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Abstract

In this work, we study the cryptographic primitive: signcryption, which com-

bines the functionalities of digital signatures and public-key encryption.

We first propose two generic transforms from meta-ElGamal signature

schemes to signcryption schemes. These constructions can be thought of as

generalisations of the signcryption schemes by Zheng and Gamage et al. Our

results show that a large class of signcryption schemes are outsider IND-CCA2

secure and insider UF-CMA secure. As a by-product, we also show that the

meta-ElGamal signature schemes, for which no previous formal security proofs

have been shown, are UF-CMA secure.

We then propose a modification of one of the transforms in order to achieve

insider IND-CCA2 security in addition to insider UF-CMA security. This

modification costs just one extra exponential operation. In particular, we can

apply this modification to the Zheng signcryption scheme to make it fully

insider secure.

Finally, we propose a generic transform from a two-key signcryption scheme

to a one-key signcryption scheme while preserving both confidentiality and

unforgeability. Our result shows that if we have an insider IND-CCA2 and UF-

CMA secure two-key signcryption scheme, then it can be turned into an insider

IND-CCA2 and UF-CMA secure one-key signcryption scheme. We also show

that an insider IND-CCA2 and UF-CMA secure one-key signcryption scheme

induces a secure combined public-key scheme; that is, a combination of a

signature scheme and a public-key encryption scheme that can securely share

the same key pair. Combining previous results suggests that we can obtain a

large class of insider secure one-key signcryption schemes from meta-ElGamal

signature schemes, and that each of them can induce a secure combined public-

key scheme.
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Chapter 1

Introduction

Signcryption is a cryptographic primitive that offers the functionalities of

public-key encryption and digital signatures at the same time. Before in-

troducing signcryption, we first provide a basic introduction to cryptography

and then introduce the concept of provable security, which is the main tool

for security analysis of cryptographic schemes in this thesis. An outline of the

thesis will be provided following the introduction to signcryption.

1.1 Cryptography

Cryptography means, literally, the art of secret writing. The contemporary

analogy of this is that modern cryptography protects computer communi-

cations from eavesdroppers. In fact, modern cryptography provides mathe-

matical techniques for establishing a wide range of different tools to protect

electronic information, not just hiding it from unauthorised parties.

Most cryptographic protocols take place between two players, often re-

ferred to as Alice and Bob, who would like to communicate with each other

securely. The main tools of cryptography include, but are not limited to, those

that provide confidentiality, integrity and authentication of communications

between Alice and Bob. More precisely:

• Confidentiality is to ensure that no-one can read a message except the
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intended receiver Bob.

• Integrity is to assure the receiver Bob that the received data has not

been altered in any way from the original message created by Alice.

• Authentication is a general term which includes data origin authenti-

cation and entity authentication; data origin authentication (message

authentication) is to provide Bob with assurance that the origin of the

data is Alice, as claimed; entity authentication (identification) is to pro-

vide assurance that Bob is communicating with Alice, as claimed.

Confidentiality is often achieved by encryption, which converts a plaintext

into a ciphertext. Encryption can be classified either as symmetric encryption

or asymmetric encryption, also known as public-key encryption.

Symmetric encryption requires a secret key that is securely pre-shared be-

tween Alice and Bob. The secret key is used for both encrypting and decrypt-

ing. It is sometimes impractical for Alice and Bob to securely pre-share a

secret key. Public-key encryption overcomes this difficulty. In the public-key

setting, Bob has a pair of keys, a private key, which is only known to Bob, and

a public key, which is known to everyone including Alice. If Alice wants to

send a message to Bob, she encrypts the message with Bob’s public key, and

sends the ciphertext to Bob. When Bob receives the ciphertext, he decrypts

the ciphertext using his private key.

It is worth noting that public-key encryption generally involves more com-

putational and communication overheads than symmetric encryption.

Integrity and data origin authentication are often achieved by digital sig-

natures. Alice has a pair of keys, a private key and a public key. When Alice

wishes to sign a message for Bob, she signs the message with her private key,

and sends the signature to Bob. When Bob receives the signature, he veri-

fies the signature using Alice’s public key. Successful verification implies that
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the message is indeed sent from Alice and no alterations were made to the

message.

Public-key encryption and digital signatures are just two examples of many

cryptographic primitives. Another well-recognised cryptographic primitive is

a cryptographic hash function. A hash function is an algorithm that takes

strings of arbitrary length and returns a fixed-length string, known as the hash

value, such that any change to the input will result in a change to the hash

value. The hash value can sometimes be used to provide a way of verifying the

integrity of the input. There are three basic requirements of a cryptographic

hash function:

• It is infeasible to recover the input from its hash value.

• Given an input and its hash value, it is infeasible to find a different input

with the same hash value.

• It is infeasible to find two inputs that have the same hash value.

A formal and detailed introduction to cryptography can be found in [24].

1.2 Provable Security

The apparently simple question of whether a particular cryptographic scheme

is “secure” is surprisingly hard to answer. In the old days, the test of a new

cryptographic scheme was often to use it until someone broke it. The scheme

was then either discarded or modified and used again until the next breakage.

This process does not seem appropriate for today’s information-based world,

where the ability to manipulate information has greater consequences and

hence the necessity of protecting information is more important.

This is why mathematical techniques have been adapted to bring rigour

and precision to the analysis of cryptographic schemes. We can now describe a

cryptographic scheme mathematically, define its security mathematically, and
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prove that the scheme is secure mathematically. At first glance, this mathe-

matical approach to the analysis of cryptographic schemes, which has come to

be known as provable security, may sound like it should be a straightforward

task. It is not. For example, when defining security features, it is difficult to

model all the potential threats against a cryptographic scheme with mathe-

matics. We will never claim that provable security is a perfect vehicle to assess

cryptographic security, but it is certainly a much better one than the informal

approaches of the past.

The first attempt to prove the security of a public-key encryption scheme

was by Rabin [31] in 1979, who described an encryption scheme for which re-

covering the message was as intractable as factoring an RSA modulus. Later,

Goldwasser and Micali [19] described a scheme for which they could prove that

extracting any information about the plaintext is as hard as deciding quadratic

residuosity modulo composite numbers whose factorization is unknown. How-

ever, it was not until the early 1990s that researchers began to establish reliable

and easy-to-use formal models for the security of an encryption scheme, and

that the cryptographic community began to think about constructing practical

and efficient provably-secure public-key encryption schemes. A brief history

of provable security is provided in [13].

Provable security can be thought of as a tool for establishing the security

of a cryptographic scheme. The basic idea is as follows:

1. Identify or establish an appropriate security model or, if necessary, define

a new one.

2. Identify a hard mathematical problem to which the scheme to be assessed

may relate.

3. The security proof starts by supposing that the scheme is not secure, i.e.,

that there exists a real-life adversary that can break the security of the

scheme. Then construct an efficient algorithm that uses the adversary as
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a subroutine to solve the hard mathematical problem. Since there should

not exist any efficient algorithm that can solve the hard mathematical

problem, by contradiction, the scheme is secure.

The term “security model” refers to a definition that states a security feature

of a cryptographic scheme mathematically. A hard mathematical problem is

often a computational problem such as the integer factorisation problem. A

formal treatment is given in Chapter 2, where we provide security models for

most cryptographic primitives and a list of some hard problems.

The provable security process is not straightforward at any stage. Defining

a new security model requires care to make sure that the model indeed cap-

tures the required security features mathematically. Identifying the related

hard mathematical problem is sometimes not easy, and it only makes sense

if the identified problem is well-known to be hard or somehow related to a

well-known to be hard mathematical problem. This is a crucial step since

the entire security argument is based on the assumption that the underlying

mathematical problem has no efficient algorithm that can solve it. Construct-

ing the algorithm that solves the hard problem using a successful adversary is

the key to establishing the proof, and is certainly not the easiest part.

1.2.1 Hash Functions and Random Oracles

A fairly controversial issue in provable security research is the use of the ran-

dom oracle model [7]. The random oracle model assumes that hash functions

used in cryptosystems are totally random functions and that the adversary has

no information about their internal computations. The adversary may evalu-

ate a random hash function by querying an oracle. This theoretical approach

massively simplifies the analysis of cryptosystems and allows many crypto-

graphic schemes to be proven secure that would otherwise be too complicated

to be proven secure.

However, if a scheme is proven secure in the random oracle model, then the
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security argument only applies when the random oracle can be instantiated

with an appropriate hash function, i.e., a hash function whose properties can

justify the assumption. Moreover, Canetti et al. [10] demonstrated that it was

possible to have a scheme that was provably secure in the random oracle model,

yet insecure when the random oracle was replaced with any hash function.

Canetti et al.’s trick is to contain a description of the hash function as part

of an oracle query and the oracle is defined to return the private key as the

response to this particular query. Despite the fact that the construction of

such a scheme is artificial, it is a major problem.

Dent [12] looked into the problem and analysed the separation between the

random oracle model and the standard model, where the standard model refers

to not using the random oracle model. He suggested that if one can show that

the situation described by Canetti et al. does not occur then a proof of security

in the random oracle model should be sufficient. We take this as granted in

this thesis, as all our schemes are “reasonable”, i.e., there are no rules such as

returning the private key if the ciphertext contains a description of the hash

function.

As a methodology of provable security, the random oracle model has its

limitations, but it has been widely adopted, and has made a significant contri-

bution to theoretical cryptography. We believe that the random oracle model

does provide us with a good understanding of certain cryptographic schemes

and can be used to provide proven security at least to some extent.

1.3 Signcryption

Suppose that Alice would like to send messages to Bob. Our security goal

throughout this thesis is to provide confidentiality, integrity and data origin

authentication of messages between Alice and Bob.
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One traditional approach for Alice to try to achieve these security guaran-

tees is to:

1. sign the message using a digital signature scheme, then;

2. encrypt the signed message using a public-key encryption scheme.

This is called sign-then-encrypt (StE). Another traditional approach may in-

clude encrypt-then-sign (EtS), that is to:

1. encrypt the message using a public-key encryption scheme, then;

2. sign the encrypted message using a digital signature scheme.

Both of these approaches are a serial composition of two components: dig-

ital signatures and public-key encryption. They require the same amount of

computational and communication overheads as the sum of the overheads for

the digital signature scheme and for the public-key encryption scheme. This

motivated researchers to find a more efficient solution, namely, a scheme that

can allow two actions to be done more efficiently than just a serial composition.

Signcryption was introduced by Zheng in 1997 [37]. It is a shorter word

for the expression “signature and encryption”. As the name suggests, it is

designed to gain computational efficiency as well as to provide a shorter output

that represents both ciphertext and signature than the traditional approaches

do. It is common practice to refer to the output as the signcryption ciphertext,

or just ciphertext where there is no ambiguity.

A concrete signcryption scheme was also proposed by Zheng in [37]. It

involves a single-step approach that achieves the same security objectives as

StE or EtS, but requires less computational resources and is more bandwidth-

efficient. A single word “signcrypt” is used to represent “sign and encrypt” to

emphasise it is a single-step action. Correspondingly, the word “unsigncrypt”

is used to represent “verify and decrypt”. The scheme in [37] is a cunning
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combination of a digital signature scheme and a symmetric encryption scheme

with shared randomness. The replacement of a public-key encryption scheme

by a symmetric one and the reuse of randomness are critical to the efficiency

improvements.

Since then, various extensions, refinements and adaptations of Zheng’s

techniques and the concept of signcryption have been made. For example,

we now have signcryption schemes with public verifiability [18], signcryption

schemes with non-repudiation [27, 33], signcryption schemes with anonymity

[26], identity-based signcryption [11, 25], certificateless signcryption [5], deter-

ministic signcryption [14], parallel signcryption [29], hybrid signcryption [9],

and many others. A full range of signcryption schemes can be found in [15].

1.3.1 Security Models For Signcryption

There is another strand of research in signcryption that concentrates on the

provable security of signcryption. This involves building computational secu-

rity models to formalise various security guarantees so that one can mathe-

matically prove security properties.

The first attempt to produce security models for signcryption [35] came sur-

prisingly late, three years after the invention of signcryption. It only provided

a security model that captures the unforgeability of a signcryption scheme,

where “unforgeability” is conventionally used to refer to “integrity and data

origin authentication” of a signcryption scheme (see Definition 2.3.11). A

complete treatment on the security models of signcryption was independently

provided by An et al. [2] and Baek et. al. [3] in 2002. Zheng’s signcryption

scheme was then formally proved secure in [3]. Both An et al.’s and Baek et

al.’s security models capture the two main security objectives of a signcryption

scheme: confidentiality and unforgeability. An et al. considered a two-user

setting for the security models, where they assume that there are only two

16



users of a signcryption scheme, and then they generalised this idea to a multi-

user setting. Baek et al., on the other hand, directly provided a multi-user

setting for the security models, where the security of a signcryption scheme

that has more than two users is defined. We adopt Baek et al.’s multi-user

security model in this thesis.

As research in this direction continues, the security models are modified to

suit various scenarios and more security models are built for special security

features such as anonymity and ciphertext unlinkability. Based on these mod-

els, many formal security proofs have been produced for signcryption schemes.

A full survey can be found in [15].

1.4 Outline of Thesis

In this section, we provide an outline of the thesis and emphasise our contri-

butions.

1.4.1 The Forking Lemma

Some researchers look for generic techniques that can be adapted to prove that

a large class of cryptographic schemes are secure, so that providing a security

proof for such schemes becomes more convenient.

Pointcheval and Stern [30] introduced a generic proof technique called the

oracle replay attack, and used the so-called forking lemma (see Theorem 3.2.3)

to prove a large class of signature schemes secure.

The oracle replay attack can only be used in the random oracle model, since

“oracle” refers to the random oracle. The idea is to replay a successful attack

from an adversary against a signature scheme. The adversary is regarded as

a probabilistic algorithm. A replay of a successful attack means to run the

algorithm with the same random input again. However, during the replay, a

different random oracle will be used, so that when the random oracle is queried
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with the same input, it is likely to get a different output. If the replay is also

successful, then the forking lemma can provide a so-called forking algorithm

that uses the adversary as a subroutine to solve a hard problem, such as the

discrete logarithm problem, efficiently. We adapt this technique and use the

forking lemma to prove that the Zheng signature scheme [38] is secure. A

description of the Zheng signature scheme and the security proof are provided

in Chapter 3.

Bellare and Neven [6] generalised Pointcheval and Stern’s idea and pro-

vide the general forking lemma (see Theorem 4.7.4) for use in security proofs.

We will use the general forking lemma when proving unforgeablity of some

signcryption schemes.

1.4.2 Meta-ElGamal Signcryption Schemes

In this work, we will concentrate mainly on Zheng’s signcryption scheme [37]

and one of its variants, Gamage et al.’s signcryption scheme [18]. These two

schemes can be thought of as applying similar generic transforms to a specific

signature scheme called the shortened Digital Signature Standard (SDSS), in-

troduced by Zheng in [37]. The SDSS signature scheme is one variant of the

ElGamal signature scheme [17] which was identified by Horster et al. [23].

Horster et al. claimed to identify over 5,000 different variants of the ElGamal

signature scheme and named these meta-ElGamal signature schemes.

According to Zheng [37], most of the meta-ElGamal signature schemes

can be turned into signcryption schemes. Based on these ideas, we propose

two generic transforms from meta-ElGamal signature schemes to signcryp-

tion schemes. This gives us a large class of signcryption schemes, which we

call meta-ElGamal signcryption schemes. These signcryption schemes achieve

the same security objectives and provide similar bandwidth and computa-

tional savings as Zheng’s signcryption scheme or Gamage et al.’s signcryption
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scheme. We provide the full security proofs for each transform and a compar-

ison between the two transforms in Chapter 4.

1.4.3 Outsider versus Insider

We consider users of signcryption schemes as senders and receivers. Since we

are in the public-key setting, the sender and the receiver do not share the same

secret key but, rather, each has their own private key. Thus, it makes sense to

protect data not only from an outsider (third party) but also from an insider

(a legal user of the system such as the sender or the receiver). This informs an

additional security notion which we call insider security, while security against

an outsider is referred to as outsider security. When we talk about the security

features of a signcryption scheme, we add “outsider” or “insider” to indicate

which adversary the signcryption scheme is resistant to, for example, outsider

confidentiality or insider unforgeability. We also refer to security models as the

insider model or the outsider model depending on against whom the security

feature is defined. Formal definitions will be provided in Chapter 2.

It is tempting to think that insider security supersedes outsider security

in terms of security measures. However, this is not exactly the case. In fact,

not achieving insider confidentiality can sometimes be considered as a positive

feature. For example, in some signcryption scheme with outsider confidential-

ity, it is possible for the sender to unsigncrypt messages using their private

key [38]. This property, known as past message recovery, allows the sender

to store ciphertexts and unsigncrypt them in the future when desired. On

the other hand, achieving insider confidentiality can provide forward secrecy,

i.e., provide security in the special circumstance where the sender’s private

key is compromised by an adversary who wants to unsigncrypt the ciphertexts

signcrypted by this sender. In general, it tends to be easier to achieve out-

sider confidentiality, and many signcryption schemes are secure in the outsider

model but not secure in the insider model. In the cases that both outsider
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security and insider security are sufficient, it is easier and more efficient to use

outsider secure signcryption schemes.

Note that Zheng’s signcryption scheme is proven to have outsider confiden-

tiality and insider unforgeability, but cannot achieve insider confidentiality.

This is also the case for our meta-ElGamal signcryption schemes. However,

we will propose a modification of meta-ElGamal signcryption schemes so that

the resulting signcryption schemes are secure against an insider. In particular,

Zheng’s signcryption scheme with this modification will have insider confiden-

tiality and unforgeability, which is one of our contributions. As this extra

security comes at the cost of only one more exponentiation, it is a reasonable

trade-off in many application environments. Formal security proofs are all

presented in Chapter 5.

1.4.4 Two-Key versus One-Key

A user of signcryption may wish to send messages to other users, as well as to

receive messages from other users. In general, we assume that each user has

two independent key pairs, one for sending and the other for receiving. In most

signcryption schemes, the sender and receiver’s key generation algorithms are

identical, and a user may wish to use a single key pair for both sending and

receiving. However, this single key pair generation setting opens up additional

capabilities for attacks [15] and requires some modifications to the security

models. Therefore, it is important to state whether single key pair generation

is used or not when analyzing the security of a signcryption scheme.

We use the notions one-key or two-key, to indicate whether a signcryption

scheme requires single key pair generation or two key pair generation, and

therefore which security models are being used. If not stated explicitly, the

two-key setting is implied. It should be noted that a two-key signcryption

scheme with identical key generation algorithms which is secure in the two-key

security model may not be secure in the one-key model. In particular, trivial
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“key concatenation” will result in an insecure one-key signcryption scheme. We

will explain this clearly in Chapter 6, where we also propose a modification

to trivial key concatenation and obtain a generic transform from a two-key

signcryption scheme to a one-key signcryption scheme without any loss of

security.

A one-key signcryption scheme allows users to use the same public/private

key pair for both sending and receiving data. An interesting fact is that

an insider secure one-key signcryption scheme results in a digital signature

scheme and public-key encryption scheme pair, each of which can share the

same public/private key pair securely.

It is conventional wisdom that keys used by cryptographic schemes should

be different, indeed normally independent. However, Haber and Pinkas [22]

initiated a formal study of security of key reuse and introduced the concept

of a combined public-key scheme, where an encryption scheme and a signa-

ture scheme are combined. They considered various well-known cryptographic

schemes and conditions under which their keys could be partially shared. Pa-

terson et al. [28], on the other hand, took a different approach and proposed

a general construction for a combined public-key scheme with joint security

in the standard model. Under their construction, keys are completely shared

among the public-key schemes.

It is worth pointing out here that our goal is not to find an efficient con-

struction of a secure combined public-key scheme. Instead, we offer a generic

transform from secure two-key signcryption to secure one-key signcryption to

fill in the gap caused by the “failure” of trivial key concatenation. As a result,

although our pair of public-key schemes can securely share identical keys, they

are not efficient in general. More discussion will be provided in Chapter 6.
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Chapter 2

Preliminary

In this chapter, we will explain some basic notation and some fundamental

concepts in cryptography. We will also provide formal definitions for some

cryptographic primitives and their corresponding security models.

2.1 Basic Notation and Concepts

2.1.1 Basic Mathematics

• Let a, b be any non-zero integers. We denote the greatest common divisor

of a and b as gcd(a, b). We write a|b if a divides b.

• For any integer N ≥ 2, we let Z∗N denote the multiplicative group of ZN .

• Without ambiguity, we let {0, 1}∗ represent the set of all strings made

of 0 or 1.

• Let E1 and E2 be any two events. Then Pr[E1] denotes the probability of

the occurrence of E1, and Pr[E1|E2] denotes the conditional probability

of E1 happening given that E2 happens.
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2.1.2 Complexity Theory

When we analyze a cryptographic protocol or a computational problem, we

often regard an entity involved in the process as a probabilistic Turing ma-

chine. A probabilistic Turing machine is a Turing machine [36] with an extra

tape, called the random tape, which contains an infinite sequence of uniformly

distributed independent random bits.

We say an algorithm is a probabilistic polynomial-time (PPT) algorithm, if

it is probabilistic and its running time is polynomial in the size of the input.

When we say PPT adversary, it means that the adversary is regarded as a

probabilistic Turing machine that has running time polynomial in the size of

the input.

For more complexity theory, readers can refer to [36].

2.1.3 Algorithm and Assignment

We let ← denote assignment and
$← denote randomised assignment. Thus,

if S is a finite set, then y
$← S denotes the assignment to y of a uniformly

random element of S.

If A is a deterministic algorithm then y ← A(x) denotes the assignment

to y of the output of A run on x. Similarly, if A is a probabilistic algorithm

then y
$← A(x) denotes the assignment to y of the output of A run on x and

some new random bits.

Lastly, y ← A(x; ρ) denotes the assignment to y of the output of A run on

x and a random tape ρ.

2.1.4 Security Parameter

In cryptography, a security parameter is a variable that measures the input

size of a problem. The security parameter is usually expressed in unary rep-

resentation, so that the efficiency of algorithms can be polynomial-time in the

length of the input. We write 1k to denote the unary representation of k, where
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k is some positive integer. We use the letter k to denote security parameters

throughout the thesis.

2.1.5 Negligible Function

A function f : N→ R is negligible if for any polynomial p, there is an integer

k0 such that for all k > k0, we have

f(k) <
1

|p(k)|
.

