for this task. Also, we will apply conformal prediction
technique to the problem of diagnosing tuberculosis in cattle.

Whereas conformal prediction relies on just the randomness assumption, pre-
diction with expert advice drops this one as well. One may wonder whether it is
possible to make good predictions under these circumstances. However Learner
is provided with predictions of a certain class of experts (or prediction strategies)
and may base his prediction on them. The goal then is to perform not much
worse than the best strategy in the class. This is achieved by carefully mixing
(aggregating) predictions of the base experts. However, often the nature of data
changes over time, such that there is a region where one expert is good, followed
by a region where another is good and so on. This leads to the algorithms which
we call adaptive: they take into account this structure of the data. We explore
the possibilities offered by the framework of specialist experts to build adaptive
algorithms. This line of thought allows us then to provide an intuitive explanation
for the mysterious Mixing Past Posteriors algorithm and build a new algorithm
with sharp bounds for Online Multitask Learning.

2

Acknowledgements

First I would like to thank my supervisors Alex Gammerman and Volodya Vovk
for providing constant support during my research.

Next I would like to thank my coauthors. Thanks to Alexey Chernov, whose
ideas sparkled my interest in virtual specialists. Thanks to Wouter M. Koolen,
who got enthusiastic about virtual specialists and told me about Mixing Past
Posteriors. I would like to also thank Wouter for numerous life-hacks, hobby side-
projects and TEX tricks he taught me (as well as for keeping me fit during the bike
rides he organized). Many thanks to Manfred Warmuth for the idea of applying
virtual specialists to multitask learning. Thanks to Ilia Nouretdinov for the joint
work on conformal prediction.

Special thanks to Yuri Kalnishkan for the great number of fruitful discussions
during the coffee-breaks.

This work was supported by Veterinary Laboratories Agency of DEFRA grant
and I would like to thank Nick Coldham and Andy Mitchell for the discussions
and for providing Bovine TB data for the experiments.

I am grateful to all of the students and staff in the Computer Science depart-
ment for the friendly environment they created. I am grateful to the department
for the financial support which made it possible to present the results of our work
at conferences.

The work is not possible without occasional breaks from it, so I would like to
thank all members of SLOW(South London Orienteers) for the great orienteering
weekends.

I would like to thank my housemates James Lewis, Will Horner, Sam Heron
and Stella di Virgilio. And last but not the least, very special thanks to my wife
Natasha for her patience during all these years!

3

Contents

1 Introduction 6

1.1 Motivation . 6

1.2 Main contributions . 9

1.2.1 Conformal prediction 9

1.2.2 Prediction with expert advice 9

1.3 Publications . 10

1.4 The structure of this thesis . 10

2 Conformal prediction 11

2.1 Background: conformal prediction for supervised learning . . . 12

2.1.1 Formal definitions . 13

2.1.2 Forced prediction with confidence 18

2.1.3 Performance measures 19

2.1.4 Label-conditional conformal predictors 19

2.1.5 Non-conformity measures based on a loss function . . . 21

2.1.6 Example of nonconformity measure 21

2.2 Conformal prediction for semi-supervised learning 22

2.2.1 Semi-supervised learning problem 22

2.2.2 Learning on manifolds 22

2.2.3 Conformal predictor with external information 23

2.2.4 Geo-NN: example of NCM for semi-supervised learning 24

2.3 Applying conformal prediction to the Bovine TB diagnosis . . 27

4

3 Prediction with expert advice: specialists 32

3.1 Background: prediction with expert advice and specialists . . 33

3.1.1 Mix loss and the Aggregating Algorithm 35

3.1.2 Specialist experts . 37

3.1.3 Fixed Share and Mixing Past Posteriors 40

3.2 A closer look at Adaptive Regret 42

3.2.1 Specialist experts approach to adaptivity 43

3.2.2 Fixed Share recovered 44

3.2.3 Restarts approach to adaptivity 46

3.2.4 Fixed Share worst-case adaptive regret 48

3.2.5 Fixed Share is the optimal adaptive algorithm 52

3.3 Mixing Past Posteriors demystified 55

3.3.1 Construction . 55

3.3.2 MPP recovered . 56

3.3.3 A simple Markov chain circadian prior 58

3.4 Online Sparse Multitask Learning 61

3.4.1 Construction . 62

3.4.2 Implementation . 62

3.4.3 Multitask Learning experiment 65

A Adaptive regret for mix loss transfers to mixable losses 67

B Worst-case adaptive regret data for Fixed Share 70

5

Chapter 1

Introduction

1.1 Motivation

Machine learning is a broad field of Artificial Intelligence studying algorithms

that learn from data. In recent years machine learning algorithms penetrated

a great variety of fields, such as medical diagnosis, character recognition,

email filtering, to name a few.

Normally, learning from data is understood in the sense that the perfor-

mance of the algorithms in some task improves with experience. Naturally,

this is a very broad definition and there is a great variety of methods falling

within it. There are two broad learning frameworks, batch and online. In the

former we get a training set of data right from the start. This thesis is mostly

concerned with online learning. In the online learning setting the data comes

sequentially rather than in the form of a training set and Learner has to

make a prediction about the data on each trial or choose some action. Real-

world examples include weather prediction, sequential investment, sequential

coding etc.

We are interested in studying online learning algorithms that can provide

strong theoretical guarantees while making very weak (if any) assumptions

about the nature of the data. This is a natural approach when real-world

6

data is concerned as complex assumptions about it are rarely justified. In

this thesis we consider two frameworks: conformal prediction, which is based

on the randomness assumption, and prediction with expert advice, where no

assumptions about the data are made at all.

In the conformal prediction scenario Learner’s task is to predict the label

of the data object at each trial. Conformal predictors are set predictors, that

is the set of possible labels is issued at each trial. After the prediction is made

the real label is revealed and Learner’s prediction is evaluated. In case of

classification the label space is finite so the natural measure of the quality of

predictions is the number of errors. Here we say that Learner makes an error

if the true label is not in the set produced by Learner. Conformal prediction

was originally developed for the supervised learning task. However in the

real world labeled data is sometimes expensive to obtain. This gave rise to

semi-supervised learning where the algorithms try to use the easy-to-obtain

unlabeled data to improve their performance. We studied a possible way of

extending conformal prediction approach to the semi-supervised case.

Whereas conformal prediction relies on just the randomness assumption,

prediction with expert advice makes no assumptions about the nature of the

data at all. One may wonder whether it is possible to make good predictions

under these circumstances. However Learner is provided with predictions of a

certain class of experts (or prediction strategies) and may base his prediction

on that. The goal then is to perform not much worse than the best strategy

in the class. This is achieved by carefully mixing (aggregating) predictions

of the experts.

In 1997 Freund et al. in [17] extended the known technique of aggregating

experts predictions to the class of experts who can abstain from prediction.

They called those experts specialists. This idea provides inspiration to con-

struct virtual specialists that correspond to the real ones but can abstain

from predictions.

This research started with the ambition to build algorithms with good

7

adaptive regret using the virtual specialists, that is, that compete well against

the real experts on all the time intervals simultaneously. Surprisingly, we

arrived at the well-known algorithm called Fixed Share, known, however, for

the other type of bounds. This suggested that the class of algorithms covered

by the idea of virtual specialists is rather wide. And indeed it provided

a unifying framework for already known algorithms such as Fixed Share

and Mixing Past Posteriors as well as a new algorithm for online multitask

learning. We call these algorithms adaptive because they manage to adjust

to the changes in the nature of data and exploit the structure in it. In the

case of tracking algorithms (Fixed Share and Mixing past Posteriors), this

structure means that there is a region where one expert is good, followed by

a region where another is good and so on.

The research that constitutes this thesis was driven by two related goals

in mind. The first one was to develop new efficient online learning algorithms

and to study their properties and theoretical guarantees. We consider the

algorithms in the frameworks of online prediction with confidence and pre-

diction with expert advice. The second one was to study real-world data and

find algorithms appropriate for particular real-world problems. Our focus

was on the data provided by the VLA and was related to the problem of

diagnosing tuberculosis in cattle. We applied conformal prediction to the

VETNET database, which allowed us to reduce the number of false positives

of the skin test while controlling for the number of mistakes. The other task

was to predict the result of the skin test itself in an attempt to work towards

the more targeted testing. We used this task as a testing ground for the new

multitask learning algorithm.

8

1.2 Main contributions

1.2.1 Conformal prediction

We studied an extension of conformal prediction technique to the semi-

supervised learning case and built a valid algorithm for this task. Our em-

pirical study on the subset of USPS dataset showed an increase of confidence

due to using the unlabeled examples.

We applied conformal prediction to the Bovine TB prediction task and

found a way to increase the positive predictive rate of the skin test.

1.2.2 Prediction with expert advice

The main theoretical result of the thesis is the development of the specialist

predictors framework. In 1997 Freund et al. [17] propose the extension of the

well-known Aggregating Algorithm to the case where experts are allowed to

abstain from prediction. They call such experts specialists and prove that

the bounds guaranteed by the original algorithm transfer to this wider class

of comparators.

This is further generalized in [15] where the crucial idea of assigning the

loss of Learner to the abstaining experts is introduced and the mixable losses

are considered.

But the real power and elegance of this method is revealed when it is

applied to the virtual specialists created from the real ones. In this way well-

known existing algorithms for tracking problems such as Fixed Share [26] and

Mixing Past Posteriors [9] can be recovered. As a nice side-effect, new tight

bounds for the adaptive regret of Fixed Share were obtained. Furthermore,

applying the idea of virtual specialists to Online Multitask problems led to

an algorithm achieving better guarantees than the current state of the art

[1].

9

1.3 Publications

The results of Section 2.2 on semi-supervised conformal predictors were pub-

lished as a book chapter [5].

The application of conformal prediction to the Bovine TB data (sec-

tion 2.3) was presented at the AIAB workshop in 2011 and published in the

proceedings [4].

The work on conformal prediction was done in collaboration with VLA.

Results on Adaptive Regret (section 3.2) were presented at ALT2012 and

published in the proceedings [3].

Results on Mixing Past Posteriors and online multitask learning were

presented at NIPS2012 and published in the proceedings [28].

1.4 The structure of this thesis

This introductory chapter presents the motivation behind this research and

summarizes the main contributions. The rest of the thesis is organized as

follows.

Chapter 2 is devoted to the theory of conformal prediction. We present

the necessary background in Section 2.1. Section 2.2 is concerned with the

extension of conformal prediction to the semi-supervised learning. Applica-

tion to the Bovine TB diagnosis is the subject of Section 2.3.

Chapter 3 covers the main theoretical results of the thesis, that is the de-

velopment of the specialist experts framework. It starts with the necessary

preliminaries on prediction with expert advice and specialists in Section 3.1.

The virtual specialists corresponding to the Fixed Share algorithm and the

analysis of adaptive regret of Fixed Share is the subject of Section 3.2. More

complex virtual specialists are constructed in Section 3.3 to recover the Mix-

ing Past Posteriors algorithm. Section 3.4 presents the new algorithm for

multitask learning based on “task subset specialists”.

10

Chapter 2

Conformal prediction

This chapter is devoted to methods that allow Learner to express confidence

in individual predictions. Suppose, for example, that the goal is to predict

the labelling of the grey-scale images representing scanned digits (as in the

classical USPS dataset). Traditional machine learning algorithms could be

trained to output a hypothesis that will map any grey-scale image to its label.

However, some images are easier to classify than others, so we would like to

have an algorithm that will output a statement about how strong it believes in

the prediction along with the prediction itself. Naturally, some idea of how

certain the algorithm is about the particular example could be extracted

from the traditional algorithms as well. Hyperplane-based predictors (e.g.

Support Vector Machines) are “more confident” in their prediction if the

example is further away from the hyperplane. The problem here is that

we cannot convert this “confidence” to a property that we could rely upon.

Informally speaking, we would like to have such a predictor that if it issues

a prediction with, say, 95% confidence, we are sure that the probability of

error is indeed at most 0.05. This sort of guarantee will be called validity

(precise definition to follow) and this is what conformal predictors achieve

automatically.

This approach was first applied to the underlying Support Vector Machine

11

predictor in a 1998 paper by Gammerman et al. [19]. It was then generalized

by Saunders et al. [37] in 1999. Efficient implementation of conformal predic-

tion for the regression case was studied in [34]. A comprehensive summary

of the results in the field of prediction with confidence could be found in the

book [45].

In this chapter we give an overview of the existing theory of conformal

prediction in Section 2.1, present our extension of conformal prediction frame-

work to the semi-supervised case in Section 2.2 and apply conformal predic-

tion to the Bovine TB database in Section 2.3.

2.1 Background: conformal prediction for su-

pervised learning

In this section we consider the online supervised learning. Here online means

that the examples are presented one by one. Supervised means that that the

examples consist of objects and labels and that on each trial Learner predicts

a label after observing the object. Then after the prediction is made the true

label is revealed.

Learning tasks vary and the examples could be of different nature. For

instance, in the case of Optical Character Recognition, the objects could be

grey-scale images and the labels are the symbols these images represent and

that the algorithm tries to recognize. For the typical learning task of predict-

ing house prices the objects are individual house attributes like the size, the

number of bedrooms, etc. and the labels are prices. Depending on the type of

labels, supervised learning tasks are typically divided into classification and

regression. Classification deals with finite label sets whereas regression deals

with continuous ones. In this chapter we are interested in classification.

What could be the goal of Learner? There is more than one answer to

this. In practice the quality of prediction is often estimated using the held-

out test set or the cross-validation techniques. In Statistical Learning Theory

12

(see [39]) the emphasis is on the Probably Approximately Correct (PAC)

predictions. Informally, that means that we want to be able to guarantee

under certain assumptions on the data source that we will be able to predict

reasonably well most of the time.

Conformal prediction [45] is a way of making valid predictions with con-

fidence which does not require any assumption other than the “randomness

assumption”: the examples are generated from the same probability distri-

bution independently of each other.

