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Abstract  
 

The roach is a key species component of the economically and culturally significant 

recreational angling community. It is also a keystone species by which the health of a 

coarse fishery can be judged. However, despite being commonplace and widely distributed 

in the British Isles, very little is known about the underlying genetic structuring of this 

species, which could inform a more inclusive, synergistic management system, thus 

improving an already billion pound strong industry. This study describes and explains the 

extent of genetic structuring at hierarchical levels within the putative natural distribution 

of this species within the British Isles, and to uncover the causes, both historical and 

contemporaneous, for any non-homogeneous distribution of genetic diversity. 

Mitochondrial DNA was utilised to account for coarse-grained structuring across 

catchments to divulge whether any individual catchment or sets of drainages could be 

considered as individual management units. Low levels of sequence diversity were 

observed across the UK, consistent with a history of recent post-glacial demographic 

expansion, although haplotype assemblages within and among river populations differed. 

The inclusion of microsatellite data allowed a higher resolution analysis of structuring 

between and within sampled sub-populations of two southeastern rivers: the Thames and 

the Suffolk Stour. Despite sharing high levels of within-population genetic diversity, 

significant differentiation was observed among populations within both rivers. Isolation by 

distance is observed in both rivers, indicating genetic equilibrium had been attained among 

populations from which estimates of recent migration were obtained. Roach in the Stour 

embody a source-sink model of equilibrium, explaining its higher levels of inter-

population differentiation and rates of migration than the Thames population. The 

discovery of significant genetic differentiation suggests that one must apply caution in 

managing this diversity. Stocking from exogenous sources is not recommended unless 

there exists no other choice. 
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Chapter One - General 

Introduction 
 
“The roach is an easy fish to catch. And if he is fat and penned 
up, then he is good food, and these are his baits. In March, the 
readiest bait is the red worm. In April, the grub under the cow 
turd. In May, the bait that grows on the oak leaf and the grub 
in the dunghill. In June, the bait that grows on the osier and 
the codworm. In July, houseflies and the bait that grows on all oak; and the nutworm 
and mathewes and maggots till Michaelmas. And after that, the fat of bacon.” Dame 
Juliana Berners – A Treatyse on Fisshnge with an Angle (1496) (the first recorded 
historical account, and manual, of coarse fishing).  
 

1.1 Coarse Fisheries in England and Wales 

 

The coarse fishery of England and Wales represents a significant economic component of 

the overall inland fishery of these enthusiastic angling nations. Chief amongst the patrons 

of some 26000km of linear waterways, which are utilized for leisure purposes (with some 

40000km unused, but potentially open for exploitation), are recreational anglers (Peirson 

et al. 2001). Recreational fishing, whereby fish are caught primarily as a leisure activity 

(Pitcher and Hollingworth 2002), is a familiar and highly popular pastime in the UK and 

throughout the world (Cowx 2002). The vast majority of anglers catch fish for sport, 

focussing on species categorised as ‘coarse’, including the cyprinids, perch Perca 

fluviatilis, pike Esox lucius and the European eel Anguilla Anguilla (Pierson et al. 2001). 

Unlike the game fish (e.g. salmonids), where there exists an element of fishing for 

personal consumption (Pitcher and Hollingworth 2002), coarse fish are usually returned to 

the water without lasting impact upon their numbers in the long term (Wortley 1995). 

 

In 1994, there were some 2.4 million coarse anglers that collectively had an economic 

impact - through the purchase of rod licenses, tackle, bait, travel costs and other angling-

related paraphernalia - in excess of three thousand million pounds (Moon and Souter 

1994). A study by Robinson et al. (2003) using catch data from angling competitions 

further underlines the economic importance of the angling community. As of 2003, over 2 

million anglers each spent, on average, approximately £1000 over the course of a year 

based upon an average of 43 trips per annum.  In 2008, record numbers of rod licenses 
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were sold by the Environment Agency (1.3 million), such that the contribution in rod 

license fees alone to the angling economy had risen to £1 billion per year in the 

intervening 14 years (http://www.environment-agency.gov.uk/news/104693.aspx). In 

addition to the fiduciary benefits to the local and national economies, inland fisheries, 

including the coarse fishery, exert an important influence upon the social fabric of their 

local communities (Weithman 1999). 

 

Freshwater fisheries, as has been documented, provide an important economic boon to the 

UK. Befitting an important source of income, coarse fish have been protected under the 

rubric of parliamentary acts since the 1970s (e.g. the Salmon and Freshwater Fisheries Act 

1975 and the Environment Act of 1995 (Hickley 1995)) when the rapid deterioration of 

riverine habitats, particularly from industrial and domestic pollution, became a major 

concern. Originally under the auspices of the National Rivers Authority (NRA), but lately 

under the purview of the Environment Agency (EA), the UK’s rivers are afforded 

significant protection both at the preventative and at the prohibitive (legislative) level. 

However, the endeavours of the EA are hampered by the fact that the majority of the 

waterways under its influence are adjacent to private lands over which the EA has little or 

no control. Thus, pollution events are unlikely to be completely eradicated and, as a result 

of such episodes, recuperative management protocols are necessary for the rehabilitation 

of significant stretches of rivers after large fish kills. 

 

The EA, in its role as the chief guardian of the national stock of freshwater fish and all 

fluvial habitats (and all recreational fishing (Lyons et al. 2002)), has a dual responsibility: 

to maintain, conserve and develop fisheries; and to allow access to every citizen of 

England and Wales the right to ‘experience a diverse range of good quality fishing’ 

(Environment Agency 1999). To fulfill the first part of this charter, the EA is proactive in 

maintaining and improving fish numbers, species composition, habitat quality and the 

facilitation of fish passage upstream via fish passes, etc. These management measures are 

known as Fisheries Action Plans (FAPs) and are generally specifically tailored to the 

needs of particular catchments (Robinson and Whitton 2004). Much of this work involves 

consultation with the public and with angling groups, which may lead to conflicts of 

interest between the EA’s dual responsibilities (Hickley and Chare 2004). The impact of 

anglers (specifically their demand for productive river systems) upon fish stocks has been 

given scant attention in governance or the fisheries literature (Cooke and Cowx 2006).  
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Approximately 4500 distinct introductions of fish (in toto 1.5 million individuals) are 

conducted annually in England and Wales (Hickley and Chare 2004) on a remit of 

mitigation, restoration, enhancement or the genesis of new fisheries (Hickley 1994). A 

significant proportion of these introductions are to maintain recreational fisheries (Harris 

1978; Maitland 1986; and Cowx 2002). Of particular concern, due to its widespread 

nature, is the potential for the mismanaged enhancement of stock through the introduction 

of allochthonous fish, which may have serious detrimental effects upon the resident fish 

biota (Cowx 1998). Reasons for the failure of a stocking event are myriad, but may be 

dichotomized into genetic and non-genetic effects. Non-genetic effects include the 

competitive disadvantage of introduced fish and increased susceptibility to predation; also, 

introduced fish may be susceptible to parasites and disease already in situ; or may 

themselves bring with them parasites which may have a deleterious impact upon the 

endogenous populations (see Cowx & Gerdeaux 2004 and Cooke & Cowx 2006 and 

references therein). Genetic effects of introductions involve the erosion of the genetic 

variation of endogenous stock (Millar and Libby 1994), the breaking up of localized 

adaptive genic complexes via crossbreeding, resulting in so-called outbreeding depression 

(Templeton 1986), and the general decrease of genetic diversity as a whole across the 

species’ distribution (Maitland 1979). However, the influx of ‘new’ genetic variation via 

crossbreeding with exogenous stock may revitalize locally inbred populations which 

otherwise would experience reduced fitness (Hodder and Bullock 1997). A full exegesis of 

the theory of the evolutionary and conservation genetics of freshwater fish populations and 

the effects of stocking are discussed on pages 30-37 and in the ensuing chapters. However, 

stocking, for the recuperation of a fishery, should only be conducted in areas in which 

natural recruitment from local spawning and nursery areas are insufficient to meet the 

demands of the local angling community and recuperation stratagems (Maitland 1987; 

Hodder and Bullock 1997). Additionally, much care needs to be exercised in stocking 

depauperate areas such that they do not become the fluvial equivalent of agricultural 

monocultures.  

 

Despite their potentially negative influence, anglers are important in helping to fund the 

continued maintenance and rehabilitation of the UK’s waterways. They may also provide 

useful data and insight, via their preferences, into what constitutes a healthy coarse fishery. 

A quantitative measure of fisheries production is the CPUE (catch per unit effort), a metric 

that has been exapted from commercial fisheries to determine the mass of fish caught per 

unit time per capita (angler). Although in angling circles the CPUE may be biased by the 

skills of particular anglers over others, amongst the most productive of the coarse fish is 
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the common roach Rutilus rutilus (L. 1758). The presence of roach, among other smaller 

species of freshwater cyprinids, in rivers yields greater CPUE per angler than where such 

fish are lacking (Robinson et al. 2003). High levels of CPUE translate into higher levels of 

angler satisfaction, having a positive knock-on effect on the coarse fishery economy, as 

angler satisfaction correlates with the perceived health of a fishery. Also, whilst the 

popularity of the roach as preferred catch has waned slightly in the last 30 years or so 

(39% of anglers surveyed by the NRA fell to 28% from 1979 – 1995 (National Rivers 

Association 1995)), due in part to the rise in the introductions of exotic species (Hickley 

and Chare 2004), the continued persistence of roach, as evidenced by high catch rates 

(45% of all fish caught in 1994 were roach (National Rivers Association 1995)), suggests 

that the roach may be useful as an indicator species for the general health of a productive 

coarse fishery. Thus, it is in the interests of the EA and private fisheries managers to 

maintain healthy stocks of the roach and other coarse fish.  

 

1.2 The Roach: A Biography. 

!

1.2.1 Brief Systematic and Biogeographic Review 

 

Rutilus rutilus (or the ‘common’ or ‘minnow’ roach (but hereafter referred to as ‘the 

roach’)) is a member of the genus of ‘roaches’, a moderate, mostly peri-Mediterranean 

distributed genus belonging to the minnow sub-family (Leucisinae) of the Cyprinidae1. 

Although the taxonomy of the cyprinids has elicited controversy due to difficulties in 

elucidating genealogical relationships based upon morphological characters, recent 

molecular work (Gilles et al. 1998, 2001; He et al. 2008; Luca et al. 2008) reaffirms the 

hierarchical taxonomy listed above. Close genealogical ties with the leuciscine fishes2, 

such as members of the genera Abrama, Scardinius and Leuciscus, is reinforced by the fact 

that the roach naturally hybridises with species in each of these genera (Kennedy and 

Fitzmaurice 1973; Wheeler 1976; Wheeler and Easton 1977; Cowx 1983; and Adams and 

Maitland 1991).  

 

                                                
1The cyprinids (Class: Actinopterygii; Order: Cypriniformes) encompass the minnow and carp species 
and is also the fish family in possession of the greatest number of freshwater species (it also competes 
with the teleost Gobiidae for the title of largest family of vertebrates). The Cyprinidae consist of some 
2420 species in over 220 genera (Nelson 2006). 
 
2 Leuciscinae is the largest of the cyprinid sub-families found in Europe (Kottelat and Freyhoff 2007). 
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Rutilus encompasses some 17 known species (www.fishbase.org), further taxonomic 

splitting of subspecies and cryptic ‘varieties’ notwithstanding. The roaches vary in size but 

are mostly small or medium in extent. Most of the genera are found in low numbers and 

limited distributions within the peri-Mediterranean region of Europe (an area rich in 

endemic freshwater fish (Smith and Darwell 2006)), and vary greatly in their ecology, 

behaviour and natural history. Although low on species diversity,, roaches vary greatly in 

their morphology, buttressed by molecular evidence suggesting a middle Miocene splitting 

of the lineages that lead to the morphologically divergent common roach and the Danube 

roach Rutilus pigus (Ketmaier et al. 2008). R. rutilus is the most successful and 

widespread of all the roaches. Whereas the other species have very limited distributions, 

the roach is found throughout western and northern Europe (up to 69oN in Scandinavia and 

56oN in Scotland), southern Europe to the north of the Pyrénées, and are found as far 

eastwards and southwards as the Ural mountains, the Balkans and the catchments that 

drain into the Aegean, Black and Caspian seas (Kottelat and Freyhof 2007). In Britain, the 

natural distribution of the roach includes mostly those rivers that flow into the North Sea, 

the English Channel and the southern Irish Sea, with higher densities of fish in the 

southeast and central England (Carter 2004) (see Fig 1.1).  

 

Figure 1.1: Distribution of roach in Great Britain. Each red square represents the 
occurrence of roach within an area of 10km2. The data is from the Database and 
Atlas of Freshwater Fishes (DAFF) project, initiated by PS Maitland in 1966, collated 
by the Biological Records Centre (BRC) and held online at the National Biodiversity 
Gateway Network (NBN, http://data.nbn.org.uk); and includes both native and 
introduced roach. 
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1.2.2 Roach Morphology and Behaviour 

 

The roach possesses a laterally compressed fusiform shape adaptive for rapid movements, 

enabling the roach to capture food and evade predators over short distances. The roach’s 

scientific name references the ruby colouration of its anal and pectoral fins and the irises 

of its eyes (see Fig 1.2). Elsewhere, its colouration reflects semi-cryptic adaptation to life 

in rivers: its dorsal body is covered by dark green/blue scales to limit detection from 

above; conversely its flanks are covered by silvery cycloid scales which may aid in 

predator avoidance by scattering light and thus diminishing its image in the eyes of nearby 

predators in the lower-middle water column. Ventrally, the roach is pale. 

 

Figure 1.2: Illustration of an adult roach revealing the detailed colouring and 
morphology of a typical individual. Illustration by Keith Linsell (taken from 
Maitland and Linsell 2006). 
 

However, roach may display variation in morphology and behavior, depending upon 

ecological circumstance. The juvenile roach of the Rybinskoe Water reservoir, Russia, 

show morphological divergence in juvenility according to favoured prey types and the 

ecosystem in which the prey is found: demersal roach, feeding upon shellfish; and a 

coastal, non-specific feeding ecotype (Stolbunov and Gerasimov 2008). They differ 

morphologically in the size and shape of the mouth (the demersal form possessing larger 

mouths), and in the shape of the body. Differentiation into the two ecotypes occurs early in 

development, which may indicate a non-plastic element to their juvenile ontogeny 

(Stolbunov and Pavlov 2005). Whilst riverine and lacustrine roach mostly inhabit slow 

moving streams and lake habitats of inland areas, as with the Russian roach, they have 

been known to be found in estuarine environments in locations across Europe (e.g. River 

Odra, Poland (Wi%sk and Za&akowski 2000), the Belgian Scheldt (Maes et al. 2005) and in 

the brackish waters of the Baltic Sea (e.g. off the Finnish coast (2-6% salinity levels, 

Wilklund et al. 1996)). Additionally, they are found in the tidal stretches of most rivers 
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and can tolerate, as an upper boundary, 0.34 – 2.96 practical salinity units (psu) in the 

Thames. However, the roach in the upper Thames estuary are recruited from upstream 

when flows are high and salinity levels drop (from August – November) (Araújo et al. 

1999). Generally, salinities higher than 10% are fatal to freshwater fish (Pethon 1980). 

Whether the estuarine/tidal roach are selectively differentiated in their morphology, 

behavior or osmoregulatory mechanism from conspecifics elsewhere in the 

potamodromous environment is unknown. 

 

Roach are gregarious at all stages of life, thereby increasing an individual’s chances of 

surviving and locating food through foraging efficiency (Beecham and Farnsworth 1999). 

A well-developed lateral line system is evidenced in roach from an early age. Yearling 

roach (0+) possess an innate ability to elicit a scatter-predator avoidance reaction in 

response to infrasound waves generated by predators (Karlsen et al. 2004). Ontogenetic 

shifts in habitat preference during growth also reflect not only the availability of food but 

also a trade-off with visibility to predators, especially piscivorous predators, when young 

(Copp 1990; Garner 1996). Larval and juvenile roach feed amongst the benthos in littoral 

areas which also provide protection from predation and from high flows (Mann 1996), 

initially preferring deeper areas up to a metre deep with thick macrophyte densities before 

moving to the shallows (Copp 1992). Diel movements begin when juvenile: young roach 

in the Thames aggregate at night, more so than in diurnal hours (Matthews 1971), 

probably in response to predation by the European perch and the chub Squalius cephalus 

(Copp & Jurajda 1993). As they mature, roach start to take advantage of the plentiful 

supply of the pelagic zooplankton, possibly as a means of increasing growth rates to 

elevate them from the size range preferred by the piscivorious perch– a major predator and 

with whom they are competitive with for food when adult. In the first year of life roach 

can grow at a rate of 30% of the body weight per individual per day, such that young-of-

the-year fish attain lengths of between 5-7cm after twelve months of growth (Everard 

2006). 

 

When roach attain sexual maturation3 they reach lengths of 20-40cm (Carter 2004), but 

large males may exceed this range (e.g. 52cm (Maitland and Linsell 2006)). Adults tend to 

return to feed in the littoral zone feasting upon detritus and benthic invertebrates. The 

roach is a mobile species, employing favorable grounds in which to feed (this can be 

pelagic and/or littoral, depending upon life-history stage, presence of predators and/or 

                                                
3 Sexually mature individuals – the roach’s somatic ontogeny is, like many other fish, indeterminate, 
such that a fish keeps on attaining ever-greater size (dependent upon availability of food) until death. 
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competition, and upon time of the day). Roach, like many other freshwater fishes, show 

greatest levels of activity at low light, especially the hours around dusk and dawn (Lucas 

and Baras 2001). Roach migrate to over-winter in slow, deep backwaters and lacustrine 

environments (Copp 1997; Jepsen and Berg 2002; and Kottelat and Freyhof 2007), to 

avoid predation when food resources are low and associated risks are high; and to spawn 

(Goldspink 1977; Diamond 1985; and L’Abée-Lund & Vøllestad 1985). The roach makes 

use of limited home ranges, (~3km average, although sometimes long distance foraging 

takes place over stretches of river up to 10km) (Baade & Fredrich 1998)) that it uses in the 

summer months to replenish the energy lost during spawning and in preparation for the 

exertions of the subsequent spawning season the following year. A female may lose, as 

expelled ova, as much as 15% of her body weight during spawning (Everard 2006). Thus 

the ability to freely move within both lotic and lentic habitats is an important component 

in the ecology of this species. 

  

1.2.3 Reproductive Biology  

 

1.2.3.1 Spawning Migrations 

  
The roach is an iteroparous species, reproducing annually after sexual maturation until 

death. Males reach reproductive maturity at around 3 years of age, and females a year 

after. Spawning migration in roach is comprised of two components: a pre-spawning 

migration and a final migration to the actual spawning grounds (Everard 2006). This en 

masse migration to reproduce is believed to be associated with hormonal reactions, 

associated with the final maturation of gonads and gamete production, to photoperiod 

(Jafri 1987) and to water temperature (Gillet and Quétin 2006). However, the increasing 

average water temperatures of the preceding decades has altered the initiation of spawning 

migrations, indicating that water temperature is the more important determinant (Nõges 

and Järvet 2005; Gillet and Quétin 2006; and Härmä et al. 2008). Climate alteration 

notwithstanding, roach traditionally begin migration from April through June, when water 

temperatures are between 10oc and 15oc (Vøllestad & L’Abée-Lund 1987; Gillet and 

Dubois 1995; Prignon et al. 1998; and Travade et al. 1998). 
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Figure 1.3: Roach migratory activity. Data collated from numerous European rivers 
(see text for details; taken from Lucas and Baras 2001). 
 

Fig 1.3 summarizes the migration activity of roach, counted as the number of fish 

migrating upstream through fish passes, over ‘one year’ (a summary of a number of years’ 

worth of data). The data are collated from a number of western European rivers, including 

the Garonne and Dordogne, France (Travade et al. 1998), the Meuse and Mehaigne in 

Belgium (Prignon et al. 1998; Philippart et al. unpublished), the Dutch stretch of the 

Meuse (Lanters 1993, 1995) and the Mosel, Germany (Pelz 1985). Most movement 

through the fish passes occurs during April and May, consonant with the spawning period 

(pre-empted by a pre-spawning migration in March). The peak in movement in late June 

and early July is probably reflective of post-spawning migration back to the feeding 

grounds. The Autumnal peaks show passage to overwintering areas, while in December 

and January there is no fish movement at all. 

 

At least in lacustrine environments roach are known to exhibit strong tendencies to 

migrate to annual spawning grounds. 83.5 – 92.0% of all roach studied returned to the 

same spawning ground in the Norwegian Lake Årungen (L’Abée-Lund & Vøllestad 1985). 

Whilst these figures are comparable with the better-known homing abilities of salmonids, 

it is unknown whether the roach returned to their own natal spawning area (Lucas and 

Baras 2001). Diamond’s study (1985) suggests that roach in both lotic and lentic 

environments utilized the same spawning grounds year after year. The observation of 

spawning homing abilities in roach is further evidenced by the finding that reciprocally 

translocated individuals from two spawning grounds 3km apart migrated back to the 

spawning ground from which they were taken (Goldspink 1977).  
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Spawning migrations in roach, as in most potamodromous fish, are usually upstream 

(Lucas and Baras 2001). In lacustrine environments suitable spawning substrate is only to 

be found in feeder tributaries, e.g. up the River Endrick, which feeds Loch Lomond, in 

Scotland (Adams 1994). However, in the River Axe, Devon, UK, (between 1960-1969 at 

least), large movements of roach (assumed to be linked to spawning as they occurred 

during what is the normal spawning season) were in the downstream direction (Champion 

& Swain 1974). The requirement for spawning substrate in roach is phytolithophilic 

(Mann 1996); that is they utilize gravel beds, submerged logs and mosses (Vøllestad and 

L’Abée-Lund 1987), and macrophytes (such as Fontinalis, Phragmites and Elodea spp. 

(Mills 1981; Everard 2006; and Diamond 1985)) on which to deposit ova and milt. 

Limitation of spawning substrata for the roach and other phytolithophils (including the 

common and silver bream, rudd and Leuciscus spp.) encourages cross-fertilization 

amongst them, often resulting in increased incidences of hydrids (Cowx 1983; Mann 

1996).  

 

1.2.3.2 Spawning Behaviour 

 

Although the spawning melee seems frenetic and random with respect to the choice of 

mating partner, recent studies have built upon an original observation, albeit of fish in 

captivity, of Wedekind (1996), that roach may partake in lek-style aggregations in which 

the females may exercise some choice over which males are granted access to deposit their 

milt over the ova. Up to three months prior to spawning, male roach of reproductive age 

develop tough tubercles on top of, and posterior to, the head, which may aid in ‘coupling’ 

during the act of reproduction (Everard 2006). The quality of these tubercles has been 

positively correlated with host resistance to the gill endo-parasite Rhipidocotyle 

campanula (Taskinen & Kortet 2002) and the over-expression of immuno-suppressant 

androgens associated with sexual ornamentation and attractiveness to females (Kortet et al. 

2003). The corollary of female choice between males exhibiting handicaps (which 

increases susceptibility to papillomatosis during spawning) as a means to display ‘good 

genes’ may be facilitated by the quality of the handicapping signal (tubercles) displayed 

by the males (Kortet et al. 2004). Thus, male reproductive success may be significantly 

skewed and mating non-random. 
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1.3 Roach and Man. 

 

1.3.1 Early History (Pre-History – 19th Century). 

 

Pharyngeal remains characteristic of roach uncovered at Skipsea, Humberside indicate that 

the roach has been a member of the freshwater piscifauna in the UK since the Devensian 

glacial period (Carrott et al. 1994). Presumably, by this time, the roach had colonized most 

of the drainages in the UK in which it is now native. Evidence of fish movement, 

including roach, date back to the Bronze Age. Roach remains from the River Great Ouse 

at the Grand Arcade span some 500 years from the 14th – 19th centuries, although most 

remains were dated prior to the 15th century (Harland 2007). Many of the roach remains 

(along with dace and rudd) originated from areas associated with medieval fishponds that 

were commonplace during this period (Aston 1988; Serjeantson and Woolgar 2006 in 

Harland 2007) and are regarded by historians as fulfilling the role as gifts rather than as a 

source of food (Dyer 1988). However, the historical account of Berners (1496) explicitly 

states that if the roach is “fat and penned up, then he makes good food.” 

 

1.3.2 Modern Anthropogenic Influence 

!

The post-renaissance histories of roach movements in the UK are tied to the rise of angling 

– or fly-fishing. Angling as a recreational activity took off in the 15th (Berners 1496) and 

16th centuries (Anon. 1577), generating an angling literature that is going strong to this 

very day (e.g. Everard 2006). Fig 1.4 shows an excerpt from the Arte of Angling (Anon. 

1577) on how to catch and kill roach. Although the stocking of local ponds and lakes from 

nearby rivers has been known since the early period of man’s habitation in Britain, mass 

movements of fish probably only began in earnest with the rapid industrialization of 

Britain’s villages and towns. The resulting pollution of rivers, reaching its nadir during the 

industrial revolution of the 18th century, severely reduced the biota inhabiting them. 

However, in the Grand Arcade of the Great Ouse the temporal distribution of roach fossils 

remained relatively stable compared with those of its cyprinid cousins during the period of 

the industrialization of nearby Cambridge (Harland 2007), indicating some resistance to 

the effects of pollution.  
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Figure 1.4: An excerpt from the Arte of Angling, published in 
1577, on how to kill roach. The roach is referred to, in old 
English, as the “Roche” (the French root of our 
contemporary anglicized word), and the manual is styled as a 
dialogue between a teacher and pupil, as was the manner of 
many books of the time. 
 

The roach became, and still is, a highly popular sport 

fish, becoming highly regarded by sports fisherman the 

length and breadth of the country. Coarse fishing 

became increasingly popular with the increase of leisure 

time available to the lay worker and an increase in 

tourism advertising (Maitland 1987).  As a result, many 

fish were translocated from native populations into 

previously virgin territory, especially during the last 200 

years. Roach were introduced into Loch Lomond, 

Scotland by the 1790s (Maitland 1987; Adams 1994). In Ireland, roach were introduced 

both accidentally (Went 1950) and/or as stocking for angling and baitfish purposes (Hale 

1958; Mercer 1968; Kennedy and Fitzmaurice 1973; and Fitzmaurice 1974). Roach were 

also purposefully translocated to destinations far afield from the UK, e.g. Australia, where 

the roach was introduced from the UK into the Murray-Darling system, Victoria, in the 

period 1830-1860 (Arthington and Blühdorn 1995). In each case, the introduction of 

roach, like numerous other exotic introductions, has generally been to the detriment of 

native fish species and endogenous ecosystems in general (Fitzmaurice 1984; Cowx 1998; 

Welcomme 2001; and Barrett 2004). 

 

It is also highly probable, and believed by many authors, that many of Britain’s rivers 

contain non-native populations, especially in the northwest, Wales and Scotland; and that 

translocations have occurred countrywide between drainages to supplement low 

productivity of local streams or as baitfish for larger predatory fish (Campbell 1971 in 

Maitland 1987). The problem remains pertinent as anglers continue to move fish despite 

the illegality of such translocations (Maitland 1995). Further to the active transport of fish 

by man, the industrial revolution saw the construction of arterial canal networks that 

interconnect some of the largest – and most important (at least in the 18th and 19th 

centuries) - shipping rivers. Such conduits may have facilitated the exchange of freshwater 

fish along their lines of communication. However, due to the vagility of some species, 

such as roach, it remains a hard task to determine how much of the national distribution of 

coarse fish is due to natural or anthropogenic agency (Maitland 1995). 
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1.4 The Role of Population Genetic Theory and Molecular 
Ecological Methods in Screening and Maintaining Healthy 
Freshwater Fisheries. 
 

1.4.1 The ‘Stock’ Concept 

 

Prior to the revolution in the wide scale applicability and application of molecular genetics 

and biochemical markers to screen for genetic variation, the concept of a fisheries stock 

was based upon the demography, geography and traditional ecology of a managed species 

or biota. Variables such as differential recruitment, mortality rates, geographical 

distribution and morphological variation were all utilized to delimit a stock (Carvalho and 

Hauser 1994). As an abstract definition, Ward (2000) quotes Ihssen et al.’s (1981) 

definition of a ‘stock’ as being representative of the general consensus within the fisheries 

science literature: “a stock is an intraspecific group of randomly mating individuals with 

temporal and spatial integrity.” In other words, a stock comprises a deme, replete with the 

concomitant phenotypic and genetic properties they contain, the result of historical and 

contemporaneous evolutionary and demographic forces. It can be argued that this 

definition makes the case, albeit implicitly, for the inclusion of genetic information in 

determining what subset of individuals within a wider population constitutes a stock for 

individual management. Ihssen’s biological concept of a stock de-emphasises but does not 

refute the importance of a ‘sustainable harvest’ (in terms of life-history characteristics) 

(e.g. Gauldie 1988) or the idea of a stock delimited by geographic location (e.g. the 

‘fishery stock’ concept of Smith et al. 1990). Also, although it emphasises genetic 

integrity, Ihssen’s concept does not assume strong genetic isolation, unlike alternative 

isolationist concepts (Carvalho and Hauser 1994).  

 

A great deal of the early debate on the use of a genetic stock concept centred upon the 

problem of marine species, understandably so given the commercial over-exploitation of 

marine resources. Marine fish exhibit, in general, very high levels of within-population 

genetic variation and little, or undetectable, levels of structuring among populations 

compared to freshwater and anadromous species (DeWoody and Avise 2000). Thus, the 

genetic conventions of a biological stock concept based upon degree of reproductive 

isolation are less problematic for those freshwater species for which significant 

geographically-based spatial structuring is expected, at least among hydrologically distinct 

catchments. Thus, the use of the word ‘stock’ in this thesis shall follow Ihssen’s definition, 

unless where stated otherwise. 
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1.4.2 Advances in Molecular Genetics Techniques for Screening Spatio-
Temporal Genetic Diversity. 
 

Although studies of the population genetic structuring of fish (marine, freshwater and 

diadromous) began in earnest with the rise of the allozyme analyses in the mid-to-late 

1960s, the idea of utilizing genetic markers was born decades earlier (Utter 1991, 1994). 

In the 1930s an attempt was made to detect blood group differences in populations of the 

herring Clupeidae spp, although to no avail (De Ligny 1969). However, it was only when 

the use of allozymes4 became widespread, that it was possible to identify, genetically, 

population subunits within species and the existence of stocks through specific stock 

assignment or SSA (Carvalho and Hauser 1994). Allozyme studies flourished, although 

doubts were raised as to their general applicability due to the possibility of natural 

selection operating at some allozyme loci (Powers et al. 1991). Concerns were also raised 

that allozymes may not reveal all the variation present in the protein-coding loci due to the 

possibility of synonymous (like-for-like) changes of amino acids (due to the degenerate 

nature of the genetic code, at the third, and less so at the first, codon position) that result in 

equally mobile proteins on a gel; that is to say, the low expectation of the number of 

alleles per locus limits the statistical power of some analyses (e.g. the exact-tests of 

genotypic differentiation among populations) (Estoup and Angers 1998)).  

 

With the 1970s came the nucleic acid revolution. DNA extraction procedures and the 

discovery of restriction enzymes5 ushered in a new era of screening for genetic variation at 

the level of the nucleotide sequence. Particularly appropriate for such screening was the 

mitochondrial genome (mtDNA), which could easily be extracted from cellular detritus; it 

also, as it turned out, contained many potential restriction sites. The presence or absence of 

restriction sites at particular loci within the circular genome, and the resultant banding 

patterns visualised on agarose gels, were used to configure haplotype relationships among 

individuals and among populations (Avise et al. 1979a). A haplotype is a length of DNA 

inherited as a single unit (mtDNA is inherited through the matriline as a ‘single’ copy, i.e. 

it is ‘haploid’). The differing frequencies of haplotypes between drainages, for example, 

had obvious implications for ascribing management status, particularly at broad-scales, 
                                                
4 Mendelian-inherited enzyme variants, the alleles of which (the ‘stained’ protein variants themselves) 
can be discriminated from one another via differences in mobility through a starch gel due to differences 
in charge, mass and/or tertiary-configuration. The differences in gel mobility arise ultimately to amino 
acid substitutions, themselves the result of nucleotide substitutions within the coding regions of the loci 
from which the enzymes were transcribed and translated. 
 
5 Restriction endonucleases cut double-stranded DNA at specific palindromic nucleotide sequences of 4-
6bp in length (Meselson and Yuan 1968). 
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where the comparatively high mutation rate of mtDNA (versus nuclear DNA) and its four-

fold lower ‘effective size’6 proves to be particularly informative over long-time scales 

(over which different populations have diverged significantly so that haplotype 

frequencies in different populations have drifted apart to statistically significant levels). 

The resolution of nucleic acid screening approached its apogee with the advent of the 

direct sequencing of stretches of DNA (Sanger et al. 1977; Maxim and Gilbert 1977). Now 

every single base within a ‘gene’ was theoretically open to direct scrutiny for differences 

between individuals. This situation was greatly improved upon with the discovery of the 

polymerase chain reaction (PCR) by Muller (Saiki et al. 1985). PCR allows the 

exponential amplification of extremely small amounts of DNA. During the same period in 

the 80s, Jeffreys et al. (1985) discovered satellite DNA not involved in coding for protein 

or RNAs, tandemly repeated at loci found across entire genomes. Screening multiple loci, 

each varying in the number of repeated elements, provided a genetic ‘fingerprint’, which 

had many applications in forensics and organismal biology. These minisatellites, although 

useful, were dominant markers, and therefore had limited utility in determining 

substructuring of populations and concomitant estimates of population connectivity. 

However, the situation changed with the discovery of a related set of DNA repeat 

elements, the smaller, more ubiquitous – and most importantly – co-dominant 

microsatellites.  

 

Microsatellite DNA sequences (alternatively known as short sequence repeats (SSRs)) 

consist of iterated sequences of 2-6bp motifs (e.g. GAGTGAGTGAGT…or (GAGT)n) 

typically some tens – hundreds of base pairs in length (Beckmann and Webber 1992). 

Microsatellites, although consistently distributed throughout the genome of almost every 

living organism and presumed selectively neutral, are in some instances associated with 

chromosomal structuring and other chromosomal and genic functions (Chistiakov et al. 

2006). However, the vast majority of microsatellite loci have no known function and are 

considered truly neutral markers. In the Japanese pufferfish Takifugu rupripes 

microsatellites make up some 1.29% of the genome (Edwards et al. 1998), and in the 

genome of the three-spined stickleback Gasterosteus aculeatus the dinucleotide 

microsatellite repeat (CA)n occurs once every 14kb on average (Peichel et al. 2001). 

These facts highlight the ubiquity of their numbers and spatial distribution within the 

genome, thus providing many potential markers – a locus will differ in the number of 

                                                
6 Due to its mode of inheritance (matrilineal and haploid) a haplotype will ‘drift’ to fixation in a length 
of time that is four-fold less than the time it would take a nuclear allele to ‘drift’ to fixation from the 
same initial frequency as in the original (reference) population, assuming no selection and an infinite 
population size. 
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repeat units. They are also, generally, highly polymorphic due to rapid rates of mutation 

(between 10-2 and 10-5 per locus per generation)7 (Ellegren 2000a) and thus have the 

potential to discriminate between populations due to differences in allele frequencies at 

multiple loci. Additionally, microsatellite alleles can be discriminated by size (distance 

travelled through an acrylamide gel) and heterozygotes differentiated from both 

homozygotes (the loci exhibit co-dominance). Additionally, unlike allozyme analysis, 

biological samples can be taken either from the animal, or from ex vivo samples such as 

shed hair, scales or fossil bone, without killing the subject. These properties have made 

microsatellites one of the most popular genetic markers in fisheries ecology and genetics, 

and throughout molecular ecology and population genetics generally (Chistiakov et al. 

2006). 

 

1.4.3 Identification of Population Subunits and Population Connectivity 
Using Genetic Data: Relevance for Stocks, Management and 
Conservation. 
 

A stock concept built upon principles of ‘spatial and temporal integrity’ implies some 

degree of reproductive isolation and, by corollary, some degree of genetic divergence from 

each other. Consider a simple model of the fragmentation of a single ancestral population. 

For these daughter populations to become genetically divergent depends upon a number of 

factors: pre-separation demographic history (population coalescent time and parental 

population effective size (a descriptor of the effect of the random sampling of reproducing 

individuals in the ancestral population)), time since separation, demographic history since 

parental fragmentation (population expansion, stasis or contraction), rates of exchange of 

reproductive individuals among the daughter populations, presence and strength of local 

selective regimes and deviations from non-random mating. Each of these events may by 

themselves cause evolutionary change, but often occur together in various proportions and 

over a spectrum of intensities. The likelihood that two or more daughter populations 

should diverge by the exact same degree of differentiation is negligibly small, thus 

biodiversity is created. The primary aim of contemporary conservation and management 

genetics - fisheries included - is the preservation of genetic diversity, but for what reasons?  

 

                                                
7 Probably as a result of ‘slippage’ during DNA replication, a single-stranded DNA strand loops up on 
itself, resulting in one strand gaining a repeat(s) and one strand losing a repeat(s) when the 
complimentary strands are lengthened. Models of microsatellite mutation and evolution are important 
parameters in their own right, and shall be considered in the next chapter.  
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Ryman (1991) provides a comprehensive overview of the goals of the conservation 

genetics movement and its implications for management. One of the issues is purely from 

a humanistic standpoint: it’s an ethical responsibility of mankind to preserve what he 

might destroy (Riggs 1990). Second, our knowledge of species, populations and their 

genes is limited, and preserving this diversity is our only way of achieving greater 

knowledge, which may be of benefit to mankind in the future. It is to this end that many 

authors strive to advocate the preservation of all diversity (Ryman 1991 and references 

therein). Rather more prosaically, however, perhaps the most compelling reason to acquire 

knowledge of - and preserve - diversity from a management and fisheries perspective is 

that it allows for further exploitation of a particular fishery. 

 

The conservation of all biodiversity has been advanced in terms of maintaining the long-

term potential for further evolutionary adaptation to changing environments. The degree to 

which genetic divergence among populations is adaptive is unknown, but morphological 

variation is often taken as a logical proxy (Allendorf and Luikart 2006). However, fish 

generally exhibit lower narrow sense heritabilities8 than other vertebrates in their 

morphological traits (Purdom 1993) and as such individuals may be more adept at 

applying phenotypic plasicity to new environments and circumstances. However, this 

application of narrow sense heritabilities may overlook the significant heritabilities 

associated with phenotypic plasticity and metabolic pathways, and the importance of each 

cannot be understated. The upshot is that the translocation of fish from one part of its 

range to another is no guarantee of its continued existence and as such as much genetic 

variation should be conserved so that, by extension, a significant part of the species’ 

heritability and therefore a continued ability to ‘evolve’, be preserved (Carvalho 1993).  

 

Most genetic studies of fish, however, utilize selectively neutral markers. This neutral 

variation, often first assayed as levels of heterozygosity, is taken as a proxy for levels of 

genetic variation over the genome as a whole. Because most adaptive evolutionary change 

is continuous and polygenic, then the nearest proxy in the genome, without actually 

screening for loci that may be under selection, are multiple neutral marker loci (Allendorf 

and Luikart 2006) (although this situation is rapidly changing with the genome wide 

screening of EST-linked microsatellites or SNPs, single nucleotide polymorphisms). Such 

a viewpoint values high scores of heterozygosity in neutral markers as epitomizing the 

genome in general, a corollary of which should be a positive correlation with fitness 

                                                
8 Most adaptive evolutionary change occurs via the additive effects of individual loci. Narrow sense 
heritability is a metric that describes the proportion of the phenotypic variance due to such effects. 
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(Allendorf and Leary 1986; Hansson and Westerberg 2002). Furthermore, this variability 

found both within and among populations provides, in reserve, the potential for continued 

colonization of environments via adaptive potential (Carvalho 1993) and a source of re-

colonizing migrants to these areas (Hodder and Bullock 1997).  

 

Potamodromous fishes often inhabit rivers in which habitat patchiness is commonplace 

(Matthews 1998). If, as is the case in many freshwater fishes, populations within species 

take advantage of this heterogeneous environment, and spawning is limited to 

geographically separated patches, then one should expect some degree of reproductive 

isolation and genetic divergence. This divergence may reflect local adaptation to particular 

elements of the patchy habitat (Coelho and Zalewski 1995). In the face of the possibility of 

local extinction, depending upon the degree of isolation and adaptive divergence of 

resident populations, then one should apply caution to restocking from genetically 

different populations from other stretches of river, or from farmed fish whose genetic 

constitution may have been severely altered through captivity (Templeton 1986). Stocking 

from farms may also do nothing to combat the genetic erosion of a species if single farms 

are used and individuals are distributed about the species’ range. In many cases, fish may 

be transplanted from different drainages where populations have diverged without the 

exchange of any migrants for tens of thousands of years. In such cases, whole co-adapted 

gene complexes may, in a single act of cross-fertilization, be destroyed if the introduced 

fish breed with the endogenous stock. In the event of this outbreeding, the F1 hybrid 

progeny may be less fit than either parent and the introgressive translocation would fail in 

the long term, especially if the introduced parents fare less well in the new environment 

than the old. Such instances of outbreeding depression (Templeton 1986) may be more 

common in freshwater fauna due to the physical and temporal separation between 

populations among drainages.  

 

Population genetic information has gradually been incorporated into the fisheries 

management literature. As a result of this synthesis, operational definitions of what 

constitutes a ‘stock’, or ‘stocks’, to merit individual management were derived. The term 

‘management unit’ has not coalesced into a single working definition, however most 

definitions involve some genetic criteria. Moritz (1994) denotes MUs, on genetic 

principles, as single, integral groups of individuals that possess significant divergent 

frequencies of alleles at multiple loci. As Palsbøl et al. (2006) note, the phrase ‘significant 

divergence’ has since come to mean deviation from panmixia. The deviation from 

panmixia model makes the classification of separate drainages in freshwater organisms as 
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MUs a relatively simple exercise if based upon a simple demographic definition of 

panmixia. However, such designations need to be backed up by other evidence (e.g. 

genetic divergence and/or ecological characteristics). Palsbøl et al. redefine MUs based 

upon not just the rejection of panmixia, but upon the degree of genetic divergence, 

asserting that the delineation of MUs is problematical if dispersal is low (but one cannot 

reject panmixia due to low statistical power), or dispersal is high between subpopulations 

with the attendant power to reject panmixia. There is not a one-size-fits-all model to 

assigning MUs over all taxa (Palsbøl et al. (2006). However, it has been suggested that a 

level of dispersal of less than 10% (above which populations become genetically mixed 

(Hastings 1993)) among subpopulations may be a reasonable indicator of a breakdown in 

panmixia. As a caution, the assignment of MUs should always be embedded in the biology 

of the species in question, especially taking into consideration other lines of evidence as to 

the extent and nature of dispersal. The derivation of dispersal metrics (rates of migration) 

and measures of genetic divergence, and the difficulties incumbent in their proper 

interpretation, shall be introduced in the next section on theory and methods 

 

1.5 Study Aims and Objectives. 

 

The literature concerning the distribution of genetic diversity within and among 

populations of coarse fishes is small. Much of this reticence to assess coarse fishes for 

spatial genetic information arises from skepticism regarding a long and complex 

interrelationship with Homo sapiens, stretching far back into pre-Historical times, at least 

in the UK. Many have assumed that anthropogenic movements will have muddied the 

waters as regards overall levels of genetic divergences, thus negating the effectiveness of 

performing surveys and assuming little gain to be had for the mining of genetic data for 

their application to management schemes. This view needs to be tested, less it be too 

widely applied to fish species that possess quite different natural and anthropogenic 

histories, even within the coarse fishery. 

 

Thus, this thesis has two main, complementary aims: 

 

Firstly, to apply current molecular genetics techniques and theory to elucidating the degree 

of divergence among roach populations from a number of English rivers that encompass a 

broad range of catchments in which the roach is part of the native piscifauna (Chapter 

Three). This broad scale analysis of genetic diversity is complemented by a second study, 
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adopting multiple microsatellite marker loci, analyzing the micro-structuring of roach 

populations within two contrasting rivers (which differ in their hydrology and 

anthropogenic alteration) in the southeast of England: the River Thames and the River 

Suffolk Stour (Chapter Four).  

 

Second, the studies of diversity shall be presented not only in the context of local and 

nationwide fisheries management, but also in the context of the roach’s natural history and 

ecology, information from which can be used to further refine and implement more 

effective management strategies and the delimitation of appropriate MUs.  

 

Whilst coarse fish have been studied at the level of population substructuring before, as 

indeed has the roach, these studies have been few and far between and often limited in 

their scope. This study, for the first time, looks in detail at the causes of genetic 

differentiation within and among populations of roach at two hierarchical scales.  
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Chapter Two – On 
Theory and Method 
 

“I am not a mathematician at all. My way of reading Sewall 
Wright’s papers, which I still think is perfectly defensible, is to 
examine the biological assumptions the man is making and to 
read the conclusions he arrives at, and hope to goodness what 
comes in between is correct.” Theodosius Dobzhansky on 
Wright (Oral History Memoir, 1962), quoted from Provine 
(1989). 
 

2.1 Introduction 

 

The purpose of this chapter is to outline the basic and fundamental theoretical and 

methodological foundations upon which this thesis is built. It will introduce the nature of 

genetic variation, models of evolutionary change (beginning with the evolutionary 

antithetical model of Hardy-Weinberg), the checks and balances of drift and 

migration/mutation in contributing to spatial, temporal and intra-population genetic 

variation, and statistical metrics (both frequentist and model-based) of genetic divergence 

and of migration. The chapter finishes by introducing both the microsatellite and the 

mitochondrial marker in population genetic studies. Laboratory methods and specific 

analyses, and their justification, will be outlined in detail in the relevant ‘materials and 

methods’ sections of their respective chapters. 

 

2.2 Population Genetics Theory  

 

2.2.1 The Raw Material of Evolution: Mutation and the Genesis of 
Variation. 
!

Evolution simply cannot proceed unless there is variation present among individuals. 

Further, adaptive evolution cannot proceed unless there is variance among individuals in 

the part of the genome that contributes to a selectable phenotype in an additive fashion 

(Wade 2006). Over evolutionary timescales, mutation is the prime source of variation 

within and among populations (migration becomes an analogue of mutation over 
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ecological and temporally shallow timescales). Genetic mutations may be small in effect 

(e.g. the substitution, removal or addition of single bases to a segment of DNA) or gross 

(e.g. chromosomal rearrangements); neutral (e.g. nucleotide substitutions in the 3rd base 

position of a triplet codon result in a functionally and polymerically identical protein: so-

called ‘silent’ or ‘synonymous’ mutations), non-neutral (e.g. a base substitution in the first 

or 2nd codon position that results in an amino acid change may affect the functionality of a 

protein)9 or nearly-neutral (in which the selective value of the mutation is a function of the 

population size in which it finds itself (Ohta 1973, 1992)). This study purposefully uses 

markers in which neutrality is an important conceit, so as to uncover past processes and 

the demographic dynamics of present populations, without the complications arising from 

non-neutrality (e.g. selection or mutational drive). Therefore, the following brief 

exposition shall consider only those mutations that have no selective effect. Once a 

mutation appears in a finite population it will become fixed in, on average, 1/2Ne 

generations (see pages 51-52 for a discussion of this Sewall Wright effect or genetic drift). 

New mutation must occur to maintain variation at a locus that is approaching fixation. 

Mutation at a locus occurs with frequency 2Neµ. Therefore the average allelic variation of 

a locus at any particular time is simply the product of the mutation rate and the probability 

of fixation of a mutant at that locus, (1/2Ne)•2Neµ = µ (Kimura 1968; King and Jukes 

1969). This equation describes the amount of variation present at mutation-drift 

equilibrium.  

 

Mutation rates may vary among loci and over time (Kelly and Rice 1996). The equilibrium 

of drift and mutation may be at various stages of imbalance or balance in different parts of 

the genome (which may have had an important effect on genome organisation over 

evolutionary timescales (Lynch and Conery 2003)). Potentially, every nucleotide base is a 

locus of interest, especially if this interest involves phylogenetic reconstruction. The 

probability of a mutation occurring within the purine or within the pyrimidine group of 

bases is often of the order of four-fold that of transversions (purine to pyrimidine or vice 

versa) especially in animal mitochondrial DNA in which transition:transvertion ratios are 

particularly skewed (Belle et al. 2005). Mutation rates may also be elevated in distinct 

hotspots that may be associated with errors in the DNA replication machinery (Rogozin 

and Pavlov 2003). Each base position has the potential to vary in the rate of substitution at 

that site. This rate heterogeneity is an important factor that needs to be addressed in 
                                                
9 Dependent upon the abiotic, biotic and epigenetic environment in which the mutation (via the 
phenotype) finds itself, it will either be invisible to selection (effectively ‘neutral’), or have a negative 
or, less likely, a positive consequence for the carrier. The quantitative measure of this effect is called the 
selection coefficient, s, and by definition must affect the fitness of the individual (w) in which it resides. 
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phylogenetic reconstruction. Rate variation over a given sequence can be modelled by the 

gamma-distribution. The shape of this distribution (!) determines whether the effect of 

rate heterogeneity is severe with large effect or whether it is moderate or unimportant. 

This statistic is often used in conjunction with mathematical assumptions about rates and 

the direction of mutation between all four classes of nucleotide, so as to model the 

evolution of nucleotide substitution at particular loci of interest. The first and most basic 

model, that of Jukes-Cantor (1969), assumes no rate heterogeneity and that the probability 

of one base mutating to another is equal among all sites at all times. All subsequent 

models are an extension and extrapolation of this simple predecessor (see texts by Graur & 

Li 2000 and Nei & Kumar 2000 for a full exposition of the many interrelated models).  

 

As just discussed, models of evolution are important in the interpretation of genetic data, 

especially so in model-based analyses. Summary statistics are also very useful, particularly 

in respect to measures of genetic divergence based on frequentist principles (e.g. FST, see 

p55). A basic measure of genetic diversity is the mean expected gene diversity (for nuclear 

loci) or the mean expected nucleotide diversity (for mtDNA) (Nei and Li 1979). These 

measures can be computed directly from frequency information and are not sensitive to the 

limits of population size (Graur & Li 2000). Both of these summary metrics summarise the 

probability that two randomly drawn alleles, or haplotypes, are different from one another. 

In the case of nuclear polymorphism, average allelic diversity (heterozygosity), H, is given 

by: 

 

!
! !!

!

!!!
 

 

Where L = the number of loci and hi is the gene diversity at locus i. For nucleotide 

diversity, the analogue, ', is given by: 

 

!!!!!!!!"
!"

 

 

Where xi is the nucleotide frequency of the ith individual and xj likewise for the jth 

individual. 8ij is the proportion of nucleotide dissimilarities between the two sequences.  
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As previously mentioned, finite population size has an impact upon the amount of genetic 

variation present in a population. This is chief among many factors that may affect the 

distribution of genetic variation within a population However, the baseline model of 

genetic variation within a population from one generation to the next invokes no 

evolutionary change at all: the Hardy-Weinberg model of evolutionary stasis. 

 

2.2.2 The Baseline Model of Evolutionary and Population Genetics: The 
Hardy-Weinberg Equilibrium. 
 

The null model of evolutionary genetics is the Hardy-Weinberg equilibrium model, 

independently discovered in 1908 by the English mathematician G. H. Hardy and the 

German physician Wilhelm Weinberg (but see Provine (1987) for earlier deductions of the 

same principle in the United States). The model, in its simplest form, states that in the 

absence of evolutionary forces (such as natural selection, mutation, migration and non-

random systems of mating), and in populations of such size that the effects of statistical 

sampling are negligible, a population from one generation to the next shall experience no 

change in the frequencies of its alleles at a given locus: that is to say, evolution has not 

occurred (allele frequencies are said to be in Hardy-Weinberg equilibrium (HWE)). The 

model rests upon assumptions not usually commonplace in nature, but it provides a useful 

test, not only as an initial indicator of the influence of evolutionary phenomena, but as an 

indicator of the suitability of selectively neutral marker loci for studies of population 

demographic phenomena such as rates of inter-population migration and the elucidation of 

effective population sizes. HWE may be found wherever loci are inherited in a strictly 

Mendelian fashion and when the above criteria for evolutionary change are not met. Thus, 

whilst some loci with a direct phenotypic effect may influence the selection of mates, for 

instance, other unlinked loci ‘blind’ to the influence of natural or sexual selection, and 

given the relaxation of the other evolutionary forces, will closely follow Hardy-Weinberg 

expectations of allele frequencies in subsequent generations. HWE can be destroyed in a 

single generation whenever one or more of the above assumptions are violated; and, 

conversely, restored in a single generation of random-mating in a large population where 

drift, selection and migration have ceased to have an impact.  

 

In molecular ecological studies, tests for conformity to HWE are routinely implemented 

when analysing suites of co-dominant molecular genetic markers. Whilst it may seem an 

unrealistic expectation that real world “populations” will exhibit HWE at all marker loci 

(the word “populations” is bookended by quotation marks to highlight the fact that 
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investigators often sample an area with little or no a priori appreciation of the actual 

demographic structure of an organism’s range), the genomes of most eukaryotic species 

are large enough to yield literally thousands of potential markers (Koskinen et al. 2004). 

Aside from selection, and the sampling of individuals from pooled reproductive units, 

perhaps the biggest biological, and methodological, impediment to HWE is the census 

sizes of the populations being sampled. In finite populations within which low numbers of 

individuals are sampled, rare alleles will normally be found in heterozygous individuals, 

but the Hardy-Weinberg formula, which is based upon the binomial distribution of allele 

frequencies, will determine an unrealistic proportion of homozygotes (Allendorf and 

Luikart 2006), as the expected number of heterozygotes is increased by an amount 

proportional to a decrease in the homozygote categories (Levene 1949). As an example to 

illustrate the problem of sample size and the statistical methods to determine conformity to 

HWE in molecular ecological studies, the next section will focus upon a single 

microsatellite locus from the roach, Ca17. 

 

The locus Ca17 is a tetranucleotide microsatellite locus with a basic repeat motif of 

(TAGA)n. 40 individuals from the River Witham, in the East of England, were assayed, 

via PCR-based amplification, and visualised on an acryladmide gel. Two alleles were 

detected – one allele consisting of 228bp, the other possessing a length of 240bp. Thus, 

three genotypes are potentially extant in this population, and from an analytical point of 

view, 1 degree of freedom is available for traditional statistical analysis ((2-test). Table 2.1 

describes the frequencies of the three genotypes, the inferred allele frequencies (according 

to the Hardy-Weinberg theorem) and the expected genotype frequencies given the actual 

frequencies of the two alleles. Finally, a (2-test is conducted to determine whether the 

scored genotype frequencies for the Witham population are within the expected range as 

predicted by the allele frequencies in a scenario of HWE. The (2 statistic is given in the 

bottom right hand panel of Table 2.1. This figure – 0.11 (highlighted in yellow and 

underlined) – indicates that there is no significant deviation from expected Hardy-

Weinberg frequencies of each recorded genotype of CA17 in the Witham; that is the locus 

conforms to Hardy-Weinberg expectations. Generally, the level of significance (! – level), 

below which any deviation from expected HWE is greater than would be expected by 

chance alone, is given as 0.05, although this figure is arbitrary. However, note the 

expected number of the rare homozygote - it is less than one. The suitability of the simple 

(2-test is compromised when the expected numbers of any of the genotypic classes 

becomes too low, with limits in the literature set at varying numbers of individuals (five 

(Allendorf and Luikart 2006; Hedrick 2005a); three (Cochran 1954); and even as low as 
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one (Lewontin & Felsenstein 1965)). However, Hedrick (2005a) suggests that adjacent 

classes be combined when such individual categories number less than 5 (although this is 

not possible for a locus with just two alleles as the degrees of freedom will be zero). 
 

Table 2.1: The determination of Hardy-Weinberg equilibrium for the locus 
Ca17 in a sample of 40 roach from the River Witham.  

Genotype Observed (O) Expected (E) (O-E)2/E 
228/228 30 29.75 0.002 
228/240 9 9.49 0.025 
240/240 1 0.75 0.083 
) 40 39.99 0.11 

 

Additionally, the (2-test loses power to detect subtle deviations from HWE, due to its 

conservative nature, in small sample sizes (< 50 individuals) (Hedrick 2005a). Many of 

these concerns regarding the application of (2-tests to determine conformity to HWE are 

particularly pertinent to studies of population genetics, due to the limitation of sampling 

rare or elusive organisms, the patchiness of organismal distributions and the unknown 

nature of underlying population substructure. Also, the marker loci used in such studies 

tend to exhibit greater levels of polymorphism than the example of Ca17 above. Many 

microsatellites loci are highly polymorphic, although most alleles will be rare in 

comparison to a few common ones. Thus, with loci possessing multiple alleles the effects 

of small sample size are particularly acute. 

 

Exact tests (Raymond & Rousset 1995a; Weir 1996) are used in the majority of studies in 

which sample sizes are low, or vary among locations, and where the number of alleles, and 

hence, genotypes, are high. They are implemented in a range of population genetic 

software, such as GENEPOP (Raymond & Rousset 1995b). Exact tests are a useful 

alternative to the (2-test, not only for the increased statistical power, but are also more 

tractable when dealing with myriad genotypes. Exact tests, or exact probability tests, 

determine the probability of each of the possible genotypes given the frequencies of each 

of the alleles in a given sample (Hedrick 2005a). As allele numbers increase, simulation is 

often necessary to compute the likelihood that genotype frequencies differ from 

expectation by chance alone (Hedrick 2005a). The programme GENEPOP (version 4.0) 

(Rousset 2008) utilises the Markov Chain algorithm (Rousset & Raymond 1997), in which 

a series of random variables, genotypes in this case, whose values are predicated on the 

previous simulation in the chain (Beaumont & Rannala 2004), are used to maximise the 

probability of such an array of genotypes occurring by chance. One can also determine the 

fixation indices of alleles within a population (Fis), which are informative because they 
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indicate whether a population has a deficiency of heterozygotes (positive values of Fis) at a 

particular locus, or whether there exists an excess (negative values of Fis). The proportion 

of heterozygotes to homozygotes may be biologically informative, depending upon the 

patterning of heterozygote deficiency among loci and populations. As an extension of the 

previous example, consider Table 2.2 that shows the results of exact-tests (as implemented 

in GENEPOP) for the locus Ca17 in nine populations. 

 

Table 2.2 indicates that each of the 9 populations is in HWE for the Ca17 locus (the Yare 

and Kent Stour are insignificant after Bonferroni correction). The p-values indicate that 

the null hypothesis (of HWE) should not be rejected for each of the populations and across 

all populations (p = 0.2314). All but two of the populations show an excess of 

heterozygotes, as predicted from theory (Levene 1949), for small populations (mean 

population size = approximately 33 individuals). 

 

Table 2.2: Exact tests for conformity to HWE of the Ca17 locus in 9 
populations 

* Bonferroni adjusted ! = 0.0056; ‡ Weir & Cockerham 1984.  

 

Overall, this locus displays only five alleles in 300 individual fish, with most populations 

diallelic for the two alleles mentioned above (228 and 240). The exceptions are the Yare 

(possesses private alleles 232 and 248) and the Kent Stour (private allele 236). 

 

Table 2.3 outlines the various factors, both biological and systemic, that can have an effect 

on levels of heterozygosity in a population associated with deviation from HWE. Some of 

the factors have already been discussed (e.g. the Wahlund effect – the apparent loss of 

heterozygosity due to unbeknownst pooled sampling of two or more sympatric, yet 

Population Census size p-value* Significant? FIS 

Great Ouse 56 1.000 No -0.091 

Witham 40 0.548 No  0.064 

Yare 30 0.026 No -0.073 

Yorks Ouse 8 1.000 No -0.077 

Kent Stour 44 0.015 No  0.065 

Sussex Ouse 22 0.143 No -0.355 

Tees 36 1.000 No -0.103 

Trent 29 1.000 No -0.061 

Rhône 35 0.568 No -0.214 
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reproductively isolated, populations). Many of the factors are potential systemic errors 

associated with analysing molecular markers (mis-scoring of alleles) or not taking into 

account the vagaries of mutation (e.g. the presence of null alleles) or the visualisation 

process (allelic drop-out). Null alleles can have a major negative impact on studies of 

parentage analysis (Dakin & Avise 2004), population assignment tests (Carlsson 2008) 

and population structure (Chapuis & Estoup 2007) (but see Chapter Four). 

 

Table 2.3: Potential causative factors for the deviation of populations 
from HWE as determined by their effects upon heterozygosity (taken 
from Hedrick (2005a)).  

Effect on heterozygosity Cause 

Decrease 

Selection against heterozygotes 

Inbreeding 

Assortative mating 

Gene flow of zygotes 

Wahlund effect over space or time 

Null allele(s) 

Allelic drop-out 

Increase 

Balancing selection of heterozygotes 

Outbreeding 

Disassortative mating 

Gene flow of gametes 

PCR artefacts of new alleles 

Mis-scoring of alleles 

 

To complicate matters further, a combination of the above listed influences may interact in 

such a way as to cancel each other out, resulting in genotype frequencies consistent with 

those expected from HWE (Workman 1969). For example, the sampling of two 

reproductively isolated populations in communal feeding grounds will decrease 

heterozygosity over the entire population sample, as will genetic drift from small sample 

sizes, or limited sampling, whilst, conversely, gene flow from immigrants will increase 

levels of heterozygosity (Wang 2005). 
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2.2.3 Statistical Correction for Multiple Tests 
 

It is worth noting at this juncture the problem of comparing multiple independent and pair-

wise tests and the impact this has on overall levels of significance. Following Moran 

(2003), in a table of statistical comparisons there is a probability: 

 

            !!! !!!!! !!!!!        (1) 

 

of finding one or more associations that are significant by chance alone (where ! is the 

type I error level and N is the number of tests). Taking the contents of Table 2.2 as an 

example, there are 9 tests being made with regard to HWE, and thus a probability of 

approximately 0.45 of achieving a statistically significant deviation by chance. To counter 

the appearance of fluke results, one administers the Bonferroni correction (Rice 1989), 

such that the !-value is adjusted by dividing it by a value n, where n is the number of tests 

(in this case 9 – they are not pairwise). Thus the adjusted !-value for 9 independent tests is 

0.05/9 = 0.006. However, where we have direct comparisons of particular parameters (e.g. 

a measure of population divergence such as FST)) between a number of categories (e.g. the 

9 populations of Table 2.2), then the number by which the !-value should be divided is 

given by: 

 

    !!!! ! !!!!! ! !!  (2)    

 

Or alternatively, the revised ! value is given by: 

 

 

    !!! !!! ! !!!!!   (3)    

 

where k represents the number of categories (e.g. populations). For k = 9 the equation (2) 

resolves as 36, which equals the number of possible pair-wise comparisons of 9 sampled 

populations. The !-value (e.g. 0.05) is then divided by 36, in this example, to attain a 

figure of 0.00138, also given by equation 3 (Sokal and Rohlf 1995). Therefore, to achieve 

significance at ! = 0.05, actual p-values of population divergence need to be * 0.00138. 

However, the use of the simple Bonferroni correction has been criticised as being too 

conservative by some authors, lacking in statistical power to detect subtle deviations from 

null distributions (Moran 2003; Nakagawa 2004; and Narum 2006). Some authors have 

criticised – and developed alternatives – to the standard Bonferroni correction (e.g. Holm 
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(1979)), however the standard correction is used in this study as the quality and quantity of 

included data should allow for a robust detection of non-random deviations from chance.  

