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We analyze the effect of typical, unknown perturbations on the 2D toric code when acting as a quantum

memory, incorporating the effects of error correction on readout. By transforming the system into a 1D

transverse Ising model undergoing an instantaneous quench, and making extensive use of Lieb-Robinson

bounds, we prove that for a large class of perturbations, the survival time of stored information grows at

least logarithmically with the system size. A uniform magnetic field saturates this scaling behavior. We

show that randomizing the stabilizer strengths gives a polynomial survival time with a degree that depends

on the strength of the perturbation.
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The theories of quantum error correction and fault tol-
erance prove that quantum information can be stored de-
spite the deleterious effects of external noise and
experimental imperfection [1]. However, the massive over-
heads induce significant practical obstacles [2]. In contrast,
classical memories are stable without active error correc-
tion. Can quantum information also be passively pro-
tected? To this end, quantum memories [3,4], in which a
qubit is encoded in the degenerate ground space of a
Hamiltonian, have generated significant interest recently.
One should design the Hamiltonian structure to prevent
catastrophic accumulation of errors such that, after storage,
a single round of error correction correctly returns the
initial state. Crucially, the aim is to achieve storage times
that scale with the system size.

The toric code of 2N2 qubits in 2D [3,4] is the proto-
typical proposal of such a system. While there is strong
evidence that it is not a good memory at any finite tem-
perature [5,6], studies can yield significant insights for
other types of noise, such as the imperfect implementation
of an experiment at zero temperature, i.e., the effects
of unknown static perturbations to the toric code
Hamiltonian. The topological phase of the toric code is
robust against perturbations [3,7,8], meaning the degener-
acy is only lifted to an exponentially small degree (in N),
provided the perturbation strength � � �, the unperturbed
gap. States stored in this ground state space take exponen-
tially long to dephase. If the perturbation is unknown, the
challenge is to encode in this space, which may be
achieved via an adiabatic path [9,10]. At best, the final
state is subject to a finite density of anyonic excitations
which perturbations can easily propagate into logical errors
[11,12], although randomizing the weights in the unper-
turbed Hamiltonian induces Anderson localization and
should reduce propagation in almost all cases [13], while
leaving the worst-case scaling unchanged [11].

Nonadiabatic methods, assisted by error correction, fo-
cus on accurately preparing the toric code. If this is not the

ground state of the perturbed Hamiltonian, after some time
the evolution may mask the stored information. In [11,12]
pathological local perturbations (� � �) showed the
worst-case survival time is no better than Oð��1 logðNÞÞ.
This Letter considers a more typical experimental afflic-
tion, that of a uniform magnetic field. This is achieved by
transforming the model into a parallel set of 1D transverse
Ising chains subject to an instantaneous quench. While this
model has previously been analyzed in the thermodynamic
limit [14], we study the behavior for large, but finite,
system sizes N, showing that the stored data are stable
for times ��2��3 logN. We also analyze a system with
randomized strengths, proving a polynomial survival time.
The Toric Code is defined for an N � N periodic square

lattice with a qubit placed in the middle of every edge, as
depicted in Fig. 1. The Hamiltonian is a sum of four-body
commuting terms, ½Kn;Km� ¼ 0,

H ¼ � X2N2

n¼1

�nKn:

These terms Kn are typically ZZZZ on a face or XXXX
around a vertex, where X and Z are the standard Pauli
matrices. There is a fourfold degeneracy in the ground state

FIG. 1 (color online). The four-body stabilizers and logical
X rotations of the toric code. Anyons are propagated horizontally
by X rotations and vertically by Z rotations.
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space (defined by Knjc i ¼ jc i), allowing the encoding of
two qubits. We consider a rotated version (apply
Hadamards along every second row) in which every stabil-
izer term is the same, XZZX [15]. In addition to making the
model translationally invariant (if �n ¼ �> 0), the logi-
cal Z (X) rotations for the encoded qubits are two inequi-
valent columns (rows) of Z (X) operators. The Hamiltonian
is subsequently subject to a perturbation

V ¼ X2N2

n¼1

�nXn:

Our aim is to determine times and field strengths such that,
with high probability, error correction on the state

e�itðHþVÞjc 0i produces a logically X rotated state, jc 1i
(@ ¼ 1). This is the time at which, for that model of error
correction, the stored data are unreliable.

