
Chapter 1
The Many Faces of Complexity in Software
Design

José Luiz Fiadeiro

Abstract ‘Complexity’ and ‘crisis’ have become synonyms in the (brief) history
of Software Engineering. The terms ‘component’, ‘decomposition’, ‘structure’ and
‘architecture’ have been associated with methods and techniques proposed over the
years to defeat the crisis, from structured programming to object/component based
programming and, more recently, service-oriented architectures. This chapter dis-
cusses the nature of complexity as it arises in software design, assesses the progress
that we have achieved in tackling it, and discusses some of the challenges that still
remain.

1.1 Introduction

Complexity, not in the formal sense of the theory of algorithms or complexity sci-
ence, but in the more current meaning of “the state or quality of being intricate or
complicated”, seems to be unavoidably associated with software. A few quotes from
the press over the last 10 years illustrate the point:

• The Economist, 12/04/2001 — In an article aptly called “The beast of complex-
ity”, Stuart Feldman, then director of IBM’s Institute for Advanced Commerce,
is quoted to say that programming was “all about suffering from ever-increasing
complexity”

• The Economist, 08/05/2003 — A survey of the IT industry acknowledges that
“computing has certainly got faster, smarter and cheaper, but it has also become
much more complex”

• Financial Times, 27/11/2004 — The British government’s chief information of-
ficer gives the following explanation for the Child Support Agency IT project
failure: “Where there’s complexity, there will, from time to time, be problems”

• The Economist, 06/09/2007 — In an article called “The trouble with computers”,
Steven Kyffin, then senior researcher at Philips, is quote to concede that computer
programmers and engineers are “compelled by complexity”

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28902332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 José Luiz Fiadeiro

• Financial Times, 27/01/2009 — “It is very easy to look at the IT industry and
conclude that it is fatally attracted to complexity”

But why are we so bothered about complexity? The following quote from the
Financial Times of 27/01/2009 summarises the point quite effectively:

Complexity is the enemy of flexibility. It entangles us in unintended consequences. It blocks
our attempts to change. It hides potential defects, making it impossible to be sure our sys-
tems will function correctly. Performance, transparency, security — all these highly desir-
able attributes leak away in the face of increasing complexity.

In this chapter, we argue that, although the public in general would readily ac-
cept that software is ‘complicated’, complexity in the sense of the quotes above
has lurked under many guises since the early days of programming and software
engineering, which explains why software seems to be in a permanent ‘crisis’. We
also discuss the ways that we, computer scientists, have been devising to tackle “the
beast of complexity”, which we classify into two main activities: abstraction and
decomposition.

1.1.1 Abstraction

Abstraction is an activity that all of us perform on a daily basis without necessarily
realising so. Abstraction is one of the ways we use to go around the complexity of
the world we live in and simplify the way we interact with each other, organisations,
systems, and so on.

Bank accounts provide a rich and mundane example of the way we use abstrac-
tion, as the following ‘story’ illustrates. In “A Visit to the Bank”, Paddington Bear
goes to Floyds Bank to withdraw money for his holiday. He decides to leave the
interest in for a rainy day but is horrified to learn that it only amounts to three pence.
Tension mounts when he finds out that he cannot have back the very same notes that
he deposited in the first place: he knew perfectly well that he had spilled marmalade
over them...

We (or most of us) have learnt that an account is not a physical storage of bank
notes that we manipulate through the cashier just as we would do with a safe box
or a piggy bank. However, the advantages (and dangers?) of working with bank ac-
counts as abstractions over the physical manipulation of currency are not restricted
to avoiding handling sticky bank notes (or other forms of ‘laundering’...). Indeed,
a bank account is not (just) a way of organising the storage of money, but of our
business interactions: it solves a good part of the complexity involved in business
transactions by decoupling our ability to trade from the manipulation of physical
bank notes.

Much the same can be said about the way we use computers. Abstraction per-
vades computing and much of the history of computer science concerns precisely
the development of abstractions through which humans can make full usage of the

1 The Many Faces of Complexity in Software Design 3

(computational) power made available by the machines we call computers by tack-
ling the complexity of programming them. In the words of Peter Denning [17]:

Most computing professionals do not appreciate how abstract our field appears to others.
We have become so good at defining and manipulating abstractions that we hardly notice
how skilfully we create abstract ‘objects’, which upon deployment in a computer perform
useful actions.

Paddington’s view of his bank account may make us smile because these are
abstractions that we have learnt to live with a long time ago. However when, not
long ago, we tried to organise a transfer from Leicester to Lisbon, it turned out that
providing the clerk with the SWIFT and IBAN codes was not sufficient and that a
full postal address was indispensable. (No, this was not at Floyds Bank but a major
high-street bank in the UK.) What is more, when given a post code that, for some
reason, did not look credible enough to his eyes, the clerk refused to go ahead with
the transfer on the grounds that “the money might get lost in the post”...