2.2 Intractability Assumptions

A problem is tractable if and only if there exists a probabilistic polynomial

time algorithm for its solution. Formally, we make the following definition.

Definition 2.2.1. Let A be an algorithm to solve a problem P. We define the

advantage of A against the problem P with input size k to be:

AdvPA[k] = Pr[A outputs a correct solution to a random instantiation of P ].

We say the problem P is intractable or hard, if every PPT A has negligible

advantage.

Hence, a problem is intractable if there does not exist any probabilistic

polynomial time algorithm to solve it. It remains an open problem to actually

prove that a certain problem is intractable. However, there is some evidence

showing some problems are likely to be intractable. Based on this evidence, we

often make assumptions that a certain computational problem is intractable.

We now identify seven problems on which we make intractability assumptions

in this thesis.

Definition 2.2.2 (Discrete Logarithm Problem in a Prime-Order Group). Let

p be a k-bit prime. Let G be a cyclic group of order p with a random generator

g. The Discrete Logarithm problem (DL) in G is to compute x given gx ∈ G

for randomly chosen x ∈ Z∗p.
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Definition 2.2.3 (Discrete Logarithm Problem in a Composite-Order Group).

Let N be a k-bit composite number. Let G be a group of order N . Let G′ be

a subgroup of G with a generator g. The Discrete Logarithm problem (DL)

in the composite-order group is to compute x given a random element h ∈ G′

such that gx = h.

Definition 2.2.4 (Computational Diffie-Hellman Problem). Let p be a k-bit

prime. Let G be a cyclic group of order p with a random generator g. The

Computational Diffie-Hellman problem (CDH) is to compute h = gab given

(ga, gb) ∈ G2 for randomly chosen a, b ∈ Z∗p.

Definition 2.2.5 (Decisional Diffie-Hellman Problem). Let p be a k-bit prime.

Let G be a cyclic group of order p with a random generator g. The De-

cisional Diffie-Hellman problem (DDH) is to distinguish the distribution of

Diffie-Hellman tuples, DDH := {ga, gb, gab|a, b $← Z∗p}, from that of random

tuples, Drand := {ga, gb, gc|a, b, c $← Z∗p}.

Definition 2.2.6 (Integer Factorisation). Let p, q be two randomly chosen k-

bit primes. Let N be the product of p and q. The Integer Factorisation problem

is to compute p, q given N .

The last two problems are introduced in [3]. They are slightly different from

those above. Both of the two problems involve a decisional Diffie-Hellman

oracle, which can be thought of as a black box that solves the decisional

Diffie-Hellman problem.

Definition 2.2.7 (Gap Discrete Logarithm Problem). Let p be a k-bit prime.

Let G be a cyclic group of order p with a random generator g. A Deci-

sional Diffie-Hellman (DDH) oracle, O, is defined to be an oracle with input

(gx, gy, gz) ∈ G3, and output 1 if z = xy and 0 otherwise. The Gap Discrete

Logarithm problem (GDL) is the DL problem in G with access to a DDH

oracle O.
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Definition 2.2.8 (Gap Diffie-Hellman Problem). Let p be a k-bit prime. Let

G be a cyclic group of order p with a random generator g. The Gap Diffie-

Hellman problem (GDH) is the CDH problem in G with access to a DDH

oracle O.

2.3 Cryptographic Primitives and Security

Models

2.3.1 Symmetric Encryption Schemes

Definition 2.3.1. A symmetric encryption scheme with security parameter k

is defined by a pair of deterministic algorithms (ESE,DSE) as follows:

• ESE(K,m): This is the encryption algorithm that takes as input a key

K ∈ {0, 1}` and a message m ∈ M, and outputs a ciphertext C ∈ C,

where ` is an integer determined by k, M is some message space, and C

is some ciphertext space.

• DSE(K,C): This is the decryption algorithm that takes as input a key

K ∈ {0, 1}` and a ciphertext C ∈ C, and outputs a message m ∈ M or

⊥.

It is required that DSE(K, ESE(K,m)) = m for all K ∈ {0, 1}` and m ∈M.

In this thesis, we also require that for any pair (m, c) ∈ M × C, the

probability that a randomly chosen K ∈ {0, 1}` satisfies ESE(K,m) = c is

negligible in k.

It is natural to have several security models for a particular cryptographic

primitive that capture different levels of security, i.e., weak security or strong

security, so that users can sometimes trade off between security and efficiency.

The strength of security normally depends on how powerful the adversary is

assumed to be. We choose the security models that will be used later in the

thesis to be presented here. As the security of our signcryption schemes depend
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on the security of a symmetric encryption scheme, we provide the security

model that captures the required security notion, one-time indistinguishability,

IND-OT, as follows:

Definition 2.3.2. Let SE = (ESE,DSE) be a symmetric encryption scheme

with security parameter k. Let A = (A1,A2) be a PPT adversary against

SE. We define the IND-OT security game ExptOT-b
A (k), where b ∈ {0, 1}, as

follows:

ExptOT-b
A (k):

K
$← {0, 1}`

(m0,m1, ω)
$← A1(k)

If |m0| 6= |m1| then C∗ ←⊥
Else C∗ ← ESE(K,mb)

b′
$← A2(C

∗, ω)
Output b′.

The adversary’s advantage is defined to be

Adv OT
A (k) = |Pr[ExptOT-1

A (k) = 1]− Pr[ExptOT-0
A (k) = 1]|.

We say SE is IND-OT secure if every PPT adversary has negligible advantage.

A game such as ExptOT-b
A (k) is played between an adversary and a chal-

lenger, where the adversary is indicated by the subscript. The goal of the

adversary is to break the security feature indicated by the superscript. As

this is the first time of such presentation of a game appearing in the thesis, an

interpretation of the game ExptOT-b
A (k) is provided as follows:

1. The challenger randomly generates a key K ∈ {0, 1}`.

2. The adversary A1 is given the security parameter k, and generates two

messages with equal length m0 and m1, together with some state infor-

mation ω. The state information may include some information that A1

has collected or knowledge that A1 wishes to share with A2. m0 and m1

are then passed to the challenger, and ω is passed to A2.
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3. On receiving the messages, the challenger checks if they have equal

length. If not, the challenger sets C∗ as ⊥.

4. Otherwise, the challenger encrypts the message mb using the key K,

and obtains the challenge ciphertext C∗. The challenger passes C∗ to

the adversary A2.

5. The adversary A2 receives C∗ and outputs a guess b′, where b′ indicates

that the adversary thinks that the message mb′ is the plaintext of C∗.

Note that b′ is the output of the game ExptOT-b
A (k).

2.3.2 Digital Signature Schemes

Definition 2.3.3. A digital signature scheme is defined by a tuple of PPT

algorithms (SetupDS,GDS,SDS,VDS) as follows:

• SetupDS(1k): This is the setup algorithm that takes as input a security

parameter 1k, and outputs some public parameters PP .

• GDS(PP ): This is the key generation algorithm that takes as input the

public parameters PP , and outputs a public/private key pair (pk, sk).

• SDS(sk,m): This is the signing algorithm that takes as input the private

key sk and a message m ∈ M, and outputs a signature σ, where M is

some message space.

• VDS(pk,m, σ): This is the verification algorithm that takes as input the

public key pk, a message m ∈ M and a signature σ, and outputs either

a valid symbol > or an invalid symbol ⊥.

It is required that for all (pk, sk)
$← GDS(1k) and m ∈M, we have that

VDS(pk,m,SDS(sk,m)) = >

with probability 1.
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Some signature schemes do not have the setup algorithm. In this case, the

key generation algorithm takes as input the security parameter and outputs

a key pair. As a convention in this work, we do not emphasise the difference

between the two cases.

The security that we consider here for a signature scheme is UF-CMA

security [20]:

Definition 2.3.4. A signature scheme (SetupDS,GDS,SDS,VDS) is UF-CMA

secure if for any PPT adversary A the probability that Pr[ExptUF
A (k) = 1] is

negligible as a function of k, where ExptUF
A (k) is defined as follows:

ExptUF
A (k):

PP
$← SetupDS(1k)

(pk , sk)
$← GDS(PP )

(m∗, σ∗)
$← ASDS(sk , · )(pk)

Output 1 if
(a) VDS(pk ,m∗, σ∗) = >
(b) A never queried SDS(sk ,m∗)

Else output 0.

It is worth noting that there is another security notion for digital signatures,

strong unforgeability under chosen message attack (sUF-CMA) [2]. Instead of

restricting thatA cannot query SDS(sk ,m∗), the sUF-CMA model only forbids

the situations where A made a SDS(sk ,m∗) query and received (m∗, σ∗) as the

respond. Unfortunately, we are only able to achieve UF-CMA security for the

digital signature schemes in this work. However, we do not have any proof

that these digital signature schemes cannot achieve sUF-CMA.

2.3.3 Public-Key Encryption Schemes

Definition 2.3.5. A public-key encryption scheme is defined by a triple of

PPT algorithms (GPKE, EPKE,DPKE) as follows:

• GPKE(1k): This is the key generation algorithm that takes as input a

security parameter 1k, and outputs a public/private key pair (pk, sk).
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• EPKE(pk,m): This is the encryption algorithm that takes as input the

public key pk and a message m ∈ M, and outputs a ciphertext C ∈ C,

where M is some message space and C is some ciphertext space.

• DPKE(sk, C): This is the decryption algorithm that takes as input the

private key sk and a ciphertext C ∈ C, and outputs a message m ∈ M

or ⊥.

It is required that for all (pk, sk)
$← GPKE(1k) and m ∈M, we have that

DPKE(sk, EPKE(pk,m)) = m.

The security notion for public-key encryption schemes we choose to present

here is IND-CCA2, which is defined as follows:

Definition 2.3.6. Let (GPKE, EPKE,DPKE) be a public-key encryption scheme.

Let A = (A1,A2) be a two-stage adversary against the confidentiality of the

public-key encryption scheme. Let k be a security parameter. ExptIND-b
A (k) is

then defined as follows:

ExptIND-b
A (k):

(pk , sk)
$← GPKE(1k)

(m0,m1, ω)
$← ADPKE(sk , · )

1 (pk)

C∗
$← EPKE(pk ,mb)

If |m0| 6= |m1| then C∗ ←⊥
b′

$← ADPKE(sk , · )
2 (C∗, ω)

Output b′,

where A2 cannot make a decryption query for C∗. Then the adversary’s ad-

vantage is defined as:

Adv IND
A (k) =

∣∣Pr[ExptIND-1
A (k) = 1]− Pr[ExptIND-0

A (k) = 1]
∣∣ .

We say the public-key encryption scheme is IND-CCA2 secure if every

PPT adversary A has negligible advantage in k.
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2.3.4 Signcryption Schemes

Definition 2.3.7. A signcryption scheme is a tuple of PPT algorithms

(Setup,KGS,KGR, SC ,USC ), where

• the setup algorithm produces public parameters PP
$← Setup(1k) for the

security level k;

• the sender key-generation algorithm produces a sender key pair

(pkS, skS)
$← KGS(PP);

• the receiver key-generation algorithm produces a receiver key pair

(pkR, skR)
$← KGR(PP);

• the signcryption algorithm takes as input a message m from some mes-

sage spaceM, the sender private key skS and the receiver public key pkR,

and outputs a signcryption ciphertext C
$← SC (PP , skS, pkS, pkR,m) in

a ciphertext space C; and

• the unsigncryption algorithm takes as input a ciphertext C ∈ C, the

sender public key pkS and the receiver private key skR, and outputs either

a message m← USC (PP , pkS, skR, pkR, C) or the error symbol ⊥.

We will generally assume that the public parameters PP are an implicit input

to all algorithms, rather than explicitly writing their input. For correctness, we

require that for all public parameters PP and key pairs (pkS, skS)
$← KGS(1k)

and (pkR, skR)
$← KGR(1k), and for all m ∈M, we have that

USC (pkS, skR, pkR, SC (skS, pkS.pkR,m)) = m

with probability 1.

Signcryption can offer two main security features: confidentiality and un-

forgeability. We define two types of security models depending on whether the

adversary is an insider or outsider.
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Definition 2.3.8 (Outsider IND-CCA2). Let A = (A1,A2) be a PPT adver-

sary against the confidentiality of a signcryption scheme with security parame-

ter k. Then the outsider confidentiality of the signcryption scheme is captured

via the security game Exptout-IND-b
A (k) defined as follows:

Exptout-IND-b
A (k):

PP
$← Setup(1k)

(pk ∗S, sk ∗S)
$← KGS(1k)

(pk ∗R, sk ∗R)
$← KGR(1k)

(m0,m1, ω)
$← AOS ,OU

1 (pk ∗S, pk ∗R)

C∗
$← SC (sk ∗S, pk ∗R,mb)

If |m0| 6= |m1| then C∗ ←⊥
b′

$← AOS ,OU
2 (C∗, ω)

Output b′ ,

where the signcryption oracle OS and the unsigncryption oracle OU are defined

as

OS(pkR,m) = SC (sk ∗S, pkR,m) and OU(pkS, C) = USC (pkS, sk ∗R, C) ,

with the condition that A2 cannot query OU(pk ∗S, C
∗). The adversary’s advan-

tage is defined to be

Adv out-IND
A (k) =

∣∣Pr[Exptout-IND-1
A (k) = 1]− Pr[Exptout-IND-0

A (k) = 1]
∣∣ .

The signcryption scheme is said to be outsider IND-CCA2 secure if Adv out-IND
A (k)

is negligible in k for every PPT adversary A.

It is worth noting that the adversary has the choices over the public keys

pkR and pkS when making the signcryption query and the unsigncryption

query respectively. This makes the security model as a multi-user model [3]

Definition 2.3.9 (Insider IND-CCA2). Let A = (A1,A2) be a PPT two-stage

adversary against the confidentiality of a signcryption scheme with security

parameter k. Then the insider confidentiality of the signcryption scheme is

captured via the security game Exptin-IND-b
A (k) which is defined as follows:
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Exptin-IND-b
A (k):

PP
$← Setup(1k)

(pk ∗R, sk ∗R)
$← KGR(1k)

(m0,m1, sk ∗S, pk ∗S, ω)
$← AOU

1 (pk ∗R)

C∗
$← SC (sk ∗S, pk ∗R,mb)

If |m0| 6= |m1| then C∗ ←⊥
b′

$← AOU
2 (C∗, ω)

Output b′ ,

where the unsigncryption oracle OU is defined as

OU(pkS, C) = USC (pkS, sk ∗R, C) ,

with the condition that A2 cannot query OU(pk ∗S, C
∗). The adversary’s advan-

tage is defined to be

Adv in-IND
A (k) = |Pr[Exptin-IND-1

A (k) = 1]− Pr[Exptin-IND-0
A (k) = 1]|.

The signcryption scheme is said to be insider IND-CCA2 secure if Adv in-IND
A (k)

is negligible in k for every PPT adversary A.

It is worth noting that A2 can query OU(pkS, C
∗) for any pkS 6= pk∗S. The

adversary has no access to a signcryption oracle, as the adversary is assumed to

be an insider who has the knowledge of sender’s secret key, and the adversary

is attacking the targeted receiving key pair.

Definition 2.3.10 (Outsider UF-CMA). Let A be a PPT adversary against

the integrity of a signcryption scheme with security parameter k. Then the

outsider unforgeability of the signcryption scheme is captured via the security

game Exptout-UF
A (k) which is defined as follows:

Exptout-UF
A (k):

PP
$← Setup(1k)

(pk ∗S, sk ∗S)
$← KGS(1k)

(pk ∗R, sk ∗R)
$← KGR(1k)

C∗
$← AOS ,OU (pk ∗S, pk ∗R)

Output 1 if
(a) m∗ 6=⊥ for m∗ ← USC (pk ∗S, sk ∗R, C

∗)
(b) A never queried OS(pk ∗R,m

∗)
Else output 0,

33



where the signcryption oracle OS and the unsigncryption oracle OU are defined

as

OS(pkR,m) = SC (sk ∗S, pkR,m) and OU(pkS, C) = USC (pkS, sk ∗R, C) .

The adversary’s advantage is defined to be

Adv out-UF
A (k) = Pr[Exptout-UF

A (k) = 1].

The signcryption scheme is said to be outsider UF-CMA secure if Adv out-UF
A (k)

is negligible for every PPT adversary A.

Definition 2.3.11 (Insider UF-CMA). Let A be a PPT adversary against

the integrity of a signcryption scheme with security parameter k. Then the

insider unforgeability of the signcryption scheme is captured via the security

game Exptin-UF
A (k) which is defined as follows:

Exptin-UF
A (k):

PP
$← Setup(1k)

(pk ∗S, sk ∗S)
$← KGS(1k)

(pk ∗R, sk ∗R, C
∗)

$← AOS(pk ∗S)
Output 1 if

(a) m∗ 6=⊥ for m∗ ← USC (pk ∗S, sk ∗R, C
∗)

(b) A never queried OS(pk ∗R,m
∗)

Else output 0,

where the signcryption oracle OS is defined as

OS(pkR,m) = SC (sk ∗S, pkR,m) .

The adversary’s advantage is defined to be

Adv in-UF
A (k) = Pr[Exptin-UF

A (k) = 1].

The signcryption scheme is said to be insider UF-CMA secure if Adv in-UF
A (k)

is negligible for every PPT adversary A.
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So far, our definition of signcryption involves two independent key gener-

ation algorithms, one for sending and the other for receiving. The users of

signcryption then can be regarded as senders or receivers. It is likely that a

user is a sender as well as a receiver. In this case, the user will posses two

independent pairs of keys. However, it may be possible to use only one key

generation algorithm and each user is given a single key pair for both sending

and receiving. This one key generation setting opens additional capabilities

for attack. Therefore we need to make some modifications to the security mod-

els. The formal definitions for one-key signcryption and its insider security are

provided as follows:

Definition 2.3.12. A one-key signcryption scheme is a tuple of PPT algo-

rithms (Setup,KG , SC ,USC ), where

• the setup algorithm produces public parameters PP
$← Setup(1k) for the

security level k;

• the key-generation algorithm produces a key pair (pk , sk)
$← KG(PP) for

both sending and receiving;

• the signcryption algorithm takes as input a message m from some mes-

sage space M, a User’s private key skA and another user’s public key

pkB, and outputs a signcryption ciphertext C
$← SC (PP , skA, pkB,m)

in a ciphertext space C; and

• the unsigncryption algorithm takes as input a ciphertext C ∈ C, a user’s

public key pkA and another user’s private key skB, and outputs either a

message m← USC (PP , pkA, skB, C) or the error symbol ⊥.

We will generally assume that the public parameters PP are an implicit input

to all algorithms, rather than explicitly writing their input. For correctness, we

require that for all public parameters PP and key pairs (pkA, skA)
$← KG(1k)
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and (pkB, skB)
$← KG(1k), we have that USC (pkA, skB, SC (skA, pkB,m)) =

m with probability 1.

We will be presenting the definitions of one-key insider security next (in-

stead of one-key outsider security), as we are only interested in one-key sign-

cryption schemes that are insider secure in this work.

Definition 2.3.13 (One-Key Insider IND-CCA2). Let A = (A1,A2) be a

PPT two-stage adversary against the confidentiality of a one-key signcryp-

tion scheme with security parameter k. Then the one-key insider confiden-

tiality of the one-key signcryption scheme is captured via the security game

ExptOne-in-IND-b
A (k) which is defined as follows:

ExptOne-in-IND-b
A (k):

PP
$← Setup(1k)

(pkU , skU)
$← KG(1k)

(m0,m1, sk ∗, pk ∗, ω)
$← AOS ,OU

1 (pkU)

C∗
$← SC (sk ∗, pkU ,mb)

If |m0| 6= |m1| then C∗ ←⊥
b′

$← AOS ,OU
2 (C∗, ω)

Output b′ ,

where the signcryption oracle OS and the unsigncryption oracle OU are defined

as

OS(pk ,m) = SC (skU , pk ,m) and OU(pk , C) = USC (pk , skU , C)

with the condition that A2 cannot query OU(pk ∗, C∗). The adversary’s advan-

tage is defined to be

Adv One-in-IND
A (k) = |Pr[ExptOne-in-IND-1

A (k) = 1]− Pr[ExptOne-in-IND-0
A (k) = 1]|.

The one-key signcryption scheme is said to be one-key insider IND-CCA2

secure if Adv One-in-IND
A (k) is negligible in k for every PPT adversary A.

Note that the adversary is given two oracles, OS and OU , which is different

from the two-key insider IND-CCA2 model. This is because the targeted key
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pair has two functionalities, sending and receiving. The adversary may take

advantage of this additional feature.

Definition 2.3.14 (One-Key Insider UF-CMA). Let A be a PPT adversary

against the integrity of a one-key signcryption scheme with security parameter

k. Then the one-key insider unforgeability of the one-key signcryption scheme

is captured via the security game ExptOne-in-UF
A (k) which is defined as follows:

ExptOne-in-UF
A (k):

PP
$← Setup(1k)

(pkU , skU)
$← KG(1k)

(pk ∗, sk ∗, C∗)
$← AOS ,OU (pkU)

Output 1 if
(a) m∗ 6=⊥ for m∗ ← USC (pkU , sk ∗, C∗)
(b) A never queried OS(pk ∗,m∗)

Else output 0,

where the signcryption oracle OS and the unsigncryption oracle OU are defined

as

OS(pk ,m) = SC (skU , pk ,m) and OU(pk , C) = USC (pk , skU , C) .

The adversary’s advantage is defined to be

Adv One-in-UF
A (k) = Pr[ExptOne-in-UF

A (k) = 1].

The one-key signcryption scheme is said to be one-key insider UF-CMA secure

if Adv One-in-UF
A (k) is negligible for every PPT adversary A.

2.4 Summary

In this chapter, we have provided formal definitions of some common cryp-

tographic primitives as well as signcryption schemes. We have also formally

defined appropriate security models. In the rest of the thesis, we will rely on

these formal definitions to produce security proofs.
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Chapter 3

A Security Proof Using The
Forking Lemma

To extend the computational underpinnings of signcryption schemes to prob-

lems related to integer factorization, Steinfeld and Zheng [35] described a

scheme which is provably unforgeable assuming the hardness of factoring.

Later, Zheng [38] proposed an extension of this scheme, together with an

identification scheme and a signature scheme, using high order residues mod-

ulo an RSA composite. However, a formal analysis of the security of these

schemes was not provided. In this chapter, we provide a formal security proof

for the signature scheme.

