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Abstract

The thesis examines two related combinatorial objects, namely fingerprinting codes

and separating hash families.

Fingerprinting codes are combinatorial objects that have been studied for more

than 15 years due to their applications in digital data copyright protection and their

combinatorial interest. Four well-known types of fingerprinting codes are studied in

this thesis; traceability, identifiable parent property, secure frameproof and frameproof.

Each type of code is named after the security properties it guarantees. However, the

power of these four types of fingerprinting codes is limited by a certain condition. The

first known attempt to go beyond that came out in the concept of two-level traceability

codes, introduced by Anthapadmanabhan and Barg (2009). This thesis extends their

work to the other three types of fingerprinting codes, so in this thesis four types of

two-level fingerprinting codes are defined. In addition, the relationships between the

different types of codes are studied. We propose some first explicit non-trivial con-

structions for two-level fingerprinting codes and provide some bounds on the size of

these codes.

Separating hash families were introduced by Stinson, van Trung, and Wei as a

tool for creating an explicit construction for frameproof codes in 1998. In this thesis,

we state a new definition of separating hash families, and mainly focus on improving

previously known bounds for separating hash families in some special cases that related

to fingerprinting codes. We improve upper bounds on the size of frameproof and secure

frameproof codes under the language of separating hash families.
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Chapter 1

Introduction

Protection against digital copyright infringement is important, but extremely difficult,

especially in the internet age. Digital content, such as music, movies, documents, e-

books, games or software, can be copied and distributed easily, resulting in a vast

increase in illegal redistribution of data, in other words, piracy.

Hardware techniques that can prevent intellectual property from being copied freely

can be employed. However, these techniques might also restrict an authorised user from

doing something legitimate, such as making backup copies of CDs or DVDs, lending

materials out through a library, or using copyrighted materials for research and edu-

cation purposes under fair use laws. As an alternative, we are interested in techniques

which, by providing unique identification of data in a certain manner, allow the gath-

ering of evidence against illegal redistribution of data copies. These techniques are

commonly known as fingerprinting. We are interested in the combinatorial properties

behind such techniques, fingerprinting codes.

1.1 Motivation

Similar to human fingerprints, which are unique and can be used to identify their owner

in the case of a criminal act, digital fingerprints uniquely identify a piece of digital data
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1.1. Motivation 1. Introduction

and allow the content to be traced to their rightful owner. The fingerprints in each

system can vary from a single digit to a cryptographic key.

Even though Wagner [38] first gave a taxonomy of fingerprints and suggested a use

for computer software in 1983, the idea of fingerprinting is not something new. It has

been used for several hundred years. For example, to protect a logarithm table [14], the

publisher made intended errors on the least significant digits of log x for some values

of x. A different choice of error values was made in each copy, so each copy is unique.

We call contents in each position that differs between some users a mark. In general, a

fingerprint in each legal copy is a collection of ` marks, each mark has q possible values.

A collection of fingerprints is referred to as a code. In other words, a collection of all

fingerprints in the system is a q-ary code of length ` and a fingerprint is a codeword

that belongs to the code. Once a copy of fingerprinted data is sold, the corresponding

fingerprint is securely mapped to the purchaser’s identity, so that legal responsibility

on the use of a copy of data is tied to the customer, while the effectiveness of this

mechanism depends on both the design of the code itself as well as the security of the

mapping. The scope of this thesis covers only the former concern.

If a naive purchaser redistributed his copy illegally, the fingerprint embedded in

that copy will allow the publisher to identify the malicious user and proceed with an

appropriate legal action. However, if a group of users pool their copies together, they

can detect a part of fingerprint where their copies are different and then modify the

fingerprints to create a new illegal copy that differs from their copies to avoid the legal

responsibility. They are able to change all the marks they are able to detect to some

other value or make them unreadable, and if they are lucky enough, a new copy will

be identical to an unfortunate innocent user. We commonly refer to a guilty user as a

traitor and refer to a group of malicious users as a coalition.

The ability of a coalition to create a pirate copy with a new fingerprint is referred to

as a marking assumption. In this thesis, we assume that a coalition can substitute the

marks that they are able to detect by any of the values in the corresponding positions
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1.1. Motivation 1. Introduction

in their copies. Our marking assumption is known as the narrow-sense model. There

are some other models that allows a coalition to change the marks to any arbitrary

values or make them unreadable. We describe these models in the next section, related

work.

Here is an example for a better understanding of the fingerprinting notion:

Broadcast encryption schemes: This example is borrowed from a survey paper

by Blackburn [9], which describes an application first introduced by Fiat and Naor

[20]. A broadcast company transmits encrypted broadcast content over its network. A

session key K, that was used to encrypt the content, is changed regularly. K is split

into ` shares, encrypted separately, then transmitted along with the encrypted content.

There are ` types of key 1, 2, ..., `, each key of type i is able to decrypt the ith share

of K. Each type contains q different keys. Each user who purchases a subscription

is issued a ‘decoder box’ with a ‘smart card’ containing a set of ` keys, one of each

type. Each key allows a user to decrypt a certain share of K, hence a user is able to

obtain all ` shares of the K. After obtaining all shares of the session key, a decoder can

reconstruct K, then decrypts the content and allows the user to view the content.

In this setting, the illegal redistribution of data itself is costly as it requires contin-

uous decryption and re-broadcasting of the stream. Instead, traitors may redistribute

their own decryption keys, or collude and create a new set of pirate keys, that allows

other people to decrypt and view the content. The coalition can create a new pirate

key set only by simply picking ` keys, one per type, from what they have originally.

For additional examples and more detail, we suggest reading a well-written survey

paper by Blackburn [9]. The precise combinatorial definitions of fingerprinting codes

are given in the next chapter.

There are many types of fingerprinting codes each corresponding to the security

properties it guarantees. This thesis focuses on four well-known types of fingerprinting

codes: Frameproof Codes (FP codes), Secure Frameproof Codes (SFP codes), Iden-

tifiable Parent Property Codes (IPP codes) and Traceability Codes (TA codes). The
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1.1. Motivation 1. Introduction

precise combinatorial definitions of these codes are given in the next chapter. Proper-

ties of each type of code can be summarised as follows, given that the coalition size is

at most k: a coalition under a frameproof code cannot frame any innocent user outside

the coalition by producing a pirate copy that is identical to that user’s copy; two dis-

joint coalitions under a secure frameproof code can not frame each other by producing

the same pirate copy; an intercepted pirate copy produced under an identifiable parent

property code can be traced back to at least one member of the coalition that produced

it; lastly, in traceability codes, the user that owns a copy of data that is the most similar

to a pirate copy is a member of the coalition that produced the pirate copy.

One of the general interests can be summarised as in the following question:

With fixed length ` and fixed alphabet size q, what is the largest possible size of

the code with a certain fingerprinting? How can a code achieving or approaching such

bound be constructed?

The size of the code allows us to estimate the largest possible number of users in

our system. The larger the code is, the more users we can have. Generally, this is very

important since most content distributors want to sell as many copies of their product

as possible. The higher threshold and the stronger property of the codes imply higher

security. One of the aims of this thesis is to find the best bounds we can on the size of

codes for the four well-known types of fingerprinting codes, assuming that q is large.

All the codes above operate under the assumption that the coalition size is at

most k. Once a coalition size is greater than k, there is no guarantee that the code

still possesses such properties. In response to that, Anthapadmanabhan and Barg

introduced the notion of two-level fingerprinting codes [4] in the context of traceability

codes. They suggest the users are divided into several groups of the same size. As

in the classical traceability codes, for a given fingerprint from a pirate copy, we are

able to identify one of the traitors as long as the coalition size does not exceed a

certain threshold k. However, in two-level codes we have an extra property: when the

coalition is of a larger size K, greater than k, we are still able to trace one of the groups
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1.2. Related Work 1. Introduction

containing at least one traitor.

In this thesis, we extend the concept of two-level fingerprinting codes to other types

of fingerprinting codes and study bounds on the size of these codes.

In the next section, Section 1.2, we mention some related work that is beyond the

scope of this thesis. It is followed by a brief summary of the contents of each of the

following chapters of the thesis in Section 1.3.

1.2 Related Work

Here are the four most well-known models of marking assumptions, which refer to the

ability of a coalition to create a pirate copy with a new fingerprint. Note that we only

work on the narrow-sense model in this thesis.

1. Narrow-sense model: as in an example from broadcast encryption scheme, a

coalition can substitute the marks that they are able to detect by any mark from

the corresponding positions in their copies.

2. Expanded narrow-sense model: a coalition can substitute the marks that they

are able to detect by any mark from the corresponding positions in their copies,

or make it unreadable.

3. Wide-sense model: a coalition can substitute the marks that they are able to

detect by any arbitrary mark from the alphabet set.

4. Expanded wide-sense model: a coalition can substitute the marks that they are

able to detect by any arbitrary mark from the alphabet set, or make it unreadable.

With 4 models and 4 types of codes, there are 16 cases to consider. Panoui [26]

shows that expanded narrow-sense model and narrow-sense model are equivalent for

frameproof and secure frameproof codes; expanded wide-sense model and wide-sense

model are equivalent for identifiable parent property codes. Moreover she shows that
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1.3. Structure of the Thesis 1. Introduction

all models are equivalent for traceability codes. Hence, by just considering the narrow-

sense model, we cover more than half of the 16 possible cases.

One year after introducing two-level traceability codes under the notion of two-

level fingerprinting codes, Anthapadmanabhan and Barg introduce a (claimed to be)

stronger definition for their two-level fingerprinting codes [3]. The new codes still

possess the property of classical traceability codes for a coalition of size at most k, but

instead of an ability to trace a group when a coalition size is at most K, the codes

have an ability to prevent an innocent group from being framed which is more similar

to frameproof property. One might be interested in how the bounds on the size of the

codes vary, under a different combinations of type or marking assumption. However,

that is out of the scope of this thesis.

1.3 Structure of the Thesis

This section provides a brief summary of contents of each of the following chapters

of the thesis. The high level structure of this thesis is as follows: Chapters 2-3 give

the basic knowledge and well-known results on fingerprinting codes; Chapters 4-7 are

concerned with new, more powerful, models of fingerprinting codes; and Chapters 8-10

are concerned with improving upper bounds for codes in the classical (and well studied)

fingerprinting settings.

Our original contributions appear in various chapters: Chapter 4, 5, 6, 7, 9, and

10. The main contributions of this thesis are in Chapter 5, 9 and 10. We give more

details of these contributions at the start of each chapter.

In Chapter 2, we introduce important notation that will be using throughout the

thesis, and restate the combinatorial definitions of the four types of fingerprinting codes.

We also borrow some basic notation and concepts from coding theory and assume the

reader has some familiarity with those concepts. Then, we give the relationships be-

tween the different types of fingerprinting codes. Theorems regarding the relationships
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1.3. Structure of the Thesis 1. Introduction

between the different types of these codes are borrowed from other papers, but we pro-

vide our own proofs. Chapter 3 contains a survey of the important previously known

bounds and constructions for each of the four types of fingerprinting codes. Each type

of code contributes one section.

We extend the concept of two-level traceability codes [4], to other types of finger-

printing codes in Chapter 4. We state our own definitions. Then, we present relation-

ships between different types of fingerprinting codes we have defined.

In the next chapter, Chapter 5, we propose the first explicit non-trivial constructions

for two-level codes in the fingerprint context. Our proposals for two-level fingerprinting

codes are suitable for the situation when the number of groups is small, i.e. less than

or equal to the size of the alphabet. In Chapters 6 and 7 we propose a different method

for constructing two-level frameproof codes and two-level identifiable parent property

codes, respectively, with a more general number of groups. Both constructions give

codes with at least the same size as a construction that is based on high minimum

distance codes; furthermore the resulting codes have a significantly larger size under

certain conditions.

In Chapter 8, we introduce another interesting combinatorial object, separating

hash families. Separating hash families have various applications in, for instance, Se-

cret sharing schemes [12, 40], Visual cryptography systems [22], Broadcast encryp-

tion schemes [20, 32], Key distribution [32], Re-Keying schemes [27] and Traceability

schemes [28, 29, 31, 33, 34, 30]. Certain classes of separating hash families are equivalent

to frameproof and secure frameproof codes. We discuss how the concept of separating

hash families relates to fingerprinting codes, then provide the best previously known

bounds for framepoof and secure frameproof codes through the best previously known

bounds for separating hash families.

Chapter 9 contains one of the main original contributions of the thesis and is ded-

icated to improving the previously known bounds for frameproof codes. The chapter

is written in the language of separating hash families. We achieve a new tight up-
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1.3. Structure of the Thesis 1. Introduction

per bound for the size of frameproof codes when the length ` of the code satisfies

` = 1 mod k. Our bound is optimal for many set of parameters. This is followed by

new tight upper bounds for the size of frameproof codes when the length ` of the code

satisfies k < ` ≤ 2k. Our new bounds are much cleaner and better than the previously

known bounds.

Chapter 10 aims to improve previously known bounds for secure frameproof codes.

This chapter is written in the language of separating hash families. The first section

is devoted to secure frameproof codes when the coalition size is at most 2, when the

code has short length. (By short length we mean length 4 or less.) This is followed

by the main original contribution of the chapter, the special case of length 5 for which

we reduce the size of upper bound by a factor of 2
3 compared with the best previously

known bound. We prove new tight upper bounds for the size of secure frameproof codes

when the length ` of the code is 2k. We then explore and improve bounds for secure

frameproof codes, when the coalition is of size at most k, of short length (` ≤ k), in

the last section using colored graphs.

Lastly, Chapter 11 collects a series of open problems arising from this thesis, in-

cluding potential future work.
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Chapter 2

One-level Fingerprinting Codes

Many different digital fingerprinting schemes have been proposed for the purpose of

digital data copyright protection. Out of all these schemes, in this thesis, we focus on

studying four well-known types of fingerprinting codes which we will refer to as one-

level fingerprinting codes. As a result, this early chapter is dedicated to introducing

the relevant concepts needed to understand our work. To make is easier and more

enjoyable for the reader to follow the definition of each type of codes, we motivate

our work with a real life scenario. Imagine that we are a movie seller distributing

fingerprinted copies of a movie to customers who purchased it legally. The fingerprint

on each copy then serves as an evidence to prosecute the customer in case his or her

copy is observed to have been distributed illegally. A coalition of (at most k) smart but

adversarial customers might collude to produce a pirate copy with a new fingerprint,

thus cheating the copyright protection mechanism. If they upload the pirate copy to

a free download site on the internet, this will be a great loss to us. In order to sue

for damages, one might be interested in tracing back from the obtained pirate copy

to at least one member of the coalition. Then we can put that member in court and

expect to learn more about the other members in the coalition from him or her. Or we

might at least, given a pirate copy, want to exclude some innocent customers to narrow

down the investigation area. Such abilities are considered as key criteria in designing
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2.1. Notation 2. One-level Fingerprinting Codes

fingerprinting codes.

In this chapter, we introduce important notation which we use throughout this

thesis, and restate the definitions of the classical one-level codes. Then, we give the

relationships between the different types of these codes. The results and definitions in

this chapter can all be found in the literature, though we do provide our own proofs to

some of the results.

2.1 Notation

Let C be a code of length ` on an alphabet Q of (finite) size q, i.e. C ⊆ Q`. The elements

of Q` are called words, and elements of C are called codewords. We sometimes refer

to both as fingerprints to ease our explanation. For copyright protection purposes,

fingerprints from a code C are used as follows. First, each copy of the digital data

is embedded with a unique fingerprint from C. Then we issue data with a different

fingerprint from C to each user/customer. Once a copy is sold, the corresponding

fingerprint is securely mapped to the purchaser’s identity, so that legal responsibility

on the use of a copy of data is tied to the customer.

The hamming distance between words x, y will be written as dH(x, y). Further, for

any X ⊆ Q` and y ∈ Q`, let dH(X) = min
x,y∈X
x 6=y

dH(x, y) denote the minimum distance of

X and let dH(X, y) = min
x∈X

dH(x, y).

For example, let a = 1111, b = 1100, c = 0001 and y = 0110, and let X = {a, b, c}.

Then dH(X, y) = 2, since dH(a, y) = 2, dH(b, y) = 2 and dH(c, y) = 3.

For each word x ∈ Q`, we write xi for the ith component of x. For instance,

b2 = c4 = 1 in the example above.

For any positive integer n, denote by [n] the set of integers from 1 to n, in other

words, [n] = {1, 2, 3, ..., n}.

Let `′, `′′ and ` be positive integers such that ` = `′+`′′, let Q′ and Q′′ be non-empty

finite sets. Then for any words x ∈ Q′`
′

and y ∈ Q′′`
′′
, the concatenation of x and y,
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denoted by x||y, is the word z ∈ (Q′ ∪Q′′)` such that

zi =


xi if i ≤ `′;

yi−`′ if i > `′,

for all i ∈ [`]. Similarly, for any subsets X ⊆ Q′`
′

and Y ⊆ Q′′`
′′
, the concatenation set

of X and Y , denoted by X||Y , is the set

Z = {x||y : x ∈ X and y ∈ Y } ⊆
(
Q′ ∪Q′′

)`
.

For example, let X = {a, b} where a = 1111 and b = 1100, and Y = {a′, b′} where

a′ = 101 and b′ = 010. Then

a||a′ = 1111101 a||b′ = 1111010

b||a′ = 1100101 b||b′ = 1100010

and so

X||Y = {1111101, 1111010, 1100101, 1100010}.

2.2 Defining One-Level Fingerprinting Codes

Before defining one-level fingerprinting codes, it is necessary to mention the concept of

descendants. For X ⊆ Q`, the set of descendants of X, denoted desc(X) is a subset of

Q` such that:

desc(X) = {d ∈ Q` : ∀i ∈ [`],∃x ∈ X such that di = xi}.
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As an example (taken from [9]), let P = {1100, 2102, 1122}, then

desc(P ) = {1100, 1102, 1120, 1122, 2100, 2102, 2120, 2122}

because the first coordinate can be either 1 or 2, the second coordinate can only be 1

and the third and the last coordinate is either 0 or 2. If we relate this example back

to our movie seller scenario, we consider P as a coalition of 3 users. Then, desc(P ) is

the set of all possible fingerprints this coalition can produce for its pirate copies under

a certain marking assumption.

Let k be a positive integer. For a code C define the k-descendant code of C, denoted

desck(C), as follows:

desck(C) =
⋃
X⊆C
|X|≤k

desc(X).

In other words, desck(C) is the set of all words that are descendants of a coalition of

size at most k of C; or desc(C) is the set of all possible codewords used in pirate copies,

created by a coalition of at most k of our customers.

Using the same coalition P as in the previous example and returning to our scenario

again, we may think of P as the set of all codewords embedded in copies of the movie

we have sold. Only 3 copies of the movie have been sold so far, and codewords hidden

inside those copies are the 3 different elements of P . (It looks like we are at the earliest

stage of our business.) We now assume that our situation is not too bad, in that at

least one of our customers is honest, so desc2(P ) is the set of all possible fingerprints

used in pirate copies, created by a coalition of at most 2 of our customers. In this

example,

desc2(P ) = {1100, 1102, 1120, 1122, 2100, 2102, 2122}.

This is because all possible nonempty subsets of size at most 2 of P , in other words,
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all coalitions of size at most 2, are {1100}, {2102}, {1122}, {1100, 2102}, {1100, 1122}

and {2102, 1122}.

Considering all sets of descendants of these subsets, we get desc({1100}) = {1100},

desc({2102}) = {2102}, desc({1122}) = {1122}, desc({1100, 2102}) = {1100, 1102, 2100,

2102}, desc({1100, 1122}) = {1100, 1102, 1120, 1122} and desc({2102, 1122}) = {1102,

1122, 2102, 2122}. Hence

desc2(P ) =
⋃
X⊆C
|X|≤2

desc(X)

={1100} ∪ {2102} ∪ {1122} ∪ {1100, 1102, 2100, 2102}

∪ {1100, 1102, 1120, 1122} ∪ {1102, 1122, 2102, 2122}

={1100, 1102, 1120, 1122, 2100, 2102, 2122}.

We are now ready to define some well known one-level fingerprinting codes, namely

Frameproof (FP) codes, Secure frameproof (SFP) codes, Identifiable parent property

(IPP) codes and Traceability (TA) codes. The concepts of frameproof, secure frame-

proof, IPP and traceability codes were first introduced by Boneh and Shaw [14], Stinson,

van Trung and Wei [33], Hollman et al. [21] and Chor et al. [15], respectively.

Definition 2.1 (One-Level fingerprinting codes). Let C be a q-ary code of length `

and let k be a positive integer.

(i) C has the k-frameproof property (or is k-FP) if for all X ⊆ C such that |X| ≤ k,

desc(X) ∩ C ⊆ X.

(ii) C has the k-secure frameproof property (or is k-SFP) if for all X1, X2 ⊆ C of

size at most k, desc(X1) ∩ desc(X2) 6= ∅ implies X1 ∩X2 6= ∅.

(iii) C has the k-identifiable parent property (or is k-IPP) if for all x ∈ desck(C), it
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holds that

⋂
X⊆C:|X|≤k
x∈desc(X)

X 6= ∅.

(iv) C has the k-traceability property (or is k-TA) if for all X ⊆ C such that |X| ≤ k

and for all x ∈ desc(X), then z ∈ X for all z ∈ C with dH(x, z) minimal.

From this point onwards we refer to the codes in Definition 2.1 as one-level fin-

gerprinting codes, as opposed to two-level fingerprinting codes, which we define in

Chapter 4.

Each type of code can be motivated as follows, assuming that the coalition size

is at most k. For frameproof codes, no coalition possessing a collection of data, can

produce a codeword that does not belong to the coalition. As its name thus suggests,

frameproof codes guarantee that no coalition can frame a customer outside the coalition

by producing a copy of movie that is identical to that customer’s copy. In secure

frameproof codes, the descendant sets of two disjoint coalitions are always disjoint,

that is, two completely different coalitions of users cannot produce the same new word.

Hence they can never frame each other and/or produce copies with the same new

fingerprint. If two or more coalitions in an IPP code can produce a common descendant,

then they must all have at least one member in common. This means that just from

considering the fingerprint in a copy of the movie produced by a coalition, we can

always trace back to at least one member of that coalition. Lastly, in traceability

codes, a codeword that is most similar to the given descendant, is always a member

of the coalition. We are certain that the customer that owns a copy of movie with a

fingerprint most similar to the pirate copy is guilty.

Compared to IPP and traceability codes, frameproof and secure frameproof codes

do not provide any traceability, and hence they are regarded as codes with weaker

properties. This is made clearer when we state the relationships between different
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types of one-level codes below.

We now give some examples of one-level fingerprinting codes.

Example 1. C = {1100, 1001, 1010} ⊆ {0, 1}4 is a 2-FP code.

This is easy to see since desc({1100, 1001})∩C = {1100, 1001}, desc({1100, 1010})∩

C = {1100, 1010} and desc({1001, 1010}) ∩ C = {1001, 1010}.

Example 2 ([9]). Let Q be an alphabet containing 0, and let ` and let k be positive

integers. Define C = {x ∈ Q` : there exists a unique i ∈ [`] such that xi 6= 0}. Then C

is a k-FP code for any positive integer k.

This is not too difficult to see since each non-zero symbol is used by exactly 1

codeword in each coordinate. Hence, no matter how big the coalition is, it cannot

create a codeword outside the coalition.

The next example is an example of a 2-SFP code.

Example 3. Let C = {1001, 1200, 0010, 2211} ⊆ {0, 1, 2}4. Then C is a 2-SFP code.

This is also easy to check as desc({1001, 1200})∩desc({0010, 2211}) = ∅, desc({1001,

0010}) ∩ desc({1200, 2211}) = ∅ and desc({1001, 2211}) ∩ desc({1200, 0010}) = ∅.

For a 3-SFP code, we borrow an example by Staddon, Stinson and Wei [29].

Example 4. ([29]) Let C = {1111111111, 1111000000, 1000111000, 0100100110, 0010010101,

0001001011} ⊆ {0, 1}10, then C is a 3-SFP code.

The following example from [9] is a 2-IPP code.

Example 5. ([9]) C = {0000, 0111, 0222, 1012, 1120, 1201, 2021, 2102, 2210} ⊆ {0, 1, 2}4

is a 2-IPP code.

Our last example is an example of a 2-TA code.

Example 6. C = {000, 111, 222} ⊆ {0, 1, 2}3 is a 2-TA code.

This is clear since any word from any two codewords’ set of descendants agrees with

one of its codewords in at least 2 coordinates.
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2.3 Relationships between One-Level Codes

Without much effort one may check from the definitions that the relationships among

different types of codes are as follows: k-TA codes are k-IPP codes, k-IPP codes are

k-SFP codes and k-SFP codes are k-FP codes. We restate the results from [29] in the

next three lemma and theorems. They are not too difficult to verify. However, we

provide our own proofs for the sake of completeness.

Lemma 2.3.1 ([29]). A k-TA code is a k-IPP code.

We include our own proof here.

Proof. Let C be a k-TA code. Let x be a word in desck(C). Let z be a codeword in C

such that dH(x, z) is minimal. By the k-TA property, z ∈ X for any X ⊆ C such that

desc(X) contains x.

Hence

z ∈
⋂

X⊆C:|X|≤k
x∈desc(X)

X.

That is to say

⋂
X⊆C:|X|≤k
x∈desc(X)

X 6= ∅.

Therefore, C is a k-IPP code.

Here we give an example to illustrate Lemma 2.3.1.

Example 7. The 2-TA code C from Example 6 is a 2-IPP code.
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We calculate all descendant sets of coalitions of C of size at most 2:

desc({000}) = {000}

desc({111}) = {111}

desc({222}) = {222}

desc({000, 111}) = {000, 001, 010, 011, 100, 101, 110, 111}

desc({000, 222}) = {000, 002, 020, 022, 200, 202, 220, 222}

desc({111, 222}) = {111, 112, 121, 122, 211, 212, 221, 222}

Hence desc2(C) = {000, 001, 002, 010, 011, 020, 022, 100, 101, 110, 111, 112, 121, 122,

200, 202, 211, 212, 220, 221, 222}.
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Considering all words in desc2(C), we get

⋂
X⊆C:|X|≤2
000∈desc(X)

X = {000} 6= ∅,
⋂

X⊆C:|X|≤2
001∈desc(X)

X = {000, 111} 6= ∅,

⋂
X⊆C:|X|≤2
002∈desc(X)

X = {000, 222} 6= ∅,
⋂

X⊆C:|X|≤2
010∈desc(X)

X = {000, 111} 6= ∅,

⋂
X⊆C:|X|≤2
011∈desc(X)

X = {000, 111} 6= ∅,
⋂

X⊆C:|X|≤2
020∈desc(X)

X = {000, 222} 6= ∅,

⋂
X⊆C:|X|≤2
022∈desc(X)

X = {000, 222} 6= ∅,
⋂

X⊆C:|X|≤2
100∈desc(X)

X = {000, 111} 6= ∅,

⋂
X⊆C:|X|≤2
101∈desc(X)

X = {000, 111} 6= ∅,
⋂

X⊆C:|X|≤2
110∈desc(X)

X = {000, 111} 6= ∅,

⋂
X⊆C:|X|≤2
111∈desc(X)

X = {111} 6= ∅,
⋂

X⊆C:|X|≤2
112∈desc(X)

X = {111, 222} 6= ∅,

⋂
X⊆C:|X|≤2
121∈desc(X)

X = {111, 222} 6= ∅,
⋂

X⊆C:|X|≤2
122∈desc(X)

X = {111, 222} 6= ∅,

⋂
X⊆C:|X|≤2
200∈desc(X)

X = {000, 222} 6= ∅,
⋂

X⊆C:|X|≤2
202∈desc(X)

X = {000, 222} 6= ∅,

⋂
X⊆C:|X|≤2
211∈desc(X)

X = {111, 222} 6= ∅,
⋂

X⊆C:|X|≤2
212∈desc(X)

X = {111, 222} 6= ∅,

⋂
X⊆C:|X|≤2
220∈desc(X)

X = {000, 222} 6= ∅,
⋂

X⊆C:|X|≤2
221∈desc(X)

X = {111, 222} 6= ∅,

⋂
X⊆C:|X|≤2
222∈desc(X)

X = {222} 6= ∅,

Hence, C is also 2-IPP.

However, the converse of this lemma is not always true. A counterexample is the

code C in Example 5. C is 2-IPP but not 2-TA since 2110 ∈ desc({2102, 2210}), but
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dH(C, 2110) = dH(0111, 2110) = 2 and 0111 6∈ {2102, 2210}.

The next two theorems are stated without proof in [29].

Theorem 2.3.2. A k-IPP code is a k-SFP code.

Proof. Let C be a k-IPP code. Let X1, X2 be subsets of C of size at most k. Assume

that desc(X1) ∩ desc(X2) 6= ∅. Let x ∈ desc(X1) ∩ desc(X2). Hence x ∈ desck(C).

Now, by the k-IPP property,

⋂
X⊆C:|X|≤k
x∈desc(X)

X 6= ∅

and

⋂
X⊆C:|X|≤k
x∈desc(X)

X ⊆ X1 ∩X2.

Hence,

X1 ∩X2 6= ∅.