The most remarkable feature of conformal predictors is their validity,

that is making errors with a prespecified probability. Also, it is possible

to estimate confidence in the prediction of the given individual example.

Detailed explanation of the theory of conformal prediction can be found in

[45]; here we present the bits required for the following sections.

2.1.1 Formal definitions

We consider the following protocol. Nature outputs a sequence of examples

sequentially:

(x1, y2), (x2, y2), . . . , (xn, yn),

Examples consist of objects xi ∈ X and labels yi ∈ Y where X and Y are

measurable spaces. Here X is called object space and Y is called label space.

Sometimes we will use the notation zi = (xi, yi) for examples and will call

Z = X × Y the example space.

The standard assumption which is often made in Machine Learning is

the randomness assumption: the examples are drawn independently from

the same probability distribution P on Z. Actually, conformal predictors

require the slightly weaker exchangeability assumption and this difference

will be important in the extension to the semi-supervised setting.

13

Definition 1. A distribution P on Z∞ is exchangeable if for every positive

integer n, every permutation π of {1, . . . , n} and every measurable set E ⊆
Zn,

P{(z1, z2, . . .) ∈ Z∞ : (z1, . . . , zn) ∈ E}

= P{(z1, z2, . . .) ∈ Z∞ : (zπ(1), . . . , zπ(n)) ∈ E}

The goal of Learner at trial n is to predict the label yn given all the

past examples z1, z2, . . . , zn−1 and the object xn. First we define “simple

predictors”.

Definition 2. A simple predictor is a function of type

D : Z∗ ×X → Y

However, we want to be able to express the (un)certainty of our predic-

tions by issuing a prediction set based on the significance level ε instead of a

single element of Y .

Definition 3. A confidence predictor is a measurable function of type

Γ : Z∗ ×X × (0, 1)→ 2Y

such that the subsets shrink as ε increases:

Γ(z1, . . . , zn−1, xn, ε1) ⊆ Γ(z1, . . . , zn−1, xn, ε2)

whenever ε1 ≥ ε2. In what follows we will position ε as a superscript instead

of placing it with the other arguments. Measurable here means that for each

n the set of sequences ε, x1, y1, · · · , xn, yn satisfying

yn ∈ Γε(x1, y1, · · · , xn−1, yn−1, xn)

14

is a measurable subset of (0, 1)× (X × Y)n. The complementary value 1− ε
is called the confidence level.

Now we turn to the desired properties of the confidence predictors, that

is, validity and efficiency. There are different notions of validity; here we shall

restrict ourselves to conservative validity. The confidence predictor makes an

error on trial n if the true label yn is not in the prediction set. For a sequence

of outcomes ω = (x1, y1, x1, y2, . . .) we define

errεn(Γ, ω) :=

1 if yn /∈ Γε(x1, y1, . . . , xn−1, yn−1, xn)

0 otherwise,
(2.1)

.

Definition 4. A confidence predictor is conservatively valid if for any ex-

changeable probability distribution P on Z∞ there exists a probability space

with two families

(ξ(ε)n : ε ∈ (0, 1), n = 1, 2, . . .), (η(ε)n : ε ∈ (0, 1), n = 1, 2, . . .)

of {0, 1}-valued random variables such that:

• for a fixed ε, ξ
(ε)
n , n = 1, 2, . . . is a sequence of independent Bernoulli

random variables with parameter ε;

• for all n and ε, η
(ε)
n ≤ ξ

(ε)
n ;

• the joint distribution of errεn(Γ, w), with w ∼ P , ε ∈ (0, 1), n = 1, 2, . . . ,

coincides with the joint distribution of η
(ε)
n , ε ∈ (0, 1), n = 1, 2, . . .

The motivation for this definition is as follows. Learner would like to

control the number of mistakes in the following sense: for the prespecified

significance level ε errors are made independently with probability ε. This

property is called exact validity and it could be shown that it is impossible to

15

achieve it without certain randomization ([45], Theorem 2.1). However in the

definition above we allow the probabilities to be even less than ε, so that the

sequence of errors is dominated in distribution by a sequence of independent

Bernoulli random variables. This is achievable by conformal predictors.

Finite horizon. We will also be interested in the finite horizon version of

validity. Suppose that we have a bag of N examples and the data is drawn

from it one by one at random. Clearly, in this scenario the data is not i.i.d.

anymore. However, the probability of each permutation of the examples is
1
n!

so the distribution is exchangeable. It turns out that conformal predictors

continue to be valid in this setting, where the definition of validity is adapted

in the obvious way: P is now the uniform distribution on the permutations

of N examples and instead of n = 1, 2, . . . one should read n = 1, 2, . . . , N .

Now we are ready to define conformal predictors. They are built around

the notion of nonconformity measure. Intuitively, we would like to predict

those labels that make the example similar to the previous ones in a certain

sense and a nonconformity measure is a function expressing how different a

given example is from the bag of other examples.

However, formally it is a very simple object.

Definition 5. A nonconformity measure is a measurable function

A : Z(∗) × Z → R

where Z(∗) is the set of all bags (multisets) of elements of Z.

Any nonconformity measure defines a conformal predictor in the following

manner. The algorithm tries each possible label y of xn. Then it calculates

nonconformity scores for each example:

αyj = A(*z1, . . . , zn−1, (xn, y)+, zj)

for j = 1, . . . , n−1 and αyn = A(*z1, . . . , zn−1, (xn, y)+, (xn, y)). Here *z1, . . . , zn+

16

is a bag consisting of elements z1, . . . , zn some of which may be identical with

each other.

The p-value of this label is then defined as

p(y) =
#{j = 1, . . . , n : αyj ≥ αyn}

n
.

Conformal predictor outputs the prediction set consisting of those labels

for which the p-value is greater than the prespecified significance level ε:

Γεn = {y : p(y) > ε}

The main result in the theory of conformal prediction is the following

proposition (Proposition 2.3 in [45]):

Proposition 6. All conformal predictors are conservatively valid.

We will also need the finite horizon version of it.

Proposition 7. Suppose that Learner is presented with the finite bag of ex-

amples. If at each trial the example is drawn (without replacement) from this

bag, then any conformal predictor is valid in the sense described above.

This last result follows from Theorem 8.2 in [45]. The version of it for the

exchangeability assumption is actually an ingredient in proving Proposition 6

as shown in [44].

This means that no matter what nonconformity measure we choose the

resulting conformal predictor will be valid. As an extreme example, consider

the constant nonconformity measure. One can immediately verify that it

result in a conformal predictor that will include all possible labels in the

prediction set. This means that it makes no mistakes at all and thus is valid

(but extremely inefficient). This shows that in order to obtain an efficient

predictor one should carefully select a suitable nonconformity measure. In-

tuitively, it should measure strangeness so that when the new example is

17

complemented with the “wrong” label it becomes very strange w.r.t. the bag

of old examples.

Algorithm 1 Conformal Predictor for classification

Input: data examples (x1, y1), (x2, y2), . . . , (xn−1, yn−1) ∈ X × Y
Input: a new object xn ∈ X
Input: a non-conformity measure A : Z(∗) × Z → R
Input: a significance level ε
z1 = (x1, y1), . . . , zn−1 = (xn−1, yn−1)
for y ∈ Y do
zn = (xn, y)
for j in 1, 2, . . . , n do
αj = A(*z1, . . . , zn−1, zn+, zj)

end for
p(y) =

#{j=1,...,n:αj≥αn}
n

end for
Output: prediction set Γεn = {y : p(y) > ε}
Output: any forced prediction ŷn ∈ arg maxy{p(y)}
Output: confidence
conf(ŷn) = 1−maxy 6=ŷn{p(y)}

2.1.2 Forced prediction with confidence

In the case of finite Y (classification problem), there is an alternative way

to represent the output: single (“forced”) prediction and some measure of

confidence in this prediction. It does not require the significance level ε as

input. The single prediction is selected by largest p-value. Confidence is

defined as

sup{1− ε : |Γε| ≤ 1}.

Here we assume that there are no ties among the p-values. For example:

Y = {1, 2, 3} and p(1) = 0.005, p(2) = 0.05, p(3) = 0.5, then forced prediction

is 3, confidence in it is 1− 0.05 = 0.95.

In terms of confidence, validity implies the following: with probability at

18

least 1 − ε either the forced prediction is correct or confidence in it is not

larger than 1− ε.

2.1.3 Performance measures

Suppose that there are two nonconformity measures, so there are two versions

of conformal prediction algorithm and thus both are valid. How to check their

efficiency on a real data set?

If the same confidence level is selected for several methods then we can

compare their efficiency by the uncertainty rate, percentage of uncertain pre-

diction for a fixed confidence level. If the selected nonconformity measure

is not adequate for the problem, the number of uncertain predictions will

be too high. For example, if nonconformity measure is a constant, then all

predictions will be uncertain.

In terms of forced prediction with confidence, a prediction is uncertain at

level ε if its confidence is less than 1 − ε. So uncertainty rate is percentage

of predictions with the individual confidence smaller than 1 − ε. To have

an overall performance measure independent from ε, we can use median (or

mean) confidence.

2.1.4 Label-conditional conformal predictors

Algorithm 1 is valid in the sense that under the randomness assumption it

makes errors independently on each trial with probability at most ε. However,

sometimes there are natural categories of the examples (such as men and

women for the medical predictions) and we would like to have “category-

wise” validity. For instance, suppose that the examples fall into “easy to

predict” and “hard to predict” categories; then the overall validity will be

reached by any conformal predictor, but the individual error rate for “hard

to predict” objects could be worse.

In order to overcome this, Mondrian conformal predictor was presented

19

in [46]. Here we present a special case of it, label-conditional conformal

predictor (see Algorithm 2). In our case the difference from the original con-

formal predictor is in the definition of p-values: now only the nonconformity

scores of the examples with the same label are taken into account.

Algorithm 2 Mondrian conformal predictor for classification

Input: data examples (x1, y1), (x2, y2), . . . , (xn−1, yn−1) ∈ X × Y
Input: a new object xn ∈ X
Input: a non-conformity measure A : Z(∗) × Z → R
Input(optional): a significance level ε
z1 = (x1, y1), . . . , zn−1 = (xn−1, yn−1)
for y ∈ Y do
zn = (xn, y)
for j in 1, 2, . . . , n do
αj = A(*z1, . . . , zn−1, zn+, zj)

end for
p(y) =

#{j=1,...,n:yj=y,αj≥αn}
|y=yj |

end for
Output(optional): prediction set Γεn = {y : p(y) > ε}
Output: forced prediction ŷn = arg maxy{p(y)}
Output: confidence
conf(ŷn) = 1−maxy 6=ŷn{p(y)}

This modifications of conformal predictor is known to be label-wise valid,

that is the conditional probability of making an error given the labels of the

past and the current examples is at most the prespecified value.

We are going to be interested in one-sided label-wise validity in section 2.3.

20

2.1.5 Non-conformity measures based on a loss func-

tion

A universal way to define nonconformity measure is to use an underlying

method of basic prediction

F : Z(∗) ×X → Y

and a loss (discrepancy) function

L : Y × Y → R

and then to use them directly:

Input: examples z1 = (x1, y1), . . . , zn = (xn, yn)

Input: zj (one of examples above)

αj = L(yj, F (x1, y1, . . . , xj−1, yj−1, xj+1, yj+1, . . . , xn, yn, xj))

Although this method is usually applied for regression (see e.g. [34, 32]) we

will see that in its pure form it is not the best way for classification.

2.1.6 Example of nonconformity measure

Suppose that the there is a distance function on X. The following non-

conformity measure can then be used for 1 nearest neighbour underlying

method:

Input: bag of examples *z1, . . . , zn+
Input: zj (one of objects above)

A(*z1, . . . , zn+, zj) =
min{dist(xj ,xk);k 6=j,yk=yj}

min{dist(xj ,xk);yk 6=yj}

We can see that the nonconformity score is high when the example is

close to an object with a different label and far from any object with the

same label.

21

2.2 Conformal prediction for semi-supervised

learning

2.2.1 Semi-supervised learning problem

Now we turn to an extension of conformal predictors to the semi-supervised

learning setting. Semi-supervised learning is a recently developed framework

naturally arising in many practical tasks. Namely, for some tasks labelled

examples for training could be quite expensive to obtain, whereas unlabelled

ones are readily available in abundance. The standard examples of such

problems are linguistic tasks where the objects are portions of texts. Unla-

belled texts could be found on the Internet whereas labelling requires a skilled

linguist. Therefore the question is: could we improve the quality of the pre-

dictor given the unlabelled data? Semi-supervised learning algorithms differ

based on the assumptions they make and range from simple algorithms like

self-learning [47] and co-training [8] to more complex manifold learning algo-

rithms [7]. See [14] and [2] for the overview of the existing semi-supervised

methods.

2.2.2 Learning on manifolds

If there is no specific relation between the conditional distribution of the la-

bel given the object and the marginal distribution of objects then the knowl-

edge of unlabelled data is of no help. Thus some additional assumptions

are usually made, and based on the nature of these assumptions different

semi-supervised algorithms arise. In what follows we present an example of

utilizing two of such assumptions: the manifold assumption and the cluster

assumption.

Manifold assumption: The marginal distribution P (x) is supported on a

low-dimensional manifold and the conditional distribution P (y|x) is smooth

as a function of x on the manifold.

22

Cluster assumption: We believe that the data in the same cluster is more

likely to have the same label.

Usually, the distribution of unlabelled examples (and thus the manifold)

is unknown to Learner. Thus we have to model it from the (large) sample of

unlabelled examples.

This is usually done by building the neighbourhood graph. The problem

of dealing with both labelled and unlabelled data can be viewed as either

labelling partially labelled data set or as labelling the held out test set. We

shall follow the first setting as in [7]; thus the neighbourhood graph is built

using both labelled and unlabelled points.