3.1 The Zheng Signature Scheme

The Zheng signature scheme is based on the Schnorr signature scheme which

was proposed by C.P. Schnorr in 1989 [32]. The Schnorr signature scheme was

originally designed for smart cards. It is very efficient and produces short sig-

natures. The Schnorr signature scheme has been proven to be UF-CMA secure

in the random oracle model assuming the hardness of the discrete logarithm

problem in a prime-order group [30]. The Zheng signature scheme is similar to

the Schnorr signature scheme. The difference is subtle, but fundamental. As

a result of the difference, one cannot apply the security proof for the Schnorr
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signature scheme to the Zheng signature scheme directly. To provide a clear

comparison, we will describe both signature schemes in this section.

Definition 3.1.1 (The Schnorr signature scheme). Let k be a security param-

eter. The Schnorr signature scheme is a tuple of algorithms (Setup,G,S,V),

where

Setup(1k):
Generate a group G of order q

where q is a k-bit prime
Choose a random generator g ∈ G
Choose a hash function
H : {0, 1}∗ → Zq

PP ← (g, q,H)
Output PP

S(sk,m):

t
$← Zq

w ← gt

b← H(m,w)
s← t+ bx mod q
σ ← (b, s)
Output σ

G(PP ):
Parse PP as (g, q,H)

x
$← Z∗q

y
$← g−x

sk ← x
pk ← y
Output (sk, pk)

V(pk,m, σ):
Parse σ as (b, s)
w′ ← ybgs

If H(m,w′) = b
output >

Else
output ⊥

The Schnorr signature scheme works within a prime-order group as de-

scribed above. The exponentiation stands for repeated applications of the

group operation, and the addition and the multiplication are done modulo q.

Instead of working within a prime-order group, the Zheng signature scheme

works within a composite-order group. Instead of working with a group gen-

erator, the Zheng signature scheme works with some special element in the

composite-order group. To make the Zheng signature scheme and its security

argument work, the composite and the element should be carefully chosen

according to the following definition [38]:

Definition 3.1.2. Let k be a security parameter. We say that three integers

(r, n, h) are a good triplet if they fulfill the following requirements:
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1. r is a prime whose size (length in binary representation) is at least k

bits;

2. n = pq is an RSA modulus of at least 3k bits, satisfying gcd(r, p−1) = r

and gcd(r, q − 1) = 1;

3. h is an r-th nonresidue modulo n, or equivalently, h(p−1)/r 6= 1 mod p.

Note that we did not specify what the size of the security parameter k

should be in the above definition. In [38], Zheng suggested that k should be at

least 120 bits. The security argument from [30] which we are going to apply

may require larger k. We will discuss the choice of k in detail at the end of

this chapter.

The Zheng signature scheme can now be defined as follows [38]:

Definition 3.1.3 (The Zheng signature scheme). Let k be a security param-

eter. Ler M be some message space. The Zheng signature scheme is a tuple

of algorithms (Setup,G,S,V), where:

Setup(1k):
Generate a good triplet (r, n, h)
Choose ` ∈ Z such that ` > 2k
Choose a hash function
H :M× Zn → Z2k

PP ← (n, h, `,H)

S(sk,m):

t
$← Z21.75`

w ← ht mod n
b← H(m,w)
s← t+ bx
σ ← (b, s)
Output σ

G(PP ):
Parse PP as (n, h, `,H)

x
$← Z2`

y ← h−x mod n
sk ← x
pk ← y
Output (sk, pk)

V(pk,m, σ):
Parse σ as (b, s)
w′ ← ybhs mod n
If H(m,w′) = b

output >
Else

output ⊥

There are three points to be addressed.
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• It is worth noting that r is not used in the signature scheme after the

good triplet is generated. In [38], Zheng suggested to pick the private

key x in Z2` instead of Z2r , where ` ≥ |r| + 40 and |r| is the number

of bits in the binary representation of r. We require ` to be at least 2k

here, and we will explain the reason in the security proof.

• The Schnorr signature scheme works within G, where G has a clear group

structure as q and g are both publicly known. The Zheng signature

scheme works within Z∗n whose order is unknown as the factorization of

n is kept secret. The element h also has unknown order in Z∗n. As a

result, the computation of s, s ← t + bx, in the signing algorithm, can

only be done as natural numbers.

• As the security proof for the Schnorr signature scheme uses the fact that

G has prime order, we cannot apply the proof technique directly to the

Zheng signature scheme, despite their apparent similarity.

3.2 The Security Proof

To formally analyze the security of the Zheng signature scheme, we need to

first define what it means to be secure. In this case, we refer to Definition 2.3.4

and aim to prove that the Zheng signature scheme is UF-CMA secure. We

adapt the definition in the context of the Zheng signature scheme here.

More precisely, we say that the Zheng signature scheme is UF-CMA secure

if for any PPT algorithm A the probability that ExptUF
A (k) = 1 is negligible

as a function of k, where ExptUF
A (k) is defined as follows:

41



ExptUF
A (k):

PP ← Setup(1k)
(pk , sk)← G(PP )

(m∗, σ∗)
$← AS(sk , · )(pk)

Output 1 if
(a) V(pk ,m∗, σ∗) = acc
(b) A never queried S(sk ,m∗)

Else output 0

The next step is to determine precisely what the underlying hard problem

is. Our security proof shows that the underlying problem is the discrete loga-

rithm problem in a composite-order group. In other words, we will prove that

any efficient forgery of the Zheng signature scheme will lead to an efficient al-

gorithm to solve the discrete logarithm problem in a composite-order group. It

is worth noting that there is an efficient reduction from the composite discrete

logarithm problem to the integer factorization problem [21].

Before starting the proof, we now briefly discuss the results in [30] and

explain why we can apply those to the Zheng signature scheme.

3.2.1 The Oracle Replay Attack

In [30], Pointcheval and Stern introduced a generic reduction technique in

order to provide security arguments for the signature schemes that they pro-

posed. They named this technique the oracle replay attack.

To explain, suppose there is an attacker who has successfully forged a sig-

nature in the random oracle model. We can replay the attack with exactly

the same parameters and randomness except that a different random oracle

is used to interact with the attacker. We hope that the attacker will success-

fully forge another signature that is suitably related to the previous one. We

can then extract the solution of a difficult algorithmic problem (e.g., discrete

logarithm) from the ability to forge such signatures.

During this process, a major problem is to simulate properly the inter-

actions that the attacker should have with other entities, in particular, the
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signer. We need to simulate the signer without the signer’s private key and

yet the attacker cannot distinguish between the signer and the simulator.

Formally, we model any participant by a probabilistic polynomial time

Turing machine, and the communication tapes between the attacker and the

simulator, and between the attacker and the signer, will have to follow indis-

tinguishable distributions, where formal definitions of indistinguishability is

taken from [30] as follows.

Definition 3.2.1. Let δ0, δ1 be two distributions of probability. A distinguisher

D is a probabilistic polynomial time Turing machine, with random tape ω,

which, on input ρ, answers 0 or 1. The advantage of D with respect to two

distributions δ0 and δ1 is defined as

Adv(D, δ0, δ1) =
1

2
× |Eρ∈δ0 [D(ω, ρ)]− Eρ∈δ1 [D(ω, ρ)]| .

We say two distributions δ0 and δ1 are polynomially indistinguishable if there

does not exist any distinguisher D with a non-negligible advantage. We say

two distributions δ0 and δ1 are statistically indistinguishable if∑
y

|Prx∈δ0 [x = y]− Prx∈δ1 [x = y]|

is negligible.

Note that if two distributions are statistically indistinguishable, they are

polynomially indistinguishable [30].

3.2.2 The Forking Lemma

In [30], Pointcheval and Stern also proved a fundamental result for proving

the security of digital signatures known as the forking lemma. We will apply

the forking lemma directly to the Zheng signature scheme in order to prove

its security. We skip the proof of the forking lemma here. Readers who are

interested may refer to [30] for a detailed proof. However, we will verify that

the forking lemma is indeed applicable to the Zheng signature scheme.
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Pointcheval and Stern introduced the concept of generic digital signature

schemes, which require the following conditions to be met:

1. Given an input message m, the signing algorithm will produce a triple

of the form (w, b, s), where w randomly takes its values in a large set, b

is the hash value of (m,w), and s depends on w and b.

2. The probability that w takes any particular value is no greater than 21−k,

where k is the security parameter.

We now show that the Zheng signature scheme satisfies all the conditions

and hence is a generic digital signature scheme.

1. For the first condition, we have w = ht mod n for some random t ∈

Z21.75` , where 1.75` is at least 3.5k. Hence, Z21.75` is a much larger set

than the subgroup of Z∗n generated by h. This implies that any particular

value of w appears equally likely among the subgroup of Z∗n generated

by h.

2. Our next task is to prove that no w can appear with probability greater

that 21−k. In fact, we will show that the order of h in Z∗n is greater than

or equal to r in Lemma 3.2.2. Hence, the subgroup of Z∗n generated by h

is of size at least r, i.e., at least 2k. As w appears as a random element

of the subgroup, the probability of each possible w is no greater than

2−k, hence, less than 21−k. That is, the third condition met.

Lemma 3.2.2. Let (r, n, h) be a good triplet with n = pq. Then the order of

h in Z∗n is greater than or equal to r.

Proof: Let on denote the order of h in Z∗n and op denote the order of h in

Z∗p. It is clear that on ≥ op. Now, we have hop ≡ 1 mod p implies op|p − 1.

As r is a prime, we have either (op, r) = 1 or (op, r) = r. If (op, r) = 1, and

as op|p− 1, we have op|p−1r . This implies h
p−1
r ≡ 1 mod p, a contradiction. If
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(op, r) = r, then op ≥ r. Hence, we have on ≥ op ≥ r.

We have thus verified that the Zheng signature scheme is a generic digital

signature scheme as defined in [30]. Before we state the forking lemma, we

note that Pointcheval and Stern [30] assumed that the hash function H takes

values in Z2k . This is indeed the case for the Zheng signature scheme.

Theorem 3.2.3 (The Forking Lemma [30]). Let (Setup,G,S,V) be a generic

signature scheme with security parameter k. Let A be a probabilistic polyno-

mial time Turing machine whose input only consists of public data. We denote

respectively by Q and R the number of queries that A can ask to the random

oracle and the number of queries that A can ask to the signer. Assume that,

within a time bound T , A produces, with probability ε ≥ 10(R+ 1)(R+Q)/2k,

a valid signature (m,w, b, s). If the triples (w, b, s) can be simulated without

knowing the private key with an indistinguishable distribution probability, then

a replay of the attacker A, where interactions with the signer are simulated,

outputs two valid signatures (m,w, b, s) and (m,w, b′, s′) such that b 6= b′,

within time T ′ ≤ 23QT/ε and with probability ε′ ≥ 1/9. Moreover, there is a

machine which has control over the machine obtained from A replacing interac-

tion with the signer by simulation and produces two valid signatures (m, y, b, s)

and (m, y, b′, s′) such that b 6= b′ in expected time T ′ ≤ 120686QT/ε.

3.2.3 The Proof

Theorem 3.2.4. Let A be an adversary against UF-CMA security of the

Zheng signature scheme with advantage ε and a time bound T . We denote

respectively by Q and R the number of queries that A can ask to the ran-

dom oracle and the number of queries that A can ask to the signing oracle.

Assume that ε ≥ 10(R + 1)(R + Q)/n. Then the discrete logarithm in a sub-

group of a composite-order group can be solved within expected time less than

120686QT/ε.
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Proof: We need to prove that the triples (w, b, s) can be simulated without

knowing the private key and that they have an indistinguishable distribution

from the attacker’s point of view.

As we mentioned earlier, under the random oracle model, we assume the

hash function H in the scheme is a truly random function. So from the at-

tacker’s point of view, the triples (w, b, s) have the following distribution:

δ =

 (w, b, s)

t ∈ Z21.75`

b ∈R Z2k

w = ht mod n
s = t+ bx

 .

For simulation, we introduce a fake private key x′ ∈ Z` which is randomly

chosen. We fix x′, and consider the following distribution:

δ′ =

 (w, b, s)

t′ ∈R Z21.75`

b ∈R Z2k

s = t′ + bx′

w = hsyb mod n

 .

Note that the private key is not required to produce a valid triple (w, b, s).

Now, we are going to prove that δ and δ′ are statistically indistinguishable.

Let (W,B, S) be the random variables with distribution δ and (W ′, B′, S ′) be

the random variables with distribution δ′. Let T, T ′ be two random variables

uniformly distributed over Z21.75` . We observe that the random variables T

and B determine W and S, and similarly T ′ and B′ determine W ′ and S ′. By

the definition of statistical indistinguishability, we want to show that:∑
(w,b,s)∈δ∪δ′

|Pr[(W,B, S) = (w, b, s)]− Pr[(W ′, B′, S ′) = (w, b, s)]| (∗)
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is negligible in k.

Pr[(W,B, S) = (w, b, s)]

= Pr[W = w,B = b, S = s]

= Pr[W = w|B = b, S = s]Pr[B = b, S = s]

= Pr[W = w|B = b, S = s]Pr[S = s|B = b]Pr[B = b]

= Pr[W = w|B = b, S = s]Pr[T = s− bx|B = b]Pr[B = b]

= Pr[W = w|B = b, S = s]Pr[T = s− bx]Pr[B = b].

The second and the third equalities are conditional probability formulae. The

fourth equality is true since s = t+ bx. The last is true because the choice of

T is independent of B.

Similarly, we have

Pr[(W ′, B′, S ′) = (w, b, s)]

= Pr[W ′ = w,B′ = b, S ′ = s]

= Pr[W ′ = w|B′ = b, S ′ = s]Pr[B′ = b, S ′ = s]

= Pr[W ′ = w|B′ = b, S ′ = s]Pr[S ′ = s|B′ = b]Pr[B′ = b]

= Pr[W ′ = w|B′ = b, S ′ = s]Pr[T ′ = s− bx′|B′ = b]Pr[B′ = b]

= Pr[W ′ = w|B′ = b, S ′ = s]Pr[T ′ = s− bx′]Pr[B′ = b].

Again, the second and the third equalities are conditional probability formulae.

The fourth equality is true since s = t′ + bx′. The last is true because the

choice of T ′ is independent of B′.

Note that:

Pr[W = w|B = b, S = s] =

{
1 if w = hsyb mod n;

0 otherwise;

Pr[W ′ = w|B′ = b, S ′ = s] =

{
1 if w = hsyb mod n;

0 otherwise;
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and

Pr[T = s− bx] =

{
2−1.75` if 0 < s− bx ≤ 21.75`;

0 otherwise;

Pr[T ′ = s− bx′] =

{
2−1.75` if 0 < s− bx′ ≤ 21.75`;

0 otherwise.

Since B and B′ are independently and identically distributed, we have Pr[B =

b] = Pr[B′ = b]. We can now compute (∗):

(∗) =
∑
b

∑
s

|Pr[T = s− bx]Pr[B = b]− Pr[T ′ = s− bx′]Pr[B′ = b]|

=
∑
b

∑
s

Pr[B = b]|Pr[T = s− bx]− Pr[T ′ = s− bx′]|.

Note that |Pr[T = s − bx] − Pr[T ′ = s − bx′]| is non-zero if and only if

s ∈ [bx, bx′] ∪ [21.75` + bx, 21.75` + bx′]. Hence

(∗) =
∑
b

Pr[B = b]
∑
s

|Pr[T = s− bx]− Pr[T ′ = s− bx′]|

=
∑
b

Pr[B = b] · 2 · b · |x− x′| · 2−1.75`

≤
∑
b

2−k · 2 · 2k · 2` · 2−1.75`

≤ 2k+1+`−1.75`

≤ 2−0.5k+1.

For the last inequality, we take ` ≥ 2k as defined in Definition 3.1.3. A

larger ` will make the two distributions more indistinguishable as long as the

randomness t used in the signature scheme is chosen from a larger set than

the set from which the private key x is chosen. Referring to Definition 3.1.3,

we have t chosen from Z21.75` and x chosen from Z2` , and Z21.75` is indeed a

larger set than Z2` .

To conclude, we have found a required simulation. Applying the forking

lemma, i.e., Theorem 3.2.3, we can produce two valid signatures (m,w, b0, s0)

and (m,w, b1, s1) such that b0 6= b1 in expected time T ′ ≤ 120686QT/ε. Note

that s0 = t+ b0x and s1 = t+ b1x. Subtracting s1 from s0, and since b0 6= b1,
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we get x = s1−s0
b1−b0 . Now we can think of the challenger and the attacker as

two PPT algorithms and use them as subroutines of an algorithm to solve the

discrete logarithm problem in a subgroup of a composite-order group, namely:

1. Input: n, h, h−x mod n.

2. Forge: The attacker forges a signature (m,w, b0, s0).

3. Fork: Fork another signature (m,w, b1, s1) by the forking lemma. Com-

pute x as described above.

4. Output: x.

Therefore the discrete logarithm in a subgroup of composite-order group can

be solved within expected time less than 120686QT/ε.

3.3 The Security Parameter

We now briefly discuss how to determine the security parameter k. Suppose

that the expected time to solve the composite discrete logarithm problem is

TDLP (k), where k is the size of the input of the problem. It is clear that

the larger k, the larger TDLP . We want to choose k such that TDLP is larger

enough, i.e., larger than 120686QT/ε, where T could be the length of validity

of signatures produced by the Zheng signature scheme, Q is determined de-

pending on different scenarios, and ε is the inverse of a chosen polynomial of

k.

To rephrase, if there is an attacker against the Zheng signature scheme

who can forge a signature within time T with probability ε, then according

to Theorem 3.2.4, we can produce an algorithm that can solve the composite

discrete logarithm problem within time T ′ ≤ 120686QT/ε. However, we have
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chosen k such that the expected time to solve the composite discrete logarithm

problem is TDLP > 120686QT/ε. Hence, the contradiction shows such an

attacker does not exist.

As ε is the inverse of a polynomial in k, 120686QT/ε is polynomial in k.

Note that we have assumed the hardness of the composite discrete logarithm

problem. Therefore, there is a value of k such that TDLP > 120686QT/ε.

3.4 Summary

In this chapter we provided a formal security proof for the Zheng signature

scheme, and showed that the Zheng signature scheme is UF-CMA secure as-

suming the intractability of the discrete logarithm problem in a composite-

order group by applying the forking lemma [30]. The technical difficulty that

had to be overcome in this proof was to find a simulation of the signature triple

(w, b, s) that has indistinguishable distribution without using the private key.

We got around this problem by introducing a fake private key, and argued

that the adversary will not notice the difference. Thus, we provided a security

proof for a signature scheme that had no previous proof of security.
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Chapter 4

Meta-ElGamal Signcryption
Schemes

This chapter investigates the meta-ElGamal signature schemes proposed by

Horster et al. [23]. We give two generic transforms from a meta-ElGamal

signature scheme into a signcryption scheme. These constructions generalise

the signcryption scheme by Zheng [37] and the signcryption scheme by Gamage

et al. [18]. Our results show that a large class of signcryption schemes are

provably secure. As a by-product, we also show that a large subset of meta-

ElGamal signature schemes are secure.

We start with an introduction to the meta-ElGamal signature schemes.

We then give two transforms from a meta-ElGamal signature scheme to a

signcryption scheme: the Zheng transform and the GLZ transform. We first

prove that the signcryption schemes from the Zheng transform have outsider

confidentiality and insider unforgeability. We then apply this result to show

that the meta-ElGamal signature schemes are UF-CMA secure. Finally we

prove that the GLZ transform also provides outsider confidential and insider

unforgeable signcryption schemes, where insider unforgeability is proved by

using the result that the meta-ElGamal signature schemes are UF-CMA se-

cure.

51



4.1 Meta-ElGamal Signature Scheme

The ElGamal signature scheme was proposed by ElGamal in 1984 [17]. The

security of the scheme relies on the difficulty of computing discrete logarithms

over finite fields. However, there was no formal security proof for the ElGa-

mal signature scheme until 2000, when the ElGamal signature scheme with

a slight modification was proven formally to be existential unforgeable under

an adaptive chosen-message attack in the random oracle model assuming the

hardness of the discrete logarithm problem in a prime-order group [30]. The

proof is again an application of the forking lemma.

There are many variants of the ElGamal signature scheme, including the

Schnorr signature scheme and the Zheng signature scheme. Horster et al. [23]

integrated these variants and many possible generalisations of the ElGamal

signature scheme into a so-called meta-ElGamal signature scheme. As a result,

Horster et al. obtained more than 13, 000 variants of the ElGamal signature

scheme.

We are going to re-define the meta-ElGamal signature scheme below to

make the definition of transforms that we propose and the security proofs for

the resulting signcryption schemes more compact and concise. Our definition

is slightly simpler than the definition in [23], but it covers most of the 13,000

variants identified by Horster et al..

Definition 4.1.1 (Meta-ElGamal Signature Scheme). A meta-ElGamal sig-

nature scheme is a signature scheme of a specific form using a group G gen-

erated by an element g of prime order q (where q is a k-bit prime). The key

generation algorithm chooses a private key x
$← Zq and outputs a public key

y ← gx. The scheme is parameterised by three functions B1(r, e, s), B2(r, e, s)

and B3(r, e, s), and makes use of a hash function HS. We will sometimes ab-

breviate Bi(r, e, s) as Bi for simplicity for i = 1, 2, 3. The signature algorithm

and verification algorithm work as follows:
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Sign(x,m):

t
$← Zq

w ← gt

r ← E(w)
e← HS(m,w)
Solve B1 = xB2 + tB3 mod q

for the variable s
σ ← (w, s)
Output σ

Verify(y,m, σ):
Parse σ as (w, s)
r ← E(w)
e← HS(m,w)
If gB1 = yB2wB3

Output >
Else

Output ⊥

where E : G→ Zq is some encoding function of the group G onto Zq.

In our later analysis, we will replace E with a hash function modeled as

a random oracle. Note that r and e are computable from (m,σ). We will

concentrate on signature schemes for which

B1, B2, B3 ∈ {(−1)a0ra1ea2sa3 : a0 ∈ {0, 1}, a1, a2, a3 ∈ {−1, 0, 1}} .

Obviously, not all of the possible choices for B1, B2, B3 give rise to secure

(or even functionally viable) signature schemes. Most notably, the variable s

must exist in at least one clause or the signature scheme cannot be realised.