Therefore, C is a k-SFP code.

The following example shows that the converse of Theorem 2.3.2 does not always

hold.

Example 8. C = {1001, 1200, 0010, 2211} ⊆ {0, 1, 2}4 is a 2-SFP code, but not a

2-IPP code.

We know from Example 3 that C is 2-SFP. However, C is not 2-IPP, since

1201 ∈ desc{1001, 2211}, 1201 ∈ desc{1001, 1200} and 1201 ∈ desc{1200, 2211},

but {1001, 2211} ∩ {1001, 1200} ∩ {1200, 2211} = ∅.

Theorem 2.3.3. A k-SFP code is a k-FP code.
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Proof. Let C be a k-SFP code. Let X0 be a subset of C of size at most k, and let

x ∈ desc(X0) ∩ C. Hence, desc(X0) ∩ {x} = desc(X0) ∩ desc({x}) 6= ∅. By the k-SFP

property, X0 ∩ {x} 6= ∅. Then, x ∈ X0. Therefore, C is a k-FP code.

The following example shows that a k-FP code is not necessarily a k-SFP code.

Example 9. C = {1100, 1001, 1010, 0100} ⊆ {0, 1}4 is a 2-FP code, but not a 2-SFP

code.

It is easy to see that C is a 2-FP code since desc({1100, 1001})∩C = {1100, 1001},

desc({1100, 1010}) ∩ C = {1100, 1010}, desc({1100, 0100}) ∩ C = {1100, 0100},

desc({1001, 1010}) ∩ C = {1001, 1010}, desc({1001, 0100}) ∩ C = {1001, 0100} and

desc({1010, 0100}) ∩ C = {1010, 0100}. But, it is not 2-SFP as desc({1100, 1001}) ∩

desc({1010, 0100}) = {1000, 1100} 6= ∅, but {1100, 1001} ∩ {1010, 0100} = ∅.

We can represent the relationships between different types of one-level fingerprint-

ing codes in the following diagram.

k-TA k-IPP k-SFP k-FP

Lem. 2.3.1 Thm. 2.3.2 Thm. 2.3.3

Figure 2.1: Relationships among different types of one-level fingerprinting codes
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Chapter 3

Bounds on the Size of One-Level

Fingerprinting Codes

This chapter aims to survey the important previously known bounds for each of four

types of (one-level) fingerprinting codes, both for completeness of the thesis and con-

venience of being able to refer to the theorems, under the narrow sense marking as-

sumption. An extensive survey of the other models can be found in [26]. Each section

is devoted to one type of code.

3.1 Frameproof codes

Frameproof codes were first introduced by Boneh and Shaw [14] in 1995, under a

different marking assumption, the expanded wide-sense model. In 1998, Stinson and

Wei [34] provided some constructions for frameproof codes using various combinatorial

objects, including separating hash families; these are presented in later chapters of

the thesis. Further combinatorial properties of frameproof codes and the other types

of fingerprinting codes were studied by Staddon, Stinson and Wei in [29] using the

narrow-sense model. Through studying cover-free families and separating hash families

they obtained an upper bound on the size of a q-ary k-FP codes of length ` as presented
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below. Note that Staddon et al. state that this bound is valid for all four types of codes

they consider.

Theorem 3.1.1 ([29], Theorem 3.7). Let C be a q-ary k-FP code of length `. Then

|C| ≤ k(qd
`
k
e − 1).

Later, an open problem in [29] inspired Blackburn to find a new upper bound on

the size of k-FP codes as a function of q when ` and k are fixed [10]. The bound in that

paper, presented below, was obtained from applying extremal set theory related to the

Erdos-Ko-Rado Theorem. In the paper, an example of a 3-FP code of size meeting the

leading term of the bound was also provided.

Theorem 3.1.2 ([10], Corollary 12). Let C be a q-ary k-FP code of length `. Then

|C| ≤

(
`

`− (r − 1)d `ke

)
qd

`
k
e +O

(
qd

`
k
e−1
)
,

where r is a unique positive integer in {1, 2, ..., k} such that r = ` mod k.

Note that when the length ` of the code does not exceed the size k of the coalition the

bounds from Theorem 3.1.1 are better than the bounds from Theorem 3.1.2. However,

if ` > k, assuming that q tends to infinity, Theorem 3.1.1 gives a better bound only

when r = k; Theorem 3.1.2 gives a bound with the best leading term for any other

value of r.

Apart from the result above, in the same paper, Blackburn also gave a bound on

the size of 2-FP codes, whose leading term is tight, namely 2qd
`
2
e when ` is even and

qd
`
2
e when ` is odd; he includes two explicit constructions for 2-FP codes that meet the

leading term of the bound.

We give a better bound for the case r = 1 in Chapter 10, where we eliminate the

O
(
qd

`
k
e−1
)

term from Theorem 3.1.2 resulting in a new clean and neat bound.
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Cohen and Encheva [17] provided an explicit construction for a k-FP code, in the

case that the length ` of the code does not exceed the size k of the coalition, as follows.

Construction 3.1.1 ([17], Proposition 1). Let Q = {0, 1, ..., q − 1}. The set C con-

taining all elements of Q` with exactly one nonzero component forms a k-FP code of

cardinality `(q − 1).

Note that the resulting codes are of the size that meets the bound in Theorem 3.1.1

in the case k = `.

Sarkar and Stinson [28] observed that the union of frameproof codes can give a

larger frameproof code, then used a recursive construction of separating hash families

to show that, given a q-ary k-FP code length ` of size n it is possible to construct a

2iq-ary k-FP code length ` of size 2in, for any positive integer i. Finally, they concluded

that there exists an infinite class of q-ary k-FP length ` codes of size O
(
klog ` log `

)
.

The next theorem gives a sufficient condition on the minimum distance of a code

to make it a k-FP code.

Theorem 3.1.3 ([9], Theorem 3.1). Let C be a length ` error correcting code with

minimum distance d. If d > (1 − 1/k)` for some positive integer k, then C is a k-FP

code.

The following frameproof codes construction uses high minimum distance codes

that satisfy Theorem 3.1.3. The construction was introduced in [17], also see [10].

Construction 3.1.2 ([17], Theorem 1.1). Let ` and k be positive integers such that

` ≥ 2 and k ≥ 2. Let q be a prime power greater than `. Let Fq be a finite field of

cardinality q, and let α1, α2, ..., α` ∈ Fq be distinct. Define a code C over Fq by

C = {(f(α1), f(α2), ..., f(α`)) : f ∈ Fq[X] and deg f < d`/ke} .

Then, C is a k-FP code of cardinality qd`/ke.
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In this construction, using interpolation, one can retrieve a codeword just by know-

ing only d`/ke of its positions. This is because we use polynomials of degree at most

b`/kc over a finite field.

3.2 Secure frameproof codes

Stinson, van Trung and Wei [33] added some traceability to frameproof codes and

introduced them as secure frameproof codes in 1997. Since the frameproof codes only

prevent a coalition from framing a user outside the coalition, the distributer cannot

trace an illegal copy back to any of the coalition members, so Boneh and Shaw [14]

suggested a notion of codes that can trace back to at least one of the coalition members

to prevent such a problem. However, they also gave a discouraging result that no such a

code exists under the expanded wide-sense model. Stinson, van Trung and Wei slightly

weakened the property, resulting in secure frameproof codes. They also gave the first

explicit construction and give non-constructive existence results based on probabilistic

arguments in [14], again, under the expanded wide-sense model.

Staddon, Stinson and Wei [29] studied secure frameproof codes under the narrow-

sense model and obtained the following result using separating hash families.

Theorem 3.2.1 ([29], Theorem 3.10). Let C be a q-ary k-SFP code of length `. Then

|C| ≤ qd
`
k
e + 2k − 2.

In 2008, Stinson and Zaverucha presented a bound based on their improved bounds

on the size of separating hash families [31].

Theorem 3.2.2 ([31], Corollary 2.8). Let C be a q-ary k-SFP code of length `. Then

|C| ≤ (2k2 − 3k + 2)qd
`

2k−1
e + 2k2 + 3k − 1.

Recently, Bazrafshan and van Trung [7] provide an upper bound on the maximum
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size of k-SFP codes, through the existence of separating hash families.

Theorem 3.2.3 ([7]). Let C be a q-ary k-SFP code of length `. Then

|C| ≤ (2k − 1)qd
`

2k−1
e.

We later give much better bounds on the size of secure frameproof codes in some

special cases through improving the bounds on the size of separating hash family in

Chapters 9 and 10.

We mention a few papers that give the explicit constructions for secure frame-

proof codes using various high minimum distance codes. Cohen, Encheva, Litsyn and

Schaathun refered to secure frameproof codes as separating codes [19], then gave a

construction involving the concatenation of BCH codes. Encheva and Cohen [18] con-

structed 2-SFP codes based on Hadamard matrices which are also 3-FP codes. Tonien

and Safavi-Naini [37] also presented an explicit construction for 2-SFP codes using

Hadamard matrices.

3.3 IPP codes

Identifiable parent property codes were first defined by Hollman, van Lint, Linnart and

Tolhuizen [21] in 1998 in the case of coalitions of the size two, i.e., the 2-IPP case. They

gave a sufficient condition on the minimum distance of a code so that it is a 2-IPP code,

and presented some upper and lower bounds on the size of codes with short length, and

codes of arbitrary length. In 2000, Alon, Fischer and Szegedy [1] studied the bounds

on the size of 2-IPP codes of length 4. They showed that for any ε > 0, there exists

q0 = q0(ε) such that |C| < εq2 for every code with alphabet size q, where q > q0.

The k-IPP case was first studied by Staddon, Stinson and Wei in [29] where com-

binatorial properties of all four types of codes we are interested in were studied. They

showed that:
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Theorem 3.3.1 ([29], Corollary 2.8). A q-ary k-IPP code of length ` does not exist

when q < k.

Blackburn [11] examined the case of short length ` <
⌊
(k/2 + 1)2

⌋
, then used the

techniques in the paper [21] to derive a bound for k-IPP codes of arbitrary length as

presented below.

Theorem 3.3.2 ([11], Theorem 3). Let C be a q-ary k-IPP code of length `. Let

u =
⌊
(k/2 + 1)2

⌋
. Then, we have that

C ≤ 1

2
u(u− 1)qdn/(u−1)e.

At the same time Alon and Stav [2] used a similar method and derived the following

better upper bound independently.

Theorem 3.3.3 ([2], Lemma 2.2, Lemma 2.3). Let C be a q-ary k-IPP code of length

`. Let u =
⌊
(k/2 + 1)2

⌋
. Then, we have that

C ≤ (u− 1)qdn/(u−1)e.

Alon and Stav also gave bounds on the size of IPP codes in the case of short length,

i.e., when ` <
⌊
(k/2 + 1)2

⌋
− 1, where the size of the code is linear to q. These results

can be summarised as follows.

Theorem 3.3.4 ([2], Lemma 4.1, Theorem 4.2, Lemma 4.4). Let C be a q-ary k-IPP

code of length `. Let u =
⌊
(k/2 + 1)2

⌋
and let b and m be positive integers such that

b+m− 1 ≤ k. Then, we have that

C ≤


q ; when ` ≤ k(

1 + 1
k− 3

2

− o(1)
)
q ; when ` ≤ k + 1

C < b(q − 1) +m ; when k + 1 < ` < u− 1
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An example of a code that meets the bound in the first case is a repetition code of

any length, so the bound is tight. The bound for the second case was also shown to be

tight in [2]. However, the bound on the last case is not always tight.

In [5], Barg, Cohen and Encheva used the probabilistic method to establish the

following probabilistic existence results for k-IPP codes; in their case, they fixed k and

q, and let ` grow.

Theorem 3.3.5 ([5], Lemma 3.5). Let u =
⌊
(k/2 + 1)2

⌋
. There exists a q-ary k-IPP

length ` code C of size |C| = qR` where

R ≥ 1

u− 1
logq

(q − k)!qu

(q − k)!qu − q!(q − k)u−k
.

Yemane [39] fixed k and `, then let q tend to infinity, to establish the following

result.

Theorem 3.3.6 ([39]). Let ε > 0. There exists a q-ary k-IPP length ` code C where

|C| ≥ q`(
1

u−1
−ε).

3.4 Traceability codes

Traceability codes were defined by Chor, Fiat and Naor [15] as a scheme to prevent

illegal redistribution of digital data (also see their joint work with Pinkas [16]). It

was the first type of fingerprinting codes to be introduced. Some constructions and a

sufficient condition for a code to be a k-TA code were also introduced at the same time.

The next theorem shows a sufficient condition for a code to possess the k-TA property.

Theorem 3.4.1 ([16]). Let C be a length ` error correcting code with minimum distance

d. If d > (1− 1/k2)` for some positive integer k, then C is a k-TA code.

The theorem above provides a useful and simple construction for certain k-TA

codes. Since k-TA code possesses all the properties of the other types of code, the
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theorem is also valid for k-IPP, k-SFP and k-FP codes.

Using Theorem 3.4.1, Staddon, Stinson and Wei used Reed-Solomon codes to con-

struct k-TA codes and established the following bounds.

Theorem 3.4.2 ([29], Theorem 4.5). Suppose q is prime, ` < q and t ≥ 2 are integers.

Then there exists a q-ary length ` k-TA code C such that

|C| ≥ q
`
k2 .

Most constructions/examples of k-traceability codes known to the author use an

error correcting code that satisfies the condition of Theorem 3.4.1, Theorem 3.4.2 for

example. Other constructions that do not depend on error correcting codes often have

size tending to zero when q grows. Moreover, for some certain parameters, due to the

Plotkin bounds there are no high minimum distance codes that satisfies Theorem 3.4.1.

Blackburn, Etzion and Ng [13] explored whether there exist an infinite family of q-ary

k-TA codes of rate bounded away from zero in this situation. They used probabilistic

techniques to show the following result.

Theorem 3.4.3 ([13]). Let k and q be integers such that k ≥ 2. When

k2 − dk/2e+ 1 ≤ q

or when k = 2 and q = 3, the following statement holds. There exists a positive

constant R (depending on q and k) and a sequence of q-ary k-TA codes C1, C2, ... with

the property that C` has length ` and |C`| → qR` as `→∞.

Recall from before the statement of Theorem 3.1.1 that Staddon, Stinson and Wei

[29] provided an upper bound on the size of a q-ary length ` k-TA code.

Theorem 3.4.4 ([29], Theorem 3.7). Let C be a q-ary k-TA code of length `. Then

|C| ≤ k(qd
`
k
e − 1).
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Blackburn, Etzion and Ng also improved the upper bound on the size of 2-TA codes

in [13] by showing that there exists a constant c, depending only on `, such that a q-ary

2-TA code of length ` contains at most cqd`/4e codewords. This shows that when ` is

fixed and q is a sufficiently large compared with `, the high minimum distance codes

construction produces good q-ary 2-TA codes of length `. In fact, when q is a prime

power sufficiently large compared with `, a Reed-Solomon code can be used to construct

q-ary 2-TA codes of cardinality qd`/4e.
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Chapter 4

Two-Level Codes: Definitions

and Relationships

In one-level fingerprinting codes, a coalition is restricted to have size k or less. When

the size of a coalition exceeds this threshold, one-level fingerprinting codes may no

longer retain their properties (e.g. traceability) for such a coalition. This gives rise to

the idea of two-level fingerprinting codes, i.e., codes that also give weaker information

for large coalitions. This may be best understood with a scenario. A digital document

is distributed to several companies, each with equal number of distinct copies. Then

those companies assign each copy in their hands to an individual employee. Here each

company is acting as a group in our two-level model described below. Once a piracy

has occurred, apart from tracing back to an individual traitor or protecting an innocent

user from being framed, one might be interested in just tracing back to a company that

employs one of the coalition members and sue the whole company, or to make sure that

none of those companies can cooperate and frame the other innocent companies without

getting one of their employees involved in their crime.

Two-level fingerprinting codes were first introduced by Anthapadmanabhan and

Barg (2009) in context of traceability (TA) codes [4]. In this chapter, we extend this

concept to other types of fingerprinting codes, namely identifiable parent property
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(IPP) codes, secure frameproof (SFP) codes, and frameproof (FP) codes. We state the

codes’ definitions and provide corresponding examples. Then, we present relationships

between different types of two-level fingerprinting codes.

4.1 Definitions of Two-Level Fingerprinting Codes

In traditional one-level fingerprinting codes, we assign a different fingerprint from C

to each user. Again, C is a code of length ` over an alphabet Q of (finite) size q. In

two-level fingerprinting codes, we use a code C with a certain specified partition and

call it a two-level code.

Definition 4.1. Let C be a q-ary length ` code containing gp codewords, for some

positive integers g and p. Divide C into g disjoint subsets (groups) of p elements each,

denoted by C1, C2, ...Cg. The code C = C1∪C2∪ ...∪Cg together with such a partition

is a two-level code.

We call C a q-ary length ` two-level code, containing g groups of size p. We refer

to each Ci as a group.

For all i, j ∈ {1, 2, ..., g}, we have |Ci| = p and Ci ∩ Cj = ∅ when i 6= j. Define

G : C → [g] by G(c) = i for all c ∈ Ci, then for any c ∈ C, G(c) represents its group

index i.

For any subset X of C, we define G(X) to be the set of all group indices of elements

in X, i.e., G(X) = {G(x) : x ∈ X}.

Define the group distance d1(C) and the code distance d2(C) as follows:

d1(C) = min
x,y∈C
G(x)6=G(y)

dH(x, y);

d2(C) = dH(C).

Now we are ready to define the four types of two-level fingerprinting codes, we

consider in this thesis.
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Definition 4.2. Let C = C1 ∪ C2 ∪ ... ∪ Cg be a two-level q-ary length ` code and let

K, k be positive integers where K ≥ k. The code C has the (K, k)-frameproof property

(or is (K, k)-FP) if

1. C is k-FP when viewed as a q-ary length ` code, and

2. C has the second level frameproof property, denoted by (K, ∗)-FP: for all X ⊆ C

such that |X| ≤ K and for all x ∈ desc(X) ∩ C, G(x) ∈ G(X).

The intuition behind two-level FP codes is as follows. A two-level FP code is also

a one level FP code, which means that framing an innocent employee is not possible

for coalition of size k or less. Further, the second property assures that framing an

innocent group (e.g. company in our scenario), i.e., a company that does not employ

any coalition member, is also not possible provided that the coalition has size K or

less.

Definition 4.3. Let C = C1 ∪ C2 ∪ ... ∪ Cg be a two-level q-ary length ` code and let

K, k be positive integers where K ≥ k. The code C has the (K, k)-secure frameproof

property (or is (K, k)-SFP) if

1. C is k-SFP when viewed as a q-ary length ` code, and

2. C has the second level secure frameproof property, denoted by (K, ∗)-SFP: for all

X1, X2 ⊆ C of size at most K, if desc(X1)∩desc(X2) 6= ∅, then G(X1)∩G(X2) 6= ∅.

A (K, k)-SFP code is a k-SFP code. The second property ensures that a coalition

of K or less companies cannot frame a coalition from other disjoint group of K or less

companies. Here by coalition of companies we mean a coalition of employees, with at

least one employee from each of those companies.

Definition 4.4. Let C = C1 ∪ C2 ∪ ... ∪ Cg be a two-level q-ary length ` code and let

K, k be positive integers where K ≥ k. The code C has the (K, k)-identifiable parent

property (or is (K, k)-IPP) if
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1. C is k-IPP when viewed as a q-ary length ` code, and

2. C has the second level identifiable parent property, denoted by (K, ∗)-IPP: for all

x ∈ descK(C),

⋂
X⊆C:|X|≤K
x∈desc(X)

G(X) 6= ∅.

Two-level IPP codes allow the identification of a group containing a parent, pro-

vided that the parent coalition has size K or less. Thus, by just considering an illegal

fingerprint in a copy of the data, we can always trace back to at least one company

that employs a member of the coalition.

Definition 4.5 ([4]). Let C = C1 ∪ C2 ∪ ... ∪ Cg be a two-level q-ary length ` code

and let K, k be positive integers where K ≥ k. The code C has the (K, k)-traceability

property (or is (K, k)-TA) if

1. C is k-TA when viewed as a q-ary length ` code, and

2. C has the second level traceability property, denoted by (K, ∗)-TA: for all X ⊆ C

that |X| ≤ K and for all x ∈ desc(X),

for all z ∈ C with dH(x, z) minimal (i.e. dH(x, z) = dH(C, x)), then G(z) ∈ G(X).

Two-level TA codes also possess one-level TA property, so that the employee that

owns the copy of data most similar to the pirate copy is guilty when the coalition size is

at most k. Additionally, the second level property shows that the company that owns

the copy of data most similar to the pirate copy is responsible for the crime, provided

the coalition size is at most K.

We refer to (K, k)-FP codes, (K, k)-SFP codes, (K, k)-IPP codes and (K, k)-TA

codes as two-level fingerprinting codes, and refer to all codes in Definition 2.1 as one-

level fingerprinting codes.
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Here are examples of two-level fingerprinting codes in the same order as their defi-

nitions.

Example 10. Let C = C1 ∪ C2 ∪ C3 ⊆ {0, 1, 2, 3}3, where

C1 = {100, 010, 001}

C2 = {200, 020, 002}

C3 = {300, 030, 003}.

Then, C is a (K, k)-FP code for any positive integers K and k such that K ≥ k.

Example 2 shows that C is k-FP for any positive integer k. Also, the (K, ∗)-FP

property follows from the fact that, for any i ∈ [3], only codewords in group i contain

the symbol i.

Example 11. Let C = C1 ∪ C2 ⊆ {0, 1}10, where

C1 = {0100100110, 0010010101, 0001001011}

C2 = {1111111111, 1111000000, 1000111000}.

Then, C is a (K, 3)-SFP code for any integer K ≥ 3.

We know from Example 4 that C is 3-SFP. Since for any i ∈ [2], only codewords in

group i contain the symbol i− 1 in the first coordinate, C is (K, ∗)-SFP.

Example 12. Let C = C1 ∪ C2 ∪ C3 ⊆ {0, 1, 2}4, where

C1 = {0000, 0111, 0222}

C2 = {1012, 1120, 1201}

C3 = {2021, 2102, 2210}.

Then, C is a (K, 2)-IPP code for any positive integer K ≥ 2.
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From Example 5, C is a 2-IPP code. The (K, ∗)-IPP property arises from observing

that, for any i ∈ [3], only codewords in group i contain the symbol i − 1 in the first

coordinate.

The next example is generalised from a family of 3-TA codes by Blackburn, Etzion

and Ng [13].

Example 13. Let q = kr + 1, where k is an integer and r is a positive integer. Let

Q = {0, 1, ..., kr}.

Define C = C1 ∪ C2 ∪ ... ∪ Ck+1, where

C1 = {(0, i, i, ..., i) : i ∈ [r]}

C2 = {(i, 0, r + i, ..., r + i) : i ∈ [r]}

C3 = {(r + i, r + i, 0, 2r + i, ..., 2r + i) : i ∈ [r]}
...

Ck = {((k − 2)r + i, ..., (k − 2)r + i, 0, (k − 1)r + i) : i ∈ [r]}

Ck+1 = {((k − 1)r + i, ..., (k − 1)r + i, 0) : i ∈ [r]}

Then C is a two-level code containing k+1 groups of size r that has the ((k+1)r, k)-TA

property.

Proof. We will show the k-TA property first, and then the ((k + 1)r, ∗)-TA property.

Consider a coalition X0 ⊆ C of size at most k. Let y ∈ desc(X0) and let z ∈ C

such that dH(y, z) minimal. Define I = {i ∈ [k + 1] : zi = yi}. Then |I| must be at

least 2. Let j ∈ I be such that yj 6= 0. So, there exists x ∈ X0 that xj = yj . Since

there exists only one codeword in C that has yj in the jth position, z = x. Therefore

z ∈ X0, which shows C is k-TA.

Let X1 ⊆ C be a coalition of size at most |C| = (k+ 1)r and let y′ ∈ desc(X1). Let

z′ be a codeword in C that minimises dH(y′, z′) and define I = {i ∈ [k + 1] : z′i = y′i}.

It is obvious that I has at least 1 element. Let j ∈ I. When y′j 6= 0, the situation
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is similar to the previous paragraph. Consider the case when y′j = 0. There exists

x′ ∈ X1 such that x′j = 0. Hence, both x′ and z′ are from Cj . Therefore z′ ∈ G(U).

Here we conclude that C is a ((k + 1)r, k)-TA code.

4.2 Relationships between Two-Level Codes

The relationships among different types of two-level fingerprinting codes and one-level

ingerprinting codes are illustrated in Diagram 4.1. An arrow from type A to type B

signifies that a code of type A is a code of type B.

K-TA

K-IPP

K-SFP

K-FP

(K, k)-TA

(K, k)-IPP

(K, k)-SFP

(K, k)-FP

k-TA

k-IPP

k-SFP

k-FP

Thm. 4.2.4 Def. 4.5

Thm. 4.2.5 Def. 4.4

Thm. 4.2.6 Def. 4.3

Thm. 4.2.7 Def. 4.2

Thm.

Thm.

Lem.

Thm.

Thm.

Thm.

Thm.

Thm.

Lem.
2.3.1

2.3.2

2.3.3

4.2.1

4.2.2

4.2.3

2.3.1

2.3.2

2.3.3

Figure 4.1: Relationships among different types of fingerprinting codes

The proofs of all the relationships in Diagram 4.1 are straightforward. We start by

establishing the relationships in the middle column, then continue to the relationships

given by the left horizontal arrows. The implications corresponding to the vertical

arrows at the sides of the diagram have been proved in Chapter 2.

Theorem 4.2.1. A (K, k)-TA code is a (K, k)-IPP code.

Proof. Let C be a (K, k)-TA code. Hence, C is k-TA when viewed as a one-level code.

By Lemma 2.3.1, C is a k-IPP code.
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Let x ∈ descK(C) and let Dx be a set of all elements z in C that give the minimum

value of dH(z, x). Let X0 ⊆ C be of size at most K with x ∈ desc(X0). By the

definition of two-level traceability code, we know that G(z) ∈ G(X0) for all z ∈ G(Dx).

Hence G(Dx) ⊆ G(X0). Then, we have

G(Dx) ⊆
⋂

X⊆C:|X|≤K
x∈desc(X)

G(X).

Consequently,

⋂
X⊆C:|X|≤K
x∈desc(X)

G(X) 6= ∅.

Therefore C is a (K, k)-IPP code.

Theorem 4.2.2. A (K, k)-IPP code is a (K, k)-SFP code.

Proof. Let C be a (K, k)-IPP code. Hence, C is k-IPP when viewed as a one-level

code. By Theorem 2.3.2, C is a k-SFP code.

Let X1, X2 be subsets of C of size at most K. Assume that desc(X1)∩desc(X2) 6= ∅.

Let x ∈ desc(X1) ∩ desc(X2). Hence x ∈ descK(C).

Since

⋂
X⊆C:|X|≤K
x∈desc(X)

G(X) 6= ∅

and

⋂
X⊆C:|X|≤K
x∈desc(X)

G(X) ⊆ G(X1) ∩ G(X2),
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we find

G(X1) ∩ G(X2) 6= ∅.

Therefore C is a (K, k)-SFP code.

Theorem 4.2.3. A (K, k)-SFP code is a (K, k)-FP code.

Proof. Let C be a (K, k)-SFP code. Hence C is k-SFP when viewed as a one-level

code. By Theorem 2.3.3, C is a k-FP code.

Let X0 be a subset of C of size at most K, and let x ∈ desc(X0)∩C. Hence G(x) ∈

G(desc(X0)) ∩ G({x}) = G(desc(X0)) ∩ G(desc({x})), which implies G(desc(X0)) ∩

G(desc({x})) 6= ∅. By the (K, ∗)-SFP property, G(X0) ∩ G({x}) 6= ∅. Then G(x) ∈

G(X0).

Therefore C is a (K, k)-FP code.

The converse of Theorems 4.2.1, 4.2.2 and 4.2.3 are not true. The counterexamples

used for the one-level cases can be used again here, since two-level codes possess the

one-level code properties.

Theorem 4.2.4. A K-TA code is a (K, k)-TA code.

Proof. Let C be a K-TA code. It is easy to see that C is also a k-TA code for any

k ≤ K. Let X0 be a subset of C of size at most K, let x ∈ desc(X0) and let Dx be a

set of all elements z in C that give the minimum value of dH(z, x). By the definition of

K-TA code, we know that z ∈ X0 for all z ∈ Dx. Hence G(z) ∈ G(X0) for all z ∈ Dx.

So, C is a (K, k)-TA code.

Theorem 4.2.5. A K-IPP code is a (K, k)-IPP code.

Proof. Let C be a K-IPP code. Then C is also a k-IPP code for any k ≤ K. Let
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x ∈ descK(C). By the definition of K-IPP code,

⋂
X⊆C:|X|≤K
x∈desc(X)

X 6= ∅.

Hence,

⋂
X⊆C:|X|≤K
x∈desc(X)

G(X) ⊇ G(
⋂

X⊆C:|X|≤K
x∈desc(X)

X) 6= ∅.

Therefore C is a (K, k)-IPP code.

Theorem 4.2.6. A K-SFP code is a (K, k)-SFP code.