2.2.3 Conformal predictor with external information

Algorithm 3 Conformal Predictor for SSL

Input: data examples (x1, y1), (x2, y2), . . . , (xn−1, yn−1) ∈ X × Y
Input: a new object xn ∈ X
Input: unlabelled objects u1, u2, . . . , us ∈ X
Input: a nonconformity measure A : (zi, *z1, . . . , zn+, U) 7→ αi on pairs
zi ∈ X × Y dependent on external information U = *u1, u2, . . . , us+.
Input(optional): a significance level ε
z1 = (x1, y1), . . . , zn−1 = (xn−1, yn−1)
for y ∈ Y do
zn = (xn, y)
for j in 1, 2, . . . , n do
αj = A(zj, {z1, . . . , zn−1, zn}, U)

end for
p(y) =

#{j=1,...,n:αj≥αn}
n

end for
Output(optional): prediction set Γεn = {y : p(y) > ε}
Output: any forced prediction ŷn ∈ arg maxy{p(y)}
Output: individual confidence
conf(ŷn) = 1−maxy 6=ŷn p(y)

General scheme is provided by algorithm 3. Its main difference from the

23

conformal predictor for supervised learning (algorithm 1) is that nonconfor-

mity measure depends on an external argument. In particular, it may be the

set of unlabelled objects.

In the online setting it could be viewed as follows:

1. A bag of unlabelled examples is presented to Learner. Learner uses this

bag to fix the specific nonconformity measure from the possible family

of nonconformity measures.

2. Examples are randomly drawn from this bag without repetition and

Learner tries to predict their label.

3. After the prediction is made, the label for each example is revealed.

This is in some way similar to the online learning on graphs setting [25]

where the graph is known to Learner and its task is to predict sequentially

the labels of vertices.

Proposition 8. Algorithms 3 is conservatively valid.

Proof. As all the permutations are of equal probability and the nonconfor-

mity measure and the role of unlabeled examples is restricted to the selection

of a particular nonconformity measure it is possible to apply the finite horizon

proposition stating conformal prediction validity (Proposition 7).

Thus even if Learner’s choice of additional assumption for the semi-

supervised learning is not correct, the resulting predictor will still be valid.

2.2.4 Geo-NN: example of NCM for semi-supervised

learning

One simple way of using the unlabelled data under the manifold (and cluster)

assumptions is to adjust the nearest neighbours nonconformity measure.

24

Instead of using the metric in the ambient space we can use the “geodesic”

distance approximated as a distance on the neighbourhood graph built using

both labelled and unlabelled data. In the case where the manifold or cluster

assumption is true it is indeed the distance we are interested in, because

the conditional distribution of labels is smooth along the manifold and for a

given point we want to find its nearest (labelled) neighbours on the manifold.

Algorithm 4 Geodesic nearest neighbours NCM

Input: data set z1 = (x1, y1), . . . , zn = (xn, yn)
Input: zj (one of objects above)
Input: Unlabelled data: xn+1, . . . , xn+u
Fix the distance function dist0(xi, xj) in the ambient object space.
Build the neighbourhood graph based on k-nn (or ε-balls) using all the
examples available (labelled and unlabelled).
for i, j = 1, . . . , l + u do
Aij = 1 if either xi is one of the k-nearest neighbours of xj of vice versa.
Aij =∞ otherwise.

end for
Apply Floyd (of Dijkstra) algorithm to calculate distances on the graph.
Define geodesic distance dist1(xi, xj) to be the resulting distance function
– length of the shortest path between xi and xj on the graph (here we
make use of the “labelling partially labelled set” setting).
ds(j) = min{dist1(xj, xk)|k 6= j, yk = yj}
do(j) = min{dist1(xj, xk)|yk 6= yj}
αj = ds(j)/do(j)

Obviously the construction of neighbourhood graph in Algorithm 4 is

done only once when the bag of unlabelled examples is presented to Learner.

We use the unweighted graph here, however using the weighted graph is also

possible. After this is done the distance function is fixed and we proceed with

the original 1-NN conformal prediction. The predictor is valid but we may

also hope for some improvement in efficiency when the number of labelled

examples is not big.

Another possible way of constructing nonconformity measure for the semi-

25

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140

160

180

200

number of examples

errors

multipredictions

Figure 2.1: Validity of the algorithm 4 (“geodesic”-NN NCM)

supervised setting is to derive it from the semi-supervised basic predictor in

the general way mentioned above.

Algorithm 5 SSL-based NCM

Input: data set z1 = (x1, y1), . . . , zn = (xn, yn)
Input: unlabelled objects u1, u2, . . . , us ∈ X
Input: zj (one of labelled objects above)
Train a basic semi=supervised predictor D.
αj = L(yj, D(xj, *z1, . . . , zj−1, zj+1, ..., zn+, u1, u2, . . . , us))

Figure 2.1 shows the number of errors and the number of uncertain pre-

dictions for the confidence level of 99% on a subset of the USPS dataset.

We can see that the predictor is indeed valid (the solid line shows that the

frequency of errors if around 1%). However, what is the performance benefit?

Figure 2.2 shows the result of applying the “geodesic-NN” conformal pre-

dictor and the 1NN-Threshold conformal predictor in the online mode to the

subset of USPS dataset consisting of digits 4 and 9 (known to be rather hard

to separate). This graph shows a single experiment run with k = 5. We see

26

0 50 100 150 200 250 300 350
0.75

0.8

0.85

0.9

0.95

1

Number of examples

M
e
d
ia

n
 c

o
n
fi
d
e

n
c
e

1−NN

Geodesic NN

Figure 2.2: Median confidence of 1-nearest neighbour and “geodesic”-nearest
neighbour conformal predictors

that the median confidence for the “geodesic-NN” is higher when the number

of labelled examples is small and the performance levels off as the number of

examples grows. This is what one would expect from semi-supervised setting.

2.3 Applying conformal prediction to the Bo-

vine TB diagnosis

In this section we apply the nearest-neighbours conformal predictor to the

VETNET database in order to increase the positive prediction rate of the

existing Skin Test. Conformal prediction framework allows us to do so while

controlling the risk of misclassifying true positives.

Bovine Tuberculosis (bTB) is an infectious disease of cattle caused by

the bacterium Mycobacterium bovis (M.bovis). The disease is widespread

in certain areas of the UK (particularly South West England) and of major

economic importance, costing the UK Government millions of pounds each

27

year, since positive animals are slaughtered and compensation is paid to the

cattle owners.

The main testing tool for diagnosing TB in cows is the Single Intradermal

Cervical Tuberculin (SICCT) skin test. The procedure involves administering

intradermally both Bovine and Avian Tuberculin PPDs and measuring the

thickening of the skin. The difference of thickenings (B2−B1)− (A2−A1) is

the actual numeric result of the test, where A1, B1 are the skin thickness mea-

surements before administering Avian(A) and Bovine(B) Tuberculinum and

A2 and B2 are the measurements after injecting Tuberculinum. Avian Tuber-

culinum is used to exclude the non-specific reactions. The test is considered

positive if the result is greater than a certain threshold (namely 4mm).

The issue of considerable interest to VLA was to reduce the number of

false positives of the skin test. Each cow that is positive is slaughtered

and the post-mortem analysis is conducted which could find the TB lesions.

Furthermore, some of the cows are sent to the culture analysis. If either of

those two tests is positive, the cow is considered a true reactor. If both come

back negative, it is considered to be a mistake of the test. The goal is then

to reduce these mistakes. We use the framework of conformal prediction to

achieve this goal while simultaneously controlling the price we have to pay

for it: the number of true reactors we are going to classify incorrectly.

The data on all the reactors is stored in the VETNET database. The data

stored there includes (per reactor) the numeric test results A1, A2, B1, B2,

and such features as age, herd identifier, date of the test, post-mortem and

culture results (if any), type of herd, type of the test and some others.

As there are two tests that can confirm the diagnosis after the cow is

slaughtered, the definition of true positives could vary and here we use logical

OR as such (the cow is true positive if there are visible lesions or if the culture

test was positive). The data in VETNET alone is not enough to judge about

the efficiency of the skin test, as the post-mortem tests are not performed

for the negative animals. However, it is believed that the positive prediction

28

Test time CPHH (herd ID) Lesions Culture Age A2 − A1 B2 −B1

1188860400 35021001701 1 1 61 4 22
1218495600 37079003702 0 0 68 1 9

Table 2.1: Two entries from the VETNET database

rate could be improved by taking into account some other factor apart from

just the binary result of the skin test.

We used the positively tested cows from VEBUS subset of the original

VETNET database. It includes 12873 false positives and 18673 true posi-

tives. In what follows the words “true positives” and “false positives” will

refer to the skin test results.

After the preliminary study, it was discovered that the most relevant

attributes for classification are the numeric value of skin test result (that is,

(B2 − B1) − (A2 − A1)), age and either the ID of the given test which is a

herd identifier combined with a test date, or just the identifier of a herd (that

may cover several tests performed at different time).

The extract from the VetNet database containing those features is shown

in Table 2.3.

The first of these examples is a True Positive (Lesions or Culture test is

positive) and the second is a False Positive (both Lesions and Culture tests

are negative). The task is to distinguish between these two classes to decrease

number of cows being slaughtered. This means that we wish to discover as

many cows as possible to be False Positives. On the other hand, the number

of True Positives misclassified as False Positives should be strictly limited.

So unlike standard conformal prediction, the role of two classes is different.

Thus we present a one-sided version of conformal predictor. Each new

example is assigned only one p-value, that corresponds to True Positive hy-

pothesis. Then for a selected significance level ε we mark a cow as a False

Positive if p < ε. This allows us to set the level at which we tolerate the

marking of true positive and we aim to mark as many false positives as

possible.

29

The property of validity is interpreted in the following way: if a cow is

True Positive, it is marked as a False Positive with probability at most ε. A

trivial way to achieve this is to mark any cow with probability ε. So the result

of conformal prediction can be considered as efficient only if the percentage

of marked False Positives is essentially larger.

In our experiments we used the nonconformity measure presented in al-

gorithm 6 based on k-Nearest-Neighbour algorithm.

Algorithm 6 kNN Nonconformity Measure for VetNet database

Input: a bag of data examples z1 = (x1, y1), z2 = (x2, y2), . . . , zn =
(xn, yn) ∈ X × Y
Input: an example zi = (xi, yi) from this bag;
Input: a distance function d : X ×X → R+

A(zi, *z1, z2, . . . , zn+) = |{j : xj is amongst k nearest neighbours of xi in
x1, . . . , xi−1, xi+1, . . . , xn according to the distance d, and yj 6= yn}|

A possible version of efficient predictor can be done setting k = 50

and using the following distance, which assigns the highest importance to

comparison of herd IDs, second priority is given to the numerical value

(B2 − B1) − (A2 − A1) of skin test, and age is used as an additional source

of information“

dist(x1, x2) = 100S(x1, x2) + T (x1, x2) + | log10(age(x1))− log10(age(x2))|

where S(x1, x2) = 0 if x1 and x2 belong to the same herd and 1 otherwise,

T (x1, x2) is the difference between numerical values of test results on x1 and

x2. Thus, first of all the animals within given test are considered as neigh-

bours and then all the others. Experiments showed that this distance resulted

in an efficient predictor though the validity property holds for other param-

eters as well. The results on a subset of VetNet database are summarized in

the following table. The experiment was performed in an online mode with

the data sorted by test date (as in real life).

30

Significance Marked reactors Marked reactors

level within FP within TP

1% 1267/12873 138/18673

5% 4880/12873 919/18673

10% 7971/12873 1904/18673

The randomness assumption is clearly a simplification here, but as in

some other applications of conformal predictors (see [33]) we can see that

it is not essentially broken and we can see that the validity property holds:

the fraction of marked reactors within true positives is indeed close to the

significance level that was set. The efficiency could be judged by the number

of marked reactors within false positives: at a cost of misclassifying 10% of

true positives it is possible to identify almost two thirds of test mistakes.

31

Chapter 3

Prediction with expert advice:

specialists

What if we have no clue about the nature of the data? Is it possible to make

good predictions in an adversarial environment? These questions are the

subject of prediction with expert advice theory where no assumptions at all

are made about the data. Instead Learner has access to the pool of prediction

strategies or experts and has somehow to base his actions on them. The goal

then is to be not much worse than the best of those strategies under some

measure of the prediction quality.

Prediction with expert advice started with works of Vovk [41] and Little-

stone and Warmuth [30] although the idea of using exponentially weighted

averages already appears (in the log-loss context) in the paper of De Santis,

Markowski and Wegman [16]. The Aggregating Algorithm, which we use as

a main tool in our analysis, was proposed in [41]. Prediction with expert

advice has links to the theory of sequential coding [49] and Bayesian decision

theory.

In 1997 Freund et al. proposed the modification of the prediction task

by considering “experts that specialize” in [17]. This means that sometimes

the prediction of a certain strategy (expert) is not available (the name comes

32

from the fact that human predictors could have their areas of expertise and

refuse to issue predictions outside those). Then for each expert Learner

wants some guarantee on those trials when this expert did issue predictions.

It was shown that an effective algorithm for this setting is obtained by slight

modification of the Aggregating Algorithm. The elegant explanation for this

fact along with the generalization to the mixable loss functions appeared

in [15]. It turns out that the specialist experts when they abstain from

prediction could be viewed as the ones silently agreeing with Learner.

Other modifications of prediction task were also studied. Herbster and

Warmuth in [26] introduced the notion of tracking regret and proposed Fixed

Share, an algorithm competing well against the shifting sequences of experts.

Bousquet and Warmuth in 2001 [9] gave the efficient MPP algorithm com-

peting against sparse compound experts.

This chapter presents the main theoretical contribution of the thesis, the

virtual specialist experts framework. We present the necessary background

from the theory of prediction with expert advice and the Aggregating Algo-

rithm (AA). We then present the specialist experts and show how the AA

can be modified to accommodate them. Introducing virtual specialists al-

lows us to provide a unifying interpretation to Fixed Share and Mixing Past

Posteriors and build a new algorithm with sharp bounds for multitask online

learning.1

3.1 Background: prediction with expert ad-

vice and specialists

We start with describing the setup of prediction with expert advice.