To locate errors, we measure the stabilizers, and perform
minimum weight perfect matching (MWPM) to determine
how to eliminate them. We assume that this process is
perfect; otherwise the effectiveness, and hence storage
time, is reduced. Since MWPM is difficult to analyze, we
make use of a special property of the chosen perturbation.
Specifically, a given Xn commutes with all the stabilizers,
except the two positioned to the left and right of the site n.
Consequently, all the excitations of the original code due to
the perturbation manifest themselves along horizontal
lines. Every row must have an even number of errors.
The chance of this happening by accident is vanishingly
small, implying that the perturbation is just creating errors
along the rows. Hence, we perform error correction by
using MWPM independently along each row. When suit-
able, this method is strictly stronger than the full 2D error
correction. If each row has a logical error with probability
p, a logical error arises overall with a probability
1
2 ð1� ð1� 2pÞNÞ. For large N, any finite p is destructive.

The transverse Ising model.—The rowlike feature that
the perturbation induces means that the spectrum of the
Hamiltonian, along each row, is equal to that of the trans-
verse Ising model with periodic boundary conditions [17]

HI ¼ � XN
n¼1

�nZnZnþ1 þ
XN
n¼1

�nXn:

A term Xn commutes with all ZZ terms other than Zn�1Zn

and ZnZnþ1. The bit-flip distribution along a particular row

of e�itðHþVÞjc 0i relative to jc 0i is the same as that on
e�itHI j0i�N . The equivalent error correction measures the
stabilizers ZnZnþ1, and minimizes the number of flips to
return the system to aþ1 eigenstate of the stabilizers. Error
correction fails if there is a finite probability that more than
half the qubits have flipped; i.e., if m, the value of the
magnetization

M ¼ 1

N

XN
n¼1

Zn;

after projection onto the stabilizer space, is negative. We
wish to argue that certain values of

hMi ¼ 1

N
h0j�NeiHIt

X
n

Zne
�iHItj0i�N

correspond to finite p. Lieb-Robinson bounds [18] show
that at time t correlations between terms separated by a
distance ji� jj> 2vt are exponentially small (hence neg-
ligible); i.e., for any operators A and B separated by
distance dAB, there exist positive constants C, �,

k ½e�iHtAeiHt; B� k� C k A kk B k e�ðvt�dABÞ;

where v� � ¼ max�n is the speed of sound for the sys-
tem. In this regime, hZiZji � hZiihZji [19], so for times

t � N=�, almost all the variables Zi are independent.
Hence, Hoeffding’s inequality applies to a good approxi-
mation [20] and, consequently, the probability that m< 0

is finite iff hMi �Oð1= ffiffiffiffi
N

p Þ. This is the signature for fail-
ure of the memory.
An upper bound.—SinceXL ¼ X�N is a conserved quan-

tity of HI, the initial state decomposes in terms of

jGHZ	i ¼ ðj0i�N 	 j1i�NÞ= ffiffiffi
2

p
:

Given that fZn; XLg ¼ 0 for all n,

hMi ¼ 1

N

X
n

RehGHZ�jeiHItZne
�iHItjGHZþi:

Bounding this by the absolute value and using jGHZ�i ¼
ZnjGHZþi reveals that

hMi � 1

N

X
n

jhGHZþjeiZnHIZnte�iHItjGHZþij;

which is restricted to theþ1 eigenspace of XL. In terms of
the Majorana fermions

c2n�1 ¼
�Yn�1

m¼1

Xm

�
Zn c2n ¼ i

�Yn�1

m¼1

Xm

�
Yn;

HI is bilinear, with terms 1
2hnmcncm, where h is a 2N � 2N

matrix (j2N þ 1i ¼ j1i)

h ¼ XN
n¼1

�nðj2n� 1ih2nj � j2nih2n� 1jÞ

� XN
n¼1

�nðj2nih2nþ 1j � j2nþ 1ih2njÞ;

given that evolution is only in theþ1 eigenspace of XL. We

use hð0Þ to denote the instance of h with �n¼0 and�n¼1.
The Greenberger, Horne, and Zeilinger (GHZ) state is a
projection onto the simultaneous eigenspace of fermion
pairs,

jGHZþihGHZþj ¼ lim
�!0

1

2NcoshN�
e
ð1=2Þ�P

n;m

hð0Þn;mcncm
;
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which is a fermionic Gaussian state with covariance matrix

hð0Þ [21], jGHZþihGHZþj ¼ !ðhð0ÞÞ. A state �1 ¼ !ðMÞ
evolves under a Hamiltonian H ¼ 1