Proof. Let C be a K-SFP code. Thus C is also a k-SFP code for any k ≤ K. Let

X1, X2 be subsets of C of size at most K such that desc(X1) ∩ desc(X2) 6= ∅. By the

definition of K-SFP code, X1 ∩X2 6= ∅. Hence, G(X1) ∩ G(X2) 6= ∅. Which implies C

is a (K, k)-SFP code.

Theorem 4.2.7. A K-FP code is a (K, k)-FP code.

Proof. Let C be a K-FP code. It is easy to see that C is also a k-FP code for any

k ≤ K. Let X0 be a subset of C of size at most K, and let x ∈ desc(X0) ∩ C. By the

definition of K-FP code,

desc(X0) ∩ C ⊆ X0.

Therefore,

G(desc(X0) ∩ C) ⊆ G(X0).

This makes C a (K, k)-FP code as required.
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Chapter 5

Two-Level Code Constructions

All two-level fingerprinting codes, by definition, possess the properties of their cor-

responding one-level fingerprinting codes. It is thus natural to consider constructing

two-level fingerprinting codes from existing one-level codes.

In this chapter, we define and propose the first explicit non-trivial constructions for

two-level IPP, SFP and FP codes. Our proposals for two-level fingerprinting codes are

suitable for the situation when the number of groups is small, i.e. less than or equal to

the size of the alphabet.

We explain our two constructions in the following sections.

5.1 A Simple Construction

Straight from the definitions, it is easy to see that the upper bounds on the size of

one-level codes are also relevant to two-level codes. The construction we present here

is simple and provides two-level codes that meet the best existence bounds for one-level

codes. In some special cases, the simple construction is better than the more general

construction in the next section. The idea is to take a one-level code, and choose a

suitable partition to produce a two-level code with the properties we want.

Example 14. Let C be a k-FP code on an alphabet Q, constructed as in Construction
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3.1.2. Then, for any integer K > k, there exists a (K, k)-FP code C ′ of the same

cardinality as C with q groups, where q = |Q|.

Proof. Partition C into q groups, C1, C2, ..., Cq, by letting Ci = {x ∈ C : x1 = i}. Let

C ′ be C1 ∪ C2 ∪ ... ∪ Cq. Since |C| = qd`/ke we have a code C ′ containing q groups of

cardinality qd`/ke−1. It is easy to see that G(desc(X)) = G(X) for any subset X of C ′.

Hence none of the coalitions of C ′ can produce the codeword that belong to a group

outside their own group. Hence C ′ has the (K, ∗)-FP property. The k-FP property

holds for C ′ since it holds for C. So we see that C ′ is a (K, k)-FP code of the same

cardinality as C.

Example 14 has shown that there exist (K, k)-FP codes as large as k-FP codes in

some cases. In fact, for any k-IPP, k-SFP or k-FP code C, if there exists a coordinate

i such that the symbols appearing in that coordinate of codewords in C occur equally

often, we can construct a two-level code by partitioning the codewords of C into groups,

so that codewords in each group have the same symbol in the ith coordinate. As the

symbols in the ith coordinate are uniformly distributed, these groups have the same

size and we thus obtain a two-level code C ′ with the same cardinality as C. The

construction can be rewritten as follows.

Construction 5.1.1. Let q, g and ` be integers greater than 1, where g ≤ q. Let C

be an q-ary code of length `. Suppose there exists i ∈ [`] such that only g ≤ q symbols

q1, q2, ..., qg from Q occur as the ith coordinate of codewords, and the symbols occur

equally often.

For each j ∈ [g], let Ci = {x ∈ C : xi = qj}. Then, C = C1 ∪ C2 ∪ ... ∪ Cg and

|Cj | = |C|
g for all j ∈ [g], and so we have a two-level code.

We now show that this simple construction is valid for any k-IPP, k-SFP and k-FP

code.

Theorem 5.1.1. Let q, g and ` be integers greater than 1, where g ≤ q. Let C be an q-

ary length ` k-FP code. If there exists i ∈ [`] such that only g ≤ q symbols from Q occur
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as the ith coordinate of codewords, and the symbols occur equally often, Construction

5.1.1 gives a q-ary length ` two-level (K, k)-FP code containing g groups of the same

size.

Proof. Since C is k-FP, the only thing we need to prove is the (K, ∗)-FP property.

Let X be any subset of C containing at most K codewords. Let x ∈ desc(X) ∩C ′.

We show that G(x) ∈ G(X). Since x ∈ desc(X) ∩ C, we have G(x) ∈ G(desc(X)).

However, the group index can be identified by the ith coordinate only. Therefore

G(desc(X)) = G(X), which implies G(x) ∈ G(X).

Thus, we have shown that C = C1 ∪ C2 ∪ ... ∪ Cg is a q-ary length ` two-level

(K, k)-FP code containing g groups of the same size.

Theorem 5.1.2. Let q, g and ` be integers greater than 1, where g ≤ q. Let C be

an q-ary length ` k-SFP code. If there exists i ∈ [`] such that only g ≤ q symbols

from Q occur as the ith coordinate of codewords, and the symbols occur equally often,

Construction 5.1.1 gives a q-ary length ` two-level (K, k)-SFP code containing g groups

of the same size.

Proof. Since C is k-SFP, we only need to prove the (K, ∗)-SFP property.

Let X1, X2 be any two subsets of C containing at most K codewords such that

G(desc(X1))∩G(desc(X2)) 6= ∅. We will show that G(X1)∩G(X2) 6= ∅. Since the group

index is identified by the ith coordinate only, G(desc(X1)) = G(X1) and G(desc(X2)) =

G(X2). Hence G(X1) ∩ G(X2) = G(desc(X1)) ∩ G(desc(X2)) 6= ∅. Thus, C = C1 ∪C2 ∪

... ∪ Cg is a q-ary length ` two-level (K, k)-SFP code containing g groups of the same

size.

Theorem 5.1.3. Let q, g and ` be integers greater than 1, where g ≤ q. Let C be

an q-ary length ` k-IPP code. If there exists i ∈ [`] such that only g ≤ q symbols

from Q occur as the ith coordinate of codewords, and the symbols occur equally often,

Construction 5.1.1 gives a q-ary length ` two-level (K, k)-IPP code containing g groups

of the same size.
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Proof. Since C is k-IPP, now we only need to show the (K, ∗)-IPP property.

Let x ∈ descK(C). There exists a subset X0 of C containing at most K codewords

such that x ∈ desc(X0). Since the group index can only be identified by the ith

coordinate, for all X ⊆ C such that |X| ≤ K and x ∈ desc(X), G(X) must contain xi.

Hence

⋂
X⊆C:|X|≤K
x∈desc(X)

G(X) 6= ∅.

Therefore C = C1∪C2∪ ...∪Cg is a q-ary length ` two-level (K, k)-SFP code containing

g groups of the same size.

Construction 5.1.1 is only useful for two-level IPP, SFP and FP codes, but not

for two-level TA codes (see example 15 below). This is because there is no guarantee

that the nearest codeword will carry the correct symbol on the coordinate we use to

construct our partition Ci. Construction 5.1.1 can be used to produce a two-level code

without causing any change to the code, when a one-level code has a coordinate such

that the distribution of alphabet symbols is uniform. Even when the distribution is

almost uniform, Construction 5.1.1 can still be used once we remove some codewords

to make the code uniform in a coordinate. However, there are one-level codes such

that the distribution of alphabet symbols in any coordinate is non-uniform (and there

are examples that are the largest known for some parameters). In this case, the above

simple two-level construction cannot be used. The construction we propose in the next

section is general enough to work in these cases, though at a cost of reducing the size

of the code by a factor of up to 2.

Example 15. Let C be a 2-TA code as follows,

{0000, 0111, 1102, 1210, 2012, 2120}.

Partition C by the first coordinate, then C is not a (3,2)-TA code.
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Proof. Consider the word 0012 ∈ desc({0000, 0111, 1102}), we have dH(C, 0012) = 1 =

dH(2012, 0012). However, G(2012) = 2 is not a member of G({0000, 0111, 1102}) =

{0, 1}. Thus, C is not a (3,2)-TA code.

5.2 A General Construction

In this section, we aim to construct two-level fingerprinting codes from existing one-

level codes. Our construction produces codes whose number of groups is at most the

alphabet size. It begins with a one-level code, and involves removal of some codewords,

as well as grouping and modifying the remaining codewords. The results are two-level

codes which are guaranteed to be at least half the size of the original one-level codes.

The next theorem is the core of our construction.

Theorem 5.2.1. Let q, g and ` be integers greater than 1, where g ≤ q. Let C be a

q-ary length ` code. Then there exists a q-ary length ` code C ′ of cardinality at least

|C|
2 , where C ′ possesses the following properties;

1. there exists an injection from C ′ to C with changes occuring only in the first

coordinate of the codewords,

2. C ′ can be partitioned into g groups of the same size, each with at least
⌈
|C|
2g

⌉
codewords,

3. the first coordinate of codewords in each group of C ′ are distinct from those of

any other group.

The explicit construction of two-level codes is embedded in the proof of Thorem 5.2.1.

Before giving the detailed proof, we provide the following example to give a rough idea

about how to construct C ′ from a given code C satisfying Theorem 5.2.1.

Example 16. Let n = 91, q = 11, g = 9 and p =
⌈
n
2g

⌉
= 6. Let gi be the number of
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codewords of C beginning with the symbol i, for i ∈ [q]. Suppose we have:

g1 = 4 g2 = 5 g3 = 10 g4 = 11

g5 = 17 g6 = 5 g7 = 2 g8 = 4

g9 = 18 gA = 10 gB = 5.

Our aim is to form new 9 groups of size 6, where the first coordinate of codewords in

each new group are distinct from any other group. Our method can be divided into 3

main steps: splitting, merging and replacing. We illustrate the construction of C ′ in

Table 5.1.

Step 1: Splitting

The purpose of this step is to split all big groups, which contain p codewords or more,

into one or more smaller groups of size at least p. Observe that g3, g4 and gA provide

1 group each, while g5 and g9 give 2 and 3 groups, respectively. We now have 8 groups

of size at least p = 6, call them C1, C2, ..., C8, with only 5 different first coordinates.

Also, remove any 3 other groups, for instance, g2, g6 and gB, so that we have room

available to add 3 more first coordinates. Hence, 2, 6 and B have become unused first

coordinates.

Step 2: Merging

In this step, we aim to create more groups, of size at least p, by merging at least 2

smaller groups together. So, we merge the remaining groups together to obtain the last

group C9 of size g1 + g7 + g8 = 10.

Step 3: Replacing

Since some first coordinates of the groups we have constructed are repeated, we replace

them with those unused first coordinates in this step. To do so, we first reduce the

number of codewords in each group to p. Then, let {ai : i ∈ [8]} be a permutation

of {2, 3, 4, 5, 6, 9, A,B}, we replace the first coordinate of codewords in each group Ci

(excluding C9) by ai.
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The result after completing these 3 steps is 9 disjoint groups of size 6, where the

first coordinate of codewords in each group are distinct from any other groups.

Table 5.1 illustrates what we did earlier. We use ci and c′i to denote the ith

codeword of C and C ′, respectively. For a codeword c beginning with a symbol k,

we represented c by c : k ∗ ∗...∗. We use g′k to denote the new number of codewords

beginning with the symbol k.

We now prove Theorem 5.2.1 using a similar approach to Example 16.

Proof of Theorem 5.2.1. Let q and ` be integers greater than 1. Let C be a one-level

code length ` over an alphabet Q, where |Q| = q. Let g be a positive integer less than

or equal to q, and let p =
⌈
|C|
2g

⌉
. For each symbol a ∈ Q, let Ga = {x ∈ C : x1 = a}

and denote the size of Ga by ga. Let ga = αap+βa, where αa, βa are integers such that

0 ≤ βa < p. Let Q1 be {a ∈ Q : αa > 0}, q1 = |Q1| and v =
∑
a∈Q

αa =
∑
a∈Q1

αa. As in

Example 16, we construct g groups of size p using three main steps: splitting, merging

and replacing.

Step 1: Splitting

For each a ∈ Q1, we pick αap codewords from each Ga, then divide these codewords

into αa sets of p codewords. At this stage, we obtain v disjoint sets of p codewords,

call them C1, C2, ..., Cv, with the property that all the codewords within the same set

have the same symbol in the first coordinate. However, some of the symbols are still

being used by more than one group.

If v ≥ g we are done: for i ∈ [g], we replace the first coordinate of the codewords in

Ci by the symbol i, to form C ′i, and define C ′ =

g⋃
i=1

C ′i. So without loss of generality,

we may assume v < g. To construct the first v groups from C1, C2, ..., Cv, we need v

different symbols to replace the first coordinate of each group. Besides the q1 symbols

in Q1, we need v − q1 extra symbols. Let Q2 be any subset of Q of cardinality v

containing Q1. We discard all codewords in Ga where a ∈ Q2\Q1.

Step 2: Merging
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Original
group
size

Original
codewords

New
codewords

New
group
size

g2=5 c11 : 2 ∗ ∗...∗ Discarded Removed
...

...
c15 : 2 ∗ ∗...∗ Discarded

g3=10 c16 : 3 ∗ ∗...∗ c′7 : 2 ∗ ∗...∗ g′2 = 6

c17 : 3 ∗ ∗...∗ c′8 : 2 ∗ ∗...∗
c18 : 3 ∗ ∗...∗ c′9 : 2 ∗ ∗...∗
c19 : 3 ∗ ∗...∗ c′10 : 2 ∗ ∗...∗
c20 : 3 ∗ ∗...∗ c′11 : 2 ∗ ∗...∗
c21 : 3 ∗ ∗...∗ c′12 : 2 ∗ ∗...∗
c22 : 3 ∗ ∗...∗ Discarded

...
...

c25 : 3 ∗ ∗...∗ Discarded

g4=11 c26 : 4 ∗ ∗...∗ c′13 : 3 ∗ ∗...∗ g′3 = 6

c27 : 4 ∗ ∗...∗ c′14 : 3 ∗ ∗...∗
c28 : 4 ∗ ∗...∗ c′15 : 3 ∗ ∗...∗
c29 : 4 ∗ ∗...∗ c′16 : 3 ∗ ∗...∗
c30 : 4 ∗ ∗...∗ c′17 : 3 ∗ ∗...∗
c31 : 4 ∗ ∗...∗ c′18 : 3 ∗ ∗...∗
c32 : 4 ∗ ∗...∗ Discarded

...
...

c36 : 4 ∗ ∗...∗ Discarded

g5=17 c37 : 5 ∗ ∗...∗ c′19 : 4 ∗ ∗...∗ g′4 = 6

c38 : 5 ∗ ∗...∗ c′20 : 4 ∗ ∗...∗
c39 : 5 ∗ ∗...∗ c′21 : 4 ∗ ∗...∗
c40 : 5 ∗ ∗...∗ c′22 : 4 ∗ ∗...∗
c41 : 5 ∗ ∗...∗ c′23 : 4 ∗ ∗...∗
c42 : 5 ∗ ∗...∗ c′24 : 4 ∗ ∗...∗
c43 : 5 ∗ ∗...∗ c′25 : 5 ∗ ∗...∗ g′5 = 6

c44 : 5 ∗ ∗...∗ c′26 : 5 ∗ ∗...∗
c45 : 5 ∗ ∗...∗ c′27 : 5 ∗ ∗...∗
c46 : 5 ∗ ∗...∗ c′28 : 5 ∗ ∗...∗
c47 : 5 ∗ ∗...∗ c′29 : 5 ∗ ∗...∗
c48 : 5 ∗ ∗...∗ c′30 : 5 ∗ ∗...∗
c49 : 5 ∗ ∗...∗ Discarded

...
...

c53 : 5 ∗ ∗...∗ Discarded
g6=5 c54 : 6 ∗ ∗...∗ Discarded Removed

...
...

c58 : 6 ∗ ∗...∗ Discarded

Original
group
size

Original
codewords

New
codewords

New
group
size

g1=4 c1 : 1 ∗ ∗...∗ c′1 : 1 ∗ ∗...∗ g′1,7,8 = 6

c2 : 1 ∗ ∗...∗ c′2 : 1 ∗ ∗...∗
c3 : 1 ∗ ∗...∗ c′3 : 1 ∗ ∗...∗
c4 : 1 ∗ ∗...∗ Discarded

g7=2 c5 : 7 ∗ ∗...∗ c′4 : 7 ∗ ∗...∗
c6 : 7 ∗ ∗...∗ Discarded

g8=4 c7 : 8 ∗ ∗...∗ c′5 : 8 ∗ ∗...∗
c8 : 8 ∗ ∗...∗ c′6 : 8 ∗ ∗...∗
c9 : 8 ∗ ∗...∗ Discarded
c10 : 8 ∗ ∗...∗ Discarded

g9=18 c59 : 9 ∗ ∗...∗ c′31 : 6 ∗ ∗...∗ g′6 = 6

c60 : 9 ∗ ∗...∗ c′32 : 6 ∗ ∗...∗
c61 : 9 ∗ ∗...∗ c′33 : 6 ∗ ∗...∗
c62 : 9 ∗ ∗...∗ c′34 : 6 ∗ ∗...∗
c63 : 9 ∗ ∗...∗ c′35 : 6 ∗ ∗...∗
c64 : 9 ∗ ∗...∗ c′36 : 6 ∗ ∗...∗
c65 : 9 ∗ ∗...∗ c′37 : 9 ∗ ∗...∗ g′9 = 6

c66 : 9 ∗ ∗...∗ c′38 : 9 ∗ ∗...∗
c67 : 9 ∗ ∗...∗ c′39 : 9 ∗ ∗...∗
c68 : 9 ∗ ∗...∗ c′40 : 9 ∗ ∗...∗
c69 : 9 ∗ ∗...∗ c′41 : 9 ∗ ∗...∗
c70 : 9 ∗ ∗...∗ c′42 : 9 ∗ ∗...∗
c71 : 9 ∗ ∗...∗ c′43 : A ∗ ∗...∗ g′A = 6

c72 : 9 ∗ ∗...∗ c′44 : A ∗ ∗...∗
c73 : 9 ∗ ∗...∗ c′45 : A ∗ ∗...∗
c74 : 9 ∗ ∗...∗ c′46 : A ∗ ∗...∗
c75 : 9 ∗ ∗...∗ c′47 : A ∗ ∗...∗
c76 : 9 ∗ ∗...∗ c′48 : A ∗ ∗...∗

gA=10 c77 : A ∗ ∗...∗ c′49 : B ∗ ∗...∗ g′B = 6

c78 : A ∗ ∗...∗ c′50 : B ∗ ∗...∗
c79 : A ∗ ∗...∗ c′51 : B ∗ ∗...∗
c80 : A ∗ ∗...∗ c′52 : B ∗ ∗...∗
c81 : A ∗ ∗...∗ c′53 : B ∗ ∗...∗
c82 : A ∗ ∗...∗ c′54 : B ∗ ∗...∗
c83 : A ∗ ∗...∗ Discarded

.

..
.
..

c86 : A ∗ ∗...∗ Discarded
gB=5 c87 : B ∗ ∗...∗ Discarded Removed

...
...

c91 : B ∗ ∗...∗ Discarded

Table 5.1: Dividing into groups in Example 16
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We merge some of the remaining Ga, where a ∈ Q\Q2, into g−v groups of size between

p and 2p − 2, where the first coordinates of each group are different from the other

groups. This can be done as follows.

Observe that

∑
a∈Q\Q2

ga = |C| −
∑
a∈Q2

ga

= |C| −
∑
a∈Q2

(αap+ βa)

= |C| −

∑
a∈Q2

αap+
∑
a∈Q2

βa


≥ |C| − (vp+ v(p− 1))

≥ 2gp− vp− v(p− 1)

= 2(g − v)p+ v.

Hence, apart from ∪a∈Q2Ga, we have at least 2(g − v)p+ v > 2(g − v)p codewords left

in the code. And, since ga = αa + βa = 0 + βa = βa ≤ p− 1 for all a ∈ Q\Q2, we can

automatically group Ga, a ∈ Q\Q2 in a greedy fashion into g − v sets of size between

p and 2p − 2, so that each Ga is not split into two or more sets. Let these sets be

Cv+1, Cv+2..., Cg. Note that the first coordinate of codewords in each new group may

vary, but differs from any other group.

Step 3: Replacing

Here we construct the groups of C ′ as follows: Let Q2 = {a1, a2, ..., av}.

1. for i = 1 to v, let C ′i be a set of codewords obtained from Ci by replacing the

first coordinate by the symbol ai ∈ Q2,

2. for i = v + 1 to g, let C ′i be a set of any p codewords from Ci,

3. let C ′ =

g⋃
i=1

C ′i.

Now, we need to show that our constructed code C ′ satisfies Theorem 5.2.1.
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Let the mapping ϕ : C ′ −→ C map each codeword of C ′ to the codeword it was

modified from in C. It is not difficult to see that ϕ is an injection that makes changes

in only the first coordinate of any codeword.

The second condition is also satisfied since each group C ′i is of size p =
⌈
|C|
2g

⌉
.

The last condition follows from the first part of step 3, as well as the construction

of Cv+1, ..., Cg.

Note that to construct C ′, we have eliminated

∑
a∈Q

βa

− (g−v)p codewords from

C. Here the first term represents all the remainders, and the second term is derived

from (g − v) merged groups. Since

∑
a∈Q

βa

 − (g − v)p = (|C| − vp) − (g − v)p =

|C| − gp ≤ |C| − |C|2 = |C|
2 , we are guaranteed to eliminate at most |C|2 codewords from

|C|.

We will show in the next subsection that if C is any one-level FP, SFP and IPP

code, the two-level code C ′ satisfying Theorem 5.2.1 has the corresponding two-level

fingerprinting property. To make it more convenient for us to show this, we define some

mappings and prove a lemma to be used in the next subsection.

Let the mapping π : Q −→ Q be defined as follows. Let π(a) = a when a does not

appear as the first coordinate of any codeword of C ′, otherwise let π(a) = b ∈ Q when

there exists a codeword c′ ∈ C ′ with c′1 = a that was derived from c ∈ C with c1 = b.

Let ψ : Q` −→ Q` be defined by mapping x ∈ Q` to ψ(x) ∈ Q` where

ψ(x)i =


π(xi) if i = 1;

xi otherwise.

It is not difficult to see that ψ is a well-defined function and ϕ from Theorem 5.2.1 is

actually ψ when restricted to C ′, i.e. ϕ = ψ|C′ .

Observe that for any i ∈ [`] and any codewords y, z ∈ C ′, if yi = zi, then ϕ(y)i =

ϕ(z)i. Moreover, ϕ(y)i = yi = zi = ϕ(z)i when i 6= 1.
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Lemma 5.2.2. Let C and C ′ be codes length ` over Q satisfying Theorem 5.2.1. Let

X be a subset of C ′. Then

ψ(desc(X)) ⊆ desc(ψ(X)).

Proof. Let X be a subset of C ′ and let y be a codeword in ψ(desc(X)). Then, there

exists a codeword x in desc(X) such that ψ(x) = y. For any coordinate i in [`], there

exists a codeword xi in X, where xi = xii . Hence ψ(x)i = ψ(xi)i for all i ∈ [`].

Which implies ψ(x) ∈ desc({ψ(x1), ψ(x2), ..., ψ(x`)}) ⊆ desc(ψ(X)). Therefore y ∈

desc(ψ(X)), which implies ψ(desc(X)) ⊆ desc(ψ(X)).

5.2.1 The Existence of Codes

In this last part of the chapter, we demonstrate that the codes C ′ satisfying Theo-

rem 5.2.1 are two-level FP, SFP or IPP codes if the original codes C are FP, SFP or

IPP codes, respectively. Also, we provide an example showing that the two-level code

constructed from a TA code using Theorem 5.2.1 does not always possess two-level TA

property.

Theorem 5.2.3. Let k, q, g and ` be integers greater than 1, where g ≤ q. Let K be

a positive integer such that K ≥ k. Suppose that there exists a q-ary length ` one-

level k-FP code C. Then there exists a q-ary length ` two-level (K, k)-FP code C ′ of

cardinality at least |C|2 , where C ′ contains g groups of the same size.

Proof. Let C ′ be a code obtained from the k-FP code C as in Theorem 5.2.1. It is

easy to see that no coalition X of the codewords in C ′ can frame a codeword in a

group disjoint from X, since any pair of codewords from different groups have different

symbols in the first coordinate. So, only k-FP property of C ′ needs to be proved.

Let U be any subset of C ′ containing at most k codewords. Let x ∈ desc(U) ∩ C ′.

We will show that x ∈ U . We have ϕ(U) ⊆ C and |ϕ(U)| ≤ |U | ≤ k.

Since x ∈ desc(U) ∩ C ′, then x ∈ desc(U) and x ∈ C ′. By Lemma 5.2.2, ϕ(x) ∈
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desc(ϕ(X)). Also, it is easy to see that ϕ(C ′) ⊆ C. Hence, ϕ(x) ∈ desc(ϕ(X))∩C. So

ϕ(x) ∈ ϕ(U) by the k-FP property of C. Hence x ∈ U , which implies C ′ has the k-FP

property, i.e. C ′ is a (K, k)-FP code.

Thus we can conclude that there exists a q-ary length ` two-level (K, k)-FP code

C ′ of size at least |C|2 , containing g groups (each of size at least
⌈
|C|
2g

⌉
).

Theorem 5.2.4. Let k, q, g and ` be integers greater than 1, where g ≤ q. Let K be a

positive integer such that K ≥ k. Suppose that there exists a q-ary length ` one-level

k-SFP code C. Then there exists a q-ary length ` two-level (K, k)-SFP code C ′ of

cardinality at least |C|2 , where C ′ contains g groups of the same size.

Proof. Let C ′ be a code obtained from the k-SFP code C as in Theorem 5.2.1.

1. Let X1, X2 be subsets of C of size at most k, where desc(X1)∩desc(X2) 6= ∅. We

will show that X1 ∩X2 6= ∅.

Let x ∈ desc(X0)∩ desc(X1). Then ϕ(x) = ψ(x) ∈ ψ(desc(X0)∩ desc(X1)). Now

ϕ(x) ∈ ψ(desc(X1) ∩ desc(X2))

⊆ ψ(desc(X1)) ∩ ψ(desc(X2))

⊆ desc(ψ(X1)) ∩ desc(ψ(X2)) by Lemma 5.2.2

= desc(ϕ(X1)) ∩ desc(ϕ(X2)).

Therefore desc(ϕ(X1))∩desc(ϕ(X2)) 6= ∅. By the k-SFP property of C, we deduce

that ϕ(X1) ∩ ϕ(X2) 6= ∅. Since ϕ is an injection, ϕ(X1) ∩ ϕ(X2) = ϕ(X1 ∩X2).

Therefore X1 ∩X2 6= ∅, which implies C ′ has the k-SFP property.

2. Let Y1, Y2 be subsets of C of size at most K, where desc(Y1) ∩ desc(Y2) 6= ∅. We

will show that G(Y0) ∩ G(Y1) 6= ∅.

Let x ∈ desc(Y1) ∩ desc(Y2). Then there exist codewords a in Y1 and b in Y2,

where a1 = x1 = b1. Since the first coordinate of each group is different from the
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others, we can conclude that G(a) = G(b). Therefore G(a) ∈ G(Y1) ∩ G(Y2) 6= ∅,

so C ′ is a (K, k)-SFP code.

Therefore, there exists a q-ary length ` two-level (K, k)-SFP code C ′ of size at least

|C|
2 , containing g groups (each of size at least

⌈
|C|
2g

⌉
).

Theorem 5.2.5. Let k, q, g and ` be integers greater than 1, where g ≤ q. Let K be

a positive integer such that K ≥ k. Suppose that there exists a q-ary length ` one-

level k-IPP code C. Then there exists a q-ary length ` two-level (K, k)-IPP code C ′ of

cardinality at least |C|2 , where C ′ contains g groups of the same size.

Proof. Let C ′ be a code obtained from the k-IPP code C as in Theorem 5.2.1.

1. Let x ∈ desck(C
′). Then, there exists U ⊆ C ′ such that |U | ≤ k and x ∈ desc(U).

By Lemma 5.2.2, we know that ψ(x) ∈ desc(ϕ(U)) and ϕ(U) ⊆ C. Observe that

|ϕ(U)| ≤ |U | ≤ k. Hence ψ(x) ∈ desck(C). Since C is an IPP code,

⋂
X⊆C:|X|≤k
ψ(x)∈desc(X)

X 6= ∅.

Also, for any X ⊆ C ′, x ∈ desc(X) implies ψ(x) ∈ desc(ϕ(X)) and |X| = |ϕ(X)|.

Hence

⋂
X⊆C:|X|≤k
ψ(x)∈desc(X)

X ⊆
⋂

X⊆C′:|X|≤k
x∈desc(X)

ϕ(X).

Since ϕ is injective, we have

⋂
X⊆C′:|X|≤k
x∈desc(X)

ϕ(X) = ϕ(
⋂

X⊆C′:|X|≤k
x∈desc(X)

X).
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Hence

ϕ(
⋂

X⊆C′:|X|≤k
x∈desc(X)

X) 6= ∅.