Nature generates outcomes step by step. At every trial Learner tries to

predict the outcome. Then the actual outcome is revealed and the quality of

1The idea of applying virtual specialists in multitask setting was suggested by Manfred
K. Warmuth and was implemented by Wouter Koolen and myself.

33

Protocol 1 Prediction with expert advice

for t = 1, 2, . . . do
Experts issue predictions γnt ∈ Γ, n = 1, . . . , N
Learner announces his prediction γt ∈ Γ
Reality announces the outcome ωt ∈ Ω
Experts and Learner suffer losses lnt = λ(γnt , ωt) and lt = λ(γt, ωt)

end for

Learner’s prediction is measured by a loss function.

No assumptions are made about the nature of the data. Instead, at every

trial Learner is presented with the predictions of a pool of experts and he may

base his predictions on these. The goal of Learner in the classical setting is

to guarantee small regret, that is, to suffer cumulative loss that is not much

larger than that of the best (in hindsight) expert from the pool.

Formally, this setting is presented in Protocol 1. Here, Γ is the prediction

space, Ω is the outcome space and λ : Γ×Ω→ R is a loss function, mapping

predictions and outcomes to the losses. The triple (Ω,Γ, λ) is sometimes

called a game.

We are interested in designing algorithms that provide good regret guar-

antees in the adversarial environment, that is, no matter what the moves of

experts and Nature are the regret w.r.t. any expert is small.

Definition 9. The regret w.r.t to the ith expert over the first T trials is the

difference between Learner’s total loss on trials 1, . . . , T and i-th expert total

loss on those trials:

Ri
T = LT − LiT ,

where LT :=
∑T

t=1 lt is the cumulative loss of Learner over T trials and

LiT :=
∑T

t=1 l
i
t is the cumulative loss of i-th expert.

The nature of our guarantees depends on the loss function. Consider,

for example, a simple game of prediction. Here, the prediction and outcome

34

spaces are both {0, 1} and the loss function also takes values 0 or 1:

λ(γ, ω) =

0 if γ = ω

1 if γ 6= ω

In this case any algorithm can be forced to suffer regret linear in time.

To see this consider two experts, one predicting 0 all the time and the other

predicting 1 all the time and Nature choosing on every trial the outcome not

selected by Learner. Learner’s loss on T trial will be T , but at least one of

the experts will have his loss not more than T/2 making the regret greater

than T/2. But for some important classes of games Learner can do much

better.

3.1.1 Mix loss and the Aggregating Algorithm

In this thesis we will present our results for a specific protocol called mix loss

prediction (see Protocol 2). It could be understood as follows, in the terms

of sequential investment.

There are N types of assets. On each trial Learner has to split his capital

between those (one of them may be cash). Nature then reveals the numbers

`it ∈ [−∞,+∞] such that e−`i is the multiplicative factor indicating the price

change of the ith asset. Learner’s capital is then multiplied by a factor of

e−`t =
∑

n u
n
t e
−`nt . As Learner then has to reinvest his capital again, after T

trials his capital is multiplied by e−Lt where Lt =
∑

t=1,...,T `t. Regret then

has a meaning that e−R
i
T is the multiplicative factor between the Learner’s

capital after T trials and what it would have been had he invested all of it

in the ith asset all the time.

We choose this fundamental setting because it is universal, in the sense

that many other common settings reduce to it. For example probability fore-

casting and data compression are straightforward instances [13]. In addition,

mix loss is the baseline for the wider class of mixable loss functions, which in-

35

Protocol 2 Mix loss prediction

for t = 1, 2, . . . do
Learner announces probability vector ~ut ∈ 4N

Reality announces loss vector ~̀t ∈ [−∞,∞]N

Learner suffers loss `t := − ln
∑

n u
n
t e
−`nt

end for

cludes e. g. square loss [43]. Classical regret bounds of Aggregating Algorithm

transfer from mix loss to mixable losses almost by definition, and the same

reasoning extends to adaptive regret bounds. In addition, mix loss results

carry over in the usual modular ways(via Hoeffding and related bounds) to

non-mixable games, which include the Hedge setting [18] and Online Convex

Optimisation [48].

Now we can present our main tool, the Aggregating Algorithm (AA). The

Aggregating Algorithm [42] is parametrised by a prior distribution ~u1 on [N]

(where [N] denotes the set {1, . . . , N}). At trial t the weights of the experts

are set to

unt :=
un1e

−
∑
s<t `

n
s∑

n u
n
1e
−
∑
s<t `

n
s

=
un1e

−Lnt−1∑
n u

n
1e
−Lnt−1

, (3.1a)

which we may also maintain incrementally using the update rule

unt+1 =
unt e

−`nt∑
n u

n
t e
−`nt

. (3.1b)

In the log loss setting the Aggregating Algorithm is also known as Bayes

mixture. The weights ut are the prior weights on trial t and the update of

(3.1b) becomes the Bayes rule.

Lemma 10. The losses of Learner satisfy for any T the following:

e−LT =
N∑
n=1

un1e
−LnT . (3.2)

36

Proof.

e−LT =
∏

t=1...T

e−`t =
∏

t=1...T

∑N
n=1 u

n
1e
−Lnt∑N

n=1 u
n
1e
−Lnt−1

=
N∑
n=1

un1e
−LnT

Theorem 11. The Aggregating Algorithm in the mix loss case guarantees

for every t and n

Lt ≤ Lnt − lnun1 . (3.3)

Proof. Leaving only one summand corresponding to the n-th expert in the

right-hand side of (3.2) and taking − ln of both sides immediately yields the

statement of the theorem.

If there is no prior knowledge about experts the obvious choice for the

prior is uniform, un1 = 1/N , leading to the regret bound

Lt ≤ Lnt + lnN.

3.1.2 Specialist experts

Now we turn to the other main building block we are going to use: the

specialist experts framework.

It is reasonable to claim that sometimes the prediction of the expert could

be not available. Human forecasters may be specialized, unreachable or too

expensive, algorithms may run out of memory or simply take too long. Thus

it seems natural to generalise the setting to abstaining experts.

37

This generalization of PEA setting to the specialist experts was first ad-

dressed in 1997 paper by Freund et al. [17]. They considered the log-loss case

and proposed an algorithm (which they called SBayes) which guaranteed the

regret of logN w.r.t. any specialist expert.

In what follows we call the specialist asleep on the trials when he abstains

and awake on all the other trials.

Now the goal of Learner is slightly different. We want to guarantee that,

for every expert, our loss on the trials where this expert was awake is not

much bigger than his loss.

Mix loss for specialists. Mix loss setting is adapted to specialists as

follows. On every trial Learner is presented with awake set of experts Wt,

|Wt| = k and has to play weights on them, ~ut ∈ 4k. Then the losses

of awake experts are announced by Reality and Learner suffers loss `t :=

− ln
∑

n∈Wt
unt e

−`nt . In terms of the investment interpretation this means

that some assets are not available for trading at certain times and Learner

has to split his capital between the others. The cumulative losses LnT and

L
(n)
T are the losses of n-th expert and Learner respectively summed over the

trials when n-th expert was awake.

AA for specialists. Surprisingly, this generalization does not make Learner’s

task any harder. It is possible to slightly modify the existing algorithm (AA)

to make it work with specialists while retaining the regret bound. The al-

gorithm keeps the normalized weights is such a way that on each trial the

weights of the sleeping specialists are unchanged and the weights of awake

specialists are updated in the normal way and renormalized to the original

weight of the awake set (see Algorithm 7 for the mix-loss version of it).

Theorem 12. Learner has a strategy (Algorithm 7) that guarantees in the

game of prediction with N specialist experts advice under mix-loss function

38

Algorithm 7 AA for specialist experts (mix loss)

Start with weights un1 ,
∑

n u
n
1 = 1

for t = 1, 2, . . . do
Read the awake set Wt.
Predict with the weights wnt = unt /

∑
n′∈At u

n′
t

Update unt+1 = ute
lt−lnt for n ∈ Wt

end for

λ for all T and for all n = 1, . . . , N , that

L
(n)
T ≤ LnT + lnN (3.4)

Proof. From the definition of mix-loss we get that

e−`t =
∑
k∈Wt

wkt e
−`kt =

∑
k∈Wt

ukt e
−`kt∑

k∈Wt
ukt

(3.5)

On the other hand, suppose that all the sleeping experts are instead awake

and suffer the same loss as the right-hand side of (3.5). Let’s see whether

this changes the loss of Learner:

e−`t =
∑
k∈Wt

ukt e
−`kt + (1−

∑
k∈Wt

ukt)
∑
k∈Wt

ukt e
−`kt∑

k∈Wt
ukt

=
∑
k∈Wt

ukt e
−`kt∑

k∈Wt
ukt

The weight update also stays the same thus showing that the sleeping experts

can be substituted with the awake ones suffering the same loss as Learner.

Now the result of the theorem follows from Theorem 11.

A slightly more elaborate version of this theorem could be found in [17].

Theorem 13 ([17, Theorem 1]). Let pn be any distribution on a set of spe-

cialists with awake sets W1,W2, . . . Then for any T , AA guarantees

N∑
n=1

pn
(
L
(n)
T − L

n
T

)
≤ 4

(
pn
∥∥un1)

)
,

39

where 4
(
pn
∥∥un) denotes the relative entropy

∑N
n=1 p

n ln pn

un
between the

distributions pn and un.

This theorem is easily generalized to the mixable loss-functions, see [15].

3.1.3 Fixed Share and Mixing Past Posteriors

Typically the nature of the data is changing with time: in an initial segment

one experts predicts well, followed by a second segment in which another

expert has small loss and so forth. For this scenario the natural comparator

class is the set of partition experts which divide the sequence of T outcomes

into B segments and specify the expert that predicts in each segment. By

running AA on all exponentially many partition experts comprising the com-

parator class, we can guarantee regret ln
(
T−1
B−1

)
+ B lnN , which is optimal.

The goal then is to find efficient algorithms with approximately the same

guarantee as full AA. This task is called tracking the best expert. In this

case this is achieved by the Fixed Share [26] predictor. It assigns a cer-

tain prior to all partition experts for which the exponentially many posterior

weights collapse to N weights that can be maintained efficiently. Modifica-

tions of this algorithm achieve essentially the same bound for all T , B and

N simultaneously [40, 29]. Now we present the update of this algorithm.

Fixed Share [26], in addition to a prior ~u1 requires a sequence of switching

rates α2, α3, . . . Intuitively, αt is the probability of a switch in the sequence

of “best-at-the-step” experts before trial t. The weights are now updated as

unt+1 :=
αt+1

N − 1
+

(
1− N

N − 1
αt+1

)
unt e

−`nt∑
n u

n
t e
−`nt

. (3.6)

(We see that the Aggregating Algorithm is the special case when all αt are 0.)

The tracking regret bound for Fixed Share with uniform prior ~u1 and constant

αt = α switching rate states that for any reference sequence j1, . . . , jT of

40

experts with m blocks (and hence m− 1 switches)

T∑
t=1

`t−
T∑
t=1

`jtt ≤ lnN+(m−1) ln(N−1)− (m−1) lnα− (T −m) ln(1−α).

In an open problem Yoav Freund [9] asked whether there are algorithms

that have small regret against sparse partition experts where the base ex-

perts allocated to the segments are from a small subset of N of the M ex-

perts. The Aggregating Algorithm when run on all such partition experts

achieves regret ln
(
M
N

)
+ ln

(
T−1
B−1

)
+ B lnN , but contrary to the non-sparse

case, emulating this algorithm is NP-hard. However in a breakthrough pa-

per, Bousquet and Warmuth in 2001 [9] gave the efficient MPP algorithm

with only a slightly weaker regret bound. Like Fixed Share, MPP maintains

M “posterior” weights, but it instead mixes in a bit of all past posteriors

in each update. This causes weights of previously good experts to “glow” a

little bit, even if they perform poorly locally. When the data later favours

one of those good experts, its weight is pulled up quickly. However the term

“posterior” is a misnomer because no Bayesian interpretation for this curi-

ous self-referential update was known. Understanding the MPP update is

a very important problem because in many practical applications [22, 20]2

it significantly outperforms Fixed Share. Now we present the MPP update

rule.

Mixing Past Posteriors [9] algorithm is parameterized by a so-called mix-

ing scheme, which is a sequence γ1, γ2, . . . of distributions, each γt with sup-

port {0, . . . , t− 1}. MPP predicts with weights vmt defined recursively by

vmt :=
t−1∑
s=0

ṽms+1 γt(s) where ṽm1 :=
1

N
and ṽmt+1 :=

e−`
m
t vmt∑

n v
n
t e
−`nt

. (3.7)

2The experiments reported in [22] are based on precursors of MPP. However MPP
outperforms these algorithms in later experiments we have done on natural data for the
same problem (not shown).

41

The auxiliary distribution ṽt+1(m) is formally the (incremental) posterior

from prior vt(m). The predictive weights vt(m) are then the pre-specified

γt mixture of all such past posteriors. Two special choices of γt are studied

in the original paper by Bousqet and Warmuth: uniform past and decaying

past. The former one yields better running time, while the latter results in

a better bound. Our work eliminates this trade-off and gets the best of both

worlds.

3.2 A closer look at Adaptive Regret

In this section we focus on the task of obtaining small adaptive regret, a

notion first considered in [30] and later studied in [21]. The adaptive regret

of an algorithm on a time interval [t1, t2] is the loss of the algorithm there,

minus the loss of the best expert for that interval:

R[t1,t2] := L[t1,t2] −min
j
Lj[t1,t2]

The goal is now to ensure small regret on all intervals simultaneously. Note

that adaptive regret was defined in [21]. There for a fixed time horizon T

adaptive regret of an algorithm is defined as a maximum regret it achieves

over any time interval within [1, T]. However, we need the fine-grained de-

pendence on the endpoint times to be able to prove matching upper and lower

bounds. It also appears in the context of online regression in [23] under the

name of “local loss bound”.