2

P
n;mhnmcncm as

e�iHt�1e
iHt ¼ !ðe�2htMe2htÞ:

Furthermore, for two states �1 ¼ !ðM1Þ and �2 ¼ !ðM2Þ,

Tr ð�1�2Þ ¼ 1

2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðM1Þ detðM2 þM�1

1 Þ
q

:

Applying these rules leads to the conclusion that

hMi � 1

N

X
n

��������det
�
1

2
Bn � 1

2
1
���������

1=4

;

Bn ¼ e2hte�2hnthð0Þe2hnte�2hthð0Þ;
(1)

where hn ¼ hð�n � ��nÞ results from ZnHIZn¼
HI�2�nXn being bilinear in fermions.

Analysis.—Equation (1) gives an upper bound—if it

evaluates to 1=
ffiffiffiffi
N

p
, the magnetization cannot be larger,

and the memory is unreliable. To see that the bound is
tight, consider the evolution of jGHZ	i. Initially, these
states remain close to the original states, with a low density
of bit flips described by Q. We need to examine the phase

� ¼ Arg

�hGHZþjQye�iHItjGHZþi
hGHZ�jQye�iHItjGHZ�i

�
:

If � ¼ 0 for all populatedQ, then the bound is exact, so we
want to argue that � remains small. Now consider the
evolution of the initial state j0i�N . In a given Q sector
(assumed to be of low density), the state becomes

QðjGHZþi þ e�i�jGHZ�iÞ=
ffiffiffi
2

p
: (2)

As � increases towards �=2, it becomes a GHZ state.
However, Lieb-Robinson bounds show [19] that a 1D local
Hamiltonian with speed of sound v cannot create an
N-qubit GHZ state in a time less than OðN=vÞ. Thus, our
bound on hMi reveals not only when the memory is cer-
tainly not stable, but also when it is stable.

Returning to the calculation of detð 12 ðBn � 1ÞÞ, since Bn

is unitary and Bn ¼ B

n, the eigenvalue pairs take the form

e	i�i (with the possible exception of ei� ¼ 	1). So,

det

�
1

2
ðBn � 1Þ

�
¼ 1

4N
Y
i

ðei�i � 1Þðe�i�i � 1Þ

¼ 1

2N
Y
i

ð1� cos�iÞ:

Provided jxj � 1, 12 ð1� xÞ � e�ðxþ1Þ=2, which reveals that
hMi � 1

N

P
n expð�1

16 ðTrðBnÞ þ 2NÞÞ. We will take the trace

of Bn using a basis j�	mi ¼ ðj2m� 1i 	 ij2miÞ= ffiffiffi
2

p
, which

is a diagonal basis of hð0Þ. Lieb-Robinson bounds again
allow us to describe the maximum distance that the j�	mi
can be propagated by h for any model f�n; �ng. Indeed,
provided jm� nj � �t,

e�2ihnte2ihtj�	mi � j�	mi
because the propagating states never ‘‘see’’ the different
coupling strength between hn and h, so this means that
only Oð�tÞ of the j�	mi may not result in �1 for the trace.
For those states j�	mi whose horizon contains the sites

2n� 1 and 2n, h�þm jBnj�þmi simply measures the weight
of the state e�2ihnte2ihtj�þmi on the subspace j��k i. Moving

to the interaction picture with respect to h, the only re-
maining evolution is hn � h. Consider the eigenspace of h.
If �n ¼ 0, we just have the energies f	�ng, and the
eigenstates are categorized into two bands by whether
they are of positive or negative energy (corresponding to
having support on one of the two subspaces j�	k i). By
adding in the f�ng, there is additional coupling, both inter-
and intraband. Within the band, we completely solve for
the new eigenvectors, treating interband coupling as a
perturbation (�min � �). The positive band has energies
in the range [�min � �, �max þ �]. The first order correc-
tion to the eigenvectors in a perturbative expansion is
Oð�=�minÞ. While hn � h couples between all of these
eigenvectors, for times t � ��1

min the rotating wave ap-

proximation averages away the coupling between the two
bands. Hence, if a state has support on one particular band,
it remains in that band. We have just argued however, that
these bands correspond to being in the two different spaces
j�þk i and j��k i, except for Oð�=�minÞ corrections to the

amplitude. Hence no more than Oðð�=�minÞ2Þ weight is
lost to the other subspace during the evolution. Thus,