Therefore

⋂
X⊆C′:|X|≤k
x∈desc(X)

X 6= ∅,

which shows that C ′ is a k-IPP code.

2. Let y ∈ descK(C ′). Then, there exists V ⊆ C ′ such that |V | ≤ K and y ∈

desc(V ). Let v be a codeword in V such that v1 = y1, and let i ∈ [g] such

that v ∈ C ′i. Hence G(v) = i. For any X ⊆ C ′ of cardinality at most K with

desc(X) containing y, there exists a codeword yX such that y1 = yX1 . Since the

group index of a codeword can be determined from its first coordinate, we have

G(yX) = i. That implies

i ∈
⋂

X⊆C′:|X|≤K
y∈desc(X)

G(X).

Consequently,

⋂
X⊆C′:|X|≤K
y∈desc(X)

G(X) 6= ∅.

Therefore, C ′ has the (K, ∗)-IPP property and is a (K, k)-IPP code.

Thus, there exists a q-ary length ` two-level (K, k)-IPP code C ′ of size at least |C|2 ,

containing g groups (each of size at least
⌈
|C|
2g

⌉
).

The two-level codes satisfying Theorem 5.2.1 preserve the fingerprinting property
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from their corresponding one-level codes for IPP, SFP and FP codes. However, this is

not always true in the case of TA codes as can be seen in the following example.

Example 17. Let C = {122, 133, 144, 155, 216, 317, 418, 519, 661, 771, 881, 991} ⊆ {1, 2,

3, ..., 9}3. It is not difficult to check that C is a 2-TA code. Let g = 4, then p =
⌈
12
8

⌉
= 2.

Then Theorem 5.2.1 does not guarantee two-level traceability code from C.

Proof. Here we have g1 = 4, g2 = g3 = ... = g9 = 1. Consider C1 = {122, 133},

C2 = {144, 155}, C3 = {216, 661} and C4 = {317, 771}, which leads to C ′1 = {122, 133},

C ′2 = {944, 955}, C ′3 = {216, 661} and C ′4 = {317, 771} by Theorem 5.2.1. Let U =

{122, 216, 661}, then 111 ∈ desc(U) and G(U) = {1, 3}. Observe that 317 is a codeword

of C ′ with dH(111, 317) minimal, but G(317) = 4 6∈ G(U). Therefore C ′ is not a (K, 2)-

TA code for any integer K greater than 2.

Theorem 5.2.1 ensures that we can always construct two-level IPP, SFP and FP

codes, with g ≤ q, of size at least half of the size of the existing one-level codes. When

the one-level code is of exponential size, throwing away half of its codewords would not

effect the codes’ size significantly. However, we do not have the same result for TA

codes.

The example above shows the construction does not work, not that the analogue of

Theorems 5.2.3-5.2.5 is false for TA codes.
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Chapter 6

Constructing Two-Level

Frameproof Codes

Since the only known general method for constructing frameproof codes involves using

error-correcting codes with high minimum distance (see Chapter 3), one might naturally

try to construct two-level codes based on high minimum distance codes. In this chapter,

we state a sufficient condition on the minimum distance of a code that makes it two-

level frameproof. Then we propose a different method for constructing frameproof

codes which produces code of significantly larger size than that based on high minimum

distance codes.

To clearly illustrate our improvement, we first state the sufficient conditions for a

high minimum distance code to be a (K, k)-FP code. Recall the definition of d1(C)

and d2(C) from Section 4.1.

Theorem 6.0.6. Let C = C1 ∪ C2 ∪ ... ∪ Cg be a two-level length ` code containing g

groups of p codewords. If

d1(C) > (1− 1/K)` and

d2(C) > (1− 1/k)`,
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then C is a (K, k)-FP code.

Proof. Let C = C1 ∪ C2 ∪ ... ∪ Cg be a two-level length ` code containing g groups of

p codewords such that d1(C) > (1 − 1/K)` and d2(C) > (1 − 1/k)`. Theorem 3.1.3

implies that C is a k-FP code. Now we only need to show the validity of the (K, ∗)-FP

property.

Let X be a subset of C, where |X| ≤ K. Let y be any codeword in C\X such

that G(y) 6∈ G(X). We need to show that y 6∈ desc(X) ∩ C. Since G(y) 6∈ G(X), each

codeword in X can agree with y in at most ` − d1(C) coordinates. By using all the

codewords from X, we can construct a descendant of X that agrees with y in up to

|X| (`− d1(C)) coordinates. But |X| (`− d1(C)) < |X|(`− (1− 1/K)`) ≤ K(1/K)` =

`. Thus dH(y,desc(X)) ≥ ` − |X| (`− d1(C)) > ` − ` = 0, and so y 6∈ desc(X).

Therefore y 6∈ desc(X) ∩ C. Hence, C is (K, k)-FP.

6.1 Constructing Two-Level FP Codes

Although Theorem 6.0.6 suggests sufficient conditions on d1(C) and d2(C) for C to

be a (K, k)-FP code, it is not obvious how codes satisfying those conditions can be

constructed. We could construct (K, k)-FP codes using Theorem 3.1.3. However, the

size of the two-level codes obtained from this construction is rather small. In this

section, we propose a construction for two-level FP codes which is not based on high

minimum distance codes. The construction we describe give bigger codes than those

of high minimum distance.

The general idea of our two-level FP codes construction is to obtain a (K, k)-FP

code by combining a K-FP and a k-FP code with certain properties together in a

particular way.

Let Q1 and Q2 be finite sets, and let ` be a positive integer. For any x in Q`1 and

y in Q`2, let cxy = ((x1, y1), (x2, y2), ..., (x`, y`)).
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For i ∈ {1, 2}, let Pi be a projection from (Q1 ×Q2)
` to Q`i , defined by

P1(cxy) = x,

P2(cxy) = y,

for any cxy ∈ (Q1 ×Q2)
`.

Construction 6.1.1. Let `,K and k be positive integers such that ` ≥ 2 and K ≥

k ≥ 2. Let q1 and q2 be prime powers greater than `. Let Fq1 and Fq2 be finite fields of

cardinality q1 and q2 respectively. Let D1 be a K-FP code of length ` over Fq1 and let

D2 be a k-FP code of length ` over Fq2, constructed as in Construction 3.1.2.

Let Q denote Fq1 × Fq2. Define a length ` code C over Q by

C =
⋃
x∈D1

Cx,

where Cx = {cxy : y ∈ D2} for each x ∈ D1. Then, C is a (K, k)-FP code containing

|D1| groups of |D2| codewords each.

Proof. We know that D1 is K-FP and D2 is k-FP from Construction 3.1.2, and it is

clear that P1(C) = D1 and P2(C) = D2. Let G = P1.

(i) Let U be a subset of C of size at most K. Let x ∈ desc(U) ∩ C. Then, G(x) =

P1(x) ∈ P1(desc(U) ∩ C). Since P1(desc(U) ∩ C) = desc(P1(U)) ∩D1, it implies

G(x) ∈ desc(P1(U)) ∩D1. And since P1(U) is a subset of D1 of cardinality less

than K, and D1 is K-FP, then, G(x) ∈ P1(U). Therefore, G(x) ∈ G(U).

(ii) Let V be subset of C of size at most k. Let cxy ∈ desc(V ) ∩ C. So, cxy must

agree with some codeword cx′y′ ∈ V in at least d`/ke positions. Hence, x agrees

with x′ in at least d`/ke ≥ d`/Ke positions and y agrees with y′ in at least d`/ke

positions. Therefore, by the minimum distance of D1 and D2, x = x′ and y = y′.

That means cxy = cx′y′ ∈ V .
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Therefore, C is a (K, k)-FP code containing |D1| groups of |D2| codewords each.

6.2 More on the Constructions

A natural question regarding the previous construction is whether C = {cxy : x ∈ D1

and y ∈ D2} is a (K, k)-FP code for any choice of K-FP code D1 and k-FP code D2.

If not, what are the necessary and sufficient conditions for D1 and D2 that make C a

(K, k)-FP code? This problem is considered in this section.

Actually, given that D1 is a K-FP code and D2 is a k-FP code, C = {cxy : x ∈ D1

and y ∈ D2} is not always a (K, k)-FP code. Here is an example.

Example 18. LetD1 be a 4-FP code constructed from Construction 3.1.1 and letD2 be

a 2-FP code from Example 1, i.e., D1 = {1000, 0100, 0010, 0001, 2000, 0200, 0020, 0002}

and D2 = {1100, 1001, 1010}. A two-level code C {cxy : x ∈ D1 and y ∈ D2} is not a

(4, 2)-FP code.

Proof. Consider X = {((1, 1), (0, 0), (0, 1), (0, 0)) , ((0, 1), (2, 0), (0, 0), (0, 1))}. We have

((1, 1), (0, 0), (0, 0), (0, 1)) ∈ desc(X)∩C, which contradicts the (4, 2)-FP property.

Before discussing the main problem, we define some additional notation.

For any codewords x, y in Q` and any subset X of Q`, let

I(x, y) := {i ∈ [`] : xi = yi}

be the set of all components of x that agree with y, and let

I(x,X) :=
⋃

y∈X\{x}

I(x, y)

be the set of all components of x that agree with at least one member of X.
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For any code C ⊆ Q` and any positive integer m, define

Im(C) := {I(x,X) : X ⊆ C, |X| ≤ m and x ∈ C\X}.

The following theorem provides necessary and sufficient conditions on D1 and D2

so that they can be used to construct a two-level FP code in a similar fashion to

Construction 6.1.1.

Theorem 6.2.1. Let `,K and k be positive integers such that ` ≥ 2 and K ≥ k ≥ 2. Let

q1 and q2 be prime powers greater than `. Let D1 be a K-FP code of length ` over Fq1,

and let D2 be a k-FP code of length ` over Fq2. Then C = {cxy : x ∈ D1 and y ∈ D2}

is a (K, k)-FP code off and only if I ∪ J 6= [`] for any I ∈ Is(D1) and J ∈ It(D2),

where s and t are positive integers such that s+ t ≤ k.

Proof. Suppose C has the (K, k)-FP property. Let s and t be positive integers such that

s + t ≤ k. We assume for a contradiction that there exist I ∈ Is(D1) and J ∈ It(D2)

such that I ∪ J = [`]. Let X1 ⊆ D1 and x′ ∈ D1\X1 be such that |X1| ≤ s and

I(x′, X1) = I. And let X2 ⊆ D2 and x′′ ∈ D2\X2 be such that |X2| ≤ t I(x′′, X2) = J .

Let U be {cxx′′ : x ∈ X1} ∪
{
cx′y : y ∈ X2

}
. Then |U | ≤ s+ t ≤ k.

For any i ∈ I, there exists a codeword x ∈ X1 such that xi = x′i. Hence cxx′′ ∈ U

and cx′x′′ i = cxx′′ i. Similarly, for any i ∈ J , there exists a codeword y ∈ X2 such that

yi = x′′i . Hence cx′y ∈ U and cx′x′′ i = cx′yi. Therefore cx′x′′ is in desc(U)∩C. However,

cx′x′′ is not in U , since x′ 6∈ X1 and x′′ 6∈ X2, contradicting the (K, k)-FP property

of C. Hence I ∪ J 6= [`] for any I ∈ Is(D1) and J ∈ It(D2).

Conversely, with similar arguments to the first part of the proof of Construc-

tion 6.1.1, we can show that C has the (K, ∗)-FP property for any choice of K-FP

code D1 and k-FP code D2. Hence, only k-FP property is yet to be established.

Suppose that I ∪ J 6= [`] for any I ∈ Is(D1) and J ∈ It(D2), where s and t are

positive integers such that s+ t ≤ k.

Let U be a subset of C of size at most k. Let cxy ∈ desc(U) ∩ C. Replace any
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cx′y′ ∈ U such that both x′ 6= x and y′ 6= y by either cxy′ or cx′y; name the new set U ′.

It is clear that cxy ∈ desc(U ′) ∩ C. Moreover, U ′ can be written as X1 ∪X2 where

X1 := {cab ∈ U ′ : a = x},

X2 := {cab ∈ U ′ : b = y}.

Note that X1 6= ∅ since D1 is K-FP and x = P1(cxy) ∈ P1(U
′) ∩ D1. Also X2 6= ∅

since D2 is k-FP and y = P2(cxy) ∈ P2(U
′) ∩ D2. Since cxy ∈ desc(U ′) ∩ C, we have

I(cxy, X1) ∪ I(cxy, X2) = [`]. Observe that,

I(cxy, X1) ∪ I(cxy, X2) = I(y, P2(X1)) ∪ I(x, P1(X2)),

so I(y, P2(X1)) ∪ I(x, P1(X2)) = [`]. By assumption, when s + t ≤ k there exist no

I ∈ Is(D1) and J ∈ It(D2) such that I ∪ J = [`]. Therefore, |P2(X1)|+ |P1(X2)| must

be bigger than k. Hence, X1∩X2 6= ∅. This implies cxy ∈ U ′. But, by the construction

of U ′, this could happen only if cxy ∈ U . Therefore, cxy ∈ U . Hence, C is k-FP.

Although the theorem give both necessary and sufficient conditions on D1 and D2,

it is not an easy task to check if those properties hold. The the sufficient conditions

in the next corollary are easier to verify, but the size of the resulting code will also be

reduced.

Corollary 6.2.2. Let K and k be integers such that 2 ≤ k < K. Let D1 and D2 be

length ` error correcting codes of minimum distance d1 > (1−1/K)` and d2 > (1−1/k)`,

respectively. Then, C = {cxy : x ∈ D1 and y ∈ D2} is a (K, k)-FP code containing |D1|

groups of |D2| codewords each.

Proof. By Theorem 3.1.3, D1 and D2 are K-FP and k-FP codes, respectively. Hence,

C has the (K, ∗)-FP property. For any positive integers s and t, where s+ t ≤ k, and
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any I ∈ Is(D1) and J ∈ It(D2), we have

|I|+ |J | ≤ s(`/K) + t(`/k)

< s(`/k) + t(`/k)

= (s+ t)(`/k)

≤ `.

Therefore, |I| + |J | < `. Hence, I ∪ J 6= [`]. Applying Theorem 6.2.1, we find that C

is a (K, k)-FP code as required.

An alternative proof, which is much shorter, for this corollary is as follows.

Proof. Consider d1(C) ≥ dH(D1) > (1− 1/K)` and d2(C) ≥ dH(D2) > (1− 1/k)`. By

Theorem 6.0.6, C is a (K, k)-FP code.

To visualise the idea, we give an example of a two-level code that can be constructed

using Theorem 6.2.1.

Example 19. Consider a 4-FP code D1 of length 6 inspired by a construction for a

3-FP code of length 5 in [10] (see below) and a 2-FP code D2 of length 6 constructed

as in Construction 3 of [10] (again, see below). Neither D1 or D2 is of high minimum

distance. We show that C = {cxy : x ∈ D1 and y ∈ D2} is a (4,2)-FP code of length 6,

containing 6
4(q21 − 2q1 + 1) groups of 2(q2 − 1)3(1− 1

2
√
q2−1

) codewords each.

The construction of D1

We define six sets S1, S2, S3, S4, S5, and S6 of words of length 6 over the alphabet
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Z4 ∪ {∞} as follows:

S1 = {(∞, a, a, a, a, a) : a ∈ Z4}

S2 = {(a,∞, a+ 2, a+ 3, a, a+ 1) : a ∈ Z4}

S3 = {(a, a,∞, a+ 1, a+ 3, a+ 2) : a ∈ Z4}

S4 = {(a, a+ 1, a+ 3,∞, a+ 2, a) : a ∈ Z4}

S5 = {(a, a+ 2, a+ 1, a,∞, a+ 3) : a ∈ Z4}

S6 = {(a, a+ 3, a, a+ 2, a+ 1,∞) : a ∈ Z4}

The sets Si are pairwise disjoint and contain 4 words. Moreover, each codeword in

S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 is uniquely determined by any two components.

Let m1 be a prime power such that m1 ≥ 5. Let α1, α2, α3, α4, and α5 be distinct

elements of Fm1 . We define six sets T1, T2, T3, T4, T5, and T6 of words of length 6 over

the alphabet Fm1 ∪ {∞} as follows:

T1 = {(∞, f(α1), f(α2), f(α3), f(α4), f(α5)) : f ∈ Fm1 [X], deg f ≤ 1}

T2 = {(f(α1),∞, f(α2), f(α3), f(α4), f(α5)) : f ∈ Fm1 [X], deg f ≤ 1}

T3 = {(f(α1), f(α2),∞, f(α3), f(α4), f(α5)) : f ∈ Fm1 [X], deg f ≤ 1}

T4 = {(f(α1), f(α2), f(α3),∞, f(α4), f(α5)) : f ∈ Fm1 [X],deg f ≤ 1}

T5 = {(f(α1), f(α2), f(α3), f(α4),∞, f(α5)) : f ∈ Fm1 [X],deg f ≤ 1}

T6 = {(f(α1), f(α2), f(α3), f(α4), f(α5),∞) : f ∈ Fm1 [X],deg f ≤ 1}

The sets Ti are pairwise disjoint and have cardinality m2
1. Moreover, two distinct

codewords x, y in Ti can agree at no more than one component other than ith, since

deg f ≤ 1.
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Define sets A1, A2, A3, A4, A5, and A6 of words of length 6 over the alphabet Q1 =

(Z4 × Fm1) ∪ {(∞,∞)} by

Ai = {cxy : x ∈ Si and y ∈ Ti}

for all i ∈ [6]. Then |Ai| = |Si| × |Ti| = 4m2
1.

Let D1 = A1∪A2∪A3∪A4∪A5∪A6. Then D1 is a 4-FP code of size 6
4(q21−2q1+1)

over the alphabet set Q1, where q1 = |Q1| = 4m1 + 1.

The construction of D2

Let m2 be a prime power such that m2 ≥ 7 and fix q2 = m2
2 + 1. Let Fm2 be the

finite field of order m2, and define Q2 to be (Fm2)2 ∪ {∞}. Let β1, β2, α1, α2, α3, α4, α5

be distinct elements of Fm2 . Define B1 and B2 by,

B1 ={(∞, (f(α1), g(α1)), (f(α2), g(α2)), (f(α3), g(α3)), (f(α4), g(α4)),

(f(α5), g(α5))) : f, g ∈ Fm2 [X],deg f = 2,deg g ≤ 2}

B2 ={((t(β1), t(β2)), (s(α1), t(α1)), (s(α2), t(α2)), (s(α3), t(α3)), (s(α4), t(α4)),

(s(α5), t(α5))) : s, t ∈ Fm2 [X], deg s ≤ 1, deg t ≤ 3}

Define D2 = B1 ∪B2. Then D2 is a 2-FP code of cardinality 2(q2− 1)3(1− 1
2
√
q2−1

)

over the alphabet set Q2.

The construction of C
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Let C = {cxy : x ∈ D1 and y ∈ D2} and define G = P1. We show that C is a

(4,2)-FP code of length 6, using Theorem 6.2.1.

The only possible pair of positive integers s and t such that s + t ≤ k = 2 is

s = 1, t = 1. Hence, we need to consider only I1(D1) and I1(D2), where

I1(D1) = {I ⊆ [`] : |I| ≤ 2} and

I1(D2) = {I ⊆ [`] : |I| ≤ 3}.

We can easily see that for any I ∈ I1(D1), J ∈ I1(D2), |I ∪ J | ≤ 5. Hence,

I ∪ J 6= [`]. Therefore, C is a (4, 2)-FP code of length 6, containing 6
4(q21 − 2q1 + 1)

groups of 2(q2 − 1)3(1− 1
2
√
q2−1

) codewords.

The size of a two-level code constructed from high minimum distance codes as in

Corollary 6.2.2 is at most q21q
3
2, since the singleton bound shows that |D1| ≤ q21 and

|D2| ≤ q32, respectively. The two-level FP code in Example 19 has a much larger number

of groups and a significantly larger size than any code constructed from high minimum

distance codes.

We remark that our construction is for FP codes only: even if D1 and D2 are SFP

codes that satisfied the condition in Theorem 6.2.1, C is not always a SFP code. We

give an example here.

Example 20. Let D1 be a 4-SFP code from Example 24 and let D2 be a 2-SFP code

from Example 3, i.e., D1 = {0000, 0111, 1122, 2220} and D2 = {1001, 1200, 0010, 2211}.

A two-level code C {cxy : x ∈ D1 and y ∈ D2} is not a (4, 2)-SFP code.

Proof. The only possible pair of positive numbers s and t such that s + t ≤ k = 2 is

s = 1, t = 1. Hence, we need to consider only I1(D1) and I1(D2), where

I1(D1) = {I ⊆ [`] : |I| ≤ 1} and

I1(D2) = {I ⊆ [`] : |I| ≤ 2}.
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We can easily see that for any I ∈ I1(D1), J ∈ I1(D2), |I ∪ J | ≤ 3. Hence, I ∪ J 6= [`].

Consider

X = {((0, 2), (0, 2), (0, 1), (0, 1)) , ((0, 1), (0, 0), (0, 0), (0, 1))}

and

Y = {((0, 1), (0, 2), (0, 0), (0, 0)) , ((2, 1), (2, 0), (2, 0), (0, 1))} ,

two distinct coalitions of size at most 4. We have ((0, 1), (0, 2), (0, 0), (0, 1)) ∈ desc(X)∩

desc(Y ), which contradicts the (4, 2)-SFP property.
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Chapter 7

Constructing Two-Level IPP

Codes

Recall that a one-level IPP code can be constructed from an error-correcting code

with high minimum distance (see Theorem 3.4.1). In this chapter, we give sufficient

conditions for a high minimum distance code to be a two-level IPP code. Then we

propose a construction for two-level IPP codes which is not based on high minimum

distance error-correcting codes. Our construction gives codes with at least the same

size as codes based on high minimum distance codes. Under a certain condition, our

construction gives codes with larger size.

Now we state the sufficient conditions for a high minimum distance code to be a

(K, k)-TA code given by Anthapadmanabhan and Barg [4]. Recall the definition of

d1(C) and d2(C) from Section 4.1.

Theorem 7.0.3. Let C = C1 ∪ C2 ∪ ... ∪ Cg be a two-level code of length ` containing

g groups of p codewords. If

d1(C) > (1− 1/K2)` and

d2(C) > (1− 1/k2)`,
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for some positive integers k and K, where K > k ≥ 2, then C is a (K, k)-TA code.

Since it is not obvious how to construct a two-level IPP code using Theorem 7.0.3,

we can use Theorem 3.4.1 to construct a K-IPP code which is also a (K, k)-IPP code.

However, such a code can be small.

Example 13 shows that there exists a two-level TA (or IPP) code that is larger

than any TA (or IPP) code constructed using Theorem 3.4.1. Consider a q-ary error

correcting code C of length ` with minimum distance dH(C) =
⌈
(1− 1

(`−1)2 )`
⌉

= `.

By Singleton bound, C has at most q`−dH(C)+1 = q`−`+1 = q codewords. While TA

codes in Example 13 contain (k + 1)r = k+1
k (q − 1) = q + q−k−1

k > q codewords, when

k < q + 1.

7.1 Construction of Two-Level IPP Codes

In this section, we propose a new construction for two-level IPP codes. The general idea

of our two-level IPP code construction is to obtain a (K, k)-IPP code by concatenating

a K-IPP and a k-IPP code together in a particular way.

Construction 7.1.1. Let Q be an alphabet of size q, and let g and p be positive integers

such that g ≤ q. Let D1 be a code of length `1 over Q and D2 be a code of length `2

over Q such that |D2| = gp and |D1| ≥ g.

Construct a two-level code C containing g groups of size p as follows,

1. Partition D2 into g disjoint sets of the same size p, say U1, U2, ..., Ug.

2. Let c1, c2, ..., cg be g distinct codewords from D1.

3. For any i ∈ [g], let Ci = {x||ci : x ∈ Ui}.

4. Let C = C1 ∪ C2 ∪ ... ∪ Cg.

76



7.1. Construction of Two-Level IPP Codes 7. Constructing Two-Level IPP Codes

For i ∈ [2] and ` = `1 + `2, let Pi be the projection from Q` to Q`i defined by

P1(x) = (x`2+1, x`2+2, ..., x`), and

P2(x) = (x1, x2, ..., x`2), (7.1)

for all x = (x1, x2, ..., x`) ∈ Q`.

It is easy to see that when C is defined as above, for any c = x||ci ∈ C, where

x ∈ D2 and i ∈ [g], we have

1. P2(c) = x and P2 is bijective,

2. P1(c) = ci,

3. G(c) = i.

Theorem 7.1.1. Let C be a two-level code constructed as in Construction 7.1.1. As-

sume that D1 is a K-IPP code and D2 is a k-IPP code, then C is (K, k)-IPP.

Proof. Assume that D1 is K-IPP and D2 is k-IPP.

(i) Let x ∈ desck(C). Then there exists a subset X0 ⊆ C of size at most k such

that x ∈ desc(X0). Hence, P2(x) ∈ P2(desc(X0)). Note that P2 is bijective, thus

P2(desc(X0)) = desc(P2(X0)). Since |P2(X0)| ≤ |X0| ≤ k, P2(X) ⊆ D2 and D2

is k-IPP,

⋂
X⊆D2:|X|≤k
P2(x)∈desc(X)

X 6= ∅.

Recall that P2 is bijective. Therefore

⋂
X⊆C:|X|≤k
x∈desc(X)

X 6= ∅.

Which implies C is k-IPP.
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(ii) Let y ∈ descK(C). Then there exists a subset Y0 ⊆ C of size at most K such

that y ∈ desc(Y0). Then P1(y) ∈ P1(desc(Y0)) = desc(P1(Y0)).

Since D1 is K-IPP and |P1(Y0)| ≤ |Y0| ≤ K. Then

⋂
X⊆D1:|X|≤K
P1(y)∈desc(X)

X 6= ∅.

Also

⋂
X⊆C:|X|≤K
y∈desc(X)

G(X) =
⋂

X⊆C:|X|≤K
y∈desc(X)

{i ∈ [g] : ci = P1(x) for some x ∈ X}

=
⋂

X⊆D1:|X|≤K
P1(y)∈desc(X)

{i ∈ [g] : ci ∈ X}

=
⋂

X⊆D1:|X|≤K
P1(y)∈desc(X)

G({ci ∈ X})

= G

 ⋂
X⊆D1:|X|≤K
P1(y)∈desc(X)

{ci ∈ X}



= G

 ⋂
X⊆D1:|X|≤K
P1(y)∈desc(X)

X


6= ∅.

Therefore, C is (K, k)-IPP.

It is quite obvious from our construction that D2 has to be a k-IPP code. The next

theorem will show that D1 also has to be a K-IPP code.

Theorem 7.1.2. Let C be a two-level code constructed as in Construction 7.1.1. As-

sume that D2 is a k-IPP code. Then C has the (K, k)-IPP property if and only if D1

is a K-IPP code.
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Proof. Let D2 be a k-IPP code. If D1 is a K-IPP code, then C is (K, k)-IPP, by

Theorem 7.1.1.

Conversely, suppose that D1 is not a K-IPP code. We need to show that C is not

a (K, k)-IPP code. Since D1 is not a K-IPP code, there exist I ⊆ [g] of size at most

K and x0 ∈ desc({ci : i ∈ I}) such that

⋂
X⊆D1:|X|≤K
x0∈desc(X)

X = ∅.

Let X0 be a subset of C of size at most K which G(X0) = I. Since x0 ∈ desc({ci : i ∈

I}) = desc(P1(X0)) = P1(desc(X0)), there exists x ∈ desc(X0) such that P1(x) = x0.

Similar to the proof of Theorem 7.1.1, it follows that

⋂
X⊆C:|X|≤K
x∈desc(X)

G(X) = G

 ⋂
X⊆D1:|X|≤K
x0∈desc(X)

X


= ∅.

Hence C does not have the (K, ∗)-IPP property.

Therefore, C is (K, k)-IPP if and only if D1 is a K-IPP code.

Given two one-level IPP codes D1 and D2 that have size larger than high minimum

distance codes, we can always construct a two-level IPP code of size larger than codes

which could be obtained from Theorem 3.4.1. However our construction is valid only

for IPP codes: even if D1 and D2 are TA codes, C is not always a TA code. We give

an example here.

Example 21. Let D1 be a 3-TA code represented by {000, 111, 222}, and let D2 =
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D′1 ∪D′2 ∪D′3 where for all i ∈ [r],

D′1 = {(0, i, i) : i ∈ [2]}

D′2 = {(i, 0, r + i) : i ∈ [2]}

D′3 = {(r + i, r + i, 0) : i ∈ [2]}

By Example 13, D2 is a (6, 2)-TA code and it is also a 2-TA code (as proposed by

Blackburn, Etzion and Ng [13]). Then a code C constructed from D1 and D2 using

Construction 7.1.1 is not a (3,2)-TA code.

Proof. Observe that one possible result from the construction is Ci = D′i||{iii} where

i ∈ [3]. Let X = {103222, 330333}. Then X ⊆ C and |X| ≤ 2. Consider the

word 103333 from desc(X). We have dH(103333, 103222) = dH(103333, 330333) =

dH(103333, 440333)=3, but 440333 6∈ X. Hence, C is not a 2-TA code, and so cannot

be a (3, 2)-TA code.
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Chapter 8

Separating Hash Families

The notion of a separating hash family was first introduced by Stinson, van Trung, and

Wei [33] in 1997 as a tool to create an explicit construction for frameproof codes. In

this chapter, we first state the definition of separating hash families, and then discuss

how this concept relates to fingerprinting codes. We present some previously known

bounds on the size of separating hash families in the last section. All the material in

this chapter is well-known.