 

2.2.4 Linkage Disequilibrium 

 

Each marker locus used is an independent source of data providing that they all follow 

Mendel’s second law of inheritance, that of independent assortment. However, this ‘law’ 

may be broken in two respects, one that is fatal to the notion of independence and the 

second that is potentially useful if the contravention is not universal among associated loci 

in all populations. Close physical linkage on the same chromosome of two or more loci 

will cause a non-random association of alleles among the loci between generations due to 

their inheritance in close association (given a low rate of chromosomal recombination 

between them)10. If this is the case, this linkage disequilibrium (Lewontin and Kojima 

1960) should be apparent in all populations. Thus, linked loci must be whittled down to a 

single marker – leaving for analysis the more polymorphic one. The second case of 

disequilibrium results in a similar non-random association of alleles, although this time the 

cause is not physical linkage on the same chromosome, but a statistical association of 

alleles from populations with near-historical or recent allelic differences that are sampled 

sympatrically. This phenomenon may be exemplified in the roach – a species that spawns 

after considerable migration to a number of spawning grounds, about which there is some 

evidence for fidelity of spawning individuals (Goldspink 1977; L’Abée-Lund and 

Vøllestad 1985), which then return to productive post-spawning, recuperative feeding 

areas shared with other ‘spawning shoals’. The relative reproductive isolation of spawning 

shoals will result in their genetic divergence, and the sampling of populations in 

communal feeding grounds will result in the Wahlund effect (see above) and non-random 

associations of alleles within gametes (so-called gametic phase disequilibrium (Crow & 

Kimura 1970)). Normally, because non-physically linked alleles possess the maximum 

rate of recombination (e.g. independent assortment) within the germplasm, gametic 

disequilibrium (D) will break down by 0.5 every generation until the equilibrium 

frequencies of alleles has been reached. This would be the case if there were an initial one-

off case of population admixture followed by random breeding. However, D can be 

maintained through a number of processes such as selection, population bottlenecks and 

by the maintained fidelity of spawning and shared summer feeding grounds. The existence 

of gametic disequilibrium in tandem with the Wahlund effect may indicate the summer 

                                                
10 Note: loci may be located on the same chromosome and not contravene the principle of independent 
assortment if the rate of recombination between them is maximal (i.e. r = 0.5). 
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feeding grounds of two or more reproductive spawning shoals, or demes. Disequilibrium 

can also be used to estimate effective population sizes (Waples 2006a), although such 

estimates may be confounded by the presence of sympatric demes in sampled areas. 

Linkage disequilibrium among loci within gametes may also result from the action of 

genetic drift in finite populations (see below).  

 

2.2.5 Departure from Equilibrium Conditions 

 

The most obvious deviation from the assumptions of the Hardy-Weinberg theorem is that 

of infinite population size. This deviation alone, as we shall see, is enough to facilitate 

evolution if the process is given enough time and there is the availability of allelic 

variation to begin with. Non-random systems of mating, the occurrence of mutation, 

migration between fragmented populations and natural selection will all cause changes in 

allele frequencies over the course of generations. If each of these forces acted alone (apart 

from constant mutational pressure), many alleles would approach fixation and evolution 

would grind to a halt. These forces do not occur in isolation from each other and they 

combine to cause fluxes in genotypic and phenotypic evolution, the scope of which 

depends upon their relative contributions. In certain circumstances equilibrium is reached 

(e.g. between the opposing forces of genetic drift, selection and mutation), the stability of 

which is governed by the many underlying properties of the genetic system under study 

and its prior evolutionary history. An example of a non-equilibrium condition concerns the 

mitochondrial genome (or loci therein) in small populations, which, because of its mode of 

inheritance, is liable to fixation in small populations, despite the actions of selection or 

migration. The signals of mtDNA haplotypes scattered around northern Europe in many 

eukaryotic taxa show a great deal of geographical patterning in terms of haplotype 

diversity because of historical bottlenecks associated with the glaciations of the last Ice 

Age. Populations became fragmented, and the isolates became fixed for different 

haplotypes such that these haplotypes and their descendants became ‘frozen’ due to the 

peculiarities of demographic expansion after the retreat of the ice sheets (see Chapter 

Three). At smaller spatial and temporal scales, the equilibrium processes of mutation, 

selection, genetic drift and migration predominate, although mutation is sometimes 

ignored due to the timescales involved. When one of these processes dominates over the 

others beyond the boundaries of the equilibrium, the equilibrium is broken and a 

population may drastically alter in its allele frequencies –resuming evolution. 
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2.2.6 Genetic Drift and the Effective Population Size. 

 

Every population is finite. Thus, only one evolutionary force is universally pervasive: 

genetic drift. It interacts with all other known evolutionary factors, such that it determines 

the amount of genetic variation within and among populations (Wang 2005). Genetic drift 

occurs because of the error associated with sampling gametes from within a finite 

population. An extreme example for illustrative purposes is to consider a typical 

Mendelian monohybrid cross between two autosomal heterozygotes (e.g. Aa x Aa). 

Assuming sampling with replacement, i.e. the two parents have two offspring, there’s a 

one in sixteen chance that either one of the alleles will be lost (Wayne and Miyamoto 

2006). The population would then be homozygous for the other allele. The successful 

allele is present due to nothing other than caprice associated with Mendel’s second law 

(i.e. the stochasticity inherent from the binomial sampling of a limited number of 

gametes). Here we have a definition of drift relating to the loss of heterozygosity within a 

population, or, alternatively, the accumulation of homozygosity. Assuming that all other 

evolutionary factors are absent, heterozygosity will be lost from a population at a rate that 

is inversely proportional to population size, so at time t+1 heterozygosity (H) will be: 

 

! ! !
!! !!" 

 

Where Ht is the heterozygosity of the population in the preceding generation (Hedrick 

2005b). Therefore, genetic drift is most effective when population sizes are small. Genetic 

drift was first considered by R. A. Fisher (1930), but elaborated upon much more 

extensively by Sewall Wright (1931) who extended the idea into a number of productive 

avenues. Randomly mating populations of finite size, subject to drift, are termed Fisher-

Wright populations in the literature. They represent a simple representation of a deviation 

from the Hardy-Weinberg model. The implementation of these models enabled theoretical 

work into the fate of genetic variation to be made more explicit. The major conclusion 

from the application of the Wright effect is that genetic drift tends towards weeding out 

genetic variation, particularly in small populations and those populations founded by a few 

individuals (the so-called founder effect (Mayr 1954)).  

 

However, even large populations may drift towards fixation of alleles when these alleles 

are on no other evolutionary trajectory. Furthermore, historical demographic bottlenecks 

will purge populations of genetic variation, and leave a signature of reduced allelic 
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variation embedded within the genomes of such organisms. A severe decline in population 

size will have the general effect of removing the rare alleles within a population, thereby 

reducing allelic diversity. However, the amount of heterozygosity is reduced at a rate less 

than the loss of the number of alleles. Thus, ratios of expected:observed heterozygosity 

and allelic diversity may be diagnostic of prior demographic history, perhaps indicating 

populations at risk of genetic erosion and the effects of inbreeding, which are significantly 

increased within small populations (e.g. Bijlsma et al. 2001). 

 

Genetic drift determines the amount of variation that remains within the population that 

may later be utilized by selection for adaptive evolution in the wake of demographic 

expansion or environmental change. Depending upon the genetic parameters under 

consideration, and the demographic properties of a population, genetic drift affects the 

properties of genetic variation within a population in different ways. The impact of drift 

may be measured by the increase in the average probability that homologous alleles will 

be reunited in an individual with reference to an initial grandparental generation (identical-

by-descent or IBD)11. Thus, for homologous alleles, genetic drift increases the likelihood 

of average pedigree inbreeding in a population. The ‘effective size’ of the surveyed 

population is then the number of breeding individuals in an idealised Wright-Fisher 

population in which the same outcome of inbreeding would be attained (Wright 1931). 

This is the inbreeding effective size, Neb. It is generally less than the census population 

size, but not always. Another variant of the effective size concept considers the variance in 

allele frequencies among generations, and is termed the variance effective size, Nev (the 

definition of which is the same as Neb, but the genetic parameter under consideration is not 

the increase in inbreeding, but the variance in allele frequencies (Crow and Kimura 

1970)). These are the two main concepts of ‘the effective population size’ (Sjödin et al. 

2005), although there are others (e.g. the eigenvalue effective size (Ewens 1982), relating 

to the loss of heterozygosity through the generations, and the coalescent effective size 

(Nordborg and Krone (2002)). These size concepts measure biologically different 

phenomena (Templeton 2006), estimates of which may differ in their values for a single 

population, depending upon recent demographic and evolutionary history. All estimates 

are based upon measures of variance: the greater the variance, the lower the effective size 

(Nunney 1995). Nev and Neb, the most commonly used measures, approach similar values 

when populations are at evolutionary equilibrium (Wang 2005), and unless where 

                                                
11 Note that alleles may be in the same homozygous ‘state’, e.g. ‘AA’ or ‘aa’ (identical-by-state, IBS) 
and still not be considered IBD. The two alleles are only IBD (autozygous) – and the individual truly 
‘inbred’ for this locus - if both alleles were inherited, via related antecedants, from an individual in 
which the alleles coalesce. (Templeton 2006). 
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specifically stated, they shall not be distinguished. In simple terms: the effective size 

indicates the number of idealised individuals that contribute to the allelic diversity of the 

subsequent generation, given the genetic parameters of the real population undergoing 

genetic drift (i.e. not all individuals in a population contribute alleles to the next 

generation, and these ‘non-breeding’ individuals are discarded from contention). 

 

In management and conservation circles, the effective size represents an important 

parameter, as it indicates the amount of genetic variation within a population, and genetic 

management and breeding schemes can utilize this information to maximise demographic 

growth without subsequent loss of genetic variability. Unequal gene flow among recently 

fragmented populations may lead to stochasticity in gene transmittance within the sub-

populations, such that effective sizes are dramatically reduced (Palstra and Ruzzante 

2008). Low effective sizes also indicate populations at risk of extinction due to associated 

inbreeding effects and possible loss of allelic diversity, which reduces evolutionary 

potential to adapt to changing conditions (Lynch et al. 1995; Frankham et al. 2003). 

However, measuring Ne is extremely difficult, unless explicit demographic and pedigree 

information is available for a number of generations for the same population. Also, Ne is 

based on the assumptions of the Fisher-Wright model, concessions to which are contingent 

on mathematical tractability (Sjödin et al. 2005). These simplified conditions are often not 

satisfied in natural populations. 

 

The inbreeding effective size is often estimated by determining allele frequency flux over 

a number of reproductively independent generations (Jorde and Ryman 1995), although 

populations with overlapping generations have been given a theoretical footing (Nei and 

Tajima 1984; Pollak 1983), in which case one may measure the inbreeding effective size 

of ‘breeders’, i.e. of single cohorts (Beebee 2009). The so-called temporal method uses the 

harmonic mean of the change in allele frequencies over a number of given generations 

(Pollak 1983). Thus, a reduction in population size in just one generation (bottlenecking) 

will lead to a reduced effective population size; the number of contributing individuals is, 

in one generation, severely reduced (Luikart et al. 1999), impacting future generations 

until new variation is introduced from mutation and/or migration. These estimates of 

effective size are dependent upon temporal data being available and that it is the same 

population that is being sampled in each time period (there are also issues dealing with 

age-structured populations and that discrete age classes differ in their allele frequencies 

which need to be taken into account (Jorde and Ryman 1995)). One-shot measures of Ne 
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have been developed, although until recently (e.g. Beebee 2009) they have not been tested 

empirically. 

 

2.2.7 Population Structure  
 

Determining genetic discontinuities is a fundamental aspect of all management and 

conservation genetic strategies. That population structuring is an important component of 

the evolution of species was formulated by the work of Sewall Wright (1931, 1938a, 

1938b and 1951) and followers. As a result (see explication in Chapter One) it has become 

desirable to conserve much of the variance in the distribution of genetic variation. In the 

molecular ecology literature there are two basic, frequentist methods to determine 

differences: exact-tests and the application of inbreeding coefficients. Exact-tests for 

allelic differentiation use the basic exact test formulation of Fisher (Raymond & Rousset 

1995a), whereas genotypic differences are calculated by using an unbiased estimator of the 

log-likelihood (G) scores of an exact test (Goudet et al. 1996). 

 

The F-statistics (inbreeding coefficients) are a series of hierarchical measures in which the 

variance in allele frequencies within a metapopulation are apportioned according to a 

structural hierarchy. Devised by Wright to describe the distribution of genetic variation in 

both domestic and wild populations (Wright 1943, 1946 and 1951), the F-statistics (FST in 

particular) have found utility across the evolutionary continuum. The inbreeding 

coefficient f is described by Wright as: “the correlation between homologous genes of 

uniting gametes under a given mating pattern12, relative to the total array of these in 

random derivatives of the foundation stock” (Wright 1965). Malécot re-stated inbreeding 

coefficients as the probability that two autosomal alleles in a diploid zygote are identical 

by descent, that is to say that they were independently inherited from a single ancestral 

individual (IBD) (Malécot 1948). The F-statistics as we know them now were derived 

from the inbreeding coefficient to determine the correlation of reuniting alleles at a locus 

within individuals relative to the subpopulation (FIS), within a sub-population relative to 

the total population (FST) and within individuals relative to the total population (FIT). Each 

of these three metrics are interrelated and thus non-independent (Wright 1965). FST is the 

important metric when determining population subdivision, as it deals with the distribution 

of allelic variance that is due to differences between subpopulations relative to that of the 

total population. Its relation to the other metrics is: 

 
                                                
12 For neutral markers the system of mating assumed is random with respect to mate choice. 
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!!" ! !!"!!!!" !!! !!!"!"
 

FST can also be posited in terms of genetic diversity indices (heterozygosity or ‘gene 

diversity’) within populations and the difference among populations: 

 

!!" ! ! ! !!!
!!

 

 

Where HS is the amount of observed heterozygosity averaged over all subpopulations and 

HT is the amount of observed heterozygosity expected over the entire population if the 

population was in HWE (Nei 1973). FST, as originally conceived by Wright, dealt with a 

strictly diallelic genetic model: if two populations are homozygous for the two different 

alleles then FST = 1; conversely, if the two populations were fixed for the same alleles then 

FST = 0. However, modern estimators handle multilocus data. 

 

In terms of variance of allele frequencies, Weir & Cockerham (1984) derived this estimate 

of population structure: 

! ! !"# !
!!! ! !! 

 

Where Var (p) is the variance in allele frequency and  is the mean allele frequency (here 

FST is estimated by #). These are an example of many different estimators of FST that have 

been developed over the years (Holsinger and Weir 2009). Weir & Cockerham’s (1984) 

FST estimator (#) samples from the allele frequency distribution (genetic or evolutionary 

sampling distribution) derived from all surveyed populations, taking into account the 

sampling variance inherent in sampling from a limited number of subpopulations from 

across a species’ range (itself composed of an infinite number of subpopulations founded 

from a single ancestral population) (Holsinger and Weir 2009). Nei (1973), however, 

devised the FST estimator GST (the coefficient of gene differentiation) that reflects the 

degree of genetic differentiation among populations by deriving the metric from the gene 

diversities of those populations being compared (which are themselves a subsample of the 

‘genetic sampling distribution’) (Holsinger and Weir 2009). When mutation process 

become an important determinant in the spatial distribution of genetic variation, it is 

sometimes more pertinent to use an FST estimator that takes this rate into account. RST 

(Slatkin 1995) is an FST analogue that incorporates a particular model of the evolution of 

microsatellite length polymorphism. Divergence estimates are derived from the average 

sum of squares of allele size differences between compared populations (Michalakis and 



 55 

Excoffier 1996). Other measures exist that relate to the differentiation of mitochondrial 

haplotypes (!ST) (see Chapter Three) and the differentiation of populations based upon 

additive genetic variation in continuous phenotypes (QST), amongst others. 

 

However, all these estimates of differentiation have come under recent critical scrutiny. 

Jost (2008) rejects the mathematical assumptions of estimators that are reliant upon the 

distribution of genic diversities (apportioned to within and among population components, 

e.g. GST) and any metric upon which there is a dependence upon within-group 

heterozygosity (including most estimators of FST). Jost argues that these indices 

mistakenly assume that heterozygosity possesses an additive property when apportioned, 

independently, into the two subcomponents of within and between subpopulations (Jost 

2008). GST will always be – incorrectly - zero if within population diversity is very high 

and population independence is absolute. GST may even decrease as population divergence 

increases. Jost’s paper follows on from historical disquiet of diversity-based estimators 

(e.g. Nagylaki 1998; Charlesworth 1998; and Hedrick 2005b) stipulating that GST only 

works well with low gene diversity. As an alternative, Jost offers D (for differentiation) to 

the canon of estimators of genetic differentiation deriving measures for HS and HT. D 

assumes the relationship between HS & HT to be multiplicative rather than additive and 

that the partitioning of gene diversity of a population includes a new component: that of 

the decomposition of diversity amongst subpopulations (HST). Differentiation is 

determined by: 

 

! ! !
!!!!! ! !
!!! ! !  

 

D is Jost’s differentiation estimator, JT is the gene identity of all the pooled 

subpopulations, JS is the gene identity of a subpopulation and n is the number of 

subpopulations. This equation has the potency to rank populations based on the actual 

levels of genetic divergence and ranks divergence faithfully from 0 (undifferentiated) to 1 

(fully differentiated). Applied within the context of Wright’s original island model of 

population subdivision: 

 

! ! ! ! !!
!!
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Where GS is the probability of uniting two alleles from the same subpopulation and GD is 

the probability of uniting two alleles from different populations (Jost 2008). However, the 

utility of old and new estimates engages continuing debate (Heller and Siegismund 2009; 

Ryman and Leimar 2009; and Jost 2009). 

 

2.2.8 Models of Population Connectivity and Estimates of Gene Flow 

 

Wright’s (1940) original conception of the infinite island model (see Fig 2.1) subdivides a 

population into an infinite number of subpopulations of equal size each exchanging with 

one another, with identical probability, a proportion m of effective migrants (that is 

migrants who contribute genetic material to the recipient population in the next 

generation). The finite population sizes of the subpopulations implies the loss of 

heterozygosity, at a rate proportional to the inverse of 2Ne, for each subpopulation with the 

result that individual loci would eventually become fixed if not for the renewal of variation 

through migration (leaving aside mutation). FST can be related to the loss of heterozygosity 

through genetic drift within each subpopulation thereby increasing the amount of variation 

among the subpopulations. Gene flow among the populations will counteract the effects of 

drift and so reduce differentiation. 

 

Thus at migration-drift equilibrium: 

 

!!" ! !
!

!!" ! !  

 

Therefore: 

!!" ! ! !
!!" ! ! 

 

However, the use of F-statistics to estimate Nm, (actually Nem - the population-scaled 

effective number of migrants) although once widespread, began to attract criticism both 

theoretically (e.g. Whitlock and McCauley 1999) and methodologically (Bossart and 

Powell 1998). Whitlock and McCauley’s criticism focuses upon the unrealistic 

assumptions behind the island model (e.g. failure to account for mutation, selection and 

unequally sized populations (Gaggiotti and Excoffier 2000)). Also, migration among the 

subpopulations is assumed to be symmetric (Tufto et al. 1996; Bahlo and Griffiths 2000). 
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Figure 2.1: The infinite n-island model of Wright (1940). Each arrow represents the 
exchange of migrants, m, between each population (P). Each population is connected 
with every other population and exchange the same proportion of migrants with an 
identical probability. 
 

The island model constitutes a ‘metapopulation’, but not in the classical sense as defined 

by Levins (1969); that of a set of subpopulations that inhabit heterogeneous habitat 

patches and each of which has the potential for individual extinction and recolonisation 

(see Hanski (1999) and Hanski and Ovaskainen (2000) for the impact of habitat 

heterogeneity on recolonisation and extinction). Thus extinction, founding events and the 

subsequent gene flow that occurs within the finite lifespan of individual populations all 

contribute to a heterogeneous genetic landscape (Whitlock 1992; Ingvarsson et al. 1997).  

 

The island model does not possess an explicit spatial component (all populations are 

assumed equally distant from one another). In reality this assumption is almost always 

violated (unless there are just two populations). Simply put, the exchange of migrants, and 

by extension the degree of genetic divergence, now becomes a function of the distance 

between respective populations, a phenomenon known as isolation by distance (IBD) 

(Wright 1943, 1946). The influence of geographic distance is exacerbated when migration 

is limited to 2 or 1 dimensions: rivers and streams illustrating prime examples of a one-

dimensional system for those organisms dependent upon the fluvial system for migration 

and reproduction. An early advance upon the island model was the one-dimensional 

stepping stone model of Kimura and Weiss (1964) (See Fig 2.2).  
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Figure 2.2: The stepping stone model of population genetic structure (Kimura and 
Weiss 1964). Each arrow represents the exchange of migrants, m, between each 
population (P). Although the probability of exchanging migrants with contiguous 
populations is identical, as in Wright’s (1940) model, genetic differentiation at 
migration-drift equilibrium will occur due to the enforced spatial dimension to gene 
flow. 
 
In this model, adjacent demes are most likely to exchange migrants, with the probability of 

exchange decreasing as a function of the distance between them. This model is seemingly 

a better fit for ecosystems such as rivers and streams. However, the directional flow of 

water currents will impact upon migration symmetry in many organisms (e.g. downstream 

gene flow determining greater genetic variability in those populations near the mouths of 

rivers (Hernandez-Martich and Smith 1997; Hänfling and Weetman 2006)). Sex-biased 

dispersal also presents a significant interpretative problem (e.g. Fraser et al. 2004), as does 

the presence of habitat patchiness (Pulliam 1988). 

 

Other issues relating to the use of FST to determine Nm include incorrectly inferring on-

going migration between populations when those populations have, in reality, been 

demographically isolated for generations. A large, highly variable population may be 

sundered into two daughter populations, but if genic diversity is high and drift has had too 

little time to effect significant differences in allele frequencies between them, then FST will 

erroneously infer continuing and homogenising gene flow between them. Similar 

expectations would be expected at the extremes of a species’ range (Whitlock and 

McCauley 1999) where adaptation to novel, peripheral environments may be retarded by 

high levels of gene flow from within the range. Finally, estimates of Nem, calculated from 

FST, may underestimate actual rates of migration by 10% in highly fecund species in which 

the ratio of effective:census size is 1:10 (Frankham 1995). The calculation of Nm from FST 

also suffers from problems of variance (low FST scores give scores of Nm with greater 

variance): the relationship between FST and Nm is non-linear (Waples 1998).  

 

The late 1990s saw the inception of new methods to determine indirect measures of 

effective migration. These methods reassessed the problem of migrant detection by 

employing model-based analyses: Bayesian analysis (BA) and maximum likelihood 

analysis (ML). Model-based methods utilise the concept of the coalescent, a theory 

developed to map genetic variation back through time (Kingman 1982a, 1982b). The 
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coalescent is the time-reverse of Malécot’s idea of identity by descent (IBD): a coalescent 

event occurs when one traces the co-ancestry of two present day alleles back to the 

historical event which saw them descend from a single meiotic division. The coalescent 

examines the genealogy of a sample rather than modelling population wide fluxes in allele 

frequencies (Wilson and Rannala 2003). These methods do not make the assumptions of 

FST derived measures: that population sizes are equal and infinite in number, and, 

crucially, that migration is symmetric; but some do assume migration-drift equilibrium has 

been attained and for at least 4Ne generations (Beerli and Felsenstein 2001). As such, 

estimates based upon the coalescent are best viewed as long-term measures of gene flow 

(Weetman and Hänfling 2006). 

 

A second model-based method is non-equilibrium in nature and provides an estimate of 

migration rate on the scale of three or so generations (Wilson and Rannala 2003). Such 

analyses are based upon Bayesian inference predicated upon the prior distribution of 

model parameters from which a posterior probability distribution is obtained to determine 

the likelihood of the model parameters given the data (multilocus genotypes). The method 

of Wilson and Rannala makes concessions for populations that are not in HWE. Both 

methods may be utilised in a complimentary way to investigate the exchange of effective 

migrants at different temporal scales. 

 

2.3 Genetic Markers in Molecular Ecological Studies 

 

2.3.1 Microsatellite Markers.   

 

Microsatellite DNA markers, since their published debut in molecular studies at the 

beginning of the 1990s (e.g. Schlötterer et al. 1991), have become a genetic marker very 

much favored by molecular ecologists. In part this is due to the relative ease by which 

novel markers can be identified within the genomes of target species, but more importantly 

it is because of their mode of evolution: stepwise shifts in the number of repeat elements 

evolving alleles which are distinguished from one another by different numbers of repeat 

elements. Microsatellites tend to have rates of mutation that are several orders of 

magnitude greater than even the nucleotide substitutions of the mitochondrial control 

region (Ellegren 2004). This makes microsatellites useful for studying genetic and 

demographic processes on ecological timescales (Schlötterer 2000). Microsatellites are 
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high-resolution markers, apt for studies concerning rates and directionality of migration, 

microgeographic substructuring, etc. (Pena and Chakraborty 1994; Schlötterer 2004; and 

Selkoe and Toonen 2006). Microsatellite loci are scattered throughout the genome of most 

taxa (although, curiously, they are less frequent in birds than other vertebrates (Primmer et 

al. 1997)). Regardless of functional status, diversity at microsatellite loci is taken as being 

representative of the genome in general, and therefore indicative of the adaptive 

potentiality of genomic diversity (Väli et al. 2008). As such, measures of genetic diversity 

based on nuclear markers are used to assess adaptive longevity of extant populations. 

Because one can assess many allelic variants of microsatellite loci, they are especially 

sensitive to demographic and historical events that reduce allelic diversity. They are useful 

in addressing the concerns of inbreeding depression and the associated loss of fitness 

exacerbated by small census sizes. Their high variability also make them exceptionally 

useful in determining rates and the extent of migration and/or population admixture, and as 

a means to assess effective population sizes and spatial structuring for stock assessment 

(but see Chapter One and references therein.).  

 

Microsatellites evolve due to mistakes in the replication of the repeat elements. Because of 

the contiguous nature of the repeats, the replication machinery, at rates potentially as high 

as once in a thousand replications (Ellegren 2004), often slip resulting in daughter strands 

that are either missing or gaining a repeat. If back and parallel mutation were not an issue, 

the divergence of microsatellites would be linear and straightforward. However, this 

ability to lose or gain iterated elements means that microsatellites possess an analogy of 

the ‘multiple hits’ problem of nucleotide saturation in highly mutable DNA sequences (see 

below). Two individuals with the same sized allele may seem prima facie to be identical 

for that locus, but one individual may have, in its coalescent ancestry, lost a repeat before 

gaining it again from a second, independent mutation event to return to a state that is the 

same as that allele of the second individual: that is, microsatellites may exhibit a degree of 

homoplasy. That alleles can be identical by descent (homologous) or identical by state 

(homoplasious) is a complexity of microsatellite evolution that is accommodated for by 

mathematical models. De facto population genetic models often assume that each allele is 

the result of a unique mutation and that all alleles are simultaneously IBD and IBS: the 

infinite alleles model (IAM, Kimura and Crow 1964). Thus, the IAM may not be suitable 

for analyzing microsatellite evolution over time frames in which mutation has become an 

important determining factor in the creation of genetic diversity. An alternate model was 

created with microsatellite evolution in mind: the SMM (stepwise mutation model 

(Kimura and Ohta 1978)). This model is the most frequently used model of microsatellite 
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evolution due to its relative simplicity compared to others that are more complex. Each 

mutation proceeds with an equal probability of occurring in both the upstream and 

downstream direction, thus allying greater allelic distance (in terms of base pair 

separation) with reduced relatedness (Balloux and Lugon-Moulin 2002). Only single 

repeat units are added or deleted, a fact at variance with observed microsatellite mutation 

in some taxa (e.g. carp (Yue et al. 2006)). A variant of the SMM model is the Two-Phase 

Model (TPM) (Valdés et al. 1993) which incorporates this uncertainty in the number of 

repeats involved in single mutation events (Balloux and Lugon-Moulin 2002). Other 

models exist which are discussed in numerous reviews (e.g. Balloux and Lugon-Moulin 

2002). 

 

As with most tools in the molecular ecologist’s toolbox, caution must be exercised by 

choosing the correct tool for its proper purpose. The high variability of microsatellites is 

their chief utility and is particularly useful for investigating population structuring. 

However, for the most part of their history, microsatellite loci have been developed using 

techniques that seek out the lengthier arrays that are usually more variable than shorter loci 

(Weber 1990; Ellegren 2000b). This ascertainment bias of enrichment screening (see Zane 

et al. (2002) for microsatellite development methods) may be misleading, as these loci 

may not be representative of the genome as a whole (Väli et al. 2008). 

 

2.3.2 The Mitochondrial Genome as Molecular Marker 

 

Mitochondrial DNA markers are commonly used to infer deep historical relationships 

among populations, to determine and attach dates to lineage splits (Moritz et al. 1987). 

They have been used in a multitude of intraspecific studies (Avise 2004). Because they are 

inherited as a single haploid ‘type’, and because they are also inherited uniparentally - 

through the maternal line – mitochondrial genomes have an effective size one quarter that 

of nuclear genomes (in diploid organisms). Because of this reduced effective size relative 

to nuclear loci, mtDNA is often a more appropriate marker than nuclear loci for 

identifying higher-level systematic populations (clades, sub-clades, etc), as they are more 

susceptible to fixation of single-types, or monophyletic lineages, during periods of 

population fragmentation and isolation or through population bottlenecks. Therefore 

mtDNA markers provide an excellent starting point to conduct a broad-scale analysis of 

genetic diversity within candidate species (Avise 1987; Moritz et al. 1987).  
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The following caveats on the use of mtDNA as a biological marker should be 

acknowledged: Firstly, these markers represent a matrilineage that may not only reflect 

population structure as a whole, but may on occasion, where female philopatry exists, 

reflect the behavioural ecology of the females, and may not take into account male 

dispersal among demes. Moreover, whilst mtDNA genes have a high rate of mutation 

compared to nuclear genes (around an order of magnitude greater (Wallace et al. 1994)),13 

mutation rates differ among mtDNA genes. The mitochondrial genome offers a number of 

structural genes (that encode proteins and ribosomal RNAs) open to genealogical analysis. 

Amongst the most useful loci for intraspecific studies is the D-loop (see Fig 2.3). Some 

genes mutate faster than others in many taxa (e.g. the D-loop of the control region) and 

offer a higher power of resolution than other such loci (e.g. the slowly-evolving genes of 

the ribosomal RNA). The difference in resolution allows reconstruction of genealogical 

relationships among haplotypes, populations, species and higher taxonomic categories at 

different temporal scales. Each temporal scale may be better suited by the application of a 

differently evolving locus. High mutability of some loci may be detrimental to 

genealogical reconstruction. A gene that mutates too rapidly will lose phylogenetic signal 

among haplotypes due to multiple nucleotide ‘hits’ at particular sites.14 

 

The general utility of using the mitochondrial genome as a genetic marker is linked to the 

relative ease by which it can be assayed within the laboratory, and because of the 

assumptions of mitochondrial inheritance and biology described above.  

 

 

                                                
13 Due to the lack of protective histone proteins, close proximity to mutagenic free-radical species and 
inefficient DNA repair mechanisms (Wallace 1992). 
 
14 This is because there are only four bases in the genetic code. As time elapses, each base position 
mutates at a certain rate to one of the other three bases. Eventually, given enough time, and depending 
upon mutation rate, each position would start to mutate to a third base (including the original base), thus 
eroding from record the previous mutation and perhaps indicating no evolution at the site in question 
(even though it would have experienced two mutational ‘hits’). Certain mutable ‘hotspots’ are prone to 
multiple hits in evolutionary short periods of time. This erosion of genealogical information may 
compromise studies in which taxon divergence is high and in which the phylogeny is deep.  
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Figure 2.3: The mitochondrial D-Loop as embedded within the control region (CR) of the roach 
mitochondrial genome15. Shown is the complete control region of a common roach (full sequence 
derived from GenBank, Accession No: FJ188383.1) with additional upstream sequences that 
encode the transfer RNA for phenylalanine (blue) and the 5’ end of the 12S subunit ribosomal 
RNA gene (magenta). The 634bp D-loop sequence utilized in this study is highlighted in green.  
The “D-Loop” sequence is comprised of a central conserved region and variable domains at its 
upstream and downstream ends (the variable regions located either side of the D-Loop and not 
sequenced in this study are shaded yellow (downstream – 5’) and aquamarine (upstream – 3’ end).  
 

Homoplasmy – whereby all mtDNA genomes within a cell are identical - was thought to 

be prevalent through the action of vegetative segregation, mitochondrial bottlenecks in 

oogenesis (Bergstrom and Pritchard 1998) and from the prevention of the transmission of 

paternal mitochondria into the zygote (Birky 1995). However, evidence is accumulating 

that homoplasmy may not be the norm and that multiple mitochondrial lineages 

(heteroplasmy) may be more commonplace than initially thought (White et al. 2008). 

Paternal leakage has been identified in the anchovy (Magoulas and Zouros 1993) and 

Chinook salmon (Wolff et al. 2008), and recombinant lineages detected in halibut and 

flatfish (Mjelle et al. 2008 and Hoarau et al. 2002, respectively). Heteroplasmic mtDNA 

lineages may also occur as discrete size-variants, for example in the sturgeon genera 

Acipenser, Huso and Scaphirhyncus heteroplasmic variants in the number of iterated 

repeat units within the 3’ end of the control region are found in most species (Ludwig et al. 

2000). Thus, the potential exists for heteroplasmic lineages to confuse coalescent-based 

models and to introduce significant error into estimates of lineage bifurcations in situations 

where a molecular clock is assumed (Eyre-Walker 2000; Slate and Gemmell 2004).  

                                                
15 The length of the roach CR is around 1kb (this individual has 999bp) and is somewhat longer than 
many observed cyprinid CRs (by ~60bp compared to red crucian carp Carassius auratus, red variety 
and blunt snout bream Megalobrama amblycephala (Yan et al. 2010), and ~50 bp as compared with the 
zebrafish Danio rerio (Broughton et al. 2001)), although all variable/conserved sequence-block 
structures are similar to most studied vertebrate taxa (e.g. Roe et al. 1985; Foran et al. 1988). 
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Haplotype networks (unrooted phylogenetic trees based upon shared sequence similarity) 

are often not fully resolved (a haplotype may be equally inferred to be genealogically 

linked with two other haplotypes due to a single nucleotide difference separating it from 

the two putative close relatives), especially in populations that show low sequence 

divergence. This low resolution in many taxa is either ascribed to low mutation rates or 

due to recent population bottlenecks. An alternative explanation is recurrent mutation, 

which may occur in certain hotspots of the mitochondrial control region, causing the 

problem of multiple hits (Galtier et al. 2006). Additionally, White et al (2008) point out 

that if heteroplasmy is commonplace, recombination among different mitochondrial 

lineages will mimic the action of recurrent mutation. This would explain why some taxa 

are more prone to lineage sorting than others if levels of heteroplasmy, and recombination 

among heteroplasmic lineages, are variable across taxa. Additionally, the coding 

mitochondrial genome experiences strong selective pressure to maintain or increase 

functionality (resulting in stasis or rapid selective sweeps), thus either reducing diversity 

or showing genetic patterns which may conflate with the expectations of neutral mutations 

in a population undergoing rapid demographic expansion. Even the non-coding D-loop 

may be subject to purifying selection (e.g. in humans some variants are more common in 

individuals who develop certain cancers (e.g. Miyazono et al. 2002; Sharma et al. 2005; 

and Guo and Guo 2006)). The universality of the above concerns are as yet unknown and 

the scale of the potential problem(s) open to speculation, but investigators using 

mitochondrial markers should be cognizant of them and proceed cautiously.  

 

2.4 Epilogue 

 

The choice of genetic marker in molecular ecological studies is primarily contingent upon 

the questions being asked by the investigator. This chapter has described the main 

theoretical and methodological theses that underpin much of the science of molecular 

ecology, although the field is ever-expanding (e.g. adopting highly informative SNP 

markers and genome-wide screening of genetic variation and adaptive genomics). 

However, critical assumptions are made regarding the utility of a particular marker to 

questions pertaining to particular aspects of a species’ history or ecology. These 

assumptions and simplifications, whilst necessary for practical tractability, should 

accurately reflect the best possible approximation of reality.  
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It is with this caution in mind, that the study of the genetic diversity of roach was 

undertaken. The following chapter (Chapter Three) describes the findings of a study that 

utilises the displacement loop (D-loop) region of the mitochondrial genome to assess the 

evidence for broad-scale genetic diversity across the natural distribution of this species in 

the UK; and determines what this biodiversity signifies for the application of fisheries 

management status, the relationship of UK roach with conspecifics in Europe and beyond 

and for the postglacial phylogeography of the UK and the European ichthyofauna. 
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Chapter Three – Mitochondrial 
DNA Variation Within and Among 
UK Populations of the Common 
Roach 
 
“A species consists of a group of populations which replace each 
other geographically or ecologically and of which the neighboring 
ones integrate or hybridize wherever they are in contact or which 
are capable of doing so (with one or more of the populations) in 
those cases where contact is prevented by geographical or 
ecological barriers.” – early evocation of the Biological Species 
Concept (BSC), Ernst Mayr (1940).   
 

3.1 General Introduction 

 

Populations of potamodromous fishes are physically demarcated from similar populations 

by the geographical location of the bodies of water in which they are found. The ancestors 

of these fishes, however, may have co-mingled in once shared river networks before the 

sundering of prehistoric river connections by the dramatic climatic and geological events 

of past epochs. All sundered populations contain within them gene lineages that may span 

innumerable generations until they coalesce with homologous sequences found within 

conspecific individuals located in the same population or in other spatially disjunct 

populations. Dependent upon the extent of genetic variation in an ancestral population, the 

historical chronology and geography of a population vicariance and/or dispersal event(s), 

the mutation rate of the loci under scrutiny and their mode of inheritance, strongly 

definable population structuring of gene lineages may be uncovered that encompasses a 

significant geographical component. The potential application of spatial genetic 

structuring information to evolutionary and ecology theory, systematics, conservation and 

population management is manifold.  

 

Avise et al. (1979b) first published an unequivocal association between genetic lineages 

and geography in the pocket gopher Geomys pinetis, and soon followed this study with 

similar studies of geographic patterning of mtDNA within intraspecific populations of 

birds, fishes and reptiles. The neophyte subject of phylogeography was born, unifying 
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systematics, palaeontology, population biology and population genetics to describe and 

explain the spatial patterning of genetic lineages (Avise 2000). The codification of 

phylogeography as an endeavor incorporating multiple distinct but related specialties 

provided the basic framework for the application of this new explanatory paradigm within 

the fields of conservation genetics and population management of wild populations (Avise 

1995). Soon, historical biogeography fell under the purview of phylogeography, opening 

up an almost limitless repository of genetic data from which past demographic inferences 

could be made and potential causative relationships sought with known or hypothesized 

geological phenomena.  

 

Perhaps the greatest geological influence upon the distribution of extant organisms in the 

higher latitudes over the last 2.6 million years has been the periodic glaciations that 

characterize the Pleistocene epoch. On an almost clockwork basis, the earth has been 

subject to severe oscillations in climate (Milankovitch cycles, Hays et al. 1976), and its 

surface has been inundated with a barrage of expanding and contracting ice sheets 

emanating from both poles. In the face of these climatic intrusions, organisms either had to 

modify their ranges (by moving away from the ice sheets to lower latitudes, or moving to 

lower altitudes away from Alpine glaciers) or else go extinct (Berg et al. 2010). Many 

species with ranges at higher latitude within this period have experienced pronounced 

demographic contraction and re-expansion into previously glaciated and un-glaciated 

areas. Depending upon the number and physical connectivity of refugial populations and 

the ability to disperse effectively in fluctuating climes and habitats and expansion/contact 

zones, the signal of past history upon current genetic diversity may be inferred. For 

freshwater fish, routes of ingress and egress from refugia is/was highly dependent on 

spatially limited routes of dispersal, i.e. river systems. Therefore one may expect a strong 

signal of both past population fragmentation, but also of current admixture - when two 

previously separate lineages come into secondary contact – with an increased potential for 

inferring routes of post-glacial dispersion relative to other, more unrestricted taxa.  

 

The mitochondrial genome is the chief utilitarian marker with which to seek population 

structuring within and among closely related species (Avise et al. 1987, but see Chapter 

Two for more details). The application of mitochondrial sequence variation to uncover the 

extent of genetic structuring within the freshwater fish fauna of northern and central 

Europe has largely focused upon salmonids (most notably the Atlantic salmon Salmo salar 

(Bermingham et al. 1991; Tessier et al. 1995, 1997; Nielsen et al. 1996; Verspoor 1997; 

Nilsson et al. 2001; and Tonteri et al. 2005) and the brown trout Salmo trutta (Bernatchez 
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et al. 1992; Osinov & Bernatchez 1996; Weiss et al. 2000; Aurelle & Berrebi 2001; 

Bernatchez 2001; and Suárez et al. 2001), the grayling Thymallus thymallus (Koskinen et 

al. 2000, 2002; Weiss et al. 2002; Gum et al. 2005, 2009; and Dawnay et al. 2011), the 

endangered cyprinids of the Iberian peninsula and peri-Mediterranean area (e.g. Mesquita 

et al. 2001; Salzburger et al. 2003; Mesquita et al. 2005; and Sousa et al. 2008), and those 

species whose ecology and demography is more suited to inferential studies based upon 

strong genetic signals resulting from limited inter-population gene flow (e.g. demersal 

freshwater fishes such as the loaches and sculpins (see Engelbrecht et al. 2000; Kontula & 

Väinölä 2001; Knapen et al. 2003; Culling et al. 2006; Bohlen et al. 2007; and +edivá et 

al. 2008)). Comparatively less attention has been afforded the common and more vagile 

coarse fishes of Europe, as the human-mediated mixing of lineages from centuries of 

translocation and stocking are thought to have eroded much of the genetic integrity of 

isolated river systems. 

 

The majority of these genetic studies of fish utilize the cytochrome b locus within the 

mitochondrial genome, a marker that is suitable to studies of both intra- and interspecific 

phylogenetic and phylogeographic relationships. Additionally, many of these studies are 

inherently interested in the genealogical and demographic processes that contribute to the 

distribution of extant mtDNA variation, rather than identifying differentiation among 

populations at mid-high geographic resolutions as a meaningful endeavor in itself. These 

two avenues of investigation are by no means mutually exclusive, for instance, the 

phylogenetic relationships among populations and lineages provides the basis for one 

operational classification of species (PSC – phylogenetic species concept (Nixon & 

Wheeler 1990)) and comprises a number of definitions for evolutionary significant units, 

an increasingly important concept in conservation genetics and population management. 

However, by focusing on the big picture, important details may be overlooked that may 

prove informative in ascribing management status to individual populations or clusters of 

populations.  

 

Moritz (1994) states that any form of population unit apt for conservation or management 

should be based upon diverse and complementary estimates of a putative population’s 

demographic independence, including the use of independently inherited genetic markers. 

However, there is always an initial step in the management process whereby a population 

or species of interest needs to be assayed for the distribution of genetic diversity, 

particularly if no a priori knowledge of population structure is known. This initial survey 

can then be used to guide subsequent, more detailed genetic analyses and/or complement 
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further non-genetic, more traditional methods of inferring demographic structuring. The 

adoption of single-locus mtDNA loci as a screening tool is an understandably attractive 

option for both academic researchers and population managers alike.  

 

The utilization of mitochondrial sequence data, including sequences of the D-loop (or the 

Control Region) in particular, has been widely adopted for a number of freshwater fish 

species to investigate population structuring on a prima facie basis (e.g. pupfish 

Cyprinodon macularius (Eschelle et al. 2000); bullhead Cottus gobio (Knapen et al. 2003); 

longsnout catfish Leiocassis longirostris (Wang et al. 2006); pacu Piaractus 

mesopotamicus (Iervolino et al. 2010); and the goldfish Carassius auratus (Takada et al. 

2010)). Whilst the D-loop is often considered unsuitable for studying higher-level 

taxonomic inter-relationships (Brown 1985; Lee et al. 1995), its rapid evolution makes for 

a potentially statistically powerful genetic marker within species that possess shallow 

intraspecific phylogenies. Although within the cyprinid family of fishes the D-loop 

exhibits lower mutation rates compared to other vertebrates (Brown et al. 1986; Shedlock 

et al. 1992)16, it is still an optimal single-locus marker to screen for variation.  

Additionally, D-loop mutation rate variation does exist among cyprinids, probably the 

result of modulated modes of mitochondrial replication among species (Bielawski & Gold, 

2002). Even so, the D-loop may have a mutation rate an order of magnitude greater than 

that found for a typical nuclear locus (Vigilant et al. 1991), thus underscoring its potential 

as a marker of spatial patterning of genetic variation. 

 

Whilst it may seem prosaic to determine levels of differentiation, the recording of within-

population genetic diversity may be informative from a biogeographic point of view 

without express reference to a robust phylogeny, which is unavailable for the species-wide 

distribution of the roach, at least as regards D-loop sequences. Levels of D-loop and, to a 

lesser extent, cytochrome b sequence differentiation among populations and sequence 

divergence amongst haplotypes were recorded to survey for the presence of phylogroups 

(groups that are typified by the presence of rare or atypically frequent haplotype(s)) that 

may describe acceptable baseline levels of differentiation for further study). This section 

also addresses the question of whether single drainages merit individual management, as 

they are de facto independent populations by merit of being physically isolated with no 

presumed natural migration among them (see ‘fishery stock’ concept of Smith et al. 1990).  

 

                                                
16 Heterothermy, as opposed to homothermy in warm-blooded animals like mammals, was 
hypothesized by Rand (1994) to account for such inter-taxon differences.  
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It is expected that the D-loop would reveal more sequence variation than cytochrome b, 

although overall levels of genetic diversity are expected to be low given the recent glacial 

history of the British Isles. The latter prediction is consonant with the natural history of 

higher latitude flora and fauna, and from numerous studies of freshwater fishes (e.g. see 

Almada & Sousa-Santos (2010) for an in-depth study of environmental factors and 

historical geography upon mitochondrial and nuclear DNA diversity in fishes of the 

Squalius genus). Moreover, extant populations of organisms are expected bear the genetic 

imprint of past demographic and non-equilibrium processes. By employing sophisticated 

analyses of intraspecific genealogies, one may test the hypothesis that UK roach 

populations, or at least the lineage(s) to which they belong, have undergone a geologically 

recent population expansion, thereby underscoring Bernatchez & Wilson’s (1998) 

assertion that the genetic diversity of the Holarctic piscifauna has largely been influenced 

by Quaternary range contractions and expansions. 

 

3.2 Materials and Methods. 

!

3.2.1 Sampling 

 

All sampling efforts were conducted by trained fisheries staff belonging to the UK’s 

Environment Agency, who, as part of their annual surveying of the waterways of England 

and Wales, sampled each of the chosen locales within England and Wales in this study. 

EA personnel utilize an electrofishing protocol to stun fish in situ. Cycloid scales are then 

removed from the flanks of each fish for cohort and, in this case, genetic analysis. The 

scales were immediately stored in paper envelopes, such that any residual moisture was 

removed (to prevent degradation of DNA), and were then kept in a cool, dry storage space 

until processed further. Only Rutilus rutilus sensu stricto was sampled, and any 

phenotypically obvious F1 hybrids were discarded. F2 hybrids of roach and common 

bream Abramis brama, although possible to generate in controlled laboratory settings, 

have not yet been found in the wild (Pitts et al. 1997), indicating that the risk of genetic 

introgression among these species should pose minimal threat to the interpretation of 

results. 
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3.2.1.1 D-Loop 

 

Roach from fifteen hydrologically independent drainages were sampled for variation 

within a 634bp fragment of the D-loop (see Fig. 2.3, Chapter Two). The fifteen drainages 

cover the entire natural range of the roach within the UK, located in central, southern, 

eastern and northeastern England (see Fig 3.1). The river set includes diverse hydrologies 

inclusive of large, sprawling catchments (e.g. Thames) to small, coastal chalk streams (e.g. 

Sussex Ouse and Hampshire Avon). Roach from 26 locations were sampled, with multiple 

sites located within the Thames (main River Thames and four of its tributaries: the Rivers 

Ash, Kennet, Wey and Thame), the Great Ouse (one upstream site at Newport Pagnell and 

one downstream at St. Ives, Cambridgeshire), the Trent (three of its tributaries: the Rivers 

Derwent, Sence and Mease), the Suffolk Stour (upstream site at Stoke-by-Clare and one 

downstream site at Higham within the main channel), the Yorkshire Ouse (at 

Beningborough within the main river channel and one site within the River Ure), and at 

upstream and downstream sites in the Medway and the Yare, respectively. An average of 

22 fish were sampled per location (564 individuals/26 sample sites). All pertinent 

geographical and sampling information can be found in Table 3.1.  

 

 
Figure 3.1: Map of sample sites surveyed for mtDNA variation within the UK 
population of roach (see Table 3.1 for location codes). Red circles denote sites where 
only D-loop sequences were amplified, whereas both D-loop and cytb sequences were 
derived from roach at sites denoted by a green circle. 
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Table 3.1: Sampling information for roach individuals derived from 26 
sampled sites across 15 river systems. U = unknown or unrecorded; N = 
number of individuals sampled at each site for each mtDNA locus (D-
loop|cytochrome b). 

Drainage Sampling location 
Co-ordinates 

Date N Code 
Latitude Longitude 

Thames 

Boulter's Reach (Thames) 51.521391 -0.702074 U 40|0 TH 
Lower Benyons (Kennet) 51.412173 -1.114225 27/10/2005 23|10 TK 
Shabbington (Thame) 51.756802 -1.032162 08/09/2005 8|12 TT 
Godalming (Wey) 51.185780 -0.646960 U 30|0 TW 
Gaston Bridge (Ash) 51.398640 -0.431443 U 20|10 TA 

Trent 
Borrowash (Derwent) 52.901912 -1.397853 26/09/2004 15|0 DE 
Congerstone (Sence) 52.651920 -1.447914 15/05/2006 11|10 SE 
Croxhall (Mease) 52.722099 -1.714048 18/05/2006 9|3 ME 

Great Ouse Newport Pagnell 52.098527 -0.751787 01/05/2005 30|6 GON 
Ely 52.315065 -0.072317 U 23|0 GOE 

Yorks Ouse Beningborough 54.013602 -1.207954 19/07/2004 18|0 YOB 
Westwick (Ure) 54.094084 -1.458707 17/07/2006 17|0 YOU 

Yare Rockland 52.601403 1.4525940 30/08/2006 27|3 YR 
Coston 52.615496 1.0370280 U 6|0 YC 

Suffolk 
Stour 

Stoke-by-Clare 52.062391 0.5441150 05/10/2006 26|11 SSS 
Higham 51.971203 0.9451900 U 18|6 SSL 

Medway Penshurst 51.171943 0.1862830 U 6|5 MP 
Ashurst 51.130479 0.1511360 U 5|2 MA 

Bristol Avon Chippenham 51.455021 -2.117534 U 24|0 BAC 

Hamps Avon Salisbury 51.447636 -0.678522 18/05/2004 26|0 HAA 

Kent Stour Ashford 51.156519 0.8853900 04/06/2004 50|6 KSA 

Severn Stourport 52.341262 -2.272966 03/06/2004 37|3 SS 

Sussex Ouse Sheffield Park 50.994653 0.0007130 20/08/2002 13|5 SOS 

Tees Aislaby 54.503500 -1.374557 12/09/2001 40|2 Tees 

Test Timsbury 51.016757 -1.509017 U 7|4 TEST 

Witham Stainfield 53.228549 -0.374611 26/07/2006 35|0 W 

 

3.2.1.2 Cytochrome B 

 

A total of 98 individual roach were sequenced for a 425bp fragment of the cytochrome b 

locus (Table 3.1 and Fig 3.1). All samples were derived from 16 sites across nine 

physically isolated drainages, including the Rivers Tees, Kent Stour, Yare, Sussex Ouse 

and Test. Multiple sites were sampled within the Thames drainage, including sites in the 

Rivers Ash, Kennet and main River Thames, within the Mease & Sence tributaries of the 

River Trent and in the Suffolk Stour and River Medway (as for the D-loop). 
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3.2.2. Laboratory Methods 

 

DNA extraction was based on the protocol of Winnepennickx et al. (1993). Approximately 

0.5 - 1cm2 of roach cycloid scale was finely diced and placed in an Eppendorf tube. The 

fragmented scales were subsequently immersed in a 300ml solution of cetyltrimethyl 

ammonium bromide (CTAB) into which proteinase K (10µl of a 10mM solution) was 

added. Digestion of the tissue and protein complexes was aided by heating the reaction 

mixture at 55oc overnight. 500mls of chloroform/isoamyl alcohol solution was added and 

the contents were mixed thoroughly for 10 minutes. Following 10 minutes of 

centrifugation at 13000 rpm, the supernatant (containing the liberated DNA) was removed 

and placed in a separate Eppendorf tube into which 500mls of 100% ethanol was added. 

After a brief period of over-end mixing, the tubes were placed in a -20oc freezer for 45 

minutes to aid precipitation of the genetic material. Following this step, the DNA solutions 

were centrifuged at 13000 rpm for 5 minutes to pellet the DNA. A final round of washing 

with 70% ethanol (500mls) was carried out, followed by 5 minutes of centrifugation (at 

13000 rpm) to pellet the final aggregation of DNA. Excess ethanol was siphoned off and 

the DNA re-suspended in 100mls of double-distilled water. Each sample yielded more 

than 50ng µl-1 of DNA (after checking for DNA concentration of the final solution on a 1.5 

% agarose gel).  

 

3.2.2.1 D-Loop PCR 

 

D-loop sequences were amplified from total DNA via PCR (Saiki et al. 1988). The PCR 

reagent concentrations and the sequencing reaction volumes for D-loop amplification are 

as follows: In a total volume of 25µl: 5 µl of 1:10 diluted DNA (around 5ng), 1 µl of each 

primer (1mM), 0.5 µl of MgCl2 (1mM), 2 µl of 10X buffer, 4 µl of dNTP mixtures (1mM 

of each dinucleotide) and 0.1µl of Taq polymerase (5U µl-1 Bioline). The remainder of the 

reaction volume was double-distilled water (ddH20). The oligonucleotide primers 

published in Gilles et al. (2001) were initially used to produce amplicons of the partial D-

loop fragment. However, modification of the template thermocycler conditions did not 

yield a sufficient increase in amplicon concentration, so new primers were designed (using 

the software Primer 3.0 (Rozen & Skaletsky 2000)). 

 
 Forward primer: Roach CRF 5’-TTCTGATGGTCGCGTATATGA-3’; 
 Reverse primer:  Roach CRR 5’-TCGGGGTTTGACAAGGATAA-3’. 
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The thermocycler conditions for these primers are as follows: 14 cycles of denaturation at 

92oC for 30 seconds, annealing at 56oC for 45 seconds, and extension at 72oC for 40 

seconds; then 20 cycles of 30 seconds each at 90, 56 and 72oC for the denaturation, 

annealing and extensions steps, respectively. The reaction was terminated after an extra 

minute at 72oC.  

!

3.2.2.2 Cytochrome B PCR 

 

Partial cytochrome b fragments (425bp) were amplified using the PCR primers published 

in Gilles et al. (2001), adopting the following thermocycler conditions: an initial 14 cycles 

consisted of a denaturation step of 30 seconds at 92oC, followed by an annealing step at 

48oC for 45 seconds, and then by an extension step of 40 seconds at 72oC. A further 19 

cycles were applied of 30 seconds at 90oC, 30 seconds at 48oC and 30 seconds at 72oC for 

the denaturation, annealing and extension steps, respectively. The reaction was terminated 

after another 72oC stage at one minute in length. Reaction volumes and reagent 

proportions for the PCR-mix were identical to those adopted for the D-loop PCR. 

 

3.2.2.3 PCR-Product Processing and DNA Sequencing 

 

Amplified products were cleansed using the ‘exosap’ procedure. 0.5µl each of exonuclease 

I and shrimp alkaline phosphatase (SAP) were added to each PCR and heated for 30mins 

at 35oC, followed by 15 minutes at 85oC (enzymatic denaturing step). The amplified DNA 

was re-suspended in 25µl of ddH20. The products were screened on 1% agarose gels to 

check for clean amplification. Concentrations of over 40ng µl-1 were sent for sequencing 

to Macrogen, Inc. Each completed sequence was checked for clarity using the sequence 

visualization software 4Peaks version 1.7 (Griekspoor & Groothius, 

www.mekentosj.com). Following this step, all D-loop and cytochrome b fragments were 

checked for correct alignment in Clustal X version 1.83 (Thompson et al. 1997). 
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3.2.3 Statistical Analysis 

 

3.2.3.1 mtDNA Diversity and Population Differentiation 

 

MEGA version 5.05 (Tamura et al. 2011) was used to estimate levels of mtDNA variation 

within each of the 26 individual locations, the 15 rivers systems and across the UK as a 

whole for each locus where applicable. For each level of analysis, and for each individual 

locus, both haplotypic diversity (h) and nucleotide sequence diversity (Nei’s unbiased 

estimator , (Nei 1987)) was calculated. Jukes-Cantor estimates of nucleotide divergence 

(the average number of nucleotide differences per site (Jukes and Cantor 1969)) among 

pairwise comparisons of river populations were undertaken in DNAsp version 5 (Rozas 

2009; Librado and Rozas 2009). Estimates of genetic divergence calculated from the 

proportion of shared nucleotides, and from the distribution of haplotypic frequencies (FST, 

Hudson et al. 1992), were also performed in DNAsp. Exact tests were employed to 

determine whether the differences in haplotypic content between pairwise comparisons of 

populations deviates from an expectation of random assortment of haplotypes between 

population pairs. This analysis was conducted in Arlequin version 3.11 (Excoffier et al. 

2005). Additionally, an analysis of molecular variance (AMOVA) (Excoffier et al. 1992) 

was performed in Arlequin to test for hierarchical genetic structuring. All populations 

were grouped into river of origin (only those river systems with multiple sampling points 

could be included in this analysis) to uncover the influence of river system designation 

upon the distribution of extant mtDNA variation. The statistical significance of the 

AMOVA analyses was tested with 1000 permutations of the datasets. A smaller, 

concatenated data set consisting of individuals for whom both loci were sequenced was 

analyzed in an identical manner.  

 

3.2.3.2 Phylogenetic Analysis 

 

Phylogenetic analysis was carried out to further understand the distribution of D-loop 

diversity within the British Isles. Uncorrected p-distances between all haplotype pairs 

(where p = the number of sites at which two haplotypes differ divided by all potentially 

mutable nucleotide positions) were calculated (in Arlequin 3.11). Phylogenetic 

reconstruction was attempted using two primary methods: maximum likelihood (ML) and 

maximum parsimony (MP). For ML inference, the D-loop sequences were first subject to 
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an initial ML analysis in which the hypothetical evolution of the dataset is compared 

amongst 88 different models of nucleotide sequence substitution. The most suitable model 

was estimated by first generating phylogenies from the DNA sequence data via a 

maximum likelihood procedure in the Phymyl module (Guindon and Gascuel 2003) within 

the program jModelTest (Posada 2008). The model that best fitted the data was selected 

(Posada and Buckley 2004). The AIC option (Akaike Information Criterion (Akaike 1969, 

1973)) was chosen to select the most appropriate evolutionary model. Model parameters, 

as suggested by JModelTest, were implemented where possible into the ML analysis. The 

ML analysis was carried out in Mega 5.05, whereas the MP analysis was carried out in 

phylogenetic package PHYLIP 3.69 (Felsenstein 1989, 1993), with bootstrap re-sampling 

to gauge confidence on internal nodes within trees. A final bootstrap consensus tree was 

drawn. In both instances, phylogenies were rooted by the inclusion of D-loop sequences 

from one individual from the congeneric Rutilus rubilio (GenBank accession number: 

AJ388400.1) and three from the confamilial chub Squalius cephalus (accession numbers: 

AY301921.1; AY301920; AJ388429). Further, the likelihood that the sequence data is 

supportive of a strict molecular clock was tested upon the ML tree topology using a 

likelihood test (Tamura 1992), also implemented in MEGA 5.05. Comparing likelihood 

scores when an assumption of clocklike behavior is withheld and when it is relaxed tests 

the null hypothesis of clocklike evolution within the inferred phylogeny. 

 

To determine whether there is any broad correspondence between geographical location 

and phylogenetic relationships amongst haplotypes, a haplotypic network was constructed 

of all roach D-loop, cytochrome b and concatenated data haplotypes. Firstly, statistical 

parsimony (Templeton et al. 1992) was implemented in the TCS version 1.18 module 

(Clement et al. 2000) within the program ANeCA version 1.2 (Panchal et al. 2007). The 

remaining two methods invoked are: median-joining networks (MJN, Bandelt et al. 1999) 

and maximum parsimony (MP) phylogenetic reconstruction with tree-conversion 

(Salzburger et al. 2011). Bandelt et al.’s median-joining algorithm was implemented in the 

program Network version 4.6 (Flexus Engineering, 2011). When genealogical 

relationships are assumed to be shallow, some degree of reticulation within the network 

(“loops”) is expected, whereby each of two parsimonious network connections is equally 

likely (Salzburger et al. 2011). In a study of 1000 known, simulated haplotype networks, 

Salzburger and colleagues found that in situations in which the genealogy is shallow and 

migration is likely to be high MP reconstruction outperforms the TCS algorithm. 

Therefore, an unrooted haplotypic network was constructed that was derived from a 
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consensus MP tree calculated without outgroups in PHYLIP and converted within the 

online program Haplotype Viewer (http://www.civat.at/~greg/haploviewer). 

 

To estimate the mutation rate of D-loop in the common roach, from which estimates of 

lineage bifurcations are based, a Bayesian approach was used to estimate, from the data, 

the rate of mutation along each lineage within a wider D-loop phylogeny derived from all 

included sequences. Applying the sequence evolution model suggested by JModelTest in 

the program BEAST v. 1.7.4 (Drummond et al. 2012), a phylogeny was constructed 

according to Bayesian principles, and priors were used to date the root of the tree and to 

model the possible demographic scenarios which may have differential impacts upon 

temporal spacing of mutation and branching events within the phylogeny. In the first 

instance, each reconstructed phylogeny was rooted using outgroup sequences utilized for 

the previous phylogenetic analyses. From fossil evidence, all modern cyprinid lineages in 

their generic forms appear in the fossil record by the mid-Miocene epoch, some 13.6 

million years ago (Cavender 1991). However, the Squalius genus appears to have 

originated in the late Oligocene (23-28 million years ago, de La Peña 1995), along with 

many unidentifiable forms of Leuciscinae (B-hme & Ilg 2003), with the age of the chub 

Squalius cephalus to be at least 6.56 million years old (B-hme, unpublished), whilst the 

earliest known Rutilus specimens (Paleorutilus) are dated to 14.5 – 15.5 million years ago 

(mid-Miocene, Schulz-Mirbach & Reichenbacher 2006). Three chub individuals 

(GenBank accession numbers AY301920, AY301921 and AJ388429) and one Rutilus 

rubilio sequence (Genbank accession number: AJ388400.1) were used as the outgroup 

sequences. 

 

A hard minimum age of 23Mya was applied to a lognormal distribution of possible 

coalescent events, from which the roach and the Squalius lineages diverged, with a mean 

in real space of 23Mya and standard deviation of 1.0. This allowed for a soft upper bound 

on the age of the root allowing for uncertainty associated with the dating of fossil evidence 

and the actual origination of a taxon in palaeohistory. No fossil calibration was applied to 

the Rutilus genus node, as only a subset of Rutilus species have been sequenced for the D-

loop. A relaxed clock was incorporated into the evolutionary model (Drummond et al. 