Similarly, the variable e must occur in at least one clause or the signature is

trivially insecure.

Both the Zheng [37] and Gamage et al. [18] signcryption scheme are es-

sentially based on the shortened digital signature scheme (SDSS). The SDSS

is a meta-ElGamal scheme defined by B1(r, e, s) = es, B2(r, e, s) = −s and

B3(r, e, s) = 1. Thus, a signature on a message m is a pair (w, s) such that

gesys = w where e ← HS(m,w). We explain how the SDSS is converted into

a signcryption scheme in the next section.

4.2 The Two Signcryption Schemes

We first quote the descriptions of the two common signcryption schemes that

have inspired the transforms from [15] in Figure 4.1 and Figure 4.2.
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Setup(1k)
Pick a random large prime p with

a k-bit prime q dividing p− 1
Pick g ∈ Z∗p of order q
Choose a one-time symmetric-key

encryption scheme
SE = (ESE,DSE)
with keyspace K

Pick two hash functions
G : {0, 1}∗ → K
H : {0, 1}∗ → Zq

param← (p, q, g, SE,G,H)
Return param

KGS(param)

xS
$← Zq

yS ← gxS

Return (xS, yS)

KGR(param)

xR
$← Zq

yR ← gxR

Return (xR, yR)

SC (param, xS, yR,m)

t
$← Zq

K ← yR
t

τ ← G(K)
e← H(m‖yS‖yR‖K) †
c← ESE(τ,m)
s← t/(e+ xS) mod q
C ← (c, e, s)
Return C

USC (param, yS, sR, C)
Parse C as (c, e, s)
w ← (ySg

e)s

K ← wxR

τ ← G(K)
m← DSEτ (c)
If H(m‖yS‖yR‖K) = e

then return m
Else return ⊥

Figure 4.1: The Zheng signcryption scheme
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Setup(1k)
Pick a random large prime p with

a k-bit prime q dividing p− 1
Pick g ∈ Z∗p of order q
Choose a one-time symmetric-key

encryption scheme
SE = (ESE,DSE)
with keyspace K

Pick two hash functions
G : {0, 1}∗ → K
H : {0, 1}∗ → Zq

param← (p, q, g, SE,G,H)
Return param

KGS(param)

xS
$← Zq

yS ← gxS

Return (xS, yS)

KGR(param)

xR
$← Zq

yR ← gxR

Return (xR, yR)

SC (param, xS, yR,m)

t
$← Zq

K ← ytR
w ← gt

τ ← G(K)
c← ESE(m, τ)
e← H(c‖yS‖yR‖w) †
s← t/(e+ xS) mod q
C ← (c, e, s)
Return C

USC (param, yS, sR, C)
Parse C as (c, e, s)
w ← (ySg

e)s

K ← wxR

τ ← G(K)
m← DSEτ (c)
If H(c‖yS‖yR‖w) = e

then return m
Else return ⊥

Figure 4.2: The Gamage et al. signcryption scheme
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As shown in Figure 4.1 and Figure 4.2, the Gamage et al. signcryption

scheme is very similar to the Zheng signcryption scheme. The main difference

between these two signcryption schemes is highlighted by †. In the Gam-

age et al. signcryption scheme, e is computed as H(c‖yS‖yR‖w) instead of

H(m‖yS‖yR‖K). This change allows public verifiability of the authenticity of

the ciphertexts produced by the Gamage et al. signcryption scheme, while the

ciphertexts produced by the Zheng signcryption scheme can only be verified

by the receiver.

4.3 The Properties required on (B1, B2, B3)

As shown in Definition 4.1.1, a meta-ElGamal signature scheme is parame-

terised by a tuple of functions (B1(r, e, s), B2(r, e, s), B3(r, e, s)). For simplic-

ity, we first examine meta-ElGamal signature schemes with B3(r, e, s) = 1. We

will discuss the extension to more general signature schemes in Section 4.8.

There are four properties that we require on B1(r, e, s) and B2(r, e, s) for our

transforms to produce secure signcryption schemes:

1. For all (r, e, x, t) ∈ Z4
q there exists a unique solution s ∈ Zq such that

B1(r, e, s) = xB2(r, e, s) + t mod q and that there exists a polynomial-

time algorithm to find it. (This allows the signcryption algorithms to

find s in polynomial time.)

2. For (β1, β2, r, e, s) ∈ Z5
q, fix any three of the five values. Then the

other two values are determined by the equations B1(r, e, s) = β1 and

B2(r, e, s) = β2, and there exists a polynomial-time algorithm to find

them. (This is required for the unsigncryption algorithm and the secu-

rity proofs.)

3. If at least one of r, e, s is uniformly random over Zq and the others are

fixed values, then B1(r, e, s) and B2(r, e, s) have a joint distribution that
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is computationally indistinguishable from a uniform distribution over

Zq ×Zq. (To simplify the security proofs a little bit, we will assume the

distribution is exactly uniform.)

4. For (r, r′, e, e′, s, s′) ∈ Z6
q, if B1(r, e, s) = B1(r

′, e′, s′) and B2(r, e, s) =

B2(r
′, e′, s′) then e = e′.

The third and the fourth properties are required for the security proofs of

signcryption schemes obtained from the transforms.

4.4 The Two Transforms

Our two transforms which convert a meta-ElGamal signature scheme into

a meta-ElGamal signcryption scheme are based on the Zheng signcryption

scheme [37] and the Gamage et al. signcryption scheme [18] respectively.

The construction essentially re-uses the random element w = gt computed as

part of the meta-ElGamal signature scheme as the ephemeral public key in a

Diffie-Hellman key exchange [16]. It can be viewed as the combination of a

meta-ElGamal signature with a symmetric encryption scheme [1].

For both transforms, the Setup algorithm generates a group G with a

generator g of prime order q (where q is a k-bit prime). The sender key

generation algorithm KGS chooses a private key xS
$← Zq and computes a

public key yS ← gxS . The receiver key generation algorithm KGR also chooses

a private key xR
$← Zq and computes a public key yR ← gxR . The sender key

generation process can be thought of as the key generation algorithm for the

meta-ElGamal signature scheme and the receiver key generation process can be

thought of as the key generation algorithm for the encryption scheme; hence,

although the processes are functionally identical, they derive from different

conceptual roots.

The signcryption/unsigncryption algorithms for the Zheng transform and

the GLZ transform are given in Figure 4.3 and Figure 4.4. The schemes make
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SC (xS, yR,m):

t
$← Zq

w ← gt

K ← ytR
τ ← H3(yS, yR, K)
c← ESE(m, τ)
e← H1(m, yS, yR, K)
r ← H2(w)
Solve B1(r, e, s) = xSB2(r, e, s) + t

for the variable s
C ← (c, B1(r, e, s), B2(r, e, s))
Output C

USC (yS, xR, C)
Parse C as (c, β1, β2)

w ← gβ1y−β2S

r ← H2(w)
Compute (e, s) from (β1, β2, r) using
B1(r, e, s) = β1 and B2(r, e, s) = β2

K ← wxR

τ ← H3(yS, yR, K)
m← DSEτ (c)
If H1(m, yS, yR, K) 6= e

output ⊥
Else output m

Figure 4.3: The Zheng transform of a meta-ElGamal signature scheme into a
meta-ElGamal signcryption scheme

use of a symmetric encryption scheme (ESE,DSE) with keyspace {0, 1}` and a

set of hash functions:

H1 : {0, 1}∗ ×G3 → Zq H2 : G→ Zq H3 : G3 → {0, 1}` .

Recall that the SDSS has B1(r, e, s) = es and B2(r, e, s) = −s. If we

apply the Zheng transform to the SDSS, we get a signcryption scheme which

outputs ciphertexts of the form (c, et/(e+xS),−t/(e+xS). This is essentially

equivalent to the provably-secure version of Zheng’s signcryption scheme [4].

Similarly, if we apply the GLZ transform to the SDSS, we get an equivalent

version of the Gamage et al. signcryption scheme [18].

4.5 Notation for the Security Proofs

The security proofs require a complex interaction of the random oracle sim-

ulations. We keep track of these queries and responses using a series of lists

LH1 , LH2 and LH3 . We count each query that an adversary A makes to any

oracle and index the lists accordingly; so, for example, if the i-th oracle query

made by A is to the H1 oracle, then an entry is added to LH1 indexed by i.
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SC (xS, yR,m):

t
$← Zq

w ← gt

K ← ytR
τ ← H3(yS, yR, K)
c← ESE(m, τ)
e← H1(c, yS, yR, w)
r ← H2(w)
Solve B1(r, e, s) = xSB2(r, e, s) + t

for the variable s
C ← (c, B1(r, e, s), B2(r, e, s))
Output C

USC (yS, xR, C)
Parse C as (c, β1, β2)

w ← gβ1y−β2S

r ← H2(w)
Compute (e, s) from (β1, β2, r) using
B1(r, e, s) = β1 and B2(r, e, s) = β2

If H1(c, yS, yR, w) 6= e then output ⊥
K ← wxR

τ ← H3(yS, yR, K)
m← DSEτ (c)
Output m

Figure 4.4: The GLZ transform of a meta-ElGamal signature scheme into a
meta-ElGamal signcryption scheme

This does not imply that there exists an (i − 1)-th entry on the list LH1 as

the (i − 1)-th query may not have been to the oracle H1. Signcryption and

unsigncryption oracle queries may update multiple lists simultaneously. We

can therefore associate an index set IH1 with the list LH1 which contains the

set of indices for which there exists an entry on LH1 (and similarly for the

other oracles).

We will describe the contents of each list when they are formally introduced

(in the security proof). However, it is useful to introduce some extra notation

at this point. If X is a set then we define X = X ∪ {?}. An asterisk ? will

denote an entry in a list which could not be computed by the simulation. We

let · denote a symbol which “matches” any entry. Thus, (x, y, ·) = (u, v, w) if

and only if x = u and y = v. This allows us to make statements such as “there

exists (x, y, ·) = (xi, yi, zi) ∈ LX for some i ∈ IX”, which means that there

exists an index i (corresponding to the i-th oracle query) such that x = xi

and y = yi. Our simulations will be such that there exists at most one entry

i ∈ IX such that (x, y, ·) = (xi, yi, zi) ∈ LX .
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4.6 Confidentiality of the Zheng Transform

In this section, we will prove the confidentiality of the Zheng transform.

The confidentiality of our schemes obtained from the Zheng transform relies

on the IND-OT security of the symmetric encryption scheme (Definition 2.3.2)

and the gap Diffie-Hellman problem in the group G (Definition 2.2.8).

Theorem 4.6.1. Let SC be a signcryption scheme obtained from the Zheng

transform. Given a PPT adversary A against the IND-CCA2 property of SC ,

there exist a PPT adversary B against the GDH problem and a PPT adversary

B′ against the IND-OT property of the symmetric encryption scheme such that

Adv out-IND
A (k) ≤ 2qS

q1 + q2 + 2qS + 2qU
q

+ 2
qS + qU

q
+ 2Adv GDH

B (k) + Adv PA
B′(k) ,

where qi is the maximum number of queries made by A to the Hi oracle, qS

is the maximum number of queries made to the signcryption oracle, and qU is

the maximum number of queries made to the unsigncryption oracle.

Proof: Let A be a PPT adversary against the IND-CCA2 property of the sign-

cryption scheme. We will prove the theorem via a sequence of games [8, 34].

Each game will be parameterised by a bit b and we define W b
i to be the event

that A outputs 1 in the version of game Gi which uses bit b.

Game G1:

G1 is the game Exptout-IND-b
A (k) defined in Definition 2.3.8. Hence:

Adv out-IND
A (k) = |Pr[W 1

1 ]− Pr[W 0
1 ]| .

Game G2:

G2 simulates the random oracles, the signcryption oracle and the unsign-

cryption oracle internally using a series of lists. The lists LH1 , LH2 , LH3

contain elements of the form (m, yS, yR, w,K, e) ∈ {0, 1}∗ × G2 × G2 × Zq,

(w, r) ∈ G × Zq, (yS, yR, w,K, τ) ∈ G2 × G2 × {0, 1}` corresponding to the
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input/output of the hash functions. Recall that O is a DDH oracle which

determines whether (a, b, c) satisfies logg b = loga c.

We will change the way in which the oracles work, but first we need to

consider how to “address” elements of the lists LH1 and LH3 . As an example,

we consider the list LH1 . Elements of this list will always have the form

(m, y, y′, ?,K, e) or (m, y, y′, w, ?, e). A query H1(m, y, y
′, K) should receive

the answer e if either (m, y, y′, ?,K, e) ∈ LH1 or if (m, y, y′, w, ?, e) ∈ LH1

where w = gt and K = y′t for some t. We define the Def /Def ′ functions in

Figure 4.5 to easily determine whether an appropriate entry exists in the list.

This allows us to re-define the hash/signcryption/unsigncryption oracles

as in Figure 4.6.

We assume that the challenge ciphertext is computed as OS(y∗R,mb). Since

the hash functions are modelled as random oracles, and the lists ensure the

consistency among the hash queries, we have that G2 is equivalent to G1.

Hence,

Pr[W b
2 ] = Pr[W b

1 ] where b ∈ {0, 1} .

Game G3:

Note that in G2, the receiver’s private key x∗R is not used at all. G3 changes

the action of the signcryption oracle so that it computes signcryption cipher-

texts without using the sender’s private key x∗S. This is done by changing the

signcryption oracle OS to act as in Figure 4.7. The challenge ciphertext is

then computed as OS(y∗R,mb).

Since r, e, s
$← Zq, we have that B1(r, e, s) and B2(r, e, s) have a uniform

joint distribution over Zq × Zq according to the third property listed in Sec-

tion 4.3. As w is computed as gB1y∗S
B2 , w is therefore uniformly distributed

over G. Thus, as long as ⊥1 and ⊥2 do not occur, we have that G2 and

G3 are equivalent. Note that the size of LHi is bounded by qi + qS + qU for

i ∈ {1, 2}. Since w is distributed at random over G, we have that the prob-

ability ⊥1 occurs in any execution of OS is bounded by (q1 + qS + qU)/q and
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Def 1(m, y, y
′, K):

If (m, y, y′, ·, K, ·) = (mi, yi, y
′
i, wi, Ki, ei) for i ∈ IH1

e← ei
Else

if (m, y, y′, ·, ?, ·) = (mi, yi, y
′
i, wi, Ki, ei) and O(wi, y

′, K) = 1 for i ∈ IH1

e← ei
Else
e←⊥

Return e

Def ′1(m, y, y
′, w):

If (m, y, y′, w, ?, ·) = (mi, yi, y
′
i, wi, Ki, ei) for i ∈ IH1

e← ei
Else

if (m, y, y′, ?, ·, ·) = (mi, yi, y
′
i, wi, Ki, ei) and O(w, y′, Ki) = 1 for i ∈ IH1

e← ei
Else
e←⊥

Return e

Def 2(w):
If (w, ·) = (wi, ri) for some i ∈ IH2

r ← ri
Else
r ←⊥

Return r

Def 3(y, y
′, K):

If (y, y′, ·, K, ·) = (yi, y
′
i, wi, Ki, τi) for i ∈ IH3

τ ← τi
Else if (y, y′, ·, ?, ·) = (yi, y

′
i, wi, Ki, τi) and O(y′, wi, K) = 1 for i ∈ IH3

τ ← τi
Else
τ ←⊥

Return τ

Def ′3(y, y
′, w):

If (y, y′, w, ?, ·) = (yi, y
′
i, wi, Ki, τi) for i ∈ IH3

τ ← τi
Else

if (y, y′, ?, ·, ·) = (yi, y
′
i, wi, Ki, τi) and O(y′, w,Ki) = 1 for i ∈ IH3

τ ← τi
Else
τ ←⊥

Return τ

Figure 4.5: Functions which determine membership of the lists LH1 , LH2 and
LH3 from partial information
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H1(m, y, y
′, K):

e← Def 1(m, y, y
′, K)

If e =⊥
e

$← Zq
Add (m, y, y′, ?,K, e)

to LH1

Return e

H2(w):
r ← Def 2(w)
If r =⊥
r

$← Zq
Add (w, r)

to LH2

Return r

H3(y, y
′, K):

τ ← Def 3(y, y
′, K)

If τ =⊥
τ

$← {0, 1}`
Add (y, y′, ?,K, τ)

to LH3

Return τ

OS(yR,m):

t
$← Zq

w ← gt

τ ← Def ′3(y
∗
S, yR, w)

If τ =⊥
τ

$← {0, 1}`
Add (y∗S, yR, w, ?, τ) to LH3

c← ESE(m, τ)
e← Def ′1(m, y

∗
S, yR, w)

If e =⊥
e

$← Zq
Add (m, y∗S, yR, w, ?, e) to LH1

r ← Def 2(w)
If r =⊥
r

$← Zq
Add (w, r) to LH2

Solve B1(r, e, s) = x∗SB2(r, e, s) + t
for the variable s

C ← (c, B1(r, e, s), B2(r, e, s))
Return C

OU(yS, C):
Parse C as (c, B1, B2)

w ← gB1yB2
S

r ← Def 2(w)
If r =⊥
r

$← Zq
Add (w, r) to LH2

Compute (e, s) from (B1, B2, r)
τ ← Def ′3(yS, y

∗
R, w)

If τ =⊥
τ

$← {0, 1}`
Add (yS, y

∗
R, w, ?, τ) to LH3

m← DSEτ (c)
e′ ← Def ′1(m, yS, y

∗
R, w)

If e′ =⊥
e′

$← Zq
Add (m, yS, y

∗
R, w, ?, e

′) to LH1

If e 6= e′ then return ⊥
Else return m

Figure 4.6: The hash/signcryption/unsigncryption oracles in Game G2
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OS(yR,m):

r, e, s
$← Zq

w ← gB1(r,e,s)y
∗B2(r,e,s)
S

τ ← Def ′3(y
∗
S, yR, w)

If τ =⊥
τ

$← {0, 1}`
Add (y∗S, yR, w, ?, τ) to LH3

c← ESE(m, τ)
e′ ← Def ′1(m, y

∗
S, yR, w)

If e′ 6=⊥
Output ⊥ and halt all operations .We call this event ⊥1

Add (m, y∗S, yR, w, ?, e) to LH1

r′ ← Def 2(w)
If r′ 6=⊥

Output ⊥ and halt all operations .We call this event ⊥2

Add (w, r) to LH2

C ← (c, B1(r, e, s), B2(r, e, s))
Return C

Figure 4.7: The signcryption oracle in Game G3
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there are qS executions. Similarly, the probability that ⊥2 occurs is bounded

by (q2 + qS + qU)/q in any execution of OS. Thus,

|Pr[W b
3 ]− Pr[W b

2 ]| ≤ qS ·
(
q1 + q2 + 2qS + 2qU

q

)
.

Game G4:

G4 is identical to G3 except for two tiny changes which ensure that the

hash oracles only evaluate H1(mb, y
∗
S, y

∗
R, K

∗) or H3(y
∗
S, y

∗
R, K

∗) during the

computation of the challenge ciphertext. Formally, we can break this down

into three cases:

1. The adversary could make a direct hash oracle query H3(y
∗
S, y

∗
R, K

∗) or

H1(m, y
∗
S, y

∗
R, K

∗) for anym. This allows us to recoverK∗. We define this

to be event E1. As we shall see, this leads to an algorithm which solves

the GDH problem. Note that this event can be detected in polynomial-

time using the DDH oracle.

2. The signcryption oracle OS could attempt to make such a query; how-

ever, in that case, the value w computed by the signcryption oracle must

be equal to w∗. Since both of these values have uniform distribution, the

probability that this occurs is bounded by qS/q.

3. The unsigncryption oracle OU could attempt to make such a query; how-

ever, in that case, the adversary must have submitted a query (c, B1, B2)

such that gB1y∗B2
S = gB

∗
1y
∗B∗2
S . This is split into two cases:

• If (B1, B2) = (B∗1 , B
∗
2) then we must have c 6= c∗. We must have

that τ = τ ∗ and since the symmetric encryption scheme is one-

to-one we must have that m 6= mb. We must also have e = e∗.

Therefore, we have that H1(m, y
∗
S, y

∗
R, K

∗) = e∗ with probability

1/q, as A cannot have made any direct H1(m, y
∗
S, y

∗
R, K

∗) queries.

We therefore alter the unsigncryption oracle so that it outputs ⊥
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BO(g,X, Y ):
w∗ ← X
y∗R ← Y

r∗, e∗, s∗
$← Zq

Add (w∗, r∗) to LH2

τ ∗ ← {0, 1}`
y∗S ← (gB1(r∗,e∗,s∗)w∗−1)1/B2(r∗,e∗,s∗)

(m0,m1, ω)
$← A1(y

∗
S, y

∗
R)

c∗ ← ESEτ∗(mb)
C∗ ← (c∗, B∗1(r∗, e∗, s∗), B∗2(r∗, e∗, s∗))
If |m0| 6= |m1| then C∗ ←⊥
b′

$← A2(C
∗, ω)

If E1 or E2 occurred then output K∗

Else output ⊥

Figure 4.8: The algorithm for solving the GDH problem

if queried on (c, B∗1 , B
∗
2). The probability that this is incorrect is

bounded by qU/q.

• If (B1, B2) 6= (B∗1 , B
∗
2) then we must have B∗1 6= B1 and B∗2 6= B2.

So we may recover t∗S as (B∗1 − B1)/(B2 − B∗2) and recover K∗ as

y∗R
t∗ . We define this to be event E2. As we shall see, this leads to

an algorithm which solves the GDH problem. Note that this event

can be detected in polynomial time by computing w.

We define an adversary B which solves the GDH problem if E1 or E2 occurs

in Figure 4.8.

IfAmakes any oracle queries, then they are answered using the simulations

of H1, H2, H3, OS and OU (with the exception that OU returns ⊥ on queries

of the form (c, B∗1 , B
∗
2)). Thus,

|Pr[W b
4 ]− Pr[W b

3 ]| ≤ qS + qU
q

+ Adv GDH
B (k) .