8.1 Introduction to Separating Hash Families

Special cases of separating hash families have been studied in various literatures under

many different names. Our definition is an adaptation of the definition in [33]. We first

define a hash family.

Definition 8.1. Let X and Y be two finite sets such that |X| = n and |Y | = m.

A hash family F is a family of functions {fi : X → Y, i ∈ [N ]}, for some positive

integer N .

The term ‘separating’ in ‘separating hash families’ comes from the following defini-

tion.
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Definition 8.2. Let X and Y be two finite sets. Let f be a function mapping from X

to Y . Let A and B ⊆ X. We say f separates A and B when f(A) ∩ f(B) = ∅.

Let m,n and t be positive integers, and let w1, w2, ..., wt be positive integers in

non-decreasing order. To avoid trivial cases, assume that m ≥ 2 and t ≥ 2.

Definition 8.3. Let X and Y be two finite sets such that |X| = n and |Y | = m. Let F

be a family of functions {fi : X → Y, i ∈ [N ]}, for some positive integerN . Then F is an

(N ;n,m, {w1, w2, ..., wt})-separating hash family, or an SHF(N ;n,m, {w1, w2, ..., wt}),

if for any pairwise disjoint C1, C2, ..., Ct ⊆ X such that |Cj | ≤ wj , j ∈ [t], there exists

i ∈ [N ] such that fi separates C1, C2, ..., Ct (i.e. fi(C1), fi(C2), ..., fi(Ct) are pairwise

disjoint).

For any SHF(N ;n,m, {w1, w2, ..., wt}), we define its size, length, and type to be n,

N , and {w1, w2, ..., wt}, respectively.

The original definition of separating hash family had the stronger constraint that

|Ci| = wi. In our definition |Ci| ≤ wi. Such a change makes no difference when n

is large enough, but allows separating hash families to exist even when n is less than
t∑
i=1

wi. This is a similar situation to fingerprinting codes in the sense that the coalition

size can be anything up to k.

Example 22. Let X = {1, 2, 3, 4} and Y = {a, b, c, d}. Let F = {f1, f2, f3}, where

f1(1) = a, f1(2) = a, f1(3) = b, f1(4) = d,

f2(1) = a, f2(2) = b, f2(3) = c, f2(4) = c,

f3(1) = b, f3(2) = c, f3(3) = c, f3(4) = d.

Then F is an SHF(3; 4, 4, {1, 3}), but not an SHF(3; 4, 4, {2, 2}).

It is easy to see that F is an SHF(3; 4, 4, {1, 3}) since f2 can separate {2} from

{1, 3, 4}, and {1} from {2, 3, 4}, f1 can separate {3} from {1, 2, 4}, and {4} from

{1, 2, 3}. However, {1, 3} and {2, 4} can not be separated by any member of F . Thus,

F is not an SHF(3; 4, 4, {2, 2}).
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Once the parameters N,m, {w1, w2, ..., wt} have been given, it is not difficult to con-

struct a separating hash family provided that n is small enough. The problem is there-

fore to maximise n. If n is the largest number possible for the givenN,m, {w1, w2, ..., wt},

then we say that the separating hash family is optimal.

A separating hash family F can be portrayed as an N×n matrix where each column

is represented by a member of X and each row i represents the function fi. Here, the

element in row i and column x, for some x ∈ X, is the value of fi(x). The family F in

Example 22 can be illustrated by the following matrix:
a a b d

a b c c

b c c d

.

Let C be q-ary length ` code over an alphabet Q. We can construct a hash family

H(C) from C by defining H(C) to be a hash family {fi : C → Q, i ∈ [`]} where

fi(x) = xi for any x in C.

On the other hand, we can construct a code C over an alphabet Q from an existing

hash family. Let |X| = n and |Y | = m, and let F = {fi : X → Y, i ∈ [N ]}, for some

positive integer N , be a hash family. Let C(F) = {(f1(x), f2(x), ..., f`(x)) : x ∈ X}.

Then C(F) is a m-ary length N code over an alphabet Y containing n codewords.

The next two theorems show how separating hash families are related to secure

frameproof and frameproof codes. (See [30] for a more extensive literature review.)

Theorem 8.1.1 ( [33]). There is a q-ary length ` k-FP code C if and only if there is

an SHF(`; |C|, q, {1, k}).

Proof. Let C be a q-ary length ` k-FP code. Let C1, C2 ⊆ C be disjoint, where |C1| ≤ 1

and |C2| ≤ k. By the k-FP property, desc(C2) ∩ C = C2. Hence, desc(C2) ∩ C1 = ∅.

Therefore, there exists a coordinate i ∈ [`] where none of codewords in C2 agree with

the codeword in C1. This implies fi(C1) ∩ fi(C2) = ∅. We find that H(C) is an

SHF(`; |C|, q, {1, k}) as required.
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Let |X| = n, |Y | = q, and let F = {fi : X → Y, i ∈ [N ]} be an

SHF(`; |C|, q, {1, k}). Let C = C(F).

Let C2 be a subset of C of size at most k. For any codeword x ∈ C\C2, there exists

an i ∈ [`] such that fi({x}) ∩ fi(C2) = ∅. Hence, desc(C2) ∩ {x} = ∅. Consider

desc(C2) ∩ C = desc(C2)
⋂

(C2 ∪ C\C2)

= (desc(C2) ∩ C2)
⋃

(desc(C2) ∩ C\C2)

= (desc(C2) ∩ C2)
⋃desc(C2) ∩

⋃
x∈C\C2

{x}


= (desc(C2) ∩ C2)

⋃ ⋃
x∈C\C2

(desc(C2) ∩ {x})


= (desc(C2) ∩ C2)

⋃ ⋃
x∈C\C2

∅


= C2 ∪ ∅

= C2.

Hence, C is a q-ary length ` k-FP code.

Theorem 8.1.2 ( [33]). There is a q-ary length ` k-SFP code if and only if there is

an SHF(`; |C|, q, {k, k}).

Proof. Let C1, C2 be disjoint subsets of C of size at most k. By the k-SFP property,

desc(C1) ∩ desc(C2) = ∅. Therefore, there exists a coordinate i ∈ [`] where none of the

codewords in C1 agree with the codewords in C2. This implies fi(C1) ∩ fi(C2) = ∅.

Again, we get H(C) is an SHF(`; |C|, q, {k, k}) as required.

Let |X| = n, |Y | = q, and let F = {fi : X → Y, i ∈ [N ]} be an

SHF(`; |C|, q, {k, k}). Let C = C(F).

Let C1, C2 be disjoint subsets of C of size at most k. Then there exists an i ∈ [`]

such that fi(C1) ∩ fi(C2) = ∅. Hence, none of the codewords of C1 agree with the
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codewords of C2 in coordinate i. Thus desc(C1)∩desc(C2) = ∅. Therefore, C is a q-ary

k-SFP code of length `.

We can abuse terminology and say that k-FP codes are separating hash families

of type {1, w} and k-SFP codes are separating hash families of type {w,w}. IPP and

traceability codes are not in general equivalent to a class of separating hash families,

although 2-IPP codes are separating hash families of type {1, 1, 1} and {2, 2} simul-

taneously, see [21].

Since the special cases of separating hash families that are closely related to finger-

printing codes are of type {w1, w2} only, from this point onward, we reduce our field of

interest down to separating hash families of type {w1, w2}. Furthermore the following

two theorems give us a stronger reason to narrow our field of interest down. Both

theorem are easy consequences of the definition of separating hash family.

Theorem 8.1.3 ([30, 36]). Suppose that F is an SHF(N ;n,m, {w1, w2, ..., wt}), and

let w′1 ≤ w1. Then F is also an SHF(N ;n,m, {w′1, w2, ..., wt}).

This theorem holds for the following reason. If there exists a hash function f ∈ F

that pairwise separates a collections of sets Ci of size wi, f can also separate the sets

Ci when C1 is replaced by a smaller set.

Theorem 8.1.4 ([30, 36]). Suppose that F is an SHF(N ;n,m, {w1, w2, ..., wt}), and

define w′1 = w1 + w2. Then F is also an SHF(N ;n,m, {w′1, w3, ..., wt}).

This theorem holds for the following reason. If there exists a hash function f ∈ F

that pairwise separates a collections of sets Ci of size wi, f can also separate the sets

Ci when C1 and C2 are replaced by a union of C1 and C2.

Hence, the size of a separating hash family of type {w1, w2, ..., wt} is always bounded

above by the size of the largest separating hash family of type {w′1, w′2} for some w′1, w
′
2.
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8.2 Bounds on the Size of Separating Hash Families

In this section, we present the known bounds on the size of separating hash families of

type {w1, w2}. The best general result on the upper bounds on the size of separating

hash families of type {w1, w2} is stated by Bazrafshan and van Trung [7]. Their result

is as follows.

Theorem 8.2.1. Let m,n be positive integers, and let w1, w2 be positive integers in

non-decreasing order. If there exists an SHF(N ;n,m, {w1, w2}), then n ≤ (w1 + w2 −

1)m

⌈
N

w1+w2−1

⌉
.

The case of length 1 is trivial as can be seen in the two following theorems.

Theorem 8.2.2. Let m,n be positive integers greater than 1, and let w1, w2 be positive

integers in non-decreasing order. If there exists an SHF(1;n,m, {w1, w2}), then n ≤ m.

Proof. Let F = {f1 : X → Y } be an SHF(1;n,m, {w1, w2}). Assume that n ≥ m+ 1.

Then there exist x and y in X such that x 6= y and f(x) = f(y). Let C1 and C2 ⊆ C be

disjoint, such that x ∈ C1, y ∈ C2. Then f cannot separate C1 and C2, contradicting

the SHF(1;n,m, {w1, w2}) property. Therefore, n ≤ m.

The following matrix gives an SHF(1;m,m, {w1, w2}).(
1 2 ... m

)
Hence, one can see that the following theorem holds.

Theorem 8.2.3. Let m be a positive integer greater than 1, and let w1, w2 be positive

integers in non-decreasing order. An SHF(1;m,m, {w1, w2}) exists and is optimal.

The case of type {1, 1} is also trivial as can be seen in the two following theorems.

Theorem 8.2.4. Let m,n,N be positive integers greater than 1. If there exists an

SHF(N ;n,m, {1, 1}), then n ≤ mN .
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Proof. Let F = {f1, f2, ..., fN : X → Y } be an SHF(N ;n,m, {1, 1}). Assume that n ≥

mN + 1. Then there exist x and y in X such that x 6= y and (f1(x), f2(x), ..., fN (x)) =

(f1(y), f2(y), ..., fN (y)). Let C1 = {x} and C2 = {y}. Then C1, C2 are disjoint and none

of the functions f ∈ F can separate C1 and C2, contradicting the SHF(N ;n,m, {1, 1})

property. Therefore, n ≤ mN .

The following matrix gives an SHF(N ;mN ,m, {1, 1}). Note that every possible

column appears exactly once.



1 1 ... 1 1 2 2 ... 2 2 ... m m ... m m

1 1 ... m m 1 1 ... m m ... 1 1 ... m m

...
... ...

...
...

...
... ...

...
... ...

...
... ...

...
...

1 1 ... m m 1 1 ... m m ... 1 1 ... m m

1 2 ... m− 1 m 1 2 ... m− 1 m ... 1 2 ... m− 1 m


Hence, one can see that the following theorem holds.

Theorem 8.2.5. Let m,N be positive integers greater than 1. An SHF(N ;mN ,m, {1, 1})

exists and is optimal.

The Construction 3.1.2 for k-FP codes gives the following lower bound:

Theorem 8.2.6. Let q be a prime power. There exists an SHF(N ; qd
N
k
e, q, {1, k}).

The probabilistic results on the existence of k-IPP codes in Theorem 3.3.5 also gives

a lower bound for separating hash families of type {2, 2}.

Corollary 8.2.7. Let m be a positive integer greater than 1.

There exists an SHF(N ;mRN ,m, {2, 2}) where

R ≥ 1

3
logm

m3

5m2 − 8m+ 4
.

87



8.2. Bounds on the Size of Separating Hash Families 8. Separating Hash Families

Liu and Shen proposed explicit constructions of separating hash families from al-

gebraic curves over finite fields in [24] and achieved the following results.

Theorem 8.2.8 ([24], Theorem 3.2). Let q be a prime power and let c1 ≥ c2 ≥ 2 be real

numbers. There exists an SHF((q−1)qi; q(c1c2−2)q
i
, q2, {

⌊√
2
c1

(q
1
2 − 1)

⌋
,
⌊√

2
c2

(q
1
2 − 1)

⌋
}).

Stinson, Wei and Zhu [35] provide constructions for separating hash families using

error-correcting codes and orthogonal arrays, and establish the following existence re-

sults for separating hash families of type {w1, w2}; they fixed n,m,w1 and w2, and let

N grow.

Theorem 8.2.9 ([35], Theorem 4.4). For any positive integers m,w1 and w2, there ex-

ists an infinite class of SHF(N ;n,m, {w1, w2}) for which N is O((w1w2)
log∗(n)(log n)).

Where log∗(n) is defined recursively as follows:

log∗(n) =


1 when n=1

log∗(dlog ne) + 1 otherwise

.
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Chapter 9

Frameproof Codes: Separating

Hash Families Type {1, k}

In this chapter we focus on improving the previously known bounds for separating

hash families in some special cases that are related to frameproof codes. We achieve

new tight upper bounds for the size of 2-FP codes and k-FP codes when the length

` = 1 mod k. Our bounds are the best possible for many parameter values. We also

achieve new tight upper bounds for the size of k-FP codes when the length ` satisfies

k < ` ≤ 2k. Our new bounds resemble Theorem 3.1.2, which gives the best previously

known bounds for frameproof codes, but without the term O
(
qd

`
k
e−1
)

.

9.1 2-FP codes

In this section we aim to improve the previously known upper bound on the size of

hash families of type {1, 2}. This is equivalent to improving the known upper bounds

on 2-FP codes.

We aim to prove the following result.

Theorem 9.1.1. Let m,n be positive integers greater than 1, and let d be a non-

negative integer. If there exists an SHF(2d + r;n,m, {1, 2}), where r ∈ [2], then n ≤
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r(m− (r − 1))d+1.

Which is equivalent to proving:

Theorem 9.1.2. Let C be a q-ary 2-FP code of length ` = 2d + r, where d is a

non-negative integer and r ∈ [2]. Then

|C| ≤ r(m− (r − 1))d+1.

When r = 2, i.e., when N is even in Theorem 9.1.1, the theorem follows from

Theorem 3.1.1. For if we substitute ` by 2d + 2 in Theorem 8.2.1, we obtain the

following corollary.

Corollary 9.1.3. Let m,n be positive integers greater than 1, and let d be a positive

integer. If there exists an SHF(2d;n,m, {1, 2}), then n ≤ 2(m− 1)d.

However, note that Theorem 3.1.1. does not give the result we want when N is

odd. The best previously known bound in this case can be obtained by substituting `

by 2d+ 1 in Theorem 3.1.2, to obtain the following corollary.

Corollary 9.1.4. Let m,n be positive integers greater than 1, and let d be a non-

negative integer. If there exists an SHF(2d+ 1;n,m, {1, 2}), then n ≤ md+1 +O
(
md
)
.

Thus, only the case r = 1, i.e., the case when N is odd, is yet to be shown.

To make it easier for us to generate proofs for better bounds on the size of

SHF(N ;n,m, {1, 2}), it is necessary that we introduce some additional terms and no-

tation.

Definition 9.1. Let F = {fi : X → Y, i ∈ [N ]} be an SHF(N ;n,m, {w1, w2}).

For any x ∈ X, any i ∈ [N ], and any I ⊆ [N ], let xi = fi(x), and let xI = (fj(x))j∈I .

We say x is unique under I if |{z ∈ X : zI = xI}| = 1, and we say x is non-unique

under I when |{z ∈ X : zI = xI}| > 1. For any I ⊆ {1, 2, ..., N}, let UI = {x ∈ X :

x is unique under I}, and let VI = {x ∈ X : x is non-unique under I}.
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The following theorem gives new bounds on the size of SHF(N ;n,m, {1, 2}) in the

case when N is odd, thus establishing Theorem 9.1.1.

Theorem 9.1.5. Let m,n be positive integers greater than 1, and let d be a non-

negative integer. If there exists an SHF(2d+ 1;n,m, {1, 2}), then n ≤ md+1.

The bounds in Theorem 9.1.5 are the best possible for many parameter values. Li,

van Rees and Wei [23] show that the bounds in Theorem 9.1.5 are optimal when N = 3

and provide an explicit construction of an optimal SHF(3;m2,m, {1, 2}) using Steiner

triple systems of order m, when m = 1, 3 mod 6. The bounds in Theorem 9.1.5 are

also optimal when m is a prime power. The easiest example would be constructing

a corresponding frameproof code by Reed-Solomon code of minimum distance d =

1
2(`+ 1). (See Construction 3.1.2 for 2-FP codes.)

Proof of Theorem 9.1.5. Let F = {f1, f2, ..., f2d+1 : X → Y } be an SHF(2d+1;n,m, {1, 2}).

Assume that n ≥ md+1 + 1.

Let Id+1 be the set of all (d + 1)-subsets of [2d + 1]. For any I ∈ Id+1, since

|X| ≥ md+1 + 1 there are at least
⌈
md+1+1
md+1

⌉
= 2 elements x and y from X such that

xI = yI , by the pigeonhole principle.

Let I ∈ Id+1 maximise the number of x ∈ X where x is non-unique under I. Let

X ′ = VI . Denote |X ′| by s. Then s ≥ 2.

Observe that for any x ∈ X ′, it is necessary that x is unique under J = [2d+ 1]\I.

To show this, assume that there exists z ∈ X\{x} such that zJ = xJ . So, x and z can

not be separated by any fi ∈ F where i ∈ J . Since x ∈ X ′ there exists x′ ∈ X\{x}

such that fI(x
′) = fI(x). We have that x′ 6= z for otherwise we get fi(z) = fi(x) for

all i ∈ [2d + 1], which implies x = z. Therefore f({x}) ∩ f({x′, z}) 6= ∅ for all f ∈ F .

Hence the contradiction occurs.

Now we consider X\X ′. All x ∈ X ′ are unique under J , hence the image of fJ |X\X′

has size at most md − s. Denote the distinct images of X\X ′ by y1, y2, ..., ymd−s. Let

Xi = {x ∈ X\X ′ : fJ(x) = yi}.
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Let j ∈ I be fixed. Define I0 ∈ Id+1 by I0 = J ∪ {j}. Observe that each Xi

contributes at least |Xi| −m non-unique images under fI0 , since fj maps to at most m

alphabet symbols. Therefore, the number of x ∈ X that are non-unique under I0 is at

least

md−s∑
k=1

(|Xi| −m) =
md−s∑
k=1

|Xi| −
md−s∑
k=1

m

= |X\X ′| −m(md − s)

≥ (md+1 + 1− s)−m(md − s)

= md+1 + 1− s−md+1 + sm

= s(m− 1) + 1.

Thus, the number of x ∈ X such that fI0(x) is non-unique is at least s(m−1)+1 ≥

s+ 1 > s, which contradicts our choice of I. Therefore n ≤ md+1.

We apply the same technique as in the proof of Theorem 9.1.5 to prove a new upper

bound for the more general case in the next section.

The results by Bazrafshan and van Trung [8] also assert that our bound is the

best possible for 2-FP code of odd length. They derive a contradiction by finding an

existence of a forbidden recursive pattern when the size of the code is greater than

md+1.

9.2 k-FP codes of length ` where ` = 1 mod k

In this section, we aim to prove the following result which is actually a generalised

version of Theorem 9.1.5.

Theorem 9.2.1. Let m,n and k be positive integers greater than 1 where m ≥ 2(k−1),

and let h be a non-negative integer. If there exists an SHF(kh + 1;n,m, {1, k}), then

n ≤ mh+1.

92



9.2. k-FP codes of length ` where ` = 1 mod k 9. Frameproof Codes: SHFs of Type {1, k}

Which is equivalent to proving the following theorem.

Theorem 9.2.2. Let C be a q-ary k-FP code of length ` = kh+ 1, where q ≥ 2(k− 1).

Then

|C| ≤ qh+1.

At a glance, one can see that the bound is much tighter than the bound from

Theorem 8.2.1. Moreover, this bound gives the same leading term as in Theorem 3.1.2

without the term O
(
qd

`
k
e−1
)

.

Again, the Construction 3.1.2 ensures that the bounds in Theorem 9.2.1 are optimal

when m is a prime power.

We use the same techniques as in the proof of Theorem 9.1.5 to prove Theorem

9.2.1. However, proving the existence of the set J is not as simple. Hence, it requires

some extra work.

Here we give the definition and a relevant theorem of a combinatorial object that

will be useful in the proof of Theorem 9.2.1.

Definition 9.2. A family S of subsets of a set is t-colliding if S does not contain t

pairwise disjoint subsets.

Theorem 9.2.3 ([10], Theorem 11). Let t, k and ` be positive integers such that ` ≥ tk.

Let S be a t-colliding family of subsets of [`], where |S| = k for all S ∈ S. Then

|S| ≤
(
`

k

)
(t− 1)k

`
.

Proof of Theorem 9.2.1. Let F = {f1, f2, ..., fkh+1 : X → Y } be an SHF(kh+1;n,m, {1, k}).

Assume that n ≥ mh+1 + 1.

For any i ∈ [kh+ 1], let Ii be the set of all i-subsets of [`]. For any I ∈ Ih+1, there

are at least 2 elements x, x′ ∈ X with xI = x′I , by the pigeonhole principle.
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Let Imax ∈ Ih+1 maximise the number of x ∈ X where x is non-unique under Imax.

Let s = |VImax |. The previous paragraph shows that s ≥ 2.

Claim. There exists J ∈ Ih such that J ∩ Imax = ∅ and at least 1
k−1 |VImax | elements

x ∈ VImax are unique under J .

Once we are confident that the claim is true, the rest of the proof follows as in the

later part of the proof of Theorem 9.1.5. However, unlike in Theorem 9.1.5, the validity

of the claim is not easy to see. Hence we need extra work to justify the claim.

For each x ∈ VImax define Jx to be the set of all h-subsets I ′ of [`]\Imax such that

x is non-unique under I ′. Then, Jx must be a (k − 1)-colliding family; we can see this

as follows.

Assume that Jx is not a (k− 1)-colliding family. Then there exist pairwise disjoint

sets J1, J2, ..., Jk−1 in Jx such that

k−1⋃
i=1

Ji = [`]\Imax.

Let z be an element of VImax\{x} such that zImax = xImax , and, for each i ∈ [k−1], let zi

be an element ofX\{x} such that ziJi = xJi . This makes f({x})∩f({z1, z2, ..., zk−1, z}) 6=

∅ for all f ∈ F , contradicting to the SHF(kh + 1;n,m, {1, k}) property of F . Hence,

Jx is a (k − 1)-colliding family.

Therefore by Theorem 9.2.3,

|Jx| ≤
(
`− (h+ 1)

h

)
((k − 1)− 1)h

`− (h+ 1)

=

(
(k − 1)h

h

)
(k − 2)h

(k − 1)h

=

(
(k − 1)h

h

)
(k − 2)

(k − 1)
.

Since there are
(`−(h+1)

h

)
=
((k−1)h

h

)
different h-subsets of [`]\Imax, the number of

94



9.2. k-FP codes of length ` where ` = 1 mod k 9. Frameproof Codes: SHFs of Type {1, k}

h-subsets I of [`]\Imax such that x is unique under I is

(
(k − 1)h

h

)
− |Jx| ≥

(
(k − 1)h

h

)
−
(

(k − 1)h

h

)
(k − 2)

(k − 1)

=

(
(k − 1)h

h

)
1

(k − 1)
.

This implies each x ∈ VImax is unique in at least
((k−1)h

h

)
1

(k−1) h-subsets of [`]\Imax.

Hence, there exists J ∈ Ih such that J ∩ Imax = ∅ and at least 1
k−1 |VImax | elements

x ∈ VImax are unique under J . This establishes our claim and from this point we can

deploy the technique we use in Theorem 9.1.5.

Now we consider X\VImax . The number of h-tuples of the form xJ when x ∈

X\VImax is at most mh − 1
k−1s, by our choice of J . Denote the distinct h-tuples xJ

when x ∈ X\VImax by y1, y2, ..., ymh− 1
k−1

s. Let Xi = {x ∈ X\VImax : xJ = yi}.

Let j ∈ [kh + 1]\J be fixed, and define I0 ∈ Ih+1 by I0 = J ∪ {j}. Observe that

each Xi contributes at least |Xi| −m non-unique (h + 1)-tuples under I0, since there

are at most m symbols occur in the jth coordinate.

Therefore, the number of x ∈ X that xI0 is non-unique is at least

mh− 1
k−1

s∑
h=1

(|Xi| −m) =

mh− 1
k−1

s∑
h=1

|Xi| −
mh− 1

k−1
s∑

h=1

m

= |X\VImax | − (mh − 1

k − 1
s)m

≥ (mh+1 + 1− s)− (mh − 1

k − 1
s)m

= mh+1 + 1− s−mh+1 +
1

k − 1
sm

= 1 + s(
1

k − 1
m− 1).

Thus, the number of x ∈ X that non-unique under I0, is at least

1 + s(
1

k − 1
m− 1).
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Recall that m ≥ 2(k − 1). Hence

1 + s(
1

k − 1
m− 1) ≥ 1 + s

> s,

which contradicts our choice of Imax.

Therefore n ≤ mh+1. Now, we obtain Theorem 9.2.1 as required.

9.3 k-FP codes of length ` where k < ` ≤ 2k

In this Section, we aim to prove the following theorem.

Theorem 9.3.1. Let m,n, k be positive integers greater than 1, where m > k, and let

r be an integer such that 0 < r ≤ k. If F is an SHF(k + r;n,m, {1, k}). Then

n ≤ γm2,

where γ = k+r
k−r+2 .

Which is equivalent to proving the following theorem in frameproof codes language.

Theorem 9.3.2. Let C be a q-ary k-FP code of length ` where k < ` ≤ 2k and m > k.

Let r be positive integer such that r = `− k. Then 0 < r ≤ k and

n ≤ γm2,

where γ = k+r
k−r+2 .

The recent recursive construction by Meng Chee and Zhang [25] ensures that when

r = 2 there always exists a k-FP code of size k+2
k (m − 1)2 + 1. Hence our bound is

tight for some parameters.

We first compare our bound with two previously known results, one from separating

hash families, one from frameproof codes. Here is a bound derived from the general
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result on upper bounds of separating hash families by Bazrafshan and van Trung [7],

see Theorem 8.2.1.

Corollary 9.3.3. Let m,n, k be positive integers greater than 1 and let r be an integer

such that 0 < r ≤ k. If F is an SHF(k + r;n,m, {1, k}). Then

n ≤ km2.

We now state the best previously known result on the upper bound of frameproof

codes by Blackburn [10]. Note that the original result is written in frameproof codes

language (see Theorem 3.1.2).

Corollary 9.3.4. Let m,n, k be positive integers greater than 1 and let r be an integer

such that 0 < r ≤ k. If F is an SHF(k + r;n,m, {1, k}). Then

n ≤ γm2 +O
(
md

`
k
e−1
)
,

where γ = k+r
k−r+2 .

Note that 1 ≤ γ ≤ k, where γ = 1 and k only when r = 1 and k, respectively.

Hence the leading term in Corollary 9.3.4 is generally better than the leading term in

Corollary 9.3.3 . Now we prove our new result, Theorem 9.3.1, which eliminates the

term O
(
md

`
k
e−1
)

from the bound in Corollary 9.3.4.

Proof of Theorem 9.3.1. Let F = {f1, f2, ..., fk+r : X → Y } be an SHF(k+r;n,m, {1, k}).

Let S1, S2, ..., Sk be pairwise disjoint subsets of [k+r], where the cardinality of Si is

2 for i ≤ r and 1 otherwise. Recall the definition of unique and non-unique in Section

9.1. We claim

1. S1 ∪ S2 ∪ ... ∪ Sk = [k + r],

2. US1 ∪ US2 ∪ ... ∪ USk
= X.
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The first assertion is not difficult to see since Si are pairwise disjoint and
k∑
i=1

|Si| =

2r + 1(k − r) = k + r. The later one can be seen from the following contradiction.

Assume for a contradiction that US1 ∪ US2 ∪ ... ∪ USk
6= X. Then, there exists

x ∈ X\ (US1 ∪ US2 ∪ ... ∪ USk
). Hence x 6∈ USi for all i ∈ [k]. Therefore, for every

i ∈ [k], there exists yi ∈ X\{x} such that fj(y
i) = fj(x) for all j ∈ Si, i.e., none of

functions fj , j ∈ Si can separate x and yi. Let C1 = {x}, C2 = {y1, ..., yk}. We have

|C1| ≤ 1, |C2| ≤ k and C1, C2 are disjoint. Since S1 ∪ S2 ∪ ... ∪ Sk = [k + r], none

of function fj ∈ F can separate C1 and C2, contradicting the SHF(k + r;n,m, {1, k})

property of F . Therefore, US1 ∪ US2 ∪ ... ∪ USk
= X. This proves our claim.