2006), incorporating branch lengths that may vary in their lengths due to a combination of 

time since divergence and mutation rate heterogeneity among and within branches. A 

lognormal distributed, uncorrelated clock model was implemented, whereby estimates of 

mean mutation rate are relaxed among lineages. A lognormal prior was applied to the 

mean rate of nucleotide substitution (mean rate of 0.025 substitutions per site per lineage 
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per million years (= 5% sequence divergence rate per million years) with a standard 

deviation of 1, such that the 95% posterior distribution covered a mutation rate embracing 

a low of 0.002 nucleotide substitutions per site per million years and 0.1 nucleotide 

substitutions per site per million years)17. 

 

Because different demographic scenarios can influence the temporal positioning of 

substitutions within a tree, a number of demographic scenarios were implemented (one 

speciation model - a Yule speciation model; two coalescent models - constant population 

size and a Bayesian linear-growth skyline analysis; and a model incorporating a Yule 

model for internal nodes (such as those leading to the split with Squalius and Rutilus 

rubilio, but applying a coalescent model to deal with the author’s focus on the common 

and Caspian roaches, for whom past demographic history may have played a significant 

role in shaping recent genealogies)), and a Bayes Factor analysis, in which the harmonic 

mean method of Newton & Rafferty (1994) was applied to compare the marginal 

likelihoods of each hypothesized model (Suchard et al. 2001), was carried out in the 

program Tracer v. 1.5 (Rambaut & Drummond 2004) to determine which model best 

suited the data. From the analysis, the mean mutation rate over all lineages and mean rate 

among lineages was determined with 95% HPD limits, in addition to the dating of 

important coalescent events within the roach clade(s). Each BEAST analysis was run for 5 

x 106 iterations, sampling every 1000th step. The first 5 million steps were discarded as 

burn-in. Each run was analyzed in Tracer to ascertain whether the output had achieved 

convergence and adequate mixing of chains (ESS of all parameters >> 200). BEAST was 

run in conjunction with BEAGLE (Ayres et al. 2012), a suite of applications for running 

intensive Bayesian computations. All 50% clade credibility trees were created and 

annotated in TreeAnnotator v 1.6.2 and visualized in FigTree v. 1.3.1 

(http://tree.bio.ed.ac.uk/software/figtree/). 

!

 
 
 

                                                
17 It is unwise to expect similar rates of mutation or strict clocklike behavior within broad taxonomic 
groups. The control region in nine-spined sticklebacks does not adhere to rigid clock expectations 
(ranging from 0.98% sequence change per million years to 2.91% sequence change per million years 
across species (Takahashi & Goto 2001)). The control region in the bullhead was found to evolve at a 
rate approaching 9% divergence per million years (Volckaert et al. 2002). Additionally, in both 
salmonids and cobitids, the rate of sequence divergence amongst control region sequences was found to 
be less than that for the cytochrome b locus when comparing closely related species, but not when 
phylogenetic distances among taxa were greater (Bernatchez and Danzmann 1993; Tang et al. 2006). 
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3.2.3.3 Demographic Analysis 

 

In addition to assessing the potential for past demographic influence upon extant 

intraspecific genealogies of roach via the BEAST analyses, a mismatch analysis (Li 1977; 

Slatkin and Hudson 1991; Rogers and Harpending 1992; and Schneider and Excoffier 

1999) was implemented in Arlequin 3.11, in which the observed distribution of pairwise 

nucleotide differences within the dataset is compared to the expected distribution under a 

model of population expansion or stasis. Harpending’s raggedness index (Harpending 

1994) was appropriated to assess the goodness of fit of the observed values to theoretical 

expectations. Close approximation is determined by bootstrap re-sampling over 10000 

replicates and a p-value ascertained (p < 0.05 = the probability that the iterated simulation 

. observed raggedness). To determine to what extent the data support the null hypothesis 

of long-term population stability based upon deviations from neutral expectations, a 

number of tests were conducted in DNAsp: Tajima’s D (Tajima 1989) and Fu’s Fs (Fu and 

Li 1993; Fu 1997) statistic, along with measures of their significance (after 10000 

bootstrap re-samplings of the coalescent distribution, made possible in DNAsp, in which 

the final mutation-scaled population size # was set at 1000 individuals), were calculated. 

In addition to the population expansion tests, the R2 statistic of Ramos-Onsins & Rozas 

(2002) was implemented as a more powerful method to reject the null hypothesis of a 

constant population size. Values of R2 are expected to be lower in populations undergoing 

range expansion than those in which population size is constant. This significance of the 

R2 test was assayed by implementing the coalescent simulation package within DNAsp 

also used to test the significance of theoretical deviations from neutrality. Following 

Hänfling et al. (2009), the null hypothesis of a constant population was rejected if the 

calculated value was found to lie outside of the 95% CI distribution. 

 

To calculate an estimate of the time, t (in years), since the UK population experienced 

demographic expansion, the equation: 

 

! ! ! !
!!!"! 

 

(Slatkin and Hudson 1991) was employed (where " is an expansion term, k is the length of 

nucleotide sequence being compared and µ is the hypothesized nucleotide substitution rate 

per site per year per lineage).  
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3.3 Results 

 

3.3.1 mtDNA Diversity 

 

3.3.1.1 D-Loop 

 

A total of 564 individual roach from the UK were typed for nucleotide sequence variation 

at a 634bp fragment of the D-loop locus within the mitochondrial genome. A survey of the 

358.14kbp dataset yielded 18 unique haplotypes based upon variation in nucleotide 

content at 14 segregating sites. Of the 14 segregating sites, four are singletons, while the 

remaining ten are parsimony informative. The singleton sites are located 53, 80, 166 and 

369bp from the 5’ end of the sequence, whereas the parsimony informative sites are 

located 119, 152, 325, 326, 327, 426, 456, 461, 493 and 520bp from the 5’ end of the 

fragment (see Table 3.2). The average proportion of the four different bases were not equal 

within the D-loop, with thymine accounting for 35.5% of all nucleotide positions, cytosine 

19.4%, adenine 31.9% and guanine 13.2%. These proportions are representative of other 

cyprinids (e.g. vairone Leuciscus souffia (Salzburger et al. 2003)) and teleost control 

region sequences as a whole (Jean et al. 1995). The relative bias of transitions to 

transversions was calculated by using a maximum likelihood analysis in MEGA 5.05, 

assuming Tamura’s 3-parameter model (Tamura 1992) that incorporates decoupled 

mutation rates between transitions and transversions and skewed nucleotide frequencies. 

The probability of a transition mutation occurring at any one site is 2.37 times more 

probable than a transversion (R = 2.37, likelihood = -980.238), a finding consistent with 

the majority of DNA sequences (e.g. Fitch 1967; Gojobori et al. 1982). Similar levels of 

transitional bias are found under various substitution models for this dataset (e.g. Kimura’s 

2-parameter model (Kimura 1980): R = 2.26, likelihood = -1019.293; HKY (Hasegawa et 

al. 1985): R = 2.40, likelihood = -975.640; Tamura & Nei (1993): R = 2.40, likelihood = -

974.620; General Time Reversible model (GTR, Nei & Kumar 2000): R = 2.40, likelihood 

= -973.295), indicating that not enough sequence divergence has accrued to justify the use 

of more sophisticated evolutionary models of sequence evolution in future analyses of D-

loop variation, at least within and among UK haplotypes. Simpler models should be used 

to lessen the greater variances associated with these more complex models (Nei & Kumar 

2000).  
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Table 3.2: Variable nucleotide positions within the 634bp fragment of the 
D-loop. 

* Asterisks indicate that the nucleotide position possesses an identical nucleotide to that of haplotype 
D1.  
 

Table 3.3 shows the haplotype counts for each sampled location within the UK. Of the 564 

individual fish sequenced at this locus, 396 were all identical for the same haplotype (D1, 

70.213% of all samples). As can be observed both in Table 3.3 and pictorially on the map 

in Fig 3.2, haplotype D1 is ubiquitous throughout the sampled range of the roach within 

the United Kingdom, maintaining majority frequencies in all populations apart from the 

populations within the River Severn, and at Sheffield Park, Sussex Ouse and Lower 

Benyons in the River Kennet, Thames drainage. In the Kennet population, D1 is still the 

most frequent individual haplotype, but assuming that the sampled haplotype frequencies 

are representative of their real frequencies, then a randomly chosen Kennet fish is likely to 

possess a haplotype other than D1 (D3, D12, D14 or D15).  

 

In the Severn and Sussex Ouse, however, only two haplotypes are present: Severn: D1 and 

D3 at frequencies of 21.62% (8/37) and 88.38% (29/37), respectively; Sussex Ouse: D1 

and D10 at frequencies of 46.15% (6/13) and 53.85% (7/13), respectively. In the Coston 

population within the Yare, frequencies of D1 and D3 are 50:50, although the sample size 

here is only 6 individuals. The second most common haplotype – D3 – is also fairly 

widespread within the UK as a whole, found in 20 out of 26 (76.92%) sites and in 84 out 

of the 564 (14.89%) surveyed fish. As noted above, D3 achieves majority frequency status 

within the Severn population. D3 is particularly prevalent in southern, central and western 

populations, but less so in the east (with the exception of the upper Yare sample). D7 is the 

  Hap Nucleotide position 
53 80 119 152 166 325 326 327 369 426 456 461 493 520 

D1 A G A C A C T G T A G T A T 

D2 * * G * * * * * * * * * * * 

D3 * * * * * * C * * * * * * * 

D4 * * * * * T * C * * A * * * 

D5 * * * * * * C * * G * * * * 

D6 * A * * * * * * * * * * * * 

D7 * * * * * * * * * * A * * * 

D8 * * * * * * C * A * * * * * 

D9 * * * * * * * C * * A * G * 

D10 * * * * * * * C * * A * * * 

D11 * * * * * * C * * * * * * C 

D12 * * * * * * * * * * * C * * 

D13 G * * * * * * * * * * * * * 

D14 * * * A * * * * * * * * * * 

D15 * * G * * * C * * * * * * * 

D16 * * * * * * * * * * * * * C 

D17 * * * * T * * * * * * * * * 

D18 * * * * * * A * * * * * * * 
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third most prevalent haplotype (26/564, 4.61%). Apart from three fish in the Tees and 

three in the Great Ouse, the remaining 20 roach with this haplotype are distributed among 

drainages that discharge into the English Channel. The final ‘common’ haplotype (D12, 

14/564 = 2.48%) is also found in drainages with a southern distribution and which empty 

into the English Channel. Half of the haplotypes are found within the Thames (3 

individuals in the River Ash, and two individuals each within the main Thames as well as 

the River Kennet). The remaining seven haplotypes are found in the Bristol Avon (2 

roach) and the Hampshire Avon (5 roach).  

 

The remaining haplotypes are rare. Those haplotypes that number more than two tend to 

cluster within few populations, e.g. D2 is found in 5 individuals in the upper reaches of the 

Suffolk Stour at Stoke-by-Clare (the remaining haplotype found in the Yorkshire Ouse). 

D5 is likewise found in a single fish in the Yorkshire Ouse (River Ure tributary), but is 

also found in the main in the Tees (5 roach). D10 is distributed between the Sussex Ouse 

(7 roach) and the upper Great Ouse (2 roach); the 6 individuals possessing D11 are 

scattered among the upper Great Ouse (1 roach), the Main River and Ash tributary of the 

Thames (3 roach) and the Medway at Ashurst (1 roach). The remaining haplotypes are all 

found in a single population: D4 (2 roach within the River Ure); D6 (1 roach in the Great  

Ouse at St. Ives); D8 (1 roach) and D9 (3 roach) in the upper stretch of the Great Ouse; 

D13 (one individual in the Thame tributary of the Thames); D15 (1 roach in the Kennet); 

D16 & D17 (one individual each) in the Tees; and D18 is found in a single roach within 

the River Derwent in the Trent catchment.  

 

The number of distinct haplotypes found in any one sampled population ranged from one 

(in the Rivers Witham and Suffolk Stour at Higham) to seven in the upper Great Ouse at 

Newport Pagnell. The mean number of unique haplotypes per population is 3±1.5 (mean 

and standard deviation). Comparing drainages, the average number of haplotypes per river 

system is 3.73±2.2 (ranging from the invariant Witham to the 8 haplotypes found within 

both the Thames and the Great Ouse, see Table 3.4). Of the 19 haplotypes found within 

the UK, 8 are private haplotypes found in only a single location. The number of unique 

haplotypes found in each bears some relation to the size of the catchment (Pearson’s r = 

0.4763, one-tailed p-value = 0.036). 

 

Levels of haplotypic and nucleotide diversity over all 26 samples was 0.482±0.024 and 

0.00101±<0.001, respectively (see Table 3.3). Haplotypic diversity ranged from zero in 

the fixed populations of Witham and the lower Suffolk Stour to a maximum of 
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0.753±0.046 in the River Kennet sample, followed by 0.733±0.155 at Penshurst in the 

Medway. Extremely low levels of non-zero haplotype diversity were observed in the Yare 

at Rockland (0.074±0.067). Because of zero variation in the number of haplotypes in the 

Witham and lower Stour samples, nucleotide diversity here was also zero. The next lowest 

nucleotide diversity score was in the Rockland area of the River Yare (, = 

0.0025±0.0023), with a similarly low level of diversity in the River Yorkshire Ouse 

sample (, = 0.0037±0.0032).  The maximum degree of nucleotide diversity was observed 

in the upper reaches of the Great Ouse (, = 0.0405±0.0088), followed by the River Ure (, 

= 0.0363±0.0013), River Kennet (, = 0.0361±0.0047), and the Sussex Ouse (, = 

0.0359±0.0040). Over all sample sites, mean haplotypic and nucleotide diversity was 

0.4026±0.1037 and 0.0178±0.0048, respectively, and the average number of nucleotide 

differences per pairwise comparison was 0.639. 
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   Table 3.3: Haplotype counts and estimates of D-loop diversity for each of 26 sampling sites within the UK. 

Pop Haplotype* ! Haplotype 
diversity 

Nuc diversity 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 h s.d ! s.d. 

YOB 17 1                 18 0.111 0.096 0.0037 0.0032 
YOC 12  2 2 1              17 0.500 0.135 0.0363 0.0013 
GOE 18  3   1 1            23 0.383 0.120 0.0137 0.0047 
GON 19  2    2 1 3 2 1        30 0.593 0.100 0.0405 0.0088 
TH 28  6    1    3 2       40 0.491 0.087 0.0216 0.0046 
TA 15  1        1 3       20 0.432 0.126 0.0186 0.0067 
TT 6  1          1      8 0.464 0.200 0.0167 0.0079 
TK 8  7         2  5 1    23 0.753 0.046 0.0361 0.0047 
TW 27  3                30 0.186 0.088 0.0062 0.0029 
SV 8  29                37 0.348 0.078 0.0116 0.0080 
BA 21  1         2       24 0.236 0.109 0.0081 0.0039 
SSH 18                  18 0 0 0 0 
SSS 20 5 1                26 0.385 0.102 0.0133 0.0038 
YR 26  1                27 0.074 0.067 0.0025 0.0023 
YC 3  3                6 0.600 0.129 0.0200 0.0043 
HA 15  5    1     5       26 0.615 0.081 0.0240 0.0043 
KS 27  6    17            50 0.590 0.043 0.0225 0.0024 
W 35                  35 0 0 0 0 
TEES 27  3  5  3         1 1  40 0.529 0.088 0.0256 0.0053 
DE 14                 1 15 0.133 0.112 0.0044 0.0037 
ME 7  2                9 0.389 0.164 0.0130 0.0055 
SE 7  4                11 0.509 0.101 0.0170 0.0034 
SO 6         7         13 0.538 0.060 0.0359 0.0040 
TEST 5  2                7 0.476 0.171 0.0159 0.0057 
MP 3  2    1            6 0.733 0.155 0.0289 0.0082 
MA 4          1        5 0.400 0.237 0.0267 0.0158 
! 396 6 84 2 6 1 26 1 3 9 6 14 1 5 1 1 1 1 564 0.403** 0.1037 0.0178 0.00482 

* Haplotype colours correspond to those of the pie chart segments in Fig 3.2. 
** Mean values in bold type.  
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Figure 3.2: Frequency distribution map of D-loop haplotypes. Right: Haplotype colours correspond to those in Table 3.3. Bar charts are shown for 
low frequency haplotypes when the number of haplotypes per location is > 3. Left: Sample site reference map. 
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Table 3.4: Diversity data for each catchment listed by decreasing area (N 
= number of samples; H = number of haplotypes; area is km2 

Catchment Area N H Hap diversity Nuc diversity 
h s.d ! s.d. 

Thames 13513 121 8 0.4940 0.0510 0.0205 0.0026 
Severn 11381 37 2 0.3480 0.0780 0.0116 0.0080 
Yorkshire Ouse 10611 35 5 0.3140 0.1000 0.0203 0.0078 
Trent 10329 35 3 0.3390 0.0890 0.0113 0.0030 
Great Ouse 8443 53 8 0.5040 0.0810 0.0297 0.0063 
Yare 3017 33 2 0.2200 0.0870 0.0073 0.0029 
Hamps Avon 2994 26 4 0.6150 0.0810 0.0240 0.0043 
Witham 2915 35 1 0.0000 0.0000 0.0000 0.0000 
Suffolk Stour 2806 44 3 0.2460 0.0800 0.0084 0.0028 
Kent Stour 2720 50 3 0.5900 0.0430 0.0225 0.0024 
Bristol Avon 2229 24 3 0.2360 0.1090 0.0081 0.0039 
Tees 1792 40 6 0.5290 0.0880 0.0256 0.0053 
Medway 1608 11 4 0.6000 0.1540 0.0267 0.0086 
Test 1206 7 2 0.4760 0.1710 0.0159 0.0057 
Sussex Ouse 574 13 2 0.5380 0.0600 0.0359 0.0040 

µ 5076 37.6 3.73 0.4033 0.0848 0.0179 0.0045 

 

3.3.1.2 Cytochrome B 

 

The survey of partial cytochrome b variation from 98 roach individuals derived from 13 

English rivers yielded a total of 6 unique haplotypes. This 425bp fragment of cytochrome 

b unveiled five polymorphic sites (four singleton sites (at positions: 204, 261, 330 and 

334) and one site that is parsimony informative (position: 352)). All polymorphic sites and 

their position within the amplified fragment of cytochrome b are shown in Table 3.5. The 

base composition of the cytochrome b fragment, averaged over the 98 individuals, is as 

follows: T: 28.2%; C: 26.8%; A: 27.8%; and G: 17.2%, indicating guanine deficiencies 

similar to the levels found in other teleost fishes (e.g. in Salvelinus spp., Radchenko 2004), 

with deficiency greatest at the 2nd and 3rd codon positions and negligible differences at the 

first position. All mutations within the dataset were transitions (one among-pyrimidine 

transition (C - >T) and four among-purine transitions (2 each of: A - > G and G -> A), 

referenced to the base composition of the “NEW” haplotype) (Table 3.5)). 
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Table 3.5: Variable nucleotide sites within a 425bp fragment of the 
cytochrome b gene uncovered by a survey of 98 individual roach 
specimens from among 11 physically distinct drainages. 

  Hap 
Nucleotide Position 

204 261 330 334 352 
NEW C G G A G 
UK ! A ! ! ! 
UKSS ! ! ! ! A 
UKTh ! ! ! G ! 
UKTe ! ! A ! ! 
KenSo T ! ! ! ! 

 

Pseudogenes found within the nuclear genome derived from ancestral, functional mtDNA 

(see review in Benasson et al. 2001) may prove to be a serious source of error in the 

estimation of relationships among haplotypes and of divergence among populations or 

lineages (Zhang & Hewitt 1996). All cytochrome b sequences were therefore checked for 

the presence of mid-sequence stop codons – which tend to accumulate in nuclear 

pseudogenes (Vanin 1985; Mighell et al. 2000), but would soon be erased from the 

mitochondrial population through purifying inter-organelle (intracellular) selection (e.g. 

Walsh 1992; Mamirova et al. 2007) within the main coding body of cytochrome b. All 

samples conformed to the expectations of a functioning, translational coding sequence.  

 

Tallies of each haplotype found in each sampled location for which cytochrome b 

sequence data is available is given by Table 3.6 and illustrated graphically in Fig 3.3. With 

reference to Table 3.6, an overwhelming majority of roach individuals possessed the 

“NEW” haplotype (N = 89, 90.82% of all sampled fish). Like the D1 haplotype of the D-

loop, “NEW” is to be found in every location in which fish were sampled (Fig. 3.3). For 9 

out of the 16 sampled locations, it was the only haplotype found (with sampled individuals 

ranging from 3 – 12). For all other cases, “NEW” was the dominant haplotype with the 

sole exception of the River Tees from which only two individual fish were sequenced. The 

only other haplotype to number greater than one is the “UK” haplotype (N = 5, 5.10% of 

all sampled fish), which is found in one roach from each of the Rivers Kennet, Mease and 

Sence, and from within two fish from the Sussex Ouse.  
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Table 3.6: Haplotype counts and estimates of cytochrome b diversity for 
each of 16 sampling sites within the UK  

Pop 
Haplotype* 

! 
Hap diversity Nuc diversity 

NEW UK UKSS UKTh UKTe KenSo h s.d. " s.d. 

GON 6      6 0.000 0.000 0.00000 0.00000 
TA 9   1   10 0.200 0.154 0.00047 0.00036 
TT 12      12 0.000 0.000 0.00000 0.00000 
TK 8 1    1 10 0.378 0.181 0.00094 0.00048 
SV 3      3 0.000 0.000 0.00000 0.00000 
SSH 6      6 0.000 0.000 0.00000 0.00000 
SSS 10  1    11 0.182 0.144 0.00043 0.00034 
YR 3      3 0.000 0.000 0.00000 0.00000 
KS 6      6 0.000 0.000 0.00000 0.00000 
TEES 1    1  2 1.000 0.250 0.00240 0.00120 
ME 2 1     3 0.667 0.314 0.00157 0.00074 
SE 9 1     10 0.200 0.154 0.00047 0.00036 
SO 3 2     5 0.600 0.175 0.00140 0.00040 
TEST 4      4 0.000 0.000 0.00000 0.00000 
MP 5      5 0.000 0.000 0.00000 0.00000 
MA 2      2 0.000 0.000 0.00000 0.00000 

! 89 5 1 1 1 1 98 0.202** 0.086 0.00050 0.00020 

* Haplotype colours correspond to those of the pie chart segments in Fig 3.3. 
** Mean values in bold type. 
 

The remaining four haplotypes are each found in a single individual in just one location: 

“UKSS” (in the upper Suffolk Stour at Stoke-by-Clare), “UKTh” (in the River Ash, 

Thames catchment), “UKTe” (River Tees) and “KenSo” (in the River Kennet, Thames 

catchment). The maximum number of distinct haplotypes found within a population was 

three, in the River Kennet. 

 

Accordingly, levels of nucleotide diversity are low: mean (+ s.d.) nucleotide diversity over 

the 16 locations = 0.0005±0.0002 (ranging from lows of zero in a majority of locations to 

a high of 0.0024±0.0012 in the Tees). Mean haplotypic diversity was similarly limited: 

mean = 0.2017±00858 (ranging from zero to one in the Tees).  
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Figure 3.3: A frequency distribution map of cytochrome b haplotypes. Right: Haplotype colours correspond to those in Table 3.6; Left: Sample site 
reference map. 
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Table 3.7: Cytochrome b diversity data by catchment (in decreasing order 
of size). N = number of samples; H = number of haplotypes; area is km2 

 

Table 3.7 re-groups measures of cytochrome b diversity by river drainage. Mean levels of 

haplotypic and nucleotide diversity over all catchments are 0.1983±0.0689 and 

0.0005±0.0002, respectively. Only five river systems were polymorphic for the 

cytochrome b locus (Thames, Trent, Suffolk Stour, Tees and Sussex Ouse). The Tees’ two 

different haplotype-bearing individuals maximize haplotypic diversity. Additionally, the 

Sussex Ouse has high diversity due to the presence of two haplotypes within a small 

sample of five individuals (h = 0.600±0.175, ! = 0.0014±0.004). The Suffolk Stour 

population possesses relatively little variation given the higher sampling effort in this 

catchment (N = 17, h = 0.118±0.101, ! = 0.0003±0.0002). The Thames catchment was 

subject to the greatest number of sequenced roach (N = 32), although diversity here was 

fairly low despite having the largest number of unique haplotypes: four (h = 0.181±0.090, 

! = 0.0004±0.0002). Unlike the D-loop, there was no indication of a relationship between 

catchment size and diversity contained therein. 

 

3.3.1.3 Concatenated Data 

 

Due to the idiosyncratic nature of DNA amplification, only around a half of all the 

individuals sequenced for the cytochrome b locus were also sequenced for the D-loop. 

However, the 49 concatenated sequences (of 1059bp in length) may still prove 

informative, with a greater emphasis on nucleotide information content relative to 

geographical sampling effort. From this sub-sample of roach, the concatenated sequences 

yielded ten unique haplotypes from over 13 populations representing 11 rivers (Table 3.8 

and Fig 3.4). As with the individual loci, the majority of individuals bore the haplotype 

 Catchment       Area  N H 
Hap diversity Nucleotide diversity 
h s.d ! s.d. 

Thames 13513 32 4 0.1810 0.0900 0.0004 0.0002 
Severn 11381 3 1 0.0000 0.0000 0.0000 0.0000 
Trent 10329 13 2 0.2820 0.1420 0.0007 0.0003 
Great Ouse 8443 6 1 0.0000 0.0000 0.0000 0.0000 
Yare 3017 3 1 0.0000 0.0000 0.0000 0.0000 
Suffolk Stour 2806 17 2 0.1180 0.1010 0.0003 0.0002 
Kent Stour 2720 6 1 0.0000 0.0000 0.0000 0.0000 
Tees 1792 2 2 1.0000 0.5000 0.0024 0.0012 
Medway 1608 7 1 0.0000 0.0000 0.0000 0.0000 
Test 1206 4 1 0.0000 0.0000 0.0000 0.0000 
Sussex Ouse 574 5 2 0.6000 0.1750 0.0014 0.0004 

µ 5217 8.91 1.64 0.1983 0.0689 0.0005 0.0002 
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that was by far the most frequent within the general population, here named CON1 (N = 

30, 61.22%). Unlike the individual locus haplotypes (in which the most common 

haplotype was found in all populations), CON1 was absent from one population: the 

Sussex Ouse. The second most commonplace haplotype – CON4 (N = 7, 14.29%) – was 

found in the southern rivers of the Thames, Kent Stour, Medway and Test, and in the 

Severn. The third most common haplotype - CON3 - is found in three individuals, two 

from the Kent Stour and a single roach from the River Medway. There are two individuals 

each that possess haplotypes CON8 and CON9, all four roach being found in the same 

river: the Sussex Ouse. The remaining haplotypes are all private: CON2 is found in the 

Great Ouse, CON5, CON6 and CON7 are found in the Suffolk Stour, Thames and Tees, 

respectively, whilst CON10 is also found in the Thames (River Ash). 

 

Table 3.9 lists both haplotypic and nucleotide diversities according to catchment size. The 

Medway holds the greatest haplotypic and nucleotide diversities (h = 0.8330±0.222, ! = 

0.0012±0.0004). A similarly high level of diversity is observed in the Kent Stour, a system 

that neighbours the Medway (h = 0.800±0.164, ! = 0.0010±0.0003). However, zero 

diversity is observed within the Yare and Trent. No correlation is observed between 

estimates of diversity and catchment size. Fig 3.4 suggests that, the River Tees aside, most 

observed diversity (i.e. numbers of unique haplotypes per drainage) occurs in the south of 

England, particularly so in the southeast catchments that drain into the English Channel. 
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Table 3.8: Haplotype counts and estimates of concatenated D-loop and cytochrome b diversity for each of 13 sampling sites 
within the UK  

 Pop 
Haplotype* 

! 
Hap diversity Nuc diversity 

CON1 CON2 CON3 CON4 CON5 CON6 CON7 CON8 CON9 CON10 h s.d. ! s.d. 
GON 2 1         3 0.6670 0.3140 0.0020 0.0010 
KS 2  2 1       5 0.8000 0.1640 0.0010 0.0003 
SSH 1          1 0.0000 0.0000 0.0000 0.0000 
SSS 7    1      8 0.2500 0.1800 0.0005 0.0004 
YR 3          3 0.0000 0.0000 0.0000 0.0000 
TT 2     1     3 0.6670 0.3140 0.0007 0.0003 
TA 6   1      1 8 0.4640 0.2000 0.0008 0.0004 
TEST 2   2       4 0.6670 0.2040 0.0007 0.0002 
TEES 1      1    2 1.0000 0.5000 0.0010 0.0005 
SV 2   1       3 0.6670 0.3140 0.0007 0.0003 
SO        2 2  4 0.6670 0.2040 0.0007 0.0002 
SE 1          1 0.0000 0.0000 0.0000 0.0000 
MP 1  1 2       4 0.8330 0.2220 0.0012 0.0004 
   ! 30 1 3 7 1 1 1 2 2 1 49 0.5140† 0.2012 0.0007 0.0003 

*Haplotype colours correspond to those of the pie chart segments in Fig 3.4. 
†Mean values in bold type.  
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Table 3.9: Concatenated mtDNA diversity data by catchment (in 
decreasing order of size). N = number of samples; H = number of 
haplotypes; area is km2. 

 
 

Pop  Area N H Hap diversity Nuc diversity 
h s.d ! s.d. 

Thames 13513 11 4 0.4910 0.1750 0.0007 0.0003 
Severn 11381 3 2 0.6670 0.3140 0.0007 0.0003 
Trent 10329 1 1 0.0000 0.0000 0.0000 0.0000 
Great Ouse 8443 3 2 0.6670 0.3140 0.0020 0.0010 
Yare 3017 3 1 0.0000 0.0000 0.0000 0.0000 
Suffolk Stour 2806 9 2 0.2220 0.1660 0.0005 0.0003 
Kent Stour 2720 5 3 0.8000 0.1640 0.0010 0.0003 
Tees 1792 2 2 1.0000 0.5000 0.0010 0.0005 
Medway 1608 4 3 0.8330 0.2220 0.0012 0.0004 
Test 1206 4 2 0.6670 0.2040 0.0007 0.0002 
Sussex Ouse 574 4 2 0.6670 0.2040 0.0007 0.0002 

µ 5217 3.8 2 0.5467 0.2057 0.0008 0.0003 
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Figure 3.4: A frequency distribution map of concatenated mtDNA haplotypes. Right: Haplotype colours correspond to those in Table 3.8; Left: 
Sample site reference map. 
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3.3.2 Genetic Structuring 

 

3.3.2.1 D-Loop 

 

The analysis of molecular variance (AMOVA) of D-loop differentiation among individual 

populations and among rivers (Table 3.10) confirms that the majority of D-loop variation 

is to be found within populations (% variation = 87.82, !ST = 0.123, p-value <0.001). 

Furthermore, significant differentiation is to be found within those rivers in which samples 

were taken from multiple sites (% variation = 6.99, !SC = 0.074, p–value <0.001). 

However, the proportion of the variance in haplotype frequencies amongst rivers failed to 

reach significance, although 5% of all the variance in frequencies could be attributed to the 

influence of river systems upon levels of D-loop differentiation (% variation = 5.29, !CT = 

0.053, p-value = 0.097).  

 

Table 3.10. Analysis of molecular variance (AMOVA) results for the D-
loop dataset, where populations are grouped into rivers of origin at the 
highest level. 

Source of 
variation 

Degrees 
of         

freedom 

Sum of 
squares Variance % of 

variation 
Fixation 
indices p-value 

Among rivers 14 23.73 0.0132 5.29 !CT = 
0.0529 0.097 

Among 
populations 
within rivers 

12 6.80 0.0174 6.99 !SC = 
0.0738 <0.001 

Within 
populations 1101 240.95 0.2189 87.82 !ST = 

0.1228 <0.001 

 

Levels of genetic differentiation among all 26 a priori sample sites are given in Table 

3.11. Above the diagonal partition are given estimates of FST; below diagonal are 

significance levels outputted from the G-statistic analysis. Of the 26 sites, only two 

showed consistently high levels of genetic differentiation with most other locations, 

although no one population was significantly divergent from all others. The River Severn 

sample is the most divergent (mean FST = 0.316±0.157, range of FST from 0.104 (Yare at 

Coston, not significant) – 0.773 (River Witham, highly significant, p-value << 0.001)). Of 

the 25 pairwise combinations involving the Severn population, 18 are highly significant 

after Bonferroni correction (72%), with another five significant populations if the number 

of pairwise comparisons is ignored. The exact same pattern is observed for the G-statistic. 
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The second most divergent population is the Sussex Ouse (mean FST = 0.229±0.032, range 

of FST from 0.154 (Great Ouse at Newport Pagnell, 0.05 <p> 0.00015) to 0.668 (River 

Witham, highly significant, p-value << 0.001)). The Sussex Ouse is significantly divergent 

from 13 populations in total (50%), rising to 21 if the Bonferroni correction is not applied. 

Again, the G-statistics mirror the FST significances, although only ten populations are 

considered statistically significant after correction.  

 

Zero or negative FST values indicate a lack of spatial heterogeneity given by the F-

statistics. However, little concordance is observed between genetic similarity and 

geographic proximity, either within rivers or among locally proximate sets of rivers. 

Differentiation within the Great Ouse is low (FST = 0.007 and not significant (n.s.); G-

statistic p-value = 0.415), as well as within the Thames, with the exception for the River 

Kennet, which is significantly differentiated from the River Wey (FST = 0.298, p-value << 

0.001; G-statistic p-value < 0.001), and also probably differentiated from the Rivers 

Thames and Ash (FST = 0.122 and 0.156, respectively, 0.05 < p-value > 0.00015 for FST 

and G-statistic), but not the Thame tributary at Shabbington (FST = 0.098, n.s.; G-statistic 

p-value = 0.147). Differentiation is also present but not significant between the Suffolk 

Stour samples (FST = 0.133, n.s.; G-statistic p-value = 0.094), within the Medway (FST = 

0.044, n.s.; G-statistic p-value = 0.453), although uncorrected significance is found 

between the two Yare populations (FST = 0.555, 0.05 < p-value > 0.00015; G-statistic p-

value = 0.013). Within the Trent, the two upper tributary populations of the Mease and 

Sence are undifferentiated (FST = -0.061, n.s.; G-statistic p-value = 0.643), although the 

Sence population is significantly differentiated from the Derwent sample before 

correction, while the Mease sample is not (FST = 0.236, < 0.05 p-value >0.00015; G-

statistic p-value = 0.020; FST = 0.077, n.s.; G-statistic p-value = 0.127). 

 

When within-river populations are pooled (Table 3.12), the Thames metapopulation is 

only statistically significantly divergent from the Kent Stour (FST = 0.108, p-value << 

0.001; G-statistic p-value = << 0.001), the Severn (FST = 0.403, p-value << 0.001; G-

statistic p-value = << 0.001), the Sussex Ouse (FST = 0.249, p-value << 0.001; G-statistic 

p-value = << 0.001) and the River Witham (FST = 0.123, p-value << 0.001; G-statistic p-

value = 0.024). Tentative differentiation between the Thames and the Suffolk Stour may 

exist (FST = 0.056, 0.05 > p-value < 0.0005; G-statistic p-value = < 0.001). 
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Table 3.11: Pairwise FST and G-statistic significance levels between all sampled populations (below and above 
diagonal, respectively). Highlighted, underlined values (yellow) indicate statistical significance after correction for 
multiple comparisons (!= 0.05). Shaded values (grey) are those that are only significant before Bonferroni correction. 
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Table 3.12: Pairwise FST and G-statistic significance levels between river systems (below and above diagonal, respectively). 
Highlighted, underlined values (yellow) indicate statistical significance after correction for multiple comparisons (!= 0.05). 
Shaded values (grey) are those that are only significant before Bonferroni correction. 
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Both the Severn and the Bristol Avon share the same ancestral connecting river – and 

share the same estuary – and yet the FST of 0.615 (p << 0.001) shared between these 

populations is the fourth highest value of divergence in all the pairwise comparisons. 

However, the geographically proximate Hampshire Test and Avon are indistinguishable 

from each other by their haplotype frequencies (FST = -0.036, n.s.; G-statistic p-value = 

0.674). The Trent and the Yorkshire Ouse share the Humber estuary, by which they 

currently – and historically – drain into the North Sea. These two rivers are also 

indistinguishable by traditional F-statistics or by the distribution of haplotype frequencies 

(FST = 0.001, n.s.; G-statistic p-value = 0.160). Similarly, the mouths of the Medway and 

Kent Stour are proximal to one another, and they also show minimal divergence (FST = 

0.015, n.s.; G-statistic p-value = 0.101). The Witham maintains mostly non-zero FST 

scores by the virtue of being fixed for a single haplotype (mean FST = 0.199±0.17), even 

with the Great Ouse with which it shares the Wash as a point of discharge (FST = 0.134, p-

value << 0.001; G-statistic p-value = 0.028).  

 

3.3.2.2 Cytochrome B 

 

The more modest cytochrome b dataset reveals a different pattern of hierarchical 

structuring according to the AMOVA analysis (Table 3.13), although all inferences of 

hierarchical structure are unsupported statistically. Whilst most variation is held within 

populations (92.29%, !ST = 0.077, p-value = 0.098), no variation was apportioned to 

among population differences within rivers, and around 7.8% was apportioned among 

rivers themselves, albeit with little statistical support (!CT = 0.097, p-value = 0.168). 

 
Table 3.13: Analysis of molecular variance (AMOVA) results for the 
cytochrome b dataset, where populations are grouped into rivers of origin 
at the highest level. 

 
 

Source of 
variation 

Degrees 
of 

freedom 

Sum of 
squares Variance % of 

variation 
Fixation 
indices p-value 

Among rivers 10 1.465 0.009 9.66 !CT = 
0.097 0.168 

Among 
populations 
within rivers 

5 0.360 -0.002 -1.96 !SC= -
0.022 0.410 

Within rivers 81 6.876 0.085 92.29 !ST = 
0.077 0.098 
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Table 3.14: Pairwise FST values (below diagonal) and G-statistic significance (above diagonal) for the cytochrome b dataset. 
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Population divergence as recorded by cytochrome b haplotype frequencies are given in 

Table 3.14. Not a single comparison was significant, indicating negligible differentiation 

among populations. In some cases, however, FST was high (e.g. most River Tees 

comparisons), although one must conclude that low sample size in conjunction with low 

sequence variation has contributed to an erosion of statistical significance across all 

cytochrome b structuring analyses. 

 

3.3.2.3 Concatenated Data 

 

Because of the limited number of within river sites (the degrees of freedom for the portion 

of total variance in haplotype frequencies assigned to the differences among populations 

within rivers = 2) and limited sampling, statistical power is compromised, particularly 

when assessing for differences among populations within rivers (Table 3.15). However, 

this analysis – like the others - suggests that most variation in haplotype frequency is to be 

found within sites (88.38%, !ST = 0.310, p-value = 0.074). The remaining variation is 

largely apportioned among rivers (11.62%, !CT = 0.311, p-value = 0.101), after 

accounting for the negative artifact association with !SC.  

 

Table 3.15: Analysis of molecular variance (AMOVA) results for the 
concatenated dataset, where populations are grouped into rivers of origin. 

 

Source of 
variation 

Degrees 
of 

freedom 

Sum of 
squares Variance % of 

variation 
Fixation 
indices p-value 

Among rivers 10 4.565 0.093 31.10 !CT = 
0.311 0.101 

Among sites within 
rivers 2 0.177 -0.060 -19.48 

!SC = 
-

0.283 
1.000 

Within sites 36 13.958 0.274 88.38 !ST = 
0.310 0.074 
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Table 3.16: Pairwise FST (below diagonal) and G-statistic significance (above diagonal) for the concatenated data. Shaded, grey 
values are significant before Bonferroni correction. No other values approach significance. 
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Pairwise estimates of population differentiation for the limited concatenated dataset failed 

to uncover any significant structuring (Table 3.16). Not a single pairwise comparison was 

significant after Bonferroni correction, although four were prior to correction. Three of 

these four borderline comparisons were between the Sussex Ouse and the upper Suffolk 

Stour (FST = 0.603), the Yare at Rockland (FST = 0.613) and the River Ash (FST = 0.461), 

with the upper Suffolk Stour also divergent from the Medway at Penshurst (FST = 0.397). 

 

3.3.3 Genealogy and Demographic History of D-Loop Lineages  

 

For all included D-loop sequences, the AIC criterion within jModelTest found that a 

TIM3+I+G model of nucleotide substitution (a transition model) best suited the data (-Ln 

= 1172.27, proportion of invariant sites = 0.882, gamma ! shape = 0.692). All D-loop 

phylogenetic analyses incorporated these parameters.  

 

Figs 3.5a and 3.5b display 50% majority-rule consensus trees calculated by the MP and 

ML algorithms, respectively. Including European roach sequences (N = 148; see Appendix 

A.2 for details), a total of 40 unique haplotypes were observed for the data, ten of which 

are clustered monophyletically within R. r. caspicus (Haplotypes D19 – D30). The 

phylogenetic trees broadly agree with one another with regards to their topologies, with 

strong support for reciprocal monophyly of the Caspian roach and common roach found 

using the MP algorithm (86% bootstrap support). The same relationship is found in the 

ML tree, although the support for the distinction between these two clades is much lower 

(44% bootstrap support, not shown). Both algorithms agree with the basal placing of 

haplotype D37 within the common roach clade (MP: 90% bootstrap support; ML: 86% 

bootstrap support). Given the shallow nature of the phylogeny, in addition to restricted 

sampling, strong bootstrap support was not expected or found for any other within-clade 

relationship. 
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Figure 3.5a: 50% majority-rule consensus tree of phylogenetic relationships within 
roach based upon a maximum parsimony analysis of roach D-loop sequences. 
Bootstrap support (%) is only shown for those nodes that are supported in over 50% 
of the 1000 bootstrap replicates. Blue clade: Rutilus rutilus. Red clade: Rutilus rutilus 
caspicus. Scale: number of inferred nucleotide changes. 

 
 
Figure 3.5b: 50% majority-rule consensus tree of phylogenetic relationships within 
roach based upon a maximum likelihood analysis of roach D-loop sequences. 
Bootstrap support (%) is only shown for those nodes that are supported in over 50% 
of the 1000 bootstrap replicates. Blue clade: Rutilus rutilus. Red clade: Rutilus rutilus 
caspicus. Scale: proportion of inferred nucleotide changes. 
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The phylogeny of the D-loop sequences found only within the UK is very shallow. 

Resolving the statistical parsimony network of UK haplotypes by standard coalescent 

theory-based reasoning produces a simple, star-like phylogeny whereby most unique 

haplotypes are seemingly derived from haplotype D1 by just one mutational step (Fig 3.6). 

Within this scheme, the greatest mutational distance between two haplotypes is five steps: 

between D4 or D9 and any of the D3-derivatives.  

 

 
Figure 3.6: Network of D-loop haplotypes found within the UK, determined by 
statistical parsimony. All loops were resolved according to the criteria of Crandall & 
Templeton (1993). The three most common haplotypes are shown by circles of 
decreasing area, albeit not to scale, for ease of depiction. Colours correspond to those 
depicted for haplotypes D1-D18 in Table 3.3 and Fig 3.2. 
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A similar haplotypic network was derived using the MJN algorithm of Bandelt et al. 

(1999). As many loops as possible were eradicated by repeating the MJ-algorithm using 

differently weighted, variable nucleotide sites (hypervariable sites were weighted lower) 

(Fig 3.7). Adopting the coalescent criteria outlined above for the TCS analysis, the edges 

describing the 18 UK haplotypes of Fig 3.7 collapse further and resemble those of the 

network observed in Fig 3.6. Fig 3.8 shows a haplotype network constructed in Haplotype 

Viewer, using the maximum parsimony analysis of the data as primary information in 

determining genealogical relationships. For this latter analysis, polarity of nucleotide 

evolution was established by incorporating extra D-loop sequences from the common 

roach and from the Caspian roach. 

 

 
Figure 3.7: Network constructed using the MJN algorithm showing resolved (edges) 
and unresolved relationships (loops, or reticulations) among haplotypes. The red 
numbers indicate the nucleotide position at which mutations are inferred to have 
occurred. 
 

Concerning R. rutilus sensu stricto, the MP tree-transformed network strongly suggests 

that haplotype D1 is not the ancestral type, instead inferring the ancestral type within the 

UK to be haplotype D4. The chain of mutation among basal haplotypes is generally 

consistent across methodologies: D10 is ancestral to D7, which itself begat D1. The 

methods deviate in ascribing some of the minor haplotypes to either D1 or D3, with the 

MP-method resulting in no reticulation of mutations, inferring that haplotypes D2 and D16 
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are descendants of D3 via D15 and D11, respectively, in addition to D18. The utilization 

of European sequences indicates that D4 is derived from D37, a haplotype found within 

the Danube and Rhine drainages in two individual roach. 

 

Figure 3.8: MP tree-transformed haplotype networks. Haplotypes are each 
represented by circles whose size is proportional to the number of individual bearers 
of that haplotype found within the sample of 712 roach, inclusive of European fish. 
Top: coloured segments represent the proportion of each haplotype found within 
either the UK (black) or on the European mainland (green). Bottom: colours 
represent the haplotypes found in rivers that discharge into particular marine 
territories: North Sea (black), English Channel (light blue), the Mediterranean 
(purple), the Baltic (yellow) and the Black Seas (red). For both figures R. r. caspicus 
haplotypes are shown in magenta. 
 

Fig 3.8 displays the MP tree-transformation network in two forms: the upper panel shows 

UK versus European distributions of haplotypes; the lower panel apportions haplotypes to 

the discharge sea of their river of origin. There are three important observations: firstly, 

the UK possesses a number of ancestral haplotypes; second, much of the tip-

diversification is associated with haplotypes D3 and D1, such that the majority of 

descendent haplotypes are mostly found in UK waters; thirdly, much of the D7 haplotype-
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bearing roach, from which the vast majority of UK roach bear its descendent lineage, are 

located in the River Rhône, in the south of France, along with a few individuals of 

haplotypes D13 and D16. As expected, all of the most ancestral haplotypes are also found, 

sometimes exclusively, in the drainages of central Europe and the Danube in particular.  

 

The phylogenetic reconstruction methods differ in their pictographic representations of the 

evolutionary process due to the presence of irreducible network loops that are impossible 

to eradicate completely using the weighting or MP option in the MJN analysis, yet are 

usually fully resolved using traditional phylogenetic inference. Furthermore, the MP 

network extends the maximum mutational distance to seven mutational steps (spanning 

D4/D9 to D16/D2) within the UK D-loop diversity. Additionally, The haplotype D36 - 

found in a single individual roach from the Danube - is placed in between haplotypes D10 

and D7 in the tree-transformation network, whilst no intermittent placing of a similar 

haplotype is inferred from an analysis of UK haplotypes alone. This is due to an apparent 

reticulation that may also be resolved by allowing D36 to be a tip descendent of D10.  

 

Table 3.17 lists the uncorrected p-distances obtained for pairwise estimates of nucleotide 

divergence between each of the UK haplotypes. The greatest distances are observed 

between haplotypes D11, D8 and D5 with the ancestral haplotype of UK roach, D4 (p-

distance = 0.00789) and with haplotype D9. This finding casts doubt on whether 

haplotypes D16 or D2 are derived from haplotypes D15 and D11 (as inferred from an MP 

analysis, see Fig 3.8), respectively, as the distance between D16 and D4/D9 is 0.00691, as 

is the distance between D2 and D4/D9. Mean pairwise p-distance across all 18 UK 

haplotypes is 0.0047± 0.0025.  

 

No overt association between haplotype, or genealogical grouping of haplotypes, was 

observed in the UK, or in the limited European sample, with the exception of the Caspian 

roach, which again confirmed their reciprocal monophyly (Figs 3.5.a and 3.5.b) as 

previously speculated by Ketmaier et al. (2008), and D7, which is prevalent in the Rhône. 

However, significant numbers of haplotypes are found in situ within the UK that are 

derived from haplotypes that are most frequently represented within the UK subset of all 

considered catchments (Fig 3.8).  
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Table 3.17: Pairwise p-distances among the 18 D-loop haplotypes found in 
the UK.  

 
 

As previously alluded, haplotype D3 is only found in significant numbers in a mostly 

southern and western distribution (Fig 3.2), as are most of the haplotypes inferred to be 

derived from it, with the exception of D5 which is found in the north and east (Rivers Tees 

and Yorkshire Ouse) and one individual each of D2 and D16, again in the Tees and 

Yorkshire Ouse, respectively. D3 and D16 are also found in central Europe and, for three 

individuals of D16 in particular, in the Rhône of southern France. The River Rhône is a 

repository of a large number of the D7 individuals (N = 22 (45% of all D7 roach)), where 

the D7 variant makes up 65% of all Rhône haplotypes (see Appendix A.2). The more 

ancient haplotypes D4, D7, D9 and D10 are mostly present only in the south of England, 

with the exception of three D7 roach in the Tees and, intriguingly, the only two 

representatives of the most ancient UK lineage haplotype -D4 - in the Yorkshire Ouse. 

The potential significance of these observations is discussed below. 

 

Fig 3.9 shows the 95% HPD limits for the likelihood calculated for each model used to 

infer the phylogenetic relationships among ingroup and outgroups haplotypes. The mean 

log likelihood values for each model are as follows: constant: LnL = -1955.10 (95% HPD: 

-1968.25 to -1943.12); Yule: LnL = -1951.47 (95% HPD: -1963.84 to -1939.69); 

generalized skyline: LnL = - 1953.12 (95% HPD: -1965.66 to - -1940.86); and 

amalgamated Yule-skyline (Y-S): LnL = - 1952.79 (95% HPD: -1965.28 to -1940.91). 

Repeating the analyses for each model but sampling from only the prior confirmed that the 

prior itself was not driving the results. Bayes factors were calculated from the marginal 

likelihoods for each of the postulated demographic and speciation models. Log10 Bayes 

factors indicate the strength of support of one model over another when they are directly 

compared. For all comparisons, the log10 Bayes factors support the Yule model over the 
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two coalescent models. In accordance with Pfenniger et al.18 the improvement in model 

fitting of the Yule model over a model of constant population size is strong (log10 BF = 

1.658), however the strength of support of the Yule model over the skyline model is 

significant (log10 BF = 0.742) and borderline significant over the S-Y model (log10 BF = 

0.512). Both the skyline model and the S-Y model are better suited to the data than a 

model of constant population size (log10 BF = 0.916 and 1.146, respectively). Of all the 

models, the amalgamated Y-S model provided most confidence in root placement (Y-S: 

mean = 26.20 Mya (95% HPD: 23.31 - 30.30 Mya); constant: mean = 27.67 Mya (95% 

HPD: 23.00 – 42.07 Mya); Yule: mean = 28.98 (95% HPD: 23.39 – 37.50 Mya); 

generalized skyline: mean = 26.96 (95% HPD: 23.36 – 32.18)) and for most of the other 

highlighted clades. 

 

 

Figure 3.9: 95% HPD bars of the log likelihood distributions of one speciation (Yule), 
two coalescent (constant and skyline) and one hybrid (Yule and skyline) model 
underpinning phylogenetic within the BEAST software.  
 

Given the preponderance of younger coalescences to older ones in the tree, a model that 

incorporates a coalescent model probably reflects a more accurate interpretation of the 

data than a strict speciation model of evolution that does not take into account past 

                                                
18 What constitutes significant BF support is not universal in the literature, depending on strength of data 
in information content and upon sampling effort, or to increased statistical rigidity due to an application 
to clinical study (e.g. only BF > 5 is considered significant evidence of improved model fitting in a 
study of the HIV virus (Hughes et al. 2009; Jeffreys 1967)). Pfenniger et al. (2010) working within 
crustaceans suggest that log10 Bayes factor >0.48 signifies substantial support, >1.00 strong support, 
and >1.48 very strong support. 
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demography and places disproportionately more statistical emphasis on older nodes. Mean 

mutation rate was, therefore, extracted from the skyline model. Tamura’s test of mutation 

rate constancy among and within lineages (1992) as applied in MEGA 5.05 validated the 

utilization of a relaxed clock in the BEAST analyses. The supposition of a strict clock 

describing mutational events within the dataset was roundly rejected (-LnL clock: 

1572.04; -LnL without clock: 1484.21; p-value << 0.001). The coefficient of variation 

among lineages in the BEAST analysis was 1.533 (95% HPD: 0.989 – 2.177), 

corroborating the log likelihood test. The reliability of the data is further supported by the 

lack of autocorrelation of rates within the tree (the covariance of parent and daughter 

lineages traverse zero: mean covariance = -0.0429 (95% HPD: -0.188 to 0.135)). The 

inferred mean nucleotide substitution rate averaged across the entire phylogeny (including 

the outgroup sequences) was 0.0073 (95% HPD: 0.0052 – 0.0096) nucleotide substitutions 

per site per million years, or 1.46% sequence divergence per million years. 

 

The inferred substitution rate for the node at which the common roach and Caspian roach 

diverged was 0.0073 (95% HPD: 0.0001 – 0.0236) (1.46% sequence divergence per 

million years). The substitution rate inferred for the basal node in the common roach clade 

(when D37 diverged) is 0.035 (95% HPD: 0.0013 – 0.1056), or 7% sequence divergence 

per million years. The mean substitution rate calculated from all nodes within the common 

roach clade is 0.0291 substitutions per lineage per million years, or 5.82% sequence 

divergence per million years. Applying the relaxed clock to dating significant divergences 

within the rudimentary D-loop phylogeny, the common roach and Caspian roach became 

distinct clades some 927900 years ago (95% HPD: 0.167 – 2.110 Mya). The 

diversification of the common roach clade, based on surviving lineages, began 

approximately 0.292 Mya (95% HPD: 0.072 – 0.743 Mya). The split of all Rutilus rutilus 

spp with Rutilus rubilio was dated at 1.92 Mya (95% HPD: 0.318 – 3.545 Mya). 

 

A number of tests were carried out to test the hypothesis of demographic stability. The 

results of these tests, and the values of the statistics upon which all or some are derived 

(e.g. S, ! and "), can be seen in Table 3.18. The null hypothesis of population expansion 

could not be rejected for the entire R. rutilus clade (“All”) (mean mismatch value = 

1.816±3.50, sum of squared differences (SDD) = 0.006, p-value = 0.07), all pooled UK 

roach (mean mismatch value = 0.639±0.790, SSD = 0.001, p-value = 0.343), and clades 

D7 (mean mismatch value = 0.579±0.666, SSD = 0.005, p-value = 0.078) and D1 (mean 

mismatch value = 0.463±0.614, SSD = 0.002, p-value = 0.161). However, for all common 

roach and for the tip-clade, D3, population expansion was not supported (Roach s.s: mean 
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mismatch value = 0.899±1.110, SSD = 0.001, p-value = 0.046; D3: mean mismatch value 

= 0.580±0.814, SSD = 0.22, p-value < 0.001). However, for all groups, Harpending’s r 

was not significantly different from expectations of a smooth, demographic expansion (see 

Table 3.18 and Fig 3.10). The neutrality analysis results are in general agreement with the 

mismatch analysis: For the all-inclusive dataset and for R. rutilus sensu stricto, population 

stasis was rejected (All: Fs = -14.032, p-value <<0.001, Tajima’s D = -1.534, p-value = 

0.030; Roach s.s: Fs = -26.752, p-value <<0.001, Tajima’s D = -1.434, p-value = 0.024). 

Estimates of Fs were also found to be significant for the remaining groupings (UK roach: 

Fs = -15.39, p-value = < 0.001; D7: Fs = -12.902, p-value = 0.001, D1: Fs = -12.131, p-

value = 0.002; D3: Fs = -5.466, p-value = 0.026), however, Tajima’s D was borderline 

significant for clade D1 (D = -1.406, p-value = 0.045), but non-significant for clades D7 

and D3 (D = -1.426, p-value = 0.138 and D = -0.777, p-value = 0.258, respectively). A 

more powerful statistic (R2) was implemented to test whether the null hypothesis of 

population stasis, rather than expansion, holds true. Population stasis was rejected for all 

included roaches, common and Caspian (“All”: R2 = 0.027, p-value = 0.042) and for 

Roach s.s. (R2 = 0.022, p-value = 0.05). For the clades D7 through D3, population stability 

could not be rejected: R2 = 0.025 (p-value = 0.185) and 0.060 (p-value = 0.258) for D7 and 

D3 respectively, but D1 approached significance (R2 = 0.024, p-value = 0.055). Taking the 

UK roach as a single entity, population expansion was not supported (R2 = 0.023, p-value 

= 0.168; r = 0.101, p-value = 0.533).  

 

By incorporating the mutation rates estimated from the BEAST analysis into Slatkin & 

Hudson’s equation (1991), the time since expansion for each group listed in Table 3.18 

was calculated. The time since expansion for each group, based on a maximum divergence 

rate of 7% per million years, a mean rate of 5.82% per million years within the common 

roach clade and a lowest inferred rate – and overall mean - of 1.46% per million years 

(nucleotide substitution rate of 0.035, 0.0291 and 0.0073 per site per lineage per million 

years) are as follows: All: 18809/22595/90281 years ago; Roach s.s: 20430/24541/97516 

years ago; UK roach: 14512/17432/69654 years ago; D7: 13027/15649/62527 years ago; 

D1: 11384/13676/54644 years ago; and D3: 6592/7919/31641 years ago. The value of ! 

for Roach s.s. (0.908) is greater than that for all roaches (0.836) resulting in an extended 

time to coalescence for a younger node, probably due to the fact that two evolutionary 

distinct lineages are combined. Even so, the time since expansion for the ancestor of the 

common roach is dated at around 20-90 thousand years ago. The expansion of the D3 

clade is synchronous with the isolation of the British Isles from the European mainland via 
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the formation of the English Channel if one adopts the mean rate of nucleotide substitution 

within the common roach clade, but not if the overall mean rate is applied. 

 

Table 3.18: Statistical analyses of demographic history performed over a 
range of decreasingly inclusive haplotypic groups. S = the number of 
segregating sites; !  = 2µt; "  = 4Neµ, r = Harpending’s raggedness index; 
R2 = Ramos-Onsins and Rozas’ R2 statistic. Where calculable from 
coalescent simulations, both the observed value (Obs) and 95% CI (L & 
U) are provided, in addition to a p-value. Roach s.s. refers to Rutilus 
rutilus sensu stricto  and “All” is inclusive of Caspian roach. 

* 95% CI could not be calculated. 
 

Statistic 
Grouping 

All Roach 
s.s. 

UK 
Roach D7 D1 D3 

S Obs 30 17 14 12 10 5 

! 
Obs 0.836 0.908 0.645 0.579 0.506 0.293* 

95%L 0.342 0 0.486 0.541 0.381 - 

95%U 1.365 2.123 1.129 1.150 0.984 - 

" 

Obs 4.184 2.383 2.026 1.701 1.433 0.930 

95%L 0.697 0.28 0.145 0.142 0 0 

95%U 3.068 1.822 1.447 1.275 1 1.488 

p[!<=Ob] 0.998 0.998 1 1 0.998 0.890 

r 

Obs 0.06 0.069 0.101 0.120 0.150 0.184 

95%L 0.026 0.040 0.023 0.053 0.069 0.045 

95%U 0.541 0.902 0.413 0.952 0.987 0.649 

p[r<=Ob] 0.225 0.099 0.533 0.138 0.146 0.607 

R2 

Obs 0.029 0.027 0.023 0.025 0.024 0.060 

95%L 0.027 0.022 0.008 0.007 0.017 0.032 

95%U 0.123 0.134 0.173 0.120 0.154 0.178 

p[R2<=Ob] 0.042 0.050 0.168 0.185 0.055 0.258 

Fu's Fs 

Obs -30.87 -26.752 -15.39 -12.902 -12.131 -5.466 

95%L -14.032 -8.157 -6.900 -7.033 -6.842 -5.976 

95%U 12.758 7.827 5.780 5.295 5.051 4.923 

p[Fs<=Ob] <0.001 <0.001 <0.001 0.001 0.002 0.026 

Tajima's 
D 

Obs -1.484 -1.445 -1.55 -1.426 -1.406 -0.777 

95%L -1.534 -1.434 -1.52 -1.354 -1.53 -1.421 

95%U 1.842 2.135 2.24 1.961 2.314 2.149 

p[D<=Ob] 0.03 0.024 0.02 0.138 0.045 0.258 



 

 

114 

 
Figure 3.10: Mismatch analyses. Top: from left: All 712 sequenced individuals (“All”), all roach sensu stricto individuals (“roach s.s.”), 564 
individuals from the UK only; Bottom: from left: clade D7 individuals, clade D1 individuals and clade D3 individuals (all based on an MP-derived 
network). Blue bars give observed frequencies of nucleotide differentiation, whereas the expected number of differences given an expectation of 
demographic expansion is shown by the red graph. 
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The distribution of pairwise differences between matrilinearly inherited DNA sequences 

can be related to the time since the compared sequences last shared a common ancestor 

(TMRCA) by the equation: µ x p, where p = p-distance (see above) and µ = percent 

sequence evolution among lineages per million years (Avise et al. 1988; Avise 2000). Fig. 

3.11 illustrates the mismatch distributions of nucleotide sequences couched in terms of 

coalescent ages measured in roach generations ((µ x p)/Ar, where Ar = the age at first 

reproduction for the roach, 4 years) for all common roaches and for clades D1 and D3. 

With the exception of D3, shallower coalescences (those occurring within 0-10 thousand 

generations) are less common than the other categories, indicating that sequences arising 

from recent mutations are relatively rare compared to ancestral sequences, particularly 

those sequences that coalesce 20-30 thousand generations ago in the entire roach clade and 

10-20 thousand generations ago in clade D1. The shallower clades (D1 & D3), due to their 

younger age, lack coalescences older than 30 thousand generations, with the majority of 

coalescences occurring between 10-20 thousand generations years ago. For all roach and 

the D1 clade, the results are consistent with expectations of past range contraction and 

expansion resulting in the pruning of the oldest lineages, the prevalence of common, mid-

aged haplotypes retained in refugia and a lower frequency of recent coalescences due to 

the paucity of sampling effort or rarity of new mutations relative to their direct ancestors. 

That D3 possesses relatively more recent coalescences than the oldest coalescences is 

probably due to the small number of pairwise comparisons available for this clade (28), 

compared to D1 (91) and all common roach haplotypes (379) (see Appendix A.3.1 for 

pairwise p-distances of all common roach haplotypes).  
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Figure 3.11: Bar charts showing distribution of TMRCA for pairwise sequence 
comparisons derived from the relationship between p-distance and a substitution rate 
of 0.0291 substitutions per nucleotide per lineage per million years (see text). Top: All 
roach with the exception of the Caspian roach; Middle: Clade D1 only; Bottom: 
Clade D3 only. 
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3.4 Discussion 
 

3.4.1 mtDNA Diversity 

 

The level of nucleotide diversity observed within the roach for both the cytochrome b 

locus and for the D-loop segment of the control region are low, consistent with either a 

selective sweep of the mitochondrial genome in the recent past or due to bottlenecking of 

the roach population followed by a subsequent demographic re-expansion, likely effected 

by recent glacial activity (Bell & Andrews 1997; Tipton et al. 2011). In such a scenario 

most haplotypes are lost in areas that are subsequently made inhabitable (e.g. presence of a 

massive ice sheet and arctic conditions), and which are then recolonized by surviving 

lineages from refugia that have been pruned of much of their individual diversity by 

bottlenecking (Bernatchez & Wilson 1998). Because of the low diversity afforded to river 

systems, most statistical treatments to delineate pairwise divergent populations (be it FST 

or G-statistic) failed, with only a few populations or rivers achieving significance under 

the conservative application of Bonferroni. Of these rivers, the most divergent were the 

Witham (by virtue of its fixation of 35 individuals for D1), the Severn, the Kennet and the 

Sussex Ouse. Most of these rivers were only divergent for D-loop.  