We started this work by studying the very natural way of obtaining adap-

tive algorithms using the specialist experts framework. However, the result-

ing algorithm turned out to be Fixed Share, a well-known tracking algorithm.

Then we turned our attention to the alternative approach studied by Hazan

et al. in [21]. However, the resulting algorithm (called Follow the Leading

History) is also an instance of Fixed Share. So different attempts to create

42

an adaptive algorithm all resulted in the same old Fixed Share known for

tracking but whose adaptive propertied were not studied before. Intrigued

by this fact, we decided to study adaptive regret of Fixed Share thoroughly

and found the exact expression for the worst-case regret. Furthermore, we

were able to prove that Fixed Share is the optimal adaptive algorithm, in

a sense that any other algorithm will be dominated by a certain instance

of Fixed Share. The rest of this section is structured as follows. First, we

describe our initial approach in section 3.2.1. Then we show how restarts

approach from [21] is reduced to Fixed Share in section 3.2.3. Section 3.2.4

presents the worst-case regret of Fixed Share and the special cases for the

specific choices of switching rate.

3.2.1 Specialist experts approach to adaptivity

Our way of getting an adaptive algorithm is the following. We create a pool

of virtual specialist experts. For each real expert n and time t, we include a

virtual specialist that sleeps for the first t− 1 rounds and predicts as expert

n from trial t onward. Then the classical regret w.r.t. this virtual expert

on [1, T] is the same as the adaptive regret w.r.t. the real expert n on [t, T]

because on the first t− 1 trials the loss of the virtual expert equals Learner’s

loss. For fixed t2, the uniform prior on wake-up time t1 ≤ t2 and expert n

would lead to adaptive regret ln(Nt2). It turns out that the same holds even

without knowledge of t2.

At first glance, it is very inefficient to maintain weights of TN specialists

with a growing T . However, we do not need to, since we may merge the

weights of all awake specialists associated to the same real expert, resulting

in Algorithm 8. To verify this, denote this merged (unnormalised) weight in

trial t by vnt for each real expert n. The merged (unnormalised) weight vnt+1

of this real expert n in the next trial t + 1 consists of the prior weight of

the newly awaken virtual specialist plus vnt , the sum of the old weights, each

multiplied by the same factor e`
t−`nt (as they were all awake). Thus we can

43

update the sum directly, and this is reflected by our update rule.

Note that for simplicity, we have taken the prior on experts and wake-up

times independent of the experts, i. e.

p(n,t) = p(t) .

Here p(t) plays the role of the distribution on the awake times. It is not

normalized but for the predictions of algorithm on trials [1, T] only the first

T weights play role. Normalization happens at the prediction step on each

trial. Thus if we multiply all the weights in the sequence p(n,t) by a constant

the predictions remain unchanged.

Algorithm 8 Adaptive Aggregating Algorithm

Require: Prior nonnegative weights p(t), t = 1, 2, . . .
vn1 := p(1), n = 1, . . . , N
for t = 1, 2, . . . do

Play weights unt :=
vnt∑N
k=1 v

k
t

Read the experts losses `nt , n = 1, . . . , N

Set vnt+1 := p(t+ 1) + vnt
e−`

n
t∑N

k=1 u
k
t e
−`kt

, n = 1, . . . , N

end for

3.2.2 Fixed Share recovered

Now we will see that Algorithm 8 turns out to be Fixed Share with vari-

able switching rate. In the rest of this section we derive this. Let P (t) =∑t
s=1 p(s).

Fact 14. The update step of Algorithm 8 preserves the following:∑
n

vnt =
∑
n

∑
s≤t

p(s) = NP (t) .

44

Proof. This follows immediately from expanding the one-step update rule:

∑
n

vnt+1 =
∑
n

p(t+ 1) +
∑
n

vnt
e−`

n
t∑

k u
k
t e
−`kt

=
∑
n

p(t+ 1) +
∑
n

vnt
e−`

n
t∑

k
vkt∑
j v
j
t

e−`
k
t

= Np(t+ 1) +
∑
n

vnt
Induction

= NP (t+ 1) .

We now show that Algorithm 8 can be seen as Fixed Share (and vice

versa).

Lemma 15. Say that αt is the probability of a Fixed Share switch before trial

t, and p(t) is the prior weight of specialist waking up in trial t in Algorithm 8.

If αt ∈ (0, N−1
N

] for all t then the following conversion preserves behaviour:

p(t) =
N
N−1αt∏t

s=2(1−
N
N−1αs)

, αt =
N − 1

N

p(t)∑t
s=1 p(s)

,

where we use the convention that α1 = N−1
N

.

Proof. Let us rewrite the update step of Algorithm 8 for the normalised

weights.

unt+1 =
vnt+1∑
k v

k
t+1

=
p(t+ 1)

NP (t+ 1)
+

1

NP (t+ 1)
vnt

e−`
n
t∑

k u
k
t e
−`kt

=
p(t+ 1)

NP (t+ 1)
+

1

NP (t+ 1)
NP (t)unt

e−`
n
t∑

k u
k
t e
−`kt

=
αt+1

N − 1
+
P (t+ 1)− p(t+ 1)

P (t+ 1)
unt

e−`
n
t∑

k u
k
t e
−`kt

=
αt+1

N − 1
+

(
1− N

N − 1
αt+1

)
unt

e−`
n
t∑

k u
k
t e
−`kt

.

45

We see that the weight update is the update of the Fixed Share algorithm

with variable switching rate αt.

Note about big αt. For αt ∈ (N−1
N
, 1] the conversion is not possible. Later

we will see that these algorithms are not effective in terms of adaptive regret

and are dominated by Fixed Share with αt = N−1
N

. The intuitive reason

is as follows. αt = N−1
N

is equivalent to forgetting about the past at trial

t (predicting with the uniform distribution no matter what the past losses

were). Even bigger αt means favouring the switch, that is putting less weights

on experts that were good in the past. This is clearly an “anti-adaptive”

behaviour. Sometimes (see for example, [27]) Fixed Share is presented using

an alternative parametrization βt allowing “self switching”. Then αt = N−1
N
βt

and the conversion could be done for any βt ∈ [0, 1]. However we will follow

the original notation of [26]. In what follows we assume that α ∈ [0, N−1
N

].

3.2.3 Restarts approach to adaptivity

A second intuitive method to obtain adaptive regret bounds, called Follow

the Leading History (FLH), was introduced in [21]. One starts with a base

algorithm that ensures low classical regret. FLH then obtains low adaptive

regret by restarting a copy of this base algorithm each trial, and aggregating

the predictions of these copies. To get low adaptive regret w.r.t. N experts,

it is natural to take the AA as the base algorithm. We now show that FLH

with this choice equals Fixed Share with switching rate αt = N−1
Nt

.

For each n, s and t ≥ s, let p
n|s
t denote the weight allocated to expert n

by the copy of the AA started at time s. By definition p
n|s
s = 1/N , and these

weights evolve according to (3.1b). We denote by pst the weight allocated by

FLH in trial t ≥ s to the copy of AA started at time s. In [21], these weights

46

are defined as follows. Initially p11 = 1 and subsequently

pt+1
t+1 =

1

t+ 1
, pst+1 =

(
1− pt+1

t+1

) pste
−
(
− ln

∑
n p

n|s
t e−`

n
t

)
∑t

r=1 p
r
te
−
(
− ln

∑
n p

n|r
t e−`

n
t

) .

We now show that this construction is a reparametrisation of Fixed Share.

In fact, this is true for any choice of the restart probabilities ptt.

Lemma 16. For mix loss, FLH with AA as the base algorithm issues the

same predictions as Fixed Share with learning rate αt = N−1
N
ptt.

Proof. We prove by induction on t that the FS and FLH weights coincide:

unt =
t∑

s=1

p
n|s
t pst .

The base case t = 1 is obvious. For the induction step we expand

t+1∑
s=1

p
n|s
t+1p

s
t+1 =

t∑
s=1

p
n|s
t+1p

s
t+1 + pt+1

t+1/N

=
(
1− pt+1

t+1

) t∑
s=1

 p
n|s
t e−`

n
t∑

n p
n|s
t e−`

n
t

pst

(∑
n p

n|s
t e−`

n
t

)
∑t

r=1 p
r
t

(∑
n p

n|r
t e−`

n
t

)
+

1

N
pt+1
t+1

=
(
1− pt+1

t+1

) ∑t
s=1 p

s
tp
n|s
t e−`

n
t∑t

r=1

∑
n p

r
tp
n|r
t e−`

n
t

+
1

N
pt+1
t+1

Induction
=

(
1− pt+1

t+1

) unt e
−`nt∑

n u
n
t e
−`nt

+
1

N
pt+1
t+1 = unt+1,

and find the Fixed Share update equation (3.6) for switching rate αt =
N−1
N
ptt.

47

3.2.4 Fixed Share worst-case adaptive regret

We have seen in the previous section that both intuitive approaches to obtain

algorithms with low adaptive regret result in Fixed Share. We take this

convergence to mean that Fixed Share is the most fundamental adaptive

algorithm. The tracking regret for Fixed Share is already well-studied. In

this section we thoroughly analyse the adaptive regret of Fixed Share. We

obtain the worst-case adaptive regret for mix loss. This result implies the

known tracking regret bounds.

We also show an information-theoretic lower bound for mix loss that must

hold for any algorithm, and which is tight for Fixed Share. This proves that

Fixed Share is a Pareto-optimal algorithm for the mix loss game, in the sense

that no other algorithm can guarantee essentially better adaptive regret.

The exact worst-case adaptive regret for mix loss. In this section

we first compute the exact worst-case adaptive regret of Fixed Share with

arbitrary switching rate αt. Then we obtain certain regret bounds of interest,

including the tracking regret bound, for particular choices of αt.

Theorem 17. The worst-case adaptive regret of Fixed Share with N experts

on interval [t1, t2] equals

− ln

(
αt1

N − 1

t2∏
t=t1+1

(1− αt)

)
. (3.8)

Proof. The proof consists of two parts. First we claim that the worst-case

data for the interval [t1, t2] in the setting of Protocol 2 is rather simple: on

the interval there is one good expert (all others get infinite losses) and on the

single trial before the interval (if t1 > 1) this expert suffers infinite loss while

others do not. The proof of this can be found in Appendix B.

Now we will compute the regret on this data. The regret of Fixed Share

on the interval [t1, t2] is − ln of the product of the weights put on the good

48

expert (say, j) on this interval:

RFS
[t1,t2]

= − ln
∏

t1≤t≤t2

ujt .

It is straightforward to derive ujt1 from (3.6):

ujt1 =
αt1

N − 1
and ujt = 1− αt for t ∈ [t1 + 1, t2]

from which the statement follows.

Example 1: constant switching rate. This is the original Fixed Share

[26].

Corollary 18. Fixed Share with constant switching rate αt = α for t > 1

(recall that α1 = N−1
N

) has worst-case adaptive regret equal to

ln(N − 1)− lnα− (t2 − t1) ln
(
1− α

)
for t1 > 1, and

lnN − (t2 − 1) ln
(
1− α

)
for t1 = 1.

A slightly weaker upper bound was obtained in [12]. The clear advantage

of our analysis with equality is that we can obtain the standard Fixed Share

tracking regret bound by summing the above adaptive regret bounds on

individual intervals. Comparing with the best sequence of experts S on the

interval [1, T] with m blocks, we obtain the bound

LFS
[1,T]−LS[1,T] ≤ lnN + (m−1) ln(N −1)− (m−1) lnα− (T −m) ln(1−α) ,

which is exactly the Fixed Share standard bound. So we see that the reason

why Fixed Share can effectively compete with switching sequences is that it

can, in fact, effectively compete with an expert on any interval, that is, has

small adaptive regret.

49

Example 2: slowly decreasing switching rate. The idea of slowly

decreasing the switching rate was considered in [38] in the context of source

coding, and later analysed for expert switching in [29]; we saw in Section 3.2.3

that it also underlies Follow the Leading History of [21]. It results in tracking

regret bounds that are almost as good as the bounds for constant α with

optimally tuned α. These tracking bounds are again implied by the following

corresponding adaptive regret bound.

Corollary 19. Fixed Share with switching rate αt = 1/t (except for α1 =
N−1
N

) has worst-case adaptive regret

− ln

(
1

(N − 1)t1

t2∏
t=t1+1

t− 1

t

)
= ln(N − 1) + ln t2 for t1 > 1, and

(3.9a)

− ln

(
1

N

t2∏
t=2

t− 1

t

)
= lnN + ln t2 for t1 = 1. (3.9b)

Example 3: quickly decreasing switching rate. The bounds we have

obtained so far depend on t2 either linearly or logarithmically. To get bounds

that depend on t2 sub-logarithmically, or even not at all, one may instead

decrease the switching rate faster than 1/t, as analysed in [38, 27]. To obtain

a controlled trade-off, we consider setting the switching rate to αt = 1
t ln t

,

except for α1 = N−1
N

. This leads to adaptive regret at most

ln(N − 1) + ln t1 + ln ln t1 −
t2∑

t=t1+1

ln

(
1− 1

t ln t

)
≤ ln(N − 1) + ln t1 + ln ln t2 + 1.28 (3.10a)

50

when t1 > 1 and

lnN −
t2∑
t=2

ln

(
1− 1

t ln t

)
≤ lnN + ln ln t2 + 1.65 (3.10b)

when t1 = 1 (remember that ln ln 1 is understood to be 0). The constant

1.28 in (3.10a) is needed because t1 and t2 can take small values; e.g., if we

only consider t1 ≥ 10, we can replace 1.28 by 0.05, and we can replace 1.28

by an arbitrarily small δ > 0 if we only consider t1 ≥ c for a sufficiently large

c.