Let

W =
⋃

S⊆[k+r]:|S|=1

US

and let Z = X\W . For any I ⊆ [k+r], define ΓI = UI ∩Z. For any choice of S1, ..., Sk,

we have that ΓSi = USi ∩ Z = ∅ whenever i ≥ r + 1 and

ΓS1 ∪ ΓS2 ∪ ... ∪ ΓSr = (US1 ∩ Z) ∪ (US2 ∩ Z) ∪ ... ∪ (USr ∩ Z)

= (US1 ∩ Z) ∪ (US2 ∩ Z) ∪ ... ∪ (USk
∩ Z)

= (US1 ∪ US2 ∪ ... ∪ USk
) ∩ Z

= X ∩ Z

= Z. (9.1)
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By the definition of Z and W , we have

|Z| = |X\W |

= |X| − |W |

≥ |X| − (|U{1}|+ |U{2}|+ ...+ |U{k+r}|)

= n−
∑

i∈[k+r]

|U{i}|. (9.2)

We improve our upper bound of SHF(k + r;n,m, {1, k}) by providing an upper

bound on |Z| by counting the elements of the following set K in two ways:

K = {(x, S) : x ∈ ΓS , S ⊆ [k + r] of cardinality 2}.

There are
(
k+r
2

)
choices for the subset S. For any x ∈ Z, let Jx be defined by

Jx = {S ⊂ [k + r] : |S| = 2 and x 6∈ ΓS}.

Once x is fixed, there are
(
k+r
2

)
− |Jx| choices for S such that (x, S) ∈ K.

Jx is r-colliding since if there exist pairwise disjoint subsets S1, S2, ..., Sr ∈ Jx, then

x 6∈ ΓS1 ∪ ΓS2 ∪ ... ∪ ΓSr . This implies x 6∈ Z by (9.1), contradicting our choice of x.

Hence, Jx is r-colliding. Therefore, by Theorem 9.2.3,

|Jx| ≤
(
k + r

2

)
2(r − 1)

k + r
. (9.3)
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Therefore,

|K| =
∑
x∈Z

((
k + r

2

)
− |Jx|

)
≥
∑
x∈Z

((
k + r

2

)
−
(
k + r

2

)
2(r − 1)

k + r

)
by (9.3)

= |Z|
((

k + r

2

)
−
(
k + r

2

)
2(r − 1)

k + r

)
≥ (n−

∑
i∈[k+r]

|U{i}|)
((

k + r

2

)
−
(
k + r

2

)
2(r − 1)

k + r

)
by (9.2)

= (n−
∑

i∈[k+r]

|U{i}|)
(
k + r

2

)(
1− 2(r − 1)

k + r

)

= (n−
∑

i∈[k+r]

|U{i}|)
(
k + r

2

)(
(k + r)− 2(r − 1)

k + r

)

= (n−
∑

i∈[k+r]

|U{i}|)
(
k + r

2

)(
k − r + 2

k + r

)

=

(
k+r
2

)
γ

n− ∑
i∈[k+r]

|U{i}|

 .

Hence, we have

|K| ≥
(
k+r
2

)
γ

n− ∑
i∈[k+r]

|U{i}|

 . (9.4)

On the other hand, for any fixed S, there are |ΓS | choices for x such that (x, S) ∈ K.

Let S = {i, j}. We have

ΓS = US ∩ Z

= US\W

= US\(U{1} ∪ U{2} ∪ ... ∪ U{k+r})

⊆ US\(U{i} ∪ U{j}).

Hence, for any x in ΓS , x is unique under S, but non-unique under {i} and {j}. The
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combination of functions fi and fj can give up to m2 different images (fi(c), fj(c)) for

element c ∈ X. However, since fi(x) and fj(x) are not unique there are at most

(m− |U{i}|)(m− |U{j}|) = m2 −m(|U{i}|+ |U{j}|) + |U{i}||U{j}|

possible images (fi(x), fj(x)) for elements x ∈ ΓS .

Now, we have

|K| =
∑

S⊆[k+r]:|S|=2

|ΓS | ≤
∑

S⊆[k+r]:|S|=2

(m2 −m(|U{i}|+ |U{j}|) + |U{i}||U{j}|)

=
1

2

∑
i,j∈[k+r]
i 6=j

(m2 −m(|U{i}|+ |U{j}|) + |U{i}||U{j}|)

=
1

2

∑
i,j∈[k+r]
i 6=j

m2 − 1

2

∑
i,j∈[k+r]
i 6=j

m(|U{i}|+ |U{j}|) +
1

2

∑
i,j∈[k+r]
i 6=j

|U{i}||U{j}|

=
1

2
2

(
k + r

2

)
m2 − 1

2
2(k + r − 1)m

∑
i∈[k+r]

|U{i}|+
1

2

∑
i,j∈[k+r]
i 6=j

|U{i}||U{j}|

=

(
k + r

2

)
m2 − (k + r − 1)m

∑
i∈[k+r]

|U{i}|+
1

2

∑
i,j∈[k+r]
i 6=j

|U{i}||U{j}|.

So,

|K| ≤
(
k + r

2

)
m2 − (k + r − 1)m

∑
i∈[k+r]

|U{i}|+
1

2

∑
i,j∈[k+r]
i 6=j

|U{i}||U{j}|. (9.5)

From (9.4) and (9.5), we have

(
k+r
2

)
γ

n− ∑
i∈[k+r]

|U{i}|

 ≤(k + r

2

)
m2 − (k + r − 1)m

∑
i∈[k+r]

|U{i}|

+
1

2

∑
i,j∈[k+r]
i 6=j

|U{i}||U{j}|.
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Therefore,

n ≤ γm2 − (k + r − 1)γm(
k+r
2

) ∑
i∈[k+r]

|U{i}|+
γ

2
(
k+r
2

) ∑
i,j∈[k+r]
i 6=j

|U{i}||U{j}|+
∑

i∈[k+r]

|U{i}|

= γm2 −


(

(k + r − 1)γm(
k+r
2

) − 1

) ∑
i∈[k+r]

|U{i}| −
γ

2
(
k+r
2

) ∑
i,j∈[k+r]
i 6=j

|U{i}||U{j}|

 .

We claim that

(
(k + r − 1)γm(

k+r
2

) − 1

) ∑
i∈[k+r]

|U{i}| −
γ

2
(
k+r
2

) ∑
i,j∈[k+r]
i 6=j

|U{i}||U{j}| ≥ 0 (9.6)

If (9.6) holds, we have n ≤ γm2 − 0 = γm2, which will complete the proof.

Considering each term of (9.6), we have

(
(k + r − 1)γm(

k+r
2

) − 1

) ∑
i∈[k+r]

|U{i}| =

(
(k + r − 1)m
(k+r)(k+r−1)

2

k + r

k − r + 2
− 1

) ∑
i∈[k+r]

|U{i}|

=

(
2m

k − r + 2
− 1

) ∑
i∈[k+r]

|U{i}|

=
2m− (k − r + 2)

k − r + 2

∑
i∈[k+r]

|U{i}|,

and since |U{j}| ≤ m for all j ∈ [k + r], we have

γ

2
(
k+r
2

) ∑
i,j∈[k+r]
i 6=j

|U{i}||U{j}| ≤
γ

2
(
k+r
2

) ∑
i,j∈[k+r]
i 6=j

|U{i}|m

=
γ(k + r − 1)m

2
(
k+r
2

) ∑
i∈[k+r]

|U{i}|

=
(k + r)(k + r − 1)m

2(k − r + 2) (k+r)(k+r−1)2

∑
i∈[k+r]

|U{i}|

=
m

k − r + 2

∑
i∈[k+r]

|U{i}|.
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Hence

(
(k + r − 1)γm(

k+r
2

) − 1

) ∑
i∈[k+r]

|U{i}| −
γ

2
(
k+r
2

) ∑
i,j∈[k+r]
i 6=j

|U{i}||U{j}|

≥2m− (k − r + 2)

k − r + 2

∑
i∈[k+r]

|U{i}| −
m

k − r + 2

∑
i∈[k+r]

|U{i}|

=
m− (k − r + 2)

k − r + 2

∑
i∈[k+r]

|U{i}|.

Since r ≥ 1, m ≥ k + 1 and
∑

i∈[k+r]

|U{i}| ≥ 0, we have

m− (k − r + 2)

k − r + 2

∑
i∈[k+r]

|U{i}| ≥
(k + 1)− (k − 1 + 2)

k − r + 2

∑
i∈[k+r]

|U{i}|

≥ 0

k − r + 2
0

= 0.

Hence (9.6) holds and the theorem follows.
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Chapter 10

Secure Frameproof Codes:

Separating Hash Families of

Type {k, k}

In this chapter, we focus on improving previously known upper bounds for separating

hash families of type {k, k}; in other words, we improve bounds on the size of secure

frameproof codes. The first section is devoted to separating hash families of types

{2, 2}, i.e. 2-SFP codes, of short length (namely, length 4 or less). This is followed by

the special case of length 5 for which we reduce the size of upper bound by a factor of

2
3 compared with the best previously known bound. We then give improved bounds for

separating hash families of type {k, k} of length `, where ` = 2k. This is followed by

the improvement on upper bounds on the size of perfect hash families of type {w1, w2}

of length `, where (w1 + w2) − 1 < ` ≤ 2w2. We explore and improve bounds for

separating hash families of type {k, k} of short length (` ≤ k) in the last section.
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10.1 Optimal 2-SFP codes of length 4 or less

Recall the definition of optimal separating hash family from Chapter 8. In this section,

we identify optimal separating hash familiies of type {2, 2} by studying the bounds on

their sizes. Our study focuses on those families of small length, i.e., N ≤ 4. We omit

the case of length 1 since it is trivial.

10.1.1 Length 2

Theorem 10.1.1. Let m,n be positive integers greater than 1. If there exists an

SHF(2;n,m, {2, 2}), then n ≤ m.

Proof. Let F = {fi : X → Y, i ∈ {1, 2}} be an SHF(2;n,m, {2, 2}). Assume that

n ≥ m + 1. Then there exist x and y in X such that x 6= y and f1(x) = f1(y). Also

there exist w and z in X such that w 6= z and f2(w) = f2(z). Without loss of generality,

assume that x 6= z and y 6= w. Let C1 = {x,w}, C2 = {y, z}. Then both f1 and f2

cannot separates images of C1 and C2, contradicting the SHF(2;n,m, {2, 2}) property.

Therefore, n ≤ m.

It is easy to check that the following matrix gives an SHF(2;m,m, {2, 2}).1 2 ... m

1 2 ... m


Hence, the following theorem holds.

Theorem 10.1.2. Let m be a positive integer greater than 1. An SHF(2;m,m, {2, 2})

exists and is optimal.

10.1.2 Length 3

The next theorem is deduced from Theorem 8.2.1. Substituting N,w1, w2 in Theorem

8.2.1 by 3, 2, 2, respectively, we obtain the following result.
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Corollary 10.1.3. Let m,n be positive integers greater than 1. If there exists an

SHF(3;n,m, {2, 2}), then n ≤ 3m.

The results of Bazrafshan and van Trung [6] show that the optimal bounds for the

values of m from 2 to 7 are at most 2m, hence the bound above is not always tight.

10.1.3 Length 4

Theorem 10.1.4. Let m,n be positive integers greater than 1. If there exists an

SHF(4;n,m, {2, 2}), then n ≤ m2.

Proof. Let F = {fi : X → Y, i ∈ {1, 2, 3, 4}} be an SHF(4;n,m, {2, 2}). Assume that

n ≥ m2 +1. Since there are at most m2 different ordered pairs (f1(a), f2(a)) for a ∈ X,

there exist x and y in X such that x 6= y and (f1(x), f2(x)) = (f1(y), f2(y)). Likewise,

there exist w and z in X such that w 6= z and (f3(w), f4(w)) = (f3(z), f4(z)). Without

loss of generality, assume that x 6= z and y 6= w. Let C1 = {x,w}, C2 = {y, z}. Then

none of fi ∈ F can separate C1 and C2, contradicting the SHF(4;n,m, {2, 2}) property.

Therefore, n ≤ m2.

We present an SHF(4; 9, 3, {2, 2}):

1 1 1 2 2 2 3 3 3

1 2 3 1 2 3 1 2 3

1 2 3 2 3 1 3 1 2

1 2 3 3 1 2 2 3 1


It is easily observed that in the above matrix every two columns agree in exactly

one position. Hence, the above matrix represents an SHF(4; 9, 3, {2, 2}). This shows

that the above bound is tight and optimal for m = 3.

10.2 2-SFP codes of Length 5

This section contains one of our main results of this chapter: a new upper bound on

the size of SHF(5;n,m, {2, 2}). We begin by reviewing some previously known upper
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bounds on the size of SHF(5;n,m, {2, 2}). We then explain our contribution.

The best previously known upper bound can be obtained directly from Theorem

8.2.1 by substituting w1 and w2 by 2. When N = 5 we have:

Corollary 10.2.1. Let m,n be positive integers greater than 1. If there exists an

SHF(5;n,m, {2, 2}), then n ≤ 3m2.

Before showing our improved bounds, we state another useful result by Bazrafshan

and van Trung in [7].

Theorem 10.2.2 ([7]). If there exists an SHF(N ;n,m, {w1, w2}) with w2 ≥ 2, then

there exists an SHF(N − 1;n′,m, {w1, w2 − 1}) with n′ ≥ n−m.

The next corollary follows naturally from Theorem 10.2.2 and Theorem 8.2.1 .

Corollary 10.2.3. Let m,n be positive integers greater than 1. If there exists an

SHF(5;n,m, {2, 2}), then n ≤ 2m2 +m.

Proof. Let F be an SHF(5;n,m, {2, 2}).

By Theorem 10.2.2, there exists an SHF(4;n′,m, {1, 2}) with n′ ≥ n−m. By Theorem

8.2.1, we have n′ ≤ 2m2. This implies n ≤ n′+m ≤ 2m2 +m. Therefore, n ≤ 2m2 +m

as required.

Hence, we have got an improved upper bound on the size of SHF(5;n,m, {2, 2}).

Nevertheless, this is not the bound we desire. Our ultimate aim in this section is to

improve this bound further to n ≤ 2m2.

The following theorem provides a slightly better bound than that given in Corollary

10.2.3. Even though the theorem only brings the upper bound down by 2, the technique

using in the proof is a key technique leading us to the main contribution of this section

in which we drastically reduce the upper bound on the size of SHF(5;n,m, {2, 2}) to

2m2. However, the details of the proof are very similar to the proof of the next theorem.

Therefore, if the reader is eager to read the main result, we advise to skip reading the

proof of this theorem.
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Theorem 10.2.4. Let m,n be positive integers greater than 1. If there exists an

SHF(5;n,m, {2, 2}), then n ≤ 2m2 +m− 2.

Proof. Let F be an SHF(5;n,m, {2, 2}). Assume for a contradiction that n ≥ 2m2 +

m− 1.

For r ∈ [m− 1], let P (r) be the following statement;

There are r disjoint sets of 4 distinct elements a, b, c, x in X that satisfy all the

following 4 conditions:

1. a5 = x5, a{1,2} 6= x{1,2} and a{3,4} 6= x{3,4}.

2. b{1,2} = a{1,2} and b{3,4} = x{3,4}.

3. c{1,2} = x{1,2} and c{3,4} = a{3,4}.

4. No element p in X other than a, b, c, and x is such that p{1,2} = a{1,2}, p{3,4} =

a{3,4}, p{1,2} = x{1,2}, p{3,4} = x{3,4}, or p5 = a5 = x5.

We will prove the P (r) holds for all r ∈ [m − 1], by induction on r. We will then

show that P (m− 1) leads to a contradiction, establishing the theorem.

The base case: r = 1. As n ≥ 2m2 +m− 1 and m ≥ 2, there are at least 9 elements

in X. Recall the definition of VI from Definition 9.1. For any I = {i, j} ⊆ [5], there

are at most m2 different ordered pairs uI = (fi(u), fj(u)) for u ∈ X. So there can be

at most m2 − 1 unique elements uI under {i, j}. Hence,

|V{i,j}| ≥ (2m2 +m− 1)− (m2 − 1)

= m2 +m.
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Therefore,

|V{1,2} ∩ V{3,4}| ≥ |V{1,2}|+ |V{3,4}| − n

≥ (m2 +m) + (m2 +m)− (2m2 +m− 1)

= m+ 1.

This implies there are at least m + 1 elements in X that are non-unique under both

{1, 2} and {3, 4}. Then, there exist two distinct elements a and x in V{1,2}∩V{3,4} such

that a5 = x5. We will now show that a{1,2} 6= x{1,2} and a{3,4} 6= x{3,4}.

Assume a{1,2} = x{1,2}. Since |V{3,4}| ≥ m2 +m ≥ 6, we can easily find two distinct

elements b and y in V{3,4}\{a, x} such that b{3,4} = y{3,4}. Then C1 = {a, b} and

C2 = {x, y} violates the SHF(5;n,m, {2, 2}) property. A similar argument derives a

contradiction from the equality a{3,4} = x{3,4}. Hence, we have shown that there exist

two distinct elements a and x in V{1,2} ∩ V{3,4} that a5 = x5, a{1,2} 6= x{1,2}, and

a{3,4} 6= x{3,4}.

Let b ∈ V{1,2}\{a} such that b{1,2} = a{1,2} and let y ∈ V{3,4}\{x} such that

y{3,4} = x{3,4}. Consider C1 = {a, y}, C2 = {b, x}. From our choice of b and y, we have

a 6= x, a 6= b, x 6= y, and

a{1,2} = b{1,2},

y{3,4} = x{3,4},

a5 = x5.

which contradicts the SHF(5;n,m, {2, 2}) property if b 6= y. So b and y must be equal.

Hence, there exists an element b ∈ X\{a, x} such that b{1,2} = a{1,2} and b{3,4} = x{3,4}.

On the other hand, since both a and x are in V{1,2}∩V{3,4}, there exist z ∈ V{1,2}\{x}

such that z{1,2} = x{1,2} and there exists c ∈ V{3,4}\{a} such that c{3,4} = a{3,4}.

Consider C1 = {a, z}, C2 = {c, x}. From our choice of c and z, we have a 6= x, a 6= c,
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x 6= z, and

z{1,2} = x{1,2},

a{3,4} = c{3,4},

a5 = x5.

which contradicts the SHF(5;n,m, {2, 2}) property if c 6= z. So c and z must be equal.

Hence, there exists an element c ∈ X\{a, x} such that c{1,2} = x{1,2} and c{3,4} = a{3,4}.

By looking at the first two coordinates, we can see that b 6= c since b{1,2} = a{1,2} 6=

x{1,2} = c{1,2}. Now, we have shown that there exist four distinct elements that satisfy

the first three conditions of our inductive hypothesis P (1). The next step is to show

that the fourth condition holds. Consider the four distinct elements a, b, c, and x:

forming a table where the entry indexed by row y and column fi is fi(y), we may write

f1 f2 f3 f4 f5

a a1 a2 a3 a4 a5

x x1 x2 x3 x4 a5

b a1 a2 x3 x4 ∗

c x1 x2 a3 a4 ∗

where a1, a2, a3, a4, a5, x1, x2, x3, x4 ∈ Y such that a1a2 6= x1x2, and a3a4 6= x3x4, and

∗ can be any alphabet symbol in Y .

If there exists an element d, e, f, g or h ∈ X\{a, b, c, x} of the following forms, then

we can always form C1 and C2 that violates the SHF(5;n,m, {2, 2}) property:
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f1 f2 f3 f4 f5

d a1 a2 ∗ ∗ ∗

e x1 x2 ∗ ∗ ∗

f ∗ ∗ a3 a4 ∗

g ∗ ∗ x3 x4 ∗

h ∗ ∗ ∗ ∗ a5

The choice of C1 and C2 that violates the SHF(5;n,m, {2, 2}) property in each case

is as follows: choose C1 = {a, b}, C2 = {x, d} when d exists; choose C1 = {a, e}, C2 =

{x, c} when e exists; choose C1 = {a, c}, C2 = {x, f} when f exists; choose C1 =

{a, g}, C2 = {x, b} when g exists; and choose C1 = {a, x}, C2 = {b, h} when h exists.

Hence, none of the elements p in X other than a, b, c, and x has p{1,2} = a{1,2},

p{3,4} = a{3,4}, p{1,2} = x{1,2}, p{3,4} = x{3,4}, or p5 = a5 = x5. Note that there are at

most m2 ≥ 4 different ordered pairs for u ∈ X under {1, 2} and {3, 4}, and at most

m ≥ 2 different alphabet symbols under {5}. Therefore, the fourth condition holds.

This implies P (1) is true and the proof is complete in the case m = 2.

Inductive step: Assume m ≥ 3. Let k ∈ [m − 2]. Suppose P (k) holds. Therefore,

there are k disjoint sets of 4 distinct elements a, b, c, x in X that satisfy all the following

4 conditions:

1. a5 = x5, a{1,2} 6= x{1,2} and a{3,4} 6= x{3,4}.

2. b{1,2} = a{1,2} and b{3,4} = x{3,4}.

3. c{1,2} = x{1,2} and c{3,4} = a{3,4}.

4. No element p in X other than a, b, c, and x is such that p{1,2} = a{1,2}, p{3,4} =

a{3,4}, p{1,2} = x{1,2}, p{3,4} = x{3,4}, or p5 = a5 = x5.

We will show that P (k + 1) holds too.

Remove those 4k elements mentioned in P (k) from X to produce the set Xk. Since

|Xk| = n− 4k = (2m2 +m− 1)− 4k, and there are at most m2 − 2k different ordered
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pairs for u ∈ Xk under {1, 2} and {3, 4}, there can be at most m2 − 2k − 1 unique

elements in Xk under {1, 2} and {3, 4}. Hence,

|Xk| = (2m2 +m− 1)− 4k

≥ (2m2 +m− 1)− 4(m− 2)

= 2m2 − 3m+ 7

≥ 16,

|V{1,2} ∩Xk| ≥ (2m2 +m− 1− 4k)− (m2 − 2k − 1)

= m2 +m− 2k

≥ m2 +m− 2(m− 2)

= m2 −m+ 4

≥ 10,

and

|V{3,4} ∩Xk| ≥ (2m2 +m− 1− 4k)− (m2 − 2k − 1)

= m2 +m− 2k

≥ m2 +m− 2(m− 2)

= m2 −m+ 4

≥ 10.

Therefore,

|V{1,2} ∩ V{3,4} ∩Xk| ≥ |V{1,2} ∩Xk|+ |V{3,4} ∩Xk| − (n− 4k)

≥ (m2 +m− 2k) + (m2 +m− 2k)− (2m2 +m− 1− 4k)

= m+ 1.
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This implies that there are at least m+1 elements in Xk that are non-unique under both

{1, 2} and {3, 4}. Then, there exists two distinct elements a′ and x′ in V{1,2}∩V{3,4}∩Xk

such that a′5 = x′5.

Just as in the base case, we may argue that a′{1,2} 6= x′{1,2} and a′{3,4} 6= x′{3,4}.

Moreover, we may similarly show that there exists an element b′ ∈ Xk\{a′, x′} such

that b′{1,2} = a′{1,2} and b′{3,4} = x′{3,4}, and there exists an element c′ ∈ Xk\{a′, x′}

such that c′{1,2} = x′{1,2} and c′{3,4} = a′{3,4}.

By looking at the first two coordinates, we can see that b′ 6= c′ since b′{1,2} = a′{1,2} 6=

x′{1,2} = c′{1,2}. Now, we have shown that there exists another four distinct elements

a′, b′, c′, d′ not contained in the first k sets, that satisfy the first three conditions. The

next step is to show that the fourth condition also holds. Consider, the four distinct

elements a′, b′, c′, and x′ in the following form,

f1 f2 f3 f4 f5

a′ a′1 a′2 a′3 a′4 a′5

x′ x′1 x′2 x′3 x′4 a′5

b′ a′1 a′2 x′3 x′4 ∗

c′ x′1 x′2 a′3 a′4 ∗

where a′1, a
′
2, a
′
3, a
′
4, a
′
5, x
′
1, x
′
2, x
′
3, x
′
4 ∈ Y such that a′1a

′
2 6= x′1x

′
2, and a′3a

′
4 6= x′3x

′
4, and

* can be any alphabet symbol in Y .

If there exists an element d, e, f, g or h ∈ X\{a′, b′, c′, x′} of the following forms,

then we can always form C1 and C2 that violates the SHF(5;n,m, {2, 2}) property:

f1 f2 f3 f4 f5

d a′1 a′2 ∗ ∗ ∗

e x′1 x′2 ∗ ∗ ∗

f ∗ ∗ a′3 a′4 ∗

g ∗ ∗ x′3 x′4 ∗

h ∗ ∗ ∗ ∗ a′5
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The choice of C1 and C2 that violates the SHF(5;n,m, {2, 2}) property in each

case is as follows: choose C1 = {a′, b′}, C2 = {x′, d} when d exists; choose C1 =

{a′, e}, C2 = {x′, c′} when e exists; choose C1 = {a′, c′}, C2 = {x′, f} when f exists;

choose C1 = {a′, g}, C2 = {x′, b′} when g exists; and choose C1 = {a′, x′}, C2 = {b′, h}

when h exists.

Hence, none of the elements p in X other than a′, b′, c′, and x has p{1,2} = a′{1,2},

p{3,4} = a′{3,4}, p{1,2} = x′{1,2}, p{3,4} = x′{3,4}, or p5 = a′5 = x′5. Note that in Xk there

are at most m2 − 2k ≥ m2 − 2(m − 2) ≥ 7 different ordered pairs left for u ∈ Xk

under {1, 2} and {3, 4} , and at most m − k ≥ m − (m − 2) = 2 different alphabet

symbols under {5} left for u ∈ Xk. Therefore, the fourth condition holds. Hence, we

have shown that P (k + 1) is also true.

Thus the statement P (r) is true for all r ∈ [m− 1]. To be precise, since P (m− 1)

holds, there exist m − 1 disjoint sets {a, b, c, x} ⊆ X satisfying the four conditions of

the inductive hypothesis. We now derive our contradiction. We eliminate two elements

a and x from each of these sets, a total of 2m− 2 elements from X to produce the set

X ′. This results in prohibiting m − 1 alphabet symbols from the image of f5. Hence,

the n− (2m−2) elements of X ′ share the same alphabet symbol in the last coordinate.

Then

|V{1,2} ∩X ′| ≥ |X ′| − (m2 − 1)

= (n− (2m− 2))− (m2 − 1)

= (2m2 +m− 1− (2m− 2))− (m2 − 1)

= m2 −m+ 4

≥ 6,

and similarly |V{3,4} ∩ X ′| ≥ 6. Hence there exist two distinct elements p and q in

V{1,2}∩X ′ such that p{1,2} = q{1,2}, and two distinct elements s and t in V{3,4}∩X ′\{p, q}

114



10.2. 2-SFP codes of Length 5 10. SFP Codes: SHFs of Type {k, k}

such that s{3,4} = t{3,4}. Now

p{1,2} = q{1,2},

s{3,4} = t{3,4},

p5 = q5 = s5 = t5.

Since p, q, s and t are pairwise distinct elements, C1 = {p, s} and C2 = {q, t} contradict

the SHF(5;n,m, {2, 2}) property.

Therefore, the assumption n ≥ 2m2 +m−1 is false and so the theorem follows.

We state and prove the next theorem as a tool for our final result, which we reduce

the upper bounds of SHF(5;n,m, {2, 2}) further by m− 2.

The proof of the following theorem is very similar to the proof of the previous

theorem. The only difference is that we first remove an element of X with a certain

property before proceeding with the same technique to derive a contradiction: proving

an existence of m − 1 disjoint sets of 4 distinct elements a, b, c, x in X0 satisfying our

conditions.

Theorem 10.2.5. Let m,n be positive integers greater than 1.

Let F be an SHF(5;n,m, {2, 2}). If n ≥ 2m2, then |f−1i (fi(x))| > 1 for all fi ∈ F and

all x ∈ X.

Proof. Let F be an SHF(5;n,m, {2, 2}) with n = 2m2 +n0, where n0 is a non-negative

integer. Assume for a contradiction that there exists an element v in X and i ∈ [N ] such

that v is unique under {i}. Without loss of generality, fix i = 1. Define X0 = X\{v}.

We now proceed with the similar arguments as in the proof of Theorem 10.2.4.

The only difference is that the size of V{1,2} in X0 is smaller due to the removal of the

element v.

We firstly use induction to show that there are m − 1 disjoint sets of 4 distinct

elements a, b, c, x in X0 that satisfy all the following 4 conditions:
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1. a5 = x5, a{1,2} 6= x{1,2} and a{3,4} 6= x{3,4}.

2. b{1,2} = a{1,2} and b{3,4} = x{3,4}.

3. c{1,2} = x{1,2} and c{3,4} = a{3,4}.