This example from ‘real life’ shows that the fact that abstraction is such a rou-
tine activity does not mean that we are all equally and well prepared to perform
it in a ‘professional’ way — see [48] for a discussion on how abstraction skills in
computer science require education and training. The following paragraph from the
27/01/2009 article of the Financial Times quoted above can help us understand how
abstraction relates to complexity:

Most engineers are pretty bright people. They can tolerate a lot of complexity and gain a
certain type of power by building systems that flaunt it. If only we could get them to focus
their intellect instead on eliminating it. The problem with this message is that, for all our
best efforts, we almost never eliminate complexity. Most of the time, when we create a
system that appears simple, what we have actually done is shift the complexity somewhere
else in the technology stack.

Indeed, operating systems, compilers and, more recently, all sorts of ‘clever’ mid-
dleware support the layers of abstraction that allow us to program software systems
without manipulating directly the code that the machine actually understands (and
we, nowadays, rarely do). The current emphasis on model-driven development is
another example of this process of abstraction, this time in relation to programming
languages, avoiding that IT specialists spread marmalade over lines of code...

Why is it then that, in spite of phenomenal progress in computer science for at
least three decades, which the quote from P. Denning acknowledges, is complexity
still haunting software as evidenced by the articles cited at the beginning of this
section? Expanding the quote from the 08/05/2003 edition of The Economist:

Computing has certainly got faster, smarter and cheaper, but it has also become much more
complex. Ever since the orderly days of the mainframe, which allowed tight control of
IT, computer systems have become ever more distributed, more heterogeneous and harder
to manage. [...] In the late 1990s, the internet and the emergence of e-commerce “broke
ITs back”. Integrating incompatible systems, in particular, has become a big headache. A
measure of this increasing complexity is the rapid growth in the IT services industry. [...]

What is the significance of the internet to the complexity of software? In this
chapter, we will be arguing that the reason for the persistence of the ‘complexity

4 José Luiz Fiadeiro

crisis’ is in the change of the nature of complexity, meaning that programming and
software engineering methodology often lags behind advances in more technologi-
cal areas (such as the internet) and, therefore, fails to develop new abstractions that
can be used for tackling the complexity of the systems that are being built.

1.1.2 Decomposition

Although we started this chapter with quotes that have appeared in the press during
the last 10 years, the threat of complexity was the topic of a famous article published
in the Scientific American 10 years before that, in 1994, following on the debacle of
the Dallas international airport baggage handling system — glitches in the software
controlling the shunting of luggage forced the airport to sit empty for nine months:

The challenge of complexity is not only large but also growing. [...] When a system becomes
so complex that no one manager can comprehend the entirety, traditional development pro-
cesses break down. [...] To keep up with such demand, programmers will have to change
the way that they work. [...] Software parts can, if properly standardised, be reused at many
different scales. [...] In April [1994], NIST announced that it was creating an Advanced
Technology Program to help engender a market for component-based software.

Nothing very surprising, one could say. Indeed, another way of managing com-
plexity that we use in our day to day is embedded in the Cartesian principle of divide
and conquer — breaking a complicated problem down into parts that are easier to
solve, and then build a solution to the whole by composing the solutions to the parts.

The literature on component-based software development (CBD) is vast (e.g.,
[10, 15]). Therefore, what happened to component-based software if, according to
the sources quoted by The Economist in 08/05/2003, the challenge of complexity
was still growing in 2003? A couple of years later, an article in the 26-01-2005
edition of the Financial Times reported:

“This is the industrial revolution for software,” says Toby Redshaw, vice-president of infor-
mation technology strategy at Motorola, the US electronics group. He is talking about the
rise of service oriented architectures (SOAs) a method of building IT systems that relies not
on big, integrated programs but on small, modular components.

“Small, modular components”? How is this different from the promise reported
in the Scientific American? What is even more intriguing is that the article in the
Scientific American appeared almost 20 years after Frank DeRemer and Hans H.
Kron wrote [18]:

We distinguish the activity of writing large programs from that of writing small ones. By
large programs we mean systems consisting of many small programs (modules), possibly
written by different people.[...] We argue that structuring a large collection of modules to
form a ‘system’ is an essentially distinct and different intellectual activity from that of
constructing the individual modules.

Why didn’t these modules fit the bill given that, in 1994, component-based soft-
ware was being hailed as the way out of complexity? DeRemer and Kron’s article

1 The Many Faces of Complexity in Software Design 5

itself appeared eight years after the term ‘software crisis’ was coined at the famous
1968 NATO conference in Garmisch-Partenkirschen which Douglas McIlroy’s ad-
dressed with a talk on Mass Produced Software Components.