The dependence on t2 in (3.10) is extremely mild. We can suppress it

completely by increasing the dependence on t1 just ever so slightly. If we set

αt = t−1−ε, where ε > 0, then the sum of the series
∑∞

t=1 αt is finite and the

bound becomes

ln(N − 1) + (1 + ε) ln t1 + cε for t1 > 1, and (3.11a)

lnN + cε for t1 = 1, (3.11b)

where cε = −
∑∞

t=2 ln(1 − t−1−ε). It is clear that the bound (3.11a) is far

from optimal when t1 is large: cε can be replaced by a quantity that tends

to 0 as O(t−ε1) as t1 →∞. In particular, for ε = 1 we have the bound

lnN + 2 ln t1 + ln 2.

An interesting feature of this switching rate is that for the full interval

[t1, t2] = [1, T] the bound differs from the standard AA bound only by an

additive term less than 1. In words, the overhead for small adaptive regret

is negligible.

51

3.2.5 Fixed Share is the optimal adaptive algorithm

We started by considering several intuitive constructions for adaptive algo-

rithms, and saw that they all result in Fixed Share. We then obtained the

worst-case adaptive regret of Fixed Share. Intuitive as it may be, we have

not answered the question whether Fixed Share is a good algorithm in the

sense that its worst-case adaptive regret bounds are small. It is conceivable

that there are smarter algorithms with better adaptive regret guarantees.

See for example the palette of tracking algorithms by [29]. And even if no

better algorithms exist, there may still be algorithms that exhibit different

trade-offs, in the sense that their worst-case adaptive regret is incomparable

to that of Fixed Share.

So in this section we start from the other end and derive lower bounds

that hold for any algorithm. As expected, we conclude that the bounds of

Fixed Share (with any switching rate sequence αt) are Pareto optimal. But

it came to us as a shocking surprise that actually all other bounds are strictly

dominated. No matter how smart the algorithm; its worst-case adaptive

regret will be dominated by that of an instance of Fixed Share.

To keep the notation in this section simple, we consider the number N

of experts fixed. We call a mapping φ of intervals to losses a candidate

guarantee. Such a candidate guarantee is realisable if there is an algorithm

for mix loss prediction (Protocol 2) with adaptive regret at most φ. That is,

we demand

R[t1,t2] ≤ φ(t1, t2)

for all sequences of expert losses ~̀1, ~̀2, . . . in [−∞,∞]N and all choices of the

interval 1 ≤ t1 ≤ t2. We say that a realisable guarantee φ is Pareto optimal

if there is no realisable φ that is strictly better, i.e. ≤ on all intervals and <

on at least one interval.

We are interested in Pareto-optimal guarantees. Every such guarantee

is, by definition, the worst-case regret of an algorithm. Let us make that

52

precise:

Definition 20. We say that φ is the worst-case adaptive regret of a given

algorithm if

φ(t1, t2) = sup
~̀
1,~̀2,...

R[t1,t2] for all 1 ≤ t1 ≤ t2.

Note that the worst-case regret may not be attained.

The main step in characterising the Pareto optimal guarantees is showing

that worst-case adaptive regrets can not be too small.

Theorem 21. Let φ be the worst-case adaptive regret of some algorithm.

Then

φ(t, t) ≥ lnN for all 1 ≤ t and

(3.12a)

φ(t1, t2) ≥ φ(t1, t1) +

t2∑
t=t1+1

− ln
(
1− (N − 1)e−φ(t,t)

)
for all 1 ≤ t1 < t2.

(3.12b)

Proof. Suppose (3.12a) fails for some t. Since at any point the N weights

must sum to at most one, the smallest weight must be ≤ 1/N . Hence by

hitting all others with infinite loss we can force loss at least lnN . Now

suppose (3.12a) holds throughout, and consider any interval [t1, t2]. Fix ε > 0.

Let ~̀1, . . . , ~̀t1 be data on which the worst-case regret exceeds φ(t1, t1) − ε.
Let i∗ be the (any) best expert in trial t1. Now for all t ∈ (t1, t2] choose

`i
∗
t = 0 and `jt =∞ for all j 6= i∗. In any trial t, the algorithm must allocate

at least weight e−φ(t,t) to each expert to guarantee φ on the singleton interval

{t}. Since the weights sum to one, the weight allocated to expert i∗ during

each trial t ∈ (t1, t2] can be at most 1 − (N − 1)e−φ(t,t). Hence the loss of

the algorithm must be at least − ln
(
1 − (N − 1)e−φ(t,t)

)
. Since the loss of

53

the best expert i∗ on (t1, t2] is zero, the regret is at least the right-hand side

of (3.12b) minus ε. The worst-case regret φ(t1, t2) must be at least as large.

Since this holds for all ε, we proved (3.12b).

A realisable guarantee is witnessed by some algorithm, and is therefore

dominated by the worst-case adaptive regret of that algorithm. We proved

that this worst-case adaptive regret must satisfy (3.12). We now show that

any guarantee satisfying (3.12) is realised by an instance of Fixed Share.

Theorem 22. Let φ satisfy (3.12). Then Fixed Share with switching rate

sequence α2, α3, . . . where αt = (N − 1)e−φ(t,t) guarantees φ.

Proof. From (3.12a) we know that αt ≤ (N − 1)/N , so the worst case regret

of Fixed Share is given by Theorem 17. In particular (3.8) with our choice of

αt equals the right-hand side of (3.12b), and so FS guarantees φ. Note the

fact that α1 is always set to the specific value (N − 1)/N only works in our

favour here.

By combining the preceding two theorems, we obtain canonical represen-

tatives of the Pareto guarantees for adaptive regret.

Corollary 23. Let φ be a candidate guarantee. The following are equivalent:

• φ is realisable

• ∃ψ ≤ φ such that ψ satisfies (3.12)

• φ is dominated by the worst-case adaptive regret of a Fixed Share.

And more importantly, the following are also equivalent:

• φ is Pareto optimal

• φ satisfies (3.12a), with equality for t = 1, and (3.12b) with equality

throughout.

• φ is the worst-case adaptive regret of a Fixed Share.

54

3.3 Mixing Past Posteriors demystified

Now we turn our attention towards more complex virtual specialists. Namely

we provide a specialist experts explanation for Mixing Past Posteriors (MPP),

an effective but somewhat mysterious algorithm by Bousquet and Warmuth

[9]. In this section we craft the specialist experts and the prior on them to

recover MPP. As Fixed Share is the special case of MPP (corresponding to a

specific mixing scheme) it should come as no surprise that the construction

here is more general then the Fixed Share one. Namely, now the experts are

allowed to fall asleep after they wake up. Actually, we consider all possible

wake-up sequences and create a virtual expert for every pair of such wake-up

sequence and a real expert.

3.3.1 Construction

Each partition specialist (χ,m) is parameterized by an expert index m and

a circadian (wake/sleep pattern) χ = (χ1, χ2, . . .) with χt ∈ {w, s}. We use

infinite circadians in order to obtain algorithms that do not depend on a time

horizon. The wake set Wt includes all partition specialists that are awake at

time t, i.e. Wt := {(χ,m) | χt = w}. An awake specialist (χ,m) in Wt suffers

the same loss as the base expert m, i.e. l
(χ,m)
t = lmt if χt = w. The algorithm

is now fully specified by choosing a prior on partition specialists. Here we

enforce the independence P (χ,m) := P (χ)P (m) and define P (m) := 1/M

uniform on the base experts. We now can apply Theorem 13 to bound the

regret w.r.t. any partition expert with time horizon T by decomposing it into

N partition specialists (χ1
≤T , m̂

1), . . . , (χN≤T , m̂
N) and choosing U(·) = 1/N

uniform on these specialists:

R ≤ N ln
M

N
+

N∑
n=1

− lnP (χn≤T). (3.13)

55

The overhead of selecting N reference experts from the pool of size M closely

approximates the information-theoretic ideal N ln M
N
≈ ln

(
M
N

)
. This im-

proves previous regret bounds [9, 1, 12] by an additive N lnN . Next we

consider two choices for P (χ): one for which we retrieve MPP, and a natural

one which leads to efficient algorithms and sharper bounds.

3.3.2 MPP recovered

To see how one might be able to build a prior corresponding to the weighting

schemes of Mixing Past Posteriors we expand the MPP weights 3.7:

vnt = vn0

t∑
m=1

∑
1≤s1≤s2≤···≤sm=t

γs1(0)
m∏
q=2

γsq(sq−1)
e
−`nsq−1∑

n e
−`nsq−1vnsq−1

(3.14)

where s0 = 0.

For the specialist algorithm the weight corresponding to n-th real ex-

pert on trial t is obtained by summing the weights of the awake specialists

corresponding to n-th expert normalized over the weight of the wake set.

unt =
1∑

Wt
u
(χ,n)
t

∑
χt=w

u
(χ,n)
0

∏
s<t,χs=w

e−`
n
s∑

n e
−`ns uns

(3.15)

To match 3.15 and 3.14 we build a prior by only putting weights on the

sequences with finite number of w-s in the following manner. Let m be the

number of w-s in χ and si, i = 1, . . . ,m index their positions in χ. Then,

u
(χ,n)
0 =

1

N
P (χ) =

1

N
P0(sm)

m∏
q=1

γsq(sq−1) (3.16)

where as before s0 = 0 and P0(sm) is any distribution on N with full

support. Now we state several facts about this prior.

56

Fact 24. P (χ) is the probability of a path χ in the following Markov chain.

The chain has states S0, S∞, S1, S2, It starts at S∞ and the transition

probabilities are defined as follows.

P (S∞, Sn) = P (n),

P (Si, Sj) =

γi(j), if i > j

0, otherwise.

Fact 25. P (χ<t|χt = w) =
∏k

q=1 γsq(sq−1), where sk = t.

Now we can prove by induction that the weights match. Expanding 3.15

with the constructed prior we get, using the Markovian property,

unt =
un0∑

Wt
u
(χ,n)
t

∑
χt=w

P (χt = w)P (χ<t|χt = w)P (χ>t|χt = w)
∏

s<t,χs=w

e−`
n
s∑

n e
−`ns uns

=
un0∑

Wt
u
(χ,n)
t

∑
χt=w

P (χt = w)
∏

sq<t,s.t.χsq=w

γsq(sq−1)
∏

s<t,χs=w

e−`
n
s∑

n e
−`ns uns

= un0
P (χt = w)∑

Wt
u
(χ,n)
t

t∑
m=1

∑
1≤s1≤s2≤···≤sm=t

γs1(0)
m∏
q=2

γsq(sq−1)
e
−`nsq−1∑

n e
−`nsq−1unsq−1

Now we apply the induction hypothesis and note that the weights coincide

up to the normalization, which must, therefore, be 1.

This proves the following theorem.

Theorem 26. For any mixing scheme γ1, γ2, . . . there is a prior (defined

by 3.16) on the virtual specialist experts such that the prediction of MPP is

equivalent to the prediction of The Aggregating Algorithm for specialists.

57

3.3.3 A simple Markov chain circadian prior

In the previous section we recovered circadian priors corresponding to the

MPP mixing schemes. Here we design priors afresh from first principles.

Our goal is efficiency and good regret bounds. A simple and intuitive choice

for prior P (χ) is a Markov chain on states {w, s} with initial distribution θ(·)
and transition probabilities θ(·|w) and θ(·|s), that is

P (χ≤t) := θ(χ1)
t∏

s=2

θ(χs|χs−1). (3.17)

By choosing low transition probabilities we obtain a prior that favors tempo-

ral locality in that it allocates high probability to circadians that are awake

and asleep in contiguous segments. Thus if a good sparse partition expert

exists for the data, our algorithm will pick up on this and predict well.

The resulting strategy (aggregating infinitely many specialists) can be

executed efficiently.

Theorem 27. The prediction of AA with Markov prior (3.17) is equal to

the prediction vmt of Algorithm 9, which can be computed in O(M) time per

outcome using O(M) space.

Proof. We prove that the update of the algorithm reflects the fact that

vt(b,m) =
∑

χt=b
u
(χ,m)
t for each expert m and b ∈ {w, s}. The base case

58

t = 1 is automatic. For t > 1 step we expand

vt+1(b,m) =
∑
χt+1=b

u
(χ,m)
t+1 =

∑
χt=w,χt+1=b

u
(χ,m)
t+1 +

∑
χt=s,χt+1=b

u
(χ,m)
t+1

=
∑

χt=w,χt+1=b

u
(χ,m)
t e`t−`

m
t +

∑
χt=s,χt+1=b

u
(χ,m)
t

=
∑
χt=w

u
(χ,m)
t θ(b|w)e`t−`

m
t +

∑
χt=s

u
(χ,m)
t θ(b|s)

= vt(w,m)θ(b|w)e`t−`
m
t + vt(s,m)θ(b|s)

Algorithm 9 AA with Markov circadian prior (3.17) (for Freund’s problem)

Input: Distributions θ(·), θ(·|w) and θ(·|s) on {w, s}.
Initialize v1(b,m) := θ(b)/M for each expert m and b ∈ {w, s}
for t = 1, 2, . . . do

Predict with vmt = vt(w,m)∑M
m′=1 vt(w,m

′)

Observe losses `nt and suffer mix-loss `t = − ln
∑

m v
m
t e
−`mt .

Update vt+1(b,m) := θ(b|w)elt−l
m
t vt(w,m) + θ(b|s)vt(s,m).

end for

The previous theorem establishes that we can predict fast. Next we show

that we predict well.

Theorem 28. Let m̂1, . . . , m̂T be an N-sparse assignment of M experts to T

times with B segments. The regret of Algorithm 9 with tuning θ(w) = 1/N ,

θ(s|w) = B−1
T−1 and θ(w|s) = B−1

(N−1)(T−1) is at most

R ≤ N ln
M

N
+N H

(
1

N

)
+ (T − 1)H

(
B − 1

T − 1

)
+(N − 1)(T − 1)H

(
B − 1

(N − 1)(T − 1)

)
,

59

where H(p) := −p ln(p)− (1− p) ln(1− p) is the binary entropy function.