 

The low levels of inter-population divergence are indicative of one or more of the 

following processes: i) low overall diversity retained from an ancestral population from 

which all current populations are descended; ii) low mutation rate and/or not enough time 

has elapsed for mutations to accumulate since the ancestral population(s) became 

sundered; and iii) there has been ongoing migration, natural or otherwise, since the river 

systems became isolated and sea levels rose. Each of these factors is not necessarily 

mutually exclusive from the others. However, the phylogeographic pattern of D-loop 

variation exhibited by roach in the UK is consistent with Avise’s Category V (Avise 

2004): in which lineages form part of a shallow gene tree, but some lineages may be 

widely distributed among river populations (e.g. D1 and D3), whereas others are localized 

and apomorphic – derived – with respect to the widely distributed ancestral haplotypes 

(e.g. D2, D5 and D8 are both sympatrically distributed with D3 in the UK and are not 

found on the European mainland). Overall levels of haplotype and nucleotide diversity of 

the D-loop (h = 0.482±0.024; ! = 0.00101±0.001) are consonant with a recent 

demographic history incorporating a significant bottleneck followed by rapid population 

growth, according to the criteria of Grant & Bowen (1998). The above categorizations are 
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entirely consistent with a scenario of a demographic expansion of roach into the UK 

following the freeing of the UK’s rivers and streams after the last glacial maximum, after 

suffering population contraction on the continent during the previous glaciation. The 

mismatch analyses conducted above and further Bayeian inference (see below) provides 

further analytical evidence. 

 

Freshwater fishes are often cited as having the propensity to develop significant 

differentiation among populations - in particular those populations that are physically 

separated by inhabitable coastline and significant expanses of non-floodplain terrain - at 

least compared to marine species (Ward et al. 1994). Many documented studies of the 

mtDNA variation of freshwater fishes are consistent with this view, e.g. bulltrout 

Salvelinus confluentis of arboreal North America (Taylor et al. 1998), the fishes 

Nannoperca oxleyana and Rhadinocentrus ornatus of the coastal rivers of eastern 

Australia (Hughes et al. 1999 and Sharma & Hughes 2011, respectively), Scandinavian 

populations of the Eurasian perch Perca fluviatilis (Nesbø et al. 1999), European 

cyprinids, including populations of the rudd Scardinius erythrophthalmus and the vairone 

Telestes souffia in Italy (Stefani et al. 2004 and Salzburger et al. 2003, respectively) and 

the Iberian species Anaecypris hispanica (Alves et al. 2001), Chondrostoma lusitanicum 

(Mesquita et al 2001), Iberochondrostoma lemmingii (Lopes-Cunha et al. 2012) and 

Rutilus alburnoides (Alves et al. 1997).  

 

Global surveys of mtDNA variation of European freshwater fish generally reveal low 

levels of variation throughout their ranges, although particularly so in northern 

populations, and therefore are in agreement with the expectations of Bernatchez & Wilson 

(1998) who based their analysis upon an already extensive record of the genetic diversity 

of North American freshwater fishes. The vimba Vimba vimba, although not native to the 

UK, shares a similar ecology with the roach, in that it is migratory and somewhat tolerant 

of brackish waters, albeit more so than the roach as it actually reproduces in such waters 

whereas the roach does not. An analysis of vimba mtDNA from 28 sites located across its 

range revealed only 17 D-loop haplotypes (from 86 individuals and 500bp of sequence) 

and 15 cytochrome b haplotypes (from 44 individuals and 600bp). The concatenated data 

yielded 21 unique haplotypes (Hänfling et al. 2009). For both the D-loop and cytochrome 

b, only 1.3% of all sites were polymorphic. The respective percentage values for the UK 

roach are 2.2% and 1.17%. Another fish with a similar ecology to that of the vimba that 

has been extensively studied at the level of genetic diversity is the Eurasian perch. An 

extensive study of D-loop variation from 56 distinct populations spanning the west of 
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Europe to the western reaches of Siberia uncovered 35 haplotypes from a 365bp survey of 

488 individuals (Refseth & Nesbø 1998; Nesbø et al. 1999). The 21 variable sites 

responsible for the haplotypic diversity represent some 5.75% of the D-loop sequence. A 

pan-European survey of cytochrome b variation of individuals from much of the roach’s 

European range (not including much of its northern distribution, i.e. the UK, Scandinavia 

and northeast Europe), with a strong emphasis on roach inhabiting the Meuse and Scheldt 

drainages of Belgium, found that a 475bp fragment from 265 individuals sampled from 52 

locales described 70 unique haplotypes based upon 77 variable sites (16.21%) (Larmuseau 

et al. 2009). From a re-analysis of Larmuseau’s data inclusive of the UK roach, it is 

revealed that UK roach possess unique haplotypes, thus increasing the amount of diversity 

present within European roach by a small degree (six haplotypes).  

 

Most studies of mtDNA variation in widely distributed European freshwater fishes have a 

broad sampling scheme, contingent upon a primary motivation of deciphering the 

postglacial and interglacial histories of species, although there are exceptions (e.g. both the 

Aegean (Gollman et al. 1997; Imsiridou et al. 1997, 1998; Durand et al. 1999; Zardoya et 

al. 1999; and Tsipas et al. 2009) and Italian regions (e.g. Stefani et al. 2004; Salzburger et 

al. 2003) have been well studied with respect to their localized cyprinid fauna). Due to the 

compromise between sample sizes per location and the extent of sampling required over a 

species’ range necessitated by restricted timeframes and limited budgets, often only a 

small sample of regional mtDNA diversity is generally described. Within the UK, only 

very few rivers have been assessed for mtDNA diversity across potamodromous 

freshwater fishes. Nesbø et al.’s study of perch (1999) found that all ten individuals taken 

from the River Thames were monomorphic for the D-loop haplotype, ‘F’. The inclusion of 

four tench Tinca tinca from two private ponds located within the floodplain of the 

Yorkshire Ouse uncovered two distinct cytochrome b haplotypes (3 individuals of an 

‘eastern European’ haplotype and one of the ‘western European’ haplotypes) (Lajbner et 

al. 2011) sharing some aspects of haplotypic distribution observed in roach within the 

same area (see below).  

 

The common bream Abramis brama is often co-distributed with roach in lowland waters. 

A study of cytochrome b diversity within bream (Hayden et al. 2011) utilized 25 

individuals from five rivers (5 bream per river): River Hunstpill (artificial), River Ouzel 

(Great Ouse watershed), River Rother (Arun watershed in West Sussex) and the Rivers 

Bourne and Kennet (both within the Thames). The sequence analysis of a 638bp fragment 

revealed that all 25 bream were monomorphic except for one individual from the Rother 
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that closely matched cytochrome b sequences from the related white bream Blicca 

bjoerkna and is present either due to past introgression with the common bream or through 

sampling misidentification.  

 

Nine chub Squalius cephalus surveyed within the Thames were monomorphic for the same 

600bp ‘Atlantic’ cytochrome b haplotype commonly found elsewhere in western European 

populations of this fish (Durand et al. 1999). 25 dace Leuciscus leuciscus individuals 

sequenced for 715bp of the cytochrome b locus found some variation within and between 

two populations located in the Rivers Frome and Allen in southwestern England 

(Costedoat et al. 2006). The River Allen’s 12 dace included four unique haplotypes (H1, 3, 

7 & 8), whereas the 13 dace from the Frome had 3 (H1, 2 & 4). It is clear that at least in 

the southwest, dace populations are more variable than roach populations in other parts of 

the UK at the cytochrome b locus (roach: mean ! = 0.0005±0.0002 and mean h = 

0.1983±0.0689; dace: mean ! = 0.0013±0.0012 and mean h = 0.5612±0.1292). Any 

difference needs to be qualified by the size of fragments analyzed and the location and 

history (e.g. native or introduced) of any particular location.19  

 

Only one in-depth study of mitochondrial sequence data for a widely distributed fish 

sampled from across its UK distribution has been published to date, Dawnay et al.’s 

(2011) comprehensive coverage of grayling Thymallus thymallus populations. A major 

component of this paper assessed D-loop diversity (825bp fragment) for 5 individuals each 

from 27 distinct populations. The scope of this study oversaw D-loop diversity located 

within 17 distinct drainages, although the overlap of river systems with those covered by 

the present study is restricted to just six catchments: Thames (River Kennet), Trent (River 

Derwent), Hampshire Avon, Yorkshire Ouse (River Ure), the Severn and the River Test. 

85 sequenced individuals yielded 10 unique haplotypes from 7 variable sites. The grayling 

study shares some parallels with the above assessment of roach D-loop diversity: most 

notably the prevalence of a single haplotype in the majority of populations. The H1 

haplotype in grayling is found in all but two of the 27 surveyed populations, whereas the 

D1 haplotype of the roach is found in all of the surveyed populations. However, unlike the 

roach, grayling were monomorphic in over 50% of surveyed sites (15/27, 13 of which 

contained only H1). The two monomorphic populations of roach were also identical for 

the most common haplotype. Interestingly, the Severn population of grayling is composed 

entirely of unique haplotypes (H4 & H7), whereas the Severn population of roach is 

                                                
19 The roach is thought not to be native to southwestern England, which may also be the case for the 
dace and other coarse fishes. 



 

 121 

divergent from the other river populations in that D1 is reduced to minority status and D3 

is much more frequent in occurrence. The River Kennet population of grayling, however, 

is amongst the uniform collection of H1 populations, whereas it is a locale containing 

much haplotypic diversity in roach. 

 

The sum total of 85 sequenced grayling yielded an average of one unique haplotype per 

8.5 grayling sampled. The equivalent figure for the UK roach population, based upon a 

lesser fragment size of 634bp derived from 564 roach, is 35.25. Undoubtedly, an important 

component of this shortfall in diversity is the shorter sequence length used in the roach 

analysis. However, the lower diversity observed in the roach compared to the grayling 

may stem from three alternate identifiable sources: i) that present day descendants of roach 

were isolated more recently than those of the grayling; ii) the D-loop mutation rate is 

lower in the roach than in the grayling; and iii) the roach possesses a lower evolutionary 

effective size than the grayling (but see Taylor et al. 1998). Of these three possibilities, the 

latter is the least likely. Previous studies of roach have identified extensive within-

population variability – and low inter-population divergence -at the level of local 

populations, at least in nuclear genomes, indicative of high effective sizes even in the face 

of past demographic instability (e.g. Bouvet et al. 1991, 1995; Baranyi et al. 1997; Wolter 

1999; Hänfling et al. 2004; Demandt & Björkland 2007; Demandt 2010; and see Chapter 

Four). Additionally, the roach is widespread and extremely common, and thus liable to 

posses much more intrinsic genetic variation as a result of high census numbers 

(McCusker & Bentzen 2010), making it unlikely to suffer a paroxysmal loss of genetic 

diversity throughout its range, although peripatric populations or those on the fringes of a 

geographical distribution may experience significant loss of diversity even in the face of 

regenerative migration from the core of a species’ distribution (Johannesson & André 

2005). Furthermore, the grayling is a regionally threatened species that has suffered a 

number of population bottlenecks in much of its wider distribution (e.g. Swatdipong et al. 

2009), more so than the more common coarse fish of the UK, and is hypothesized to 

account for many of the fixed populations found in Dawnay et al.’s study (further backed 

up by microsatellite data indicating significant FST scores among drainages). 

 

It would be reasonable to expect less D-loop variation within grayling populations than 

roach populations. Therefore, it may be that the nucleotide substitution rate differs 

between these two species, or that their recent demographic histories are asynchronous. By 

assessing the evolutionary relationships between haplotypes and their geographical and 

demographic properties, the underlying causes for the slight incongruence in D-loop 
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diversity between the roach and the grayling may be revealed. However, the similarities in 

haplotypic distribution and overall low levels of diversity are marked, suggesting that any 

differences are of degree, not in kind, and that the broad glacial landscape of the last epoch 

is chiefly responsible for purging the UK of much, if not all, of its eurytopic freshwater 

fish fauna, thereby further validating the boreal genetic depauperation paradigm of 

Bernatchez & Wilson (1998).  

 

3.4.2 Population Structuring 

 

Roach populations within the UK show little divergence on the basis of the distribution of 

unique haplotypes among drainages and zero concordance of geography with 

monophyletic mtDNA lineages. Similar patterns have been found in a number of 

freshwater fishes. Like the roach, the perch shows similar low levels of diversity in a 

northern expanse of its distribution: Refseth et al. (1998) found that 109 individuals 

sequenced for 378bp of the D-loop from 20 sites scattered within Norway and Sweden 

yielded 12 haplotypes based upon 10 variable sites (2.65%). Such low within-region 

diversity, especially acute in northern populations, or areas that have only recently been 

recolonized, will translate into low levels of inter-population divergence, particularly 

among drainages, with the potential for high levels of within-drainage diversity in 

hierarchical analyses of structuring. The application of hierarchical !-statistics did 

confirm that variation among roach populations was present among watersheds (5.29%), at 

least for the D-loop, albeit unsupported statistically. However, 7% of the variation 

exhibited across the hierarchical scale could be attributed to diversity within rivers. In fact 

many of the rivers in which samples were taken at two sites within a single stretch 

exhibited a range of differentiation (e.g. FST within the Yare, the Suffolk Stour and the 

Yorkshire Ouse is 0.555, 0.133 and 0.086 respectively). Despite there existing 

differentiation among populations and some rivers by virtue of the variation of haplotype 

frequencies among them, no clear association between individual haplotypes or ancestor-

descendent relationship can be ascribed to any particular drainage in the UK except for the 

Severn and Sussex Ouse (in terms of low frequencies of D1 and elevated frequencies of 

less common haplotypes) and the Thames, in which five direct descendants are located 

(four haplotypes are descended from D1, including D3, and two from D3 itself), and the 

Great Ouse (five: three haplotypes derived from D1 including D3, and two from D3 itself). 

The UK roach harbor both derived and ancestral haplotypes, from within the common 

roach lineage, including D4 from which all non-Caspian haplotypes are inferred to have 
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derived, with the exception of D37 (Fig 3.8). A secondary lineage, derived from D9, is not 

represented in the UK (except for three D9 individuals from the Great Ouse), but appears 

to be a sub-sample of a much greater, and potentially much more diverse European lineage 

not fully investigated by the limited sampling presented here. 

 

Superficial similarities with roach in the distribution of mtDNA variation have been 

observed in some obligate freshwater fishes in distant locales that have also recently been 

perturbed by Pleistocene climatic upheaval, for example, Hypseleotris compressa, from 

eastern Australia, revealed very little differentiation among 15 coastal river systems for a 

567bp fragment of the ATPase 6 locus, although differentiation was also lacking within 

watersheds (McGlashan & Hughes 2001). Using Wright’s hierarchical F-statistics, the 

authors report that 98% of all genetic variation was found within populations. A survey of 

an 865bp D-loop fragment in the bleeker Leptobotia elongate within China‘s upper 

Yangtze River found little structuring among groups (tributaries) (1.7% of total variance), 

with the vast majority of haplotypic variation found within individual populations (Liu et 

al. 2012). Whilst not as high as that found in the roach and in the bleeker, a study of a 

715bp cytochrome b dataset of variation in the dace from across central and western 

Europe apportioned 69.22% of all variation to that found within populations (with 17.17% 

apportioned to differences between populations and 13.01% to differences between 

drainages) (Costedoat et al. 2006). A further complication of assessing population 

structuring in areas with complex glacial histories is that AMOVA analyses are prone to 

underestimate the extent of structuring when populations have a historical legacy of range 

contraction and expansion (Templeton 1998). Sampling a range of watersheds with variant 

glacial histories may explain the greater structuring found among European dace for 

cytochrome b variation than higher resolution studies utilizing the D-loop. These findings 

are consistent with the characteristic of low mtDNA variation due to repeated glacial 

purges of northern latitudes and the limited temporal scope for mutations to accrue in 

different refugial populations whose inhabitants, whilst demographically allopatric, still 

closely resemble one another in their mitochondrial nucleotide sequences. 

 

MtDNA diversity exists within UK watersheds, particularly D-loop haplotypic diversity, 

however limited in extent. Scientific consensus predicts that in riverine systems with 

pronounced downstream river flow, it is expected that a parallel pattern of asymmetric 

downstream-biased dispersal of larval and juvenile forms of aquatic species would be 

observed, such that more haplotypes (and greater quantitative measures of genetic 

diversity) are found downstream as opposed to sites situated upstream (e.g. the razorback 
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sucker Xyrauchen texanus of Western North America (Dowling et al. 1996)). Examples 

within the freshwater fish literature of the a priori expectation of decreasing diversity with 

upstream distance are most commonly found in species in which a source-sink 

metapopulation dynamic is most pronounced. For example, many upstream populations in 

the endangered cyprinid Anaecypris hispanica are fixed for mitochondrial genotypes, 

probably because upstream populations are often isolated and extirpated by regular 

periodic droughts (Mesquita et al. 2001). Likewise, similar source-sink dynamics were 

described for the demersal bullhead Cottus gobio, a species characterized with low 

motility, within a tributary of the River Rye, UK, that also displays a pattern of significant 

isolation-by-distance (Hänfling & Weetman 2006). For other species, particularly vagile 

species, there is often found a lack of differentiation and structuring among sites within 

rivers (e.g. Li et al. 2012). 

 

These a priori expectations of an increase of mitochondrial diversity with distance 

downstream were not matched within the roach. Diversity was greater upstream than 

downstream in the Yorkshire Ouse (two haplotypes are found downstream at 

Beningborough, whereas four haplotypes are observed in the upper tributary, the River 

Ure; YOC: ! = 0.500±0.135, h = 0.036±0.0013; YOB: ! = 0.111±0.096, h = 

0.003±0.0032), the Great Ouse (seven haplotypes are found in the upper Ouse at Newport 

Pagnell compared to the four found in the middle Ouse at St. Ives; GON: ! = 0.593±0.100, 

h = 0.040±0.088; GOE: ! = 0.383±0.120 h = 0.013±0.047) and the Suffolk Stour (three 

upstream haplotypes at Stoke-by-Clare compared to just the ubiquitous D1 haplotype 

downstream at Higham; SSS: ! = 0.385±0.102, h = 0.013±0.038). In the Trent, the River 

Derwent (! = 0.0044±0.0037, h = 0.133±0.112), situated more closely to the downstream 

confluence with the main Trent than either the Mease of Sence, is less diverse than either 

of the more upstream located sites in the Rivers Mease (! = 0.013±0.0055, h = 

0.389±0.164) or Sence (! = 0.017±0.0034, h = 0.509±0.101). Only in the Thames and in 

the Medway was this situation not observed. A tri-locus study of mtDNA variation of the 

flannelmouth sucker Catostomus latipinnis within the huge expanse of the Colorado River, 

USA, uncovered a clinal distribution of nucleotide diversities that increased with distance 

upstream (Douglas et al. 2003). Unlike the roach, however, haplotype diversities were 

high at all locations.  

 

Dispersal ecology in any study of genetic variation and population connectivity is an 

important element that will impact upon expected results (e.g. see Blasco-Costa et al.’s 

study of the effect of vector organism dispersal behaviour upon levels of within-stream 
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genetic diversity of two endoparasitic organisms (2011)). For instance, upstream 

populations experience less immigration than those located further downstream (due to a 

reduced pool of migrants from upstream headwaters and less migrants originating 

downstream due to the vigor of swimming against the flow). Therefore, novel mutations 

that occur upstream, or are present through ex situ translocation, are likely to persist for a 

greater period of time than novel variation located downstream where increased 

immigration relative to emigration decreases the likelihood of any single variant 

approaching detectable frequencies (Nagylaki 1978)20. This insight into asymmetric 

dispersal ecology has only recently been developed within a theoretically robust 

framework for a range of applicable habitats (e.g. coastal fauna restricted to tidal zones 

(Pringle et al. 2011)). Such processes, as well as strictly limited unidimensional gene flow, 

will promote the formation of genetic clines within such environments. However, the 

sampling scheme adopted in this study was not set-up to detect clinal change within linear 

stretches of river and so must remain unknown until further study. 

 

3.4.3 D-Loop Phylogeny and Demography of the UK Roach Lineage 

  

The mean estimated Rutilus rutilus/caspicus D-loop divergence rate of 1.46% per million 

years is lower than the general mitochondrial mutation rate of 2% divergence per million 

years often assumed for bony fishes, but within the range of low-end mutation rates for the 

D-loop within some teleost fishes (which can be as low as 0.5% (Cantatore et al. 1994) 

and 0.8% in the brown trout Salmo trutta (Osinov & Bernatchez 1996)). Engelbrecht et al. 

(2000) reported that the D-loop diversity in European populations of the bullhead Cottus 

gobio was probably the result of a mutation rate lower than the initial 2% sequence 

divergence per million years assumed for their analyses. Reduced mutability of the 

mitochondrial genome as a whole compared to other fishes was found in the sturgeon and 

paddlefish family, the Acipenseriformes (Krieger & Fuerst 2002), and in the D-loop in 

particular among species of killifish Fundulus spp (Whitehead 2009). The mutation rate of 

mitochondrial DNA as a whole in fishes has often been reported as being slower in this 

taxon than in other vertebrates, perhaps by as much as five-fold (Martin et al. 1992).  

 

                                                
20 In Nagylaki’s words: “If dispersion is preferentially out of an environmental pocket at the end of a 
very long habitat, the condition for maintaining the allele favored in the pocket becomes less stringent 
than for symmetric migration; dispersion preferentially into the pocket increases the severity of the 
condition for polymorphism.” (1978). 
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However, within the widespread western European roach clade the inferred mutation rate 

was much higher: a high of 7% pairwise divergence per million years with a mean value of 

5.82%. The 2-3 fold increase in rates estimated for more recent divergences is likely due 

to the over-saturation of ancestral sequences, whereby mutational events are superimposed 

upon more ancient point mutations, thereby resulting in a dramatic underestimation of 

mutation rate. Therefore, much less confidence should be attributed to rates inferred from 

evolutionary distant bifurcations. Moreover, the estimate of mutation rate derived from the 

roach data is a product of an underlying mutational model (estimated here using a ML 

criterion) and a limited, somewhat biased sample of fish used to construct an estimated 

phylogeny that may or may not accurately portray the true phylogeny. Additionally, 

demographic processes may affect the estimate of mutation rate. For instance, past 

population contractions remove much of the available variation from subsequent 

observation, thereby underestimating the true rate of mutation (Tajima 1989)21. Therefore 

all estimates of divergences and demographic expansions based upon the rate estimated at 

the point that R.rutilus and R.r.rutilus diverged must be applied extremely cautiously.  

 

From a cursory observation of Fig 3.8, the distal haplotypes within the lineage observed 

from UK waters are both commonplace and numerous with a surfeit of recently evolved, 

low frequency descendants, forming a ‘star’ pattern. Such a pattern is indicative of recent 

demographic expansion. From the mismatch analyses of the D-loop, and applying 

nucleotide substitution rates inferred from the common roach clade only, the origin of the 

common roach clade was dated at 20-25 thousand years before the present, placing the 

lineage diversification and expansion in the upper-Tarantian stage of the late Pleistocene 

epoch. The major sub-lineage found within UK waters is D1, from which D3 is derived. 

D1 is estimated to have derived from a range expansion dating from 14.5 – 17.5 thousand 

years ago, whereas D3 is dated at around 7-8 thousand years ago, the approximate date at 

which the UK became sundered from mainland Europe by the creation of the English 

Channel. However, application of the lower substitution rate does not support the 

consonant geologic and demographic events above, but this may be due to the limitations 

elaborated previously. 

 

The application of mismatch analyses to infer past demographic processes is only 

applicable when the number of superimposed nucleotide substitutions is limited or zero 

(Schneider & Excoffier 1999). However, the problem of nucleotide site substitution 

                                                
21 Mutation rates based upon mutations at low frequency are less affected by past demographic 
processes because they are likely to be genealogically younger (Kimura and Ohta 1973). 
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saturation is only a problem when the per site mutation rate is so high - or that the 

expansion happened so long ago  - for saturation to have accrued. In the present case 

pairwise estimates of distance are invariant regardless of various weightings given to 

transversions over transitions, or of varying nucleotide frequencies. The most simple 

distance, the p-distance, suffices to describe differences among haplotypes, therefore the 

mismatch analyses are based on differences likely to have accrued only once per site and 

estimates of divergences from mismatch parameters retain theoretical validity.  

 

Figure 3.12: Skyline graph depicting the temporal changes in female effective 
population sizes over time (Ne(f), y-axis). Bold dashed line = Median date of 
divergence from the lineage leading to the Caspian roach; normal dashed line = 
lower bound of 95% HPD. The blue shaded area represents the 95% HPD of 
effective population size estimated over time (millions of years). 
 

According to the graph depicted in Fig 3.12, there was a gradual reduction in common 

roach effective population size that accelerated during the mid-Tarantian to reach a nadir 

of diversity approximately 75000 years ago, coinciding with the beginning of the Würm 

glaciation (70000 – 10000 years ago). The y-axis in Fig 3.12 plots a composite effective 

population size (whereby the log scale represents a population size described by Ne*!, 

where ! = number of generations, if the substitution rate to calibrate the internal 

phylogenetic clock was stipulated per year22, but is presented here as the number of 

                                                
22 However, here ! describes the number of generations elapsed in a million years – given a generation 
time of four years - as the mutation rate was specified per million years in the BEAST analysis.  
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generations per million years (around 250000)). At the median point of the origination of 

the common roach, Ne(f) is estimated to have been around 275000 individuals, which 

plummeted to less than one twentieth of that number (approx. 12500) during the nadir 

before rebounding to a current estimate of around 312000 individuals. However, unless all 

genetic diversity, or the entire range of a species is sampled, all estimates of effective size 

will tend to underestimate the theoretical maximum number of contributing individuals. 

 

To further illustrate the demographic influence of range expansion upon mtDNA variation, 

consider Fig 3.13 where the number of lineages accrued over time is plotted on a 

logarithmic scale against time (forwards in terms of bifurcations/backwards in 

coalescences). Nee et al. (1996) demonstrated that for neutral loci the expected shape of 

the graph for a population undergoing demographic expansion is one that tends to 

asymptote horizontally towards the present, indicating a relative paucity of new lineages 

compared to more ancestral nodes in the tree. The general shape of the graph in Fig 3.13 is 

as described above, however more recent times have seen an increase in branching events 

that could be indicative of relative demographic stability, or the increase in lineages is a 

statistical artifact. 

 

 
Figure 3.13: Lineages through time plot (logarithmic scale on y-axis) showing the 
increase in lineages with time from an ancestral haplotype (blue graph) 
superimposed upon a topographical representation of the roach phylogeny as 
inferred by the ML approach. 
 

The Würm glaciation was characterized by periodic warming events known as Dansgaard-

Oescgher epsiodes (interstadials). As a result of glaciation, sea levels around the world 
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began to decline around 50kya before falling sharply at around 30Kya to the levels found 

at the LGM (around 125m below present day levels (Chappell 1974)). Mean cooling in 

western Europe was in the region of 10oc from the period 85 – 30kya (Genty et al. 2003). 

The last stadial period was a particularly severe Heinrich event 23(H5a) (Hemming 2004), 

sandwiched between two cooler interstadials. Range contractions resulting from these 

glacial fluxes would result in the bottlenecking of lineages that originated from before this 

time. This scenario has been induced to explain significant genetic upheaval in Holarctic 

freshwater fish populations (e.g. the North American blue catfish Ictalurua furcatus 

(Pradhi 2011)). However, interstadials are generally more calm climatic periods and may 

have presented the opportunity for biotic expansion and re-diversification before 

experiencing range contraction once again. This geologically recent period of severe 

climatic flux may explain why so few branches survive from the more ancestral 

haplotypes. 

 

However, since ‘bottoming out’, the data suggest that the roach has undergone rapid 

demographic growth in the ensuing millennia, perhaps as a result of inhabiting significant 

refuges in southern and southeastern Europe, both in terms of effective population sizes (a 

minimum of 12500 effective females is posited here), and perhaps in number (nominal 

locations include the lower Danube, the Black Sea and southern and western Europe). The 

blue catfish is inferred – from D-loop data – to have been reduced to 400000 effective 

females from a pre-decline size of some 1.2 million (Pradhi 2011). The discrepancy with 

roach, in terms of sizes, probably reflects the limited scope of sampling of the common 

roach for D-Loop sequences, and these size estimates, along with other parameters 

inferred from BEAST, may under-estimate the true values. Even so, the expansion of 

‘Clade D3’ may be consistent with an expansion of roach following the retreat of the 

Devensian glacier from the British Isles and the subsequent sundering of the islands from 

the European mainland.  

 

The majority of mtDNA variation within the UK distribution of roach is found in the 

southeastern and southern areas of England. This scenario is expected if this area, which 

once drained into the huge Channel River system prior to the mass denudation of 7500 

years ago, received far more waves of colonizing roach, than areas further away from the 

main European areas of refuge. However, the two most northerly rivers assayed for roach 

(the Tees and Yorkshire Ouse) contained within them either high levels of haplotypic and 

                                                
23 Heinrich events are associated with catastrophic ice breaks and extensive rafting of icebergs in the 
polar and Holarctic regions. 
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nucleotide diversity (Tees) and/or ancestral haplotypes found in mainland Europe and not, 

or rarely found, within the UK (see Figs 3.2, 3.3 and 3.4). Haplotypes D16 and D7 are 

both found in the Tees, southern UK and mainland Europe, whereas the most ancestral UK 

haplotype, D4, is found in the UK only within the Yorkshire Ouse. The latter two 

haplotypes are ancestral and the temporal placing of D16 doubtful. Three explanations can 

explain these results: first, that there has been sufficient movement of roach across Europe, 

or from southern England, to have mixed lineages within individual drainages and 

transported the more ancestral haplotypes to the north and northeast; second, the presence 

of ancestral haplotypes in the north and northeast were deposited by a second, northerly 

wave of colonization after the last ice age; third, the presence of ancestral haplotypes in 

the north is a relic signal of the first wave of colonists, which were subsumed in more 

southerly locations by a second wave containing more diversity. There is no direct 

evidence for the former explanation, apart from a long and mostly anecdotal litany of 

instances of regional and localized fish movements, at least until the 20th century. 

However, the pattern of D-loop diversity observed within the UK population of the 

grayling is similar to that observed in the roach, whereby most diversity was observed in 

southern and northeastern drainages, including a number of basal and European haplotypes 

in the north (Dawnay et al. 2011). This parallel patterning of D-loop diversity is consistent 

with the second and third explanations regarding colonizing waves into the UK, at least for 

roach and grayling. 

 

3.4.4 mtDNA as a Utilitarian Marker of Differentiation 

 

The D-loop is a common genetic marker in population genetic and demographic studies 

because it is widely found to be the most variable and mutable of genetic markers, making 

it a very useful tool for use in intraspecific studies of species with shallow phylogenetic 

origins. The locus has been shown to possess a mutation rate up to an order of magnitude 

greater than nuclear coding sequences within fishes (Meyer 1993). D-loop variability has 

been found within teleosts, including the cyprinids (e.g. the rosy bitterling Rhodeus 

ocellatus (Kawamura et al. 2001), Barbus spp (Dimmick et al. 2001), the Distoechodon 

genus (Liu 2002) and the vimba (Hänfling et al. 2009). 

 

In the present study of roach, although the mean number of screened individuals per 

unique haplotype was lower for the cytochrome b locus (425bp) over the D-loop (634bp), 

the D-loop uncovered a more complex genealogy than the cytochrome b survey, and 
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almost all of the 98 roach surveyed for cytb were bearers of the most common haplotype 

(89 (90.8%) as opposed to just 396/564 (70.2%) of roach screened for the D-loop). 

Contrast these data with the limited set of concatenated sequences in which 30/49 roach 

bore CON1 (61.2%). There is a clear positive relationship between an increase in sequence 

information with sampling proficiency and sampling range. However, sampling 

effectiveness does not only depend upon sampling all demes or populations, which may be 

a waste of effort, but also depends upon recent demographic histories and coalescent times 

(Wakeley 2008). Therefore, it is perhaps more prudent to increase the information content 

of the locus in question, rather than increase sampling density or proficiency at any 

particular site. With this in mind, almost any variable marker will have some utility at 

some temporal or spatial level of analysis. For example, a small fragment of the 

cytochrome b locus (307bp) was proven highly informative in assessing population 

structuring within and among populations of the economically important percid Channa 

marulis of Indian rivers systems (Habib et al. 2011). 

 

One major complication of utilizing mtDNA as a genetic marker is that it may not be a 

suitably neutral marker – that is to say that the distribution of haplotypes may be 

influenced by natural selection. If so, this may impact all studies of phylogeography from 

which inferences are based upon an assumption of strict neutrality. Ballard and colleagues 

(2007) found that mtDNA sequence variation in genes coding for subunits of the 

cytochrome oxidase c protein co-varied in response to life-history traits (egg size, 

fecundity, etc) within the fruit fly Drosophila simulans. A similar linkage of mtDNA 

selection with life-history characteristics was observed for the cytochrome b locus in 

fringillid songbirds (Rottenberg 2007). This study found a close association between 

increased longevity and cytochrome b evolution that minimized the production of 

senescence-inducing free radical species of oxygen. Variation of the NADH6 locus in 

domestic horses Equus caballus was found to vary with altitude, with both directional and 

non-directional selection implicated (Ning et al. 2010). Altitude has also apparently played 

a significant role in apportioning variation in mtDNA sequences within a wide range 

number of species, e.g. cytochrome b variation among Peromyscus deer mice populations 

of varying altitudes is largely determined by purifying selection (Gering et al. 2009).  

 

Two of the cytochrome b haplotypes found within the UK roach population each have a 

single, distinct non-synonymous nucleotide change: “UK” – an isoleucine has substituted a 

valine residue; and “KenSo” – an alanine has replaced a threonine. The former substitution 
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may have a severe impact24 upon the equilibrium constant of the cytochrome b molecule, 

which may affect mitochondrial efficiency (George & Blieck 2011). Multiple authors have 

postulated adaptive changes within the cytochrome b locus for a range of taxa, including 

freshwater fishes (Moyer et al. 2005). For a great many of these studies, climate is linked 

to adaptive functionality of the mitochondrial loci under study (e.g. Ruiz-Pesini 2004). 

Foote et al.’s 2010 study of whole mitochondrial genome diversity within and among pods 

of killer whales (Orcina orca) also uncovered significant non-synonymous amino acid 

changes in each of two different ecotypes, suggestive of variant functionality. Ecological 

co-variance with mtDNA haplotype was also found among populations of Anolis lizards 

inhabiting similar ecotypes in the Lesser Antilles (Malhotra & Thorpe 1994).  

 

However, many of these studies in which directional selection was inferred among species 

may be alternately explained by a combination of structural constraints and purifying 

selection (Ingman & Gyllensten 2007). Bazin & colleagues (2006) noted the non-

appearance of a population size effect when the within-species variation of nuclear and 

mitochondrial sequences were compared among 1600+ species of animal, explaining this 

disparity in variation (average mtDNA diversity was similar across taxa, whereas nDNA 

diversity was greater in abundant taxa) by invocation of widespread selective sweeps of 

mitochondrial genomes. It is becoming increasingly clear, therefore, that functional genes 

within the mitochondrial genome may be under significant selection pressure - or have 

been so in the recent or distant past  - such that an imprint of selection may be present 

within extant patterns of haplotype distribution, perhaps superimposed upon similar 

patterns derived from other sources (e.g. demographic history) (Galtier et al. 2009).  

 

The D-loop may also be influenced by selection, either directly or through genetic 

hitchhiking (genetic draft), by virtue of its linkage to all other coding genes in the 

mitochondrial genome and an absence of mitochondrial recombination. D-loop diversity 

has been observed to co-vary with environmental factors in some published studies, e.g. 

D-loop diversity in the white-toothed shrew Crocidura russula declines with altitude 

(Ehinger et al. 2002). In this study, a regression of D-loop and cytochrome b diversities 

with elevation above sea level for each of the sampling sites (Fig 3.14) suggest that there 

is some non-random relationship between D-loop haplotypic diversity and altitude (r = 

0.360, 2-tailed p-value = 0.065), but none whatsoever for the cytochrome b data. The 

relationship is also present, but very slight and insignificant, for nucleotide diversity as 

                                                
24 P < 0.01 that the mutation occurred through chance alone (from a cursory analysis of a shallow 
cytochrome b phylogeny within the roaches, implementing a ML approach to detecting significant non-
synonymous amino acid changes in TreeSaap (Wooley et al. 2003)). 
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well (r = 0.236, 2-tailed p-value = 0.236). These data alone cannot differentiate among the 

following hypotheses that may account for the increase in D-loop diversity with altitude: 

1) Different D-loop haplotypes are increasing in frequency due to genetic draft whereupon 

the D-loop is hitchhiking with another functional gene. The nature of D-loop mutation 

rates may inevitably lead to different D-loop haplotypes being drafted for the same 

mtDNA functional mutation; 2) D-loop haplotypes - or their linked neighboring loci - are 

part of an ongoing frequency-dependent process; 3) The increase in diversity with altitude 

is due to an increase in environmental heterogeneity with distance upstream, whose 

populations are more susceptible to bottlenecks and lineage sorting of mitochondrial 

genomes; 4) Non-equilibrium effects due to a relative reduction of immigration in 

upstream populations enabling mutations to persist when asymmetric migration rates are 

high; or, 5) Life-history effects of differential age-structured populations.  

 

It has been suggested that roach in the upper reaches of UK streams are larger, older and 

fewer in number than in populations located more downstream (S. Axford pers comm). 

Female roach do show variation in life-history characteristics, at least in differing climates 

in Norway (Vøllestad & L’Abée-Lund 1990). Those roach found furthest north grew more 

slowly (5.6mm yr-1 in the most northerly site) with lowest fecundity and lowest 

gonadosomatic index (GSI) and the production of larger eggs, although no increase in 

body size was observed (in fact the reverse – an increase in fecundity with length – was 

recorded). The authors suggest that the data support a bet-hedging model of life-history 

evolution. Similar expectations may be met for roach in the upper reaches of rivers. 

Following on from Gillespie’s analysis of reproductive variance and fitness (1974), Shpak 

(2005) showed that for metapopulations with few demes and an island model of 

population structure, a reproductive strategy in which both the mean and the variance of 

offspring production is low relative to the rest of the population would be favored in 

demes that experience little immigration. 

 
It must be noted that many of the above hypotheses are not necessarily mutually exclusive 

and may be acting in tandem. However, traditional experimental, field and further genetic 

analyses may test hypotheses 4 and 5. Moreover, more extensive geographic surveys 

conducted with multiple nuclear and mitochondrial loci at greater sequence/locus 

resolution may untangle hypotheses 1-3.  
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Figure 3.14: Relationship of mtDNA diversity (D-loop) and altitude (elevation above 
sea level (metres)) in roach. Blue diamonds = haplotypic diversity; red stars = 
nucleotide diversity. 
 

Regardless of the potential causative factors at play, the actual level of divergence between 

upstream and downstream populations within rivers was not found to be statistically 

significant (as opposed to some within river-system divergences), suggesting that mtDNA 

is limited in its scope to determine fine-scale differentiation within rivers themselves, at 

least at the sampling resolution employed herein. Therefore this subject shall be revisited 

in the next chapter by employing genetic markers more attuned for scales of high 

geographic resolution. 

 

Generally, however, the progression that has been made in expediting nucleotide 

sequencing at decreasing costs, indicates that soon whole mitochondrial genomes will be 

made available for comparison between individuals, demes and species on a large scale 

(Carr and Marshall 2008), and such endeavors have begun (e.g. in killer whales Orcinus 

orca (Morin et al. 2010)). The future of population screening based upon mtDNA 

variation will inevitably go down this holistic route and will enable a more robust 

examination of evolutionary and demographic hypotheses.  

 
 



 

 

135 

Appendix A 
A.1 Nucleotide Sequences 

A.1.1: D-Loop Nucleotide Sequences (5’ – 3’) 
 
D1  GTTAGTACAT ATATATGTAT TATCACCATT CATTTATATT AACCTAAAAG CAAGTACTAA CGTTCAAGAC GTACATAAAG CAAATTGTTA AACTCAGAA ATATTTTATT TTAACTTAAG 
D2  .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... ........G. 
D3  .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D4  .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D5  .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D6  .......... .......... .......... .......... .......... .......... .......... .........A .......... ......... .......... .......... 
D7  .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D8  .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D9  .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D10 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D11 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D12 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D13 .......... .......... .......... .......... .......... ..G....... .......... .......... .......... ......... .......... .......... 
D14 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D15 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... ........G. 
D16 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D17 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D18 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D19 .......... .......... .......... .......C.. .......... .......... .......... .......... .......... ......A.. .......... .......... 
D20 .......... .......... .......... .......C.. .......... .......... .......... .......... .......... ......A.. .......... .......... 
D21 .......... .......... .......... .......C.. .......... .......... .......... .......... .......... ......A.. .......... .......... 
D22 .......... .......... .......... .......C.. .......... .......... .......... .......... .......... ......A.. .......... .......... 
D23 .......... .......... .......... .......C.. .......... .......... .......... .......... .......... ......A.. .......... .......... 
D24 .......... .......... .......... .......C.. .......... .......... .......... .......... .......... ......A.. .......... .......... 
D25 .......... .......... .......... .......C.. .......... .......... .......... .......... .......... ......A.. .......... .......... 
D26 .......... .......... .......... .......C.. .......... .......... .......... .......... .......... ......A.. .......... .......... 
D27 .......... .......... .......... .......C.. .......... .......... .......... .......... .......... ......A.. .......... .......... 
D28 .......... .......... .......... .......C.. .......... .......... .......... .......... .......... ......A.. .......... .......... 
D29 .......... .......... .......... .......C.. .......... .......... .......... .......... .......... ......A.. .......... .......... 
D30 .......... .......... .......... .......C.. .......... .......... .......... .......... .......... ......A.. .......... .......... 
D31 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
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D1  GTTAGTACAT ATATATGTAT TATCACCATT CATTTATATT AACCTAAAAG CAAGTACTAA CGTTCAAGAC GTACATAAAG CAAATTGTTA AACTCAGAA ATATTTTATT TTAACTTAAG 
D32 .......... .......... .......... .......... .......... .......... .......... .......... .......... ...C..... .......... .......... 
D33 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D34 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D35 .......... .......... .......... .......... .......... .......... ...C...... .......... .......... ......... .......... .......... 
D36 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D37 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D38 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D39 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
D40 .......... .......... .......... .......... .......... .......... .......... .......... .......... ......... .......... .......... 
 
D1  AAATAGATAA TTCCCCTAGA TATGGATCTC ACATTTTTCC TCGAAATATA CAACTAAGAT TTAGTTTAAT CATATTAATG TAGTAAGAGA CCACCAACCG GTTCATATAA GGCATATTAT 
D2  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D3  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D4  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D5  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D6  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D7  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D8  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D9  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D10 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D11 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D12 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D13 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D14 .......... .......... .......... .A........ .......... .......... .......... .......... .......... .......... .......... .......... 
D15 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D16 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D17 .......... .......... .......... .......... .....T.... .......... .......... .......... .......... .......... .......... .......... 
D18 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D19 .......... .......... ......C... ....G..... .T......C. .......... .........C .......... .......... .......... .......... .......... 
D20 .......... .......... ......C... ....G..... .T......C. .......... .........C .......... .......... .......... .......... .......... 
D21 .......... .......... ......C... ....G..... .T......C. .......... .........C .......... .......... .......... .......... .......... 
D22 .......... .......... ......C... ....G..... .T......C. .......... .......... .......... .......... .......... .......... .......... 
D23 .......... .......... ......C... ....G..... .T......C. .......... .........C T......... .......... .......... .......... .......... 
D24 .......... .......... ......C... ....G..... .T......C. .......... .........C .......... .......... .......... .......... .......... 
D25 .......... .......... ......C... ....G..... .T......C. .......... .......... .......... .......... .......... .......... .......... 
D26 .......... .......... ......C... ....G..... .T......C. .......... .........C .......... .......... .......... .......... .......... 
D27 .......... .......... ......C... ....G..... .T......C. .......... .......... .......... .......... .......... .......... .......... 
D28 .......... .......... ......C... ....G..... .T......C. .......... .......... .......... .......... .......... .......... .......... 
D29 .......... .......... ......C... ....G..... .T......C. .......... .........C .......... .......... .......... .......... .......... 
D30 .......... .......... ......C... ....G..... .T......C. .......... .......... .......... .......... .......... .......... .......... 
D31 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D32 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D33 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
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D1  AAATAGATAA TTCCCCTAGA TATGGATCTC ACATTTTTCC TCGAAATATA CAACTAAGAT TTAGTTTAAT CATATTAATG TAGTAAGAGA CCACCAACCG GTTCATATAA GGCATATTAT 
D34 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D35 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D36 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D37 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D38 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D39 .......... .......... .......... .A........ .......... .......... .......... .......... .......... .......... .......... .......... 
D40 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
 
D1  TAATGATAGA ATCAGGGACA CAACACTAAG ATACGGTATA TTATGAATTA TTCCTTGTAT CTGGTTCTCC TGTCACGTAC AGACCTGTGA AGAATCCATC CTAATTTATT TTCCTTGCAT 
D2  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D3  .......... .......... .......... .......... .......... .......... .......... .......... .....C.... .......... .......... .......... 
D4  .......... .......... .......... .......... .......... .......... .......... .......... ....T.C... .......... .......... .......... 
D5  .......... .......... .......... .......... .......... .......... .......... .......... .....C.... .......... .......... .......... 
D6  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D7  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D8  .......... .......... .......... .......... .......... .......... .......... .......... .....C.... .......... .......... .......... 
D9  .......... .......... .......... .......... .......... .......... .......... .......... ......C... .......... .......... .......... 
D10 .......... .......... .......... .......... .......... .......... .......... .......... ......C... .......... .......... .......... 
D11 .......... .......... .......... .......... .......... .......... .......... .......... .....C.... .......... .......... .......... 
D12 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D13 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D14 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D15 .......... .......... .......... .......... .......... .......... .......... .......... .....C.... .......... .......... .......... 
D16 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D17 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D18 .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... .......... 
D19 .......... .......... .......... .......... .......... .......... .......... .......... ....T.C... .......... .......... .......... 
D20 .......... .......... .......... .......... .......... .......... .......... .......... ....T.C... .......... .......... .......... 
D21 .......... .......... .......... .......... .......... .......... .......... .......... ....T.C... .......... .......... .......... 
D22 .......... .......... .......... .......... .......... .......... .......... .......... ....T.C... .......... .......... .......... 
D23 .......... .......... .......... .......... .......... .......... .......... .......... ....T.C... .......... .......... .......... 
D24 .......... .......... .......... .......... .......... .......... .......... .......... ....T.C... .......... .......... .......... 
D25 .......... .......... .......... .......... .......... .......... .......... .......... ....T.C... .......... .......... .......... 
D26 .......... .......... .......... .......... .......... .......... .......... .......... ....T.C... .......... .......... .......... 
D27 .......... .......... .......... .......... .......... .......... .......... .......... ....T.C... .A........ .......... .......... 
D28 .......... .......... .......... .......... .......... .......... .......... .......... ....T.C... .......... .......... .......... 
D29 .......... .......... .......... .......... .......... .......... .......... .......... ....T.C... .......... .......... .......... 
D30 .......... .......... .......... .......... .......... .......... .......... .......... ....T.C... .......... .......... .......... 
D31 .......... .......... .......... .......... .......... .......... .......... .......... ......C... .......... .......... .......... 
D32 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D33 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D34 .......... .......... .......... .......... .......... .......... .......... .......... ......C... .......... .......... .......... 
D35 .......... .......... .......... .......... .......... .......... .......... .......... ......C... .......... .......... .......... 
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D1  TAATGATAGA ATCAGGGACA CAACACTAAG ATACGGTATA TTATGAATTA TTCCTTGTAT CTGGTTCTCC TGTCACGTAC AGACCTGTGA AGAATCCATC CTAATTTATT TTCCTTGCAT 
D36 .......... .......... .......... .......... .......... .......... .......... .......... ......A... .......... .......... .......... 
D37 .......... .......... .......... .......... .......... .......... .......... .......... ....T.C... .......... .......... .......... 
D38 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D39 .......... .......... .......... .......... .......... .......... .......... .......... ......C... .......... .......... .......... 
D40 .......... .......... .......... .......... .......... .......... .......... .......... ....T..... .......... .......... .......... 
 
D1  CCGGCTACTG GTGTAATTAC ATACTCCGCA TTACCCCACA TGCCGGGCAT TCTTTTATAT GCATAAGGTT CTTTTTTCTG GTTTCCTTTC ACTTTGCATC TCAGAGTGCA GGCACAATTA 
D2  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D3  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D4  .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... 
D5  .......... .......... .......... .......... .......... .......... .....G.... .......... .......... .......... .......... .......... 
D6  .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D7  .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... 
D8  ........A. .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D9  .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... 
D10 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... 
D11 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D12 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... C......... .......... 
D13 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D14 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D15 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D16 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D17 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D18 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D19 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......C.. 
D20 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... 
D21 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......C.. 
D22 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... 
D23 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... ...G...C.. 
D24 ........A. .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... 
D25 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... ...G...C.. 
D26 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... ...G...C.. 
D27 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......C.. 
D28 .......... .......... .......... .......... .......... .......... .....G.... .......... .......... .....A.... .......... .......C.. 
D29 .......... .......... .......... .......... .......... .......... .....G.... .......... .......... .....A.... .......... .......... 
D30 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......C.. 
D31 .......A.. .......... .......... .......... .......... .......... .....G.... .......... .......... .....A.... .......... .......... 
D32 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... 
D33 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... 
D34 .......... .......... .......... .......... .......... .......... .....G.... .......... .......... .......... .......... .......... 
D35 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... 
D36 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... 
D37 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... 
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D1  CCGGCTACTG GTGTAATTAC ATACTCCGCA TTACCCCACA TGCCGGGCAT TCTTTTATAT GCATAAGGTT CTTTTTTCTG GTTTCCTTTC ACTTTGCATC TCAGAGTGCA GGCACAATTA 
D38 .......... .......... .......... .......... .......... .......... .....G.... .......... .......... .....A.... .......... .......... 
D39 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... 
D40 .......... .......... .......... .......... .......... .......... .......... .......... .......... .....A.... .......... .......... 
 

D1  ATATATCAA GGTAGTATAT TTCCTTGCAA GAGTTAAAGT TGGTTCATTA TTAAAAGACA TAACTTAAGA ATTACATATT ATTTTATCAA GTGCATAATA CATTCATCTC TTCTTCCAAC 
D2  ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D3  ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D4  ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D5  ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D6  ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D7  ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D8  ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D9  ......... ...G...... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D10 ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D11 ......... .......... .......... .......... C......... .......... .......... .......... .......... .......... .......... .......... 
D12 ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D13 ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D14 ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D15 ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D16 ......... .......... .......... .......... C......... .......... .......... .......... .......... .......... .......... .......... 
D17 ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D18 ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D19 ......... ...G...C.. .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D20 ......... ...G...C.. .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D21 ......... ...G...C.. .......... .......... .......... ..G....... .......... .......... .......... .......... .......... .......... 
D22 ......... ...G...C.. .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D23 ......... ...G...C.. .......... .......... .......... ..G....... .......... .......... .......... .......... .......... .......... 
D24 ......... ...G...C.. .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D25 ......... ...G...C.. .......... .......... .......... ..G....... .......... .......... .......... .......... .......... .......... 
D26 ......... ...G...C.. .......... .......... .......... ..G....... .......... .......... .......... .......... .......... .......... 
D27 ......... ...G...C.. .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D28 ......... ...G...C.. .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D29 ......... ...G...C.. .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D30 ......... ...G...C.. .......... .......... .......... ..G....... .......... .......... .......... .......... .......... .......... 
D31 ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D32 ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D33 ......... ...G...... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D34 ......... ...G...... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D35 ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D36 ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D37 ......... ...G...... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D38 ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
D39 ......... ...G...... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
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D1  ATATATCAA GGTAGTATAT TTCCTTGCAA GAGTTAAAGT TGGTTCATTA TTAAAAGACA TAACTTAAGA ATTACATATT ATTTTATCAA GTGCATAATA CATTCATCTC TTCTTCCAAC 
D40 ......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 
 

D1  TTACCCCTAT ATATATGCCC CCCCTTTTGG CTTTTG 
D2  .......... .......... .......... ...... 
D3  .......... .......... .......... ...... 
D4  .......... .......... .......... ...... 
D5  .......... .......... .......... ...... 
D6  .......... .......... .......... ...... 
D7  .......... .......... .......... ...... 
D8  .......... .......... .......... ...... 
D9  .......... .......... .......... ...... 
D10 .......... .......... .......... ...... 
D11 .......... .......... .......... ...... 
D12 .......... .......... .......... ...... 
D13 .......... .......... .......... ...... 
D14 .......... .......... .......... ...... 
D15 .......... .......... .......... ...... 
D16 .......... .......... .......... ...... 
D17 .......... .......... .......... ...... 
D18 .......... .......... .......... ...... 
D19 .......... .......... .......... ...... 
D20 .......... .......... .......... ...... 
D21 .......... .......... .......... ...... 
D22 .......... .......... .......... ...... 
D23 .......... .......... .......... ...... 
D24 .......... .......... .......... ...... 
D25 .......... .......... .......... ...... 
D26 .......... .......... .......... ...... 
D27 .......... .......... .......... ...... 
D28 .......... .......... .......... ...... 
D29 .......... .......... .......... ...... 
D30 .......... .......... .......... ...... 
D31 .......... .......... .......... ...... 
D32 .......... .......... .......... ...... 
D33 .......... .......... .......... ...... 
D34 .......... .......... .......... ...... 
D35 .......... .......... .......... ...... 
D36 .......... .......... .......... ...... 
D37 .......... .......... .......... ...... 
D38 .......... .......... .......... ...... 
D39 .......... .......... .......... ...... 
D40 .......... .......... .......... ...... 
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A.1.2: Cytochrome B Nucleotide Sequences (5’ – 3’) 

 
NEW    ATG GCA AGC CTA CGA AAA ACC CAT CCA CTA ATA AAA ATC GCT AAT GAC GCG CTA GTC GAC CTT CCG ACA CCA TCT AAC ATC TCA GCA CTA TGA AAC TTC 
UKSS   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
UK     ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
KenSo  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
UKTh   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
UKTe   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
 
NEW    GGG TCC CTG CTA GGG TTA TGT TTA ATT ACC CAA ATC CTG ACA GGA CTA TTC TTA GCT ATA CAC TAT ACC TCT GAC ATC TCA ACC GCG TTT TCA TCG GTG 
UKSS   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
UK     ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
KenSo  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
UKTh   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
UKTe   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
 
NEW    ACC CAC ATC TGC CGA GAC GTC AAC TAC GGC TGA CTT ATC CGA AAC CTA CAT GCT AAT GGA GCA TCC TTC TTC TTC ATC TGT CTT TAT ATA CAT ATC GCA 
UKSS   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ..G ... ... ... ... ... ... ... ... ... ... ... ... 
UK     ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
KenSo  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
UKTh   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
UKTe   ... ..T ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
 
NEW    CGA GGC CTA TAT TAC GGG TCA TAC CTT TAT AAG GAA ACC TGA AAC ATT GGT GTG GTT CTA TTC CTC CTG GTT ATA ATG ACA GCC TTC GTT GGC TAC GTA 
UKSS   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
UK     ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... A.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
KenSo  ... ... ... ... ... ... ... ... ... ... ... ... G.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
UKTh   ... ... ... ... ... ... ... ... ... ... ..A ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
UKTe   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
 
NEW    CTA CCA TGA GGA CAA ATA TCA TTC TGA GG 
UKSS   ... ... ... ... ... ... ... ... ... .. 
UK     ... ... ... ... ... ... ... ... ... .. 
KenSo  ... ... ... ... ... ... ... ... ... .. 
UKTh   ... ... ... ... ... ... ... ... ... .. 
UKTe   ... ... ... ... ... ... ... ... ... .. 
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A.2 European Roach Data 
 

A.2.1: Table of sampling information for European roach samples 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
U = unknown. 

 
 
 
 

Sampling Location Code Co-ordinates Sampling 
Date Latitude Longitude 

Lake Kottegat, Denmark DENA U U 2008 
Unknown Lake, Denmark DENB U U 2008 
Sude de Lyon, River Rhône, France RH 45.590000 4.775556 2009 
River L'Ancre, Saone, France SA 50.074444 2.630278 U 
Lake Höytiäinen, Finland FIN 62.666667 29.500000 2008 
River Isar, Danube, Germany ID 48.848610 12.985560 20/08/2004 
Altmühl, Danube, Germany AD 49.318056 10.707778 06/09/2004 
Amper Canal, Danube, Germany ACD 48.527500 11.880556 20/07/2006 
River Saale, Main, Germany SM U U 19/09/2005 
River Wern, Main, Germany WM 50.059444 10.054444 14/09/2005 
River Main, Germany M 50.073611 11.041944 17/11/2004 
River Elbe ELB U U U 
Eger Stream, Elbe EES U U 22/09/2007 
Sächsische Saale nr Förbau, Elbe, Germany ESSF U U 26/09/2007 
Selb Creek, Elbe, Germany ESC U U 22/09/2007 
Selbitz, Elbe, Germany ES U U 23/10/2007 
Sächsische Saale nr Joditz, Elbe, Germany ESSJ U U 23/10/2007 
Caspian Sea, off Kazhakstan CAS 38.245015 46.970219 U 
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A.2.2: Table of D-loop haplotype counts for all European sampling locations (see A.3.1 for location code details). 

Pop 
Haplotype 

!"# !$# !%# !&# !'# !(# !)# !*# !+# !",# !""# !"$# !"%# !"&# !"'# !"(# !")# !"*# !"+# !$,#
DENA 3   2                 
DENB    1 2                 
RH 7      22      1   3     
SA 5 1  1      1           
FIN 4   1                 
ID 8  4 1     3            
AD 4      1   1           
ACD 1                    
SM 12  3 2     4            
WM 3   1      1           
M 5  3      1            
ELB     1                 
EES    2      1 1           
ESSF 1   1                 
ESC 1                     
ES 2  1                  
ESSJ 3                      
CAS                   2 10 
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A.2.2: Continued. 

Pop 
Haplotype 

!"#$ !""$ !"%$ !"&$ !"'$ !"($ !")$ !"*$ !"+$ !%,$ !%#$ !%"$ !%%$ !%&$ !%'$ !%($ !%)$ !%*$ !%+$ !&,$
DENA                     
DENB                     
RH            1         
SA                     
FIN           1          
ID             1 1 1 1     
AD                 1    
ACD                     
SM                   1  
WM             1    1 1   
M             1  1      
ELB                    1 
EES                     
ESSF                     
ESC                     
ES                     
ESSJ                     
CAS 2 2 1 2 1 1 1 1 3 1           
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A.2.3: Table of D-loop diversity metrics for all European sampling 
locations.  

Sampling Location Hap diversity Nuc diversity 
h s.d. ! s.d. 

Lake Kottegat, Denmark 0.600 0.175 0.060 0.018 
Unknown Lake, Denmark 0.667 0.314 0.089 0.042 
Sude de Lyon, River Rhône, France 0.545 0.085 0.025 0.005 
River L'Ancre, Saone, France 0.643 0.184 0.045 0.016 
Lake Höytiäinen, Finland 0.600 0.215 0.069 0.025 
River Isar, Danube, Germany 0.805 0.07 0.067 0.009 
Altmühl, Danube, Germany 0.714 0.181 0.054 0.019 
Amper Canal, Danube, Germany NC* NC NC NC 
River Saale, Main, Germany 0.671 0.091 0.060 0.010 
River Wern, Main, Germany 0.893 0.111 0.073 0.011 
River Main, Germany 0.764 0.107 0.057 0.014 
River Elbe 1.000 0.500 0.033 0.017 
Eger Stream, Elbe 0.833 0.222 0.083 0.024 
Sächsische Saale nr Förbau, Elbe, Germany 1.000 0.500 0.100 0.050 
Selb Creek, Elbe, Germany NC NC NC NC 
Selbitz, Elbe, Germany 0.667 0.314 0.022 0.011 
Sächsische Saale nr Joditz, Elbe, Germany 0 0 0 0 
Caspian Sea, off Kazhakstan 0.852 0.059 0.063 0.009 
! 11.254 3.128 0.901 0.278 
µ 0.703 0.196 0.056 0.017 

*NC = Not calculated. 
 
!
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A.3 Roach Clade P-Distances 
 

A.3.1: Table of p-distances between all discovered D-loop haplotypes in all European and UK common roach samples. 
 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D31 D32 D33 D34 D35 D36 D37 D38 D39 

D1                             

D2 0.002                           

D3 0.002 0.003                          

D4 0.005 0.006 0.006                         

D5 0.003 0.005 0.002 0.008                        

D6 0.002 0.003 0.003 0.006 0.005                       

D7 0.002 0.003 0.003 0.003 0.005 0.003                      

D8 0.003 0.005 0.002 0.008 0.003 0.005 0.005                     

D9 0.005 0.006 0.006 0.003 0.008 0.006 0.003 0.008                    

D10 0.003 0.005 0.005 0.002 0.006 0.005 0.002 0.006 0.002                   

D11 0.003 0.005 0.002 0.008 0.003 0.005 0.005 0.003 0.008 0.006                  

D12 0.002 0.003 0.003 0.006 0.005 0.003 0.003 0.005 0.006 0.005 0.005                 

D13 0.002 0.003 0.003 0.006 0.005 0.003 0.003 0.005 0.006 0.005 0.005 0.003                

D14 0.002 0.003 0.003 0.006 0.005 0.003 0.003 0.005 0.006 0.005 0.005 0.003 0.003               

D15 0.003 0.002 0.002 0.008 0.003 0.005 0.005 0.003 0.008 0.006 0.003 0.005 0.005 0.005              

D16 0.002 0.003 0.003 0.006 0.005 0.003 0.003 0.005 0.006 0.005 0.002 0.003 0.003 0.003 0.005             

D17 0.002 0.003 0.003 0.006 0.005 0.003 0.003 0.005 0.006 0.005 0.005 0.003 0.003 0.003 0.005 0.003            

D18 0.002 0.003 0.002 0.006 0.003 0.003 0.003 0.003 0.006 0.005 0.003 0.003 0.003 0.003 0.003 0.003 0.003           

D31 0.006 0.008 0.008 0.005 0.006 0.008 0.005 0.009 0.005 0.003 0.009 0.008 0.008 0.008 0.009 0.008 0.008 0.008          

D32 0.003 0.005 0.005 0.005 0.006 0.005 0.002 0.006 0.005 0.003 0.006 0.005 0.005 0.005 0.006 0.005 0.005 0.005 0.006         

D33 0.003 0.005 0.005 0.005 0.006 0.005 0.002 0.006 0.002 0.003 0.006 0.005 0.005 0.005 0.006 0.005 0.005 0.005 0.006 0.003        

D34 0.005 0.006 0.006 0.006 0.005 0.006 0.006 0.008 0.003 0.005 0.008 0.006 0.006 0.006 0.008 0.006 0.006 0.006 0.005 0.008 0.005       

D35 0.005 0.006 0.006 0.003 0.008 0.006 0.003 0.008 0.003 0.002 0.008 0.006 0.006 0.006 0.008 0.006 0.006 0.006 0.005 0.005 0.005 0.006      

D36 0.003 0.005 0.005 0.003 0.006 0.005 0.002 0.006 0.003 0.002 0.006 0.005 0.005 0.005 0.006 0.005 0.005 0.005 0.005 0.003 0.003 0.006 0.003     

D37 0.006 0.008 0.008 0.002 0.009 0.008 0.005 0.009 0.002 0.003 0.009 0.008 0.008 0.008 0.009 0.008 0.008 0.008 0.006 0.006 0.003 0.005 0.005 0.005    

D38 0.003 0.005 0.005 0.005 0.003 0.005 0.002 0.006 0.005 0.003 0.006 0.005 0.005 0.005 0.006 0.005 0.005 0.005 0.003 0.003 0.003 0.005 0.005 0.003 0.006   

D39 0.006 0.008 0.008 0.005 0.009 0.008 0.005 0.009 0.002 0.003 0.009 0.008 0.008 0.005 0.009 0.008 0.008 0.008 0.006 0.006 0.003 0.005 0.005 0.005 0.003 0.006  

D40 0.003 0.005 0.005 0.002 0.006 0.005 0.002 0.006 0.005 0.003 0.006 0.005 0.005 0.005 0.006 0.005 0.005 0.005 0.006 0.003 0.003 0.008 0.005 0.003 0.003 0.003 0.006 
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Chapter Four – Within-Population 
Microsatellite DNA Diversity and 
Among-Population Differentiation 
of Roach Within and Between 
Two Historically Connected 
Rivers in the Southeast of 
England 
 
“What should I speake of the fat and sweet salmons, dailie 
taken in this streame, and that in such plenty (after the time of 
the smelt be past) as no river in Europa is able to exceed it. 
What store also of barbells, trouts, cheuins, pearches, smelts, 
breams, roches, daces, gudgings, flounders, shrimps, etc. are 
commonlie to be had herein…this famous riuer complaineth 
commonlie of no want, but the more it looseth at one time, the 
more it yeeldeth at another” – Clergyman and writer William 
Harrison on the bountiful fishery of the Thames – A 
Description of England (1577), quoted in Ackroyd (2009). 
 