4. No element p ∈ X0 other than a, b, c, and x is such that p{1,2} = a{1,2}, p{3,4} =

a{3,4}, p{1,2} = x{1,2}, p{3,4} = x{3,4}, or p5 = a5 = x5.

For r ∈ [m− 1], let P (r) be the following statement: There are r disjoint sets of 4

distinct elements a, b, c, x in X0 that satisfy all the following 4 conditions:

1. a5 = x5, a{1,2} 6= x{1,2} and a{3,4} 6= x{3,4}.

2. b{1,2} = a{1,2} and b{3,4} = x{3,4}.

3. c{1,2} = x{1,2} and c{3,4} = a{3,4}.

4. No element p in X0 other than a, b, c, and x is such that p{1,2} = a{1,2}, p{3,4} =

a{3,4}, p{1,2} = x{1,2}, p{3,4} = x{3,4}, or p5 = a5 = x5.

We will prove that P (r) holds for all r ∈ [m− 1], by induction on r. We will then

show that P (m− 1) leads to a contradiction, establishing the theorem.

The base case: r = 1. As n = 2m2 + n0, n0 ≥ 0 and m ≥ 2, we have |X0| ≥ 7.

Recall the definition of VI from Definition 9.1. Considering X0, there are at most

m(m− 1) = m2 −m different ordered pairs (f1(u), f2(u)) for u ∈ X0 under {1, 2} and

at most m2 different ordered pairs (f3(u), f4(u)) for u ∈ X0 under {3, 4}. This implies

there can be at most m2 −m− 1 and m2 − 1 unique elements under {1, 2} and {3, 4},

respectively. Hence,

|V{1,2} ∩X0| ≥ (2m2 + n0 − 1)− (m2 −m− 1)

= m2 +m+ n0

≥ 6,
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and

|V{3,4} ∩X0| ≥ (2m2 + n0 − 1)− (m2 − 1)

= m2 + n0

≥ 4.

Since |X0| = n − 1, V{1,2} ∩ X0 and V{3,4} ∩ X0 can share at most n − 1 elements in

common. Therefore,

|V{1,2} ∩ V{3,4} ∩X0| ≥ |V{1,2} ∩X0|+ |V{3,4} ∩X0| − (n− 1)

≥ (m2 +m+ n0) + (m2 + n0)− (2m2 + n0 − 1)

= m+ n0 + 1

≥ m+ 1.

That implies there are at least m + 1 elements in X0 that are non-unique under both

{1, 2} and {3, 4}. So there exist two distinct elements a, x ∈ (V{1,2} ∩ V{3,4} ∩X0) such

that a5 = x5. We will now show that a{1,2} 6= x{1,2} and a{3,4} 6= x{3,4}.

Assume for a contradiction, that a{1,2} = x{1,2}. Since |V{3,4} ∩ X0| ≥ 4, we can

easily find two distinct elements b, y ∈ ((V{3,4}\{a, x}) ∩X0) such that b{3,4} = y{3,4}.

Then C1 = {a, b} and C2 = {x, y} violates the SHF(5;n,m, {2, 2}) property. Thus

a{1,2} 6= x{1,2}. The same argument works for the case when a{3,4} = x{3,4} since

|V{1,2} ∩X0| ≥ 6. Hence, it is justified to say there exist two distinct elements a and x

in V{1,2} ∩ V{3,4} ∩X0 that a5 = x5, a{1,2} 6= x{1,2}, and a{3,4} 6= x{3,4}.

Let b ∈ (V{1,2}\{a}) ∩ X0 such that b{1,2} = a{1,2} and let y ∈ (V{3,4}\{x}) ∩ X0

such that y{3,4} = x{3,4}. Consider C1 = {a, y}, C2 = {b, x}. From the choices of b and
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y, we have a 6= x, a 6= b, x 6= y, and

a{1,2} = b{1,2},

y{3,4} = x{3,4},

a5 = x5,

which contradicts the SHF(5;n,m, {2, 2}) property if b 6= y. So b and y must be the

same element. Hence, there exists an element b ∈ X0\{a, x} such that b{1,2} = a{1,2}

and b{3,4} = x{3,4}.

On the other hand, since both a and x are in V{1,2} ∩ V{3,4} ∩ X0, there exist

z ∈ (V{1,2}\{x}) ∩X0 such that z{1,2} = x{1,2}. Let c ∈ (V{3,4}\{a}) ∩X0 be such that

c{3,4} = a{3,4}. Consider C1 = {a, z} and C2 = {c, x}. From our choice of c and z, we

have a 6= x, a 6= c, x 6= z, and

z{1,2} = x{1,2},

a{3,4} = c{3,4},

a5 = x5,

which contradicts the SHF(5;n,m, {2, 2}) property if c 6= z. So c and z must be

equal. Hence, there exists an elements c ∈ X0\{a, x} such that c{1,2} = x{1,2} and

c{3,4} = a{3,4}.

By looking at the first two coordinates, we can see that b 6= c since b{1,2} = a{1,2} 6=

x{1,2} = c{1,2}. Now, we have shown that there exist four distinct elements that satisfy

the first three conditions of our inductive hypothesis P (1). The next step is to show

that the fourth condition holds. Consider the four distinct elements a, b, c, and x:

forming a table where the entry indexed by row u and column fi is fi(u), we may

write:
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f1 f2 f3 f4 f5

a a1 a2 a3 a4 a5

x x1 x2 x3 x4 a5

b a1 a2 x3 x4 ∗

c x1 x2 a3 a4 ∗

where a1, a2, a3, a4, a5, x1, x2, x3, x4 ∈ Y such that a1a2 6= x1x2, and a3a4 6= x3x4, and

∗ can be any alphabet symbol in Y . As before

If elements of any of the following forms happen to be in X0\{a, b, c, x}, then we

can always form C1 and C2 that violates the SHF(5;n,m, {2, 2}) property:

f1 f2 f3 f4 f5

d a1 a2 ∗ ∗ ∗

e x1 x2 ∗ ∗ ∗

f ∗ ∗ a3 a4 ∗

g ∗ ∗ x3 x4 ∗

h ∗ ∗ ∗ ∗ a5

The choice of C1 and C2 that violates the SHF(5;n,m, {2, 2}) property are as

follows: choose C1 = {a, b}, C2 = {x, d} if d exists; choose C1 = {a, e}, C2 = {x, c} if e

exists; choose C1 = {a, c}, C2 = {x, f} if f exists; choose C1 = {a, g}, C2 = {x, b} if g

exists; and choose C1 = {a, x}, C2 = {b, h} if h exists.

Hence, if p ∈ X0\{a, b, c, x} then none of the following hold: p{1,2} = a{1,2}, p{3,4} =

a{3,4}, p{1,2} = x{1,2}, p{3,4} = x{3,4}, or p5 = a5 = x5. Therefore, the fourth condition

holds. This implies P (1) is true and the proof is complete for the case m = 2.

Inductive hypothesis: Assume, m ≥ 3. Let k ∈ [m − 2]. Suppose P (k) holds.

Therefore, there are k disjoint sets of 4 distinct elements a, b, c, x in X that satisfy all

the 4 conditions. We will show that P (k + 1) holds too.

Remove those 4k elements from X0 and denote the set of the rest of the elements by

Xk. Now |Xk| = n− 1− 4k = (2m2 +n0− 1)− 4k; there are at most m(m− 1)− 2k =

m2 − m − 2k different ordered pairs for u ∈ Xk under {1, 2} and at most m2 − 2k
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different ordered pairs for u ∈ Xk under {3, 4}. This implies there can be at most

m2 − m − 2k − 1 and m2 − 2k − 1 unique elements u ∈ Xk under {1, 2} and {3, 4},

respectively. Hence,

|Xk| = (2m2 + n0 − 1)− 4k

≥ (2m2 + n0 − 1)− 4(m− 2)

= 2m2 − 4m+ n0 + 7

≥ 13,

|V{1,2} ∩Xk| ≥ (2m2 + n0 − 1− 4k)− (m2 −m− 2k − 1)

= m2 +m+ n0 − 2k

≥ m2 +m+ n0 − 2(m− 2)

= m2 −m+ n0 + 4

≥ 10,

and

|V{3,4} ∩Xk| ≥ (2m2 + n0 − 1− 4k)− (m2 − 2k − 1)

= m2 + n0 − 2k

≥ m2 + n0 − 2(m− 2)

= m2 − 2m+ n0 + 4

≥ 7.
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Therefore,

|V{1,2} ∩ V{3,4} ∩Xk| ≥ |V{1,2} ∩Xk|+ |V{3,4} ∩Xk| − (n− 1− 4k)

≥ (m2 +m+ n0 − 2k) + (m2 + n0 − 2k)− (2m2 + n0 − 1− 4k)

= m+ n0 + 1

≥ m+ 1.

That implies there are at least m+ 1 elements in Xk that are non-unique under both

{1, 2} and {3, 4}. Then, there exists two distinct elements a′, x′ ∈ (V{1,2} ∩V{3,4} ∩Xk)

that a′5 = x′5.

Just as in the base case, we may argue that a′{1,2} 6= x′{1,2} and a′{3,4} 6= x′{3,4}.

Moreover, we may similarly show that there exists an element b′ ∈ Xk\{a′, x′} such

that b′{1,2} = a′{1,2} and b′{3,4} = x′{3,4}, and there exists an element c′ ∈ Xk\{a′, x′}

such that c′{1,2} = x′{1,2} and c′{3,4} = a′{3,4}.

By looking at the first two coordinates, we can see that b′ 6= c′ since b′{1,2} = a′{1,2} 6=

x′{1,2} = c′{1,2}. Hence, we have shown that there exists another four distinct elements,

apart from the first k sets, that satisfy the first three conditions.

With a similar argument as in the base case, we may also argue that the fourth

condition also holds, and thus, we have shown that P (k + 1) is also true.

Therefore the statement P (r) is true for all r ∈ [m− 1]. To be precise, there exist

m− 1 disjoint sets satisfying those 4 conditions.

Eliminate two elements a and x from each of our m−1 disjoint sets {a, b, c, x} ∈ X0,

which means 2m− 2 elements from X0 to produce a set X ′. This results in prohibiting

m−1 alphabet symbols from the image f5(X
′) of f5. Hence, the remaining n−(2m−2)
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elements in X ′ share the same alphabet symbol in the last coordinate. Now,

|V{1,2} ∩X ′| ≥ |X ′| − (m2 −m− 1)

= (n− 1− (2m− 2))− (m2 −m− 1)

= (2m2 + n0 − 1− (2m− 2))− (m2 −m− 1)

= m2 −m+ n0 + 4

≥ 6,

and

|V{3,4} ∩X ′| ≥ |X ′| − (m2 − 1)

= (n− 1− (2m− 2))− (m2 − 1)

= (2m2 + n0 − 1− (2m− 2))− (m2 − 1)

= m2 − 2m+ n0 + 4

≥ 7.

Hence there exist two distinct elements p and q in V{1,2} ∩X ′ such that p{1,2} = q{1,2},

and two distinct elements s and t in V{3,4} ∩X ′\{p, q} such that s{3,4} = t{3,4}. Since

p{1,2} = q{1,2},

s{3,4} = t{3,4},

p5 = q5 = s5 = t5,

and since p, q, s and t are pairwise distinct , C1 = {p, s} and C2 = {q, t} contradict the

SHF(5;n,m, {2, 2}) property.

This contradiction show that an element v ∈ X which is unique under {i} does not

exist. Therefore, if n ≥ 2m2, then |f−1i (fi(x))| > 1 for all fi ∈ F , and all x ∈ X, as

required.
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We are now ready to prove the main result of this section.

Theorem 10.2.6. Let m,n be positive integers greater than 1. If there exists an

SHF(5;n,m, {2, 2}), then n ≤ 2m2.

There exist constructions in various literatures that give SHF(5;m2,m, {2, 2}).

However, there are no known constructions provide SHF(5; 2m2,m, {2, 2}). Hence,

it still cannot be concluded how good the bounds above are.

Proof of Theorem 10.2.6. Let F be an SHF(5;n,m, {2, 2}). Assume for a contradiction

that n = 2m2 + n0, where n0 is a positive integer.

Recall the definition of VI and UI from Definition 9.1. For any I ⊆ [5], let DI =

{x ∈ X : |{z ∈ X : zI = xI}| = 2}, and let TI = {x ∈ X : |{z ∈ X : zI = xI}| ≥ 3}.

Hence DI ∪ TI = VI .

Let Imax be a subset of [5] of cardinality 2 that maximises the size of UI . Let

j ∈ [5]\Imax, and let J = [5]\(Imax ∪ {j}). Since n > 2m2, by the pigeonhole principle

TImax 6= ∅.

We first show that |UJ | ≥ |TImax | by proving the existence of an injective func-

tion from TImax to UJ . Then we reach the contradiction by considering the size of

UImax , DImax and TImax .

Claim. |UJ | ≥ |TImax |

First, we will show that for any a ∈ X, if there exists an x ∈ TImax\{a} such that

x{j} = a{j}, then a ∈ UJ .

To show this, let a ∈ X and let x ∈ TImax\{a} such that x{j} = a{j}. Assume for

contradiction that a 6∈ UJ . Let y and z be two distinct elements in TImax\{x} such that

yImax = zImax = xImax . Assume that a 6∈ UJ . Then, there exists b ∈ X\{a} such that

bJ = aJ . Since y and z are two distinct elements at least one of them is not equal to

b, say y.

Choose C1 = {x, b} and C2 = {y, a}, we have x 6= y, x 6= a, b 6= y and b 6= a. So
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C1 ∩ C2 = ∅ and

xImax = yImax ,

bJ = aJ ,

x{j} = a{j}.

which contradicts the SHF(5;n,m, {2, 2}) property. Thus a ∈ UJ

In order to prove our claim, define a mapping ϕ : TImax → X as follows:

ϕ(x) =


x if x{j} = y{j} for some y ∈ TImax\{x}

v if x{j} 6= y{j} for all y ∈ TImax\{x} and x{j} = v{j} for some v ∈ X\TImax

,

for any x ∈ TImax . It follows from Theorem 10.2.5 that if x{j} 6= y{j} for all y ∈

TImax\{x} there always exists at least one v ∈ X\TImax that v{j} = x{j}. If there are

more than one such v, we can just pick one. It is not difficult to see that ϕ is also

injective.

Now we will show that ϕ(TImax) ⊆ UJ . For any y ∈ ϕ(TImax), there exists an

element x ∈ TImax that x{j} = y{j}, which makes y ∈ UJ by the first sentence after the

statement of the claim. Therefore ϕ is an injective function from TImax to UJ , and that

makes |UJ | ≥ |TImax |. So our claim follows.

Next, we derive our contradiction by considering the size of UImax , DImax and TImax .

Let |UImax | = λ. There are only m2−λ different ordered pairs fImax(x) left for elements

x in VImax . Since, we have to reserve at least one ordered pair fImax(x) for elements x

in TImax , there are at most m2 − λ − 1 different ordered pairs fImax(x) remaining for

elements x in DImax . This makes

|DImax | ≤ 2(m2 − λ− 1).
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Therefore

|TImax | = n− |UImax | − |DImax |

≥ 2m2 + n0 − λ− 2(m2 − λ− 1)

= n0 + λ+ 2.

From |UJ | ≥ |TImax | and the maximality of Imax, we have

λ = |UImax |

≥ |UJ |

≥ |TImax |

≥ n0 + λ+ 2.

which makes n0 ≤ −2, contradicting our initial assumption. Therefore, n < 2m2 as

required.

10.3 k-SFP of Length 2k

This section contains our improved bounds on the size of separating hash families of

type {k, k} of length N when N = 2k, Theorem 10.3.3, which is equivalent to proving

Theorem 10.3.4 in secure frameproof codes language. This is then followed by our

improved bounds on the size of separating hash families of type {w1, w2} of length N

when (w1 + w2)− 1 < N ≤ 2w2, Theorem 10.3.5.

First we show:

Theorem 10.3.1. Let m,n be positive integers, and let w1, w2 be positive integers such

that w1 ≤ w2 and w1 + w2 < m. If there exists an SHF(N + 2;n,m, {w1 + 1, w2 + 1})

where n ≥ m2, then there exists an SHF(N ;n,m, {w1, w2}).

Proof. Let F = {f1, f2, ..., fN+2 : X → Y } be an SHF(N + 2;n,m, {w1 + 1, w2 + 1}).
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Assume for a contradiction that there is no SHF(N ;n,m, {w1, w2}).

Let F ′ = F\{f1, f2}. We have that |F ′| = N . Let C1, C2 be two disjoint sub-

sets of X such that |C1| ≤ w1 and |C2| ≤ w2. By our assumption, there is no

SHF(N ;n,m, {w1, w2}), hence none of the functions f ∈ F ′ can separate C1 and C2.

Claim. There exist two distinct elements x ∈ X\C2 and y ∈ X\(C1 ∪ {x}), such that

C1 ∪ {x} and C2 ∪ {y} cannot be separated by f1 and f2.

Consider the two following statements:

1. There exists an element x ∈ X\C2 such that f1(x) ∈ f1(C2). So f1 cannot

separate C1 ∪ {x} and C2.

2. There exists an element y ∈ X\(C1∪{x}) such that f2(y) ∈ f2(C1). So f2 cannot

separate C1 and C2 ∪ {y}. .

If both of the statements above are true, our claim follows.

If the first statement is not true, any symbol in f1(C2) is not the image of an

element outside C2 under f1. Therefore, under f1, there are at most m − 1 symbols

left for n − |C2| elements in X\(C1 ∪ C2). So, there are at most m(m − 1) distinct

ordered ordered pairs (f1(c), f2(c)) for the n− |C1| − |C2| elements c in X\(C1 ∪ C2).

Since
⌈
n−|C1|−|C2|
m(m−1)

⌉
≥
⌈
n−(w1+w2)
m2−m

⌉
≥
⌈
n−(m−1)
m2−m

⌉
≥
⌈
m2−m+1
m2−m

⌉
≥ 2, by the pigeonhole

principle, there are at least 2 elements x and y such that (f1(x), f2(x)) = (f1(y), f2(y)).

Let C ′1 = C1 ∪ {x} and C ′2 = C2 ∪ {y}, then C ′1 and C ′2 that cannot be separated by

f1 and f2. Hence we have justified the claim when statement 1 is false. Similarly, the

claim holds when statement 2 is false.

We now have C ′1 and C ′2 are disjoint, |C ′1| ≤ w1 + 1 and |C ′2| ≤ w2 + 1. Since C ′1

and C ′2 cannot be separated by f1 and f2, we have C ′1, C
′
2 cannot be separated by any

function f ∈ F , contradicting the SHF(N + 2;n,m, {w1 + 1, w2 + 1}) property. Hence,

there exists an SHF(N ;n,m, {w1, w2}).

Theorem 10.3.1 can be generalised as follows:
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Theorem 10.3.2. Let m,n be positive integers, and let w1, w2 be positive integers such

that w1 ≤ w2 and w1 +w2 < m. If there exists an SHF(N + 2s;n,m, {w1 + s, w2 + s})

where n ≥ m2, then there exists an SHF(N ;n,m, {w1, w2}).

Proof. The statement follows by induction on s, with Theorem 10.3.1 providing the

inductive step.

By substituting N,w1, w2 and s in Theorem 10.3.2 by 2, 1, 1 and k−1, respectively,

we obtain the following theorem. Note that this theorem also includes Theorem 10.1.4

as a special case when k = 2.

Theorem 10.3.3. Let m,n, k be positive integers greater than 1, where m > k.

If F is an SHF(2k;n,m, {k, k}). Then

n ≤ m2.

Proof. Assume that there exists an SHF(2k;n,m, {k, k}) where n > m2. By Theorem

10.3.2, there exists an SHF(2;n,m, {1, 1}), which contradicts Theorem 8.2.5. Hence

the theorem follows.

Theorem 10.3.3 can be written in secure frameproof codes language as follows:

Theorem 10.3.4. Let C be an m-ary k-SFP code of length ` where ` = 2k and m > k.

Then

n ≤ m2

Theorem 10.3.2 can be used to improve the bounds for SHF(N ;n,m, {w1, w2}) when

(w1 + w2)− 1 < N ≤ 2w2. The result is as follows:

Theorem 10.3.5. Let m,n,N be positive integers greater than 1. Let w1, w2, u be

positive integers such that 1 ≤ w1 ≤ w2 and u = w1 + w2.
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If there exists an SHF(N ;n,m, {w1, w2}) where (u − 1) < N ≤ 2w2 and m > (w2 −

w1) + 1. Then

n ≤ γm2,

where γ = N−2(w1−1)
N−2(w1−1)−2r+2 and r = N − (u− 1).

Before giving the proof of Theorem 10.3.5, we here show that the bound in Theorem

10.3.5 is better than any previously known bounds (see Theorem 8.2.1). When w1 = 1,

Theorem 10.3.5 gives the same bound as Theorem 9.3.1. Hence Theorem 10.3.5 is

a generalised version of Theorems 9.3.1 and 10.3.3. Now, r = N − (u − 1) ≥ 1, so

N − 2(w1 − 1)− 2r + 2 ≥ N − 2(w1 − 1). Hence

γ ≥ 1 (10.1)

and γ = 1 only when r = 1, i.e, γ = 1 only when N = u. Note that r = N − (u− 1) ≤

2w2−(w1+w2−1) = w2−w1+1 ≤ w2+w1−1 = u−1. Hence N = r+(u−1) ≤ 2(u−1),

and it becomes equality only when r = u− 1. We have that

γ =
N − 2(w1 − 1)

N − 2(w1 − 1)− 2r + 2

=
((u− 1) + r)− 2(w1 − 1)

((u− 1) + r)− 2(w1 − 1)− 2r + 2

≤ (u− 1) + r

((u− 1) + r)− 2r + 2
since 2(w1 − 1) ≥ 0

≤ 2(u− 1)

(u− 1)− r + 2
since r ≤ u− 1

≤ 2(u− 1)

2
since r ≤ u− 1

= u− 1.

Therefore γ ≤ u − 1 with equality only when 2(w1 − 1) = 0 and r = u − 1, in other

words, when w1 = 1 and N = 2(u − 1) = 2(w1 + w2 − 1) = 2w2. Hence, our leading

128



10.4. k-SFP of Short Length 10. SFP Codes: SHFs of Type {k, k}

term is always at least as good as any previously known bounds.

Proof of Theorem 10.3.5. Let F be an SHF(N ;n,m, {w1, w2}) where (u − 1) < N ≤

2w2. By (10.1), γm2 ≥ m2. By substituting s in Theorem 10.3.2 with w1 − 1, there

exists an SHF(N ′;n,m, {1, k}) where N ′ = N − (w1 − 1) and k = w2 − (w1 − 1).

Let r = N ′−k = (N−2(w1−1))−(w2−(w1−1) = N−(u−1). Now N−(u−1) >

(u − 1) − (u − 1) = 0 and N − (u − 1) < 2w2 − (u − 1) = w2 − (w1 − 1) = k. So we

have 0 < r ≤ k. Therefore

n ≤ γm2,

where γ = k+r
k−r+2 = N ′

N ′−2r+2 = N−2(w1−1)
N−2(w1−1)−2r+2 .

10.4 k-SFP of Short Length

This section gives our improved bounds on the size of separating hash families of type

{k, k} of length `, when ` ≤ k. We start from stating the best previously known

bound; we then give an improved bounds when ` ≤ k, and a further improvement

when ` = k = 3, ` = k = 4 and ` = k = 5.

Recall Theorem 3.2.3 which can be obtained by substituting w1 and w2 in Theorem

8.2.1 by k. When ` ≤ k we have:

Corollary 10.4.1. Let k,m, n and ` be positive integers greater than 1, where ` ≤ k.

If there exists an SHF(`;n,m, {k, k}), then n ≤ (2k − 1)m.

The next theorem is our improved bound when ` ≤ k.

Theorem 10.4.2. Let k,m, n and ` be positive integers where ` ≤ k. If there exists

an SHF(`;n,m, {k, k}), then n ≤ m+ 2`− 3.

Which can be rephrased as:
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Theorem 10.4.3. Let C be an m-ary k-SFP code of length `, where ` ≤ k. Then

n ≤ m+ 2`− 3

Proof. Let F be an SHF(`;n,m, {k, k}). Assume for a contradiction that n ≥ m+2`−2.

We try to show that there exist C1, C2 ⊂ X of cardinality at most k such that C1∩C2 =

∅ but none of f in F can separate C1 and C2.

We firstly use induction to show that there are 2`− 2 distinct elements x1, y1, x2,

y2, ... , x`−1, y`−1 such that fi(xi) = fi(yi) for all i ∈ [`− 1].

For r ∈ [`− 1], let P (r) be the following statement: There are 2r distinct elements

x1, y1, x2, y2, ... , xr, yr ∈ X such that fi(xi) = fi(yi) for all i ∈ [r].

The base case: r = 1. Since n ≥ m + 2` − 2 > m there exist x1 and y1 in X such

that f1(x1) = f1(y1). This implies P (1) is true and the induction proof is complete for

the case ` = k = 2.

Inductive hypothesis: Assume, ` ≥ 3. Let c ∈ [`−2]. Suppose P (c) holds. Therefore,

there are 2c distinct elements x1, y1, x2, y2, ... , xc, yc such that fi(xi) = fi(yi) for all

i ∈ [c]. We will show that P (c+ 1) holds too.

Let X0 = X\{y1, x2, y2, ..., xc, yc} Now |X0| = n−2c ≥ n−(2(`−2)) = n−(2`−4) ≥

(m + 2` − 2) − (2` − 4) = m + 2 > m. So, there exist xc+1 and yc+1 in X0 such that

fc+1(xc+1) = fc+1(yc+1). Therefore, there are 2c + 2 distinct elements x1, y1, x2, y2,

... , xc+1, yc+1 such that fi(xi) = fi(yi) for all i ∈ [c+ 1]. Hence, we have shown that

P (c+ 1) is also true.

Thus the statement P (r) is true for all r ∈ [`− 1]. To be precise, there exist 2`− 2

distinct elements x1, y1, x2, y2, ... , x`−1, y`−1 such that fi(xi) = fi(yi) for all i ∈ [`−1].

Now we consider X ′ = X\{y1, x2, y2, ..., x`−1, y`−1}. We have |X ′| ≥ (m+ 2`− 2)−

(2`− 3) = m + 1 > m. So, there is at least one pair of elements x` and y` in X ′ such

that f`(x`) = f`(y`).

If y` = x1, let C1 = {x1, x2, ..., x`−1} and C2 = {y1, y2, ..., y`−1, x`}. If y` 6= x1,
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let C1 = {x1, x2, ..., x`} and C2 = {y1, y2, ..., y`}. We have |C1| ≤ k, |C2| ≤ k and

C1 ∩ C2 = ∅. However, none of fi ∈ F can separate C1 and C2. This contradicts our

assumption that F is SHF(`;n,m, {k, k}). Therefore n ≤ m+ 2`− 3.

For any hash family F , let G(F) = (V,E) be an edge-colored graph corresponding

to F , where V = X and for any x 6= y in X, (x, y) ∈ E if fi(x) = fi(y) for some i ∈ [`].

Label each edge (x, y) of graph by i when fi(x) = fi(y). Draw multiple edges if there is

more than one function fi ∈ F such that fi(x) = fi(y). For any edge-colored graph G

with exactly k colors/labels, let H(G) be the set of all subgraphs of G that are induced

from a set of k edges with distinct labels.

Theorem 10.4.4. Let X and Y be two finite sets such that |X| = n and |Y | = m

and let k and ` be integers such that k ≥ ` ≥ 2. Let F be a family of functions

{fi : X → Y, i ∈ [`]}. Then F is an SHF(`;n,m, {k, k}) if and only if all subgraphs

H ∈ H(G(F)) are non-2-vertex-colorable graphs.

Proof. Let F be an SHF(`;n,m, {k, k}). Let H ∈ H(G(F)).

Assume that H is a 2-vertex-colorable graph, properly colored red and blue. Let

C1 be the set of red vertices and let C2 be the set of blue vertices. Then C1, C2 ⊆ X

are such that |C1| ≤ k and |C2| ≤ k, and C1∩C2 = ∅. However, fi(C1)∩fi(C2) 6= ∅ for

all fi ∈ F since the edge with label i in H is adjacent to a red and a blue vertex. This

violates the SHF(`;n,m, {k, k}) property, hence H is a non-2-vertex-colorable graph.

Conversely, assume that all subgraphs H ∈ H(G(F)) are non-2-vertex-colorable

graphs. Assume for a contradiction that F is not an SHF(`;n,m, {k, k}). So there

exist C1, C2 ⊆ X such that |C1| ≤ k and |C2| ≤ k, and C1∩C2 = ∅, and for each i ∈ [`]

there exist xi ∈ C1 and yi ∈ C2 such that fi(xi) = fi(yi). Let H be a subgraph of G(F)

with vertices x1, y1, ..., x`, y` and edges {xi, yi} for all i ∈ [`]. Thus H ∈ H(G(F)). Color

the vertices in C1 red and color the vertices in C2 blue. Since C1∩C2 = ∅, H is 2-vertex-

colorable, which contradicts the assumption. Therefore F is an SHF(`;n,m, {k, k}).

Thus, we can conclude that F is an SHF(`;n,m, {k, k}) if and only if all subgraphs
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H ∈ H(G(F)) are non-2-vertex-colorable graphs.