Proof. Without loss of generality assume m̂t ∈ {1, . . . , N}. For each expert

n pick circadian χn≤T with χnt = w iff m̂t = n. Expanding the definition of

the prior (3.17) we find

N∏
n=1

P (χn≤T) = θ(w)θ(s)N−1θ(s|s)(N−1)(T−1)−(B−1)θ(w|w)T−Bθ(w|s)B−1θ(s|w)B−1,

which is in fact maximized by the proposed tuning. The theorem follows

from (3.13).

The information-theoretic ideal regret is ln
(
M
N

)
+ ln

(
T−1
B−1

)
+B lnN . The-

orem 28 is very close to this except for a factor of 2 in front of the middle

term; since nH(k/n) ≤ k ln(n/k) + k we have

R ≤ N ln
M

N
+ 2(B − 1) ln

T − 1

B − 1
+B lnN + 2B.

The origin of this factor remained a mystery in [9], but becomes clear in

our analysis: it is the price of coordination between the specialists that con-

stitute the best partition expert. To see this, let us regard a circadian as a

sequence of wake/sleep transition times. With this viewpoint (3.13) bounds

the regret by summing the prior costs of all the reference wake/sleep tran-

sition times. This means that we incur overhead at each segment boundary

of the comparator twice: once as the sleep time of the preceding expert, and

once more as the wake time of the subsequent expert.

In practice the comparator parameters T , N and B are unknown. This

can be addressed by standard orthogonal techniques. Of particular interest

is the method inspired by [38, 29, 27] of changing the Markov transition

probabilities as a function of time. It can be shown that by setting θ(w) = 1/2

and increasing θ(w|w) and θ(s|s) as exp(− 1
t ln2(t+1)

) we keep the update time

and space of the algorithm at O(M) and guarantee regret bounded for all T ,

60

N and B as

R ≤ N ln
M

N
+ 2N + 2(B − 1) lnT + 4(B − 1) ln ln(T + 1).

At no computational overhead, this bound is remarkably close to the fully

tuned bound of the theorem above, especially when the number of segments

B is modest as a function of T .

3.4 Online Sparse Multitask Learning

Multitask learning [10] is an approach of learning several problems together,

with the hope of exploiting similarities among them. We transition to an

extension of the sequential prediction setup called online multitask learning

[1, 35, 6, 31, 11, 36, 24]. The new ingredient in the online protocol is that

before predicting in trial t we are given its task number κt ∈ {1, . . . , K}. As

before, we have access to M experts. If a single expert performs well on sev-

eral tasks we want to figure this out quickly and exploit it. Simply ignoring

the task number would not result in an adaptive algorithm. Applying a sep-

arate Bayesian predictor to each task independently would not result in any

inter-task synergy. Nevertheless, it would guarantee regret at most K lnM

overall. Now suppose each task is predicted well by some expert from a small

subset of experts of size N � M . Running AA on all N -sparse allocations

would achieve regret ln
(
M
N

)
+K lnN . However, emulating AA in this case is

NP-hard [35]. The goal is to design efficient algorithms with approximately

the same regret bound.

In [1] this multiclass problem is reduced to MPP, giving regret bound

N ln M
N

+ B lnN . Here B is the number of same-task segments in the task

sequence κ≤T . When all trials with the same task number are consecutive,

i.e. B = K, then the desired bound is achieved. However the tasks may be

interleaved, making the number of segments B much larger than K. We now

eliminate the dependence on B, i.e. we solve a key open problem of [1].

61

We apply the method of specialists to multitask learning, and obtain

regret bounds close to the information-theoretic ideal, which in particular do

not depend on the task segment count B at all.

3.4.1 Construction

We create a subset specialist (S,m) for each basic expert index m and subset

of tasks S ⊆ {1, . . . , K}. At time t, specialists with the current task κt in

their set S are awake, i.e. Wt := {(S,m) | κt ∈ S}, and suffer the loss `mt of

expert m. We assign to subset specialist (S,m) prior probability P (S,m) :=

P (S)P (m) where P (m) := 1/M is uniform, and P (S) includes each task

independently with some fixed bias σ(w)

P (S) := σ(w)|S|σ(s)K−|S|. (3.18)

This construction has the property that the product of prior weights of two

loners ({κ1}, m̂) and ({κ2}, m̂) is dramatically lower than the single pair

specialist ({κ1, κ2}, m̂), especially so when the number of experts M is large

or when we consider larger task clusters. By strongly favoring it in the prior,

any inter-task similarity present will be picked up fast.

3.4.2 Implementation

In this section we show that the resulting strategy involving M2K subset

specialists can be implemented efficiently.

Theorem 29. The predictions of AA with the set prior (3.18) equal the

predictions vmt of Algorithm 10. They can be computed in O(M) time per

outcome using O(KM) storage.

Of particular interest is Algorithm 10’s update rule for fκt+1(m). This

would be a regular Bayesian posterior calculation if vt(m) were replaced by

62

fκt (m). In fact, vt(m) is the communication channel by which knowledge

about the performance of expert m in other tasks is received.

Proof. The resource analysis follows from inspection, noting that the update

is fast because only the weights fκt (m) associated to the current task κ are

changed. We prove by induction on t that vt(m) =
∑

S3κt u
(S,m)
t . In the base

case t = 1 both equal 1/M . For the induction step we expand
∑

S3κt+1
u
(S,m)
t+1 ,

which is by definition proportional to

∑
S3κt+1

1

M
σ(w)|S|σ(s)K−|S|

 ∏
q≤t :κq∈S

e−`
m
q

 ∏
q≤t :κq /∈S

e−`q

 . (3.19)

The product form of both set prior and likelihood allows us to factor this

exponential sum of products into a product of binary sums. It follows from

the induction hypothesis that

fkt (m) =
σ(w)

σ(s)

∏
q≤t :κq=k

e`q−`
m
q

Then we can divide (3.19) by e−Lt+1σ(s)K and reorganize to

1

M
f
κt+1

t (m)
∏

k 6=κt+1

(
fkt (m) + 1

)
=

1

M

f
κt+1

t (m)

f
κt+1

t (m) + 1

K∏
k=1

(
fkt (m) + 1

)
Since the algorithm maintains πt(m) =

∏K
k=1(f

k
t (m) + 1) this is proportional

to vt+1(m).

The Bayesian strategy is hence emulated fast by Algorithm 10. We now

show it predicts well.

Theorem 30. Let m̂1, . . . , m̂K be an N-sparse allocation of M experts to

K tasks. With tuned inclusion rate σ(w) = 1/N , the regret of Bayes (Algo-

63

Algorithm 10 Bayes with set prior (3.18) (for online multitask learning)

Input: Number of tasks K ≥ 2, distribution σ(·) on {w, s}.
Initialize fk1 (m) := σ(w)

σ(s)
for each task k and π1(m) :=

∏K
k=1(f

k
1 (m) + 1).

for t = 1, 2, . . . do
Observe task index κ = κt.
Predict with vt(m) :=

fκt (m)πt(m)/(fκt (m)+1)∑M
i=1 f

κ
t (i)πt(i)/(f

κ
t (i)+1)

.

Read losses `mt of each expert m
Suffer loss `t = − ln

∑
m v

m
t e
−`tm .

Update fκt+1(m) := e`t−`
m
t fκt (m) and keep fkt+1(m) := fkt (m) for all k 6= κ.

Update πt+1(m) :=
fκt+1(m)+1

fκt (m)+1
πt(m).

end for

rithm 10) is bounded by

R ≤ N ln (M/N) +KN H(1/N).

Proof. Without loss of generality assume that m̂k ∈ {1, . . . , N}. Let Sn :=

{1 ≤ k ≤ K | m̂k = n}. The sets Sn for n = 1, . . . , N form a partition of the

K tasks. By (3.18)
∏N

n=1 P (Sn) = σ(w)Kσ(s)(N−1)K , which is maximized by

the proposed tuning. The theorem now follows from (3.13).

We achieve the desired goal since KN H(1/N) ≈ K lnN . In practice N is

of course unavailable for tuning, and we may tune σ(w) = 1/K pessimistically

to get K lnK+N instead for all N simultaneously. Or alternatively, we may

sacrifice some time efficiency to externally mix over all M possible values

with decreasing prior, increasing the tuned regret by just lnN +O(ln lnN).

If in addition the number of tasks is unknown or unbounded, we may (as

done in Section 3.3.3) decrease the membership rate σ(w) with each new task

encountered and guarantee regretR ≤ N ln(M/N)+K lnK+4N+2K ln lnK

where now K is the number of tasks actually received.

64

3.4.3 Multitask Learning experiment

To test our new Multitask Learning algorithm we used the TB data provided

by the VLA. The task here is to try to predict the probability of the skin

test being positive based on the per-animal attributes, such as age, sex and

breed. We pose it as a multitask learning problem in the following way. The

cows are partitioned into buckets based on triples {age group, sex, breed},
where we use three age groups of equal size. Each bucket is a task. At every

trial Learner is given the task number and is predicting the probability of

this animal being a reactor. Then the outcome of the test is revealed and

Learner suffers log-loss.

The experts for this task are discretized Bernoulli experts so we would

like to learn the optimal rate for a given task. It is known that running

plain AA on Bernoulli experts with certain prior results in a well-known

Krichevsky–Trofimov estimator.

Setup After the initial preprocessing (removing the entries with missing

data and splitting cows into three age groups of the same size) 16572647

cows were split into the 450 buckets (3 age groups, 3 values for sex and 50

breeds). One of them was empty, so this resulted in 449 tasks.

The following algorithms were run.

• Basic Aggregating Algorithm (Krichevsky–Trofimov). This was learn-

ing the overall illness rate and does exploit the differences between

tasks.

• Per-task Aggregating Algorithm (keeping separate weights on experts

for each task)

• Aggregating Algorithm for Multitask Learning (Algorithm 10).

Also, the following experts were used for comparison:

65

AA Best expert Per-task AA Multitask AA Best per-task expert
8.7815e+05 8.7814e+05 8.4364e+05 8.4299e+05 8.4182e+05

Table 3.1: Multitask experiment: total losses

• Retrospectively best Bernoulli expert overall

• Retrospectively best per-task Bernoulli expert

The first one sets the goal for the basic AA, while the second one sets the

goal for the per-task AA and the multitask one. We expect that by exploiting

the similarities of some tasks Algorithm 10 will be better than the per-task

AA.

Discussion Total losses after 16572647 trials are shown in Table 3.1.

First of all, we see that all the losses are not very far from each other.

The reason here is that the level of TB varies between 0.05% and 1% for all

the tasks. We see that AA gets very close to the best expert overall.

Per-task AA gets quite close to the Best per-task expert and the gap for

Multitask algorithms to squeeze in is very small. However, Algorithm 10

manages to get even closer to the best expert, as expected.

66

Appendix A

Adaptive regret for mix loss

transfers to mixable losses

The protocol of prediction with expert advice is given as Protocol 3. Pre-

dictions are made sequentially, their quality is measured by the loss function

λ and Learner has access to a (finite) pool of N experts. Protocol 2 is the

special case corresponding to the simplex prediction set Γ = 4N , outcome

space Ω = [−∞,∞]N and mix loss. An important class of loss functions that

allow for effective algorithms are mixable losses.

Protocol 3 Prediction with expert advice
L0 := 0,
Ln0 := 0, n = 1, . . . , N
for t = 1, 2, . . . do

Expert n announces prediction γnt ∈ Γ, n = 1, . . . , N
Learner announces prediction γt ∈ Γ
Reality announces outcome ωt ∈ Ω
Lt := Lt−1 + λ(γt, ωt)
Lnt := Lnt−1 + λ(γnt , ωt), n = 1, . . . , N

end for

Definition 31. A loss function λ is called η-mixable, where η > 0, if for every

K, every sequence of predictions γ1, . . . , γK and every sequence of normalised

67

nonnegative weights u1, . . . , uK there exists a prediction γ ∈ Γ such that for

every outcome ω ∈ Ω

λ(γ, ω) ≤ − 1

η
ln

(
K∑
k=1

uke−ηλ(γ
k,ω)

)
. (A.1)

A function Σ that maps every sequence of predictions γ1, . . . , γK and every

sequence of normalised nonnegative weights u1, . . . , uK of the same length to

γ ∈ Γ satisfying (A.1) is called an η-perfect substitution function.

The notion of mixability will not change if we set K = 2 in (A.1). Ex-

amples of mixable games can be found in [43]. Note that 1/η-scaled mix loss

is the baseline used in the definition of mixability: see (A.1). In this sense

the mix loss is the hardest mixable loss. It is hence no surprise that adaptive

regret bounds for mix loss immediately transfer to any mixable loss:

Fact 32. Let X be a mix loss algorithm with w.c. adaptive regret φ(t1, t2, N).

If λ is η-mixable then there is an algorithm Y with adaptive regret at most

φ(t1, t2, N)/η.

Proof. Let Σ be an η-perfect substitution function for λ. We choose Y to be

the algorithm that operates as follows. At each trial t = 1, 2, . . . it obtains

prediction ~ut from X, predicts with γt = Σ(~ut, ~γt), and feeds into X losses

`nt = ηλ(γnt , ωt) (from the point of view of Y these are scaled losses rather

than losses). Then for each interval [t1, t2] and reference expert j we have

LY[t1,t2] − L
j
[t1,t2]

=

t2∑
t=t1

λ(γt, ωt)−
t2∑
t=t1

λ(γjt , ωt)

≤ − 1

η

t2∑
t=t1

ln
∑
n

unt e
−ηλ(γnt ,ωt) −

t2∑
t=t1

λ(γjt , ωt)

= −1

η

t2∑
t=t1

ln
∑
n

unt e
−`nt−1

η

t2∑
t=t1

`jt =
1

η

(
LX[t1,t2] − L

j
[t1,t2]

)
≤ 1

η
φ(t1, t2, N),

68

where the first inequality follows from the definition of an η-perfect substi-

tution function and the last one from our assumption about X.

Fact 32 shows that all our performance guarantees for the mix loss proto-

col carry over to the protocol of prediction with expert advice with a mixable

loss function.