4.1 General Introduction 

 

Despite possessing relatively limited levels of nucleotide diversity within the 

mitochondrial genome, the roach exhibits detectable levels of haplotype diversity within 

and among a number of drainages within its UK distribution. However, a single line of 

evidence does not provide a robust conclusion about the distribution of overall levels of 

genetic variation within the United Kingdom, upon which the future evolutionary potential 

of the roach is critically dependent. A second line of evidence can be drawn upon, arising 

from a survey of nuclear variation, to not only bolster hypothesized MUs, but to also 

investigate fine-scale microevolutionary and demographic processes that affect spatially 

proximate populations. It is results from these kinds of genetic surveys upon which 

modern population management methods are becoming increasingly reliant. 

 

The following introductory section will introduce the basic rationale for applying 

population genetic and molecular ecological techniques to the management and 
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conservation of threatened and economically valuable organisms, with an emphasis upon 

freshwater fisheries. The overview will examine in some detail how genetic analyses may 

help determine broad-scale patterns of colonization and re-colonization (e.g. in 

metapopulation systems with source-sink dynamics), midscale patterning of inter-

population gene flow (often allied to the physical environment, e.g. presence or absence of 

barriers to physical dispersal), and even in the elucidation of neighborhood sizes and 

breeding units. Without the use of molecular genetic markers, many of these highly 

informative ecological factors may not be uncovered; or the elucidation of such 

phenomena through traditional experimental means would greatly increase the financial 

overheads of management schemes. This epitome shall also briefly touch upon theoretical 

and methodological issues associated with investigating the fine-scale population genetics 

of a freshwater fish such as the roach. Finally, an overview of the current literature of 

roach population genetics is set out, with a focus on levels of structuring heretofore 

discovered. 

 

4.1.1 Population Structure and Estimates of Inter-Population Migration 

 

The delineation of population structure has myriad applications to pure and applied 

population biology, and to the conservation and management of biological populations, 

including the determination of MUs and studying the effects of habitat fragmentation and 

differential selection regimes (Hauser & Carvalho 2008). The main problems with 

estimates of population structure inferred from data of population allele frequencies (i.e. 

the statistical discrimination of allele frequencies) within species, that are outwardly 

difficult to delineate into phenotypically or geographically distinct populations, are allied 

to issues of statistical power: low power may not detect population structure when it is 

present, whereas too high a discriminative power may infer structure when it is not present 

or when it is negligible (see Palsbøll et al. 2010). Poor sampling schemes may also 

overestimate estimates of population structure (Schwartz & McKelvey 2009). 

Alternatively, it is possible to both define and measure population structure as resulting 

from a reduction - or cessation - of inter-population gene flow. As Palsbøll and colleagues 

(2010) point out, dispersal may also be inferred from population genetic data. 

Differentiating between recent dispersal and long-term migration (gene flow) provide two 

useful and complementary metrics of inter-population transfer (one measures the ability or 

efficacy to disperse to another location, whilst the other measures the ability or efficacy to 

disperse and reproduce over longer ecologically and evolutionarily significant 
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timeframes), whose measurement and application have differing consequences for 

management and conservation concerns. Confusingly, however, the term ‘dispersal’ is 

used as a blanket term in the literature to cover most aspects of geographical connectivity 

among populations, including those instances in which fecund adults assimilate their gene 

frequencies into the recipient gene pool via in situ mating with resident individuals; and 

first-generation migrants, who may or may not successfully interbreed with conspecifics in 

a recipient deme. Further, gene flow may also be mediated by passive germ cell and larval 

‘dispersal’, in addition to the translocation of fecund adult individuals (e.g. Peterka et al. 

2004).  

 

Once population structure has been inferred, one may then embark upon estimating both 

the extent and rate of effective dispersal, as well as identifying recent immigrants (Davies 

et al. 1999), that is an important determinant of much of the spatial distribution of demes, 

individuals and genes (Broquet and Petit 2009). The oldest method of determining 

migration rates from genetic data derives from Wright’s F-statistics, in which Nm (the 

local immigration rate) is calculated (Wang and Whitlock 2003) (see Chapter Two). The 

current literature favours the ‘population-based’ methods of assignment (Paetkau et al. 

1995; Rannala & Mountain 1997; Wilson & Rannala 2003; Faubet & Gaggiotti 2008; and 

Broquet and Petit 2009) and coalescent and likelihood-based (Beerli & Felsenstein 2001; 

Nielsen & Wakeley 2001) inferences of population structure. Once the extent to which 

populations are sub-divided is determined, and the direction of gene flow and the degree to 

which populations exchange genetic material is inferred, how is such information 

assimilated within a management context? 

 

4.1.2 The Incorporation of High Resolution Population Genetic Data as a 
Valuable Management Tool 
 

The issue of the concept of ‘stocks’ or ‘populations’ in population biology has been dealt 

with in Chapter Two. Following Ihssen et al.’s formulation of a ‘stock’ (1981), a 

population should be interpreted as an interbreeding aggregate of individuals that 

possesses some cohesive genetic and spatial tractability. Therefore, this group of 

individuals may still exchange effective migrants at a rate up to some level at which both 

the spatial and genetic cohesiveness of the exchanging populations breaks down into 

homogeneity (following Palsbøll et al.’s (2010) second definition of population 

structuring). The significance of whether species exist, as a single homogeneous, 
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panmictic collection of individuals or as a number of sub-divided, panmictic populations, 

is significant for both management and conservation concerns. 

 

Single large populations are less likely to go extinct in the face of unpredictable, stochastic 

environmental and demographic factors, whereas the risk for equally large but fragmented 

population is considerably greater, a theoretical proposition (MacArthur & Wilson 1967) 

supported empirically across a range of taxa (Reed 2004), including freshwater fish (e.g. 

Fagan et al. 2002, but see below for a detailed exposition). In small or fragmented 

populations, the related genetic processes of genetic drift and population inbreeding are 

greatly increased in effectiveness such that together these processes work in synergism so 

that they become detrimental to a population’s chance of continued, temporal persistence 

(Franklin 1980; Lande 1994; and O’Grady et al. 2006). However, the risk of inbreeding in 

large panmictic populations is negligible in the face of recurrent mutation or migration, 

and localized if it does occur25. Sampling effects in small populations may even fix 

severely detrimental alleles through random fixation despite the presence of directional 

selection against any negative phenotypic effect (Lande 1988). 

 

Low levels of genetic diversity within a population substantially increase the risk of its 

extinction (Lande 1988). Low census numbers contribute to extinction risk through an 

increased susceptibility to stochastic environmental catastrophes, and because of a 

reduction in the number of successful matings26. Small isolated populations also are more 

susceptible to attack by opportunistic pathogens and parasites: reduction in the 

heterozygosity of the MHC complex severely restricts the number of antigen proteins 

available for expression on the cell surfaces of white blood cells, which in turn increases 

the likelihood that some bacterium or virus will overcome this line of defense. Whilst it is 

true that infectious diseases spread more efficiently in large, dense populations, natural 

selection also is more effective in such populations and so will often result in long-term 

population persistence. Small populations on the other hand, even if alleles for resistance 

are present, may be susceptible to the strong influence of genetic drift increasing 

extinction risk even in face of selection for resistance (the selection coefficient needs to be 

greater than the chance of a random allele reaching fixation, i.e. s >> 1/2N in a diploid 

population). If populations become so small as to be susceptible to the effects of 

                                                
25 The time for the fixation of any allele is much greater (it is a product of the inverse of two times the 
population size, for nuclear alleles in diploid genomes) 
 
26 Sexually mature adults may never locate one another during the breeding season(s). Also, reduced 
census numbers increase the possibility of a reduction in fertility or offspring viability due to inbreeding 
depression. 
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demographic, environmental and genetic stochasticity, then they are said to enter an 

extinction vortex (Gilpin & Soulé 1986; Fagan & Holmes 2006) in which extinction is 

inevitable unless recuperative action is taken. 

 

In small populations the potential for the rejuvenating effect of inter-population migration 

becomes very important (Hoehn et al. 2007). In source-sink metapopulations recurrent 

natural recolonization often compensates for localized extinctions of sub-populations. The 

anthropogenic restitution of gene flow is termed genetic restoration and this is 

implemented when it has become clear that no such natural compensatory dispersal is 

possible. The presence of migration from one population to another may allow populations 

that are undergoing environmental stresses to persist (Kokko & López-Sepulcre 2006). On 

the other hand, if fragmented populations experience little migration, but still contain high 

census sizes in a heterogeneous environmental landscape, then such populations may 

accumulate and retain more genetic diversity, a repository of which provides a benefit for 

the species in future times of environmental uncertainty. In such cases, recent migration, 

either natural (e.g. due to flooding between previously isolated streams or pools) or 

anthropogenic in nature, may erode adaptive differences among populations. This may 

have a detrimental effect on not only the future success of the species as a whole, but on 

the continued success of the local population, as adaptive gene complexes are broken up 

through the interbreeding of indigenous with exogenous individuals (genetic 

introgression). In instances when such translocations or mediated migrations are 

anthropogenic in nature, this is called, with some justification, genetic pollution. 

 

For the above reasons (but see Chapter Two), the primary justification of population 

management is to preserve and protect the diversity of biological populations, in addition 

to securing ecosystem services for human populations and preserving biodiversity for 

posterity from a philosophical and moral standpoint. This manifesto invariably includes 

the preservation of genetic diversity, often hidden and not expressed phenotypically (Le 

Rouzic & Carlborg 2008), both within and among populations. Therefore, genetic methods 

are necessary to uncover this variation, quantify it, qualify it in terms of spatial and 

temporal distribution, and to infer from it processes that are either experimentally 

intractable or financially prohibitive to employ wholesale mark-recapture techniques 

(Lande & Barrowclough 1987; DeYoung & Honeycutt 2005). Population genetic 

information may also inform upon the potential for the future success and longevity of a 

particular population or species  (e.g. in postulating ‘minimal viable populations’, or 
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MVPs, based upon the probability of a population surviving into the future (Gilpin & 

Soulé 1986)). 

 

It is arguable that the most important variable in the current management of populations, 

which has a strong potential influence upon all of the evolutionary and ecological pitfalls 

and processes that may befall a species, is migration and gene flow: the long-term 

dispersal and short-term movements of individuals (Trakhtenbrot et al. 2005). Most 

wildlife management institutions deal with timescales that incorporate generations of 

individuals, and the greatest contributor to genetic variation within populations, and the 

level of structure among populations, at such high-resolution evolutionary scales is 

effective migration. 

 

4.1.3 Threats to Freshwater Fish: Implications for Management 

 

Freshwater fish, along with other organisms found within riverine landscapes, inhabit a 

geometric physical environment that is somewhat at odds with those of terrestrial and 

marine organisms (Fagan 2002; Fagan et al. 2009). Due to the single-dimension27 that 

characterizes the dendritic geometry of river systems, thus imposing directional limits 

upon routes and avenues for inter-demic dispersal, the risks posed to population longevity 

by the destructive effects of habitat fragmentation are greatly increased (Fagan 2002). 

Riverine habitats tend to exhibit a natural heterogeneity that influences biodiversity 

patterning (Fagan 2002; Fagan et al. 2009), such that destruction of habitats will 

exacerbate the ‘natural patchiness’ of the already heterogeneous dendritic environment. 

Habitat destruction, resulting in the loss of suitable communal feeding areas and, more 

fundamentally, optimal spawning sites, is perhaps the greatest long-term threat to the 

persistence of a fishery within a river system. The loss of both feeding areas and spawning 

sites draws the affected species into direct competition with other species that may not 

have been natural competitors previously. A downturn in breeding success will inevitably 

lead to lower rates of recruitment, thus driving down census numbers and increasing the 

susceptibility of these smaller populations to the demographic and genetic problems 

outlined previously. Additionally, where closely related species inhabit similar habitats 

and possess similar spawning preferences, the potential deleterious effect of hybridization 

increases (Rhymer & Simberloff 1996). 

                                                
27 The single dimensionality of river systems is, of course, an oversimplification of reality, but is a 
useful descriptor when couching genetic diversity of riverine organisms, particularly large taxa, in terms 
of their limited dispersal options. 
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The proximity of habitat patches, and by corollary of self-sustaining populations of 

breeding individuals, is an important contributing factor to the occurrence of dispersal 

between populations (Urban and Keitt 2001). In metapopulations, in which some 

populations are considerably more important sources of migrants than others, the cessation 

of migrants may have a potentially drastic impact upon population sustainability (Fagan 

2002). This is particularly the case in river catchments that periodically dry out and in 

which isolated tributaries are repopulated only when the connective downstream waters 

are re-flooded after times of severe drought. However, in demographically well-populated 

species, little is known of the source of migrants over the long term or over a period 

encompassing a few generations, or whether dispersal plays an important role. If long-

distance dispersal (LDD) contributes to a large part of the gene pool of local populations 

(as seems to be the case in many instances (Trakhtenbrot et al. 2005)), then the negative 

effects of significant barriers to dispersal are potentially extremely injurious. Additionally, 

stochastic levels of gene flow may in some periods be catastrophically low and highly 

unpredictable, such that local extinctions may occur without any direct contribution from 

the immediate habitat quality or quantity. The maintenance of an in situ repository of 

population and genetic restitution, that would help local fisheries stocks to recover after 

such events, is of prime importance. Traditionally, the response has been to re-stock from 

elsewhere, but as discussed later this may be a waste of resources that could be put to 

better, more-informed use. 

 

4.1.4 River Networks and Genetic Structuring 

 

By their very nature, river systems limit the potential exchange of reproductive individuals 

among populations via facilitated dispersal along a unidimensional transect, and this 

should theoretically translate into potentially greater levels of genetic structuring between 

distally-located populations than that found in traditional two-dimensional environments 

such as the marine realm, where there may exist fewer barriers to migration and larger 

effective population sizes (Gyllensten 1985; Ward et al. 1994). Whilst this simplistic 

assumption regarding marine populations is less universal than previously thought, levels 

of genetic differentiation within freshwater fish species are in general much higher and 

tend to be significant among river catchments and among tributaries across a range of taxa 

with varying ecologies and life history characteristics (e.g. Hänfling & Brandl 1998; 

Triantafyllidis et al. 2002; Huey et al. 2010; and Sharma & Hughes 2011), and especially 
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in rare species (e.g. the endangered cyprinids, Chondrostoma lusitanicum (Mesquita et al. 

2001) and Anaecypris hispanica (Salgueiro et al. 2003)). For many species this is the case, 

but in some freshwater fish that do have the ability to move between catchments28 

estimates of genetic diversity among drainages are on the scale that one may consider to 

be low (e.g. in the Australian Gobiid Hypseleotris compressa estimates of inter-catchment 

FST values were low for both mitochondrial and allozyme data (McGlashan & Hughes 

2001)). 

 

4.1.5 Population Genetic Studies of the Common Roach 

 

4.1.5.1 Allozymes and RAPD Variation in Common Roach 

 

The history of genetic studies of wild populations of roach has been an ongoing concern 

for the last two decades, with a focus upon populations within the great rivers of central 

Europe. The first use of nuclear-inherited genetic markers was in a 1976 paper that was 

able to distinguish the systematic inter-relationships among roach and its confamilial 

species, rudd and bream, by employing allozymes to the problem of taxonomy 

(Brassington & Ferguson 1976). However, the first population-level application of 

allozyme loci did not occur until the mid-1980s when Evlanov (1986) was able to 

apportion roach individuals within a single lake to two separate stocks. As can be seen 

from the published studies listed in Table 4.1, the application of molecular ecology 

techniques and population genetic analytical methods to investigate the distribution of 

genetic diversity within and among wild populations of roach did not occur until the 

1990s.  

 

Bouvet and colleagues (1991) carried out the first study of population genetics in roach to 

directly test the influence of physical habitat upon population structure, as quantified by 10 

polymorphic allozyme loci. The eight sampling locations took in sites both above and 

below a large hydroelectric dam in the upper reaches of the River Rhône, in southern 

France, in addition to a population of roach in Lake Geneva (the source of the Rhône). 

Although levels of genetic diversity between populations was low compared to that within 

populations - 90% of the variation in allele frequencies was allocated to within populations 

(levels of polymorphism range from 21 – 31% and gene diversity ranging from 0.097 – 
                                                
28 Some stenohaline fish, such as the roach, may be able to survive estuarine conditions and populate 
nearby drainages in which it shares a coastline. 



 

 155 

0.124) – the data identified three population groupings based upon Nei’s (1973) genetic 

distance, D: three Lake Geneva samples and an upstream Rhône population sampled just 

downstream of the confluence of the Rhône with the Ain (D = 0.048 from the other two 

groups); a side-arm population located above the confluence of the Ain and the Rhône, but 

before the city of Lyon; and the lower Rhône populations located downstream of Lyon (D 

between the latter groupings = 0.021).  

 

Table 4.1: Published studies conducted into the distribution of nuclear 
genetic diversity in the common roach 

Marker Loci Location No. sites Reference 

Allozyme 10 France 12 Bouvet et al. 1991 

Allozyme 9 France 8 Bouvet et al. 1995 

Allozyme 6 Austria 7 Baranyi et al. 1997 

Allozyme 10 France 50 Laroche et al. 1999 

Allozyme 13 Germany 32 Wolter 1999 

RAPD 18 Germany 7 Wolter et al. 2003 

Allozyme 12 Germany 24 Hänfling et al. 2004 

Microsatellite 5 Sweden 8 Demandt & Björklund 2007 

Microsatellite 5 Sweden 5 Demandt 2010 

 

The stretch of the Rhône that flows to the confluence with the Ain is subject to eight dams 

(Pattee 1988). It is likely that the divergence of the upper Rhône populations is due in 

some part to a reduction in migration as would be expected with large scale obstructions 

within a limited habitat. The side arm population of Trou Louis was divergent from both 

an upstream and a downstream population (Ferrande and Ford, respectively) located in the 

same side arm, Lône des Pêcheurs, but was allocated within the lower Rhône group. 

Interestingly, the study of Bouvet et al. (1991) sampled the divergent side-arm population 

of Trou Louis at two temporal periods: once during the spawning period (June 1985) and 

once before the onset of winter (October 1986), during which differing frequencies of 

alleles were detected. This side arm is a known spawning ground (Bouvet et al. 1985), 

therefore the temporal genetic variation may reflect the different ecological characteristics 

of the populations at the two time periods. The Trou Louis population is, according to 

estimates of D (pooled dataset of the temporal samples), intermediary between the 

downstream Rhône roach and the upstream Geneva roach, suggestive of some 

interbreeding between these two groups, but not of panmixia among sampled locations 

within this large, complex river. 
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Bouvet and colleagues followed up their initial investigations with a study of roach 

diversity in the Saone, a tributary of the River Rhône, in an effort to compare and contrast 

two distinct river segments upstream of where the Saone and Rhône coalesce. These two 

rivers differ in both slope (at 0.4%, the Rhone is an order of magnitude steeper than the 

Saone) and fish assemblage (more rheophilic species inhabit the Rhône than the Saone). 

Utilizing nine polymorphic loci, with a maximum of four alleles per locus, average 

heterozygosities were found to be lower in the Saone than in the Rhône (two Saone sites 

were all < 0.08, whereas the six Rhône sites were all > 0.08). Most diversity in the Saone 

was found to be within populations (89%) as opposed to that found among populations 

(11%). As in the 1991 study, the sidearm site of Lône des Pêcheurs contributes much of 

the genetic diversity in the Rhône. A dendrogram based upon Nei’s genetic distance of all 

populations distinguish the Lake Geneva and upper Rhône roach (from 50km downstream) 

from another group encompassing the sidearm and adjacent populations and a final group 

distinguishing the two sites sampled within the Saone. The latter group also contains roach 

from Lake Bourget that is located within the riverine environment of the lower Rhône, not 

the upper Saone. 

 

Bouvet et al. (1991) ascribe the uniformly high within-population genetic diversity and 

low inter-population divergence in the Saone to a uniformly lentic, macrophyte-rich 

habitat, which facilitates the high exchange of migrants within the main river and its local 

tributary. The genetic concordance of the Saone populations with Lake Bourget is also 

explained by similar habitat found in the lake. The Rhône, however, possesses a number of 

marginalized habitats – or ecotones - that are of especially important significance in highly 

modified river channels in which suitable habitat is patchier. The findings of Bouvet et al. 

(1991, 1995) of a distinct signal of genetic diversity in an ecotone sidearm of the Rhône is 

consonant with Bouvet’s observation (1992) that it is a probable reservoir of much of the 

genetic diversity of the adjacent Rhône, although the possible causes of this locally 

important source of diversity are not distinguished (i.e. behavioral, selective or 

anthropogenic). 

 

Laroche and colleagues further subjected the roach populations of the Rhône to increased 

scrutiny in a 1999 study, once again applying allozyme data to uncover any correlation 

between genetic diversity and habitat heterogeneity and environmental pollution. Overall 

genetic diversity was high (mean observed heterozygosity ranged from 0.047 – 0.068), 

with uniform distribution over the three main areas of study: Saone and tributaries; the 
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Upper Rhône between Lake Geneva and the confluence with the Saone; and the lower 

Rhône downstream of the city of Lyon, inclusive of a “chemical corridor” in which levels 

of dissolved pollutants from the city are concentrated. Levels of population structuring, as 

measured by FST, was low (FST = 0.026), although there was more pronounced 

differentiation between the pooled sites of the upper and lower Rhône, respectively (FST = 

0.042). No differences whatsoever were found between the Saone roach and those located 

in the lower Rhône (FST = 0). Within the subsystems, all FST values were low, except in 

the upper Rhône (FST = 0.038). No isolation by distance effect was found. Additionally, no 

decrease in either polymorphism or heterozygosity was associated with the polluted 

reaches of the lower Rhône. 

 

Wolter (1998, 1999) also studied the distribution of spatial genetic diversity as described 

by allozyme frequencies. As part of a cross-species study, roach along with other cyprinids 

were sampled along a 177km length of the River Spree, within the larger Oder drainage 

(itself part of the Elbe watershed). In total, 24 populations were sampled along the Spree 

transect. Additionally, a further 8 locations were sampled within the Elbe catchment to 

determine whether greater levels of genetic divergence are observed between rivers. 

Overall, some 988 individuals were sampled. Mean allozyme gene diversity was high 

across the Rivers Spree and Oder (0.072) (Wolter 1998). However, the results of the 1999 

study were indicative of lower among-population divergence than those that came before. 

Roach populations from the Oder and Spree were indistinguishable on the basis of Nei’s 

unbiased distance (1978). The use of Wright’s hierarchical F-statistics (Wright 1931, 

1938a) corroborated the fact that high levels of intra-population genetic diversity blurred 

the genetic distinctiveness of non-neighboring populations (15% of genetic variability 

attributed to differences among subpopulations; 3.9% attributable to differences among 

rivers; and 2.1% attributable between the Spree and Oder catchments within the Elbe 

drainage; all resulting variability (77%) present among individuals within populations). 

Gene diversity was high across all loci (mean value of 0.072), directly comparable to most 

estimates found in the preceding roach literature (Wolter 1999). Any signal of genetic 

structuring among allozyme loci in the Elbe is weak. However, the author considered 

stocking to be of little concern due to its relative unimportance compared to the 

economically more valuable salmonids, thereby ignoring a potentially homogenizing 

source of roach movement among catchments and rivers. 

 

Despite high genetic diversities overall, the allozyme analyses were able to determine the 

presence of some structuring within rivers, at least in the Rhône watershed. A smaller 
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study of Austrian roach of the upper Danube measured genetic variability at allozyme loci 

both within a small transect of the upper Danube and at two distal sites in the upstream 

Drau tributary and the eutrophic, subalpine Lake Wallersee (Baranyi et al. 1997). 

However, unbiased genetic distances (Nei 1978) suggested little differentiation among the 

Danube and Drau sites (gene diversity range: 0.195 – 0.224, despite some 1000km of river 

separating the Danube and Drau sites), but some divergence of the lake roach from all 

others (the Lake population had the lowest gene diversity (0.195)). This study also found 

exceedingly high levels of heterozygosity within the Danube, compared to the other 

studies described (Ho ! 0.2), underscoring its potential as an important repository of 

biodiversity for this species and freshwater fishes in general. The small number of sampled 

sites, and the restrictive geographic range of those sites, failed to uncover significant 

divergence amongst connected sub-populations (the Lake Wallersee population has 

probably drifted to some extent in the absence of migration, as indicated by larger FIS 

values across all loci). 

 

Hänfling et al. (2004) utilized 12 polymorphic allozyme loci in a study comparing 

diversity levels of still, floodplain water bodies compared with the main body of water 

along the middle Elbe, in central Germany. These 22 populations (of N = 25 individuals) 

were complemented with five individual roach from the Rhine and Danube drainages, 

respectively. Global FST of the entire dataset was 0.036 (p < 0.001). The majority of the 

structuring signal was contributed by differences among the drainages of the Rhine, 

Danube and Elbe, such that when only the 22 Elbe populations were analyzed FST = 0.018. 

Genetic distance (Nei 1978) was greatest between the Elbe populations and the Rhine and 

Danube populations, respectively (0.043±0.004 and 0.021±0005, respectively), although 

the distance between the Danube and Rhine populations was considerably lower (Nei’s D 

= 0.003). Because the dataset for the non-Elbe populations was limited, one would expect 

strong sampling effects associated with the small sample sizes of both the Rhine and 

Danube populations, contributing positive bias to estimates of divergence. 

 

The high levels of heterozygosity found at allozyme loci in the previous studies are 

emblematic of allozyme variation within roach (high levels of heterozygosity were also 

found amongst roach within southern German lakes (Wagner 1992, in Baranyi et al. 

1997)), and in common cyprinids in general (e.g. Hänfling & Brandl 1998). Therefore, 

finding structuring within linear stretches of rivers among populations that are likely 

exchanging migrants at a high level is problematic with allozyme loci that have 

comparatively low levels of polymorphisms compared to other nuclear genetic markers. 
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Wolter et al. (2003) adopted a new method - the employment of RAPD markers - as a 

prelude to a more discriminative genetic analysis. Random amplified polymorphic DNA 

markers are dominant markers that are detected by deploying a number of oligonucleotide 

primers that randomly anneal to sites scattered about the genome. If a bit of genome is 

polymorphic for a sequence that the randomly constructed primer recognizes, then that 

primer serves as a marker, albeit a dominant one (only presence or absence can be noted, 

i.e. heterozygotes cannot be distinguished from homozygotes). RAPD is a quick way of 

appraising levels of diversity. Relatedness amongst individuals/populations can be 

computed from the degree of band sharing (PCR-bands), and thus genetic distances 

calculated. Wolter successfully used 18 such RAPD loci upon roach sampled at seven sites 

situated along a 122km tract of the middle Elbe River. However, roach again displayed 

high levels of within-population genetic diversity, such that the genetic similarity among 

roach among all sites was 71%. Wolter et al. (2003) concluded the existence of single 

panmictic populations of roach specifically, and cyprinids in general, in both the Oder and 

Elbe rivers, with home ranges spanning 120 - 177km. RAPD markers are generally used as 

preliminary markers to determine the presence of genetic variation, and are statistically 

compromised compared to co-dominant markers. Therefore RAPD markers, more than 

allozymes, may consistently miss more subtle levels of genetic structuring at 

microgeographic levels. 

 

In summary, high levels of genetic diversity in roach, mostly from allozyme surveys, have 

been found within populations and limited diversity attributed among physically isolated 

rivers. Most explanations for low levels of population structuring centre upon historically 

stable, large population sizes and the presence of environmental uniformity within large 

stretches of lentic riverine habitat. In support of the historical effective population size 

hypotheses, most early studies were carried out in roach populations of central and 

southern France and around the Danube drainages of central and western Europe, areas in 

which Pleistocene refugia have been postulated for freshwater fish. Thus, these roach 

populations may have existed in situ throughout the climatic oscillations of the last 2.6 

million years, resulting in very high effective population sizes (see Chapter Three). Where 

structuring has been observed to occur, it is normally associated with either a significant 

occlusion to migration (e.g. large hydro-electric dams) or where ecotonic heterogeneity is 

known to exist, or between physically distinct drainages via the drift of allele frequencies.  

 

Whilst it is difficult to rule out balancing selection at allozyme loci (Altukhov 1991), the 

low number of alleles at such markers often means that common alleles are shared 
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amongst populations, which may result in higher than average levels of heterozygosity 

(Griffiths & Li 1983). Other possibilities for the general low level of structuring within 

this species ventured by the authors include high levels of panmixia across large river 

distances, which do not tally with tag-and-marker study of this species (e.g. Baade & 

Fredrich (1998)). The fact that anthropogenic translocation in this species has been greatly 

overlooked by many researchers (Wolter aside), despite the roach’s status as an angling 

staple and its history as a bait and food fish, in addition to canal construction among 

waterways, is somewhat of a puzzle; but even in the UK, records of stocking events are 

sparse and not recorded for all rivers (Nigel Hewlett, pers comm). Even given the presence 

of significant levels of intraspecific genetic variation, most previous studies of allozyme 

variation in roach have found significant differences within and between river systems, 

albeit of low magnitude. 

 

4.1.5.2 Microsatellite Variation in Common Roach 

 

The development of microsatellite markers in tandem with an increase in the efficacy of 

genotyping and analytical methods opened up a new avenue of potentially greater 

variation with which to detect levels of population sub-structuring in the roach and other 

cyprinids. However, very few such studies have been published in the roach, or in coarse 

fish in general. To date, only two microsatellite studies of Rutilus rutilus sensu stricto have 

been published (Demandt and Björkland 2007; Demandt 2010), which focus upon closed, 

lentic populations in Swedish lakes. The first study found a significant reduction in 

microsatellite diversity at five loci in a population recently restituted with introduced roach 

compared to wild, control populations that were free of recent reintroductions. Both levels 

of allelic richness (Ar) and the allelic size range (R) of the microsatellites were 

significantly greater in the wild, control populations compared to the reintroduced 

populations. These associations remained significant even after accounting for physical 

differences amongst the sampled lake populations (such as lake size, lake depth and 

species diversity). The results are important for management concerns, as despite the large 

numbers of reintroduced roach, they resulted in the bottlenecking of genetic diversity at 

the reintroduced sites, probably as a result of restocking from a limited sample of the 

lake’s diversity (a founder effect), and because of differential survival and reproduction 

amongst the reintroduced animals themselves (a selection effect) (Demandt and Björkland 

2007). 
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In the second study, Demandt (2010) found that, at least for roach within a single, closed 

basin (Biotest basin at Forsmark, Sweden) used as a receptacle for cooling water from the 

adjacent nuclear power plant, levels of gene diversity remained stable over the time period 

1977 – 2000 (0.73 – 0.80), although FST differed significantly in this time (Mantel test of 

genetic distance with time as measured at five points in time (1977, 1982, 1988, 1994 and 

2000); average FST over this period for the five loci was 0.018 (p = 0.036)). That 

heterozygosity increased contrary to neutral expectations of drifting allele frequencies in a 

closed population, indicates that the period of time explored in the study encapsulated a 

natural fluctuation within a longer-term decrease in diversity. This study showed that 

despite relatively low genetic diversity relative to census numbers, roach populations were 

subject to the evolutionary force of genetic drift that significantly affected allele 

frequencies in a period less than 25 years. 

 

4.1.6 Chapter Aims 

 

The primary aim of this chapter of the thesis is to ascertain the levels of nuclear genetic 

(microsatellite DNA) variation in a common, generalist species of UK freshwater fish (the 

roach), applying classic and recent methodological analyses to answer questions of some 

import in fisheries management. Firstly, do roach from physically distinct river systems 

display significant levels of genetic divergence; and if they do, what can this tell us about 

the demographic or evolutionary forces that have taken place in approximately only 15000 

years of independent evolution (time since post-glacial recolonization of northern 

European rivers) and 7500 years of demographic isolation (time since isolation of UK 

river systems from continental Europe by the English Channel/North Sea). Further, is a 

highly common species like roach worthy of being managed in a system that is generally 

the preserve of rare or commercially valuable species? Additionally, is there evidence for 

genetic divergence within the two study river systems (Thames and the Suffolk Stour); and 

if so, what is the nature of the divergence and can levels of genetic diversity be allied to 

equilibrium or non-equilibrium processes? 

 

The first hypotheses that need addressing relate to population structuring between the 

Thames and the Stour. The Thames and the Stour are quite distinct rivers systems. The 

Stour possesses a much more uniform riverine habitat than the highly modified main 

Thames river. Due to larger population sizes in the larger Thames catchment, it may be 

expected that the Thames would maintain higher levels of genetic diversity than the Stour, 
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despite sharing a common historical breeding pool. The Stour’s smaller size should result 

in fewer individuals, and thus an increase in inbreeding relative to that of the Thames. This 

comparison allows a test of the statistical criterion of management unit status, in that pure 

one-shot allelic frequency data is used. If positive, this would represent a significant result, 

in that in just over 7500 years (approximately 1875 generations) populations of a highly 

diverse, widespread and eurytopic fish species would have become genetically distinct 

enough to merit independent management status, despite a long history of translocation in 

the UK and western Europe. 

 

Subsequently, structuring within rivers will be investigated to test a number of hypotheses 

relating to the rate and extent of migration among populations, averaged out over both 

juveniles (downstream drift) and adults (individually deterministic migrations). That 

juvenile drift occurs in roach as well as other coarse fishes is known (Peterka et al. 2004), 

with larger roach drifting greater distances than younger ones. There is, therefore, to be an 

expected correlation of genetic distance with geographic distance. However, continued 

return migrations to natal spawning sites should clearly partition some of the genetic 

variability into spatially delineated sub-populations, which may exacerbate or erode 

isolation by distance (IBD) dependent upon the number of spawning sites relative to the 

distances roach juveniles and larvae disperse. Previous studies have failed to find evidence 

for isolation by distance (Hänfling et al. 2004) or assumed panmicticism post hoc (Wolter 

1999; Wolter et al. 2003). Therefore, a lack of IBD shall be the null hypothesis. 

Structuring may occur through non-equilibrium processes such as non-random mating and 

natural selection. Therefore, this section shall also investigate the likely correlations to be 

examined from available environmental data. Perhaps the most interesting of the latter 

concerns the levels of feminizing hormones in British waterways, which are known to 

cause some male roach to develop primary and secondary female sex characteristics. 

These intersex males have reduced fertility. The genetic consequences of feminizing 

hormones (EDCs, or endocrine disrupting chemicals) shall be of particular interest. Where 

the availability of breeding males is lowered, a greater skew in the local breeding effort is 

expected towards fewer successful males (reduced effective breeding size) and a 

concomitant reduction in local genetic diversity. 

 

To investigate the nuclear microsatellite DNA variation of roach fully, the dataset must be 

assessed as being appropriate and fit for purpose. In section 4.2, the basic microsatellite 

genotype data are tested rigorously to see whether each microsatellite locus contributes an 
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independent point of information that is as free from bias as can reasonably be expected 

and within acceptable margins of error. 

 

4.2 Sampling Scheme, Laboratory Methods and Data Quality & 

Assurance 

!

4.2.1 Methods 

 

4.2.1.1 Sampling 

 

As with all roach collected for an appraisal of mtDNA variation, the professionals within 

the Fisheries Department of the UK’s Environment Agency performed all physical 

sampling of roach. Their expertise is such that they can discriminate between all known 

roach x other cyprinid hybrids. The physical sampling procedure was the same as 

described in Chapter Three. All roach were sampled after the spawning period and after 

they had returned to summer feeding grounds. Thames roach were sampled from a time 

period of July – October 2005, whereas the Stour roach were sampled in a similar period a 

year later in 2006. 

 

The primary aim of the microsatellite study is to investigate the levels of genetic 

structuring within linear stretches of river. See Figure 4.1 for a map of each of the rivers 

and of the sampling sites along their lengths, and Table 4.2 for all sampling details, 

including specific geographic coordinates and the numbers of fish sampled per location. 

All site names are taken from the nearest mill, lock or weir directly upstream from where 

roach were sampled, and account for roach fished from within an approximate 100m 

stretch of river downstream, or until the next sampled site at a downstream mill, lock or 

weir. Therefore, for both the Stour and the Thames, sampling sites were optimized to be as 

far apart as possible between the upstream reaches of roach habitation and the downstream 

tidal halocline. Sometimes, however, the lack of a suitable number of individual roach 

present at optimal distances meant either sampling a short distance upstream or 

downstream, or pooling samples where otherwise there would be a significant gap 

between sites (e.g. in the Thames data the population at ‘Eynsham’ pooled the Eynsham 

roach with those roach individuals found downstream at Odney Weir, whereas in the Stour 
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individuals were pooled to make up the Stoke-by-Clare population). However, pooling 

data was kept to a minimum, and the minimal number of roach per sample was maintained 

at 20 individuals per population, although the mean numbers of individuals per site is 

much greater (see Table 4.2). 

 

Table 4.2: Sampling details for each location at which fish were caught 
for genetic analysis 

Sampling Site Code 
Geographical Coordinates Sample 

Number Latitude Longitude 
Thames     

Molesey Weir Pool MWP 51.405637 -0.345167 33 
Desborough Loop DL 51.383549 -0.439374 65 
Old Windsor OW 51.485767 -0.589391 49 
Clivedon Island CI 51.545816 -0.693418 63 
Temple Te 51.551675 -0.792194 60 
Whitchurch Wh 51.486617 -1.089740 23 
Dorchester Do 51.641830 -1.164674 33 
Days Days 51.638345 -1.180634 33 
Culham Cu 51.646155 -1.274436 40 
Eynsham* Ey 51.775208 -1.356433 33 
Northmoor No 51.716871 -1.376079 26 
Buscot Bu 51.681196 -1.668736 27 
Roundhouse Ro 51.686687 -1.704859 22 

    ! 507 
Suffolk Stour     

Brantham Lock BL 51.956858 1.040325 86 
Denham Mill DM 51.963634 0.995650 40 
Stratford Weir** St 51.961420 0.976577 84 
Anchor Bridge AB 51.968510 0.872212 59 
Shalford Weir Sh 52.007552 0.743557 64 
Mill Meadow MM 52.038694 0.719216 78 
Rat's Castle RC 52.078182 0.603393 20 
Stoke-by-Clare*** SbC 52.057994 0.539488 43 
Thurlow Th 52.122522 0.455658 20 

    ! 494 
*Eynsham includes individuals sampled from the adjacent weir downstream, Odney; ** Stratford Weir 
includes samples just upstream of Denham Mill; *** Stoke-by-Clare includes roach from the adjacent 
downstream site of Mill Green. 
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Figure 4.1: Map of sites at which roach were sampled for microsatellite variation in 
the SE of England. Top panel: Thames and Stour watersheds in geographical 
context; Middle panel: Thames; Bottom panel: Suffolk Stour. See Table 4.2 for 
location code details. 
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Because the stretches of the rivers being compared are variable in length (from source to 

mouth: Thames is 185.04km; Stour is 65.6km), the Thames dataset necessarily needed 

more samples located along its length to test for IDB (13 populations as opposed to 9 in 

the Stour). Similarly, too small a sampling scale and one might sample the same 

population multiple times. However, without a priori knowledge of putative populations 

one cannot rule out the possibility of sampling the same deme more than once. This is 

more likely to be a problem in the Stour than in the larger Thames. Additionally, the 

location-specific migratory behavior of roach - reproductive, diel and winter - in the two 

rivers is unknown. The sampling scheme for IBD is largely a compromise between 

practical realities (numbers of roach caught and the location where the school of fish was 

at the moment of capture) and statistical requirement. 

 

4.2.1.2 Laboratory methods 

 

4.2.1.2.1 DNA extraction 

 

Total DNA (i.e. including nuclear DNA) was extracted using the same protocol set out for 

mitochondrial DNA (see Chapter Three for details). 

 

4.2.1.2.2 PCR Conditions: Locus Derivation and PCR Optimization. 

 

Each of the microsatellite loci used in this project were derived from published studies of 

the efficacy and efficiency of cross-amplification of cyprinid loci in other confamilial 

species. Table 4.3 lists the names, the repeat motif, the number of published alleles, the 

PCR-product size range and the publication of origin for each locus. Each locus was 

selected for the potential to yield a high number of alleles per locus and for a high 

probability of polymorphism across populations. Trial runs for a number of published 

candidate loci were carried out across a selection of populations to determine the locus set 

to be screened. 
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Table 4.3 Microsatellite locus data for population genetic analyses of the 
roach 

Locus Repeat motif Original 
publication 

No. 
alleles 

Size range of 
alleles 

Rru3 (ACTC)5N21(GT)7A(TG)6 
1Barinova et al. 
2004 41; 52 176-1901; 169-

1792 

Lid1 (CT)5(CA)20 
1Barinova et al. 
2004 41; 82 236-2741; 248-

2852 

CypG3 (CAGA)2(TAGA)11 
Baerwald & May 
2004 16 2 194-3422 

CypG48 (TAGA)8TACGG(TAGA)10 
Baerwald & May 
2004 - - 

Ca1 (CA)24 
Dimsoski et al. 
2000  7 2 103-1372; 106-

1184 

Ca3 (TAGA)14 
Dimsoski et al. 
2000 18 2 240-3082; 275-

3034 

Ca12 (TAGA)10(CAGA)4(TAGA)2 
Dimsoski et al. 
2000 - 175-243 4 

Lc27 (CT)22(CACT)3(CT)2 
3Vysko!ilova et al. 
2007 3 3 144-1523 

Lc290 (GA)4N49(CT)13TT(CT)15CC(CT)2CC(CT)11CC(CT)3 
3Vysko!ilova et al. 
2007 6 3 178-1983 

Lco4 (GT)5ATTTT(GT)5(GA)11 Turner et al. 2004 2 3 226-2283 
2 Hamilton & Tyler 2008; 4 Holmen et al. 2005. 
 

All amplification reactions were carried out according to published conditions for each 

locus, although all reactions were standardized to the following volume: a total 10µl 

reaction volume composed of approximately 50ng of genomic DNA, 0.2 units of Taq 

DNA polymerase (Bioline 5U µl-1), 1.5mM MgCl2, 0.125mM of each of the four 

deoxynucleotide triphosphate (dNTPs, also Bioline) nucleic acid monomers, 0.2 µM of the 

3’- unlabeled and the 5’- end-labeled (with fluorescent dye) primers and 1x PCR Buffer. 

The remainder of the volume was made up of double-distilled H20. 

 

The visualization of PCR products was carried out on 6% polyacrylamide gels within 

ALFexpress II and IIITM (Amersham Pharmacia Biotech) automated sequencers, alongside 

a molecular ladder of known size fragments. By using proprietary software to size-

quantify each allelic PCR-fragment (Fragment Manager version 1.2) against the known 

fragment ladder (consisting of three or four fragments of known length, which may be 

altered for differently sized microsatellite loci), each individual roach was available for 

genotyping at each of the ten loci. 
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4.2.2 Data Quality & Applicability 
 

4.2.2.1 Statistical Independence of Genetic Markers. 

 

4.2.2.1.1 Rationale 

!

The most basic requirement for population genetic studies reliant upon information 

attained by the use of Mendelian co-dominant markers is for all genetic markers to be 

inherited independently, according to Mendel’s second law of independent assortment. If 

this were not the case, then each locus would not contribute an independent point-estimate 

of genetic diversity and differentiation. Therefore, any estimates of any genetic parameters 

computed from such a dataset would be statistically compromised. The non-independent 

statistical association of allelic classes across loci in all sampled populations, at any 

sampled temporal period, is strong evidence that these nominal loci are physically linked. 

If any loci are found to be linked then all but one of the inferred physically linked loci – 

normally the most polymorphic – are discarded from the study. Linkage disequilibrium 

analysis was conducted in FSTAT version 2.9.3.2 (Goudet 1995), analyzing all 1001 

pooled individuals. If disequilibrium is not found to be significant when all individuals are 

pooled then all loci may be considered independent Mendelian markers. However, if there 

is significant association of allelic classes among some loci, then further analysis is needed 

to discount the effect of population admixture29 in determining non-independent 

associations. All 45 possible locus-by-locus associations were tested for significance at the 

alpha level of 0.05 after permutation (corrected for multiple comparisons using the 

Bonferroni method (Rice 1989)). 

 

4.2.2.1.2 Results 

 

After a round of 900 permutations, the results of the linkage disequilibrium analysis of the 

pooled locus data suggest that none of the loci are physically linked. However, one locus-

by-locus association was borderline significant before the significance level was adjusted 

for multiple comparisons (p = 0.0011, Bonferroni ! = 0.0011). However, when the 

individual rivers were tested separately, this association was no longer present. 

                                                
29 Inbreeding, associative mating and natural selection may also bring about statistically significant 
associations among alleles at unlinked loci, but the Wahlund effect is most probable at such a scale. 



 

 169 

4.2.2.1.3 Conclusion 

 

One can conclude with some confidence that each of the ten loci are located on separate 

chromosomes, or are located on the same chromosome but at such a distance that 

recombination between them is complete, and that each locus contributes an independent, 

Mendelian source of information to subsequent analyses. 

 

4.2.2.2 Null Alleles: Presence and Influence 

 

4.2.2.2.1 Rationale 

 

In addition to determining the independence of the study loci, one must uncover whether 

the genetic variation at a particular locus is influenced to a significant degree by cryptic 

variation and/or the laboratory-based failure of allelic amplification during PCR. In other 

words, one must guard against skewed frequencies of any one allele, at any one locus, due 

to the presence of null alleles, whose presence within a dataset is due either to ‘natural’ 

misidentification of heterozygotes as homozygotes because of the occurrence of mutations 

in primer-annealing sites (Angers and Bernatchez 1997; Callen et al. 1993) and/or large 

allele drop-out (Wattier et al. 1998); or through human error associated with the allele-

scoring process (laboratory error, poor DNA quality or allelic-stuttering of PCR-product in 

acrylamide gels). 

 

The presence of null alleles may directly impact upon estimates of population 

differentiation and other such analyses dependent upon the calculation of allele 

frequencies (Dakin and Avise 2004). Null alleles will tend to over-inflate estimates of 

genetic divergence between loci in different populations (Pemberton et al. 1995). 

Directional selection at, or near, a locus may also deviate that genomic region from HWE 

(Dakin and Avise 2004). Further, whether null alleles appreciatively affect genetic 

parameter estimates is not fully resolved, with no clear consensus in the literature. Chapuis 

and Estoup (2007) define a high frequency of null alleles as being ! 0.2, and moderate 

frequencies accounting for between 0.05 and 0.02 of all allele frequencies for a particular 

locus and population. A general rule of thumb, as a minimal requirement for acceptance in 

a population genetic study, should be to estimate parameters (such as FST and other 

measures of genetic distance) using both unadjusted and adjusted allele frequencies, as can 

be determined by such programs as FreeNA (Chapuis and Estoup 2007). If the difference 
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across all loci is statistically significant, then appropriate measures should be taken (e.g. 

dropping affected loci from the study). 

 

Null allele frequencies were estimated using the FreeNA software of Chapuis and Estoup 

(2007). FreeNA is a program that utilizes an Expectation Maximization (EM) algorithm 

(Dempster et al. 1977) to estimate the frequencies of null alleles per locus. Other 

estimators are available, however the EM of Dempster et al. performs better, at least in a 

comparative setting. FreeNA is less susceptible to bias and it calculates smaller variances 

(Chapuis and Estoup 2007). This analysis was conducted on the dataset as a whole (all 22 

sampled ‘populations’ pooled as a single set of 22 populations) and on a partitioned 

dataset of both the Stour and the Thames populations (n = 9 and 13 populations, 

respectively). For each analysis the data was permuted 1000 times to determine statistical 

significance and 95% confidence intervals. Unbiased FST (Weir’s estimator (1996)) was 

estimated for the degree of allelic divergence between the Stour and the Thames both 

before and after correcting for the influence of null alleles using the ENA method. 

 

4.2.2.2.2 Results 

 

Table 4.4 reveals the results of the EM null allele frequency analysis. Null allele 

frequencies were classified as negligible, moderate or large according to the definition of 

Chapuis and Estoup: frequencies below 0.05 are deemed negligible; those between 0.05 

and below 0.2 are labeled as moderate, whereas frequencies greater or equal to 0.2 are 

considered to be large. Shown in the far left column of Table 4.4 are the three categories 

of null allele frequency and their allocated frequency parameter, r. For the pooled (global) 

dataset and for the Stour and Thames populations, the frequencies of putative null alleles 

for each of the possible locus-by-population comparisons are apportioned in each of the 

three categories. These figures are also shown as a percentage of the total population 

dataset. 

 

The vast majority of putative null alleles fall within a frequency bracket no greater than 

moderate in strength for the global population data, and for each partitioned river dataset. 

Analyzing over all 22 populations suggests that no single hypothesized null allele would 

reach a level as to significantly impact upon estimates of genetic parameters that are 

dependent upon robust allele frequency data (35% of putative null alleles are negligible in 

frequency, whereas 65% are of moderate significance). 



 

 171 

Table 4.4. Expectation Maximization analysis of null allele frequency and 
severity 

Category r 
Global Stour Thames 

Frq. % Frq. % Frq. % 

Negligible r !0.05 7 35 49 54.44 78 60.00 

Moderate 0.05! r <0.02 13 65 37 41.11 51 39.23 

Large r "0.02 0 0 3 3.33 0 0 

Missing Data - 0 0 1 1.12 1 0.77 

 # 20 100 90 100 130 100 

 

Only within the Stour populations, when the Stour is analyzed separately, are significant 

null allele interactions observed (3 locus-by-location comparisons out of 90 possible 

combinations, or 3.33% of all locus-by-location combinations). Large null allele effects 

are limited to just two loci within the Stour: Lco4 and Rru3, and only in the following 

populations: Stoke by Clare (locus: Lco4), Denham Mill (locus: Rru3) and Anchor Bridge 

(locus: Rru3). Furthermore, the proportion of negligible null allele frequencies over each 

combination is greater than the proportion of moderate null alleles in the partitioned 

datasets than is the situation in the global dataset (negligible r = 35%, 49% and 60% for 

the global, Stour and Thames data, respectively; moderate r = 65%, 41.11% and 39.23% 

for the global, Stour and Thames data, respectively). 

 

Although there is little evidence for widespread instances of severe null allele frequencies, 

moderate levels may still exert a significant bias upon subsequent investigations of 

population structuring and genetic diversity. The level of genetic differentiation between 

the Stour and Thames was measured using Weir’s (1986) estimator of the FST statistic and 

was calculated both prior to, and after, the incorporation of putative null allele frequency 

information, by implementing the ENA procedure in FreeNA. The results of this analysis 

for each of the ten loci and over all loci are shown in Table 4.5. FST, assuming that all 

allelic diversity is present in the sample data, between the Stour and Thames is given as 

0.0205 (95% CI: 0.0106 – 0.0317) (the discussion of structuring between these two rivers 

is in section 4.3), whereas after accounting for some error associated with the over 

representation of homozygotes, FST was determined to be 0.0192 (95% CI: 0.0097 – 

0.0301). As expected, if one assumes some overrepresentation of homozygosity caused by 

mis-assigned heterozygotes, the ENA-adjusted FST scores for all loci are lower than the 

uncorrected FSTs. The relationship between FST and ENA-FST should be perfectly linear if 

all loci are unaffected significantly by null alleles. Figure 4.2 shows just such a linear 
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regression between FST and ENA-FST (performed in Mathematica version 8.0). The line of 

best fit (blue line in Fig 4.2) is less than one, indicating some deviation from perfect 

predictability, but the predictive relationship between FST and ENA-FST is not significantly 

affected (2-tailed p << 0.001), thus putative null alleles minimally affect estimates of FST. 

 

Table 4.5 Estimates of FST (Weir (1996)) between the Thames and the 
Stour before and after correction for putative allele frequencies at all 
study loci and over all loci 

Locus FST FST-ENA 

Lid1 0.0073 0.0067 

Lco4 0.0513 0.0486 

Rru3 0.0371 0.0342 

Ca1 0.0095 0.0086 

Ca3 0.0028 0.0025 

Ca12 0.0125 0.0124 

CypG3 0.0271 0.0266 

CypG48 0.0068 0.0065 

Lc27 0.0041 0.0020 

Lc290 0.0388 0.0373 

All 0.0205 0.0192 

2.5%CI 0.0106 0.0097 

97.5%CI 0.0317 0.0301 

 

 
Figure 4.2 Linear Regression of FST (x-axis) with ENA-FST (y-axis). 
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4.2.2.2.3 Discussion 

 

Null alleles are problematic for population genetic analysis and may be present in 

increased numbers in taxa with high effective population sizes. This variability is 

hypothesized to be caused by the inherent instability of microsatellite flanking sequences 

as compared to other areas of the genome, and not due to the number of repeat units or the 

complexity of the repeat motif itself (Chapuis and Estoup 2007). If null alleles are 

common in such species, then the assumptions of most corrective analyses (that a single 

null allele per locus30 is present in all sampled populations (Roques et al. 1999)) are 

probably inaccurate (Paetkau and Strobeck 1995; Chapuis and Estoup 2007). Nine of the 

ten microsatellite loci employed in this study were derived from cyprinid fish outside of 

the Rutilus genus, but from within the leuciscinid subfamily. Due to the evolutionary 

distances among taxa within this subfamily, it should be unsurprising that mutations may 

have occurred within the primer-binding sites in the millions of years since divergence 

from a common ancestor. Instances of the non-amplification of microsatellites using 

primers developed in an original model species have been recorded (Dakin and Avise 

2004). The locus that is most suggestive of null interference in the current dataset is the 

Rru3 locus (in which the allele ‘179’ was overrepresented in numerous homozygotes, 

especially in two Stour populations (Denham Mill and Stoke by Clare)), which was 

originally sourced from a specimen of Rutilus rutilus. However, the specimen was a 

Caspian roach, a putative separate sister taxon to R. Rutilus (Ketmaier et al. 2008, and see 

Chapter Three).  

 

Whether null allele frequencies have the potential to seriously bias estimates of population 

differentiation depends upon the underlying demographic properties of the system under 

study. Simulation studies suggest that in scenarios in which gene flow among populations 

is high then the bias caused by null alleles is expected to be low (Chapuis and Estoup 

2007). Such an a priori expectation may be apt for roach populations that are subject to 

unidimensional channels of migration in the face of high fluvial rates of flow. If roach do 

have a preponderance of null alleles, which is not significantly inferred by the EM-

analysis of the data, then contemporary high gene flow may go some way to minimizing 

their effect upon measures of population differentiation, at least for estimates of 

divergence within rivers. Assuming a base-pair substitution rate of 10-9 per nucleotide site, 

Chapuis and Estoup calculate the probability of mutation occurring in the latter 10bp 

sequence in the 3’ flanking region of a 20bp oligonucleotide primer pair to be 2 x 10-8. 
                                                
30 That is to say that the null allele is associated with only a single repeat-motif size class. 
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This translates into an estimate that null alleles are only likely to be found in populations 

whose effective population sizes exceed 50000 individuals. As the authors concede, null 

alleles have been observed in species with effective sizes much less than this theoretical 

estimate. However, if many microsatellite primers are adopted in species in which they 

were not developed, then the evolutionary distances between the original and adopted 

species may constitute very large evolutionary effective population sizes, thus accounting 

for some of the discrepancy between theoretical and inferred levels of null alleles in 

surveyed taxa. 

 

The above EM-analysis assumes all loci to be in HWE. However, the Wahlund effect 

produces similar genetic signals (e.g. heterozygote deficits) to those resulting from the 

presence of null alleles. The effect of null alleles and deviations from HWE is likely to be 

a synergistic relationship, as they both result in the overrepresentation of homozygotes 

(although population structuring and the sampling of admixed populations should result in 

Hardy-Weinberg disequilibrium across all or most loci for particular locations). The 

results of the EM analysis then present the ‘worst-case scenario’, in which both null alleles 

and admixed and/or inbred (Pemberton et al. 1995) and/or naturally or sexually selected 

populations (Dakin & Avise 2004) contribute31. Thus, even if there is significant Hardy-

Weinberg disequilibrium and other contributing factors, the influence of null alleles is still 

determined to be weak as the potentially synergistic influences of all sources of 

heterozygote deficit are implicit in the data. 

 

4.2.2.2.4 Conclusions 

 

Given the seemingly weak influence of null alleles (whose signal may be conflated with 

other population genetic causes), in addition to the non-significant difference in FST 

estimation, coupled with known levels of roach genetic diversity and inferred migration 

from other genetic studies, the occurrence of null alleles was not considered a significant 

source of error for all ensuing genetic analyses. 

 

 

                                                
31 One has no a priori information regarding whether the sampled populations are true, 
outbreeding demes, and for now the question of whether the loci are in HWE or potentially 
influenced by genetic hitchhiking is ignored.  
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4.2.3 Deviation from Neutrality 

 

4.2.3.1 Rationale 

 

Genetic structuring among populations based upon the surveying of neutral marker loci 

depends entirely on their selective neutrality, if one is to test hypotheses based upon 

deviations from mutation-drift-migration equilibrium. If one is to base estimates of 

population genetic divergence upon an underlying assumption about the lack of migration, 

then one has to rule out from subsequent analyses any loci that show orthogonal levels of 

genetic variation when compared to the loci-set as a whole. That is to say, outlier loci, 

when measured for their contribution to genic differentiation, may be physically linked to 

neighbouring genomic areas under the influence of natural selection. Such loci, if their 

frequencies were taken at face value (e.g. large variances among allelic classes, i.e. larger 

than average FST), would suggest that migration estimates also based on these frequencies 

would be low, when in reality they would be higher than the data would suggest. Such loci 

would violate the assumptions of marker neutrality. Whilst estimates of divergence would 

still be informative (e.g. one may check for environmental correlations with particular 

allele frequencies) in terms of structuring, it would be necessary to discard such loci from 

analyses that assume selective neutrality (e.g. all estimates of migration). 

 

There are a number of programs available that scan genomic regions for deviations from 

strict neutrality. Each of these methods endorse the theory that loci under directional 

selection will tend to show greater levels of genetic divergence among populations and 

reduced amounts of genetic diversity within populations than loci behaving neutrally 

(Lewontin & Krakauer 1973). Furthermore, under positive selection the effect is local, 

whereas neutral processes affect all neutral markers around the genome with equal 

probability. Firstly, a coalescent model-based procedure that accounts for population 

subdivision was implemented in the LOSITAN workbench (Antao et al. 2008), 

incorporating the Fdist program of Beaumont and Nichols (1996). This procedure 

permutes the expected relationship between He (expected heterozygosity) and FST, 

assuming Wright’s n-island model of population structure (equal population sizes 

exchanging symmetric amounts of migrants), and migration-drift equilibrium. LOSITAN 

resamples the distribution of He and FST (the data were resampled 105 times). The dataset 

was run twice assuming both the IAM and SSM models of microsatellite evolution. The 

second method, implemented in the software BAYESFST (Balding 2003; Beaumont & 
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Balding 2004), uses hierarchical Bayesian inference to determine the probability that each 

marker locus possesses FST values that lie outside the 95% interval of a normal 

distribution. Non-neutrality is inferred if the locus resides in either the lower or upper 

quartile after summing the results of the simulations. This latter method also takes into 

account different sample sizes, unlike Fdist. BAYESFST was run separately on the Stour 

and Thames datasets to test whether sample size plays some part in contributing to the 

signal of outlying loci, whereas all 22 populations and the Stour and Thames populations 

were tested by Fdist. In BAYESFST, the MCMC algorithm was employed to generate the 

posterior probability distribution from which 2000 draws were made and analysed in the 

statistical package R 2.9.1 (http\\CRAN.R-project.org). 

 

4.2.3.2. Results 

 

The results of the Fdist analysis are displayed graphically in Figure 4.3. Shown are plots of 

actual FST versus expected heterozygosity for each locus for datasets comprising all 22 

populations, in addition to the 9 and 13 populations of the Stour and Thames, respectively. 

The coloured areas represent the theoretical zones within which certain combinations of 

simulated FST and gene diversities indicate whether loci resident in these zones are neutral 

with respect to selection (grey area), under the influence of directional selection (red area) 

or under the influence of balancing selection (light blue area). Because the theoretical 

expectations of the SMM and IAM models did not differ greatly, only the SMM results are 

shown32. When the dataset is partitioned into sampled populations, the simulated neutral 

zone is heavily constricted in the entire collection of 22 populations and in the Thames, 

such that most loci are presumed to be under some sort of selective regime. 

                                                
32 Strict SMM and IAM probably do not best reflect the reality of microsatellite evolution in the roach, 
with the strict SMM model rejected as a possible influence upon estimates of genetic divergence (see 
section 4.3.4.2). Two-phase models (Di Rienzo et al. 1994) provide a better approximation in these 
scenarios, but such a model is unavailable in LOSITAN. 
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Figure 4.3: Results of the Fdist analysis as displayed within the desktop LOSITAN 
workbench: Upper panel: 22 populations; Middle panel: Stour populations; Lower 
panel: Thames populations. All analyses were conducted assuming the SMM model 
of microsatellite evolution. 
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Only one locus, Lco4, is found in the red zone of directional selection in all three 

population-level analyses (probability that simulated FST < FST = 1.0, 0.983, and 1.0 in the 

22-population, Stour and Thames populations, respectively). From studying the graphs, it 

is clear that the greatest level of deviation from neutrality is found in the Thames, and this 

contributes to the deviatory nature of the global analysis. 

 

Further, BAYESFST was employed as an ancillary analysis. Fig 4.4 shows the 

relationship between genetic divergence (FST) with the log-transformed p-values of the 

hierarchical Bayesian relationship between locus-specific, population-specific and 

interaction effects, for each locus and summarized over all populations for a) the Stour and 

b) the Thames. Loci (dots) shown in red are those that behave in a non-neutral manner 

according to the Fdist analysis above, whilst the vertical line represents the critical cut-off 

value for statistical significance (! = 0.05). The vertical line, superimposed on the graph, 

represents the statistical confidence limit, such that red loci to the right of the line are 

statistically significant (p < 0.05). Locus Lco4 exhibits a strong, positive relationship 

between locus-specific and population-specific effects, suggestive of the influence of 

positive selection. It is the only locus, besides Lid1 (in the Thames), to remain significant 

after the critical cut-off. No other locus was significantly associated with deviations from 

selective neutrality. 