So, in G4, the only time that A receives any data that depends on τ ∗ is

when it receives c∗ as part of the challenge ciphertext. Thus, we can give
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B′1(1k):
x∗S, x

∗
R

$← Zq
y∗S ← gx

∗
S ; y∗R ← gx

∗
R

r∗, e∗, s∗
$← Zq

B∗i ← Bi(r
∗, e∗, s∗) for i = 1, 2

w∗ ← gB
∗
1y∗B

∗
2

Add (w∗, r∗) to LH2

(m0,m1, ω)
$← A1(y

∗
S, y

∗
R)

Output (m0,m1)

B′2(c∗):
C∗ ← (c∗, B∗1 , B

∗
2)

If |m0| 6= |m1| then C∗ ←⊥
b′

$← A2(C
∗, ω)

If A made an “illegal” query
output 0

Else output b′

Figure 4.9: The adversary B′ against the IND-OT security of the symmetric
encryption scheme

an adversary B′ = (B′1,B′2) against the IND-OT security of the symmetric

encryption scheme, by implicitly setting H3(y
∗
R, y

∗
R, K

∗) to be equal to the

hidden symmetric key used in the IND-OT game. The adversary B′ runs as

shown in Figure 4.9 (we assume that all required variables are passed between

B′1 and B′2 as part of the state variable).

A’s oracle queries are answered using the simulators H1, H2, H3, OS and

OU . An “illegal” oracle query is either a hash query H1(m, y
∗
S, y

∗
R, K

∗) or

H3(y
∗
S, y

∗
R, K

∗) where K∗ = w∗x
∗
S , a signcryption query with w = w∗ or an

unsigncryption oracle query with w = w∗ and (B1, B2) 6= (B∗1 , B
∗
2). An exam-

ination shows that

|Pr[W 1
4 ]− Pr[W 0

4 ]| = Adv PA
B′(k) .

Thus, we can conclude

Adv out-IND
A (k) = |Pr[W 1

1 ]− Pr[W 0
1 ]|

≤ 2qS
q1 + q2 + 2qS + 2qU

q
+ 2

qS + qU
q

+ 2Adv GDH
B (k) + Adv PA

B′(k) .
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4.7 Unforgeability of the Zheng Tranform

In this section, we will prove the unforgeability of the Zheng transform. The

security proof uses the general forking lemma [6] and has a listing system

that is the same as before. The unforgeability of the scheme relies on the gap

discrete logarithm problem in the group G (Definition 2.2.7).

Theorem 4.7.1. Let SC be a signcryption scheme obtained from the Zheng

transform. If there exists a PPT adversary A against the UF-CMA property

of SC , then there exists a PPT adversary B against the GDL problem such

that

Adv in-UF
A (k) ≤

√
(q1 + 1)Adv GDL

B (k) +
(q1 + 1)2

4q2
+
q1 + 2qS(q1 + q2 + 2qS + 2) + 3

2q

where qi is the maximum number of queries made by A to the Hi oracle for

i ∈ {1, 2} and qS is the maximum number of queries made to the signcryption

oracle.

We prove this theorem using two lemmas. As an intermediate step, we

define a mathematical problem that is similar to the GDL problem in Defini-

tion 2.2.7.

Definition 4.7.2 (GDL′). Given k ∈ N, generate a group G of prime order

q with some generator g. Pick a
$← Zq. The input of the problem is (g, q, ga).

We define an oracle R as follows: for i = 1, . . . , qR, on input (yi, Ki) ∈ G2,

return ei
$← Zq. The problem is to find a tuple (w, ei∗ , s) for some positive

integer i∗ ≤ qR such that

logg w = logyi∗ Ki∗ and Ki∗ = yi∗
B1(r,ei∗ ,s)−aB2(r,ei∗ ,s) ,

where B1, B2 were defined in the signcryption scheme, and r ← H2(w).

The first lemma is stated as follows:
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Lemma 4.7.3. If there exists a PPT adversary A against the UF-CMA prop-

erty of the signcryption scheme, then there exists a PPT adversary B′ against

the GDL′ problem such that

Adv in-UF
A (k) ≤ Adv GDL′

B′ (k) +
qS(q1 + q2 + 2qS + 2) + 1

q
.

Proof: Let A be a PPT adversary against the UF-CMA property of the sign-

cryption scheme. We will prove the theorem as before via a sequence of

games [8, 34]. At the end of each game, A will output a tuple consisting

of (pk∗R, sk
∗
R, C

∗). On input the tuple, a checking algorithm will output 0

or 1 based on the three conditions listed in Exptin-UF
A (k) in Definition 2.3.11.

We define Wi to be the event that the checking algorithm outputs 1 in Game i.

Game G1:

G1 is the game Exptin-UF
A (k). Hence:

Pr[W1] = Adv in-UF
A (k) .

Game G2:

G2 simulates the hash oracles using a series of lists. We will assume that

H1 has access to the oracle R defined in the GDL′ problem. We introduce

a new list LJ that contains elements of the form (yR, K, e, j) ∈ G2 × Zq × Z

defined by the query/responses of the R oracle. The value j is assumed to

be initially set to 0. We adapt the notation introduced in the last proof as in

Figure 4.10.

This game is equivalent to G1 and so we have:

Pr[W2] = Pr[W1] .

Game G3:

G3 simulates the signcryption oracle so that the queries can be answered

without the private keys. This is achieved with the help of the DDH oracle

O. The simulation is shown in Figure 4.11.
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HR1 (m, y, y′, K):
e← Def 1(m, y, y

′, K)
If e =⊥
j ← j + 1

Query e
$← R(yR, K)

Add (yR, K, e, j) to LJ

Add (m, y, y′, ?,K, e)
to LH1

Return e

H2(w):
r ← Def 2(w)
If r =⊥
r

$← Zq
Add (w, r)

to LH2

Return r

H3(y, y
′, K):

τ ← Def 3(y, y
′, K)

If τ =⊥
τ

$← {0, 1}`
Add (y, y′, ?,K, τ)

to LH3

Return τ

Figure 4.10: The hash oracles in Game G2

OS(yR,m):

r, e, s
$← Zq

w ← gB1(r,e,s)y∗
−B2(r,e,s)
S

τ ← Def ′3(y
∗
S, yR, w)

If τ =⊥
τ

$← {0, 1}`
Add (y∗S, yR, w, ?, τ) to LH3

c← ESE(m, τ)
e′ ← Def ′1(m, y

∗
S, yR, w)

If e′ 6=⊥
Output ⊥ and halt all operations .We call this event ⊥1

Add (m, y∗S, yR, w, ?, e) to LH1

r′ ← Def 2(w)
If r′ 6=⊥

Output ⊥ and halt all operations .We call this event ⊥2

Add (w, r) to LH2

C ← (c, B1(r, e, s), B2(r, e, s))
Return C

Figure 4.11: The signcryption oracle OS in Game G3
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Since r, e, s
$← Zq, we have that w is uniformly distributed over G (by defi-

nition of B1(r, e, s) and B2(r, e, s)). Thus, as long as ⊥1 and ⊥2 do not occur,

we have that G2 and G3 are equivalent. Note that the size of LHi is bounded

by qi + qS + 1 for i ∈ {1, 2} (the “+1” comes from the checking algorithm).

Since w is distributed at random over G, we have that the probability ⊥1

occurs in any execution of OS is bounded by (q1 + qS + 1)/q. Similarly, the

probability that ⊥2 occurs is bounded by (q2 + qS + 1)/q. Thus,

|Pr[W3]− Pr[W2]| ≤ qS ·
(
q1 + q2 + 2qS + 2

q

)
.

On the other hand, let us analyze the event W3 by considering the following

two cases:

1. H1 has been queried on (m∗, y∗S, y
∗
R, K

∗). We will call this event Bad .

2. H1 has not been queried on (m∗, y∗S, y
∗
R, K

∗). (If C∗ is a valid forgery

then H1(m
∗, y∗S, y

∗
R, K

∗) cannot have been defined by the signcryption

oracle.) Then e′ is independently uniformly generated from Zq. So in

this case,

Pr[W3 | ¬Bad ] ≤ 1

q
.

Hence, we have

Pr[W3] ≤
1

q
+ Pr[Bad ].

Lastly, we show that Pr[Bad ] can be upper-bounded by Adv GDL′

B′ (k). The

adversary B′ takes (g, q,X) as input and runs as follows:
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B′O,R(g, q,X):
y∗S ← X
(y∗R, x

∗
R, C

∗)← A(y∗S)
Parse C∗ as (c∗, β1

∗, β2
∗)

w∗ ← gβ1
∗
y∗S
−β2∗

r∗ ← H2(w
∗)

Compute (e∗, s∗) from (β1
∗, β2

∗, r∗)
K∗ ← w∗x

∗
R

τ ∗ ← H3(y
∗
S, y

∗
R, K

∗)
m∗ ← DSEτ∗(c∗)
e′ ← H1(m

∗, y∗S, y
∗
R, K

∗)
If e′ 6= e∗

Output ⊥
If (yR∗ , K

∗, e∗, ·) = (yj, Kj, ej, j) ∈ LJ for some 1 ≤ j ≤ q1 + 1
Output (w∗, e∗, s∗, j)

Else output ⊥

The H1, H2, H3 and OS oracles are simulated as in Game G3.

If A outputs a successful forgery, then H1(m
∗, y∗S, y

∗
R, K

∗) must be defined

by a direct H1-oracle query. Thus there will exist an entry (y∗R, K
∗, e∗, j) ∈ LJ

for some 1 ≤ j ≤ q1 + 1. Thus, (w∗, e∗, s∗, j) is a valid solution to the GDL′

problem and Pr[Bad ] ≤ Adv GDL′

B′ (k). In conclusion,

Adv in-UF
A (k) ≤ Adv GDL′

B′ (k) +
qS(q1 + q2 + 2qS + 2) + 1

q
.

As we have proved that the unforgeability of our signcryption scheme re-

lies on the intractability of the GDL′ problem, the next task is to link the

intractability of the GDL′ problem to the intractability of the GDL problem.

We will use the general forking lemma from Bellare and Neven [6] to show the

link and we state it as follows:

Lemma 4.7.4 (General Forking Lemma [6]). Fix an integer qR ≥ 1 and

a set Z of size q ≥ 2. Let A be a randomized algorithm that on input

(PP, e1, . . . , eqR) returns a pair, the first element of which is an integer in

the range 0, . . . , qR and the second element of which we refer to as a side out-

put. Let IG be a randomized algorithm that we call the input generator. The
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accepting probability of A, denoted acc, is defined as the probability that J ≥ 1

in the experiment

PP
$← IG

e1, . . . , eqR
$← Z

(J, σ)
$← A(PP, e1, . . . , eqR)

The forking algorithm FA associated to A is the randomized algorithm that

takes input PP and proceeds as follows:

FA(PP ):
Pick coins ρ for A at random

e1, . . . , eqR
$← Z

(I, σ)← A(PP, e1, . . . , eqR ; ρ)
If I = 0

return (0, ?, ?)

e′I , . . . , e
′
qR

$← Z
(I ′, σ′)← A(PP, e1, . . . , eI−1, e

′
I , . . . , e

′
qR

; ρ)
If I = I ′ and eI 6= e′I

return (1, σ, σ′)
Else return (0, ?, ?)

Let

frk = Pr[b = 1 : PP
$← IG; (b, σ, σ′)

$← FA(PP )]

Then

frk ≥ acc ·
(
acc

qR
− 1

q

)
.

We are now ready to state our second lemma as follows:

Lemma 4.7.5. If there exists a PPT adversary B′ against the GDL′ problem,

then there exists a PPT adversary B against the GDL problem such that

Adv GDL
B (k) ≥ Adv GDL′

B′ (k)
(Adv GDL′

B′ (k)

qR
− 1

q

)
where qR = q1 + 1 .

Proof : We are going to use the general forking lemma in this proof. One can

think of PP as public information and e1, . . . , eqR as replies to queries to a

random oracle.

To apply the lemma, we will describe the algorithm A (which would be

essentially the same as B′), and then construct the forking algorithm FA (which
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will be used by B). Let PP ← (g, q,X) be the GDL problem instance and

ei
$← Zq for i = 1, . . . , qR.

AO(g, q,X, e1, . . . , eqR):
j ← 0
α← B′O,R(g, q,X)

If B′ queries R
j ← j + 1
Return ej

If α = (w∗, e∗, s∗, j∗)
Output (j∗, w∗, e∗, s∗)

Else output (0, ?, ?, ?)

The forking algorithm FA is the same as stated in the lemma, where σ is a

tuple of the form (w, e, s) ∈ G×Z2. To make it clearer, we write it out in our

context:

FOA (g, q,X):
Pick coins ρ for A at random

e1, . . . , eqR
$← Z

(j∗, w∗, e∗, s∗)← A(g, q, ga, e1, . . . , eqR ; ρ)
If j∗ = 0

Output (0, ?, ?, ?, ?, ?, ?)

êj∗ , . . . , êqR
$← Z

(ĵ∗, ŵ∗, ê∗, ŝ∗)← A(g, q, ga, e1, . . . , ej∗−1, êj∗ , . . . , êqR ; ρ)

If j∗ = ĵ∗ and ej∗ 6= êĵ∗
Output (1, w∗, e∗, s∗, ŵ∗, ê∗, ŝ∗)

Else output (0, ?, ?, ?, ?, ?, ?)

The algorithm B′ is constructed upon FA:

BO(g, q,X):
If (1, w∗, e∗, s∗, ŵ∗, ê∗, ŝ∗)← FA(g, q,X)

Compute B∗1 , B
∗
2 , B̂

∗
1 and B̂∗2

Output a← B∗1−B̂∗1
B̂∗2−B∗2

mod q

Else output ⊥

If X = ga, then we have Kj∗ = yj∗
B∗1−aB∗2 and Kj∗ = yj∗

B̂∗1−aB̂∗2 . Since

ej∗ 6= êj∗ , we have B∗i 6= B̂∗i for i ∈ {1, 2} by the fourth condition we re-

quired of the functions B1 and B2. Therefore, we can extract a by computing

(B∗1 − B̂∗1)/(B̂∗2 − B∗2) mod q. Since A essentially outputs what B′ outputs,
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it is clear that the accepting probability acc is equal to the success proba-

bility of B′, Adv GDL′

B′ . Similarly, since B outputs a if and only FA outputs

(1, w∗, e∗, s∗, ŵ∗, ê∗, ŝ∗), we have Adv GDL
B = frk. Hence by the general forking

lemma, we have

Adv GDL
B ≥ Adv GDL′

B′ (
Adv GDL′

B′

qR
− 1

q
) .

4.8 The Signature Schemes with B3(r, e, s) 6= 1

We may expand the range of meta-ElGamal signature schemes to those which

include B3(r, e, s). A meta-ElGamal signature scheme (B1, B2, B3) with B3 6=

1 can be converted into a meta-ElGamal signature scheme (B′1, B
′
2, 1) by set-

ting

B′1(r, e, s) =
B1(r, e, s)

B3(r, e, s)
and B′2(r, e, s) =

B2(r, e, s)

B3(r, e, s)
.

Thus, an arbitrary meta-ElGamal signature scheme (B1, B2, B3) can be trans-

formed into a secure signcryption scheme as long as (B′1, B
′
2) satisfy the con-

ditions listed in Section 4.3.

4.9 The Security of Meta-ElGamal Signatures

Despite having been proposed over fifteen years, no proof of security has ever

been proposed for meta-ElGamal signature schemes. The techniques used to

prove the unforgeability of the Zheng transform in Section 4.7 can be adopted

to show the security of the meta-ElGamal signature scheme. However, we may

take a short-cut given that we have already proven that the meta-ElGamal

signcryption scheme obtained from the Zheng transform is unforgeable. It is

well-known that an insider UF-CMA secure signcryption scheme can converted

into a UF-CMA signature scheme by publishing a receiver’s public/private key
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pair in the signature public key (see [15] for a proof). We introduce a formal

definition for the derived signature scheme here:

Definition 4.9.1. Consider a meta-ElGamal signature scheme SS parame-

terised by functions (B1, B2, 1) and using a hash function H2 as its encoding

function. Let SC be the meta-ElGamal signcryption scheme obtained via the

Zheng transform of SS. Then the derived signature scheme dSS = (G,S,V)

is defined as follows:

G(1k):

PP
$← Setup(1k)

(xS, yS)
$← KGS(PP )

(xR, yR)
$← KGR(PP )

sk ← (PP, xS, yS, yR)
pk ← (PP, yS, xR, yR)
Output (sk , pk)

S(m, sk):
(PP, xS, yS, yR)← sk
C ← SC (xS, yR,m)
Output C
V(m,C, pk):

(PP, yS, xR, yR)← pk
m′ ← USC (yS, xR, C)
If m = m′ then output >
Else output ⊥

We can now relate the security of a meta-ElGamal signature scheme to the

security of the corresponding derived signature scheme. The security notion

we discuss here is UF-CMA security (Definition 2.3.4).

Theorem 4.9.2. Let SC be a meta-ElGamal signcryption scheme with func-

tions (B1, B2, 1), and let SS be a meta-ElGamal signature scheme with the

same functions (B1, B2, 1). Then SS is UF-CMA secure if SC is UF-CMA

secure.

Proof : In order to prove this theorem, we are only required to show that SS

is secure if dSS is secure. Let A′ be an adversary that breaks the UF-CMA

security of SS . We will construct another adversary A based on A′ which

would break the UF-CMA security of dSS . Consider the adversary shown in

Figure 4.12.
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AOS ,H1,H2,H3(pk): . OS is a signing oracle for dSS
Parse pk as (PP, yS, xR, yR)

(m∗, (w∗, s∗))
$← A′O′S ,HS(PP, yS) . O′S is a simulated signing oracle

If A′ queries O′S(m) for SS
Query C ← OS(m)
Parse C as (c, β1, β2) . HS is the hash oracle for SS

w ← gβ1y−β2S

Query r ← H2(w)
Compute (e, s) from (r, β1, β2)
Return (w, s)

If A′ queries HS(m,w)
K ← wxR

Query e← H1(m‖yS‖yR‖K)
Return e

K∗ ← w∗xR

Query e∗ ← H1(m
∗‖yS‖yR‖K∗)

Query r∗ ← H2(w
∗)

β∗i ← Bi(r
∗, e∗, s∗) for i = 1, 2

τ ∗ ← H3(yS‖yR‖K∗)
c∗ ← ESEτ∗(m∗)
Output C∗ ← (c∗, β∗1 , β

∗
2)

Figure 4.12: The adversary A against UF-CMA security of dSS
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The action of the two oracles O′S and HS is consistent with the view that

A′ expects. (The same hash function H2 is used by both A and A′, so H2’s

distribution is trivially correct.) Suppose A′ outputs a valid forgery. Then A′

cannot have queried its signing oracle O′S on m and so A did not query its

signing oracle on m. Moreover, if (w∗, s∗) is a valid signature for m∗ in SS ,

then (r∗, e∗, s∗) satisfies

• B1(r
∗, e∗, s∗) = xS ·B2(r

∗, e∗, s∗) + t where w∗ = gt;

• e∗ = HS(w∗,m∗) = H1(m
∗‖yS‖yR‖w∗xR); and

• r∗ = H2(w
∗).

Hence C∗ is a valid signcryption ciphertext with underlying message m∗ and

so a valid dSS forgery on m∗. In other words, a successful adversary against

the SS gives rise to a successful adversary against the dSS scheme (with the

same success probability) and so SS must be secure if SC is unforgeable.

4.10 Confidentiality of the GLZ Transform

In this section, we will prove the confidentiality of the GLZ transform. The

proof is similar to the proof of the confidentiality of the Zheng transform.

Theorem 4.10.1. If there exists a PPT adversary A against the IND-CCA2

property of the signcryption scheme, then there exist a PPT adversary B

against the GDH problem and a PPT adversary B′ against the IND-OT prop-

erty of the symmetric encryption scheme such that

Adv out-IND
A (k) ≤ 2qS

q1 + q2 + 2qS + 2qU
q

+ 2
qS + qU

q
+ 2Adv GDH

B (k) + Adv PA
B′(k) ,

where qi is the maximum number of queries made by A to the Hi oracle, qS

is the maximum number of queries made to the signcryption oracle, and qU is

the maximum number of queries made to the unsigncryption oracle.
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Proof: Let A be a PPT adversary against the IND-CCA2 property of the sign-

cryption scheme. We will prove the theorem via a sequence of games [8, 34].

Each game will be parameterised by a bit b and we define W b
i to be the event

that A outputs 1 in the version of game Gi which uses bit b.

Game G1:

G1 is the game Exptout-IND-b
A (k). Hence:

Adv out-IND
A (k) = |Pr[W 1

1 ]− Pr[W 0
1 ]| .

Game G2:

G2 simulates the random oracles, signcryption oracle and unsigncryption

oracle internally using a series of lists. The lists LH1 , LH2 , LH3 contain elements

of the form (m, yS, yR, w,K, e) ∈ {0, 1}∗ × G2 × G2 × Zq, (w, r) ∈ G × Zq,

(yS, yR, w,K, τ) ∈ G2 × G2 × {0, 1}` corresponding to the input/output of

the hash functions. Recall that O is a DDH oracle which determines whether

(a, b, c) satisfies logg b = loga c.

We will change the way in which the oracles work, but first we must con-

sider how to “address” elements of the lists LH1 and LH3 . As an example,

we consider the list LH1 . Elements of this list will always have the form

(m, y, y′, ?,K, e) and (m, y, y′, w, ?, e). A query H1(m, y, y
′, w) should receive

the answer e if either (m, y, y′, ?,K, e) ∈ LH1 or if (m, y, y′, w, ?, e) ∈ LH1 ,

where w = gt and K = y′t for some t. We define the Def /Def ′ functions in

Figure 4.13 to easily determine if an appropriate entry exists in the list.

This allow us to re-define the hash/signcryption/unsigncryption oracles as

in Figure 4.14.

We assume that the challenge signcryption is computed as OS(y∗R,mb).