69

Appendix B

Worst-case adaptive regret

data for Fixed Share

In this subsection we prove that the worst-case data for Fixed Share has

the following form. On the interval [t1, t2] we are interested in all but one

expert suffer infinite loss and on the step preceding t1 (if t1 6= 1) this one

expert suffers infinite loss himself. The construction is iterative and we start

constructing the data from the end of the interval. Throughout this section

we assume that αt ∈ [0, N−1
N

] for all t.

Lemma 33. For any history prior to the step t2 the adaptive regret Rj
[t1,t2]

w.r.t. expert j on the interval [t1, t2] is maximised with `kt2 =∞ for k 6= j.

70

Proof. Let us differentiate the adaptive regret w.r.t. `kt2 :

∂Rj
[t1,t2]

∂`kt2
=

∂

∂`kt2
(`t2 − `

j
t2)

=
∂

∂`kt2
(`t2)− 1{j=k}

= − ∂

∂`kt2
ln
∑
i

uit2e
−`it2 − 1{j=k}

=
ukt2e

−`kt2∑
uit2e

−`it2
− 1{j=k}

We can see that it is positive for all k 6= j and becomes zero for k = j

when we plug in `kt2 =∞ for those.

Lemma 34. Fix an comparator expert j. Let t ∈ [t1, t2]. Suppose that the

losses for steps s = t+ 1, . . . , t2 satisfy `ks =∞ for k 6= j. Then the adaptive

regret Rj
[t1,t2]

is maximised with `kt =∞ for k 6= j.

Proof. Let us start with showing that the if on the steps t+ 1 and t+ 2 the

data is organised as we want to, that is j-th expert is good and all others

suffer infinite loss, then Learner’s loss on step t+ 2 is not dependent on what

happens at time t and before. This follows immediately from (3.6), as

`t+2 = − ln (1− αt+2) .

Now let us differentiate the adaptive regret Rj
[t1,t2]

w.r.t. `kt assuming that the

future losses are set up as we want. Let us show that the derivatives w.r.t.

`kt where k 6= j are all positive. For those,

∂Rj
[t1,t2]

∂`kt
=

∂`t
∂`kt

+
∂`t+1

∂`kt

71

Expanding the second one gives (as before, k 6= j):

∂`t+1

∂`kt
=

∂

∂`kt
− ln

(
αt+1

N − 1
+ (1− N

N − 1
αt+1)u

j
te
`t−`jt

)

= −
(1− N

N−1αt+1)u
j
te
`t−`jt ∂

∂`kt
`t

αt+1

N−1 + (1− N
N−1αt+1)u

j
te
`t−`jt

So we see that

∂Rj
[t1,t2]

∂`kt
=

∂`t
∂`kt

(
1−

(1− N
N−1αt+1)u

j
te
`t−`jt

αt+1

N−1 + (1− N
N−1αt+1)u

j
te
`t−`jt

)

=
∂`t
∂`kt

(
αt+1

N−1
αt+1

N−1 + (1− N
N−1αt+1)u

j
te
`t−`jt

)
> 0

So our worst-case pattern of losses extends one trial backwards.

Finally, we need to state the almost obvious fact that in order to maximise

the adaptive regret we need to insert an infinite loss for the comparator expert

right before the start of the interval, thus killing all the previous weight on

him.

Lemma 35. Fix a comparator expert j. Suppose that the losses for steps

s = t1, . . . , t2 satisfy `ks = ∞ for k 6= j. Then the adaptive regret Rj
[t1,t2]

is

maximised with `jt−1 =∞.

Proof. As before, the adaptive regret on steps starting from t1 + 1 does not

depend on `kt1−1. So let us show that
∂Rj

[t1,t2]

∂`jt1−1

> 0. We can reuse the proofs of

previous lemmas for that:

∂Rj
[t1,t2]

∂`jt1−1
=

∂`t1
∂`jt1−1

= −
(1− N

N−1αt1)u
j
t1−1e

`t1−1−`jt1−1

αt1
N−1 + (1− N

N−1αt1)u
j
t1−1e

`t1−1−`jt1−1

∂
(
`t1−1 − `

j
t1−1
)

∂`jt1−1
> 0,

72

since
∂(`t1−1−`jt1−1)

∂`jt1−1

is negative as follows from the proof of Lemma 33.

73

Bibliography

[1] Jacob Ducan Abernethy, Peter Bartlett, and Alexander Rakhlin. Mul-

titask learning with expert advice. Technical report, University of Cali-

fornia at Berkeley, January 2007.

[2] Steven Abney. Semisupervised Learning for Computational Linguistics.

Chapman & Hall/CRC, 1st edition, 2007.

[3] Dmitry Adamskiy, Wouter M. Koolen, Alexey Chernov, and Vladimir

Vovk. A closer look at adaptive regret. In ALT, pages 290–304, Berlin,

Heidelberg, 2012. Springer.

[4] Dmitry Adamskiy, Ilia Nouretdinov, Andy Mitchell, Nick Coldham, and

Alexander Gammerman. Applying conformal prediction to the bovine

TB diagnosing. In EANN/AIAI (2), pages 449–454, 2011.

[5] Mitya Adamskiy, Ilia Nouretdinov, and Alex Gammerman. Conformal

prediction in semi-supervised case. Chapman and Hall, 2011.

[6] Alekh Agarwal, Alexander Rakhlin, and Peter Bartlett. Matrix reg-

ularization techniques for online multitask learning. Technical report,

University of California Berkeley, October 2008. EECS-2008-138.

[7] Mikhail Belkin and Partha Niyogi. Semi-supervised learning on Rieman-

nian manifolds. Machine Learning, 56:209–239, 2004.

74

[8] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data

with co-training. In COLT.

[9] Olivier Bousquet and Manfred K. Warmuth. Tracking a small set of ex-

perts by mixing past posteriors. Journal of Machine Learning Research,

3:363–396, 2002.

[10] Rich Caruana. Multitask learning. In Machine Learning, pages 41–75,

1997.

[11] Giovanni Cavallanti, Nicolò Cesa-Bianchi, and Claudio Gentile. Linear

algorithms for online multitask classification. J. Mach. Learn. Res.,

11:2901–2934, December 2010.

[12] Nicolò Cesa-Bianchi, Pierre Gaillard, Gábor Lugosi, and Gilles Stoltz.

A new look at shifting regret. arXiv, abs/1202.3323, 2012.

[13] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and

Games. Cambridge University Press, 2006.

[14] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learn-

ing. MIT Press, Cambridge, MA, 2006.

[15] Alexey Chernov and Vladimir Vovk. Prediction with expert evaluators’

advice. In ALT, pages 8–22, 2009.

[16] Alfredo DeSantis, George Markowsky, and Mark N. Wegman. Learn-

ing probabilistic prediction functions. In COLT, pages 312–328, San

Francisco, CA, USA, 1988. Morgan Kaufmann Publishers Inc.

[17] Y. Freund, R. E. Schapire, Y. Singer, and M. K. Warmuth. Using

and combining predictors that specialize. In Proc. 29th Annual ACM

Symposium on Theory of Computing, pages 334–343. ACM, 1997.

75

[18] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization

of on-line learning and an application to boosting. Journal of Computer

and System Sciences, 55:119–139, 1997.

[19] Alexander Gammerman, Vladimir Vovk, and Vladimir Vapnik. Learning

by transduction. In In Uncertainty in Artificial Intelligence, pages 148–

155. Morgan Kaufmann, 1998.

[20] Robert B. Gramacy, Manfred K. Warmuth, Scott A. Brandt, and Ismail

Ari. Adaptive caching by refetching. In Suzanna Becker, Sebastian

Thrun, and Klaus Obermayer, editors, NIPS, pages 1465–1472. MIT

Press, 2002.

[21] Elad Hazan and C. Seshadhri. Efficient learning algorithms for changing

environments. In ICML, page 50, 2009.

[22] David P. Helmbold, Darrell D. E. Long, Tracey L. Sconyers, and Bruce

Sherrod. Adaptive disk spin-down for mobile computers. ACM/Baltzer

Mobile Networks and Applications (MONET), pages 285–297, 2000.

[23] Mark Herbster. Learning additive models online with fast evaluating

kernels. In COLT, pages 444–460, London, UK, UK, 2001. Springer-

Verlag.

[24] Mark Herbster, Stephen Pasteris, and Fabio Vitale. Online sum-product

computation over trees. In NIPS, pages 2879–2887, 2012.

[25] Mark Herbster, Massimiliano Pontil, and Lisa Wainer. Online learning

over graphs. In ICML, pages 305–312, 2005.

[26] Mark Herbster and Manfred K. Warmuth. Tracking the best expert.

Machine Learning, 32:151–178, 1998.

76

[27] Wouter M. Koolen. Combining Strategies Efficiently: High-quality Deci-

sions from Conflicting Advice. PhD thesis, Institute of Logic, Language

and Computation (ILLC), University of Amsterdam, January 2011.

[28] Wouter M. Koolen, Dmitry Adamskiy, and Manfred K. Warmuth.

Putting Bayes to sleep. In NIPS, pages 135–143, 2012.

[29] Wouter M. Koolen and Steven de Rooij. Combining expert advice effi-

ciently. In COLT, pages 275–286, 2008.

[30] Nick Littlestone and Manfred K. Warmuth. The Weighted Majority

Algorithm. Inf. Comput., 108(2):212–261, 1994.

[31] Gábor Lugosi, Omiros Papaspiliopoulos, and Gilles Stoltz. Online multi-

task learning with hard constraints. In COLT, 2009.

[32] Thomas Melluish, Craig Saunders, Ilia Nouretdinov, and Volodya Vovk.

Comparing the Bayes and typicalness frameworks. In ECML, pages

360–371, 2001.

[33] Ilia Nouretdinov, Brian Burford, and Alexander Gammerman. Appli-

cation of inductive confidence machine to ICMLA competition data. In

ICMLA, pages 435–438, 2009.

[34] Ilia Nouretdinov, Thomas Melluish, and Volodya Vovk. Ridge regression

confidence machine. In ICML, pages 385–392, 2001.

[35] Alexander Rakhlin, Jacob Abernethy, and Peter L. Bartlett. Online

discovery of similarity mappings. In Proceedings of the 24th international

conference on Machine learning, ICML ’07, pages 767–774, New York,

NY, USA, 2007. ACM.

[36] Avishek Saha, Piyush Rai, Hal Daumé III, and Suresh Venkatasubra-

manian. Online learning of multiple tasks and their relationships. In

AISTATS, Ft. Lauderdale, Florida, 2011.

77

[37] Craig Saunders, Alexander Gammerman, and Volodya Vovk. Transduc-

tion with confidence and credibility. In IJCAI, pages 722–726, 1999.

[38] Gil I. Shamir and Neri Merhav. Low complexity sequential lossless cod-

ing for piecewise stationary memoryless sources. IEEE Trans. Info.

Theory, 45:1498–1519, 1999.

[39] Vladimir Vapnik. Statistical learning theory. Wiley, New York, 1998.

[40] Paul A.J. Volf and Frans M.J. Willems. Switching between two univer-

sal source coding algorithms. In Proceedings of the Data Compression

Conference, Snowbird, Utah, pages 491–500, 1998.

[41] Vladimir Vovk. Aggregating strategies. In COLT, pages 371–383. Mor-

gan Kaufmann, 1990.

[42] Vladimir Vovk. A game of prediction with expert advice. Journal of

Computer and System Sciences, 56:153–173, 1998.

[43] Vladimir Vovk. Competitive on-line statistics. International Statistical

Review, 69:213–248, 2001.

[44] Vladimir Vovk. On-line confidence machines are well-calibrated. In

FOCS, pages 187–196, 2002.

[45] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic

Learning in Random World. Springer, 2005.

[46] Vladimir Vovk, David Lindsay, Ilia Nouretdinov, and Alex Gammerman.

Mondrian confidence machine. Workingpaper, 2003. On-line Compres-

sion Modelling project, http://vovk.net/cp, Working Paper 4.

[47] David Yarowsky. Unsupervised word sense disambiguation rivaling su-

pervised methods. In Proceedings of the 33rd annual meeting on Associ-

ation for Computational Linguistics, ACL ’95, pages 189–196, Strouds-

burg, PA, USA, 1995. Association for Computational Linguistics.

78

[48] Martin Zinkevich. Online convex programming and generalized infinites-

imal gradient ascent. In ICML, pages 928–936, 2003.

[49] Jacob Ziv. Coding theorems for individual sequences. IEEE Transac-

tions on Information Theory, 24(4):405–412, 1978.

79

	Introduction
	Motivation
	Main contributions
	Conformal prediction
	Prediction with expert advice

	Publications
	The structure of this thesis

	Conformal prediction
	Background: conformal prediction for supervised learning
	Formal definitions
	Forced prediction with confidence
	Performance measures
	Label-conditional conformal predictors
	Non-conformity measures based on a loss function
	Example of nonconformity measure

	Conformal prediction for semi-supervised learning
	Semi-supervised learning problem
	Learning on manifolds
	Conformal predictor with external information
	Geo-NN: example of NCM for semi-supervised learning

	Applying conformal prediction to the Bovine TB diagnosis

	Prediction with expert advice: specialists
	Background: prediction with expert advice and specialists
	Mix loss and the Aggregating Algorithm
	Specialist experts
	Fixed Share and Mixing Past Posteriors

	A closer look at Adaptive Regret
	Specialist experts approach to adaptivity
	Fixed Share recovered
	Restarts approach to adaptivity
	Fixed Share worst-case adaptive regret
	Fixed Share is the optimal adaptive algorithm

	Mixing Past Posteriors demystified
	Construction
	MPP recovered
	A simple Markov chain circadian prior

	Online Sparse Multitask Learning
	Construction
	Implementation
	Multitask Learning experiment

	Adaptive regret for mix loss transfers to mixable losses
	Worst-case adaptive regret data for Fixed Share