 

4.2.3.3 Conclusions 

 

Because Lco4 appears to consistently violate expectations of selective neutrality, even 

after controlling for the influence of sample size, it was removed from all analyses in 

which further genetic or demographic processes are inferred (except for environmental 

correlations). Also, erring on the side of caution, Lid1 was also used only for structuring 

and correlative analyses, and not for inferring migration. 
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Figure 4.4: Graphical representation of the BAYESFST analysis for both the Stour 
(upper panel) and the Thames (lower panel) populations. 
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4.2.4 Levels of Microsatellite Variation 

 

4.2.4.1 Rationale 

 
The degree to which microsatellite loci exhibit high levels of allelic variation is largely 

dependent upon the effective population size of the organism in question, coupled with the 

mutation rate per generation of the loci themselves. Previous studies of the roach have 

found a close correlation between genetic diversity (as measured by gene diversity) and 

high census numbers for a range of nuclear markers, including allozymes (Bouvet et al. 

1991, 1995; Baranyi et al. 1997; and Wolter 1999), RFLPs (Wolter et al. 2003) and 

microsatellites (Demandt & Björkland 2007; Demandt 2010). Therefore, it was expected 

that UK roach would possess similarly high levels of variation (if not higher given the 

sample numbers and nature of the loci). High levels of genetic variation may increase 

statistical power to detect significant differentiation of populations via differential allele 

frequencies in those populations. Numerous loci were tested to gauge levels of genetic 

diversity and polymorphism to screen them for utility in population genetic analysis. 

Diversity estimates, including the total number of alleles, the number of effective alleles, 

allelic richness, observed and expected levels of heterozygosity were conducted using 

FSTAT for a number of candidate microsatellite loci, to determine those best suited for the 

population genetic analysis of the common roach. The diversity indices of the ten loci used 

in this study are expanded below.  

 

4.2.4.2 Results 

 

Table 4.6 shows the results of the diversity listed above, for all loci individually, and as 

means and standard errors for each locus. The mean number of alleles over all ten loci is 

20.5, which translates to an effective number of alleles of 5.730. Accordingly, due to the 

relatively high number of alleles, both allelic richness and expected heterozygosity are 

also consonantly high (mean Ar = 20.134 based upon a minimum of 767 individuals, He = 

0.740). The data contain a low number of observed heterozygotes (all loci violate HWE, p 

<< 0.001), which was anticipated due to the pooling of two presumed independent, 

interbreeding populations. 
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Table 4.6: Genetic diversity estimates for ten microsatellite loci 
Locus NGI NA NEA Ar Ho He 

Lid1 941 15.000 4.190 14.596 0.599 0.761 

Lco4 967 10.000 3.466 9.749 0.555 0.711 

Rru3 873 14.000 3.033 13.698 0.464 0.670 

Ca1 872 20.000 5.582 19.745 0.662 0.821 

Ca3 808 32.000 15.079 31.746 0.816 0.934 

Ca12 958 30.000 6.378 29.163 0.756 0.843 

CypG3 872 37.000 3.400 36.097 0.622 0.706 

CypG48 767 22.000 9.323 22.000 0.816 0.893 

Lc27 975 8.000 1.326 7.739 0.223 0.246 

Lc290 941 17.000 5.521 16.807 0.672 0.819 

Mean 897.40 20.500 5.730 20.134 0.618 0.740 

SE 22.416 3.070 1.249 3.018 0.056 0.061 

NGI = number of genotyped individuals; NA = number of alleles; NEA = number of effective alleles; 
Ar = allelic richness; Ho = observed heterozygosity; He = expected heterozygosity. 
 

The number of alleles ranges from 8 (Lc27) through to 37 (Cy3), a spread that should 

enable significant testing of population structuring. The effective number of alleles 

portrays the data in terms of the proportion of allele frequencies in a given population. 

Lc27 has an NEA of 1.326, because one or two alleles dominate in the pooled population, 

whereas Cy3 has an NEA of 15.079 because there is a greater spread of alleles at or 

around equal frequency. Some investigators use NEA to calculate levels of population 

differentiation.33 

 

4.2.4.3 Conclusions 

 

The data appears to be free from the widespread influence of null alleles; loci are also 

inherited in a manner consistent with Mendel’s second law, vital for statistical 

independence; and whilst some loci (Lco4, Lid1) may be best omitted from estimates of 

migration due to indication of the effects of selection, each locus is variable enough and 

sufficiently powerful to uncover population structuring if it exists 

                                                
33 Naglyaki (1985) showed that if populations are subdivided into finite demes, then in the 
absence of migration, demes diverge such that values of NEA should exceed their values 
expected in a panmictic population. Thus NEA can be used to determine population 
subdivision.  



 

 182 

4.3 Testing for Genetic Differentiation of the Roach 
Populations of the Rivers Thames and Suffolk Stour: 
Implications for MU Designation in a Coarse Fishery 
 

4.3.1 Introduction 

 

Moritz (1994) succinctly defined genetically differentiated populations that are suitable for 

individual management consideration as those that exhibit a statistically significant 

deviation in their allele frequencies. Such designation of population structure is based 

upon a ‘statistical criterion’ (Pasbøll et al. 2006, 2010). However, statistical significance is 

implicitly defined by the quality and quantity of samples (e.g. Mace 1964) and thus 

statistical analyses, such as the determination of differences in allele frequencies, are in 

turn affected by this issue (e.g. both the numbers of loci and the number of individuals that 

are sampled affect significance levels) (Waples & Gaggiotti 2006; Pasbøll et al. 2010), 

including sampling from a limited distribution of real genomes and pooling individuals 

without any prior consideration of their derivation. One notable weakness of defining 

genetic populations based upon levels of allelic differentiation among them, is that 

ancestral levels of genetic variation may be so considerable in extent that any subsequent 

sub-division of the parent population into daughter populations may retain similar levels of 

genetic variation, but are by all intents and purposes genetically isolated and 

demographically independent, even after a significant number of generations have elapsed. 

 

Large stable populations of breeding individuals are predicted to possess greater levels of 

genetic diversity than smaller populations more vulnerable to stochastic environmental and 

demographic processes. This assertion, whilst generally true, is also a function of various 

ecological and demographic considerations such as habitat availability, population 

fragmentation, local predator-prey assemblages and interactions, resource availability and 

inter- and intra-specific competition, in addition to localized stochastic and deterministic 

events. All these factors will affect growth, maturation and/or fecundity, which may 

positively or negatively influence the extent of spatially and temporally distributed genetic 

diversity. Estimates of genetic diversity also provide a baseline assessment of the degree to 

which genetic diversity is apportioned within and among populations within a species. 

From such measurements, axiomatic divergence estimates, which have been the building 

block of most population genetic studies over the past four decades, are derived. 
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Larger river systems are potentially greater repositories of genetic diversity within 

potamodromous species than are smaller, less dendritic systems, for a variety of reasons. 

Larger systems may flow through a wider variety of geologically variant topsoils and 

bedrock, which will influence riverine habitat types, as well as the mineral composition of 

the stream water itself. Genetic diversity has been positively correlated with higher levels 

of habitat heterogeneity and environmental (spatial and temporal) flux (Hedrick et al. 

1976; Hedrick 1986) for a number of taxa, including freshwater fish species and 

communities (Vrijenhoek 1979; Smith et al. 1983; Coelho & Zalewski 1995; and Blum et 

al. 2011). Habitat heterogeneity may manifest greater levels of genetic diversity through 

differential selection in different environments (Hedrick 1986), or through frequency-

dependent selection in the absence of over-dominance at any particular loci, thereby 

increasing overall levels of polymorphism (Levene 1953). Life-history variation may also 

affect the amount of genetic diversity within species, and between populations if the 

populations differ in this respect, as rates of demographic increase or decrease are 

dependent upon fecundity, time to maturation and death rates (Mitton & Lewis 1989). 

 

Neutral models of differential genetic diversity between populations or species are also 

dependent upon demography. Larger habitable rivers would allow more individuals to 

survive, with a concomitant increase in the number of breeding individuals (i.e. higher Ne 

= reduced influence of genetic drift, which erodes heterozygosity at a rate less than would 

occur in smaller population sizes (Soulé 1976)). Temporally stable populations would also 

be expected to be more diverse than less stable populations, as younger populations, or 

those which are expanding after a recent bottleneck, are not maintaining diversity as 

efficiently as those at equilibrium; as genetic drift is the predominant evolutionary force 

post-expansion (Soulé 1972). Larger river systems may also provide local refugia for 

many individuals when their wider ranges are in some way compromised (Sedell et al. 

1990). 
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4.3.2 Hypotheses 

 

4.3.2.1 Levels of Genetic Diversity in Two Differently Sized Rivers 

 

Assuming equilibrium conditions are met in the two rivers, one would expect a positive 

correlation between catchment size and the amount of genetic diversity of roach within the 

rivers. However, the degree to which diversity differs among the rivers is a function of 

historical diversity levels, founding population size and current carrying capacity and 

genealogical turnover. Before we can assess differentiation, and identify any causative 

agents, one must determine whether the differently sized and hydraulically distinct river 

systems harbor significantly different levels of genetic variation. One would expect the 

Thames population, with the river’s greater capacity for harboring larger census 

populations, and with its increased hydrographical complexity, to possess greater levels of 

genetic diversity than would be found within the Stour. If migration, dispersal or 

anthropogenic translocation between these two rivers has been minimal since the last time 

they were connected via fluvial conduits (ca. 7500 years ago via the Channel River 

system), then one would expect that the greater influence of drift over mutation during the 

early years of colonization may lead to a significant divergence in allele frequencies 

between the two drainages. If so, such data would promote the hypothesis that physically 

distinct drainages, rather than multi-drainage assemblages, represent minimal base levels 

of conservation and preservation for management unit designation in riverine ecosystems. 

 

If the Stour and Thames populations match significantly on all scores of diversity indices, 

this would provide some evidence that the two rivers share such a high degree of genetic 

diversity that they could be considered as a single, inter-breeding genetic entity 

(maintained through current gene flow, if equilibrium is assumed). However, as previously 

noted, high genetic diversity in contemporary populations may not be conducive to 

analyses of genetic differentiation for some categorical instances (e.g. in the number of 

alleles, or allelic richness, for instance), given the short geological time span since fish in 

both rivers would have last shared a common breeding pool of individuals. Therefore, if, 

on the other hand, divergence has occurred since physical separation, then mutation at 

microsatellite loci - which is random with respect to direction and to which loci actually 

transmutate - should not support a significant, predictive relationship between private 

allele frequencies between the Stour and the Thames. Thus, significant deviation from 

linear expectations for private alleles would be consistent with the expectations of high 
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ancestral genetic diversity, but recent post-Pleistocene separation allowing for some 

divergence, but not with a scenario in which the bidirectional flow of genetic material is an 

ongoing source of variation in these geographically proximate rivers34. 

 

4.3.2.2 Meaningful Levels of Genetic Structuring Between the Stour and 
Thames – Assessment of Equilibrium 
 

The central contention of this section is that roach populations have attained mutation-drift 

equilibrium in both the Thames and the Stour, retaining ancestral levels of variation, but 

having census populations large enough that numerous new mutations have occurred in 

both populations (the probability of spontaneous mutation is a product of the mutation rate 

and the population size, 2Neµ). Values of FST are expected to be low (< 0.05), although 

standardized estimators and Jost’s D (Jost 2008) are expected to be > FST. Due to their 

levels of variation and historically high census sizes, both the Thames and the Stour 

should have some immunity to periodic, localized crashes in numbers, and thus retain a 

signal of ‘mutation-drift equilibrium’. Additionally, the effect of mutation on levels of 

differentiation is dependent upon mutation rate, population size and time since isolation. 

Jost’s D is demographically independent and so describes the extent of differentiation that 

may be ascribed to mutational effect alone in driving divergence between the Thames and 

the Stour. Given the expectation that the allelic state of some loci will be unique in each 

river, one would expect a significant proportion of divergence to be ascribed to the 

differential effect of microsatellite evolution in the face of weak levels of genetic drift. 

 

Further, the issue of migration-drift equilibrium will be explored. If there has been little to 

negligible migration between the rivers’ populations, then any divergence is the result of 

mutation and drift acting at an equilibrium rate describing the actual extent of genetic 

differentiation only when the populations’ evolutionary dynamics no longer carry the 

signal of past gene flow and connectivity. If large populations fragment, then the prime 

determinant of differentiation – genetic drift – will be weak, and the number of 

generations needed to reach equilibrium levels of differentiation will be considerable. 

Most traditional measures of population differentiation, standardized or not, assume 

equilibrium conditions and may well underestimate the true level of isolation between 

populations (Allendorf and Luikart 2006). To rely on such estimates, one should test 

whether this null hypothesis is true, or whether populations better fit a purely-drift model, 

in which the degree to which the two populations are truly differentiated is probably 

                                                
34 Close, that is, in terms of distance from river mouth to river mouth. 
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underestimated (and therefore levels of current inter-river migration are overestimated) 

and the equilibrium level of differentiation is purely a function of population size 

(assuming little influence of mutation). If migration-drift equilibrium is found to be 

present then this may result from isolated populations sharing no recent migrants, but 

retaining a past signal of gene flow, or from recurrent inter-drainage gene flow. One may 

test for inter-population migration using non-equilibrium based tests to differentiate 

between these competing hypotheses to uncover a signal of a recent exchange of 

individuals. 

 

4.3.3 Statistical Analysis. 

 

4.3.3.1 Analysis of Microsatellite Diversity 

 

All indices of genetic variation for the pooled Thames and Stour individuals were 

conducted in the same suite of population genetic software as was used to appraise the 

global levels for each of the ten study loci (section 4.2.4 above). Following this initial 

survey of diversity, linear regression analysis was carried out in the software package 

Mathematica 8.0 (Wolfram Research, Inc., 2010). The form of linear regression adopted in 

this comparison followed a strict linear fitted model35, in which values of x (in this case, 

values of diversity from the Stour, which one would predict to be less variable than those 

from the Thames) are tested for significance in predicting the values of y (Thames 

diversity indices). In other words, by minimising the sum of the squares of the vertical 

distances between directly comparable points (e.g. the number of alleles at locus Ca12 for 

the Stour and the number of Ca12 alleles for the Thames, repeat for all other loci), the data 

are best fitted to a straight line (given by the equation: y = a+bx, where x = Stour, y = 

Thames, b = the slope of the line and a = the value of y when x = 0). A perfectly linear, 

predictive relationship would result in a perfectly straight line through all points when 

displayed on a graph. 

 

In addition to traditional measures of genetic diversity, single point estimates of the 

effective population size of each of the respective ‘populations’ were determined from the 

pooled sample of individuals from within both rivers. Various point estimates of Ne have 

been developed over the years, each predicated on a set of assumptions and an inferential 
                                                
35 A reasonable assumption given the high probability that much of the genetic diversity shared between 
the two rivers is sourced from the same post-glacial colonisation route. 
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methodology particular to that method. A linkage disequilibrium (LD) analysis was carried 

out firstly in NeEstimator version 1.3 (Peel et al. 2004), and then in LDNe (Waples & Do 

2008), a program in which a correction is applied to a downward bias in Ne estimation 

when the LD method is applied to a number of sampled individuals that is fewer than the 

actual number of breeding individuals (Waples 2006). Alleles with frequencies < 0.05 

were discarded from the analysis, and estimates of Ne were calculated with 95% 

confidence intervals calculated from non-parametric bootstrapping over all loci.  

 

4.3.3.2 Analysis of Genetic Structuring 

 

Previous genetic studies of roach, in which nuclear genetic markers were used to measure 

equilibrium levels of genetic differentiation among populations, uncovered significantly 

high levels of intra-population genetic diversity for allozyme, RFLP and microsatellite 

marker loci. For all markers and all studies the greatest proportion of the variance of allele 

frequencies was overwhelmingly within populations as opposed to among populations. 

Most studies used the canonical metric of differentiation, Wright’s FST, describing 

hierarchical levels of genetic structuring within and amongst populations that are assumed 

to be at mutation-migration-drift equilibrium. 

 

Latterly, population genetic studies have used various estimators of FST (such as GST, ! 

and !ST) that have at their core a reliance upon assessing levels of genetic divergence 

amongst populations by relating the amount of genic diversity (expected heterozygosity) 

within populations to that found in the total population (Meirmans & Hedrick 2011). 

However, these estimators of genetic divergence underestimate the true level of genetic 

disparity among populations when levels of intra-population heterozygosity are high (Jost 

2008). For highly variable loci, the maximum level of differentiation is not necessarily 

given by 1, instead such measures are influenced by high levels of genic diversity within 

populations, such that there is often a negative correlation between the amount of within-

population genetic diversity and the maximum attainable value of the estimator of FST 

amongst populations (Meirmans & Hedrick 2011; Heller & Siegismund 2009). 

Standardization, whereby the estimator of FST is given as a function of its maximal 

possible value, has been put forward as a solution to the issue of highly genetically diverse 

populations in population genetic studies. Standardized values of GST, in which sampling 

from within a metapopulation of k sub-populations takes into account some of the 

uncertainty of not sampling all populations and/or of taking multiple samplings from 
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within a single population (G’ST, Hedrick 2005b), ! (!’, Meirmans & Hedrick 2011) and 

!ST (!’ST, Meirmans 2006) have all been developed in which the maximal value that can be 

expected when allelic differentiation over all populations is absolute is 1. Jost (2008) 

incepted a new measure of differentiation, D, in response to criticisms of FST-estimators 

based upon levels of heterozygosity because: i) HS puts a limit on the amount of possible 

divergence; and ii) the unsuitability of HS as a base for a divergence metric because of its 

non-linearity with actual levels of genetic diversity (Meirmans & Hedrick 2011). Jost’s D 

is instead based on the effective number of alleles found within and among populations, 

which does scale linearly with diversity. Whilst based on the number of effective alleles, D 

can be related to heterozygosity by the second equation in Meirmans & Hedrick (2011) 

(Equation 11 in Jost (2008)). 

 

The level of genetic divergence between the Thames and the Stour was initialy assessed by 

the application of Fisher’s exact test of population differentiation, as implemented in 

Genepop version 4.0 (Raymond and Rousset 1995b; Rousset 2008). The software uses the 

MCMC sampling procedure (100000 dememorizations steps (analogous to ‘burn-in’), with 

1000 batches and 5000 iterations per batch) and the log likelihood ratio statistic, G (Guo 

and Thompson 1992), to detect significant deviations from a random distribution of 

genotypic frequencies between the two rivers (Goudet et al. 1996). Axiomatic estimates of 

population structuring - FST, RST - were calculated in the packages FSTAT version 2.9.3.2 

(Goudet 1995) and SPAGeDi version 1.3 (Hardy & Vekemans 2002). Statistical 

significance for all estimates of population sub-structuring in FSTAT was determined by 

permuting the dataset 10000 times, whilst in SPAGeDi standard error estimates for global 

values were determined using the jack-knifing procedure of Sokal & Rohlf (1995) over all 

loci. Within FSTAT, Weir and Cockerham’s (1984) FST-estimator, !, was calculated for 

each locus (over both populations and all loci). 1000 permutations of the dataset allowed 

the construction of 95% confidence intervals. ! assumes that populations are at migration-

mutation-drift equilibrium, a situation that may not be commonplace in nature (although 

this simple model approximates real data with surprising consistency)36, especially if the 

markers employed do not follow the IAM model of evolution. 

 

 

                                                
36 When interpreting genetic divergence as a consequence of gene flow, or lack thereof, one assumes 
populations are at migration-drift equilibrium; when one assumes populations have recently diverged 
then genetic drift (the rate of fixation of alleles) becomes the causal locus for divergence (Hardy et al. 
2003). 
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Bias-corrected estimates of both HS & HT (strictly only necessary when the number of 

sampled individuals is small) can be used to estimate the new class of standardized FST 

estimators, as well as Nei’s D and Jost’s D. Jost’s D, however, takes longer to reach 

equilibrium than the standardized estimators of FST, particularly when rates of mutation 

are low, implying that D is more greatly affected by the mutation rate than the other 

estimates (Ryman & Leimar 2009). In the absence of migration, the fact that all new 

variation is derived from mutation best fits the expectation of the D statistic, which is itself 

independent of population size (Jost 2009). However, D is an unsuitable metric for highly 

connected populations experiencing high rates of gene flow and/or low mutation rates 

(Meirmans & Hedrick 2011). Whilst Jost’s D is seemingly the most appropriate measure 

of divergence for demographically isolated populations, the effect of demography and 

genetic drift are neglected (the loss of heterozygosity is inversely related to population 

size). Therefore, traditional standardized measures of differentiation are also included for 

comparison. 

 

G’’ST, a bias-reducing correction of G’ST (Meirmans & Hedrick 2011), was calculated for 

both the actual and simulated datasets based on allele frequencies using the software 

Genodive version 2.0b21 (Meirmans & van Tienderen 2004). The same software was also 

used to calculate Jost’s D (which already includes a correction term for a small number of 

compared populations) and !’, the calculation of which is dependent upon the maximum 

value of ! being derived from a re-coding of the dataset such that each sampled population 

possesses only those alleles that are unique to that population (Meirmans 2006). Standard 

errors, to quantify the variance in differentiation estimation attributable per locus and to 

mean values over all loci, were calculated by employing a jackknifing procedure inclusive 

within the software package 

 

Furthermore, one applied assignment tests upon all 1001 roach individuals to assess the 

probability that each may be assigned to its population of origin based upon the 

differential allele frequencies in the two reference river populations. The analysis also 

assigned groups of individuals, i.e. each of the sampled ‘populations’, to each of the two 

rivers. If there is genetic differentiation between the Stour and the Thames, then the 

success of assigning individuals and populations to their respective sampled rivers should 

be high. This analysis was undertaken in GeneClass 2.0 (Piry et al. 2004). Geneclass 

possesses three inferential methodologies: a Bayesian approach (Rannala & Mountain 

1997); a frequency-based method (Paetkau et al. 1995); and a genetic distance method 

(Cornuet et al. 1999). These methods are listed in decreasing order of accuracy in 
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simulation studies based upon 10 populations, 10 independent loci, 30 individuals per 

population, and an average FST of 0.1 (Cornuet et al. 1999). However, with these 

conditions, assignments generally achieve 100% success rates (Primmer et al. 2000). All 

methods adopted the invocation that each individual under analysis is removed from the 

reference datasets. For the distance-based method, two distances were analyzed: the chord 

distance of Cavalli-Sforza & Edward (1967) and Nei’s minimum genetic distance (DNEI) 

(Nei 1973). 

 

4.3.3.3 Testing the Influence of Microsatellite Mutational Model on 
Estimates of Genetic Structure 
 

The stepwise, bidirectional evolution of microsatellite markers, suggests that in some 

cases, alleles that are identical in state (IBS) in two populations may not be identical by 

descent (IBD), i.e. they have different evolutionary histories, and the populations are 

actually more genetically and evolutionarily divergent than a naïve recording of allelic 

state frequencies would suggest. Slatkin (1985) incorporated the ladder-like evolution of 

microsatellite loci into the hierarchical model of F-statistics. RST is analogous to FST, such 

that RST describes the correlation of allele sizes between loci within populations (Slatkin 

1995; Hardy et al. 2003). Slatkin’s method (1995) assumes that the expected squared 

differences among allele size classes closely approximate the linear function of the time to 

coalescence of any paired alleles at a locus. The method records a ‘mutational memory’, 

such that the number of stepwise differences between two alleles increases in time since 

common-ancestry (Hardy et al. 2003). 

 

However, not all microsatellites faithfully adhere to the SMM model (e.g. Estoup and 

Angers 1998; Ellegren 2000b), and thus RST estimates may be biased due to the underlying 

assumption of the mutational process. If the SMM model of microsatellite evolution is 

upheld, FST and RST estimates that are similar for an identical set of data indicates that the 

genetic differentiation among two or more populations may be attributed to drift. If, 

however, RST is > FST, then one may attribute the differences in calculated divergence to 

the influence of the microsatellite mutational model assumed, with the result being that 

FST would be underestimated if IAM were to be adopted in place of the SMM. To 

determine whether the mutational dynamics of microsatellite evolution influences the 

estimation of population divergence and genetic structuring, Hardy’s allele size 

randomization test (Hardy et al. 2003), in which allele sizes are randomly permuted among 

allelic states, was implemented in SPAGeDi version 1.2 (Hardy and Vekemans 2002). The 
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allelic size data were permuted the maximum 20000 times to determine the existence of a 

variant expectation to the null expectation of a zero effect of allelic motif size on diversity 

and differentiation estimates, in relation to either the rate of migration among the two 

rivers (facilitated naturally or anthropogenically) or the inverse of the time since isolation 

(1/t). The analysis formulated estimates of uncorrected RST and RST corrected for size-

permutations (pRST), the latter having an expected value lower than the unpermuted RST 

estimate if the SMM contributes greatly to the non-random association of allelic state and 

microsatellite repeat motif number. 

 

4.3.3.4 Deviation from Mutation-Migration-Drift Equilibrium 
 

The degree to which two demographically isolated, panmictic populations are genetically 

divergent is dependent upon four factors: shared population histories, the mutation rate, 

the population size (the power accorded to genetic drift) and the time (number of 

generations) that has elapsed since the two populations last shared a common breeding 

pool. If, however, one or more of the populations has suffered a recent population 

bottleneck, or the time that has elapsed has not been long enough to erode away the signals 

of a founding bottleneck, then the amount of divergence exhibited between the two 

populations should be greater than that expected under mutation-drift equilibrium. The 

software BOTTLENECK (Piry et al. 1999) was implemented to test whether the 

assumption of mutation-drift equilibrium holds for each of the pooled datasets of the Stour 

and the Thames, respectively. Under a bottlenecking scenario, heterozygosity is lost at a 

rate considerably less than the number of unique alleles, with rare alleles being more likely 

to be expunged from a population than more common ones. Therefore, the observed 

heterozygosity will be greater than the expected heterozygosity of the same population 

under a model of mutation-drift equilibrium (Ho > He) (Luikart et al. 1998), at least within 

a period of time that approximates 0.2 – 4Ne generations (Luikart & Cornuet 1998). 

BOTTLENECK uses coalescent simulations to derive, from the observed number of 

alleles, distributions of heterozygosities under the null hypothesis of equilibrium 

conditions and under non-equilibirum conditions, for three different models of evolution 

(IAM, SMM and a two-phase model (TPM) in which most mutations follow the SMM, but 

a pre-determined proportion (k) follow the IAM (Di Rienzo et al. 1994)). All three models 

were implemented in BOTTLENECK, within which the Wilcoxon-signed ranks test was 

performed to determine the significance of any skew from a neutral Ho:He ratio. This test 

is considered the most statistically powerful available in BOTTLENECK for any analysis 

in which there are less than 20 marker loci (Piry et al. 1999). For illustration, the shape of 
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the frequency spectrum of allele numbers can qualitatively indicate a deviation from 

equilibrium, with deviations from a smooth L-shaped curve indicating such a process 

(Luikart et al. 1998). 

 

Finally, one tested whether the two river populations share a signal of recent or historical 

gene flow, or whether they meet the expectation of genetic diversity distributed under a 

model of isolation and genetic drift alone after fragmentation from a common source. To 

test the latter, the program 2mod version 2.0 (Ciofi et al. 1999) utilizes coalescent-

simulations to see if the data best fits an equilibrium migration-drift model or whether it 

best fits a model of genetic drift only. By employing an MCMC approach, the program 

compares the likelihoods of each model given the allele frequency data of each river. The 

program was run for each model over 100000 iterations (of which the first 10% were 

discarded). The numbers of iterations that support each model were tallied and the most 

likely model is the one with the greatest tally. 

 

4.3.4 Results 

 

4.3.4.1 Levels of Genetic Diversity within the Thames and the Stour 

 

Tables 4.7 and 4.8 show estimates of genetic diversity for all sampled locations within the 

Thames and Stour rivers, respectively. Despite some locales providing few or no 

successful PCR amplifications for certain loci (hence the variable number of genotyped 

individuals for each locus), overall levels of genetic diversity seem remarkably similar at 

first glance. The mean numbers of alleles (18 versus 17 in the Stour and in the Thames, 

respectively), number of private alleles (2.7 as opposed to 2.5), number of effective alleles 

(5.450 versus 5.735) and allelic richness (17.414 vs. 17.159) are all found within a margin 

of 8% of the higher figure. Moreover, the allele frequencies for both the Stour and the 

Thames are broadly co-distributed (see Appendix B). 

 

Of the 129 possible locus-location comparisons in the Thames (Table 4.7), 10 were 

statistically significant for deviations from HWE after the application of the Bonferroni 

correction, whereas 43 are significant before applying the correction. 
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Table 4.7: Indices of genetic diversity for 13 sampled sites within the 
Thames. NS = sample size; NA = number of unique alleles per location; AR 
= allelic richness; HE = expected heterozygosity; HO = observed 
heterozygosity; F IS = population inbreeding coefficient.  

L
oc

us
 

 Sample Site 
MWP DL OW CI Te Wh Dor Day Cu Ey No Bu Ro 

Lid1              

NS 32 64 48 61 57 23 31 31 40 32 23 26 21 

NA 8.000 10.00 10.00 8.000 9.000 10.00 7.000 9.000 9.000 10.00 6.000 6.000 6.000 

AR 6.450 7.881 7.910 6.174 6.156 8.888 5.810 8.206 6.321 8.439 5.857 5.192 5.429 

HE 0.702 0.813 0.743 0.657 0.676 0.776 0.729 0.811 0.649 0.741 0.644 0.655 0.668 

HO 0.563 0.609 0.583 0.541 0.632 0.652 0.613 0.484 0.750 0.750 0.652 0.731 0.619 

FIS* 0.201 0.252 0.216 0.177 0.067 0.162 0.161 0.407 -0.157 -0.012 -0.012 -0.119 0.075 

Lco4              

NS 33 61 48 61 56 22 31 31 40 32 22 25 22 

NA 5.000 5.000 5.000 6.000 7.000 4.000 6.000 6.000 6.000 6.000 6.000 5.000 6.000 

AR 4.357 4.300 4.570 4.916 6.542 3.991 5.891 5.671 5.806 4.922 5.763 4.796 5.722 

HE 0.449 0.621 0.691 0.646 0.778 0.673 0.769 0.707 0.743 0.613 0.755 0.643 0.714 

HO 0.364 0.656 0.646 0.508 0.714 0.500 0.710 0.548 0.600 0.531 0.500 0.520 0.773 

FIS 0.192 -0.057 0.066 0.215 0.083 0.262 0.079 0.227 0.195 0.135 0.343 0.195 -0.085 

Rru3              

NS 32 62 48 57 51 17 21 33 38 33 24 23 22 

NA 5.000 5.000 4.000 7.000 5.000 5.000 4.000 5.000 4.000 5.000 7.000 5.000 5.000 

AR 4.892 4.693 3.984 5.534 4.028 5.000 4.000 4.508 3.987 4.489 6.315 4.721 4.989 

HE 0.596 0.576 0.567 0.644 0.492 0.652 0.661 0.578 0.587 0.528 0.665 0.471 0.661 

HO 0.500 0.290 0.479 0.351 0.451 0.588 0.476 0.333 0.500 0.364 0.500 0.391 0.636 

FIS 0.163 0.498 0.156 0.458 0.084 0.101 0.284 0.427 0.150 0.315 0.252 0.173 0.038 

Ca1              

NS 25 60 49 55 53 23 30 32 34 31 25 24 21 

NA 8.000 12.00 13.00 14.00 10.00 9.000 6.000 8.000 9.000 10.00 9.000 10.00 7.000 

AR 7.453 8.625 8.867 9.407 7.200 7.829 5.371 6.820 7.266 8.147 8.066 9.034 6.554 

HE 0.796 0.822 0.792 0.839 0.783 0.743 0.711 0.796 0.764 0.798 0.813 0.845 0.753 

HO 0.760 0.683 0.818 0.727 0.698 0.652 0.600 0.719 0.882 0.645 0.440 0.875 0.619 

FIS 0.046 0.170 -0.034 0.134 0.110 0.125 0.158 0.098 -0.158 0.194 0.464 -0.036 0.181 

Ca3              

NS 31 58 46 60 38 23 30 29 37 32 24 18 21 

NA 16.00 17.00 17.00 19.00 22.00 15.00 18.00 16.00 16.00 19.00 16.00 18.00 16.00 

AR 13.91 14.39 13.49 14.27 16.06 12.98 15.17 13.48 13.40 15.96 14.22 15.17 14.74 

HE 0.929 0.936 0.928 0.931 0.944 0.903 0.940 0.911 0.926 0.941 0.925 0.934 0.931 

HO 0.839 0.931 0.870 0.917 0.947 0.870 0.700 0.724 0.730 0.750 0.833 0.800 0.667 

FIS 0.099 0.005 0.064 0.015 -0.003 0.038 0.258 0.208 0.215 0.206 0.101 0.146 0.289 

* Each estimate of the population inbreeding coefficient (FIS) is considered significantly different from a 
null expectation of HWE if highlighted yellow and underlined (significant regardless of Bonferroni 
correction) or shaded grey (only significant before Bonferroni correction). 
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Table 4.7: Continued. 

** NA indicates that not enough individuals were typed for this locus at this location to be included in 
the analysis. 
 

 

L
oc

us
 Sample Site 

MWP DL Wi CI Te Wh Dor Day Cu Ey No Bu Ro 

Ca12              

NS 29 65 49 62 60 22 33 33 34 33 25 25 22 

NA 17.00 21.00 23.00 23.00 19.00 16.00 15.00 15.00 17.00 13.00 13.00 16.00 15.00 

AR 12.85 13.25 13.99 13.38 13.08 14.06 11.85 11.26 13.08 10.33 10.46 13.01 13.16 

HE 0.869 0.805 0.854 0.830 0.854 0.865 0.829 0.785 0.864 0.732 0.676 0.793 0.784 

HO 0.897 0.800 0.857 0.726 0.817 0.818 0.727 0.636 0.794 0.697 0.680 0.720 0.682 

FIS -0.032 0.006 -0.003 0.126 0.044 0.055 0.124 0.192 0.082 0.048 -0.006 0.093 0.133 

Cy3              

NS 28 65 45 58 57 22 32 31 39 33 22 26 22 

NA 17.00 18.00 16.00 20.00 22.00 15.00 15.00 13.00 18.00 14.00 15.00 15.00 13.00 

AR 12.43 11.10 11.72 12.49 13.11 13.34 11.08 9.767 12.66 10.76 12.84 11.99 11.29 

HE 0.755 0.746 0.811 0.870 0.798 0.818 0.706 0.700 0.785 0.720 0.808 0.739 0.697 

HO 0.679 0.600 0.667 0.724 0.772 0.682 0.656 0.645 0.692 0.727 0.955 0.654 0.545 

FIS 0.103 0.197 0.180 0.169 0.033 0.170 0.072 0.079 0.119 -0.011 -0.187 0.117 0.221 

Cy48              

NS 33 51 30 56 58 23 32 33 38 32 26 0 20 

NA 15.00 16.00 12.00 14.00 14.00 11.00 13.00 13.00 11.00 12.00 13.00 NA** 11.00 

AR 12.40 11.14 10.25 10.83 10.51 9.631 11.21 11.04 9.400 10.02 11.88 NA 10.04 

HE 0.912 0.889 0.864 0.884 0.885 0.850 0.909 0.896 0.840 0.889 0.914 NA 0.888 

HO 0.939 0.922 0.700 0.857 0.759 0.739 0.844 0.879 0.816 0.625 0.769 NA 0.900 

FIS -0.030 -0.037 0.193 0.031 0.144 0.133 0.073 0.019 0.029 0.300 0.161 NA -0.013 

Lc27              

NS 33 59 49 63 60 23 33 33 40 32 26 26 20 

NA 3.000 5.000 4.000 3.000 4.000 3.000 4.000 3.000 3.000 4.000 4.000 3.000 4.000 

AR 2.746 3.568 3.355 2.263 2.955 2.739 3.746 2.514 2.892 3.308 3.304 2.952 3.848 

HE 0.197 0.311 0.243 0.225 0.227 0.300 0.426 0.265 0.287 0.255 0.246 0.247 0.419 

HO 0.152 0.271 0.245 0.222 0.200 0.261 0.455 0.242 0.275 0.219 0.269 0.231 0.350 

FIS 0.234 0.130 -0.008 0.014 0.121 0.134 -0.069 0.087 0.042 0.146 -0.097 0.065 0.169 

Lc290              

NS 33 62 49 63 57 18 32 33 38 31 25 27 20 

NA 10.00 10.00 8.000 8.000 9.000 7.000 8.000 9.000 9.000 10.00 7.000 10.00 10.00 

AR 8.448 7.514 6.592 6.743 7.105 6.887 7.213 7.096 8.138 8.269 6.621 9.226 9.360 

HE 0.795 0.801 0.746 0.791 0.756 0.797 0.821 0.723 0.786 0.808 0.798 0.869 0.814 

HO 0.636 0.677 0.694 0.730 0.754 0.667 0.594 0.485 0.553 0.710 0.680 0.630 0.800 

FIS 0.202 0.155 0.070 0.077 0.002 0.167 0.280 0.333 0.299 0.124 0.150 0.279 0.018 

All              

NS 30.90 60.70 45.60 59.60 54.70 21.60 30.50 31.90 37.80 32.10 24.20 22.70 21.10 

NA 10.40 11.90 11.20 12.20 12.10 9.500 9.600 9.700 10.20 10.30 9.600 9.778 9.300 

AR 8.592 8.645 8.473 8.600 8.675 8.534 8.133 8.036 8.223 8.463 8.533 8.454 8.475 

HE 0.700 0.732 0.724 0.732 0.719 0.738 0.750 0.717 0.723 0.703 0.724 0.688 0.733 

HO 0.633 0.644 0.656 0.630 0.674 0.643 0.637 0.570 0.659 0.602 0.628 0.617 0.659 

FIS 0.098 0.121 0.095 0.140 0.063 0.131 0.152 0.208 0.089 0.145 0.136 0.106 0.103 
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Table 4.8: Indices of genetic diversity for 9 sampled sites within the 
Stour. NS = sample number; NA = number of unique alleles per location; 
AR = allelic richness; HE = expected heterozygosity; HO = observed 
heterozygosity; F IS = population inbreeding coefficient. 

Locus 
Sample Site 

Br DM St AB Sh MM RC SbC Th 
Lid1          
NS 82 40 71 54 59 66 18 42 20 
NA 9.000 7.000 11.000 17.000 6.000 7.000 12.000 7.000 7.000 
AR 5.371 4.628 7.204 8.080 4.845 4.829 10.035 5.642 6.159 
HE 0.626 0.604 0.800 0.796 0.638 0.633 0.850 0.743 0.597 
HO 0.577 0.559 0.547 0.662 0.656 0.576 0.882 0.583 0.550 
FIS* 0.079 0.076 0.318 0.170 -0.028 0.090 -0.039 0.217 0.081 

Lco4          
NS 86 39 82 58 64 72 19 43 20 
NA 5.000 3.000 5.000 10.000 3.000 5.000 6.000 5.000 6.000 
AR 3.657 2.896 3.724 5.541 2.833 3.666 5.601 4.177 5.143 
HE 0.586 0.525 0.565 0.728 0.551 0.590 0.740 0.606 0.704 
HO 0.549 0.529 0.466 0.522 0.588 0.516 0.529 0.270 0.700 
FIS 0.063 -0.008 0.177 0.285 -0.069 0.126 0.291 0.558 0.006 

Rru3          
NS 84 36 71 56 21 66 19 40 19 
NA 6.000 6.000 7.000 13.000 NA** 8.000 7.000 5.000 6.000 
AR 4.659 5.227 3.998 7.906 NA 4.933 6.402 4.320 5.206 
HE 0.691 0.790 0.759 0.806 NA 0.756 0.806 0.698 0.629 
HO 0.444 0.469 0.566 0.333 NA 0.557 0.706 0.639 0.579 
FIS 0.359 0.410 0.256 0.588 NA 0.264 0.127 0.085 0.081 

Ca1          
NS 83 40 65 53 35 63 19 38 19 
NA 9.000 6.000 11.000 13.000 10.000 12.000 5.000 8.000 8.000 
AR 6.410 4.919 7.010 7.072 8.023 7.541 4.961 5.925 6.635 
HE 0.779 0.724 0.816 0.789 0.775 0.831 0.759 0.765 0.744 
HO 0.605 0.588 0.528 0.574 0.758 0.690 0.600 0.618 0.579 
FIS 0.224 0.190 0.355 0.274 0.023 0.171 0.215 0.195 0.227 

Ca3          
NS 69 23 67 51 33 48 12 33 18 
NA 20.000 15.000 23.000 22.000 17.000 19.000 13.000 18.000 14.000 
AR 11.712 11.588 12.749 13.681 12.687 12.945 12.347 11.545 11.704 
HE 0.919 0.919 0.928 0.940 0.933 0.938 0.939 0.905 0.914 
HO 0.754 0.783 0.873 0.721 0.800 0.721 0.929 0.750 0.778 
FIS 0.181 0.151 0.060 0.234 0.145 0.234 0.012 0.174 0.153 

* Each estimate of the population inbreeding coefficient (FIS) is considered significantly different from a 
null expectation of HWE if highlighted yellow and underlined (significant regardless of Bonferroni 
correction) or shaded grey (only significant before Bonferroni correction). 
** NA indicates that not enough individuals were typed for this locus at this location to be included in 
the analysis. 
 

The majority of cases deviate significantly from ‘random mating’ by exhibiting a deficit of 

heterozygotes (global mean observed heterozygosity ranges from 0.570 – 0.659 across the 

13 sample sites; FIS spans 0.063 – 0.208; p < 0.0001 in 9 of the 13 sites). There is no 

general pattern within particular Thames locations with regards to deviations from 

expected heterozygosity, or a systematic association of heterozygote deficit with a 

particular locus.  
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Table 4.8: Continued. 

Locus 
Sample Site 

Br DM St AB Sh MM RC SbC Th 

Ca12          
NS 81 40 71 54 59 66 18 42 20 
NA 21.000 17.000 17.000 23.000 14.000 16.000 8.000 16.000 8.000 
AR 10.383 11.473 10.956 10.921 8.767 9.375 7.016 10.661 6.337 
HE 0.860 0.907 0.886 0.894 0.846 0.803 0.761 0.856 0.704 
HO 0.785 0.824 0.807 0.700 0.824 0.767 0.588 0.774 0.500 
FIS 0.088 0.094 0.090 0.218 0.027 0.045 0.233 0.097 0.295 

CypG3          
NS 78 30 74 55 44 58 16 17 20 
NA 17.000 11.000 16.000 18.000 10.000 16.000 9.000 9.000 9.000 
AR 7.111 7.157 7.259 8.148 6.589 8.336 7.500 7.626 6.292 
HE 0.582 0.545 0.583 0.706 0.542 0.692 0.778 0.607 0.440 
HO 0.579 0.552 0.569 0.530 0.563 0.588 0.375 0.500 0.450 
FIS 0.005 -0.012 0.024 0.251 -0.038 0.151 0.526 0.181 -0.024 

CypG48          
NS 73 38 20 51 38 62 0 39 14 
NA 16.000 11.000 13.000 19.000 10.000 14.000 NA 11.000 9.000 
AR 9.684 8.795 10.405 11.278 8.208 9.486 NA 8.339 8.425 
HE 0.884 0.885 0.874 0.910 0.861 0.891 NA 0.862 0.847 
HO 0.861 0.912 0.850 0.846 0.765 0.774 NA 0.778 0.786 
FIS 0.026 -0.031 0.029 0.071 0.113 0.133 NA 0.099 0.074 

Lc27          
NS 82 40 83 57 63 76 19 39 19 
NA 5.000 2.000 5.000 5.000 4.000 3.000 2.000 2.000 4.000 
AR 2.290 1.991 2.836 2.595 2.442 2.199 1.998 1.960 3.853 
HE 0.135 0.255 0.208 0.232 0.141 0.136 0.226 0.187 0.477 
HO 0.141 0.235 0.190 0.214 0.147 0.127 0.250 0.206 0.474 
FIS -0.048 0.077 0.091 0.077 -0.041 0.067 -0.111 -0.100 0.006 

Lc290          
NS 86 37 73 52 56 73 16 42 18 
NA 7.000 7.000 9.000 9.000 7.000 10.000 9.000 10.000 8.000 
AR 5.879 5.431 6.570 7.215 5.563 6.608 8.188 7.161 6.968 
HE 0.758 0.720 0.779 0.843 0.755 0.776 0.863 0.839 0.827 
HO 0.695 0.559 0.667 0.716 0.742 0.794 0.813 0.583 0.667 
FIS 0.084 0.226 0.145 0.151 0.018 -0.022 0.060 0.308 0.198 
All          
NS 80.4 36.3 68.6 54.4 47.6 65.5 15.7 36.8 18.7 
NA 11.500 8.500 11.700 14.900 9.000 11.000 7.889 9.100 7.900 
AR 6.716 6.411 7.271 8.244 6.662 6.992 7.116 6.736 6.672 
HE 0.682 0.687 0.720 0.764 0.672 0.705 0.747 0.707 0.688 
HO 0.599 0.601 0.606 0.582 0.649 0.611 0.630 0.570 0.606 
FIS 0.122 0.128 0.159 0.240 0.034 0.134 0.160 0.196 0.122 

 

Of the 88 locus-location comparisons within the Stour (Table 4.8), 20 revealed significant 

deviations from HWE expectations regardless of Bonferroni correction, 22.73% of 

comparisons against 7.76% in the Thames. 54 locus-by-location comparisons are 

significantly different from zero prior to Bonferroni correction. Like the Thames, overall 

estimates of observed heterozygosity (0.570-0.649; FIS: 0.034 – 0.240, p < 0.001 in 6 out 

of 9 sites) for the nine sample sites display a deficit of heterozygotes. Locus Rru3 shows 

highly significant deficits of heterozygotes in 5/8 populations in which it was genotyped. 
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The mean number of alleles per population was 10.444±1.05 in the Thames and 

10.165±2.181 in the Stour, and the mean allelic richness over all populations was 

8.449±0.198 and 6.980±0.511 for the Thames and Stour, respectively. The Thames 

populations’ mean levels of gene diversity, observed heterozygosity and population-level 

inbreeding were also higher than that found in the Stour (HE = 0.722±0.017 and 

0.708±0.029; HO = 0.635±0.028 and 0.606±0.022; and FIS = 0.100±0.028 and 

0.095±0.053, for the Thames and Stour respectively). 

 

The allele frequencies for all ten loci, pooled across the two rivers, embrace the range of 

frequency patterning often found with microsatellites (e.g. irregular, bimodal, or trimodal 

distributions (Valdés et al. 1993)), consistent with the expectations of the stepwise 

mutation model of microsatellite evolution. Whilst the mean values tend to be similar 

among the Stour and Thames individuals, there are locus specific differences. For 

example, there exist a differential number of alleles, greater than one, between the two 

rivers for the loci: Rru3, Lc290, Ca1 and Ca12. Furthermore, the number of private alleles, 

whilst tallying to similar mean values, is distributed among different loci. Similarly, there 

is also variation found among loci for the values of effective allele number and allelic 

richness between the Thames and the Stour populations. However, overall levels of 

variation, in the numbers of alleles and in their general patterning within the two rivers, 

appear very similar (see Fig 4.5). 

 

 

Figure 4.5: Graphical representations of mean values for a range of diversity indices. 
Na – number of alleles; Na > 5% = number of alleles with a frequency greater than 
5%; Ne = number of effective alleles; I = Shannon’s diversiy index. Bars represent 
the standard errors associated with the mean values for each of the diversity 
measures. 
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The results of the linear regression analysis are presented in Table 4.9 and represented 

graphically in Fig 4.6. Table 4.9 shows the estimate of both x and a (the value of y when x 

is zero), when the data is best fitted for a strictly linear, predictive relationship between the 

twin datasets of the Stour and the Thames. Also presented are the 95% confidence 

intervals for the values of x and a (top and bottom, respectively), the standard errors, and 

the t-statistics and p-values. Assuming a strict linear relationship, the diversity values of 

the Thames are directly predictable from the values of the Stour data for each diversity 

category (NA: y = 1.1404, p < 0.001; NEA: y = 0.9483, p < 0.001; Ar: y  = 1.0818, p < 

0.001; Ho: y  = 0.9255, p < 0.001; He: y  = 0.8163, p < 0.001; FIS: y  = 0.6726, p = 0.0196), 

with the exception of the number of private alleles (NPA: y  = 0.3257, p = 0.3976). 

 
Table 4.9: Results of the linear regression analyses. x and a refer to the 
parameters that describe a relationship between two variables (slope) (see 
text). For each diversity metric the top figure is x, whereas the bottom 
figure is a. 95% CI, standard error, the t-statistic and statistical 
significance is given for both values and for each diversity metric.  

 
 

Diversity x/a 
95% CI Standard 

Error t-Statistic p-value 
Lower Upper 

NA 
-2.7263 -6.2768 0.8241 1.5397 -1.7707 0.1146 

1.1404 0.9585 1.3223 0.0789 14.4569 5.12x10-7 

NEA 
0.5664 -0.9724 2.1053 0.6673 0.8488 0.4207 

0.9483 0.7137 1.1828 0.1017 9.3238 1.42x10-5 

Ar 
-1.6797 -5.2864 1.9270 1.5641 -1.0739 0.3142 

1.0818 0.8916 1.2720 0.0825 13.1158 1.09x10-6 

NPA 
1.6207 -1.0236 4.2649 1.1467 1.4134 0.1953 

0.3257 -0.5147 1.1661 0.3644 0.8936 0.3976 

Ho 
0.0855 -0.0852 0.2561 0.0740 1.1552 0.2814 

0.9255 0.6508 1.2001 0.1191 7.7695 5.38X10-5 

He 
0.1580 -0.0955 0.4116 0.1100 1.4374 0.1886 

0.8163 0.4761 1.1566 0.1476 5.5325 5.52x10-5 

FIS 
0.0341 -0.0626 0.1307 0.0419 0.8130 0.4397 

0.6726 0.1396 1.2056 0.2311 2.9101 0.0196 
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Figure 4.6: Linear regression plots for each of the seven genetic diversity measures listed in Table 4.8. Top row, left to right: number of alleles; 
number of effective alleles; allelic richness, number of private alleles. Bottom row, left to right: observed heterozygosity; expected heterozygosity; 
and heterozygote deficiency (FIS). The smaller graphs under the main plots, show the distribution of the residuals for the Thames (left) and Stour 
(right), respectively. 
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Fig. 4.7 presents the results of a correlation analysis to determine the occurrence of 

predictive relationships between levels of genetic diversity averaged over all loci and the 

linearly ordered geographical sites at which roach were sampled, from downstream to 

upstream. For both rivers, the average number of alleles per site decreases with increasing 

upstream location, attaining statistical significance in the Thames (Pearson’s r = 0.6709, 2-

tailed p = 0.0121) (R2 value shown for MNA in Fig 4.7 only), but not in the Stour 

(Pearson’s r = 0.4758, 2-tailed p = 0.1955). No significant downstream-upstream trend is 

seen for allelic richness (Thames: Pearson’s r = 0.3492, 2-tailed p = 0.2422; Stour: 

Pearson’s r = 0.0643, 2-tailed p = 0.8695), gene diversity (Thames: Pearson’s r = 0.154, 2-

tailed p = 0.6134; Stour: Pearson’s r = 0.1168, 2-tailed p = 0.7647), observed 

heterozygosity (Thames: Pearson’s r = 0.2175, 2-tailed p = 0.4753; Stour: Pearson’s r = 

0.0235, 2-tailed p = 0.9521) or FIS (Thames: Pearson’s r = 0.1545, 2-tailed p = 0.6143; 

Stour: Pearson’s r = 0.0803, 2-tailed p = 0.8373).  

 

 
Figure 4.7: The relationship between mean number of alleles (MNA: light blue), 
allelic richness (Ar: red), gene diversity (He: green) (left) and observed heterozygosity 
(Ho: pink) and FIS (navy blue) (right) with sample site (downstream to upstream (left 
to right)) for all loci combined. Thames (top); Stour (bottom). 
 

Levels of allelic richness remain relatively stationary with increasing distance upstream in 

the Thames, with little perturbation, except for a slight dip between Dorchester and Days. 

In the Stour, however, allelic richness peaks at Anchor Bridge, declining immediately 

upstream before a smaller, secondary peak at Rat’s Castle. The Anchor Bridge 

‘population’ also experiences a large increase in the mean number of alleles as well as 
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gene diversity, with a concomitant decrease in observed heterozygosity commensurate 

with a reduction in the expected number of heterozygotes. The contiguous upstream 

‘population’ at Shalford Weir shows a converse patterning. The sampled location of Rat’s 

Castle – Stoke by Clare also shows a strong inverse relationship between observed 

heterozygosity and FIS. The Dorchester-Days area of the Thames shows a marked 

reduction in observed heterozygosity relative to HWE expectations, in addition to an 

excess of homozygotes with a concomitant reduction in allelic diversity.  

 

Fig 4.8 reveals the results of an analysis to determine whether the datasets from both rivers 

significantly differ in average values of diversity across the sampled sites. The smooth 

histograms (upper graph) plot the probability density function for each of the five diversity 

indices for both rivers, whereas the box-whisker plots (lower plot) graphically display the 

range (including 50% quartiles) of values found in each river averaged over all 

populations. Of the five comparisons, allelic richness (Mann-Whitney’s U = 114, p < 

0.001) and observed heterozygosity (Mann-Whitney’s U = 94, p = 0.0194) were found to 

significantly deviate from the null expectation of no difference, with higher levels of both 

found in the Thames (Thames: mean Ar = 8.447±0.198; mean Ho = 0.635±0.027; Stour: 

mean Ar = 6.980±0.542; Mean Ho = 0.606±0.023). The remaining factors were found to 

overlap (see Fig 4.8) indicating no difference in mean levels of these parameters (MNA: 

Mann-Whitney’s U = 75, p = 0.2852; He: Mann-Whitney’s U = 0.125, p = 0.1508; FIS: 

Mann-Whitney’s U = 39, p = 0.1816).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

202 

 

 
Figure 4.8: Comparison of mean levels of genetic diversity across sample sites between the Thames (red) and the Stour (blue) for: (left to right) 
mean number of alleles (MNA), allelic richness (Ar), gene diversity (expected heterozygosity), observed heterozygosity and FIS. Top: Probability 
density function plots; Bottom: Box plots showing 50% quartile range, full range (bars) and median values (white line within box). 
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Table 4.10: Single-point estimates of the effective population sizes of the 
Thames and Stour Rivers’ roach metapopulations, based on an analysis of 
10 microsatellite loci. 

 

Table 4.10 lists the estimated effective population sizes for both the Thames and Stour 

populations as calculated by the two LD methods. The heterozygosity excess method 

resulted in estimates of infinity for both the Stour and for the Thames. Estimates of Ne for 

the Stour were calculated to be 368 (95% CI: 335.5-407.5) and 1094.5 (95% CI: 548.5-

8440.2) for the uncorrected and corrected LD method, respectively. The estimates of Ne 

for the Thames were 1631 (uncorrected - 95% CI: 1261.9-2273.7) and 1158.3 (corrected - 

95% CI: 548.5-8440.2). 

 

4.3.4.2 Models of Microsatellite Evolution and Deviation from Migration-

Mutation-Drift Equilibrium 

 

Hardy’s allele-size randomization test (2003) was employed to determine whether the 

microsatellite data are consistent with the null hypothesis that the impact of stepwise 

mutational pressure on genetic diversity and population divergence is negligible in 

comparison to inter-population migration rate and/or the inverse of the time since 

demographic isolation. Table 4.11 shows the global FST, RST and mean permuted pRST 

estimates for each locus and for all loci combined. With the exception of Lc27, Lco4 and 

Rru3, RST estimates for each of the loci are lower than the mean permuted values, with no 

loci showing a significant increase in value than expected from randomization of allele 

size classes. The hypothesis that the SMM model contributes significantly to the 

divergence estimates at these loci cannot be substantiated, at least within the time frame 

since the river populations last shared a common breeding population. As the value of RST 

is not greater than FST, and that a stepwise mutational process has not contributed to the 

discrepancy, one can assume that the RST measure does not indicate any significant 

biological difference. However, the test does assume a straight SMM model of 

microsatellite evolution and that populations are in migration-drift equilibrium.  

 

Method 

River 

Reference 
Thames Stour 

Ne 
Confidence 

Interval Ne 
Confidence 

Interval 
2.5% 97.5% 2.5% 97.5% 

LD 1631 1261.9 2273.7 368 335.5 407.5 Hill 1981 
LDcor 1158.3 662.9 3445.2 1094.5 548.5 8440.2 Waples 2006 
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Table 4.11: Results of Hardy’s allele size randomization test. 

Locus FST
 RST pRST

* 
95% CI p-value** 

2.5%           97.5% 
Lid1 0.0073 0.0056 0.0078±0.011 -0.0013 0.0390 0.5892 
Lco4 0.0512 0.0695 0.0518±0.052 -0.0011 0.1734 0.6857 
Rru3 0.0371 0.0080 0.0309±0.024 -0.0013 0.0781 0.2522 
Ca1 0.0094 -0.0002 0.0099±0.014 -0.0013 0.0473 0.2308 
Ca3 0.0028 -0.0013 0.0027±0.005 -0.0014 0.0176 0.1278 
Ca12 0.0125 0.0048 0.0117±0.014 -0.0011 0.0499 0.4441 
CypG3 0.0271 0.0038 0.0234±0.020 -0.0012 0.0682 0.1940 
CypG48 0.0068 0.0050 0.0067±0.010 -0.0014 0.0345 0.5964 
Lc27 0.0041 0.0117 0.0037±0.005 -0.0013 0.0136 0.9510 
Lc290 0.0388 0.0035 0.0354±0.035 -0.0011 0.1197 0.2190 

All 0.0198 0.0036 0.0140±0.009 0.0023 0.0348 0.0651 
* Mean permuted RST values after 20000 allele size randomization permutations. 
** 1-tailed tests, mean permuted RST < observed RST, 
 

The BOTTLENECK analysis indicated that in the Stour, eight out of ten loci exhibit an 

excess of heterozygotes relative to the expectation of heterozygosity under mutation-drift 

equilibrium under a model of strict IAM, whilst the converse was true under the TPM 

model. Assessing over all loci, the expected number of loci with heterozygote excess 

under IAM is 6.03, whilst the expected number of loci showing excess under the TPM 

model was 5.89. The Stour showed no evidence for systematic deviation from neutral 

expectations under the IAM (2-tailed p = 0.1739), however under the TPM there is a 

significant increase in loci showing heterozygosity deficiencies than expected under 

neutrality (2-tailed p = 0.0149). Similarly, in the Thames, there were a higher number of 

individual loci showing heterozygosity excess (7 out of ten) than expected under neutrality 

for the IAM model, although not significantly so (5.99, 2-tailed p = 0.3794), whereas the 

exact converse was true under the TPM (7 out of 10 loci showed heterozygosity 

deficiencies, against the neutral expectation of 5.85, although again not-significantly so (2-

tailed p = 0.067)). The analyses do not support a significant reduction in population size, at 

least within 0.2 – 4Ne generations, under either the IAM or the TPM model of 

microsatellite evolution, within either the Thames of the Stour. The Stour, however, shows 

a significant deficit of heterozygotes under the TPM, as is similarly the case in the Thames 

(borderline significant), but not under the IAM. 

 

The analysis of migration-drift equilibrium in the software 2mod was unequivocal: the 

model of migration and drift was supported 100%, whilst the model of drift alone was 

completely disregarded. To test whether contemporary levels of migration indicate the 

presence of true migration-drift equilibrium, the detection of migrants was carried out to 

assess for first generation and recent levels of effective migration (in GENECLASS (Piry 

et al. 2004) and BAYESASS+ version 1.01 (Wilson and Rannala 2003), respectively). 
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GENECLASS identified no first generation migrants whatsoever between the Thames and 

the Stour. Extremely low levels of inter-river migration between the Thames and the Stour 

were identified by BAYESASS+, such that migration rate into the Thames from the Stour 

was 0.00363±0.006, whereas the rate of migration from the Thames into the Stour was 

similarly low, 0.00552±0.006, although slightly higher. The results do not support a 

hypothesis of large-scale and ongoing migration between the two rivers. 

 

4.3.4.3 Genetic Divergence Between the Thames and the Stour 

 

Weir and Cockerham’s ! was applied in the first instance to estimate levels of 

differentiation between the Thames and the Stour roach. After 1000 permutations, the 

value of 0.0198 was found to be statistically significant (p < 0.001). Additionally, 

standardized estimates of divergence were calculated: standardized FST (0.063), G’ST 

(Nei’s formulation, 0.02), G’’ST (0.074), DJOST (0.056) and DNEI (0.056). For both G’ST and 

FST, and for DJOST and DNEI, their respective values are identical (0.2 and 0.056, 

respectively). Both FST and Nei’s GST, non-standardized metrics, indicate the lowest 

degree of differentiation between the Stour and the Thames. The greatest amount of 

divergence is inferred from Meirmans & Hedrick’s standardization of the latter statistic 

(G’’ST = 0.074). 

 

4.3.5 Discussion 

 

4.3.5.1 Levels of Genetic Diversity within the Thames and Stour 

 

Table 4.12 lists indices of microsatellite diversity for five common and widespread 

cyprinids and one endangered cyprinid from the recent literature. The mean values of He in 

the UK roach are similar for those of similar small cyprinid species such as the minnow 

Phoxinus phoxinus (0.708) and the dace L. leuciscus (0.723), although values for Ho and 

FIS are both lower in the roach, although this is probably due to pooling demes. Roach 

have greater levels of diversity than the tench, the endangered C. lusitanicum and the 

chub, with which it shares a similar level of FIS in one study of within-drainage chub 

populations (roach = 0.213; chub = 0.203 (Dehais et al. 2010)). 
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Table 4.12: Levels of microsatellite diversity in a selection of widely 
distributed and endangered European cyprinids, including roach diversity 
data uncovered by this study. 

Species IUCN Listing No. 
Loci NA Ho He FIS Reference 

Rutilus rutilus Least concern 10 20.50 0.618 0.740 0.213 Present study 

Gobio gobio Least concern 8 17.42 0.745 0.734 0.012 Blanchet et al. 
2010 

Phoxinus phoxinus Least concern 8 20.38 0.706 0.708 0.021 Blanchet et al. 
2010 

Squalius cephalus Least concern 10 8.85 0.595 0.588 0.019 Blanchet et al. 
2010 

Squalius cephalus Least concern 5 - - 0.656 0.203 Dehais et al. 
2010 

Leuciscus leuciscus Least concern 15 13.57 0.721 0.723 0.022 Blanchet et al. 
2010 

Tinca tinca Least concern 7 3.69 0.370 0.403 0.082 Kohlman et al. 
2007 

Chondrostoma 
lusitanicum 

Critically 
endangered 6 7.17 0.291 0.280 -0.059 

Sousa et al. 
2008 

NA = mean number of alleles; Ho = observed heterozygosity; He = expected heterozygosity; FIS = 
population inbreeding. 
 

Overall levels of roach genetic diversity are remarkably similar for both the Thames and 

the Stour ‘populations’, with directly predictable relationships between the two rivers in 

the number of alleles, number of effective alleles, observed heterozygosity, gene diversity 

and FIS, although quite weakly so in the latter. The level of congruity in diversity indices is 

indicative of either retained ancestral diversity from a highly diverse common stock, or 

pronounced and ongoing gene flow. The single index in which the two populations 

differed unpredictably was in the number of private alleles. That the two populations differ 

in this respect suggests that the two rivers have diverged, and that this divergence is 

generally due to different mutational-drift trajectories, and that similarly high levels of 

present day diversity is a relic of prior connectivity in the recent geological past. 