Since the hash functions are modeled as random oracles, and since we have

worked hard to ensure consistency between the way in which elements in the
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Def 1(c, y, y
′, w):

If (c, y, y′, w, ?, ·) = (ci, yi, y
′
i, wi, Ki, ei) for i ∈ IH1

e← ei
Else if (c, y, y′, ·, ?, ·) = (ci, yi, y

′
i, wi, Ki, ei) and O(w, y′, Ki) = 1 for i ∈ IH1

e← ei
Else
e←⊥

Return e

Def 2(w):
If (w, ·) = (wi, ri) for some i ∈ IH2

r ← ri
Else
r ←⊥

Return r

Def 3(y, y
′, K):

If (y, y′, ?,K, ·) = (yi, y
′
i, wi, Ki, τi) for i ∈ IH3

τ ← τi
Else if (y, y′, ·, ?, ·) = (yi, y

′
i, wi, Ki, τi) and O(y′, wi, K) = 1 for i ∈ IH3

τ ← τi
Else
τ ←⊥

Return τ

Def ′3(y, y
′, w):

If (y, y′, w, ?, ·) = (yi, y
′
i, wi, Ki, τi) for i ∈ IH3

τ ← τi
Else if (y, y′, ?, ·, ·) = (yi, y

′
i, wi, Ki, τi) and O(y′, w,Ki) = 1 for i ∈ IH3

τ ← τi
Else
τ ←⊥

Return τ

Figure 4.13: Functions which determine membership of the lists LH1 , LH2 and
LH3 from partial information
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H1(c, y, y
′, w):

e← Def 1(c, y, y
′, w)

If e =⊥
e

$← Zq
Add (c, y, y′, w, ?, e)

to LH1

Return e

H2(w):
r ← Def 2(w)
If r =⊥
r

$← Zq
Add (w, r)

to LH2

Return r

H3(y, y
′, K):

τ ← Def 3(y, y
′, K)

If τ =⊥
τ

$← {0, 1}`
Add (y, y′, ?,K, τ)

to LH3

Return τ

OS(yR,m):

t
$← Zq

w ← gt

τ ← Def ′3(y
∗
S, yR, w)

If τ =⊥
τ

$← {0, 1}`
Add (y∗S, yR, w, ?, τ) to LH3

c← ESE(m, τ)
e← Def 1(c, y

∗
S, yR, w)

If e =⊥
e

$← Zq
Add (y∗S, yR, w, ?, e) to LH1

r ← Def 2(w)
If r =⊥
r

$← Zq
Add (w, r) to LH2

Solve B1(r, e, s) = x∗SB2(r, e, s) + t
for the variable s

C ← (c, B1(r, e, s), B2(r, e, s))
Return C

OU(yS, C):
Parse C as (c, β1, β2)

w ← gβ1y−β2S

r ← Def 2(w)
If r =⊥
r

$← Zq
Add (w, r) to LH2

Compute (e, s) from (β1, β2, r)
e′ ← Def 1(c, yS, y

∗
R, w)

If e′ =⊥
e′

$← Zq
Add (c, yS, y

∗
R, w, ?, e

′) to LH1

If e 6= e′ then Return ⊥
Else
τ ← Def ′3(yS, y

∗
R, w)

If τ =⊥
τ

$← {0, 1}`
Add (yS, y

∗
R, w, ?, τ) to LH3

m← DSEτ (c)
Return m

Figure 4.14: The hash/signcryption/unsigncryption oracles in Game G2
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OS(yR,m):

r, e, s
$← Zq

w ← gB1(r,e,s)y∗
−B2(r,e,s)
S

τ ← Def ′3(y
∗
S, yR, w)

If τ =⊥
τ

$← {0, 1}`
Add (y∗S, yR, w, ?, τ) to LH3

c← ESE(m, τ)
e′ ← Def 1(c, y

∗
S, yR, w)

If e′ 6=⊥
Output ⊥ and halt all operations .We call this event ⊥1

Add (c, y∗S, yR, w, ?, e) to LH1

r′ ← Def 2(w)
If r′ 6=⊥

Output ⊥ and halt all operations .We call this event ⊥2

Add (w, r) to LH2

C ← (c, B1(r, e, s), B2(r, e, s))
Return C

Figure 4.15: The signcryption oracle OS in Game G3

list are “addressed”, we have that G2 is equivalent to G1. Hence:

Pr[W b
2 ] = Pr[W b

1 ] , where b ∈ {0, 1} .

Game G3:

Note that in G2, the receiver’s private key x∗R is not used at all. G3 changes

the action of the signcryption oracle so that it computes signcryption cipher-

texts without using the sender’s private key x∗S. This is done by changing the

signcryption oracle to act as shown in Figure 4.15.

The challenge ciphertext is computed as OS(y∗R,mb). Since r, e, s
$← Zq,

we have that w is uniformly distributed over G (by definition of B1(r, e, s)

and B2(r, e, s)). Thus, as long as ⊥1 and ⊥2 do not occur, we have that G2

and G3 are equivalent. Note that the size of LHi is bounded by qi + qS + qU

for i ∈ {1, 2}. Since w is distributed at random over G, we have that the

probability ⊥1 occurs in any execution of OS is bounded by (q1 + qS + qU)/q.
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Similarly, the probability that ⊥2 occurs is bounded by (q2+qS+qU)/q. Thus,

|Pr[W b
3 ]− Pr[W b

2 ]| ≤ qS ·
(
q1 + q2 + 2qS + 2qU

q

)
.

Game G4:

G4 is identical to G3 except for a tiny change which ensures that the hash

oracles only evaluate H3(y
∗
R, y

∗
S, K

∗) during the computation of the challenge

ciphertext. Formally, we can break this down into three cases:

1. The adversary could make a direct hash oracle query H3(y
∗
R, y

∗
S, K

∗).

This allows us to recover K∗. We define this to be event E1. As we shall

see, this leads to an algorithm which solves the GDH problem. Note that

this event can be detected in polynomial-time using the DDH oracle.

2. The signcryption oracle OS could attempt to make such a query; how-

ever, in that case, the value w computed by the signcryption oracle must

be equal to w∗. Since both of these are computed at random, the prob-

ability that this occurs is bounded by qS/q.

3. The unsigncryption oracle OU could attempt to make such a query; how-

ever, in that case, the adversary must have submitted a query (c, B1, B2)

such that gB1y∗B2
S = gB

∗
1y
∗B∗2
S . This is split into two cases:

• If (B1, B2) = (B∗1 , B
∗
2) then we must have c 6= c∗. This implies

that H1(c, y
∗
R, y

∗
S, w

∗) 6= e∗ with probability 1− 1/q, where e∗ is the

hash value H1(c
∗, y∗R, y

∗
S, w

∗). In other words, the unsigncryption

would output ⊥ with probability 1 − 1/q. We therefore alter the

unsigncryption oracle so that it outputs ⊥ if queried on (c, B∗1 , B
∗
2).

The probability that this is incorrect is bounded by qU/q.

• If (B1, B2) 6= (B∗1 , B
∗
2) then we must have B∗1 6= B1 and B∗2 6= B2.

So we may recover t∗ as (B∗1 − B1)/(B2 − B∗2) and recover K∗ as

y∗R
t∗ . We define this to be event E2. As we shall see, this leads to

83



BO(g,X, Y ):
w∗ ← X
y∗R ← Y

r∗, e∗, s∗
$← Zq

Add (w∗, r∗) to LH2

τ ∗ ← {0, 1}`
y∗S ← (gB1(r∗,e∗,s∗)w∗−1)1/B2(r∗,e∗,s∗)

(m0,m1, ω)
$← A1(y

∗
S, y

∗
R)

c∗ ← ESEτ∗(mb)
C∗ ← (c∗, B∗1(r∗, e∗, s∗), B∗2(r∗, e∗, s∗))
If |m0| 6= |m1| then C∗ ←⊥
b′

$← A2(C
∗, ω)

If E1 or E2 occurred then output K∗

Else output ⊥

Figure 4.16: The algorithm B that solves the GDH problem

an algorithm which solves the GDH problem. Note that this event

can be detected in polynomial-time by computing w.

We define an algorithm B which solves the GDH problem if E1 or E2 occurs

in Figure 4.16.

IfAmakes any oracle queries, then they are answered using the simulations

of H1, H2, H3, OS and OU (with the exception that OU returns ⊥ on queries

of the form (c, B∗1 , B
∗
2)). Thus,

|Pr[W b
4 ]− Pr[W b

3 ]| ≤ qS + qU
q

+ Adv GDH
B (k) .

So, in G4, the only time that A receives any data that depends on τ ∗ is

when it receives C∗ as the challenge ciphertext. Thus, there exists an adversary

B′ = (B′1,B′2) against IND-OT security by implicitly setting H3(y
∗
S, y

∗
R, K

∗)

to be equal to the hidden symmetric key used in the IND-OT game. The

adversary B′ is described in Figure 4.17 (we assume that all required variables

are passed between B′1 and B′2 as part of the state variable).

A’s oracle queries are answered using the simulators H1, H2, H3, OS and
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B′1(1k):
x∗S, x

∗
R

$← Zq
y∗S ← gx

∗
S ; y∗R ← gx

∗
R

r∗, e∗, s∗
$← Zq

B∗i ← Bi(r
∗, e∗, s∗) for i = 1, 2

w∗ ← gB
∗
1y∗B

∗
2

Add (w∗, r∗) to LH2

(m0,m1, ω)
$← A1(y

∗
S, y

∗
R)

Output (m0,m1)

B′2(c∗):
Add (c∗, y∗S, y

∗
R, w

∗, e∗) to LH1

C∗ ← (c∗, B∗1 , B
∗
2)

If |m0| 6= |m1| then C∗ ←⊥
b′

$← A2(C
∗, ω)

If A made an “illegal” query
then output 0

Else output b′

Figure 4.17: The adversary B′ against IND-OT security of the symmetric
encryption scheme

OU . An “illegal” oracle query is a hash query H3(y
∗
S, y

∗
R, K

∗) where K∗ = w∗x
∗
S ,

a signcryption query with w = w∗, or an unsigncryption oracle query with

w = w∗ and (B1, B2) 6= (B∗1 , B
∗
2). An examination shows that

|Pr[W 1
4 ]− Pr[W 0

4 ]| = Adv PA
B′(k) .

Thus, we can conclude

Adv out-IND
A (k) = |Pr[W 1

1 ]− Pr[W 0
1 ]|

≤ 2qS
q1 + q2 + 2qS + 2qU

q
+ 2

qS + qU
q

+ 2Adv GDH
B (k) + Adv PA

B′(k) .

4.11 Unforgeability of the GLZ Transform

To prove the unforgeability of the GLZ transform, we could again apply the

same proof technique used for proving the unforgeability of the Zheng trans-

form. However, to avoid repetitive work, we choose to use the previous results

to prove the unforgeablity of the GLZ transform. More precisely, we have

proven that the signcryption schemes obtained from the Zheng transform

are UF-CMA secure; this implies that the derived signature scheme is UF-

CMA secure, and therefore the underlying meta-ElGamal signature scheme
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is UF-CMA secure. We are now going to prove that UF-CMA security of a

meta-ElGamal signature scheme leads to UF-CMA security of the signcryption

scheme resulting from applying the GLZ transform to that signature scheme.

Theorem 4.11.1. Let SC be a signcryption scheme obtained from the GLZ

transform using functions B1(r, e, s) and B2(r, e, s). If there exists a PPT ad-

versary A against UF-CMA security of SC , then there exists a PPT adversary

A′ against UF-CMA security of the corresponding meta-ElGamal signature

scheme for the same tuple of functions (B1(r, e, s), B2(r, e, s), 1) such that:

Adv in-UF
A (k) ≤ q3

q
+ (1− qSneg(k))Adv UF

A′(k) .

where q3 is the maximum number of queries made by A to the H3 oracle, qS is

the maximum number of queries made to the signcryption oracle, and neg(k)

is some negligible function in k.

Proof: Let A be a PPT adversary against the UF-CMA property of the sign-

cryption scheme. We will prove the theorem as before via a sequence of

games [8, 34]. At the end of each game, A will output a tuple consisting

of (pk∗R, sk
∗
R, C

∗). On input the tuple, a checking algorithm will output 0

or 1 based on the three conditions listed in Exptin-UF
A (k) in Definition 2.3.11.

We define Wi to be the event that the checking algorithm outputs 1 in Game i.

Game G1:

G1 is the game Exptin-UF
A (k). Hence:

Adv in-UF
A (k) = Pr[W1] .

Game G2:

G2 simulates the hash oracle H3 using a series of lists. We adapt the

notation introduced in the last proof:
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H3(y, y
′, K):

τ ← Def 3(y, y
′, K)

If τ =⊥
τ

$← {0, 1}`
Add (y, y′, ?,K, τ) to LH3

Return τ

This game is equivalent to G1 and so we have Pr[W2] = Pr[W1].

Game G3:

G3 simulates the signcryption oracle in the following way:

OS(yR,m):

τ
$← {0, 1}`

t
$← Zq

w ← gt

K ← ytR
If ⊥← Def 3(yS, yR, K)

add (yS, yR, w,K, τ) to LH3

Else
Halt and output ⊥

c← ESE(m, τ)
e← H1(c, yS, yR, w)
r ← H2(w)
Solve B1(r, e, s) = xSB2(r, e, s) + t

for the variable s
βi ← Bi(r, e, s) for i = 1, 2
C ← (c, β1, β2)
Output C

The probability it outputs ⊥ is bounded by q3/q, since t is uniformly randomly

chosen and w is uniformly distributed over G. Thus,

|Pr[W3]− Pr[W2]| <
q3
q

Game G4:

G4 introduces two hash functions E , HS and a signing oracle Osig from the

meta-ElGamal signature scheme with (B1, B2, 1). The purpose of this is to

construct a PPT algorithm A′ based on A to break the UF-CMA security of

the signature scheme. The queries made by A will be answered with the help
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of the signing oracle and the two hash oracles. The signing oracle is defined

as:

Osig(m):

t
$← Zq

w ← gt

r ← E(w)
e← HS(m,w)
Solve B1(r, e, s) = xB2(r, e, s) + tB3(r, e, s)

for the variable s
Output (w, s)

We modify some oracles in G3 as follows:

H1(c, y, y
′, w):

e← HS(c‖y‖y′, w)
Add (c, y, y′, w, ?, e) to LH1

Return e

H2(w):
r ← E(w)
Add (w, r) to LH2

Return r

OS(yR,m):

τ
$← {0, 1}`

c← ESE(m, τ)

Query (w, s)
$← Osig(c‖yS‖yR)

If ⊥← Def ′3(yS, yR, w)
add (yS, yR, w, ?, τ) to LH3

Else
halt and output ⊥

r ← H2(w)
e← H1(c, yS, yR, w)
βi ← Bi(r, e, s) for i = 1, 2
C ← (c, β1, β2)
Output C

Note that the distribution of (w, s) generated by Osig is exactly the same

as that generated by OS in G3 by the definitions of these oracles. Under

the random oracle model [7], the adversary cannot distinguish the difference

between the oracles in G3 and the oracles in G4. Thus, we have:

Pr[W4] = Pr[W3].

Before we construct the algorithm A′, let us recall the UF-CMA security

game for signature schemes:
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ExptUF
A (k):

(pk , sk)← G(1k)

(m∗, σ∗)
$← AOsig(sk , · )(pk)

Output 1 if
(a) V(pk ,m∗, σ∗) = >
(b) A never queried Osig(sk ,m∗)

Else output 0,

where Osig is a signing oracle.

Suppose we have (y∗S, x
∗
S)← G(1k) and A′ is given y∗S. Then the adversary

A′ that would break the UF-CMA security of the signature scheme can be

described as follows:

A′Osig
(y∗S):

(pk∗R, sk
∗
R, C

∗)
$← A(y∗S)

Parse C∗ as (c∗, β∗1 , β
∗
2)

w∗ ← gβ
∗
1y∗S

−β∗2

r∗ ← E(w∗)
Compute (e∗, s∗) from β∗1 , β

∗
2 and r∗

Output (c∗‖y∗S‖y∗R, w∗, s∗)

If C∗ is a valid forgery for the signcryption scheme, then we have

H1(c
∗, y∗S, y

∗
R, w

∗) = e∗, where e∗ is computed from β1, β2 and r∗.

This implies HS(c∗‖y∗S‖y∗R, w∗) = e∗ and we have > ← V(c∗‖y∗S‖y∗R, w∗, s∗),

where V is the verification algorithm in the signature scheme. In other words,

if C∗ is a valid forgery then so is (c∗‖y∗S‖y∗R, w∗, s∗). Note that if A breaks

the UF-CMA security, then A has never queried OS(y∗R,m
∗). However, it

is possible that A′ has queried c∗‖y∗S‖y∗R on Osig. This happens only if the

following conditions are met:

1. A submits a signcryption query on some message m 6= m∗ and the

receiver’s public key y∗R,

2. the signcryption oracle picks τ randomly, and it turns out that ESE(m, τ)

is c∗.
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We want to find the probability of this event, which we call E. For the sym-

metric encryption scheme, we required in Section 2.3.1 that given a message

m and a ciphertext c , the probability that the randomly chosen key τ satisfies

ESE(m, τ) = c is negligible in the security parameter. We denote this negli-

gible probability by neg(k). Note that this probability is for each execution

of the signcryption oracle. Therefore Pr[E] = qSneg(k). Thus, we can bound

Pr[W4] by (1− qSneg(k))Adv UF
A′(k). To conclude, we have

• Adv in-UF
A (k) = Pr[W1] ,

• Pr[W2] = Pr[W1] ,

• |Pr[W3]− Pr[W2]| ≤ q3
q

,

• Pr[W4] = Pr[W3] ,

• Pr[W4] ≤ (1− qSneg(k))Adv UF
A′(k) .

Combining all of these, we get

Adv in-UF
A (k) ≤ q3

q
+ (1− qSneg(k))Adv UF

A′(k) .

4.12 Summary

In this chapter, we provided two transforms from a meta-ElGamal signature

scheme to a signcryption scheme: the Zheng transform and the GLZ trans-

form, inspired by the Zheng signcryption scheme [37] and the Gamage et al.

signcryption scheme [18] respectively. Both transforms produces signcryption

schemes that are outsider confidential and insider unforgeable. Moreover, the

GLZ transform offers public verifiability, which allows anyone who has the

knowledge of receiver’s public key to verify the ciphertext. A large class of

signcryption schemes can be constructed in this way by choosing different
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functions, B1 and B2. In this work, we have restricted ourselves to those func-

tions of the form (−1)a0ra1ea2sa3 for a0 ∈ {0, 1}, a1, a2, a3 ∈ {−1, 0, 1}}, and

achieved provable security for the resulting signcryption schemes. It would be

interesting to look into functions of other forms, and explore new signcryption

schemes.
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Chapter 5

From Outsider to Insider

In Chapter 4, we proved that the Zheng transform results in outsider IND-

CCA2 secure signcryption schemes. It is quite natural to look for improve-

ments to achieve insider confidentiality for the transform. In this chapter, we

propose a modification to the Zheng transform so that the resulting signcryp-

tion schemes are insider secure. This result offers the users a choice between

insider security and outsider security. Moreover, the cost to have this choice

is merely an extra exponentiation operation.

5.1 The Modified Zheng Transform

Like the Zheng transform, the modified Zheng transform turns a meta-ElGamal

signature scheme into a signcryption scheme. Without loss of generality, we as-

sume the meta-ElGamal signature schemes are all parameterised by a triplet

(B1(r, e, s), B2(r, e, s), 1) which satisfies the list of properties in Section 4.3.

For the modified Zheng transform, the setup algorithm and the key genera-

tion algorithms are the same as those for the Zheng transform.

The algorithm Setup generates a group G with a generator g whose order is

q, where q is a k-bit prime. The sender key generation algorithm KGS chooses

a private key xS
$← Zq and computes the public key as yS ← gxS . The receiver

key generation algorithm KGR chooses a private key xR
$← Zq and computes

the public key as yR ← gxR .
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SC (xS, yR,m):

t
$← Zq

w ← gt

K ← yR
t

τ ← H3(yS, yR, K)
c← ESE(m, τ)
e← H1(m, yS, yR, K)
r ← H2(w)
Solve B1(r, e, s) = xSB2(r, e, s) + t

for the variable s
βi ← Bi(r, e, s) for i = 1, 2
z ← gβ1

C ← (c, z, β2)
Output C

USC (yS, xR, C)
Parse C as (c, z, β2)
w ← zyS

−β2

K ← wxR

τ ← H3(yS, yR, K)
m← DSE(c, τ)
e← H1(m, yS, yR, K)
r ← H2(w)
Compute s′ from e, r, β2
β′1 ← B1(r, e, s

′)
If gβ

′
1 6= z then output ⊥

Else output m

Figure 5.1: The modified Zheng transform

The signcryption and unsigncryption algorithms make use of an IND-OT

secure symmetric encryption scheme (ESE,DSE) with keyspace {0, 1}`, where

` is the security parameter for the symmetric encryption scheme, and a set of

hash functions:

H1 : {0, 1}∗ ×G3 → Zq , H2 : G→ Zq , and H3 : G3 → {0, 1}` .

The description of the signcryption and unsigncryption algorithms are

given in Figure 5.1.

The modification is essentially a small change in the ciphertext: instead of

outputting C as (c, β1, β2), it outputs C as (c, gβ1 , β2). Correspondingly, the

unsigncryption algorithm checks if gβ
′
1 = gβ1 instead of e′ = e. We claim that

this modification helps the scheme to achieve insider confidentiality.

5.2 The Security Proofs

In this section, we will provide two security proofs. Referring to the insider

security models for signcryption given in Definition 2.3.9 and Definition 2.3.11,
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we will prove our signcryption schemes resulting from the modified Zheng

transform are insider IND-CCA2 secure as well as insider UF-CMA secure.

5.2.1 Insider Confidentiality

Theorem 5.2.1. Let (Setup,KGS,KGR, SC ,USC ) be a signcryption scheme

defined by the modified Zheng transform and functions (B1, B2, 1). Suppose

there exists a PPT adversary A against the IND-CCA2 property of the sign-

cryption scheme in the insider model. Then there exist a PPT adversary B

against the GDH problem and a PPT adversary B′ against the IND-OT prop-

erty of the symmetric encryption scheme such that:

Adv IND
A (k) ≤ 2q1 + 2q3 + 4qU

q
+ 2Adv GDH

B (k) + Adv OT
B′(k) ,

where qi is the maximum number of queries made by A to the Hi oracle for

i = 1, 3 and qU is the maximum number of queries made to the unsigncryption

oracle.

Proof: We are going to adapt the notion introduced in the last chapter and

prove the theorem via a series of games [8, 34]. As before, each game will be

parameterised by a bit b. We define W b
i be the event that A outputs 1 in the

version of game Gi which uses bit b, where A is a PPT adversary against the

IND-CCA2 property of the signcryption scheme in the insider model.

Before we start game hopping, we give an overview of the proof.

1. The first game will be the same as Exptin-IND-b
A (k) defined in Defini-

tion 2.3.9.

2. The second game will simulate the unsigncryption oracle so that the

receiver’s private key is not used.