Tr ðBnÞ � �ð2N � ��tÞ � ð�� �ð�=�minÞ2Þ�t;
where �, � represent undetermined constants from our
perturbation argument and Lieb-Robinson bound. If
��3t=�2

min � 1, then we conclude that no model will

ever have a value of hMi that scales worse than
e���3t=ð16�2

min
Þ � 1� ��3t=ð16�2

minÞ:
For sufficiently weak perturbations, the magnetization
drops linearly with time. For stronger perturbations and
sufficiently long times [which always exist if
�ð�=�minÞ2N > 16], the magnetization decays exponen-
tially towards zero, and the information is unreliable once

it drops below 1=
ffiffiffiffi
N

p
. Hence, the system presents a survival

time of �ð��3�2
min logNÞ. Every model f�n; �ng charac-

terized by �=�min certainly survives this long. Not all
models propagate information in a way that saturates
Lieb-Robinson bounds. However, the uniform field case
�n ¼ 1, �n ¼ � has a finite group velocity and is hence
expected to exhibit this scaling. Numerical confirmation
can be seen in Fig. 2. Although this is a relatively weak
effect at small system sizes (�=�min ¼ 0:2 has a critical
system size of about N ¼ 600, at which point survival is
for a time of approximately 1500��1

min), the scaling is so

weak that it could easily dominate other time scales as one
approaches mesoscopic systems.
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Random systems.—In random systems, the propagation
of information is suppressed compared to that predicted by
Lieb-Robinson bounds, enabling much longer storage
times. To this end, we aim to induce Anderson localization
by randomizing either the �n (by designing the system) or
the �n (as might arise naturally), concentrating on the
former and maintaining the assumptions that �n > 0 and
�min � �. Figure 3 already confirms such expectations
numerically. Localization embodies two concepts: spectral
localization (SL) requires that every eigenvector j�ki of h
has exponentially decaying tails; i.e., there exist positive

constants Ck, �k independent of N such that jhnj�kij �
Cke

��kjn�kj [22], whereas dynamical localization (DL)
requires that jhmje�ihtjnij is exponentially bounded in
jm� nj. While DL, which implies SL, holds for almost
all instances of the XX model with random magnetic field
[24], to our knowledge, neither has been proven for the
transverse Ising model. However, the interaction within
each band of our model is identical to the XX model.
Hence, one can readily show that the perturbative interband
coupling leaves SL intact. Reference [23] showed that if

DL can be proven for the matrix h, a Lieb-Robinson bound
with finite horizon follows for H. The same argument
applied to SL shows that there exist positive coefficients
c, C0, and �0 such that

k ½e�iHtAeiHt; B� k� minðcjtj; C0ÞN k A kk B k e��0dAB :

Hence, the system exhibits a logarithmic light cone akin to
that of [25]. Replacing all three applications of Lieb-
Robinson bounds in our previous analysis, we conclude
that sufficiently large systems are stable for a time at least

t� c�1N�ð�2
min

��2Þ for almost all instances.
Conclusions.—When subject to an unknown perturba-

tion along a particular field direction (X or Z), then, in
every instance, information stored in the degenerate
ground space of the toric code is stable for a time
�ð��3�2

min logNÞ, comparable to the worst-case scaling

for any perturbation constructed in [11]. The analysis
has been confirmed numerically for system sizes of up to
2� 106 qubits. We have also examined randomized stabil-
izer strengths [13], improving upon previous analyses by
accurately encapsulating the effects of particle creation in
the perturbation, and of error correction. This has enabled
us to show that the survival time almost always scales at
least polynomially in N for finite system sizes, which is a
consideration entirely absent from [13], and yet is of
central importance. In the future, proving dynamical local-
ization of the 1D transverse Ising model could show that
storage is stable for arbitrary times.
While we have argued that the use of 1D error correction

is well justified, how would this compare to the full 2D
error correction? If the error density remains low, typical
occurrences will be single localized errors. Where the 1D
error correction has a threshold probability of 5% for these
errors, we have numerically estimated a threshold for the
2D error correction to be 22% (as compared to 11% [4] for
arbitrary local errors), removing all N dependence from
our proof, and reducing our lower bounds on the survival
time to a constant.
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