 

Both the Thames and the Stour populations exhibit a few locations where levels of 

heterozygosity deviate from null expectations. In almost all cases, locus-by-location 

comparisons exhibit lower heterozygosity relative to that expected from observed allele 

frequencies. All but four populations in the Thames show a significant reduction of 

heterozygotes relative to homozygotes over all loci (Molesey Weir Pool, Temple, 

Whitchurch and Buscot the exceptions), whereas all but two populations display similar 

excess of homozygotes in the Stour (Thurlow and Denham Mill being the exceptions) (see 

Tables 4.8 and 4.9 and Fig 4.7). Whilst the mean levels of FIS and gene diversity were 

found to not significantly differ between the Thames and the Stour (although FIS and He 

were higher in the Thames), mean observed levels of heterozygosity (Ho) were found to be 

significantly higher in the Thames than in the Stour (Fig 4.8). The frequency of locus-by-
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location rejection of HWE (7.75% - 22.73%, Thames – Stour) is less than that found 

across 5 microsatellite loci in roach in one Swedish study (10/40 comparisons; 25% 

(Demandt & Bjorkland 2007)), but similar to that found in a later study of temporal 

differentiation in 5 microsatellite loci (2/26 comparisons; 7.6%, albeit before Bonferroni 

correction (Demandt 2010)).  

 

A number of factors can impact upon levels of heterozygosity at neutral loci, most often 

expressed as the population-level inbreeding coefficient FIS: most notably deviations from 

random-breeding (e.g. inbreeding (Conner and Hartl 2004)), the presence of age-structured 

populations and the sampling of distinct demes that have congregated in a single space. 

Sporadic and random deviations from HWE are expected with finite populations, and a 

low-level influence of null alleles cannot be entirely discounted, although their effects are 

probably minimal (Chakraborty et al. 1992; and see section 4.2.2.2). Such stochastic and 

technical artefacts probably explain the small number and non-patterned distribution of 

locus-by-location deviations from HWE in the Thames. These data are entirely consistent 

with known migration behaviour and individual dispersal of roach after the end of the 

spawning period, when roach migrate away from spawning areas to those richer in food to 

alleviate the loss of body weight by considerable reproductive effort and to prepare for 

next year’s spawning run. Interestingly, the most downstream population at MWP is a site 

located immediately upstream of a heavily stocked segment of the River Thames, having 

thirty thousand fish roach released in the year 2000 (see below). It exhibits one of the 

smallest departures from HWE in the Thames (FIS = 0.098, third lowest out of thirteen 

populations), which suggests that stocking of a small stretch of a major river may not 

necessarily result in impacting upon random breeding and local diversity if the diversity of 

the donor population is high (these fish were derived from private lakes (Nigel Hewlett, 

pers comm)). The introduced population may also be reproductively isolated if within 

MWP breeding preference is with other introduced roach, thereby negating localised 

Wahlund effects. 

 

The frequency of locus-by-location deviations from HWE was almost three-fold greater in 

the Stour than in the Thames, despite a similar number of fish sampled overall. That locus 

Rru3, at five out of eight locations where it was genotyped, exhibits significant excess of 

homozygotes suggests that null alleles may be influential. A similar situation was 

observed in the European cyprinid tench (Tinca Tinca) whereby one locus, MTT-8, 

exhibited highly significant deviation from HWE in half of the studied wild populations, 

which the authors attributed to the influence of null alleles (Kohlmann et al. 2007). Loci 
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potentially affected by null alleles have also been identified in other freshwater fishes, e.g. 

burbot Lota lota (Elmer et al. 2008), perch Perca fluviatilis (Bergek and Bj!rklund 2007), 

the bitterling Rhodeus amarus (Bryja et al. 2010) and the vairone Telestes muticellus 

(Marchetto et al. 2010). In most studies, and as observed in the present study, the inclusion 

of such loci seems to have little impact upon estimates of population structuring. Despite a 

small proportion of locus-by-location comparisons deviating from HWE, the overall effect 

of null alleles is not likely to be the main cause of deviation from HWE in the case of the 

Stour (only Rru3 showed any significant influence of null alleles with the EM test). As 

with the Thames, the Stour sampling occurred during post-spawning where shoals of roach 

tend to aggregate in communal feeding areas. Thus, it is probable that the Wahlund effect 

may explain heterozygote deficits within Stour samples. This is likely the case, for 

example, in the Anchor Bridge sample where 8/10 loci are significantly deficient for 

heterozygotes after application of correction. Anchor Bridge also shows a peak in both the 

mean number of alleles and allelic richness compared to other sites, consistent with a 

scenario in which more than one deme is represented synchronously.  

 

Inbreeding is expected to increase over time within an isolated population of fixed size, 

and this process occurs at a greater rate in a smaller population than a larger one, even if 

mating is random within the populations. This may account for the significantly lower 

levels of observed heterozygosity recorded in the Stour in comparison to the much larger 

Thames drainage, albeit one that did not result in a significant difference in levels of FIS. If 

population structure is more significant in the Stour (see section 4.4.4.2 below), 

individuals are more likely to spawn with a related individual in any given subpopulation. 

One final potential influence upon HWE is migration, in which migrating individuals 

possess alleles from donor populations whose frequencies do not match that of the 

recipient population. In highly vagile species, the presence of inter-population migration is 

expected to be high, and if population sub-structuring exists, the potential for violation of 

HWE is significant.  

 

At mutation-drift equilibrium, the rate at which mutations are lost – or fixed – by genetic 

drift is offset by the introduction of new variants by mutation. In large populations, the 

time to equilibrium is longer than that in smaller populations, dependent on the mutation 

rate of the loci in question (Kimura 1983). Therefore the degree to which two populations 

differ in their allele frequencies is, at equilibrium, dependent on their effective population 

sizes.  
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4.3.5.2 Effective Population Sizes in the Thames and Stour 

 

For both the Stour and for the Thames, the estimated size of the number of breeding 

individuals depended upon which method was used. The heterozygosity method proved 

entirely unsuitable for the roach, as an upper limit on the effective number of breeders 

could not be calculated. A similar situation has been observed in roach and perch 

(Demandt 2010) and other taxa (e.g. the natterjack toad Bufo calamita (Beebee 2009)).  

 

The LD method is dependent upon sampling individuals from within contracted or 

fragmented populations, which in this case exhibit a non-random statistical association 

between non-linked allelic states (Hill 1981). However, longstanding inter-demic 

migration and / or past admixture events (including current admixture still present from 

daughter populations having once been part of a single interbreeding population) can also 

create persistent levels of LD, mimicking the effect of population contraction. The LD 

method assumes demographic isolation of a single, reproductively cohesive population 

unit. The LD method, then, may not be suitable for establishing the effective size of a 

single, large metapopulation. Even within a metapopulation structure, the potential 

occurrence of past or contemporary migration would not allow for an accurate 

representation of sub-deme effective population sizes. However, the bias correction of 

Waples (2006) allows for unequal sex ratios and variance in reproductive success. Using 

Hill’s original formulation, the ratio of the effective size of the Stour to that of the Thames 

is 0.223, but with the correction applied the ratio decreases over four-fold to 0.99537. This 

decrease in the ratio may implicate a role of skewed reproductive success within the Stour 

that would hitherto have been overlooked. It has long been established in the roach that 

high concentrations of sewage effluents within streams can feminize juvenile and 

reproductive-age males (e.g. Jafri & Ensor 1976; Jobling et al. 2002; Nolan et al. 2001; 

and Bjerregaard et al. 2006). Recent experimental work on the determination of parentage 

success of both normal and intersex male roach indicate that highly feminized males are at 

a severe reproductive disadvantage, whilst ‘mildly’ feminized males are not (Harris et al. 

2011). However, little has been done to uncover correlations between levels of genetic 

diversity and localized concentrations of feminizing agents, although the potential effect 

on population persistence has been modeled (An et al. 2009) (but see section 4.4). 

 

                                                
37 Assuming mutation-drift equilibrium, the IAM of Crow & Kimura (1970) relate gene diversity to 
theta by the equation H = 4Neµ/ 1+ 4Neµ. Under these two assumptions, values of Ne for the Stour and 
Thames are 1185 and 1350, respectively, similar to those values given by Waples’s correction (2006). 
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However, across both methods, the Ne of the Stour was found to be consistently less than 

that of the Thames. The simplest explanation is that this is the result of a lower census 

population size, but it could also come about as the result of a differential operating sex 

ratio (OST) at spawning, particularly if some males are compromised, within the Stour. 

Additionally, lower neighbourhood sizes (a function of dispersal ability and population 

density) within the Stour may reduce the effective population size. Population sub-division 

will also act to reduce overall estimates of Ne when sub-division is low (Pannell & 

Charlesworth 1999), but may increase it when the number of inter-connected demes is 

large and migration is limited (Robertson 1964) or when selective sweeps enable linked 

chromosomal variation to infiltrate other demes (Santiago & Caballero 2005). The 

preceding analysis considered – for initial simplicity –the Thames and Stour to be single, 

cohesive populations, when in all probability they represent metapopulations, with 

individual breeding units – connected by gene flow to a greater or lesser extent – located 

within their physical networks of rivers, streams and rivulets.  

 

4.3.5.3 Adherence to Mutation-Migration-Drift Equilibrium 

 

The analytical evidence of roach microsatellite variation, within each of the Thames and 

the Stour rivers, suggest that the levels of microsatellite diversity found within – and their 

divergence derivatives - are not biased by the strictly stepwise mutational process that 

early modelers of microsatellite evolution had proposed (see Valdés et al. 1993 and 

references therein). The most likely model of microsatellite evolution is pluralistic, 

invoking both strictly bidirectional stepwise mutations with a proportion of mutational 

events proportionate to the length of the microsatellite allele subject to mutation. The 

greater the length of the repeat motif, the greater the chance that slippage will occur and 

the greater the chance that slippage will encompass more than one repeat unit. Eventually, 

repeat length at each locus will reach equilibrium between length-associated mutations and 

point mutations breaking up arrays into loci of smaller length (Ellegren 2004). Pluralistic 

models of microsatellite mutation may more accurately represent microsatellite evolution 

than a strict SMM. Yue et al. (2006), in a study of microsatellite evolution in the carp 

Cyprinus carpio found, from tracking the inheritance of 49 distinct microsatellite loci, that 

the allele size class of a mutation differed from its parental progenitor by between -5 and + 

2 repeat units. Similar occurrences of deviation from the strict SMM have been observed 

in salmonids (Angers & Bernatchez 1997). A reliance on determining allele coalescent 

events from the analysis of size classes in microsatellites based upon the strict SMM 
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model of evolution is flawed, as bias is introduced in the estimation of mutation rate and 

the relationship between IBS and IBD is oversimplified. 

 

Even accounting for deviations from SMM, no signal of an overall reduction in population 

size was detected for either the Thames or the Stour populations, although both rivers 

showed a near-significant and significant (respectively) deficit in gene diversity under the 

TPM, consistent with an interpretation of a population expansion or the influence of the 

SMM upon microsatellite loci in populations with high current ! levels. High rates of gene 

flow and rapid population expansion can erode or falsely infer the presence of recent 

bottlenecking in species with low effective population sizes, respectively (Cristescu et al. 

2010). A search of the literature does not reveal any instance in either of the two rivers 

studied here in which a whole metapopulation has suffered a significant decline or 

possesses exceedingly low allelic diversity relative to heterozygosity. Fish kills have 

occurred within both drainages as they have throughout the British Isles, due to a number 

of factors in addition to pollution, including disease and parasitism (e.g. Hewlett et al. 

2009). Downstream and tidal regions of rivers are more prone to the cumulative effects of 

effluents and industrial and agricultural run-offs, with the Thames tidal zone having 

experienced high levels of industrial pollution with implications for fish species 

assemblages in the upper tidal areas (Araújo et al. 1999). That no obvious effect of 

bottlenecking was observed in the present study may be due to three reasons: i) there has 

been no decline in sufficient numbers as to manifest a signal in the gene pool; ii) there has 

been a serious decline in the past, but this occurred of the magnitude of 0.2-4Ne 

generations ago; iii) there has been a decline, but only locally, and when the data were 

pooled this signal was lost. Additionally, the EA have supplemented fish stocks in both 

rivers, which may have reinstated genetic diversity and so masked historical population 

declines (Peirson et al. 2001). 

 

The programme 2Mod found 100% support for a model of migration and drift acting in 

concert, completely rejecting an isolation and drift only model of population genetic 

divergence. This result suggests one of two possible explanations: that not enough time 

has elapsed to establish equilibrium levels of divergence such that migration-drift 

equilibrium is assumed but is a relic of past connectivity; or secondly, that inter-population 

migration has occurred post-separation helping to mitigate against the erosive effects of 

genetic drift. However, 2mod assumes no, or a negligible, effect of mutation upon 

differentiation (i.e. mutational pressure has no effect on IBD in the drift model (assumes µ 

<< 1/t, where t = time in generations) and mutation rate is much smaller than migration 
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rate in the migration-drift model, such that all alleles inherited from migrants do not 

mutate in their new population), which, given the mutability of microsatellites, may not be 

an insignificant source of confounding influence. For instance, if one assumes an average 

mutation rate of roach microsatellite loci similar to that of the carp, of 5.56 x 10-4 per locus 

per generation (Yue et al. 2006), then µ is greater than 5.33 x 10-4, or 1/1875 generations 

(elapsed since the Thames and Stour were last part of a single drainage). This will likely 

compromise the migration-drift model in which all new variation is assumed to derive 

from immigration. Assuming a stable population of 10000 individuals, one may expect 

55.6 new mutations per generation. A new mutation that survives purging instantly adds to 

the degree of differentiation of one population from another. 

 

The migration-drift model in 2mod places emphasis on the assumption that the rate of 

mutation is not greater than the rate of migration. The mean recent migration rate between 

the Thames and Stour as calculated by BAYESASS+ is 0.00457±0.006. This is around one 

order of magnitude greater than the average mutation rate of the carp, and assumed to be 

similar for the roach. It is unlikely that all alleles derived from migrants have remained 

unchanged through the linear process of inheritance, if migration has been constant over 

time. The relationship between FST and migration, assuming a Fisher-Wright model of 

equal population subdivision with equivalent effective population sizes and symmetric 

rates of migration (m), is directly linear, given by the equation: 

 

!!" !
!

!!!! ! ! 

 

If the BAYESASS+ rate of migration is a realistic representation of long-term rates of 

migration, long-term Ne for each river population is calculated to be approximately 2750 

individuals. However, this ignores mutation, whose effect is generally considered 

negligible. Accounting for mutation, Wright’s equilibrium equation (1951) becomes: 

 

!!" ! !
!

!!!! ! !!!! ! ! 

 

Under this equilibrium model, an FST of 0.0198 is achieved with equal effective population 

sizes of approximately 2500 individuals. The failure to incorporate mutation into models 

of population divergence that have been physically separated for a significant number of 

generations may overestimate the degree of genetic similarity and overestimate their 
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respective effective population sizes. The mutability of microsatellite DNA should not be 

considered insignificant when other equilibrium processes are assumed. 

 

It would be unwise to assume, based on little to no contemporary migration, the nature of 

microsatellite mutation rates and direction, and knowledge of the geological time that the 

populations became isolated, that the populations are at migration-mutation-drift 

equilibrium. The likelihood of populations having attained migration-drift equilibrium is 

lessened in temperate areas of the globe in which organisms have recently recolonized 

northern latitudes since the LGM, but is dependent upon Ne and the migration rate (Crow 

& Aoki 1984; Waples 1998). The results given by 2mod may be explained by reference to 

a violation of its assumptions (re: negligible rates of mutation), the assumptions of the 

Fisher-Wright model and/or not enough time has elapsed to achieve equilibrium. A naïve 

interpretation of an FST measure of differentiation is likely to underestimate the actual 

extent of genetic isolation exhibited by large and historically inter-connected populations. 

 

4.3.5.4 Population Differentiation Between the Thames and Stour 

 

All measures of genetic differentiation employed were statistically significant, although 

they differed on the extent of divergence indicated. Jost’s D, which gave a figure of 0.056, 

is identical to Nei’s estimation of standard genetic distance between the two rivers. As D is 

independent of population size, it essentially describes the influence of ‘new variation’ 

upon estimates of genetic divergence, independent of the action of genetic drift. Therefore, 

if one assumes that the two rivers have been demographically isolated during the entirety 

of the last 7500 years, then D describes the degree to which mutation has caused the two 

rivers’ populations to differentiate across the microsatellite loci. The highest value of 

differentiation was given by Meirman & Hedrick’s new estimator of FST, G’’ST (0.074). 

GST is best suited for small numbers of comparisons, perhaps explaining why the 

maximized estimate of ! resulted in a slightly lower estimate of differentiation (0.063).  

 

Most estimators of population divergence generally make simplistic assumptions about the 

evolutionary properties of populations. The island-model of genetic structure is only an 

explanatory model, assuming infinite populations sizes, symmetric and constant rates of 

migration and an infinite number of subpopulations (Wakeley 2004). In fact, this idealized 

model may dramatically overestimate the degree to which populations are divergent, as the 

number of subpopulations is not generally accounted for, a criticism of other estimators of 
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FST based upon restricted sampling (e.g. GST (Rottenstreich et al. 2007)). Whitlock & 

McCauley (1999) have also cogently argued against strong inference based on this and 

other equilibrium models. The very suitability of FST needs to be reassessed if the effective 

sizes of roach exceed 1000 individuals per population, particularly if inferred from highly 

polymorphic loci (Neigel 1997) and gene flow is weak38. Although FST may still be useful 

as a simple descriptive metric for current purposes (baseline and minimum estimated 

allelic differentiation) and comparisons with prior published studies, its limitations should 

be made clear in any exposition of population structure, and an inference of migration rate 

or its calculation for populations with high effective population sizes from Wright’s 

equations, or from traditional estimators, should be highly qualified or avoided where 

possible (Whitlock & McCauley 1999; Neigel 2002; Meirmans & Hedrick 2011). 

 

4.3.5.5. Conclusions 

 

The extant roach populations of the Thames and Stour were once part of a colonizing 

wave of roach with which they share a recent evolutionary history. Physical demarcation 

has existed for some 1875 roach generations. By adhering to a strict Wrightian model of 

population differentiation, upon which the axiomatic statistic FST is derived, one may 

conflate past connectivity with ongoing inter-population migration. Therefore, any statistic 

upon which migration-mutation-drift equilibrium is assumed is fraught with potential 

error. The roach populations of the two rivers are unlikely to have attained equilibrium 

given their high effective sizes and recent history of connectivity. The level of FST 

between the Stour and Thames is considered to be at the lower end of the scale of 

differentiation (0.0198) among many freshwater fishes, consistent with significant gene 

flow between them, either contemporaneously or in the past. A comparison of FST 

estimators is suggestive that the small amount of divergence observed (significant, < 8% at 

most) is due in the most part to the accumulation of new mutation and less so to drift, 

consonant with the levels of private alleles in physically isolated, large populations and the 

relative down-regulated efficiency of drift to remove variation. Past connectivity and / or 

current gene flow (both likely anthropogenic in nature) is likely to have contributed in 

some part to the low degree of differentiation observed, but this cannot be quantified. It 
                                                
38 Where Ne is expected to be large, the influence of the mutation rate on estimates of genetic divergence 
increase, particularly for FST (Neigel 2002). It is only when effective sizes are small (< 1000) that 
Wright’s inclusive equation should be abbreviated to its familiar formulation, and mutation rate 
considered unimportant. This is consistent with the finding that a significant mutational effect is inferred 
for an estimated Ne of 2000 roach and above, but very little or no effect for populations of 1000 
individuals or less. 
 



 

 215 

must also be stressed that appropriate measures of differentiation should be used in 

concordance with prior knowledge of the species under investigation when conducting 

research on populations using genetic data from which so many informative parameters 

are extracted.  

 

Regardless of what measure of differentiation was used, each estimate was statistically 

significant and therefore panmixia was completely rejected. The two rivers deviate enough 

from a random assortment of allelic diversity to warrant consideration as independent 

management units, even before further consideration of within-river differentiation. The 

next task is to ask whether there is significant deviation from panmixia within both rivers 

and assess the levels to which within-river locales differentiate with respect to their allele 

frequencies.
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4.4 The Elucidation of Fine-Scale Genetic Structuring and 
Genetic Diversity within the River Suffolk Stour and the River 
Thames 
 

4.4.1 Introduction 

 

4.4.1.1 Biotic and Abiotic Influences of River Systems on Population 
Biology 
 

River systems are perfect exemplars of habitats in which dispersal is physically limited to 

either one of just two directions (Fagan 2002), at least from the point of view of analytical 

tractability. The geometry of a river system not only affects the rate of directional 

migration between populations, but may also interact with life-history characteristics to 

influence the growth rate of that population (Goldberg et al. 2010). As briefly noted 

previously, passive dispersal may be severely biased due to the strong influence of flow 

directionality upon egg, larval and juvenile movements in river systems (Speirs & Gurney 

2001). However, the ecological dynamics of inter-deme connectivity and metapopulation 

structure may also be dependent upon local as well as regional processes (distance-linked 

dispersal being an example of the latter). Brown & Swan (2010) found that local niche 

factors were more influential upon headwater community structures than were distance-

decay relationships (e.g. IBD and a positive relationship between environmental similarity 

and distance), indicating that migration has little influence in headwater dynamics, at least 

in invertebrate communities. The population genetic consequences of increasing upstream 

isolation and a concomitant susceptibility to population declines, as a result of gene loss 

and a decrease in the ability to resist population contraction through an intake of migrants 

from downstream, are well characterized. Headwater populations are likely to experience 

recurrent bottlenecking, that, in spite of some regenerative migration, are likely to retain a 

signal of reduced population genetic diversity, with an excess of heterozygosity relative to 

allelic richness. Generally speaking, such populations should exhibit signs of genetic 

disequilibrium, depending upon the rate of immigration and the frequency and severity of 

population size contraction and re-expansion. 

 

Habitat fragmentation in rivers may have a profound impact upon population dynamics 

and species assemblages along a river’s length, particularly when severe impediments to 

migration are constructed (e.g. dams, weirs and other anthropogenic barriers). Humans 
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have had an impact on the mechanics of river regulation in the UK since the first century 

A.D., when modifications were implemented for land drainage and transportation (Sheail 

1988). The creation of dams is an obvious barrier to river connectivity (Larinier et al. 

2001). The construction of stream-crossings (road bridges and culverts) may also pose 

problems for fish passage if inappropriately constructed (Warren & Pardew 1998). Natural 

barriers to fish movements, like waterfalls, are also important determinants in the 

ecological dynamics of a river’s fish population (Torrente-Vilara et al. 2011). Kruse et al. 

(1997) found that river volumetric flow along inclines of greater than 10% were 

prohibitive to the upstream movements of some salmonid species. Flourmills, which relied 

upon the construction of artificial waterfalls, were commonplace in the Middle Ages in the 

UK, with as many as 5000 mills recorded by the year 1086 (Sheail 1988). 

 

Weirs pose a significant obstacle to migration and may fragment previously contiguous 

populations depending on their type - navigation, flow adjusting, flow gauging - and 

frequency. Navigation weirs were constructed alongside navigation locks in a great many 

of the world’s rivers during the last 300 years to make rivers more navigable to an increase 

in industrial traffic along their courses. Due to an increased risk of flood damage to homes 

& property (increased due to domicile construction on floodplains and increased rates of 

run-off in urban areas), a huge number of hydrometric gauging-weirs have been installed 

throughout Europe & the UK (over 800 alone in England & Wales (White et al. 2006)). 

The installation of weirs can profoundly affect the constitution of fish communities (Poulet 

2007). The installation of weirs has had a negative impact upon fish movements (White et 

al. 2006). Under low to moderate flows, flow-gauging weirs have a serious detrimental 

effect on the upstream migration of lampreys (Russon et al. 2011). Lucas & Frear (1997) 

found that the presence of flow-gauging weirs altered the migratory behavior of adult 

barbel below the weir, potentially separating reproductive schools into those that could 

pass the weir – and so migrated upstream – with those that could not –which dispersed 

downstream. Winter & Densen’s (2001) longitudinal study of fish migration along a 

transect of the River Vecht in the Netherlands, interspersed with six weirs in the years 

1960 – 1984, found that only 10 out of 32 species were able to ascend the weirs in 5-30% 

of the years, with larger species faring better during the winter months at downstream sites 

as compared to smaller species in which passing any weir was equally unsuccessful. 

 

Many rivers are heavily modified with respect to their banks and side-channels. When the 

homogenization of this lentic area is of sufficient severity, this results in the loss of all 

suitable feeding, spawning and communal vegetation, thereby decreasing the likelihood of 
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migration along such ‘corridors.’ Further anthropogenic activities that may impact on the 

demographic integrity of a river’s population include the process of abstraction, whereby 

water is removed from a stream either for irrigation purposes or to be diverted to 

geographically distal drainages with smaller catchments via a connective network of pipes. 

Abstraction may result in less than normal levels of flow, which may be particularly acute 

in affecting water levels with a combination of unseasonal rainfall patterns, modified 

embankments and high numbers of weirs, locks and mills. 

 

Genetic studies of freshwater fish species have often found instances of genetic 

degradation and population isolation occurring as a result of channel obstruction or habitat 

fragmentation. Habitat patch size and the extent of demographic isolation are correlated 

with levels of allozyme diversity within populations of Cottus gobio within three 

catchments of central Europe (H!nfling & Brandl 1998). Hanfling & Weetman (2006) 

found that populations of the same species within the River Rye catchment of northeastern 

England displayed low levels of variation within the river, with levels decreasing with 

upstream location, suggesting that classic source-sink dynamics describes the genetic 

processes on the upper areas or that they retain the signal of historical colonization. 

 

4.4.1.2 Hydrography of the Thames 

 

The Thames is Britain’s second longest river, after the Severn, and has a long history of 

association with mankind. The river originates some 300 metres above sea level as the Isis 

in the foothills of the Cotswolds, an area rich in springs that further develop into full-

flowing tributaries joining up with the main Thames in the Thames Valley (Marsh and 

Lees 2003). The main river flows for 215 miles (346km) before discharging into the 

southwesterly North Sea, falling some 183 metres in the process (91.5 metres in its first 9 

miles and 30.4 metres more in the following 11 miles (Ackroyd 2009)). From its source to 

London Bridge, the average gradient is 0.32m km-1 over 263km (Hughes & Willis 2000). 

The catchment of the Thames is the largest in Britain, covering an area of approximately 

13000km2 (Evans et al. 2003), with 9950km2 of catchment above the tidal limit at 

Teddington (Hughes & Willis 2000) (see Fig 4.9). The catchment area of the Thames has 

been radically altered from how it would have looked in Bronze Age Britain. Heavy 

urbanization and the agricultural conversion of land adjacent to the main stem and 

tributaries have greatly modified rates of overland run-off. The average run-off calculated 

from a period encompassing 1961-1990 was 250mm yr-1 (accounting for differences in 
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rainfall and evaporation (Johnson et al. 2009)). Increased run-off is compensated by 

extraction for significant public, agricultural and industrial usage. However the main river 

has suffered less due to abstraction than its tributaries, which has seen dwindling volumes 

of water contributing to the main river body volume. The average flow at the inter-tidal 

juncture at Teddington is 5.205 x 106 litres per day (Ackroyd 2009). Upstream of Didcot, 

the surrounding catchment is mostly rural, whilst downstream the main Thames flows 

through significant urban areas of Oxford, Reading, Slough and eastwards through greater 

metropolitan London en route to the Thames estuary. The non-tidal Thames is joined by a 

large number of tributaries and streams, but the major arteries are the Churn, the Thame, 

the Coln, the Leach, the Evenlode, the Cherwell, the Kennet, the Ver, the Mole, the Wey, 

the Medway, the Lea and the Roding (Ackroyd 2009). 

 

Environment Agency data suggest that 60% of all River Habitat Surveys (RHS) conducted 

along the Thames record scores consistent with habitats that are significantly or severely 

modified (Johnson et al. 2009). Conversely, only 7% of surveys record pristine sites. All 

of the River Thames south of the lock at St John’s is navigable (some 191 miles of river 

(Ackroyd 2009)) (see Fig 4.10) and has been adapted for large transportation vessels, with 

the construction of some 44 working and serviceable locks and weirs. The stretch of river 

between Oxford to the upstream village of Burcot was made navigable after an Act of 

Parliament in 1624, in which orders to construct locks and weirs was included, resulting in 

the first constructed lock at Iffley in 1630. From St. Johns lock in the west, the Thames is 

fully navigable to open sea. Hughes & Willis (2000) characterized and partitioned the 

main Thames channel into five zones according to the extent of modification: Zone A: 

36km from source to the confluence with the River Coln, characterized by a natural 

channel with pool riffle channels, no weirs and diverse littoral habitat; Zone B: 38km 

stretch of river from the Coln confluence to Farmoor Reservoir, characterized by dredging 

and some channel modification, but the course remains natural with some littoral plant 

life, albeit less diverse than Zone A; Zone C: 79km stretch from Farmoor Reservoir to the 

confluence with the River Kennet. Here the Thames is heavily modified, including the 

presence of 16 weirs and in-channel and side channel dredging. There can be significant 

water abstraction at Farmoor Reservoir and Didcot power station. Habitat diversity is only 

moderate; Zone D: 87km from Kennet to tidal Thames at Teddington. This stretch is 

perhaps the most severely modified stretch of the entire river. 20 weirs service 

transportation along the river. Dredging and channel straightening are such that habitat 

diversity is low; Zone E: 23km to London Bridge. Here the river becomes more accessible 

and is less modified, although heavily urbanized. 
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Figure 4.9: Map showing the difference in drainage area for the Thames and Stour 
(see text for details). 
 

4.4.1.3 Hydrography of the Suffolk Stour 

 

The Stour rises some 116m above sea level and flows for 76km forming much of the 

county boundary between Suffolk and Essex. The catchment area of the Stour, whilst not 

small for the Anglian region, only covers some 1036km2 according to data from the UK 

Government (DEFRA 2010) (see Fig 4.8). The Stour catchment includes seven main 

tributaries in addition to the main trunk river. The surrounding land use is mostly 

agricultural: 83% of the Stour Catchment Flood Management area is agricultural (DEFRA 

2010), with the river only flowing through one substantial urban town (Sudbury). The 

river falls some 58 metres over the first ten miles of its course, and by just 12 metres over 

the last ten miles. The underlying geology of the catchment is of chalk to the north and 

London Clay to the south, beneath a layer of semi-pervious boulder clay. 142 million litres 

of water are extracted daily at the water treatment facility at Langham, which extracts a 

number of agricultural run-off pollutants (e.g. metaldehyde, propyzamide, carbetamide 

and clopyralid (www.voluntaryinitiative.org.uk)). Water is also extracted from run-off and 

from groundwater, thus reducing the degree and frequency of heavy flow. The Stour is 

connected to the Great Ouse at Ely to the north near the source of the Stour (at Great 

Bradley) and the River Colne a few miles downstream at Wixoe via the Ely/Ouse transfer 

scheme, which, in addition to the Stour Augmentation Groundwater Scheme (SAGS), may 

affect water levels in the downstream portion of the river. 
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The Suffolk Stour was once widely used for industrial transportation of cargo, with some 

24.4km of its length made navigable for large vessels (Fig 4.10). Recently, river 

enthusiasts have attempted to restore the Stour navigation downstream of Sudbury through 

to the mill at Bures. However, working locks are located downstream at Flatford and 

Denham, although they are not open during the winter when the sluices are opened for the 

anticipated increase in downstream water flow. Most of the 15 locks are now in a state of 

disrepair. Whilst there are few working locks, the Stour was employed as a source of 

energy for flour production through the construction of mills. One of the earliest records of 

a working mill occurred at the location that is now occupied by Bures Mill, in 1190. 

Between 1912 and 2009, the only navigable route upstream of Bures Mill has been either 

via the steep fall through the millstream itself, or through the sluice gates, which once 

posed a significant challenge even for the highly capable European eel (a fish pass has 

since been constructed). The river winds itself through tidal marshes after the Judas Gap - 

where a flood control defense barrier (“Fifty Six Gates”) prevents the inundation of the 

Denham Vale with saltwater - to meet the estuarine surrounds of Cattawade before 

discharging into the North Sea at Harwich. 

 

4.4.2 Hypotheses 

 

Prior analyses have uncovered high levels of genetic diversity shared between both the 

Thames and the Stour, however the data suggest that the number of effective breeding 

individuals is lower in the Stour than in the Thames. The first investigative aim of this 

section is to determine why this difference exists. The most parsimonious explanation 

resides in the presumably lower census size of the Stour population than the Thames, 

resulting in a greater degree of relatedness among individuals. This situation will be 

exacerbated by the greater uniformity of suitable spawning habitat in the Stour than in the 

Thames, allowing for a greater dispersal of allelic diversity along the Stour. One may 

make the following prediction: there is likely to be some distance-component to the degree 

of genetic divergence among populations in the Stour, but less so – or absent – in the 

Thames, where long-distance dispersal may dominate. 
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Figure 4.10: Potential barriers to gene flow. Map of anthropogenic constructions 
(locks, weirs and mills; green circles) found in the Thames (number of barriers = 45 
in map; 44 between Ro and MWP) (top) and Stour  (number of barriers = 21 in map 
and between Th and BL) (bottom). Red circles are sampled sites. 
 

By sampling along a longitudinal transect, one can expand the above investigation of a 

genetic correlation between divergence and distance, by allowing a more robust test of 

putative environmental influences on the degree and extent to which populations differ 

genetically. Given the susceptibility of the Stour to low flows caused by low surface run-

off and extraction for agricultural and domestic use, populations of fish in the Stour may 

be susceptible to the periodic and long-term influence of sewage effluents and their 

associated levels of endocrine disrupting chemicals (EDCs), particularly oestradiols and 

other feminizing chemicals. The physiological implications of EDCs in roach include 

downregulated milt production, reduced sperm density and motility compared to sites 

where EDCs are not at appreciably high levels (Jobling et al. 2002). The pernicious 

influence of feminizing hormones upon local genetic diversity and inter-population genetic 
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divergence may be readily tested. One would predict some relationship between genetic 

divergence and oestradiol concentrations in the Stour, but less so – or an absence of a 

relationship – in the Thames, with areas high in oestradiol concentrations possessing lower 

levels of roach nuclear diversity. Further, the influence of spawning habitat (lentic 

backwaters, tributaries) and barriers to migration may also influence the extent of inter-

population genetic divergence with the expectation that correlation exists between genetic 

divergence between populations and the number of weirs, locks and tributaries between 

them. 

 

4.4.3 Statistical Analysis 

 

4.4.3.1 Within-Population Deviation from Equilibrium Conditions. 

 

The program 2mod (Ciofi et al. 1999) was again utilized to determine whether individual 

populations had reached migration-drift equilibrium, and BOTTENECK (Piry et al. 1999) 

was used to uncover any signal of past demographic expansion. 

 

4.4.3.2 Genetic Differentiation 

 

As above, pairwise and mean estimates of divergence were calculated for all sampled sites 

within each of the two rivers. 

 

In addition to the detection of genetic structuring among proscribed sampled locations, 

inferential detection of cryptic population structuring inherent in the data regardless of 

sampling location was also performed. The Bayesian software STRUCTURE (Pritchard et 

al. 2000) was used to uncover the number of ‘true’ populations, each of which conform to 

random mating and HWE, under a range of K populations (K1, K2…Ki, where Ki is the 

ith whole number of hypothetical populations), to see which hypothetical number is best 

supported by the data. Two approaches were used, both using the ‘admixture’ model of 

inference and correlated allele frequencies to account for recent evolutionary ancestry 

(Falush et al. 2003): firstly, no sampling information was used; secondly, because 

sampling information may be useful within populations with high levels of genetic 

diversity and low levels of inter-population divergence, sampling location information was 

inputted to inform the prior distributions of K (Hubisz et al. 2009). Up to 9 values of K 
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were inputted into the program ranging from 1 – 9 populations, and each K analysis was 

repeated 5 times (500000 MCMC iterations after 100000 burn-in) The most optimal K was 

calculated according to the methodology in Evanno et al. (2005), whereby the greatest rate 

of change in K (!K) between K populations is more informative as to the ‘correct’ K than 

by taking the K inferred from Pr (X|K) alone. The calculation of !K was carried out in the 

freely available online software STRUCTURE HARVESTER (Earl and von Holdt 2011). 

DISTRUCT version 1.1 (Rosenberg 2004), a program to display output from structuring 

programs graphically, was used to portray the most likely distribution of K populations 

within both the Thames and the Stour. 

 

To determine the extent to which the variance in genetic diversity is apportioned 

hierarchically among individuals within sampled populations, among populations within 

rivers and between the Thames and Stour, an AMOVA analysis (Excoffier et al. 1992; 

Michalakis & Excoffier 1996) was conducted in the software Genodive. The FST analogue, 

"ST, does not make assumptions about the underlying breeding system (Ronfort et al. 

1998), and so was used here. Principal component analyses of multilocus genotypes can 

also be used to infer spatial patterning amongst sampled populations. Populations 

represent clusters of possible allelic and genotypic combinations found in a hyper-

dimensional space, the dimensions of which are governed by the numbers of loci and the 

numbers of alleles found at each locus. A description of population similarity may be 

displayed graphically by plotting populations on axes that best explain the majority of the 

variance in differentiation among them. PCA was carried out in GenAlEx version 4.1 

(Peakall & Smouse 2006), where the variance in the codominant genotypic distance 

(CGD, Smouse & Peakall 2006) was analyzed. Additionally, a PCA analysis was applied 

to distance estimates of allelic differentiation at all ten microsatellite loci for all 22 

populations using pairwise estimates of unmodified FST. 

 

4.4.3.3 Population Connectivity 

 

In addition to genetic estimates of population structuring, of prime importance to wildlife 

managers is the determination of the origin and numbers of migrants. Genetic methods can 

only utilise neutral markers to determine population connectivity. Thus any loci found to 

deviate from neutrality via the above analyses were omitted from subsequent investigation 

of migration numbers and rates.  
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Inference of recent migration (within the last few generations) was utilised using the 

Bayesian software package BAPS 5.4 (Corander et al. 2004), using the admixture 

procedure described in Hänfling and Weetman (2006). Migrants are detected in BAPS by 

computing the posterior modal probability of the proportion of each individual’s genotype 

arising from elsewhere in the sampled batch of populations. Following Hänfling and 

Weetman, an admixture model was applied and simulations were iterated for each 

individual 1000 times. By summing over all genomic proportions for each donor 

population and dividing by the recipient population size one was able to infer migration 

rate.  

 

4.4.3.4 Landscape Genetics Analyses 

 

To address if any environmental or physical factor has had an influence upon genetic 

divergence and inference of inter-population connectivity, suites of statistical tests were 

employed. The classic test is to determine whether equilibrium processes act along a 

geographically defined transect – in this case, along the course of the river. This isolation 

by distance effect is potentially greatest in one-dimensional habitats. The online software 

IDB (Jensen et al. 2005) was recruited to perform an initial analysis of isolation by 

distance for both the Thames and the Stour. The association of genetic distance/migration 

with distance was assayed by a Mantel test (Mantel 1967). All river distances were 

calculated by using the distance tool incorporated in the mapping software ArcGIS version 

9.3 (ESRI Inc.) based upon hydrographic data collected by Moore et al. (1994). 

 

Simple and partial mantel tests were then conducted between estimates of genetic 

divergence and a range of parameters, controlling for potentially confounding correlates in 

turn. These analyses were performed using the open source Mantel test resource ZT 

(Bonnet and Van de Peer 2002). The significance of Pearson’s correlation coefficient, r, 

was assessed after 106 permutations of the data matrices. Further correlative analysis 

between measures of genetic diversity (e.g. effective population size, He, etc) and 

environmental factors (e.g. distance upstream from the tidal limit, mean level of oestradiol 

concentrations, number of weirs and tributaries, etc) were performed on the data, whilst 

controlling for the effect of sample size. Additionally, population means between the 

Thames and the Stour were screened for correct comparison by first determining 

differences in variances by Levene’s test (1960). Depending upon the result of the Levene 

test, and upon whether the Stour samples exhibit a larger variance than the larger sample 
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of Thames populations (smaller sample sizes with larger variances are best tested non-

parametrically (Zimmerman 1987)), either an independent t-test (alternatively, an unequal 

variance t-test where unequal variances are found in equally sampled sets of data (Ruxton 

2006)) or a non-parametric Mann-Whitney U test was performed, all in SPSS version 17 

(SPSS Inc). 

 

IBD patterns exist due to the balance between genetic drift and the limited dispersal 

capacity of individuals. The scale of autocorrelation between individual genotypes may 

reflect the average extent of the dispersal capacity of individuals. The autocorrelation 

coefficient, r, (an analogue of Moran’s I statistic) was calculated for all populations in 

both rivers as a function of predefined distance classes using PhiPT, a squared distance 

measure (Smouse and Peakall 1999). When r intercepts the x-axis (plotted on a spatial 

correlogram) there is no longer any statistically significant association between the 

genotypes of individuals sampled from populations that fall into that particular distance 

class. An autocorrelative approach was used, implemented in GenAlEx version 6 (Peakall 

and Smouse 2006), in which mulitallelic, co-dominant loci are assayed in a multivariate 

statistical system by combining alleles and loci so that the stochastic noise associated with 

correlative analyses is avoided (Smouse and Peakall 1999). Individual genetic distances 

were then correlated with geographic distances given by waterway distances between 

sampling sites. R was plotted as a function of seven distance classes in the Thames: 5km, 

10km, 20km, 30km, 60km, 80km and 100km; and five classes in the Stour: 5km, 10km, 

20km, 30km and 60km. Implementing Banks and Peakall’s heterogeneity test, also in 

GenAlEx, one tested the significance of the resulting correlelograms.  

 

One of the chief aims of landscape genetics is to associate genetic discontinuities with 

spatial data. The software BARRIERS version 2.2 (Manni et al. 2004) uses Monmonier’s 

algorithm to correlate geographic information (XY co-ordinates) with distinct genetic 

disparities among populations. The method estimates Weir and Cockerham’s ! and 

superposes this information onto a geographic map determined by XY coordinates whose 

‘edges’ (potential ‘barriers’ between geographically close sites) are determined by 

Delaunay triangulation. The method was carried out for each locus separately (including 

any loci that behave non-neutrally) such that barriers supported by multiple loci would be 

identified. The top three supported barriers were calculated and displayed cartographically.  
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In a sister analysis to STRUCTURE, one again performed an analysis determining the 

presence of sub-populations, but this time incorporating actual spatial information in the 

form of geographical co-ordinates. This was done in the program Geneland (Guillot et al. 

2005), an R-based Bayesian software package. Geneland apportions individuals to a pre-

defined range of K subpopulations, whereas STRUCTURE allocates individuals 

sequentially for each K sub-population and determines the subpopulations with the highest 

likelihood. This latter approach may not identify the most optimal K (Excoffier and 

Heckel 2006). The Geneland MCMC simulations - of individual matrices consisting of 

genotypic and coordinate -data - were run 106 times with a thinning interval of 100. The 

inferred number of sub-populations was estimated from a range of 1-10 putative 

subpopulations. Allele frequencies were drawn from a Dirichlet distribution rather than 

from an F-model as the former model performs better than the latter (Guillot et al. 2005). 

Correlated allele frequencies were assumed (Guillot 2008). As recommended by Guillot 

and colleagues, the maximum value of the Poisson process was set to 100. Concordantly, 

the maximum number of nuclei used to construct the Poisson-Voronoi tessellation map 

was set at three times the maximum Poisson value, again as recommended by the 

software’s authors. 

 

4.4.4 Results 

 

4.4.4.1 Population Equilibrium 
 

The results of the 2mod analysis confirmed in all three of the independent runs that the 

populations within both the Thames and the Stour possess allele frequencies that most 

closely fit a model of population dynamics in which migration-drift equilibrium has been 

attained. Only on a few early iterations (post-burn-in) of the Markov Chain was the 

alternate model of drift-dominance favoured by the indicator variable I.  

 

BOTTLENECK analyses indicated that none of the Thames samples were found to have 

significantly large excesses of heterozygosity relative to that expected under mutation-drift 

equilibrium, thus failing to reject the null hypothesis of demographically stable 

populations. However, significant heterozygote deficits were pinpointed at certain sites: 

MWP (p = 0.0419), Whitchurch (p = 0.012), Eynsham (p = 0.009) and Buscot (p = 0.029) 

(TPM model). In contrast to the Thames, four out of ten sites within the Stour displayed an 

excess of heterozygotes, suggesting some recent influence of population contraction: in the 



 

 228 

tidal Brantham Lock (p = 0.0419), Mill Meadow (p = 0.0068), and the two most upstream 

sites of Stoke-by-Clare (p = 0.0161) and Thurlow (p = 0.0093). Only the TPM model 

suggested a significant excess of heterozygotes in the Stour, with any excess 

heterozygosities rejected at a statistical level under the model of the SMM. 

!

4.4.4.2 Genetic Differentiation 

 

Tables 4.13 and 4.14 show estimates of population differentiation between individual 

sampling sites within the Thames and the Stour. Generally, the G-test indicates that almost 

every population within both the study rivers are significantly different from all other 

populations (after Bonferroni correction, ! = 0.05). In the Thames, the site at Eynsham 

loses significance with four sites downstream (Desborough Loop upstream to Temple) and 

Buscot upstream (Table 4.13). No other patterning is obvious. The remainder of 

unsupported divergence include Roundhouse with Northmoor, Buscot with Windsor, 

Northmoor with Whitchurch, and Desborough Loop with Whitchurch. 

 

Table 4.13: estimates of genetic differentiation between pairs of sites 
within the Thames. Above diagonal: G-statistic significance (HS = highly 
significant (p  << 0.001), shaded grey indicates significance lost after 
Bonferroni correction (p  < 0.05)). Below diagonal: FST estimates 
(highlighted, underlined yellow values indicates significance after 
Bonferroni correction, whereas shaded grey indicates significance lost 
after Bonferroni correction). 

 

In the Stour, all but one pairwise comparison is highly significant: Brantham Lock and 

Shalford Weir, although this is significant before conservative correction is applied (Table 

4.14).  

  MW
P DL Wi CI Te Wh Do Da Cu Ey No Bu Ro 

MW
P 

 HS HS HS HS HS HS HS HS HS HS HS HS 

DL 0.062  <0.001 0.009 HS HS HS HS HS 0.156 HS HS HS 

Wi 0.062 0.011  HS HS HS HS HS HS 0.497 HS 0.005 HS 

CI 0.071 0.013 0.005  HS HS HS HS HS 0.017 HS HS HS 

Te 0.070 0.021 0.006 0.013  HS HS HS HS 0.003 HS <0.001 HS 

Wh 0.103 0.045 0.029 0.037 0.024  0.001 HS HS HS 0.077 HS 0.004 

Do 0.097 0.036 0.028 0.037 0.018 0.005  HS HS HS <0.001 HS HS 

Da 0.061 0.023 0.031 0.038 0.033 0.057 0.044  HS HS HS HS HS 

Cu 0.109 0.053 0.041 0.044 0.021 0.014 0.011 0.066  HS HS HS HS 

Ey 0.060 0.004 0.001 0.005 0.005 0.040 0.028 0.024 0.039  HS 0.252 HS 

No 0.092 0.041 0.025 0.027 0.019 0.006 0.01 0.056 0.019 0.025  HS 0.307 

Bu 0.084 0.009 0.004 0.011 0.012 0.045 0.031 0.036 0.038 0.001 0.036  HS 

Ro 0.098 0.046 0.037 0.040 0.028 0.009 0.005 0.048 0.015 0.033 -0.003 0.044   
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Table 4.14: estimates of genetic differentiation between pairs of sites 
within the Stour. Above diagonal: G-Statistic significance (HS = highly 
significant (p  << 0.001), shaded grey indicates significance lost after 
Bonferroni correction (p  < 0.05)). Below diagonal: FST estimates 
(highlighted, underlined yellow values indicates significance after 
Bonferroni correction, whereas shaded grey indicates significance lost 
after Bonferroni correction). 

  BL DM St AB Sh MM RC SbC Th 
BL   HS HS HS 0.02 HS HS HS HS 
DM 0.024  HS HS HS HS HS HS HS 
St 0.007 0.014  HS HS HS HS HS HS 
AB 0.024 0.022 0.013   HS HS HS HS HS 
Sh 0 0.026 0.011 0.020  HS HS HS HS 
MM 0.009 0.026 0.011 0.018 0.01  HS HS HS 
RC 0.056 0.092 0.038 0.035 0.063 0.047  HS HS 

SbC 0.045 0.074 0.030 0.038 0.056 0.037 0.018  HS 
Th 0.085 0.086 0.084 0.060 0.097 0.080 0.101 0.086   

 

Genetic differentiation, as measured by the fixation-index FST, was significant across all 

sites globally within both the Thames and the Stour (FST = 0.032 (95% CI: 0.008 – 0.060) 

and 0.039 (95% CI: 0.016 – 0.043), respectively; p < 0.05, 1000 permutations). Individual 

pairwise values of differentiation are displayed for each river in Tables 4.13 and 4.14. In 

both rivers, as indicated by the modest level of global differentiation, the level of genetic 

differentiation among sites is generally low, but significant. Of the 78 possible 

comparisons in the Thames, 59 are significant after Bonferroni correction. Of the 36 

possible comparisons in the Stour, 32 are significant. However, some significant patterns 

were apparent. In the Thames, the site at Molesey Weir Pool (MWP) is significantly 

divergent from all other sites (mean FST = 0.081). MWP and Culham exhibit the greatest 

divergence (FST = 0.109). Although there is a general increase in divergence with upstream 

site, sites such as Days and Eynsham contravene the general trend by having scores (0.061 

and 0.060, respectively) lower than sites Desborough Loop and Windsor just upstream of 

MWP. Sampling locations downstream of Culham generally show little divergence with 

their neighbouring sites. For example, Desborough Loop and the immediately upstream 

Windsor and Clivedon Island sites are minimally differentiated, as are Windsor and 

Clivedon Island and Temple; and Whitchurch and Dorchester. Eynsham and Buscot are 

less differentiated with Desborough Loop, Windsor, Clivedon Island and Temple, than 

either is with its immediate neighbour. The Stour has a number of sites whose 

differentiation is universally supported: Thurlow, Stoke-by-Clare and Rat’s Castle are all 

well supported, as are Denham Mill and Anchor Bridge. Denham Mill aside, these sites 

are all located upstream of the others, and in the case of Thurlow, near the source of the 

river. Thurlow is also the most divergent population (mean FST = 0.085).  
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Mean estimates of total heterozygosity-corrected and standardized divergences over all 

populations were calculated in Genodive. Thames estimates: Mean G’ST (Nei) = 0.032 

(95% CI: 0.008 – 0.062); G’’ST = 0.125 (95% CI: 0.029 – 0.249); Jost’s D = 0.093 (95% 

CI: 0.021 – 0.200). Stour estimates: Mean G’ST (Nei) = 0.042 (95% CI: 0.022 – 0.064); 

G’’ST = 0.141 (95% CI: 0.073 – 0.223); Jost’s D = 0.104 (95% CI: 0.048 – 0.179). All 

measures indicated strong statistical significance (p << 0.001, after 999 permutations). 

Pairwise estimates for the above metrics and standardized FST (!) are shown in Tables 4.15 

and 4.16 (Thames) and Tables 4.17 and 4.18 (Stour). 

 

Table 4.15: Pairwise estimates of genetic differentiation within the 
Thames. Below diagonal: Standardized FST (F’ST); above diagonal: Jost’s 
D. 

 

Table 4.16: Pairwise estimates of genetic differentiation within the 
Thames. Below diagonal: Standardized GST (G’ST) (Nei); above diagonal: 
G’’ST. Nan = not analysed due to insufficient data available for summary 
statistical calculation, caused by missing data at a single locus.  

 

 MWP DL Wi CI Te Wh Do Days Cu Ey No Bu Ro 

MWP   0.169 0.167 0.196 0.186 0.294 0.284 0.158 0.305 0.145 0.252 0.214 0.275 

DL 0.196   0.030 0.035 0.056 0.130 0.107 0.061 0.151 0.009 0.114 0.025 0.132 

Wi 0.189 0.020   0.014 0.015 0.081 0.080 0.084 0.111 0.002 0.068 0.010 0.104 

CI 0.228 0.034 0.003   0.035 0.106 0.111 0.104 0.123 0.013 0.075 0.029 0.114 

Te 0.208 0.055 -0.001 0.030   0.066 0.049 0.087 0.056 0.011 0.050 0.030 0.075 

Wh 0.335 0.141 0.077 0.114 0.053   0.014 0.164 0.037 0.106 0.017 0.120 0.024 

Do 0.317 0.113 0.076 0.119 0.032 -0.025   0.129 0.030 0.076 0.030 0.085 0.015 

Days 0.187 0.066 0.092 0.122 0.090 0.189 0.142   0.182 0.060 0.154 0.093 0.134 

Cu 0.348 0.175 0.122 0.143 0.051 0.025 0.015 0.218   0.102 0.050 0.097 0.042 

Ey 0.174 -0.002 -0.015 0.006 -0.004 0.121 0.079 0.071 0.121   0.064 -0.003 0.088 

No 0.286 0.125 0.062 0.078 0.035 -0.012 0.003 0.176 0.043 0.068   0.092 -0.007 

Bu 0.230 0.015 -0.002 0.020 0.009 0.115 0.068 0.098 0.101 -0.020 0.083   0.115 

Ro 0.319 0.144 0.104 0.128 0.066 0.002 -0.013 0.157 0.034 0.102 -0.038 0.121   

 MWP DL Wi CI Te Wh Do Days Cu Ey No Bu Ro 

MWP   0.221 0.219 0.254 0.244 0.366 0.353 0.209 0.381 0.194 0.321 nan 0.346 

DL 0.063   0.041 0.047 0.076 0.168 0.139 0.082 0.197 0.013 0.151 nan 0.172 

Wi 0.063 0.011   0.019 0.021 0.107 0.106 0.112 0.147 0.003 0.092 nan 0.137 

CI 0.072 0.013 0.005   0.047 0.138 0.144 0.138 0.162 0.018 0.100 nan 0.149 

Te 0.071 0.021 0.006 0.013   0.088 0.065 0.117 0.076 0.016 0.068 nan 0.100 

Wh 0.102 0.044 0.029 0.036 0.024   0.018 0.211 0.050 0.142 0.024 nan 0.032 

Do 0.097 0.036 0.028 0.037 0.017 0.005   0.167 0.040 0.101 0.040 nan 0.020 

Days 0.061 0.023 0.031 0.038 0.033 0.057 0.044   0.236 0.082 0.201 nan 0.175 

Cu 0.109 0.053 0.040 0.044 0.021 0.013 0.011 0.066   0.137 0.067 nan 0.056 

Ey 0.058 0.004 0.001 0.005 0.005 0.039 0.027 0.024 0.039   0.088 nan 0.118 

No 0.092 0.041 0.025 0.027 0.019 0.006 0.010 0.056 0.018 0.025   nan -0.010 

Bu nan nan nan nan nan nan nan nan nan nan nan   nan 

Ro 0.098 0.046 0.037 0.040 0.027 0.008 0.005 0.048 0.015 0.033 -0.003 nan   
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For both datasets, ! is shown to understate the inferred level of divergence for 

standardized measures of FST (F’ST and G’’ST). G’ST (Nei) and DJOST estimates are in 

general agreement with those determined using !, except in the Thames where DJOST 

estimates are similar to those of the standardized estimators, rather than traditional 

estimators of FST. In both the Thames and the Stour, G’’ST differentiates among 

populations to a greater degree than F’ST. 

 

Table 4.17: Pairwise estimates of genetic differentiation within the Stour. 
Below diagonal: Standardized FST (F’ST); above diagonal: Jost’s D. 

 

Table 4.18: Pairwise estimates of genetic differentiation within the Stour. 
Below diagonal: Standardized GST (G’ST) (Nei); above diagonal: G’’ST. 
Nan = not analysed due to lack of data at one locus. Nan = not analysed 
due to insufficient data available for summary statistical calculation, 
caused by missing data at a single locus.  

 

Fig 4.11 shows the relationship between the change in !K with an increase in 

hypothesized random-mating demes as determined from the allelic data for all loci and all 

individual roach considered with prior location information (right) and without (left) 

(lower graph). The upper graphs display the mean log probability of the data supporting 

each particular hypothetical number of populations (K). The STRUCTURE analysis 

showed that K = 2 when sampling location was not take into account, but K = 5 when 

sampling information was inputted. For K = 2, most individuals’ genotypes in each river 

are composed of one of the two hypothesized contributing gene pools, which are roughly 

 BL DM St AB Sh MM RC SbC Th 
BL   0.026 0.009 0.012 0.006 0.010 0.048 0.038 0.083 
DM 0.056   0.015 0.014 0.039 0.031 0.097 0.074 0.090 
St -0.007 -0.016   0.009 0.013 0.019 0.043 0.033 0.084 
AB 0.026 0.020 -0.015   0.020 0.012 0.050 0.037 0.071 
Sh -0.016 0.024 -0.032 0.009   0.020 0.050 0.043 0.080 
MM 0.012 0.048 0.009 0.014 -0.001   0.043 0.030 0.080 
RC 0.112 0.195 0.083 0.121 -0.002 0.052   0.001 0.104 

SbC 0.088 0.149 0.031 0.085 0.031 0.038 -0.089   0.084 
Th 0.229 0.229 0.097 0.201 0.099 0.190 0.276 0.204   

 BL DM St AB Sh MM RC SbC Th 
BL   0.081 0.028 0.040 0.021 0.033 nan 0.124 0.264 

DM 0.026   0.050 0.046 0.125 0.104 nan 0.243 0.283 
St 0.009 0.015   0.033 0.045 0.067 nan 0.116 0.286 
AB 0.012 0.014 0.009   0.068 0.042 nan 0.129 0.242 
Sh 0.006 0.039 0.013 0.020   0.068 nan 0.145 0.256 
MM 0.010 0.032 0.019 0.012 0.020   nan 0.103 0.267 
RC nan nan nan nan nan nan   nan nan 

SbC 0.037 0.073 0.033 0.037 0.043 0.030 nan   0.283 

Th 0.083 0.089 0.085 0.072 0.080 0.080 nan 0.084  
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co-distributed with the two rivers’ individuals, with the exception of Thurlow (Stour) 

which has a closer affinity to the Thames (Fig 4.12 upper). 

 

 
Figure 4.11: Cryptic population structure analyses. Optimal number of HWE 
populations present within the entire dataset as a whole, as deduced by assessing 
change in !K outputted by STRUCTURE analysis. The left hand analysis does not 
adopt sampling information, whereas the second hand analysis does. See text for 
details. 
 
Fig 4.12 (lower) reveals the genomic proportions of each individual as can be apportioned 

to one of five HWE populations. The Thames (brown/blue) and Stour (green/yellow) 

populations as belonging to distinct rivers are more clearly defined. Both rivers display 

one possible remnant and shared population. The populations of Thurlow (Stour) and 

Molesey Weir Pool (Thames) are composed of individuals whose genomes exhibit an 

almost unique genetic signal.  

 



 

 

233 

 
Figure 4.12: Pictorial representation of STRUCTURE results. Above: K populations = 2 when no geographic information is used. Below: K 
populations = 5 when prior information is utilized. Each diagram shows the proportion (Q) of each individual’s genotype – represented as a 
vertical line - that is assigned to each of K hypothesized HWE populations. Brantham Lock – Thurlow = Stour; Molesey Weir Pool – Roundhouse = 
Thames. The colours utilized in the two figures do not correspond. Black vertical lines delineate batches of individuals belonging to each labeled 
population. 
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Figure 4.13: PCA graphs describing the variance in allele frequencies (FST, upper 
panel) and genotype frequencies (GCD, lower panel) that can be apportioned 
between the first two axes of variation for all 22 populations of roach. Red 
populations are found within the Thames and blue populations are found within the 
Stour. 
 

Differentiation among all 22 populations from both the Stour and the Thames were 

visualized using PCA (Fig 4.13) on both allelic data (based on a FST-distance matrix) and 

upon the distribution of pairwise data on co-dominant genotypic distances (GCD). In both 

plots, the first two axes explain most of the variation inherent in the two distance-based 

methods (first two axes account for 50.6% of the variance in the FST-matrix, whereas the 

genotypic-distance matrix represents 65.57% of the cumulative variance). The genotypic 

distances better delineate the two river populations into coherent aggregates, primarily due 

to variation on the first axis, with the exception of Thurlow, which groups in amongst five 

upper and middle course Thames populations. Fig 4.13 (bottom) suggests that in the 

Thames, Molesey Weir Pool is isolated with respect to the other 12 populations. The 

genotypic data also suggest the existence of two putative clumps within the Thames: one 
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consisting of two of the three most upstream populations (Roundhouse – the most 

upstream population – and Northmoor) and three contiguous ‘middle river’ populations 

(Wh, ThD and Cu)); and another consisting of populations Desborough Loop to Clivedon 

Island from the lower-middle Thames, plus Days and the upper Thames population of 

Buscot. The GCD PCA analysis of the Stour populations separates the headstream 

population of Thurlow from all others. However, little patterning is evident elsewhere 

within the Stour, except that each population appears to reside separately in the space 

described by the two axes. The FST PCA results are similar to the GCD results in that 

MWP and Thurlow are shown to be genetically distinct, and that the two clumpings in the 

Thames are present, although less spatially obvious, except that the sample from Temple 

Weir (TW) is placed equidistantly between them. Furthermore, locations Stoke by Clare 

and Rat’s Castle in particular – two contiguous upstream Stour populations – deviate from 

the non-Thurlow populations in the FST analysis, although this is less obvious from Fig 

4.13 (bottom).  

 

Table 4.19 unveils the results of assignment tests adopted in Geneclass 2.0. Panmixia was 

rejected for both rivers, as correct assignment was high in the Stour (89.1%) and greater 

than random in the Thames (61.9%), based on Rannala & Mountain’s Bayesian model 

(1997). Overall, each individual roach was correctly assigned to its population of origin 

75.3% of the time. However, the variation of correct assignment was much greater in the 

Thames (mean % correct assignment 64.0±16.43) than found in the Stour (mean % correct 

assignment 88.8± 5.11). The range of correct assignment ranged from 80% at Rat’s Castle 

to 95% of Thurlow roach in the Stour, and 38.5% at DL to 91.3% at Whitchurch in the 

Thames).  

 

The distribution of microsatellite diversity among individuals, populations and rivers was 

hierarchically quantified by applying an AMOVA analysis (Table 4.20). At all levels 

above that of the individual, the hierarchical distribution of genetic diversity was highly 

significant (p < 0.01), although most genetic diversity was found within and among 

individuals within populations (96.1 %, FIT = 0.153, 95% CI: 0.113-0.196; FIS = 0.114, 

95% CI: 0.017-0.090). However, 3.8% of the variance in allele frequencies was to be 

found among sup-populations within each of the Thames and Stour (2.5%, FSC = 0.026, 

95% CI: 0.010-0.045) and between the two rivers themselves (1.3%, FCT = 0.013, 95% CI: 

0.006-0.022).  
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Table 4.19: Results of the assignment tests as implemented in Geneclass 
vs. 2.0 
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Table 4.20: AMOVA results. 

Source of Variation %Var F-
stat 

F-
value Std.Err. 