3. The third game will have a new rule so that we can simulate the sign-

cryption algorithm without the sender’s private key in the fourth game.
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4. The fourth game will relate the security of the signcryption scheme to

the advantage of solving the GDH problem.

5. The fifth game will relate the security of the signcryption scheme to the

IND-OT property of the symmetric encryption scheme.

The details of the games are described below:

Game G1:

G1 is the game Exptin-IND-b
A (k) described in Definition 2.3.9. Hence,

Adv in-IND
A (k) = |Pr[W 1

1 ]− Pr[W 0
1 ]| .

Game G2:

G2 simulates the random oracles and the unsigncryption oracle internally

using three lists, LH1 , LH2 and LH3 , corresponding to the input/output of the

hash functions, where

1. LH1 contains elements of the form

(m, yS, yR, w,K, e) ∈ {0, 1}∗ ×G2 ×G2 × Zq ;

2. LH2 contains elements of the form

(w, r) ∈ G× Zq ; and

3. LH3 contains elements of the form

(yS, yR, w,K, τ) ∈ G2 ×G2 × {0, 1}` .

We use the Def /Def ′ functions defined in Figure 4.5 to easily determine

if an appropriate entry exists in the list. The Def functions are used when a

proper hash query is submitted. That is, the hash queries include the exact

input for the corresponding hash functions. The Def ′ functions are used when

some part of the input of the corresponding hash function is unknown. Both
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H1(m, y, y
′, K):

e← Def 1(m, y, y
′, K)

If e =⊥
e

$← Zq
Add (m, y, y′, ?,K, e) to LH1

Return e

H2(w):
r ← Def 2(w)
If r =⊥
r

$← Zq
Add (w, r)

to LH2

Return r

H3(y, y
′, K):

τ ← Def 3(y, y
′, K)

If τ =⊥
τ

$← {0, 1}`
Add (y, y′, ?,K, τ) to LH3

Return τ

OU(yS, C):
Parse C as (c, z, β2)
w ← zyS

−β2

r ← Def 2(w)
If r =⊥
r

$← Zq
Add (w, r) to LH2

τ ← Def ′3(yS, y
∗
R, w)

If τ =⊥
τ

$← {0, 1}`
Add (yS, y

∗
R, w, ?, τ) to LH3

m← DSE(c, τ)
e′ ← Def ′1(m, yS, y

∗
R, w)

If e′ =⊥
e′

$← Zq
Add (m, yS, y

∗
R, w, ?, e

′, ) to LH1

Compute s′ from (r, e′, β2)
β′1 ← B1(r, e

′, s′)
z′ ← gβ

′
1

If z′ 6= z then return ⊥
Else return m

Figure 5.2: The hash/unsigncryption oracles in Game G2
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types of functions record the input and output of the hash functions. They

may access the DDH oracle to check if an entry is on the list. This now allows

us to re-define the hash/unsigncryption oracles as in Figure 5.2.

Note that the receiver’s private key x∗R is not used during the unsign-

cryption process. We assume that the challenge ciphertext is computed as

SC (x∗S, yR,mb) using re-defined hash oracles. Since the hash functions are

modeled as random oracles, and since the lists ensure consistency amongst

the queries, we have that G2 is identical to G1. In other words,

Pr[W b
2 ] = Pr[W b

1 ] for b ∈ {0, 1} .

Game G3:

G3 will have a new rule. Before we explain the new rule, we first define a

particular type of query. We know that A1 will output (m0,m1, x
∗
S, y

∗
S, ω) and

the challenger will apply the signcryption algorithm to the input (x∗S, y
∗
S,mb)

and get C∗ = (c∗, z∗, β∗2). We have w∗ = z∗y∗S
β∗2 . We define a w∗ query to be

any one of the following three queries:

• a hash query H1(m, y
∗
S, y

∗
R, K

∗), where (K∗, w∗, y∗R) is a Diffie-Hellman

triplet;

• a hash queryH3(y
∗
S, y

∗
R, K

∗), where (K∗, w∗, y∗R) is a Diffie-Hellman triplet;

• an unsigncryption query (c, z, β2) with sender’s public key y∗S such that

zy∗S
β2 = z∗y∗S

β∗2 = w∗.

Note that one cannot recognise a w∗ query before the challenge ciphertext is

produced. The new rule is that if the adversary makes any w∗ query before

the challenge ciphertext is produced, then the adversary loses the game. That

is, the adversary can make any queries and, once the challenge ciphertext is

produced, the challenger will check if any previous query is a w∗ query. Note

that this can be done with the help of a DDH oracle. The adversary will lose
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the game if there is one. We shall analyse the probability of the adversary

losing the game in this way.

Since w∗ is randomly independently generated during the signcryption pro-

cess, we have that a particular query (before the challenge ciphertext is gen-

erated) happens to be a w∗ query with probability 1/q. Hence the probability

of the adversary losing the game in this way is bounded by (q1 + q2 + qU)/q.

Hence we can claim that the adversary will not notice the difference between

G3 and G2 because the probability of the adversary losing the game in this

way is negligible. More precisely,

|Pr[W b
3 ]− Pr[W b

2 ]| ≤ q1 + q2 + qU
q

.

Game G4:

G4 changes the way of the computing challenge ciphertext so that the

sender’s private key x∗S is not used. This is done by changing the signcryption

algorithm as shown in Figure 5.3.

As in Figure 5.3, we have changed the way that the challenge ciphertext is

produced. We need to show that the distribution of the ciphertext (c∗, z∗, β∗2)

produced by the simulation and by the real signcryption algorithm are indis-

tinguishable to the adversary. As the generation of c∗ in the simulation is the

same as in the real signcryption algorithm, c∗ has the same distribution in G4

and in G3. The rest is done by proving the following two claims:

Claim 1 : The distribution of β∗2 in G4 and in G3 are indistinguishable.

Proof of Claim 1 : In G4, β
∗
2 is uniformly distributed over Zq. In G3, β

∗
2

is computed as B2(r
∗, e∗, s∗). By our assumption on B2, we have that the

distribution of β∗2 is indistinguishable from the uniform distribution in G3.

Hence, β∗2 in G4 and in G3 have indistinguishable distribution.

Claim 2 : The distribution of z∗ in G4 and in G3 are indistinguishable.
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SC-Challenge(y∗S, y
∗
R,mb):

w∗
$← G

r∗ ← H2(w)
τ ∗ ← Def ′3(y

∗
S, y

∗
R, w

∗)
If τ ∗ =⊥
τ ∗

$← {0, 1}`
Add (y∗S, y

∗
R, w

∗, ?, τ ∗) to LH3

c∗ ← ESE(mb, τ
∗)

β∗2
$← Zq

z∗ ← (y∗S)β
∗
2 (w∗)

e′ ← Def ′1(mb, y
∗
S, y

∗
R, w

∗)
If e′ 6=⊥

Output ⊥ and halt all operations .We call this event ⊥1

Add (mb, y
∗
S, y

∗
R, w

∗, ?, ?) to LH1

C∗ ← (c∗, z∗, β∗2)
If |m0| 6= |m1| then C∗ ←⊥
Output C∗

Figure 5.3: The signcryption algorithm for generating the challenge ciphertext
in G4
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Proof of Claim 2 : In G4, z
∗ is computed as y∗S

β∗2w∗, where y∗S is fixed, β∗2

is uniformly random over Zq, and w∗ is uniformly random over G. Without

loss of generality, assuming y∗S is not the identity in G, y∗S is a generator of

G since G is of prime order. This implies y∗S
β∗2 is a random element in G.

Hence z∗ is the product of two random elements in G. Therefore, z∗ has

a uniform distribution over G in G4. In G3, z
∗ is computed as gβ

∗
1 , where

β∗1 = B1(r
∗, e∗, s∗). By our assumption on B1, β1 has a distribution that is

indistinguishable from a uniform distribution over Z. This implies z∗ has a

distribution that is indistinguishable from a uniform distribution over G in G3.

Therefore, the distribution of z∗ in G4 and in G3 are indistinguishable.

We have shown that the distribution of the challenge ciphertext in G4 is

unchanged from the adversary’s point of view. The next problem with the

simulation is the event ⊥1. It seems that the adversary would notice the

difference caused by the simulation if ⊥1 happened. However, ⊥1 implies the

hash value of H1(mb, y
∗
S, y

∗
R, K

∗) has been defined before the computation of

the challenge ciphertext. In other words, the event ⊥1 happens only if there

is a w∗ query. In G3, the adversary loses the game if there is a w∗ query.

Therefore, according to the new rule in G3, if ⊥1 happens, the adversary will

lose the game. As the occurrence of ⊥1 leads to the loss of the game, the

adversary will not notice this difference between G4 and G3. From now on,

we may assume ⊥1 does not occur.

The last problem with the simulation is more complicated. The simulation

generated w∗ and β∗2 , and computed z∗ as y∗S
β∗2w∗. This implies β∗1 is fixed by

the equation gβ
∗
1 = z∗. We have now fixed values of (r∗, β∗1 , β

∗
2) and hence, e∗

is fixed according to the property listed in Section 4.3. We then let the hash

value of H1(mb, y
∗
S, y

∗
R, K

∗) be e∗. By doing this, the simulation can create a

valid challenge ciphertext. However, in the simulation, we are unable to work
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BO(g,X, Y ):
w∗ ← X
y∗R ← Y

(m0,m1, x
∗
S, y

∗
S, ω)

$← A1(y
∗
R)

τ ∗ ← Def ′3(y
∗
S, y

∗
R, w

∗)
If τ ∗ =⊥
τ ∗

$← {0, 1}`
Add (y∗S, y

∗
R, w

∗, ?, τ ∗) to LH3

c∗ ← ESE(mb, τ
∗)

r∗ ← H2(w)

β∗2
$← Zq

z∗ ← (y∗S)β
∗
2 (w∗)

C∗ ← (c∗, z∗, β∗2)
If |m0| 6= |m1| then C∗ ←⊥
b′

$← A2(C
∗, ω)

If E1 occurred then output K∗

Else output ⊥

Figure 5.4: The algorithm solving GDH problem with A as a sub-routine given
E1 occurs

out β∗1 from z∗, and therefore we cannot workout e∗, yet both β∗1 and e∗ are

implicitly defined. This would be a problem if the adversary makes an H1

query on input (mb, y
∗
S, y

∗
R, K

∗) or the adversary triggers the unsigncryption

oracle to make such a query later. We deal with these two cases separately.

Let E1 denote the event that the adversary makes an H1 query on input

(mb, y
∗
S, y

∗
R, K

∗) directly. We are going to show that the event E1 leads to an

algorithm which solves the GDH problem.

Let B be an adversary against the GDH problem. In particular, B has

access to a DDH oracle O. We define B as in Figure 5.4.

As shown in Figure 5.4, B uses A as a sub-routine and solves the GDH

problem if E1 happens. This implies:

Pr[E1] ≤ Adv GDH
B (k) .
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As we have assumed the hardness of the GDH problem, Adv GDH
B (k) is negligible

in k. Hence Pr(E1) is negligible in k.

Now let E2 denote the event that the adversary triggers the unsigncryp-

tion oracle to make an H1 query on input (mb, y
∗
S, y

∗
R, K

∗). To overcome this

problem, we make the unsigncryption oracle output ⊥ if this happens. Let

⊥2 denote the event that the unsigncryption oracle outputs ⊥ wrongly. For a

better presentation, we will analyse this event in the next game.

To conclude, we have:

|Pr[W b
4 ]− Pr[W b

3 ]| ≤ Pr[E1] + Pr[E2] ≤ Adv GDH
B (k) + Pr[⊥2] .

Game G5:

G5 deals with the case that the adversary triggers the unsigncryption oracle

to make hash oracle query H1(mb, y
∗
S, y

∗
R, K

∗) after the challenge ciphertext is

produced. We make the unsigncryption oracle output ⊥ if this happens in G4

and we are going to show that this change cannot be noticed by the adversary

in this game. Note that we are not going to make any change in G5. The

purpose of G5 is to determine some upper bounds for Pr[⊥2] and Pr[W b
4 ].

In order to trigger the unsigncryption oracle to make such queries, the

adversary must have submitted a query (c, z, β2) with sender’s public key y∗S

such that zy∗S
−β2 = z∗y∗S

−β∗2 = w∗, i.e., a w∗ query. Note that we assume E1

does not occur in this case. We analyse this case by considering a series of

games.

We define G5-i to be the game that the unsigncryption oracle output ⊥

to a w∗ query for the first i-th unsigncryption queries after the challenge

ciphertext is produced for i = 1, 2, . . . , qU . So G5-1 is the game that is exactly

the same as before except that the unsigncryption oracle will output ⊥ if the

first unsigncryption query after the challenge ciphertext is produced is a w∗

query. Game G5-2 is exactly the same as G5-1 except that the unsigncryption

oracle will output ⊥ if the second unsigncryption query after the challenge
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ciphertext is produced is a w∗ query. We can extend this definition to i = 0,

where the game G5-0 is exactly the same as G3.

Now, suppose we are in G5-i and the i-th unsigncryption query after the

challenge ciphertext is produced is a w∗ query. Let us analyse the probability

that the unsigncryption oracle outputs ⊥ wrongly. A w∗ query is of two

possible forms: (c, z∗, β∗2) and (c, z, β2) for some z 6= z∗, some β2 6= β∗2 and

some c 6= c∗. Note that one may have queries also of the form (c∗, z, β2),

(c∗, z, β∗2), (c∗, z∗, β2), (c, z∗, β2), or (c, z, β∗2). As w∗ = z∗y∗S
β∗2 , it is clear that

zy∗S
β∗2 6= w∗ and z∗y∗S

β2 6= w∗ for z 6= z∗ and β2 6= β∗2 , so the last four forms

cannot give rise to a w∗ query. If (c∗, z, β2) is queried and suppose zy∗S
β2 = w∗,

then we have Def ′3(y
∗
S, y

∗
R, w

∗) = τ ∗. This implies the underlying message of

c∗ is mb and H1(mb, y
∗
S, y

∗
R, K

∗) = e∗. (Although we do not know the value of

e∗, it is implicitly defined and we denote it by e∗.) We also have H2(w
∗) = r∗.

Solving the equation B1(r
∗, e∗, s) = x∗SB2(r

∗, e∗, s) + t∗ gives s = s∗. By

the first property listed in Section 4.3, s = s∗ is the only solution. We get

β2 = B2(r
∗, e∗, s∗) = β∗2 . This is a contradiction to the condition β2 6= β∗2 .

Hence, (c∗, z, β2) cannot give rise to a w∗ query.

As discussed above, we only need to consider two possible forms of a w∗

query: (c, z∗, β∗2) and (c, z, β2). Let m denote the underlying message of the

ciphertext c and r∗ ← H2(w
∗).

1. Suppose (c, z∗, β∗2) is queried. Then H1(m, y
∗
S, y

∗
R, K

∗) has never been

queried because of our assumption that E1 does not occur. (Note that

there exists only one encryption of mb by our assumption about the sym-

metric encryption scheme, hence m 6= mb.) This implies the hash value

H1(m, y
∗
S, y

∗
R, K

∗) is randomly chosen when the unsigncryption oracle is

trying to respond to the query and it happens to be e∗ with probability

1/q. The unsigncryption oracle then work out s from (β∗2 , r
∗, e) and cal-

culate β1 = B1(r
∗, e, s). We know that B2(r

∗, e, s) = β∗2 = B2(r
∗, e∗, s∗).

Suppose β1 = β∗1 . Then we have e = e∗ by the property of B1 and

103



B2. However, the probability that e = e∗ is 1/q. In other words, the

probability that β1 6= β∗1 is 1 − 1/q. This implies the probability that

gβ1 6= gβ
∗
1 = z∗ is 1− 1/q. Hence, the unsigncryption oracle will output

⊥ correctly with probability 1− 1/q. Equivalently, the probability that

the unsigncryption will output ⊥ wrongly to this particular query is 1/q.

2. Suppose (c, z, β2) is queried. Let β1 be such that gβ1 = z. From the third

property on B1, B2 in Section 4.3, it follows that β1 and β2 determine

the hash value e = H1(m, y
∗
S, y

∗
R, K

∗). Since we assume that the event

E1 does not occur, the unsigncryption oracle will pick a random value

e′ for H1(m, y
∗
S, y

∗
R, K

∗) when trying to respond to the query. The prob-

ability that e′ = e is 1/q. As argued in the above case, the probability

that the unsigncryption oracle will output ⊥ wrongly is the same as the

probability that e′ = e, i.e., 1/q.

Thus, we have:

∣∣Pr[W b
5-(i+1)]− Pr[W b

5-i]
∣∣ =

1

q
for i = 0, 1, . . . , qU .

Hence

∣∣Pr[W b
5-0]− Pr[W b

5-qU ]
∣∣ ≤ qU−1∑

i=1

∣∣Pr[W b
5-(i+1)]− Pr[W b

5-i]
∣∣

=
qU
q
.

To summarise, we made a change to the unsigncryption oracle so that it returns

⊥ to any w∗ query. The probability that this is wrong is bounded by qU/q.

That is, Pr(⊥2) is bounded by qU/q. To simplify the notation, we define G5

to be G5-qU . Note that G5 is exactly the same as G4. Thus,

|Pr[W b
4 ]− Pr[W b

3 ]| ≤ Adv GDH
B (k) + Pr[⊥2] ≤ Adv GDH

B (k) +
qU
q
.
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Now, in G5, the only time that A receives any data that depends on τ ∗

is when it receives c∗ as part of the challenge ciphertext. Thus, we can give

an adversary B′ = (B′1,B′2) against the IND-OT security by implicitly setting

H3(y
∗
S, y

∗
R, K

∗) to be equal to the hidden symmetric key used in the IND-OT

game. The adversary B′ runs as follows (we assume that all required variables

are passed between B′1 and B′2 as part of the state variable):

B′1(1k):
x∗R

$← Zq
y∗R ← gx

∗
R

e∗, s∗
$← Zq

z∗ = ge
∗

(m0,m1, x
∗
S, y

∗
S, ω)

$← A1(y
∗
R)

Output (m0,m1)

B′2(c∗):
C∗ ← (c∗, z∗, s∗)
If |m0| 6= |m1| then C∗ ←⊥
b′

$← A2(C
∗, ω)

If A made an “illegal” query
then output 0

Else
output b′

A’s oracle queries are answered using the simulators H1, H3 and OU . An

“illegal” oracle query is either a hash queryH1(m, y
∗
S, y

∗
R, K

∗) orH3(y
∗
S, y

∗
R, K

∗)

where K∗ = w∗x
∗
S , or an unsigncryption oracle query with w = w∗. An

examination shows that

|Pr[W 1
5 ]− Pr[W 0

5 ]| ≤ Adv OT
B′(k) .

Thus, we can conclude:

Adv in-IND
A (k) = |Pr[W 1

1 ]− Pr[W 0
1 ]|

≤ 2q1 + 2q3 + 4qU
q

+ 2Adv GDH
B (k) + Adv OT

B′(k) .

5.2.2 Unforgeability

We are going to take a short cut to prove the unforgeability of the signcryption

schemes defined by the modified Zheng transform, given the fact that we have

already proven the signcryption schemes defined by the Zheng transform are

insider UF-CMA secure.
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Theorem 5.2.2. Let S = (Setup,KGS,KGR, SC ,USC ) be a signcryption

scheme defined by the Zheng transform with parametrisation B1(r, e, s) and

B2(r, e, s). Let S ′ = (Setup ′,KG ′S,KG ′R, SC ′,USC ′) be the signcryption scheme

defined by the modified Zheng transform with the same parametrisation. Then

S ′ is insider UF-CMA secure if S is insider UF-CMA secure.

Proof: Suppose there exists an adversary A against S ′ who successfully pro-

duced a forged signcryption ciphertext C∗ = (c∗, z∗, β∗2) with the receiver’s key

pair (y∗R, x
∗
R). We are going to construct an adversary B who will use A as

a subroutine to produce a forged signcryption ciphertext for S. Suppose we

have PP
$← Setup(1k) and (y∗S, x

∗
S)

$← KGS(1k). Then we define the adversary

B as follows:

B(y∗S):
Pass y∗S to A
(y∗R, x

∗
R, C

′∗)
$← A(y∗S)

Parse C ′∗ as (c∗, z∗, β∗2)
w∗ ← z∗y∗R

−β∗2

r∗ ← H2(w
∗)

K∗ ← w∗x
∗
R

τ ∗ ← H3(y
∗
S, y

∗
R, K

∗)
m∗ ← DSE(c∗, τ ∗)
e∗ ← H1(m

∗, y∗S, y
∗
R, K

∗)
Compute s∗ from (r∗, e∗, β∗2)
β∗1 ← B1(r

∗, e∗, s∗)
C∗ ← (c∗, β∗1 , β

∗
2)

Output (y∗R, x
∗
R, C

∗)

Note that B can access the hash functions H1, H2 and H3, and the sign-

cryption oracle OS. A should also have the access to the hash functions H ′1,

H ′2 and H ′3, and the signcryption oracle O′S. B simulates H ′1, H
′
2 and H ′3 by

H1, H2 and H3 respectively. To simulate O′S, B does the following:
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O′S(yR,m):
C ← OS(yR,m)
Parse C as (c, β1, β2)
z ← gβ1

C ′ ← (c, z, β2)
Output C ′

Since A’s forgery is successful, (y∗R, x
∗
R, C

′∗) must satisfy the three conditions:

1. (y∗R, x
∗
R) is a valid receiver’s key pair for S ′;

2. m∗ 6=⊥ for m∗ ← USC ′(y∗S, x
∗
R, C

′∗); and

3. A never queried O′S(y∗R,m
∗).

This implies

1. (y∗R, x
∗
R) is a valid receiver’s key pair for S, as the keyspace are the same

for S and S ′;

2. USC (y∗S, x
∗
R, C

∗) will output m∗ 6=⊥ as Hi and H ′i are identical for

i = 1, 2, 3;

3. B never queried OS(y∗R,m
∗), as A never queried O′S(y∗R,m

∗).

Hence (y∗R, x
∗
R, C

∗) is a valid forgery for S. We have shown that if there exists

a PPT adversary against insider UF-CMA security of S ′, then there exists a

PPT adversary against insider UF-CMA security of S. In other words, if S is

insider UF-CMA secure, then S ′ is insider UF-CMA secure.