From this point onwards, unless stated otherwise, by 2-colorable we mean 2-vertex-

colorable.

Theorem 10.4.5. If there exists an SHF(3;n,m, {3, 3}), then n ≤ m+ 1.

Proof. Let F be an SHF(3;n,m, {3, 3}). Assume for a contradiction, that n ≥ m+ 2.

Suppose f ∈ F is not surjective, say a 6∈ f(X). Let z ∈ X be such that f(z) = f(z′)

for some z′ ∈ X\{z}. We may modify f to increase the size of f(X) by defining

f ′(x) =


f(x) for x 6= z

a for x = z

.

Then (F\{f}) ∪ {f ′} is also an SHF(3;n,m, {3, 3}). So, without loss of generality, we

may assume that all functions in F are surjective.

Since n ≥ m+ 2, for each i ∈ [`] there are at least 2 pairs of elements of X, {xi, yi}

and {ui, vi} where fi(xi) = fi(yi) and fi(ui) = fi(vi). Note that these 2 pairs are not

necessary disjoint.

Let H ∈ H(G(F)). By Theorem 10.4.4, H is not a 2-colorable graph. Since H is

a non-2-colorable graph with 3 edges, H must be a triangle. If there are at least two

edges in G(F) with label 1, consider H ′ a subgraph of G(F) with 3 edges, such that

edges labeled 2 and 3 are the same as H, but edge with label 1 is different. Then H ′ is

a 2-colorable graph and F is not a SHF(`;n,m, {3, 3}). Hence there is a unique edge

in G(F) with label 1. Therefore n ≤ m+ 1, by the definition of G(F).

Example 23. The following matrix gives an SHF(3;m+ 1,m, {3, 3}) when m > 1.
0 0 1 2 3 ... m− 2 m− 1

1 0 0 2 3 ... m− 2 m− 1

0 1 0 2 3 ... m− 2 m− 1


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Hence, the following corollary holds.

Corollary 10.4.6. Let m be a positive integer greater than 1. An SHF(3;m+1,m, {3, 3})

exists and is optimal.

Theorem 10.4.7. If there exists an SHF(4;n,m, {4, 4}), then n ≤ m+ 1.

Proof. Let F be an SHF(4;n,m, {4, 4}). Assume for a contradiction, that n ≥ m+ 2.

Suppose f ∈ F is not surjective, say a 6∈ f(X). Let z ∈ X be such that f(z) = f(z′)

for some z′ ∈ X\{z}. We may modify f to increase the size of f(X) by defining

f ′(x) =


f(x) for x 6= z

a for x = z

.

Then (F\{f}) ∪ {f ′} is also an SHF(4;n,m, {4, 4}). So, without loss of generality, we

may assume that all functions in F are surjective.

Since n ≥ m+ 2, for each i ∈ [`] there are at least 2 pairs of elements of X, {xi, yi}

and {ui, vi} where fi(xi) = fi(yi) and fi(ui) = fi(vi). Note that these 2 pairs are not

necessary disjoint.

Let H ∈ H(G(F)). By Theorem 10.4.4, H is not a 2-colorable graph. Moreover,

since n ≥ m + 2 and there exist at least two edges for each label i ∈ [`]. Since H is

a non-2-colorable graph with 4 edges, H must contain a triangle; so H must have one

of the three forms in Figure 10.1. Since H contains exactly one edge per label, for

convenience we label H as in Figure 10.1.

If H is of the form in Figures 10.1a or 10.1b, by choosing any other edge with label

3 we find a new subgraph of G(F) with no triangle. This new subgraph is 2-colorable

which contradicts the SHF(4;n,m, {4, 4}) property of F . Therefore, H can only have

the form in Figure 10.1c.

For each label 1, 2 or 3, removing the edge with that label and adding another edge

from G(F) with the same label must produce a non-2-colorable graph. So, G(F) must
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(b) Case 2

0101

00101002 22204
1

2

3

(c) Case 3

Figure 10.1: Possible subgraphs H for a SHF(4;n,m, {4, 4})

contain a subgraph of the form given in Figures 10.2a or 10.2b. However, each case the

graph contains a 2-colorable subgraph H ′; see Figures 10.3a or 10.3b, respectively.

0101

00101002 22204

1

2

23

3

1

(a) Case 1

0101

00101002 22204

1

2

23

3

1

(b) Case 2

Figure 10.2: Possible subgraph of G(F) in the proof of Theorem 10.4.7

So G(F) always contains a 2-colorable subgraph H ∈ H(G(F)). This contradiction

shows that n ≤ m+ 1.

Example 24. The following matrix gives an SHF(4;m+ 1,m, {4, 4}) when m > 2.
0 0 1 2 3 ... m− 2 m− 1

1 0 0 2 3 ... m− 2 m− 1

1 2 0 0 3 ... m− 2 m− 1

1 0 2 0 3 ... m− 2 m− 1


134



10.4. k-SFP of Short Length 10. SFP Codes: SHFs of Type {k, k}

0101

00101002 22204

2

3

1

(a) Case 1

0101
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(b) Case 2

Figure 10.3: Possible subgraph H ′ of G(F) in the proof Theorem 10.4.7

Proof. The only subgraph H ∈ H(G(F)) contains is the graph given in Figure 10.4.

This is a non-2-colorable graph. By Theorem 10.4.4, F is an SHF(4;m+ 1,m, {4, 4}).

1002

00202200 01111

2

4

3

Figure 10.4: Subgraph H of G(F) from Example 24

Hence, the following corollary holds.

Corollary 10.4.8. Let m be a positive integer greater than 1. An SHF(4;m+1,m, {4, 4})

exists and is optimal.

The next example pushes the lower bound of SHF(k;n,m, {k, k}) up to m+ 1; this

is straightforward generalisation of Examples 23 and 24.

Example 25. The following matrix gives an SHF(k;m+1,m, {k, k}) when m > k−2.
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

0 0 1 2 3 4 ... k − 5 k − 4 k − 3 k − 2 k − 1 k ... m− 2 m− 1

1 0 0 2 3 4 ... k − 5 k − 4 k − 3 k − 2 k − 1 k ... m− 2 m− 1

1 2 0 0 3 4 ... k − 5 k − 4 k − 3 k − 2 k − 1 k ... m− 2 m− 1

1 2 3 0 0 4 ... k − 5 k − 4 k − 3 k − 2 k − 1 k ... m− 2 m− 1

1 2 3 4 0 0 ... k − 5 k − 4 k − 3 k − 2 k − 1 k ... m− 2 m− 1

...
...

...
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

1 2 3 4 5 6 ... 0 0 k − 3 k − 2 k − 1 k ... m− 2 m− 1

1 2 3 4 5 6 ... k − 3 0 0 k − 2 k − 1 k ... m− 2 m− 1

1 2 3 4 5 6 ... k − 3 k − 2 0 0 k − 1 k ... m− 2 m− 1

1 2 3 4 5 6 ... k − 3 0 k − 2 0 k − 1 k ... m− 2 m− 1


This is very straightforward since the only possible subgraph H of G(F) is a triangle

connected to a straight line, which is non-2-colorable. Hence, F is an SHF(k;m +

1,m, {k, k}) by Theorem 10.4.4.

The next example is of an SHF(`;n,m, {5, 5}) of size n = m + 2 showing that

Corollaries 10.4.6 and 10.4.8 cannot be generalised in a straightforward way.

Example 26. The following matrix gives an SHF(5;m+ 2,m, {5, 5}) when m > 2.

0 0 1 2 1 3 4 ... m− 2 m− 1

1 0 0 1 2 3 4 ... m− 2 m− 1

2 1 0 0 1 3 4 ... m− 2 m− 1

1 2 1 0 0 3 4 ... m− 2 m− 1

0 1 2 1 0 3 4 ... m− 2 m− 1


Proof. The graph G(F) is given in Figure 10.5. For each label i, the edges labelled i

occur when fi maps two elements in X to the alphabet symbols 0 or 1. Since the graph

is symmetric with respect to labels and there exists a one-to-one function mapping from

the outer cycle (fi maps two elements to 0) to the inner star (fi maps two elements to

1) we can reduce the subgraphs H ∈ H(G(F)) we need to check 4 cases: see Figures

10.6a, 10.6b,10.6c and 10.6d, respectively. The bold edges in Figure 10.6 are the selected
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Figure 10.5: Graph of SHF(5;m+ 2,m, {5, 5})

edges in H, where the red edges emphasise an odd-length cycle in H. Since, all possible

subgraphsH ∈ H(G(F)) contain at least one odd-length cycle, they are non-2-colorable.

Therefore F is an SHF(5;m+ 2,m, {5, 5}).

The next theorem gives a new upper bound on the size of SHF(5;n,m, {5, 5}). We

achieve the result by deriving a contradiction from all possible cases of non-2-colorable

subgraphs H ∈ H(G(F)): proving an existence of a 2-colorable subgraph H ′ ∈ H(G(F))

in each graph G(F) containing H. The proof consists of plenty of cases and figures,

hence it is quite long. An alternative approach is using the subgraphs in Figure 10.7 as

an input to a graph searching algorithm as explained in Appendix A. We implemented

this algorithm in C to verify the theorem for the most complicated cases.

Theorem 10.4.9. If there exists an SHF(5;n,m, {5, 5}), then n ≤ m+ 2.

Proof. Let F be an SHF(5;n,m, {5, 5}). Assume for a contradiction, that n ≥ m+ 3.

Suppose f ∈ F is not surjective, say a 6∈ f(X). Let z ∈ X be such that f(z) = f(z′)
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(d) 3 0’s and 2 non-adjacent 1’s

Figure 10.6: Subgraph H of G(F) from Example 26

for some z′ ∈ X\{z}. We may modify f to increase the size of f(X) by defining

f ′(x) =


f(x) for x 6= z

a for x = z

.

Then (F\{f}) ∪ {f ′} is also an SHF(5;n,m, {5, 5}). So, without loss of generality, we

may assume that all functions in F are surjective.

Since n ≥ m+3, for each i ∈ [`] there are at least 3 pairs of elements of X, {x1i , y1i },
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{x2i , y2i } and {x3i , y3i } where fi(x
1
i ) = fi(y

1
i ), fi(x

2
i ) = fi(y

2
i ) and fi(x

3
i ) = fi(y

3
i ). Note

that these 3 pairs are not necessary disjoint.

Let H ∈ H(G(F)). By Theorem 10.4.4, H is not a 2-colorable graph. Moreover,

since n ≥ m + 3 and there exist at least three edges for each label i ∈ [`]. Since H is

a non-2-colorable graph with 5 edges, H must contain an odd-length cycle; so H must

have one of the fifteen forms in Figure 10.7. The bold edges in each subfigure represent

its odd-length cycle(s). Since H contains exactly one edge per label, for convenience

we label H as in Figure 10.7.

Cases 10.7a to 10.7e: If H is of any form in Figures 10.7a to 10.7e, by choosing any

other edge with label 1 we find a new subgraph of G(F) with no odd-length cycle. This

new subgraph is 2-colorable which contradicts the SHF(5;n,m, {5, 5}) property of F .

Therefore, H cannot be in these five forms.

Case 10.7f: If H is of the form in Figure 10.7f, by choosing any other edge with label

2, apart from the blue edge in Figure 10.8a, we find a new subgraph of G(F) with no

odd-length cycle. This is always possible since there are at least 3 edges for label 2.

This new subgraph is 2-colorable which contradicts the SHF(5;n,m, {5, 5}) property

of F . Therefore, H cannot be in this form.

Cases 10.7g, 10.7h, 10.7l, 10.7m and 10.7n: As in the previous case, we may

argue that H cannot be in this five forms, subjecting to the blue edges in Figure 10.8b,

10.8c, 10.8d, 10.8e and 10.8f, respectively.

Case 10.7i: For each label 1, 2 or 3, removing the edge with that label and adding

another edge from G(F) with the same label must produce a non-2-colorable graph.

So, with respect to the edges labeled 1, G(F) must contain a subgraph of the form

given in Figures 10.9b, 10.9d or 10.9e; with respect to the edges labeled 2, G(F) must

contain a subgraph of the form given in Figures 10.9a, 10.9b or 10.9c; with respect to

the edges labeled 3, G(F) must contain a subgraph of the form given in Figures 10.9a,

10.9d or 10.9e. All the subgraphs induced from the combinations of these blue edges

are illustrated in Figures 10.10, 10.11 and 10.12.
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Figure 10.7: Possible subgraphs H for a SHF(5;n,m, {5, 5})
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Figure 10.8: Subgraph of G(F) in Cases 10.7f to 10.7h and Cases 10.7l to 10.7n
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Figure 10.9: Subgraph of G(F) from Case 10.7i
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Figure 10.10: Possible subgraph of G(F) form Case 10.7i with edge labeled 2 from
Figure 10.9a
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Figure 10.11: Possible subgraph of G(F) form Case 10.7i with edge labeled 2 from
Figure 10.9b
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Edge labeled 1 Edge labeled 3
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Figure 10.12: Possible subgraph of G(F) form Case 10.7i with edge labeled 2 from
Figure 10.9c

Only the edge labeled 2 in Figure 10.9c guarantees an odd-length cycle for any

choices of edges labeled 1 and 3. Hence, by choosing any other edge with label 2,

apart from the blue edge in Figure 10.9c, we can find a new subgraph of G(F) with

no odd-length cycle. This is always possible since there are at least 3 edges for label 2.

This new subgraph is 2-colorable which contradicts the SHF(5;n,m, {5, 5}) property

of F . Therefore, H cannot be in this form.

Case 10.7j: For each label 1, 2 or 3, removing the edge with that label and adding

another edge from G(F) with the same label must produce a non-2-colorable graph.

So, with respect to the edges labeled 1, G(F) must contain a subgraph of the form

given in Figures 10.13a, 10.13b or 10.13c; with respect to the edges labeled 2, G(F)

must contain a subgraph of the form given in Figures 10.13a, 10.13b or 10.13d; with

respect to the edges labeled 3, G(F) must contain a subgraph of the form given in

Figures 10.13b, 10.13c or 10.13e. All the subgraphs induced from the combinations of

these blue edges are illustrated in Figures 10.14, 10.15 and 10.16.
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Figure 10.13: Subgraph of G(F) form Case 10.7j
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Figure 10.14: Possible subgraph of G(F) form Case 10.7j with edge labeled 1 from
Figure 10.13a
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Figure 10.15: Possible subgraph of G(F) form Case 10.7j with edge labeled 1 from
Figure 10.13b

Edge labeled 2 Edge labeled 3
Figure 10.13b Figure 10.13c Figure 10.13e

Figure 10.13a

2

5

4

3

1

(a)

5

4

2

1

3

(b)

35

2

4
1

(c)

Figure 10.13b

5

4

32

1

(d)

5

4

2

3

1

(e)

1

5

4

2 3

(f)

Figure 10.13d

5

4

3

2

1

(g)

5

4

2

3

1

(h)

35

4

2

1

(i)

Figure 10.16: Possible subgraph of G(F) form Case 10.7j with edge labeled 1 from
Figure 10.13c
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Only the edge labeled 1 in Figure 10.13b guarantees an odd-length cycle for any

choices of edges labeled 2 and 3. Hence, by choosing any other edge with label 1, apart

from the blue edge in Figure 10.13b, we can find a new subgraph of G(F) with no

odd-length cycle. This is always possible since there are at least 3 edges for label 1.

This new subgraph is 2-colorable which contradicts the SHF(5;n,m, {5, 5}) property

of F . Therefore, H cannot be in this form.

Case 10.7k: If H is of the form in Figure 10.7k, by choosing any other edge with label

2, apart from the blue edges in Figure 10.17, we find a new subgraph of G(F) with no

odd-length cycle.

Since there are at least 3 edges with label 2, G(F) must contain a subgraph of the

form given in Figures 10.18a, 10.18b or 10.18c. If G(F) contains a subgraph of the

form in Figures 10.18a or 10.18b, we have that f2(x) = f2(y) = f2(z). Thus, G(F)

contains a subgraph of the form given in Figure 10.19. If G(F) contains a subgraph of

the form in Figures 10.18c, we have that f2(x) = f2(y) = f2(z). Since there are at least

m elements in X\{x, y, z}, there exists either an element u ∈ X\{x, y, z} such that

f2(u) = f2(x) or a pair of elements u, v ∈ X\{x, y, z} such that f2(u) = f2(v). This

ensures there exists one more edge labeled 2 in the graph G(F). Since the only possible

edge labeled 2 that has not been included in the graph is of the form in Figure 10.17b,

G(F) must also contain a subgraph of the form given in Figure 10.19.

Similarly, by choosing any other edge with label 3, apart from the blue edges in

Figure 10.20, we find a new subgraph of G(F) with no odd-length cycle. Since there are

at least 3 edges with label 3, with similar arguments as above, we may conclude that

G(F) contains a subgraph of the form given in Figure 10.21. Therefore, G(F) contains

a subgraph of the form given in Figure 10.22 as the merging between Figures 10.19 and

10.21.

However, the graph in Figure 10.22 contains a subgraph H ′′ leading to a 2-colorable

subgraph: as in Figure 10.23, any other choices for edge labeled 4 would produce a new

subgraph H ′ of G(F) with no odd-length cycle. This is always possible since there are
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Figure 10.17: Possible subgraphs of G(F) from Case 10.7k
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Figure 10.18: Possible edges labeled 2 from Case 10.7k
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Figure 10.21: Subgraph of G(F) from Case 10.7k
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Figure 10.22: Subgraph of G(F) from Case 10.7k

1

4

5 2

3

(a)

Figure 10.23: Subgraph H ′′ of G(F) form Case 10.7k

at least 3 edges for each label. This new subgraph is 2-colorable which contradicts the

SHF(5;n,m, {5, 5}) property of F . Therefore, H cannot be in this form.

Case 10.7o: If H is of the form in Figure 10.7o, by choosing any other edge with label

1, apart from the blue edges in Figure 10.24, we find a new subgraph of G(F) with no

odd-length cycle.

Since there are at least 3 edges with label 1, G(F) must contain a subgraph of the

form given in Figures 10.25a, 10.25b or 10.25c. If G(F) contains a subgraph of the
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Figure 10.24: Possible subgraphs of G(F) from Case 10.7o
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Figure 10.25: Possible edges labeled 1 from Case 10.7o
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Figure 10.26: Subgraph of G(F) from Case 10.7o

form in Figures 10.25a or 10.25b, we have that f1(x) = f1(y) = f1(z). Thus, G(F)

contains a subgraph of the form given in Figure 10.26. If G(F) contains a subgraph of

the form in Figures 10.25c, we have that f1(x) = f1(y) = f1(z). Since there are at least

m elements in X\{x, y, z}, there exists either an element u ∈ X\{x, y, z} such that

f1(u) = f1(x) or a pair of elements u, v ∈ X\{x, y, z} such that f1(u) = f1(v). This

ensures there exists one more edge labeled 1 in the graph G(F). Since the only possible

edge labeled 1 that has not been included in the graph is of the form in Figure 10.24a,

G(F) must also contain a subgraph of the form given in Figure 10.26.

Since the graph is symmetric with respect to labels, G(F) must contain a subgraph

of the form given in Figure 10.27.

However, the graph in Figure 10.27 contains a 2-colorable subgraph H ′; see Fig-

ure 10.28.

So G(F) always contains a 2-colorable subgraph H ∈ H(G(F)). This contradiction
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Figure 10.27: G(F) from Case 10.7o
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Figure 10.28: Subgraph H ′ of G(F) from Case 10.7o

shows that n ≤ m+ 2.

Hence, the following corollary holds.

Corollary 10.4.10. Let m be a positive integer greater than 1. An SHF(5;m +

2,m, {5, 5}) exists and is optimal.

The next example pushes the lower bound of SHF(k;n,m, {k, k}) up to m+ 2; this

is straightforward generalisation of Examples 26.

Example 27. The following matrix gives an SHF(k;m+2,m, {k, k}) when m > k−3.
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

0 0 1 1 2 3 4 ... k − 8 k − 7 k − 6 k − 5 k − 4 k − 3 k − 2 k − 1 ... m− 2 m− 1

2 0 0 1 1 3 4 ... k − 8 k − 7 k − 6 k − 5 k − 4 k − 3 k − 2 k − 1 ... m− 2 m− 1

2 3 0 0 1 1 4 ... k − 8 k − 7 k − 6 k − 5 k − 4 k − 3 k − 2 k − 1 ... m− 2 m− 1

2 3 4 0 0 1 1 ... k − 8 k − 7 k − 6 k − 5 k − 4 k − 3 k − 2 k − 1 ... m− 2 m− 1

2 3 4 5 0 0 1 ... k − 8 k − 7 k − 6 k − 5 k − 4 k − 3 k − 2 k − 1 ... m− 2 m− 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

2 3 4 5 6 7 8 ... 0 0 1 1 k − 4 k − 3 k − 2 k − 1 ... m− 2 m− 1

2 3 4 5 6 7 8 ... k − 4 0 0 1 k − 3 1 k − 2 k − 1 ... m− 2 m− 1

2 3 4 5 6 7 8 ... k − 4 1 0 0 1 k − 3 k − 2 k − 1 ... m− 2 m− 1

2 3 4 5 6 7 8 ... k − 4 k − 3 1 0 0 1 k − 2 k − 1 ... m− 2 m− 1

2 3 4 5 6 7 8 ... k − 4 1 k − 3 1 0 0 k − 2 k − 1 ... m− 2 m− 1

2 3 4 5 6 7 8 ... k − 4 0 1 k − 3 1 0 k − 2 k − 1 ... m− 2 m− 1



This is quite straightforward since G(F) is a K5 connected to two straight lines.

Since there are 5 labels involve in the K5 part, labeled as in Example 26, all subgraphs

H of G(F) must contain an odd-length cycle, which is non-2-colorable. Hence, F is an

SHF(k;m+ 2,m, {k, k}) by Theorem 10.4.4.
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Chapter 11

Open Problems

In this chapter, we gather some open problems arising from this thesis.

1. Let g ≤ q, and let C be a q-ary t-TA code of length `. Does there always exist

a q-ary (T, t)-TA code C ′ of length ` of cardinality at least a half of the original

code C, containing g groups? If this is not true in general, is it true when g is

small (g ≤ q)?

2. Are there any constructions of two-level fingerprinting codes that are better than

the trivial construction, when the number of groups is greater than the alphabet

size?

3. Are there any upper bounds on the size of two-level codes that have a smaller

leading term than the bounds for one-level codes?

4. Can we find explicit constructions for (K, k)-SFP and (K, k)-TA?

5. Is it possible to reduce the upper bound of k-FP to

(
`

`−(r−1)d `
k
e

)
qd

`
k
e, where r

is a unique positive integer in {1, 2, ..., k} such that r = ` mod k?
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Appendix A

Appendix

This appendix contains an alternative proof of Theorem 10.4.9. The algorithm ex-

plained in this Appendix is general enough to be used in finding bounds for any

SHF(k;n,m, {k, k}). However, with a larger k, the computational cost for the al-

gorithm might become unaffordable.

A.1 Algorithm

Recall that from Theorem 10.4.4 a separating hash family F can be represented by a

graph G(F) such that all H ∈ H(G(F)) are non-2-colorable. In other words, given a

graph G with such property, one may construct the corresponding hash family. From

a non-2-colorable graph H with k edges, the following algorithm determines whether

there exists a graph G(F) containing H, such that all subgraphs H ′ of G(F) in H(G(F))

are non-2-colorable. The inputs to the algorithm are the parameters k (number of

labels), the graph H with k edges, a set V of vertices for G(F) and c, where m+ c is

the size of F .

To construct G(F), we notice that it consists of c edges for each label, making a total

of kc edges. Since G(F) contains H, the algorithm attempts to add to H c − 1 edges

for each label, and check whether the resulted graph satisfies the property above. The
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remaining concern is to find these additional edges, which can be done in two stages.

In the first stage, the algorithm computes for each edge ei ∈ H, a set of edges Ei, so

that by replacing ei with any edge in Ei, the resulting graph is still non-2-colorable.

Apparently, if there are less than c − 1 such edges for any ei ∈ H, then there exists

no qualified graph G(F) that contains H. This is done via the FindReplacement

subroutine.

The second stage involves picking edges in many ways from the sets Ei to enlarge

H, hoping to come across a graph G(F) with the required property. By checking all

possible ways to pick c − 1 edges from each set Ei and adding them to H, one can

exclusively test if any desirable graph G(F) exists. Such a test for each candidate of

G′ of G(F) is performed by the function IsNon2Colorable, which test whether all

subgraphs of G′ in H(G′) are non-2-colorable.

Further, note that with exhaustive search for all possible candidates G(F), the com-

putational cost for the algorithm might become unaffordable. Instead, we observe that

if H(G(F)) contains only non-2-colorable subgraphs of G(F), then the same property

must applies to H(G′), for any subgraph G′ of G(F). We also observe that while H is

being enlarged (by adding edges), in many cases the resulting graph G′ loses such prop-

erty after adding just a few more edges to H. Hence, by applying IsNon2Colorable

to G′ every time new edges are added, one can eliminate wasted efforts for picking the

remaining edges, in case G′ has already lost the required property. We execute the algo-

rithm for H as in the cases of Figures 10.7k and 10.7o, containing 231,159,852 and 243

possible candidates for G(F), respectively. However, with the above improvement, to

show that no G(F) exists for such H, only 43,929 and 84 calls to IsNon2Colorable

were needed.

Finally, since the description of G(F) only involves its edges, it is questionable on

how many vertices one would need to construct G(F), as this is a required input for the

algorithm. The following lemma gives a reasonable bound on the number of vertices

needed to include all possible choices of G(F) containing H.
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Lemma A.1.1. If there exists an SHF(k;m+ c,m, {k, k}), for some positive integers

c, then there exists a graph G(F) containing at most (k − 1)c+ 1 vertices.

Proof. Let F be an SHF(k;m + c,m, {k, k}). It is not too difficult to see that if

G(F) is disconnected, we can create a new connected graph that preserves its property

(correspond to an SHF(k;m+ c,m, {k, k}) F ′) by randomly picking a vertex from each

component and merge them into one vertex. This is always possible since joining these

vertices does not produce any new cycle or destroy any existing cycle. Hence, without

loss of generality, we may assume that G(F) is a connected graph. This ensures that

the number of vertices is at most kc+ 1.

Furthermore, since we can partition the edges of G′(F) into c edge-disjoint sub-

graphs G1, G2, ..., Gc ∈ H(G(F)), G′(F) must contains at least c edge-disjoint odd-

length cycles. Each cycle quarantees the reduction of the number of vertices of G′(F)

further by one, and thus c vertices in total. Hence, there exists graph G(F) containing

at most (k − 1)c+ 1 vertices.
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Algorithm A.1 Generate G(F)

Input: H, V , k ∈ Z+, and c ∈ Z+

Output: If exists, G(F).
L⇐ 1
Label each edge of H with a number, from 1 to k . edge-label the graph H
G⇐ H
for i = 1→ k do

ei ⇐ edge labeled i in H
Ei ⇐ FindReplacement(H, ei, V )\{ei} . find all possible new edges with label i
if |Ei| < c− 1 then

return Null
end if

end for
for i = 1→ k do

di ⇐ 1
ni ⇐ the number of (c− 1)-subsets of Ei

end for
while 1 ≤ L ≤ k do

if dL ≤ nL then
E′

L ⇐ the dL-th (c− 1)-subset of EL

G⇐ G ∪ E′
L

dL ⇐ dL + 1
if IsNon2Colorable(G, k) then

L⇐ L+ 1
end if

else
dL ⇐ 1
L⇐ L− 1
G⇐ G\E′

L

end if
end while
if L = k + 1 then

return G
else

return Null
end if

Algorithm A.2 Find the list of edge replacement candidates

Input: A graph H, an edge ea ∈ H, and a set V of vertices
Output: A set of edges Ea such that {e′} ∪H\{e} is non-2-colorable for all e′ ∈ Ea

function FindReplacement(H, ea, V )
Ea ⇐ ∅ . initialize the set
for all 2-subset {v1, v2} of V do

e′ ⇐ edge between v1 and v2
if {e′} ∪H\{ea} is non-2-colorable then

Ea ⇐ Ea ∪ {e′} . add edge e′ to the set
end if

end for
return Ea

end function
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Algorithm A.3 Check if an edge-labeled graph G has H(G) containing only non-2-
colorable subgraphs

Input: An edge-labeled graph G and a k ∈ Z+

Output: TRUE if all graphs H ′ ∈ H(G(F)) are non-2-colorable, and FALSE otherwise
function IsNon2Colorable(G, k)

L⇐ 1
G′ ⇐ an empty graph
for i = 1→ k do

di ⇐ 1
ni ⇐ the number of edges of G with label i

end for
while 1 ≤ L ≤ k do

if dL ≤ nL then
eL ⇐ the dL-th edge with label L of G
G′ ⇐ G′ ∪ {eL}
dL ⇐ dL + 1
if L = k then

if G′ is 2-colorable then
return FALSE

end if
else

L⇐ L+ 1
end if

else
dL ⇐ 1
L⇐ L− 1
G′ ⇐ G′\{eL}

end if
end while
return TRUE

end function
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