95% CI P-
value 2.5% 97.5% 

Within individual 0.847 FIT 0.153 0.022 0.113 0.196 - 
Among individuals within 
populations 0.114 FIS 0.119 0.017 0.090 0.154 0.001 

Among populations within 
rivers 0.025 FSC 0.026 0.010 0.010 0.045 0.001 

Among rivers 0.013 FCT 0.013 0.004 0.006 0.022 0.001 
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4.4.4.3 Population Connectivity 

 

Tables 4.21 and 4.22 show the migration rate into (recipient) and out of (donor) each 

sampled population within the Thames and Stour, respectively. From Table 4.21, MWP 

seems to have received no recognizable migrants over the preceding few generations. It 

has, however, produced migrants particularly to its nearest neighbours, but also to the most 

upstream site at Roundhouse, although the mean rate of migrants deriving from the area is 

the lowest in the Thames, 0.00208±0.00259, marking it as the lowest contributing 

population in the sampled Thames.  Fig 4.14 better shows the pattern of both immigration 

(top) and emigration (bottom) by plotting mean values against location. There is a pattern 

of a decline in immigration with linear position upstream within the Thames, although this 

is not statistically significant (Pearson’s r = 0.352, 2-tailed p-value = 0.238). However, if 

MWP is removed statistical significance is attained (Pearson’s r = 0.672, 2-tailed p-value 

= 0.012). 

 

Conversely, whilst it is generally observed that levels of emigration from a population 

increase with upstream positioning, it is not statistically significant (Pearson’s r = 0.293, 

2-tailed p-value = 0.331). The most active contributors of migrants are the two populations 

found directly upstream of the confluence of the Thames (Days) and Thame (Dorchester) 

(mean values: 0.02241±0.00225 and 0.02461±0.02475), respectively. The two most 

downstream populations contribute the least amount of migrants (MWP: lowest 

contributor: mean rate of 0.00208±0.00259; DL: mean rate of 0.00282±0.00459). Overall, 

the rate of migration was 0.00993± 0.04919 averaged across all populations. 

 

Overall migration rate in the Stour, however, was an order of magnitude greater (mean 

migration rate of all populations = 0.09650±0.02418) than the global average found in the 

Thames. The vast majority of migrants in the Stour seem to derive from the Shalford Weir 

area (Table 4.22 and Fig 4.15), with a mean value of 0.11330±0.04263. Like the Thames, 

there seems to be a decrease in the rate of immigration with location upstream, although 

this is statistically unsupported (Pearson’s r = 0.362, 2-tailed p-value = 0.337). This value 

approaches greater significance if the two sites of Brantham Lock and Denham Mill – the 

former of which is found at the tidal limit of the Stour - are eliminated (Pearson’s r = 

0.636, 2-tailed p-value = 0.124). 
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Table 4.21: BAPS inference of recent migration rates (based on eight microsatellite loci) – as a proportion of recipient 
individual genotypes purported to derive from elsewhere, weighted by recipient population size - from putative donor 
populations to putative recipient populations within the Thames. Migration rates above 0.01 migrants per generation are 
underlined. 

 
Donor 

MWP DL OW CI Te Wh Dor Days Cu Ey No Bu Ro ! Mean St. Dev 

R
ec

ip
ie

nt
 

MWP  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

DL 0.00785 - 0.01492 0.00954 0.01154 0.02031 0.05892 0.02431 0.01185 0.01615 0.00492 0.04015 0.00846 0.22892 0.01908 0.01574 

OW 0.00143 0.00122 - 0.00306 0.00367 0.02041 0.03020 0.00673 0.00061 0.00163 0.00020 0.02388 0.00878 0.10184 0.00849 0.01039 

CI 0.00429 0.00794 0.01841 - 0.00286 0.02524 0.05032 0.02349 0.01190 0.02206 0.03254 0.00746 0.01175 0.21825 0.01819 0.01369 

Te 0.00167 0.00133 0.01567 0.00033 - 0.00800 0.03200 0.03683 0.03117 0.01533 0.00233 0.00950 0.00383 0.15800 0.01317 0.01325 

Wh 0.00478 0.00391 0.04391 0.02217 0.00174 - 0.00000 0.02522 0.00043 0.00826 0.04217 0.00000 0.01391 0.16652 0.01388 0.01603 

Dor 0.00424 0.01545 0.05364 0.00121 0.00636 0.00061 - 0.08939 0.01848 0.03879 0.01152 0.00121 0.01697 0.25788 0.02149 0.02679 

Days 0.00000 0.00091 0.00000 0.00030 0.00394 0.00030 0.00121 - 0.00000 0.00000 0.00000 0.01970 0.00000 0.02636 0.00220 0.00563 

Cu 0.00000 0.00250 0.00350 0.00300 0.00450 0.00700 0.04525 0.04050 - 0.00825 0.00825 0.01375 0.00800 0.14450 0.01204 0.01487 

Ey 0.00030 0.00061 0.00091 0.00000 0.01727 0.01788 0.03788 0.02515 0.00030 - 0.00000 0.04000 0.00242 0.14273 0.01189 0.01536 

No 0.00000 0.00000 0.00000 0.00000 0.02077 0.00154 0.01269 0.00000 0.00000 0.00000 - 0.00154 0.00000 0.03654 0.00304 0.00665 

Bu 0.00000 0.00000 0.00593 0.00000 0.00000 0.00000 0.00000 0.02370 0.00000 0.00111 0.00296 - 0.00185 0.03556 0.00296 0.00678 

Ro 0.00045 0.00000 0.00045 0.00773 0.00000 0.01091 0.00045 0.00000 0.00045 0.00045 0.00000 0.01136 - 0.03227 0.00269 0.00449 

! 0.02501 0.03388 0.15734 0.04735 0.07265 0.11219 0.26893 0.29533 0.07521 0.11205 0.10490 0.16855 0.07598    

Mean 0.00208 0.00282 0.01311 0.00395 0.00605 0.00935 0.02241 0.02461 0.00627 0.00934 0.00874 0.01405 0.00633    

St. Dev 0.00259 0.00459 0.01809 0.00658 0.00690 0.00940 0.02248 0.02475 0.01011 0.01199 0.01401 0.01437 0.00584    
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Table 4.22: BAPS inference of recent migration rates (based on eight microsatellite loci) – as a proportion of recipient 
individual genotypes purported to derive from elsewhere, weighted by recipient population size - from putative donor 
populations (columns) to putative recipient populations (rows) within the Stour. Migration rates above 0.01 migrants per 
generation are underlined. 

  Donor 

  BL DM St AB Sh MM RC SbC Th ! Mean St Dev 

R
ec

ip
ie

nt
 

BL - 0.00419 0.01140 0.00047 0.05872 0.00419 0.01140 0.00616 0.01012 0.10663 0.01333 0.01875 

DM 0.00000 - 0.00650 0.00000 0.10925 0.00025 0.00075 0.00225 0.00025 0.11925 0.01491 0.03818 

St 0.11095 0.07393 - 0.01655 0.12964 0.00762 0.01631 0.03964 0.01214 0.40679 0.05085 0.04813 

AB 0.02746 0.01102 0.03898 - 0.11763 0.00305 0.00288 0.02644 0.00390 0.23136 0.02892 0.03831 

Sh 0.00000 0.00000 0.00000 0.00000 - 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

MM 0.03769 0.02949 0.02090 0.00423 0.09859 - 0.00744 0.00564 0.00564 0.20962 0.02620 0.03183 

RC 0.00000 0.00000 0.00000 0.00000 0.03350 0.00000 - 0.00400 0.00000 0.03750 0.00469 0.01173 

SbC 0.01186 0.00023 0.00767 0.00023 0.04256 0.00023 0.00186 - 0.00840 0.07305 0.00913 0.01423 

Th 0.00000 0.00000 0.00100 0.00000 0.08000 0.00150 0.00100 0.00000 - 0.08350 0.01044 0.02811 

! 0.18796 0.11885 0.08645 0.02148 0.66989 0.01684 0.04163 0.08414 0.04045    

Mean 0.02350 0.01486 0.01081 0.00268 0.08374 0.00210 0.00520 0.01052 0.00506    

St Dev 0.03819 0.02593 0.01339 0.00579 0.03583 0.00272 0.00595 0.01452 0.00482    
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Figure 4.14: Mean values (with standard error bars) of immigration (top) and 
emigration (bottom) found within Thames populations. Lines of best fit are shown. 
 

The association would be even more positive if Shalford Weir was also removed 

(Pearson’s r  = 0.902, 2-tailed p-value = 0.0139). No detectable migration into Shalford 

Weir was inferred. Unlike the Thames, the trend within the Stour is for the amount of 

outgoing migrants to decrease with distance upstream, but this is very poorly supported, 

even if Shalford Weir is excluded (Pearson’s r = 0.06, 2-tailed p-value = 0.878 before 

exclusion, Pearson’s r = 0.417, 2-tailed p-value = 0.304). However, a strong upstream 

correlation would be observed if once again the two most downstream populations were 

excluded as well (Pearson’s r = 0.650, 2-tailed p-value = 0.052). 
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Figure 4.15: Mean values (with standard error bars) of immigration (top) and 
emigration (bottom) found within Stour populations. Lines of best fit are shown. 
 

As can be observed from Fig 4.16, there is a slight negative correlation between pairwise 

geographic distances and pairwise rates of exchange of migrants for both rivers, albeit a 

statistically insignificant one (Thames: Pearson’s r = 0.175, 2-tailed p-test = 0.128; Stour: 

Pearson’s r = 0.246, 2-tailed p-test = 0.148).  
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Figure 4.16: Pairwise estimates of migration rate (in either direction) in relation to 
river distance between sites in the Thames (top) and Stour (bottom), respectively. 
Lines of best fit are shown. 
 

4.4.4.4 Landscape Genetics 
 

Both rivers displayed a positive relationship between geographical and genetic distances 

between sampling sites (Fig. 4.17), but this indicated significant isolation by distance by 

roach populations in the Stour only, but not in the Thames, although the Thames was 

borderline significant (Thames: Z-statistic = 260.61, r = 0.185, p = 0.087 and p = 0.058 if 

either but not both distances were log-transformed; Stour: Z-statistic = 59.68, r = 0.583, p 

= 0.001, regardless of any log-transformation of distances). The analysis was repeated, this 

time omitting the pooled populations (Eynsham from the Thames and Stoke by Clare from 

the Stour). Little change was observed to levels of overall significance: Thames: Z-statistic 

= 238.93, r = 0.211, p = 0.073; Stour: Z-statistic = 43.31, r = 0.676, p = 0.002). 
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Figure 4.17: Results of the IBD analysis for the Thames (left) and Stour (right), respectively, displaying the graphical relationship between pairwise 
genetic and geographic distances. Geographic distances are in kilometres (km); genetic distance is described by the equation (!/(1-!)). The line of 
best fit is shown for both graphs. 
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The results of the genetic autocorrelation analyses are shown in Fig 4.18. The 

autocorrelations for both the Thames and the Stour showed that the relatedness coefficient, 

r, is significantly higher than expected by chance for both the 5km and 10km distance 

classes in the Thames (p = 0.001 and 0.010, respectively), and just the 5km distance class 

in the Stour (p = 0.010). The intercept of each river correlogram at the x-axis was 

17.091km and 8.846km, for the Thames and Stour, respectively. 

 

 
Figure 4.18: Genetic autocorrelation analyses of the Thames (upper panel) and Stour 
(lower panel) roach populations. Blue line shows the relationship between individual 
genetic relatedness, r, with distance class. The dotted red lines show the upper and 
lower 95% confidence intervals about the null hypothesis of no difference. The errors 
bars indicate 95% CI about each point estimate of r, for each distance class. 
 

As with the simple Mantel tests presented in Fig 4.17, the simple and partial Mantel tests – 

as shown in Table 4.23 – determine the correlation of factors between individual pairwise 

comparisons. The first block of rows in Table 4.23 show the simple correlation between 

each of five environmental factors with both genetic diversity (Weir & Cockerham’s !) 

and recent migration rate. 
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Table 4.23: Simple and partial Mantel tests to infer correlative processes 
between the extent of pairwise estimates of genetic differentiation and 
migration (as previously inferred from BAPs analysis) with five external 
factors: geographic distance (km), mean differential flow velocity between 
sites (m3sec-1), mean differential concentration of dissolved oestradiol 
between sites (ngL-1) and the number of both weirs and major tributaries 
(rivers, streams and rivulets) between sites. 

 
River 

Stour Thames 
Parameter Parameter 

Variable Control 
! Migration rate ! Migration rate 

r  p-
value r  p-

value r  p-
value r  p-

value 
Distance (km) - 0.536 0.002 -0.246 0.023 0.161 0.121 -0.174 0.066 
Mean flow - 0.121 0.188 -0.102 0.221 0.021 0.411 0.104 0.193 
Mean oestradiol - 0.396 0.013 -0.110 0.229 -0.015 0.560 -0.200 0.066 
No. of weirs - 0.454 0.002 -0.217 0.033 0.235 0.050 -0.182 0.061 
No. of tributaries - 0.693 0.000 -0.287 0.027 0.380 0.023 -0.235 0.032 

Distance (D) 

F 0.615 0.002 -0.240 0.095 0.183 0.104 -0.289 0.015 
O 0.570 0.002 -0.244 0.026 0.208 0.089 -0.074 0.274 
W 0.436 0.098 -0.147 0.232 -0.170 0.079 -0.011 0.462 
T -0.302 0.027 0.034 0.422 -0.406 0.012 0.075 0.276 

Mean flow (F) 

D -0.375 0.015 0.085 0.348 -0.090 0.310 0.255 0.026 
O 0.569 0.003 -0.239 0.074 0.027 0.380 0.177 0.071 
W -0.211 0.124 0.036 0.466 -0.221 0.072 0.346 0.007 
T -0.295 0.036 0.031 0.460 -0.314 0.025 0.341 0.005 

Mean  
Oestradiol (O) 

D 0.449 0.000 -0.105 0.264 -0.140 0.221 -0.124 0.177 
F 0.649 0.002 -0.242 0.105 -0.022 0.530 -0.245 0.033 
W 0.415 0.003 -0.102 0.273 -0.170 0.151 -0.124 0.175 
T 0.247 0.045 -0.017 0.453 -0.288 0.036 -0.087 0.262 

Number  
of weirs (W) 

D -0.312 0.154 0.087 0.346 0.251 0.039 -0.055 0.307 
F 0.480 0.007 -0.196 0.115 0.318 0.037 -0.373 0.003 
O 0.474 0.003 -0.213 0.038 0.287 0.036 -0.091 0.230 
T -0.456 0.008 0.077 0.373 -0.459 0.010 0.145 0.128 

Number of 
tributaries (T) 

D 0.581 0.000 -0.155 0.197 0.516 0.018 -0.176 0.095 
F 0.720 0.000 -0.271 0.069 0.478 0.025 -0.395 0.002 
O 0.649 0.000 -0.267 0.014 0.464 0.018 -0.153 0.123 
W 0.694 0.000 -0.206 0.138 0.534 0.016 -0.208 0.064 

 

Genetic differentiation in the River Stour was positively correlated with each potential 

correlate with the exception of mean flow velocity, before applying partial controls. Of the 

five variables, only mean difference in oestradiol concentration and the number of 

tributaries between populations retained significance at the 0.05 alpha level when all other 

factors were controlled for (distance: p = 0.002; oestradiol: p = 0.0132; number of weirs: p 

= 0.0018; and number of tributaries: p < 0.001). However, if multiple comparisons are 

taken into account, the correlation of genetic divergence with oestradiol loses significance 
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when the number of weirs or tributaries is included. The number of weirs was chief 

amongst the conflationary tertiary variables when applied to the correlation between ! and 

distance and mean flow rate. A different pattern is observed in the Thames. Of the simple 

Mantel tests, ! correlates with number of weirs (p= 0.050) and number of tributaries only 

(p= 0.023). Apart from controlling for the influence of tributary number (p = 0.025), mean 

levels of oestradiol do not correlate with !, likewise tributary number with geographic 

distance and mean flow rate. However, both the number of weirs and tributaries both 

correlate with ! to a significant extent when controlling for all other factors (although this 

is not retained under conservative correction). 

 

Recent migration rate is negatively correlated with distance (p = 0.026), number of weirs 

(p = 0.033) and number of tributaries in the Stour (p = 0.024), although no single factor is 

overwhelmingly influential. Similarly, in the Thames, only the number of tributaries is 

correlated with migration in the simple test (p = 0.032), but distance, oestradiol levels and 

numbers of weirs are borderline significant. Only the correlation of migration rate with 

mean flow gains and retains significance when all other factors are incorporated (with the 

exception of mean oestradiol (p = 0.071). 

 

In addition to the pairwise analysis of genetic divergence and connectivity, one sought to 

find any correlation between site-specific factors and levels of genetic diversity at specific 

sites along both the Stour and the Thames, and across all sites inclusive. All indices of 

genetic variation listed in Tables 4.7 and 4.8 were assessed for co-variance with mean 

oestradiol and flow rates per site, as well as geographic distance and mean snout-vent 

length of the individual fish (a proxy of age-class distribution) (see Table 4.24 for details). 

Very little patterning is evident among population means and measures of diversity. There 

is a positive correlation between the mean length of roach within a population and the 

degree of population-level inbreeding (FIS) and a concordant negative correlation in 

observed heterozygosity with increased size in the Stour, which attains borderline 

significance if the Shalford Weir population is removed (which has the lowest FIS and 

highest HO scores of 0.034 (p = 0.057) and 0.649 (p= 0.063), respectively). The Stour also 

exhibits a weak negative correlation between the mean number of alleles per locus and 

distance upstream (p = 0.071). However, performing multivariate regressions of all 

extraneous factors against the five measures of genetic diversity does not result in any 

single factor being statistically important within rivers or across all populations, although 

sample size is a significant predictor of MNA in the Thames alone.  
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Table 4.24: Mean levels of environmental factors for each population in 
the Thames and the Stour: Distance = km; mean length = cm; mean 
oestradiol = ng L-1; and mean flow = m3 sec-1. 

River Distance 
Upstream 

Sample 
size 

Mean 
length 

Mean 
oestradiol 

Mean  
Flow 

Thames      
MWP 0 33 121.710 2.521 42.519 
DL 3.755 65 133.540 2.664 48.060 
OW 26.82 49 145.300 2.591 38.545 
CI 34.33 63 131.270 2.285 46.477 
Te 58.72 60 155.250 2.161 45.933 
Wh 68.98 23 132.080 1.882 29.081 
Do 71.27 33 123.620 2.465 4.138 
Da 94.32 33 132.890 2.181 23.257 
Cu 129.92 40 156.380 1.988 23.670 
Ey 140.72 33 139.160 1.392 12.593 
No 155.1 26 108.650 1.392 12.593 
Bu 176.78 27 125.470 1.806 9.189 
Ro 185.04 22 127.570 0.431 1.536 

Stour      
Br 0.000 82 92.530 1.887 3.178 
DM 13.3 34 97.180 1.866 3.186 
St 18.33 59 62.690 1.830 3.097 
AB 26.33 71 126.220 2.050 2.107 
Sh 32.71 34 90.010 2.530 1.972 
MM 37.56 63 67.940 14.826 0.007 
RC 61.49 17 107.630 2.606 0.853 
SbC 62.1 37 138.290 3.227 0.730 
Th 65.6 20 103.500 0.691 0.251 

 

Geneland identified three distinct, geographically defined populations (Fig 4.19). The first 

population consists of the most upstream Stour population –Thurlow - with all populations 

of the Thames, with the exception of the most downstream site, MWP. The second 

population consists of the remaining Stour populations; and MWP is accorded distinct 

population status of its own.  
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Figure 4.19: Geneland analysis. Posterior probability contours for K = 1 – 3 (top to 
bottom) showing the probability with which the 22 sampled sites across both rivers 
belong to each of K = 3 populations. Low probability contours are indicated by red, 
increasing in likelihood with increasing brightness and lightness. 
 

The final analysis utilized Monmonier’s algorithm to identify spatially identifiable genetic 

breaks (Figs 4.20 and 4.21). 
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. 
Figure 4.20: Graphical representation of the Thames (thin green line calculated by 
Delaunay triangulation) and superimposed inferred genetic breaks (thick red lines). 
Top diagram displays the thickness of the barrier as a proportion of the ten 
microsatellite loci that identifies this break as being the most identifiable. Middle 
diagram incorporates the second choice and the bottom diagram incorporates the 
third choice. The number of supportive loci is shown (bold type)  
 

 

 

 



 

 250 

 
Figure 4.21: Graphical representation of the Stour (thin green line calculated by 
Delaunay triangulation) and superimposed inferred genetic breaks (thick red lines). 
Top diagram displays the thickness of the barrier as a proportion of the ten 
microsatellite loci that identifies this break as being the most identifiable. Middle 
diagram incorporates the second choice and the bottom diagram incorporates the 
third choice. The number of supportive loci is shown (bold type).  
 

The most significant genetic break identified within the Thames is between the population 

at Culham and downstream populations (Days and Dorchester, given the peculiarities of 

the triangulation procedure) (4/10 loci support a break between Culham and Days, top 

panel Fig 4.20). Incorporating the second and third choices, the populations upstream of 

the confluence of the Thame and Thames (Days and Dorchester) are separated from the 

immediate downstream site at Whitchurch (5/10 loci, bottom panel) and the upstream site 



 

 251 

of Roundhouse is deemed to be under the influence of a break from the downstream site at 

Buscot (4/10 loci, bottom panel), in addition to MWP being distinct with the same number 

of loci. The space between Culham and Eynsham is also inferred to experience some break 

in genetic continuity (3/10 loci).  

 

The evidence for genetic breaks in the Stour involves the apparent distinction of the 

Thurlow population (5/10 loci, first choice, top panel, Fig 4.21). However, incorporating 

second and third inferences, significant genetic breaks are identified between Brantham 

Lock and upstream (5/10 loci), Mill Meadow and upstream (5/10 loci), and Anchor Bridge 

and Shalford Weir (4/10 loci).  

!

4.4.5 Discussion 

 

4.4.5.1 Departure From Migration-Drift Equilibrium. 

 

Population contractions can leave a significant imprint upon levels of expected 

heterozygosity relative to that expected under mutation-drift equilibrium conditions. None 

of the Thames populations showed any sign of a recent population contraction, at least in 

the last 0.2 – 4Ne generations. In contrast, the Stour was inferred to have undergone 

population contractions at four locales: Brantham Lock, Mill Meadow, Stoke-by-Clare and 

Thurlow. The latter two populations are found upstream in the most lotic part of the Stour. 

Such upstream populations are more likely to undergo demographic contractions due to 

inherently smaller local population sizes (smaller habitats), the greater difficulty faced by 

migrants travelling to upstream sites and the increasingly patchy nature of spawning 

habitat with increasing distance upstream. The inferred demographic reductions at Mill 

Meadow and Brantham Lock are more difficult to explain on the basis of population 

connectivity and population size. Here, one may refer to the potential impact of 

environmental factors. Brantham lock is within the tidal range of the Stour and roach here 

must display tolerance to an increase in dissolved salt, either physiologically or 

behaviourally. At Mill Meadow, the mean concentration of dissolved oestradiols – known 

to feminize male roach – are extremely high (over 14ng L-1), more than five-fold greater 

than at any other site sampled in the river (but see below). It is possible that the action of 

selection may have had an influence, for example through the action of selective sweeps 

during periods of high stress in environments such as these, but the impact of directional 

selection on BOTTLENECK results is not well understood (Luikart et al. 1998). The lack 
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of evidence for bottlenecks in the Thames – with its long history of anthropogenic 

interference – could be the result of larger population sizes within this river, that enough 

time has elapsed since a bottleneck for any genetic signal to have eroded, or due to the 

influence of false negative results. The reliability of Piry et al.’s software in determining 

actual instances of bottlenecks by assessing excessive levels of heterozygosity under 

neutral expectations has been called into question when tested on known bottlenecked 

versus known non-bottlenecked populations (Cristescu et al. 2010). Additionally, the 

signature of a bottleneck is strongly linked to the severity and duration of such an event 

and does not always result in the loss of significant levels of genetic variation (e.g. 

Demandt and Bj!rklund 2007), as well as sampling scheme, population structure and 

overall levels of genetic diversity (Chikhi et al. 2010).  

 

The value of identifying populations that have undergone demographic contractions is 

important. One may identify populations that naturally have to be replenished by 

individuals migrating from elsewhere, and thus lines of genetic exchange between these 

populations need to be kept open. Almost all populations in this study were found to both 

donate and receive migrants (see below). However, if natural sources of migrants are 

blocked, then the chances that such populations become extinct are increased (Lande 

1994; Lynch et al. 1995). Bottlenecks, inferred from nDNA, have been identified across 

freshwater and diadromous freshwater fishes using BOTTLENECK (e.g. bullhead 

(H"nfling and Weetman 2006), dace (Costedoat et al. 2006), the Asiatic cyprinid Labeo 

dero (Chaturvedi et al. 2011) and grayling (Dawnay et al. 2011)) but not in other species 

in which one would expect population contractions to have occurred, but have been 

identified using other methods of inference such as MSVAR (Beaumont 1999) (e.g. the 

endangered Iberian cyprinid Chondrostoma lusitanicum (Sousa et al. 2008)). H"nfling et 

al. (2004) did not detect any signs of population bottlenecking in isolated riverine or 

floodplain populations of roach based upon allozyme data, with high effective population 

sizes and likely genetic replenishment by periodic flooding given as the primary reason, 

despite the data being sensitive enough to detect bottlenecking.  

 

4.4.5.2 Population Sub-structuring within the Thames and Stour. 

 

Both rivers displayed significant population subdivision, albeit only on a low to moderate 

scale (mean global FST: Thames = 0.032; Stour = 0.039). Levels of population 

differentiation were higher within the Stour than within the Thames, but not significantly 
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so. Levels of differentiation, as measured by FST, are of a similar if lower level than that 

found in allozyme studies of roach (e.g. Laroche et al. 1999; Hänfling et al. 2004), a result 

consistent with high within-population diversities. Microsatellite loci tend to possess more 

alleles that may be shared between populations, a result that highlights that the application 

of such loci may be slightly problematic in organisms expected to be highly genetically 

diverse and which share recent geological histories.  

 

Levels of differentiation among populations within both the Thames and the Stour (and 

globally) are low to moderate in extent (values less than 0.05 are deemed to be low by 

some authors (Balloux & Lugon-Moulin 2002)). For example, long isolated populations of 

the arctic charr from two lakes in Scotland possess non-standardized estimates of FST that 

span 0.091 – 0.439, including sympatric populations (Adams et al. 2008). Similarly, 

endangered Iberian cyprinids such as Chondrostoma lusitanicum display levels of 

differentiation (average FST = 0.390) an order of magnitude greater than any comparable 

roach example (Sousa et al. 2008). However, the global FST of 0.020 found between the 

pooled datasets of the Thames and Stour was similar to the value found for populations of 

the tench between two lake sites in Germany (Kohlmann et al. 2007). Similarly, within a 

Swedish lake, samples of perch displayed an FST of 0.023 (range 0.001 – 0.040). Chub of 

the River Durance, France, displayed significant differentiation in 37% of pairwise 

comparisons, with an FST range of 0 – 0.055 (Dehais et al. 2010). By contrast, the 

proportion of significantly different pairwise comparisons in the roach was 75.6% in the 

Thames (FST = 0 - 0.109) and 88.9% in the Stour (FST = 0 – 0.101). Dawnay et al. (2011) 

found pairwise comparisons of ! significant for all but one grayling population sampled 

within the UK. All but one of pairwise comparisons of FST of 26 sampled locations across 

Europe was significant for divergence in the bitterling (Bryja et al. 2010), which is 

expected in rheophilic species that inhabit faster-flowing streams. Generally, the range of 

genetic divergence found in the roach may be located within the higher end of the 

spectrum of genetic divergences found in most microsatellite studies of European 

freshwater fishes.  

 

Aside from classic and standardised estimates of genetic structuring, the present study also 

utilised spatial data and individual assignment to determine the number (K) of 

hypothesised populations indicated by the data, whose boundaries are not obvious from an 

external observation of individuals or environment. The STRUCTURE analysis identified 

two and five HWE populations, dependent upon whether one inputted specific location 

data into the analysis. The first analysis confirmed that the Stour and the Thames 
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individuals generally agree with their location of sampling, i.e. that the Stour and Thames 

may each be considered as genetically cohesive units. This finding is supported by both 

the PCA and individual assignment analyses. Using sampling location, the Thames 

population of MWP and the Stour population of Thurlow were recognised as being 

genetically distinct from other populations within their respective rivers, supporting the 

theta results. Additionally, when either the Thames or the Stour were analysed using 

STRUCTURE separately, K = 2 was deemed most likely for both rivers, regardless of 

whether sampling location was inputted as a prior, with MWP and Thurlow again 

identified as being distinct populations from the remainder of the roaches in either river 

(see Appendix B). However, the Geneland analysis supported only K = 3 populations, 

such that Thurlow was grouped in with the non-MWP Thames populations.  

 

A number of studies have conducted similar spatial post hoc analyses of genetic clustering 

in European cyprinid species. Sousa et al. (2008) found that rivers within the Samarra 

drainage of Portugal possessed their own unique signature of genetic variation within the 

endangered cyprinid Chondrostoma lusitanicum, as described by a STRUCTURE 

analysis, but with no differentiation in the smaller southern drainage of Sines. At the other 

extreme, the widely distributed bitterling possesses much less structuring, with K = 2 or 3 

populations best describing the distribution of genetically cohesive clusters from 26 

localities across Europe. The bitterling clusters inferred coincide with those that once were 

connected to the Danube, a Dniester-Dnieper-Vistula cluster (including an English 

population) and Aegean / Asia-Minor cluster (which groups with the Danube cluster when 

K = 2) (Bryja et al. 2010). The vairone of the Italian peninsula were inferred to possess 5 

homogeneous groups, which correspond to either individual rivers or small assemblages of 

river populations (Marchetto et al. 2010). Similarly, 5 population clusters were reported 

from a UK survey of the grayling, roughly coinciding with Scottish, northern, midland and 

southern populations, plus a cluster composed of populations widely distributed within the 

UK (Dawnay et al. 2011). Demandt (2010) found no evidence in roach of multiple HWE 

populations in the Forsmark Biotest station lake, Sweden, but K = 4 in the European perch. 

The chub of the River Durance also failed to yield any significant genetically 

differentiated groups (Dehais et al. 2010). This study suggests that nuclear genetic 

clustering into definable populations can be made on a finer geographical scale in roach 

than that observed in most other European cyprinids.  
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Physical population fragmentation has been found to significantly impact upon measures 

of genetic diversification in cyprinid species (Blanchet et al. 2010). In chub and dace, 

levels of FST were significantly higher in the fragmented River Viaur compared to the 

continuous River C!"!#$% a pattern not found in two smaller species, gudgeon Gobio gobio 

and minnow Phoxinus phoxinus (Blanchet et al. 2010). As well as FST, Blanchet et al. 

(2010) found significant reductions in mean allelic richness and mean observed 

heterozygosity between the fragmented environment and the continuous one in three of the 

four species (the minnow excepted). This is an observation that is seen with levels of 

allelic richness (p < 0.001) and observed heterozygosity (p = 0.0194) detected between the 

Thames and Stour roach, with levels of mean allelic and observed heterozygosity 

significantly less in the Stour than in the Thames. Blanchet et al. (2010) also found no 

difference in effective population sizes between the two rivers.  

 

Blanchet et al. (2010) make little reference to the quality of feeding and spawning habitat 

in their study, instead defining a continuous landscape as a riverine environment with few 

anthropogenic blockages across the stream/river passage, regardless of whether these 

sometimes ancient mills/weirs are still functional or otherwise. By this definition, the 

Stour would be classified as the more fragmented landscape, and the results found in this 

study (lower allelic richness, observed heterozygosity and greater overall level of 

structuring, FST) are consistent with the findings of Blanchet et al. (2010), particularly with 

regard to the larger and more vagile species (chub and dace). Unlike the species studied in 

Blanchet et al. (2010), the roach of the Thames and the Stour exhibited significant 

variation in size and in mean distribution of size classes along these rivers (p << 0.001, 

heteroscedastic student’s t-test). 

 

4.4.5.3 Spatial Patterning of Genetic Diversity  

 

In unidimensional river environments, one may expect that the physical environment 

would place greater emphasis on downstream gene flow, potentially eroding historical 

sources of genetic diversity (in upstream locations) with source-sink metapopulation 

dynamics, which are further complicated by contemporaneous anthropogenic barriers to 

gene flow (Weetman and H&nfling 2006; Blanchet et al. 2010). However, the continual 

                                                
39 Fragmented here refers to the presence of anthropogenic weirs and mills. More than 50 are to be 
found along the main channel of the River Viaur (on average one per 2-3km), most of which originate 
from the 15th century with few fish-passes erected. Additionally, two dams were built 30km and 80km 
from the source, respectively. By contrast, the River Célé posseses only ten weirs, each built during the 
20th century and equipped with fish ladders (Blanchet et al. 2010).  
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existence of upstream populations despite pressures to redistribute organisms downstream 

(the so-called ‘drift paradox’, M!ller 1954) requires explanation. One resolution for 

freshwater fish species involves either the continued replenishment of individuals at a rate 

equal to the rate at which larvae are lost (Anholt 1995) (in which case high levels of 

genetic variation may be maintained), or upstream areas are recolonised after local 

extirpations (in which case one would expect low levels of within-population genetic 

diversity, consistent with founder event dynamics). A general expectation is that levels of 

genetic diversity would decrease with distance upstream (Hänfling & Weetman 2006; 

Dehais et al. 2010) because of less available suitable habitat, smaller population sizes (due 

to lower water volume and increased competition), and through the loss of alleles via 

downstream juvenile drift; or a combination of such factors. This study shows that in both 

rivers, roach are able to actively migrate and transfer their genes to populations that are 

located upstream as well as downstream, such that overall levels of genetic diversity are 

fairly high, even in the lotic headwaters of the Stour. However, in the Stour in particular, 

one observed an important distance component to the distribution of genetic diversity 

suggesting locally important equilibrium conditions, which become more perturbed with 

upstream location (e.g. the two most upstream populations may represent sink populations, 

leading to their relative genetic isolation). This is exemplified by the distribution of 

effective sizes within both rivers, calculated according to Jones & Wang (2009). The 

effective sizes of Stour populations show a strong negative correlation with distance 

upstream (r = 0.657, 2-tailed p-value = 0.055), whereas the Thames displays a similar 

correlation if MWP is omitted (r = 0.679, 2-tailed p-value = 0.011; if MWP retained: r = 

0.393, 2-tailed p-value = 0.184) (see Appendix B). 

 

If evolutionary equilibrium conditions are assumed, in a one-dimensional environment 

with a bi-directional opportunity for effective migration, the patterning of genetic 

differentiation should show a significant correlation with distance, whereby genetic 

exchange occurs at a greater frequency between populations when the distance between 

them decreases (Kimura and Weiss 1964). This stepping-stone model would be disrupted 

if significant long-distance migration occurred, with an emphasis in riverine environments 

of significant movement of larvae and fry downstream and / or long-distance adult 

movements upstream. Freshwater fish have been found to display significant IBD patterns 

in genetic diversity, for example all Telestes species show highly significant IBD within 

the Rh"ne (Dubut et al. 2012). In the present study, roach populations displayed a 

significant correlation between genetic differentiation and distance over some 66km of 

river within the Stour (p = 0.001) and borderline significance over 185km of the Thames 
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(p = 0.087). The pattern of IBD in the Stour is evocative of Hutchinson and Templeton’s 

(1999) model of regionalised equilibrium between genetic drift and migration, whereas the 

Thames reflects a model of IBD whereby inter-population migration is higher or where 

long-distance migration is a more important factor than it is in the Stour. The Stour model 

of IBD is similar to that found in the bullhead (Cottus gobio) along the River Seven, UK 

(H!nfling and Weetman 2006), and in intermediate sized cyprinids such as the dace and 

gudgeon in the anthropogenically disrupted river Viaur, France (Blanchard et al. 2010). 

Similarly, the intermediate sized species in the Blanchard et al. (2010) study show levels 

of reduced IBD as observed here in the Thames roach, where fewer human-built 

occlusions exist and where mean roach size is higher.  

 

When isolation by distance occurs within unstable environments within metapopulations, 

population equilibria become dependent upon migration, extinction rates and the founder 

effect, in addition to drift (Levins 1970). The primary prediction of propagule-colonization 

models of equilibrium dynamics (Slatkin 1977; Maruyama and Kimura 1980) is that they 

predict less retention of diversity across the entire metapopulation, perhaps explaining the 

greater within-population structuring and lower allelic richness and observed 

heterozygosity found in the Stour relative to the Thames where a metapopulation dynamic 

less evident. Wright predicted an increase in FST in an early invocation of founder effects 

relating to his island models (1940). Even if local extinction is common, the extinction rate 

seems to have little effect upon overall levels of FST (Wade and McCauley 1988), so long 

as there remains a source of colonization. Given the roach’s ability to disperse long 

distances, then one would predict that the Stour population in particular to exhibit 

similarities to these modified population models.  

 

The presence of IBD or any level of structuring in freshwater fishes is dependent upon the 

availability of suitable spawning habitat. In closed lentic systems, roach are observed to 

have a high degree of natal spawning philopatry, exhibiting such a degree of return 

migration accuracy that they may better the abilities of salmonids within rivers (e.g. 83.5 – 

92.0% in Swedish roach (L’Abée-Lund & Vøllestad 1985) compared with 50% returning 

Atlantic salmon between 1986-88 in the River Dee, Aberdeenshire (Youngson et al. 

1994)). Therefore, the potential for roach natal philopatry on such small scales to effect 

population structuring is significant. In roach within the Stour, the average distance at 

which roach relatedness is offset by the action of genetic drift is 8.846km: the resulting 

effect is a strong IBD signal within this river. Contrasting roach with the more familiar 

homing abilities of salmonids, the Atlantic salmon of the Varguza River in Finland 
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(Primmer et al. 2006) exhibited less of an IBD relationship (rxy = 0.33, p = 0.05) and a 

much larger intercept between r and distance class (intercept = 34km) than in the Stour (rxy 

= 0.583, p = 0.001, intercept distance = 8.846km), although the Finnish salmon did exhibit 

greater IBD than Thames roach. Bull salmon Salvelinus confluentus of the Kootenay River 

in British Columbia show much greater levels of IBD (rxy  =0.47, p < 0.001) than Stour 

roach, but not in the Pine River (rxy = 0.15, p = 0.147) (Costello et al. 2003). A pattern of 

IBD is common in freshwater fishes, but not always evident (e.g. bullhead (H!nfling and 

Weetman 2006); chub (Dehais et al. 2010). pikeperch Sander lucioperca (Bj"rklund et al. 

2007)). For allozyme data, H!nfling et al. (2004) and Laroche et al. (1999) found no 

correlation between genetic and geographic distances among roach populations within the 

Elbe and Rh#ne Rivers, respectively. It is not wise to always assume IBD, even within 

species with significant homing abilities; rather individual river populations should be 

assessed on a case-by-case basis.  

 

4.4.5.4 Population Connectivity 

 

Body length in animals is positively correlated with an ability to disperse greater distances 

within species (Jenkins et al. 2007). Additionally, within-species population density is 

inversely related to body size (Cotgreave 1993). Sampling density – a predictor of 

population density, albeit a poor one - was greatest in the Stour, and these roach also 

possessed significantly smaller body sizes. The data in this study support the theoretical 

assertion that dispersal distances – as expressed by the autocorrelation coefficient, r, - 

would be shorter in the Stour roach population (because they are smaller individuals), 

where the maximum dispersal distance is inferred to be 50% less than that of roach in the 

Thames. These data are also consistent with the greater strength of signal of IBD in the 

Stour than the Thames.  

 

Fig. 4.14 shows the mean estimate of recent migration rate in to and out of each population 

(sampling area) in the Thames. Generally, the further upstream a population is the more 

likely it is to yield migrants and less likely to receive them, although the relationship is far 

from perfect. MWP, as an area likely to harbour a significant number of introduced fish 

from previous years, receives no migrants, despite being the most downstream located 

population. That the EA stocked the nearby river with 30000 fish only a few years before, 

suggests that whilst an introduced population may persist and retain high levels of 

diversity, expected given the numbers of introduced stock, it retains an aberrant genetic 
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signal that is incongruous with the genetic signal of the Thames in general. Additionally, 

the MWP fish appear to contribute little gene flow to other locations within the Thames, 

even those located proximately. However, by persisting, the MWP does contribute to the 

spatial genetic diversity of the Thames and of the species.  

 

The number of weirs/mills/locks seemed to impact little upon the migration rate in either 

river, but some association with patterns of genetic divergence exists in the Stour. The 

Thames possesses many more fish passes designed to allow the upstream migration of 

anadromous, catadromous and migratory potamodromous fishes. These passages are 

effective for pelagic and bentho-pelagic coarse fish, and roach in particular, but less so for 

more demersal species (Knaepkens et al. 2006). The presence of weirs affects local genetic 

equilibrium conditions over time that exacerbates the extent of genetic isolation with 

distance in the demersal piscifauna (e.g. bullhead (H!nfling and Weetman 2006)). In 

roach, there is a hint that weirs may limit long-term gene flow (e.g. in the Stour), but this 

situation will have rapidly changed in the last five years or so with the construction of fish 

passes, particularly at Bures Mill (Environment Agency 2010).  

 

Regardless of the extent of population connectivity among populations in both study 

rivers, there is evidence for limited gene flow between almost all studied populations. 

However, this level of connectivity is not sufficient to genetically homogenize roach 

populations in either river. More migration was detected in the Stour, probably due to it 

being a much smaller river with more means of facilitating gene flow among spawning 

areas (greater habitat provision, etc), although genetic structuring was more pronounced in 

the Stour, MWP aside. This discrepancy may be explained by a high recent migration rate, 

but historically lower migration rate; and/or by source-sink metapopulation dynamics. The 

locks, weirs and mills that were once prevalent along its banks and crossings, but are now 

mostly dis-used or modified for fish passage, may have obstructed historical gene flow. 

Even so, major obstacles to gene flow and current migration, such as dams, remain a more 

serious cause for concern as regards affecting the distribution of neutral genetic variation 

in larger eurytopic and rheophilic cyprinids (Laroche et al. 1999; Dehais et al. 2010). 
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4.4.5.5 Management Implications 

 

The analysis of migration suggests that some areas of river are more important than others 

in producing migrants that help populate areas both upstream and downstream. Such a 

pattern is indicative of a source-sink metapopulation. This pattern was most in evidence 

within the Stour, whereby over 65% of the immigrant genotypes were derived from the 

Shalford Weir population, but was also observed in the Days-Culham area of the Thames. 

The management implications are obvious, if recent immigration rates are reflective of 

historical migration patterns: emphasis should be placed on conserving and preserving 

these areas as providers of genetic diversity in perpetuity.  

 

Within the roach populations of these two rivers, there is an apparent paradox between the 

extent of migration and the degree to which populations are genetically differentiated. 

Even though recent migration rate is similar within the Thames and Stour, there is more 

structuring within the Stour than in the Thames. The genetic neighbourhood size is also 

two-fold smaller in the Stour. The answer probably lies in the fact that at least some of the 

Stour populations have experienced population crashes, which has led to an increase in the 

degree of familial inbreeding in these populations, contracting the average neighbourhood 

size. Brantham Lock is located in the tidal Stour and as such roach here must acclimate to 

the conditions by assuming, either through phenotypic plasticity or natural selection, a 

halophilic tolerance. Mill Meadow experiences the lowest flow rate in the Stour, but also 

the highest concentrations of dissolved oestradiol in both the Thames and the Stour, which 

may attain toxic levels. Thurlow and Stoke-by-Clare are located either side of the 

extraction point for the removal of water to feed Essex reservoirs. Both these latter 

populations are also located in the most upstream and environmentally heterogeneous 

habitats, which probably support fewer individuals and receive fewer immigrants. 

 

Although precise data are absent, the Thames has a long history of pollution, localised fish 

kills and recurrent stocking by the Environment Agency. An interesting finding of this 

study is the low diversity and aberrant genetic signal of the roach at MWP, a site where 

30000 individuals were released just downstream of this site six years prior to sampling 

(15000 at Teddington (geographical co-ordinates: 51.470042 latitude; -0.321241 

longitude) and 15000 at London Apprentice, further downstream (geographical co-

ordinates: 51.432433 latitude; -0.326072 longitude) (Nigel Hewlett, pers comm)). The 

migration data suggest that roach from elsewhere have not integrated into MWP, and that 

roach from MWP make for poor migrants into other areas within the Thames. Whilst the 
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MWP population has persisted, at least over four years, the time frame may be too short to 

accurately assess the success of this introduction and a further survey may be necessary. 

However, the MWP population has the lowest effective population size of any population 

in the Thames (N = 34, see Appendix B)40, consistent with a reduced number of breeding 

individuals in a fish farm environment (i.e. stocked fish). Reduced genetic fitness is 

associated with population inbreeding, especially in artificial environments such as fish 

farms, which may account for the poor rate of introgression of MWP migrants into all 

other populations.  

 

One final implication of this study is that the level of dissolved oestradiol is correlated 

with the degree to which populations are differentiated from one another within the Stour, 

although mean levels of oestradiol are not correlated with mean levels of genetic diversity 

along the length of the Stour (see Fig 4.22 for a map of oestradiol concentrations within 

the Stour). However, most loci show no relationship between the difference in mean 

dissolved oestradiol levels and pairwise genetic differentiation. If oestradiols cause 

widespread feminization of males, then one would expect a reduction in effective 

population size with concomitant lowering of genetic diversity indices for all loci. Model-

based studies of the production of intersex males in roach suggest that in wild populations 

the presence of intersex males will have a minimal effect upon the population growth rate 

of roach (Jobling et al. 2002), with some complication brought on by the presence of 

selective fishing practices (An et al. 2009 in Harris et al. 2011). However, the lack of 

correlation in effective population size and mean levels of genetic diversity with dissolved 

levels of oestradiol, do not corroborate the finding of a laboratory study (Harris et al. 

2011), using microsatellites, that parenting success is negatively correlated with 

moderately and severely feminized males. However, Mill Meadow and Stoke-by-Clare 

were both associated with a recent population bottleneck, which is consistent with the 

possibility of a significant reduction in the number of effective breeders in the past. 

 

Instead of finding evidence for wholescale reduction of genetic diversity across all loci 

with EDCs, one observed that a single locus, Lco4, exhibits the greatest correlation of 

inter-population divergence and difference in oestradiol levels (p < 0.01 for all controlled 

regressions except when the number of tributaries is invoked, albeit near significant (p = 

0.078)). Such a single-locus pattern may be indicative of selection acting upon a nearby 

functional locus, presumably exapted to detoxify or excrete the harmful chemical, or to 

                                                
40 Calculated using COLONY, a program that employs the sibship method of Wang (Jones and Wang 
2009). 
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increase tolerance to the physiological effects engendered by having oestradiols in the 

roach’s circulatory system. Inspecting the individual locus data further, no single allele of 

Lco4 showed any significant correlation of frequency with levels of oestradiol, but there 

was a striking and significant correlation in the frequency of the 197bp allele of the locus 

Lc290 with oestradiol concentrations, a locus that also displayed a strong predictive 

relationship with some environmental correlates in the partial Mantel tests. 

 

 
Figure 4.22: Map of the River Stour in which particular stretches are highlighted 
according to the risk posed by feminizing levels of oestradiols according to the 
Environment Agency. Green = low; yellow = medium; red = high. Inset: Sample sites 
of Mill Meadow and Shalford Weir showing their proximity to areas in which 
oestradiol levels are severe. 
 

It is the only allele to peak significantly with the population at Mill Meadow in the Stour 

where levels of oestradiols are at least five-fold greater than elsewhere where roach were 

sampled. Fig 4.23 shows the relationship between oestradiol concentrations and the 

frequency of the 197bp allele (upper panel) (Pearson’s r = 0.823, 2-tailed p-value = 0.006). 

After Shalford Weir there is a consistent relationship between levels of oestradiol and 

frequency of the allele, with increases and decreases occurring in tandem. What is most 

noticeable is that there is a spike in frequency of the 197bp allele at the two areas where 

the concentrations of dissolved oestradiols is greatest (MM: 14.826ng L-1; SbC: 3.227ng L-

1, Fig 4.22). That there is little association below Shalford Weir may be because of the mill 

at Bures, which was deemed extremely hard to bypass, even for the European eel Anguilla 

Anguilla by the Environment Agency. Migration acts against the action of selection, 

thereby possibly eroding the action of selection downstream of this site.  
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Figure 4.23: Correlation of the 197bp allele (locus Lc290) with mean dissolved 
oestradiol levels. Top: co-distribution of line graphs showing consonant increases and 
decreases in both oestradiol levels (red) and allele frequency (blue); bottom: Scatter 
graph showing the correlation between mean oestradiol levels and allele frequency. 
 

In conclusion, the roach of the Thames and the Stour exhibit similar levels of genetic 

diversity, but differing patterns and degree of differentiation within their waters. These 

differences, whilst subtle, will allow a differential approach to managing the genetic stock 

of roach in these two rivers to be applied to maintain and best preserve the genetic 

integrity of this important angling commodity.  
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Appendix B 
 

B1 Microsatellite Allele Frequency Data  
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B1.1: Continued. 
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B2 Cryptic Population Structuring 

 

B2.1 Individual STRUCTURE Analyses for the Thames and Stour. 
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B3 Effective Population Sizes 

B3.1. Line plots of effective population sizes – as determined by the sibship 
method – for all populations in the Thames (top) and Stour (bottom). 95% CI 
bars are shown. 

 

 

  



 

 268 

Chapter 5: Conclusions - The 
Management of UK Roach: 
Inferences to Inform a Coarse 
Fishery. 
 
“For wild fish in wild places, the [Environment] 
Agency promotes the principle of self-sustaining fish 
stocks. These are natural fish populations that develop 
to suit the aquatic ecosystem they inhabit. Management 
of such fisheries should be based on knowledge of 
coarse fish biology. In this way we can ensure that 
actions are both cost effective and of benefit to all parts 
of the aquatic ecosystem.” – Anon, Coarse Fish 
Biology and Management Booklet, Environment 
Agency. 
 

The roach in UK waters is characterized by fairly low levels of nucleotide diversity and 

medium levels of haplotyic diversity, characterizing this species as one that has undergone 

a geologically recent population bottleneck, followed by population expansion (Grant and 

Bowen 1998). The overall effect is that quantitative measures of diversity across 

watersheds reveal limited levels of differentiation as inferred by FST and G-statistical tests. 

These results are entirely consistent with European freshwater cypinids found in the 

northern and western expanses of their ranges. However, some river populations show 

highly divergent deviations of their D-loop sequences to warrant further attention, for 

example the populations in the Severn, Sussex Ouse and in the Kennet tributary of the 

Thames. The latter population is an example of how within-river diversity is greater than 

that found between rivers, emphasizing the effect that contemporary demographic 

processes may have on within-river D-loop frequencies in combination with the in situ 

mutation of new haplotypes, albeit in low frequencies, such that inter-river estimates of 

divergence remain low. On the basis of this study, caution must be applied in applying a 

purely statistical criterion to combine river populations into single management concerns, 

as these measures do not take into account within-river diversity, which tended to increase 

with upstream distance. This result is consistent with that observed with microsatellite loci 

in linear stretches of the Thames and Stour, whereby the most divergent populations 

tended to be located upstream (with the exception of MWP in the Thames).  

 

Coarse fish
biology
AND

management
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Considering mtDNA further, there is a general increase in mtDNA diversity in roach at 

lower latitudes in the UK, although the most ancestral haplotype (D4) is found in the 

north, consistent with mtDNA D-loop data in the grayling (Dawnay et al. 2011). This 

suggests that although levels of inter-population divergence were on a different scale in 

the two species, their concordant diversities are suggestive that some freshwater fishes in 

the UK belong to a cartel of single evolutionary units, with common recent post-glacial 

histories. However, the implication of this congruence of UK recolonisation history shown 

by D-loop data from roach and grayling is that the roach ancestral haplotypes found in the 

Rivers Trent and Tees are probably not found there due to anthropogenic translocation, but 

have arrived naturally via a northerly route of ingress, the route of which is shared by the 

grayling and probably by other species of obligate freshwater fishes; or that they are 

remnant of the first wave of colonists that were impacted upon less by subsequent waves 

of colonizing fish that populations further south and east. The implication is that there may 

be multiple migratory lineages within the European clade(s) that founded UK freshwater 

fish diversity, but not enough time has accrued for accumulation of enough neutral 

sequence variation to make this inference obvious. Additionally, the varying qualitative 

and quantitative frequencies of rare haplotypes in the smaller rivers and the River Severn 

suggest that, even before incorporating nDNA data, individual river populations are 

divergent enough to warrant an ascription of unique repositories of genetic diversity, and 

therefore should be considered for conservation as single management units. 

 

Most D-loop variation among populations was found to occur within rivers, rather than 

between them. Similarly, inter-population microsatellite variation was as high within 

rivers as between rivers, where the pairwise FST between the pooled populations of the 

Thames and the Stour was 0.0198, less than the mean FST among sampled sites within 

either river. Therefore, like mtDNA diversity, investigators may well misinterpret levels of 

genetic and ecological differentiation in wild fish populations, if estimates of evolutionary 

or management potential were based on a naïve surveying of single-point estimates of 

genetic diversity within a wider habitat, known range or river system. Allied to this point, 

one cannot over-emphasize the finding that similar genetic outcomes (e.g. overall similar 

levels of diversity) can be attained by different processes in two closed populations of the 

same species of freshwater fish. A naïve application of Moritz’s allele frequency criterion 

(1994) would miss the conflicting ecologies and microevolutionary histories of roach in 

the Thames and the Stour revealed by closer analysis of multiple sites within each river; 

and, as a result, an ill-informed management policy may be applied. The bottom line of 

this study is that the mtDNA and the nDNA data suggest that genetically cohesive 
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populations – or stocks, by Ihssen’s definition (1981) – may be found at a hierarchy of 

spatial scales, from individual headwater populations (e.g. Thurlow in the Suffolk Stour) 

to entire rivers. 

 

What is clear from the analysis of roach microsatellite DNA is that despite harboring 

similar overall levels of genetic diversity, the actual distribution of genetic diversity along-

river transects of the two southeastern river systems do differ significantly, with more 

genetic divergence and a higher inferred rate of recent migration within the shorter Suffolk 

Stour than the longer and more convoluted Thames. The results suggest that within the 

Stour there are ongoing and localized processes that act against effective migration. In the 

Stour, the area around Shalford Weir should be investigated further as being of such 

suitable habitat quality to contribute the majority of migrants for other populations. 

Because the roach has many spawning qualities in common with other small and mid-

sized cyprinids, this area may be important in general as a source of propagules in a classic 

source-sink metapopulation. Furthermore, there is some evidence for directional selection 

acting on roach populations at Mill Meadow and Stoke-by-Clare, with similar potential for 

selection in the highly tidal area of Brantham Lock, both of which need further study. 

Ecotones within the Rhône drainage were inferred to vary with levels of within-population 

genetic diversity of allozymes of incumbent roach (Bouvet et al. 1991, 1995), but this is 

the first known observation of an environmental correlation with microsatellite diversity. 

Mill Meadow is of particular interest if, for example, locus Lc290 is tightly linked to an 

area in the genome that provides some resistance to the feminizing effects of dissolved 

oestradiols. Quantitative trait analysis of captive roach in experimental settings using the 

Lc290 locus as a starting point may help identify other loci that co-vary with an ability to 

withstand feminization in a pedigree setting. Furthermore, the application of EST-tagged 

genetic markers to natural populations of roach in areas in which dissolved oestradiols are 

high is also a desirable focus for further investigation.  

 

The most divergent population in the Stour, at Thurlow, is located in the most lotic part of 

the system, but crucially also between the inlet and outlet ports for the Ely/Ouse water 

transport scheme. The potential for extremely low flows in this headwater area may 

exacerbate population differentiation, as immigration is lowered relative to emigration, 

possibly accentuating genetic drift. Despite the relatively high numbers of weirs and mills 

on the Stour, there seems to be little impact upon levels of short-term inter-population 

migration, although some impact upon levels of genetic differentiation. The old mill at 

Bures may have impeded migration upstream to some extent, which may disrupt the 
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ability of the chromosomal haplotype - within which Lc290 resides – to be selected in 

suitable environments. The presence of IBD, following Kimura & Weiss (1964), was not 

found in alliance with an increase in heterozygosity or allelic richness in the upstream-

downstream direction as predicted, even accounting for the increase in fish numbers with 

downstream distance (which should translate into increased estimates of heterozygosity 

(Frankham 1996)). This suggests that some roach actively migrate upstream, acting to 

counterbalance some loss of diversity, but not enough to combat the action of drift 

associated with smaller census sizes upstream entirely. In this regard, the roach is different 

from similar ecological species such as chub (Dehais et al. 2010). This finding is again 

consistent with a model of a source-sink metapopulation, particularly in the Stour. 

 

The main implication of the above is that roach seem to be less affected by low-impact 

barriers to migration (e.g. gauging weirs that may be subsumed in flood conditions) than 

other cyprinids such as chub and even less so than minnows or benthic loaches and 

sculpins. No high impact barriers (e.g. dams) were studied in this thesis, but the effect 

upon genetic divergence of allozymes in roach of the Rhône was high (Bouvet et 1991; 

Laroche et al. 1991), and similarly so for the chub for both allozymes and microsatellites 

(Laroche et al. 1999; Dehais et al. 2010). However, over the last few years the EA has 

been constructing a series of fish passes across England & Wales that allow for the 

upstream migration of eels, salmonids and migratory cyprinids. Fish passes have been 

found to be particularly effective for faclitiating the upstream migration of roach, 

especially where pass water velocities are low (Knaepkens et al. 2006). As of 2009, a 

significant fish pass was constructed at Bures Mill such that migration should no longer be 

impeded at this location. However, facilitating up-regulated levels of migration to 

upstream areas of Bures Mill may combat the ability of the upstream populations at Mill 

Meadow and Stoke-by-Clare to select against the feminizing effects of sewage effluent 

outflows. 

 

The Thames’ roach populations present a different management problem. The Thames has 

repeatedly, over many centuries, experienced destructive levels of pollution, whereby 

large areas of the river were made uninhabitable for freshwater fish. The Thames was 

heavily polluted during the inception of the industrial revolution, especially in the lower 

reaches below the tidal limit, such that diadromous species were unable to overcome the 

levels of pollution persistent in its lower course (Mawle & Milner 2003). However, the 

river is now one of the most ecologically restored systems on the planet (winning an award 

in 2010 – International Theiss River Award for achievement in river management and 
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restoration). In 2008, 80% of rivers within the catchment were assayed as either ‘good’ or 

‘very good’ (as opposed to 53% in 1990) (www.envinronment-agency.gov.uk/news). 

According to Hughes & Willis (2000), prior to the intense improvement in habitat quality, 

the Thames was heavily modified, with low habitat diversity, below the confluence of the 

Thames with the River Kennet (zone “D”), roughly coinciding with a significant genetic 

break in the present roach dataset. Additionally, the known stocked area of Molesey Weir 

Pool is genetically divergent, possesses low effective size (consistent with the known 

retention of low diversity in Swedish roach (Demandt 2010)) and appears to present a 

genetic break with the nearby upstream population of Desborough Loop. In the year 2000, 

30000 fish were released immediately downstream of MWP at two proximate, contiguous 

sites. If MWP does carry the signature of the released fish, then the retention of an 

aberrant genetic signal has persisted on a temporal scale similar to that observed in the 

Swedish study. The ramifications are important, as captively reared fish can show reduced 

levels of survival and reproduction (Gall 1987). Hughes and Willis (2000) also report that 

significant water abstraction occurs at Farmoor reservoir, which is located due south from 

the lock and weir system at Eynsham, a genetically divergent population. If this is 

significant, the potential for abstraction to correlate with genetically divergent populations 

of roach is a common occurrence in both rivers.  

 

Other considerations may need to be applied that have not been utilized in the present 

study, for example morphological variation may be correlated with adaptability to certain 

ecotones (e.g. Salducci et al. 2004), although previous studies in roach have not found any 

correlation in genetic divergence and morphology. Moritz (2002) has argued that both 

historical and adaptive characteristics of natural populations should inform conservation 

biology. Given the criterion of exchangeability of Crandall et al. (2000), one could not 

categorically state that roach reciprocally translocated would fare equally well in their new 

environments. Roach, therefore, on the basis of this principle need to be managed on an 

individual catchment-by-catchment basis at the very least, consistent with inferences made 

from the mtDNA evidence. In fact, given the environmental heterogeneity in many 

catchments, a case could be made for individual rivers within catchments to merit their 

own protocols, but only mitochondrial evidence can be submitted herein for significant 

sub-catchment differentiation (e.g. the Thames). In this regard, the genetic data support the 

potential for independent stocks within rivers, commensurate with Ihssen’s concept of a 

stock with an element of genetic cohension, whilst providing ample evidence for 

individual watersheds being ringfenced as a very mimum unit for management, under-

pinning the fishery stock concept of Smith et al. (1990). However, the nature of the spatial 
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distribution of equilibrium genetic diversity of roach within both rivers makes delineating 

‘individual stocks’ difficult, but not impossible (e.g. headstream waters are potential 

repsoitories of divergent, rare and unique diversity – including ecotonic complexity - and 

warrant protection and further study across a range of coarse fishes).  

 

Where suitable information is available - be it from genetic studies, ecological surveys or 

by utilizing the working knowledge of anglers and fishing enthusiasts - spawning grounds 

should be completely protected, because in the absence of costly scientific studies one may 

not have another means of determining the comparative importance of local spawning 

grounds to the population within a river as a whole. EU legislation (water and habitat 

directives) and local parliamentary acts should continue to safeguard - and prosecute 

against those who damage – high quality littoral riverine habitat. Even the most 

rudimentary and artificial of habitat improvement schemes can be extremely effective in 

restoring fish diversity (Wolter 2010). The Fisheries Action Plans (FAPs) of the EA 

should continue to invest in habitat recuperation and regeneration of extirpated fisheries, 

but be mindful of the impact of introductions. This study suggests that introduced fish may 

not integrate into the local roach populous, calling into question the effectiveness of such 

introductions. Additionally, this study highlights the ability for some areas to replenish 

neighbouring and distal populations with endogenous propagules. As FAPs are tailored to 

the needs of individual catchments (Robinson and Whitton 2004), they are in a position to 

aso implement catchment-specific stocking programs, whereby only autochthonous fishes 

should be used to replenish local fisheries, if natural replenishment is too slow for the 

needs of a particular coarse fishery.  

 

As previous studies have pointed out, when it comes to managing fish stocks, through 

introductions, restorations or translocations, there is no one-size-fits-all policy that can be 

applied to freshwater fishes (Dehais et al. 2010). Indeed, this study categorically suggests 

that even within species, population and metapopulation ecologies can differ, which may 

dramatically alter which management strategy should be applied to be most successful in 

maintaining healthy, natural and self-sustaining coarse fisheries. The major concluding 

thesis of this work is that a simple assay of genetic diversity, with either reference to allele 

or haplotype frequencies, will in many cases overlook subtle microevolutionary processes 

that may differ across populations within species, and even within small geographical 

areas in which those species habituate. Moreover, despite high levels of human-mediated 

translocation, stocking and dispersal, there still exists a significant level of genetic 

structuring within and/or among all studied river populations of roach. The use of mtDNA 
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and nDNA markers provided useful insights at different spatial levels that are mutually 

illuminating; and crucial information would have been lost if either had been excluded 

from the analysis. The result of this endeavour was an in-depth study of the 

microevolutionary processes occurring within a species considered by many in the 

fisheries industry as being far too influenced by human interaction to unveil significant 

levels of genetic structuring on any scale. The implications are clear: all freshwater fish 

may be amenable to such studies which may, as in the roach, uncover the idiosyncratic 

genetic signatures of different environments and ecologies on surprisingly small scales, 

and upon which action can be taken to protect and conserve freshwater fish biodiversity.  
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