5.3 Summary

In this chapter, we proposed a modified Zheng transform on meta-ElGamal

signature schemes so that the resulting signcryption schemes are both IND-

CCA2 secure and UF-CMA secure in the insider model, and we provided

proofs of the security claims. Moreover, the cost of achieving insider security
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is just one extra exponentiation operation. This allows any signcryption users

to choose between insider security and outsider security. Another possible

benefit to having an insider secure signcryption scheme will be explored in the

next chapter.
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Chapter 6

One-Key Signcryption

In this chapter, we propose a transform from a two-key signcryption scheme

to a one-key signcryption scheme. A two-key signcryption scheme has two

independent key generation algorithms, KGS for generating the sender’s key

pair, and KGR for generating the receiver’s key pair. Users of a two-key

signcryption scheme need to use two independent pairs of keys for sending

and receiving, respectively. A one-key signcryption scheme uses a single key

generation algorithm. Users of a one-key signcryption algorithm can use the

same pair of keys for both sending and receiving.

Our transform can be described as modified key concatenation. We will

show that simple key concatenation results in a one-key signcryption scheme

that is not IND-CCA2 secure in one-key models even if the original signcryp-

tion scheme is insider secure in two-key models. Key concatenation with our

modification, however, can preserve the security features of the original sign-

cryption scheme. We will provide formal security proofs for our claim.

6.1 From Two-Key to One-Key

We start with a clarification of the notation. We write skRS to denote R’s

private S key, which means the receiver’s private sending key. That is, we use

the subscript to indicate the purpose of the key and the superscript to indicate

the owner of the key.
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We are now ready to describe the transform from a two-key signcryption

scheme to a one-key signcryption scheme. Note that the transform is generic

and we are able to prove the resulting signcryption scheme is as secure as the

original one.

Definition 6.1.1. Let SC = (Setup,KGS,KGR, SC ,USC ) be a two-key sign-

cryption scheme. We define the one-key transform SC-1 of SC as follows:

Setup-1(1k)

PP
$← Setup(1k)

Output PP
KG-1(PP )

(skS, pkS)
$← KGS(PP )

(skR, pkR)
$← KGR(PP )

sk ← (skS, skR)
pk ← (pkS, pkR)
Output (sk , pk)

SC -1(sk , pkR,m)
Parse sk as (skS, skR)
Parse pkR as (pkRS , pkRR)

C
$← SC (m‖pk‖pkR, skS, pkRR) (∗)

Output C
USC -1(sk , pkS, C)

Parse sk as (skS, skR)
Parse pkS as (pkSS, pkSR)
m′ ← USC (C, skR, pkSS)
If m′ =⊥

halt and output ⊥
Else

Parse m′ as (m, pk ′, pk ′′)
If (pk ′, pk ′′) = (pkS, pk)

output m
Else

output ⊥

Note that we attach both the sender’s and receiver’s public keys to the

message m when we use SC to signcrypt in SC -1. This is crucial for preserving

the security features.
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Suppose we change the line with ∗ to C
$← SC (m, pkRR), and output

m′ ← USC (C, pkSS) in USC -1, then we get a one-key signcryption scheme

transformed from SC by simple key concatenation. Let us call this signcryp-

tion scheme SC ′.

Claim: SC ′ is not IND-CCA2 secure.

Proof: Suppose that the adversary A receives the challenge ciphertext C∗

with the targeted user’s public key pk ∗ = (pk ∗S, pk ∗R) in the game

ExptOne-in-IND-b
A (k) defined in Definition 2.3.13. Let pk ′ = (pk ∗S, pk ′R) for some

pk ′R 6= pk ∗R. The adversary then submits an unsigncryption query on (C∗, pk ′).

Since pk ′ 6= pk ∗, (C∗, pk ′) 6= (C∗, pk ∗). Hence (C∗, pk ′) is a valid unsigncryp-

tion query. Due to the redundancy of pk ∗R in USC -1, the unsigncryption oracle

will return mb to the adversary when pk ∗R is replaced by some other public

key pk ′R. The adversary then compares mb with m0 and m1, and outputs the

correct bit to win the game. Therefore, SC ′ is not IND-CCA2 secure.

Although it seems quite trivial that the modified key concatenation will

result in a secure one-key signcryption scheme since it overcomes the problem

caused by the redundancy of the targeted users’s receiving public key in the

unsigncryption procedure, we will provide the formal security proofs for both

confidentiality and unforgeability.

Theorem 6.1.2. Suppose SC is a two-key signcryption scheme. If SC is

IND-CCA2 secure in the insider model, then SC-1 is an IND-CCA2 secure

one-key signcryption scheme in the insider model.

Proof: Let A-1 = (A1-1,A2-1) be a two-stage PPT adversary against the

confidentiality of SC-1 in the insider model. We are going to construct a PPT

adversary A based on A-1 against the confidentiality of SC in the two-key
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insider model. We have the setup of the game as follows:

PP
$← Setup(1k) (skR, pkR)

$← KGR(PP )

On receiving pkR, A does the following:

Generate a key pair (skS, pkS)
pk ← (pkS, pkR)

(sk ∗, pk ∗,m′0,m
′
1, ω)

$← A1-1(pk)
Parse sk ∗ as (sk ∗S, sk ∗R)
Parse pk ∗ as (pk ∗S, pk ∗R)
mi ← m′i‖pk ∗‖pk for i = 0, 1
Pass (sk ∗S, pk ∗S,m0,m1) to the challenger
Receive C∗ from the challenger

b′
$← A2-1(C∗, ω)

Output b′

Note that the adversary A has access to the unsigncryption oracle OU . The

signcryption/unsigncryption queries from A-1 are responded to as follows:

• A signcryption query (m, pkR):

Parse pkR as (pkRS , pkRR)

C
$← SC (m‖pk‖pkR, skS, pk

R
R)

Output C

• An unsigncryption query (C, pkS):

Parse pkS as (pkSS, pkSR)
m′ ← OU(C, pkSS)
If m′ =⊥

output ⊥
Else

parse m′ as (m, pk ′‖pk ′′)
If pk ′‖pk ′′ = pkS‖pk

output m
Else

output ⊥
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As described above, A provides A-1 a simulated environment in which A-1

cannot distinguish from a real one. Hence if Adv IND-CCA2
A-1,SC-1 is non-negligible, then

so is Adv IND-CCA2
A,SC . This proves the theorem.

Theorem 6.1.3. Suppose SC is a two-key signcryption scheme. If SC is

UF-CMA secure in the insider model, then SC-1 is a UF-CMA secure one-

key signcryption scheme in the insider model.

Proof: Let A-1 be a PPT adversary against the unforgeability of SC-1 in the

insider model. We are going to construct a PPT adversary A based on A-1

against the unforgeability of SC in the insider model. We have the setup of

the game:

PP
$← Setup(1k) (skS, pkS)

$← KGR(PP )

On receiving pkS, A does the following:

Generate a key pair (skR, pkR)
pk ← (pkS, pkR)

(sk ∗, pk ∗, C∗)
$← A-1(pk)

Parse sk ∗ as (sk ∗S, sk ∗R)
Parse pk ∗ as (pk ∗S, pk ∗R)
Output (sk ∗R, pk ∗R, C

∗)

Note that the adversary A has access to the signcryption oracle OS. The

signcryption/unsigncryption queries from A-1 are responded to as follows:

• A signcryption query (m′, pkR):

Parse pkR as (pkRS , pkRR)
m← m′‖pk‖pkR

Query C
$← OS(m, pkRR)

Output C

• An unsigncryption query (C, pkS):
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Parse pkS as (pkSS, pkSR)
m′ ← USC skR

(C, pkSS)
If m′ =⊥

output ⊥
Else

parse m′ as (m, pk ′‖pk ′′)
if pk ′‖pk ′′ = pkS‖pk

output m
Else

output ⊥

As described above, A provides A-1 a simulated security environment in

which A-1 cannot distinguish from a real one. Now Suppose C∗ is a successful

forge for SC-1 and the underlying message is m. We know that m is obtained

by performing USC -1(C∗, sk ∗, pk). By the construction of USC -1, we have

m′ ← USC (C∗, pkS), where m′ = m‖pk‖pk ∗. Since (m, pk ∗) has not been

queried by A-1, (m′, pk ∗R) has not been queried by A. Hence, C∗ is also a

successful forge for SC. This proves the theorem.

Combining Theorem 6.1.2 and Theorem 6.1.3, we obtain the following the-

orem:

Theorem 6.1.4. If SC is a two-key signcryption scheme that is insider IND-

CCA2 and insider UF-CMA secure, then SC-1 obtained from the one-key

transform is a one-key signcryption scheme that is also insider IND-CCA2

and insider UF-CMA secure.

6.2 Combined Public-Key Scheme

There is an equivalent, but more elegant, definition of the insider security of

a signcryption scheme [15]. Although it is rarely used in practice, it provides

a deeper understanding of the the relationship between signcryption schemes

and the related concepts of public-key encryption and digital signatures.
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Definition 6.2.1. Let SC = (Setup,KGS,KGR, SC ,USC ) be a signcryp-

tion scheme. We define the corresponding induced signature scheme S =

(KGS , Sign,Verify) and public-key encryption scheme E = (KGE ,Enc,Dec)

as follows:

KGS(1k)

PP
$← Setup(1k)

(skS, pkS)
$← KGS(PP )

(skR, pkR)
$← KGR(PP )

skS ← (skS, pkS, pkR)
pkS ← (skR, pkS, pkR)
Return (skS , pkS)

Sign(m, skS)
Parse skS as (skS, pkS, pkR)

C
$← SC (m, skS, pkR)

Return C
Verify(m,C, pkS)

Parse pkS as (skR, pkS, pkR)
m′ ← USC (C, skR, pkS)
If m′ = m

return >
Else return ⊥

KGE(1
k)

(skS, pkS)
$← KGS(PP )

(skR, pkR)
$← KGR(PP )

skE ← (skR, pkS, pkR)
pkE ← (skS, pkS, pkR)
Return (skE , pkE)

Enc(m, pkE)
Parse pkE as (skS, pkS, pkR)

C
$← SC (m, skS, pkR)

Return C
Dec(C, skE)

Parse skE as (skR, pkS, pkR)
m← USC (C, skR, pkS)
Return m.

The signcryption scheme is insider UF-CMA secure if the induced signature

scheme S is UF-CMA secure. The signcryption scheme is insider IND-CCA2

secure if the induced encryption scheme is IND-CCA2 secure.

Inspired by the alternative definition of insider security for signcryption,

we find that it is possible to have a combined public-key scheme induced from

a one-key signcryption scheme, where a combined public-key scheme is defined

as follows [28][22]:

Definition 6.2.2. A combined public-key scheme is a tuple of algorithms

(KG , Sign,Verify ,Enc,Dec), where S = (KG , Sign,Verify) is a signature

scheme and E = (KG ,Enc,Dec) is a public-key encryption scheme.
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The idea of a combined public-key scheme is that a signature scheme and a

public-key encryption scheme can share a key generation algorithm and hence

a key pair. The security models need to capture the extra capability of an

adversary caused by this convenience. We define IND-CCA2 security and

UF-CMA security for a combined public-key scheme as follows:

Definition 6.2.3. Let A = (A1,A2) be a PPT two-stage adversary against a

combined public-key scheme C = (KG , Sign,Verify ,Enc,Dec) with security

parameter k. We define the security game ExptIND-b
A (k) to be:

ExptIND-b
A (k):

(sk ∗, pk ∗)
$← KG(1k)

(m0,m1, ω)
$← AOD,OS1 (pk ∗)

c∗
$← Enc(mb, pk

∗)
If |m0| 6= |m1| then C∗ ←⊥

b′
$← AOD,OS2 (c∗, ω)

Output b′ ,

where the decryption oracle OD and the signing oracle OS are defined as

OD(c) = Dec(c, sk ∗) and OS(m) = Sign(m, sk ∗) ,

with the condition that A2 cannot query OD(c∗). The adversary’s advantage

is defined to be

Adv IND
A (k) = |Pr[ExptIND-1

A (k) = 1]− Pr[ExptIND-0
A (k) = 1]|.

The combined public-key encryption scheme is said to be IND-CCA2 secure if

Adv IND
A (k) is negligible in k for every PPT adversary A.

Definition 6.2.4. Let A be a PPT adversary against a combined public-key

scheme C = (KG , Sign,Verify ,Enc,Dec) with security parameter k. We

define the security game ExptUF
A (k) to be:
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ExptUF
A (k):

(sk ∗, pk ∗)
$← KG(1k)

(m∗, σ∗)
$← AOS ,OD(pk ∗)

Output 1 if
(a) > ← Verify(m∗, σ∗, pk ∗)
(b) A never queried OS(m∗)

Else output 0

where the decryption oracle OD and the signing oracle OS are defined as

OD(c) = Dec(c, sk ∗) and OS(m) = Sign(m, sk ∗) .

The adversary’s advantage is defined to be

Adv UF
A (k) = Pr[ExptUF

A (k) = 1].

The combined public-key scheme is said to be UF-CMA secure if Adv UF
A (k) is

negligible for every PPT adversary A.

Inspired by the alternative definition of insider security for signcryption,

we find that it is possible to have a secure combined public-key scheme in-

duced from an insider secure one-key signcryption scheme. To formalise this

idea, we first define the combined public-key scheme induced from a one-key

signcryption scheme.

Definition 6.2.5. Let SC = (Setup,KG , SC ,USC ) be a one-key signcryp-

tion scheme. We define the corresponding combined public-key scheme C =

(KGC, Sign,Verify ,Enc,Dec) as follows:

KGC(1
k)

PP
$← Setup(1k)

(skA, pkA)
$← KG(PP )

(skU , pkU)
$← KG(PP )

sk ← (skA, pkA, pkU)
pk ← (skU , pkA, pkU)
Return (sk, pk)
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Sign(m, sk)
Parse sk as (skA, pkA, pkU)

C
$← SC (m, skA, pkU)

Return C
Verify(m,C, pk)

Parse pk as (skU , pkA, pkU)
m′ ← USC (C, skU , pkA)
If m′ = m

return >
Else return ⊥

Enc(m, pk)
Parse pk as (skU , pkA, pkU)

C
$← SC (m, skU , pkA)

Return C
Dec(C, sk)

Parse sk as (skA, pkA, pkU)
m← USC (C, skA, pk

U)
Return m.

It is worth noting that KG is run twice in KGC. The first execution of KG

is to generate a pair of keys for the user A of the signcryption scheme. The

second execution of KG is to generate a pair of keys for some other user U of

the signcryption scheme. There are two interpretation of the user U .

The signcryption schemes in our thesis are not broadcasting signcryption

schemes. That is, any communication that uses a signcryption scheme is

between one user and another user, instead of a group of users. However,

signature schemes are designed so that whoever knows the public key of the

signer is able to verify signatures from that signer, and public-key encryption

schemes are designed so that whoever knows the public key of the receiver is

able to send encrypted messages to that receiver.

One way to overcome this is to acquire each verifier’s public key when

signing a message, and whoever wants to sending encrypted message to A has

to have a pair of keys known to A. By doing this, it is necessary to specify

the other user U whenever A is signing or receiving encrypted messages.

Another way to solve the problem is to have a universal user U of the sign-

cryption scheme. This is like a wild card. The key pair of U is publicly known

to everyone. This is when insider security becomes useful, since it assumes

that the adversary is a legitimate user of a signcryption scheme. Intuitively,

if a signcryption scheme is secure against an insider, then it should be secure

if there is a universal user like U , and hence our combined public-key scheme
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is secure. A formal security proof is presented as follows:

Theorem 6.2.6. Let SC = (Setup,KG , SC ,USC ) be a one-key signcryption

scheme that is insider IND-CCA2 and UF-CMA secure. Let

C = (KGC, Sign,Verify ,Enc,Dec) be the corresponding combined public-key

scheme induced from SC. Then C is IND-CCA2 and UF-CMA secure.

Proof: We first show that C is IND-CCA2 secure.

Suppose that there is a PPT adversary B = (B1,B2) that breaks IND-

CCA2 security for the combined public-key scheme C. Then we claim that

there is PPT adversary A breaking one-key insider IND-CCA2 security for

the signcryption scheme SC. To construct A = (A1,A2), we consider the

following setting:

PP
$← Setup(1k) and (skT , pkT )

$← KG(PP ) ,

where (skT , pkT ) is the key pair of the targeted user.

The construction is described as follows:

• On receiving pkT , the adversary A1 generates a key pair (skU , pkU), and

passes pk∗ ← (skU , pkT , pkU) to B1.

• On receiving pk∗, the adversary B1 can query a signing oracle OS and

a decryption query OD, where both oracles are simulated by A1 using a

signcryption oracle OS and an unsigncryption oracle OU , as follows:

OS(m)

C
$← OS(m, pkU)

Return C

OD(C)
m← OU(C, pkT )
Return m.

• Having made enough queries, B1 outputs (m0,m1, ω). Accordingly, A1

outputs (m0,m1, sk
U , pkU , ω).
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• After receiving C∗ from the challenger and some information ω from A1,

A2 passes (C∗, ω) to B2.

• B2 can query the signing oracle and the decryption oracle, which are

both simulated by the signcryption oracle and the unsigncryption oracle

as above.

• At the end, B2 outputs a bit b′. A2 sees b′ and also outputs b′.

We now analyse the probability that A wins the game. Suppose B is

successful. Then, we have:

• mb′ = Dec(C∗), and

• B2 has never queried OD(C∗).

This implies:

• mb′ = USC (C∗, skT , pkU), and

• A2 has never queried OU(C∗, pkU).

Therefore,

Adv One-in-IND
A ≥ Adv IND

B (k) .

In other words, if B is a PPT adversary with non-negligible advantage against

IND-CCA2 security of the combined public-key scheme C, then A is a PPT

adversary with non-negligible advantage against one-key insider IND-CCA2

security of the signcryption scheme SC . By our assumption that SC is a one-

key insider IND-CCA2 secure signcryption scheme, we can conclude that C is

a IND-CCA2 secure combined public-key scheme.

The next task is to prove that C is UF-CMA secure.

Suppose that there is a PPT adversary B that breaks UF-CMA security

for the combined public-key scheme C. Then we claim that there is PPT
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adversary A breaking one-key insider UF-CMA security for the signcryption

scheme SC. To construct A, we consider the following setting:

PP
$← Setup(1k) and (skT , pkT )

$← KG(PP ) ,

where (skT , pkT ) is the key pair of the targeted user.

The construction is described as following:

• On receiving pkT , the adversary A generates a key pair (skU , pkU), and

passes pk∗ ← (skU , pkT , pkU) to B.

• On receiving pk∗, the adversary B can query a signing oracle OS and

a decryption query OD, where both oracles are simulated by A using a

signcryption oracle OS and an unsigncryption oracle OU as following:

OS(m)

C
$← OS(m, pkU)

Return C

OD(C)
m← OU(C, pkT )
Return m.

• Having made enough queries, B outputs (m∗, C∗). Accordingly, A out-

puts (m∗, C∗).

Suppose B successfully produces a forgery (m∗, C∗). Then, we have:

• > ← Verify(m∗, C∗, pk ∗), and

• A never queried OS(m∗).

This implies:

• m∗ 6=⊥ for m∗ ← USC (pkU , skT , C∗), and

• A never queried OS(pkU ,m∗).
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Therefore,

Adv One-in-UF
A ≥ Adv UF

B (k) .

In other words, if B is a PPT adversary with non-negligible advantage against

UF-CMA security of the combined public-key scheme C, then A is a PPT

adversary with non-negligible advantage against one-key insider IND-CCA2

security of the signcryption scheme SC . By our assumption that SC is a one-

key insider UF-CMA secure signcryption scheme, we can conclude that C is a

UF-CMA secure combined public-key scheme.

6.3 Summary

We showed that a one-key signcryption scheme with insider security can induce

a secure combined public-key scheme. In Chapter 5, we demonstrated that

the modified Zheng transform can produce insider secure signcryption schemes

from a large class of meta-ElGamal signature schemes. In this chapter, we

showed that any insider secure signcryption scheme can be turned into a one-

key insider secure signcryption scheme at a cost of key repetition. Hence,

we have a large class of signcryption schemes that are one-key insider secure.

Moreover, all of them can induce a secure combined public-key scheme, a pair

of a signature scheme and a public-key encryption scheme that can securely

share the same key pair.
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Chapter 7

Conclusion and Future Work

This thesis has focused on the study of provable security of signcryption

schemes that are obtained from generalisation of existing signcryption schemes.

We proposed two generic transforms from a meta-ElGamal signature scheme

to a signcryption scheme: the Zheng transform and the Gamage transform,

and provided security proofs to show that the resulting signcryption schemes

are outsider confidential and insider unforgeable. We then modified the Zheng

transform so that the resulting signcryption schemes can achieve insider con-

fidentiality as well as insider unforgeability. We also proposed a transform

from a two-key signcryption scheme to a one-key signcryption scheme. While

all previous transforms are meta-ElGamal based, the last transform is generic,

and can be applied to any two-key signcryption schemes. Moreover, we showed

that an insider secure one-key signcryption scheme can induce a secure com-

bined public-key scheme, where a signature scheme and a public-key encryp-

tion scheme can securely share the same key pair.

7.1 Future Work

Signcryption, as a cryptographic primitive, is still relatively immature. There

are still many topics in signcryption waiting to be explored. We list some

possible future work as follows:
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• For both meta-ElGamal signature schemes and meta-ElGamal signcryp-

tion schemes, the diversity comes from the variation of the tuple of func-

tions (B1, B2, B3) that are used in the equation:

B1 = xB2 + tB3 .

One possible research direction is to consider modifications to the equa-

tion, so that designs of alternative signature schemes or signcryption

schemes could be explored.

• We required four properties on B1 and B2 as in Section 4.3. The security

proofs depend on the third and fourth properties. It is worth noting that

we cannot provide security proofs or attacks for the case that B1 or B2

do not satisfy the properties. It may be interesting to find an attack

or security proofs for the case that B1 or B2 do not satisfy the third or

fourth properties.

• It would be interesting to try to find a modification of the Gamage

transform so that the resulting signcryption schemes can achieve insider

confidentiality and unforgeability.

• We have shown that an insider secure one-key signcryption scheme in-

duces a secure combined public-key scheme as a generic result. However,

we do not know whether the reverse is true, i.e., whether a secure com-

bined public-key scheme can induce an insider secure one-key signcryp-

tion scheme.
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