Given that, today, we are still talking about ‘the crisis’ and ‘components’ as a
means of handling complexity, did anything change during more than 40 years?
As argued in the previous subsection, our view is that it is essentially the nature
of the crisis that has been changing, prompting for different forms of decomposi-
tion and, therefore, different notions of ‘component’. Whereas this seems totally
uncontroversial, the problem is that it is often difficult to understand what exactly
has changed and, therefore, what new abstractions and decomposition methods are
required. For example, the fact that component-based development is now a well-
established discipline in software engineering makes it harder to argue for different
notions of component. This difficulty is well apparent in the current debate around
service-oriented computing.

The purpose of this chapter is to discuss the nature of complexity as it arises
in software design, review the progress that we have achieved in coping with it
through abstractions and decomposition techniques, and identify some of the chal-
lenges that still remain. Parts of the chapter have already been presented at confer-
ences or colloquia [22, 23, 24, 25]. The feedback received on those publications
has been incorporated in this extended paper. Sections 1.2, 1.3 and 1.4 cover three
different kinds of programming or software design — ‘programming in-the-small’,
‘programming in-the-large’ and ‘programming in-the-many’, respectively. Whereas
the first two have been part of the computer science jargon for many years, the third
is not so well established. We borrow it from Nenad Medvidović [54] to represent
a different approach to decomposition that promotes connectors to the same status
as components (which are core to programming in-the-large) as first-class elements
in software architectures [66]. Section 1.5 covers service-oriented computing and
contains results from our own recent research [27, 28, 30], therefore presenting a
more personal view of an area that is not yet fully mature.

The chapter is not very technical and does not attempt to provide an in-depth
analysis of any of the aspects that are covered — several chapters of this volume
fulfil that purpose.

1.2 Programming in-the-small

The term programming in-the-small was first used by DeRemer and Kron [18] to dif-
ferentiate between the activity of writing ‘small’ programs from those that, because
of their size, are best decomposed into smaller ones, possibly written by different
people using programming-in-the-small techniques. To use an example that relates
to current programming practice, writing the code that implements a method in any
object-oriented language or a web service would be considered as programming
in-the-small.

6 José Luiz Fiadeiro

Precisely because they are ‘small’, discussing such programs allows us to illus-
trate some of the aspects of complexity in software development that do not relate
to size. For example, the earlier and more common abstractions that we use in pro-
gramming relate to the need for separating the software from the machine that runs
it. This need arises from the fact that programming in machine code is laborious
(some would say complicated, even complex). The separation between program and
code executable on a particular computer is supported by machine-independent pro-
gramming languages and compilers. This separation consists of an abstraction step
in which the program written by the programmer is seen as a higher-level abstraction
of the code that runs on the machine.

High-level programming languages operate two important abstractions in rela-
tion to machine code: control execution and memory. Introduced by E. Dijkstra in
the 70s [19], structured programming promoted abstractions for handling the com-
plexity of controlling the flow of execution; until then, control flow was largely
defined in terms of goto statements that transferred execution to a label in the pro-
gram text, which meant that, to understand how a program executed, one had to
chase goto’s across the text and, inevitably, would end tangled up in complex control
flows (hence the term ‘spaghetti’ code). The three main abstractions are well known
to all programmers today — sequence, selection, and repetition. As primitives of a
(high-level) programming language, they transformed programs from line-oriented
to command-oriented structures, opening the way to formal techniques for analysing
program correctness.

Another crucial aspect of this abstraction process is the ability to work with data
structures that do not necessarily mirror the organisation of the memory of the ma-
chine in which the code will run. This process can be taken even further by allowing
the data structures to reflect the organisation of the solution to the problem. This
combination of executional and data abstraction was exploited in methodologies
such as JSP — Jackson Structured Programming [43] — that operate a top-down
decomposition approach. The components associated with such a decomposition
approach stand for blocks of code that are put together according to the executional
abstractions of structured programming (sequential composition, selection and it-
eration). Each component is then developed in the same way, independently of the
other components. The criteria for decomposition derive from the structure of the
data manipulated by the program.

JSP had its own graphical notation, which we illustrate in Fig. 1.1 for a run-length
encoder — a program that takes as input a stream of bytes and outputs a stream of
pairs consisting of a byte along with a count of the byte’s consecutive occurrences
in the input stream. This JSP-diagram includes, at the top level, a box that represents
the whole program — Encode run lengths. The program is identified as an iteration
of an operation — Encode run length — that encodes the length of each run as it is
read from the input. The input is a stream of bytes that can be viewed as zero or more
runs, each run consisting of one or more bytes of the same value. The fact that the
program is an iteration is indicated by the symbol * in the right hand corner of the
corresponding box. This operation is itself identified as the sequential composition
of four more elementary components. This is indicated by the sequence of boxes

1 The Many Faces of Complexity in Software Design 7

that decompose Encode run length. The second of these boxes — Count remaining
bytes — is itself an iteration of an operation — Count remaining byte — that counts
bytes.

Count
remaining byte

*

Count
remaining bytes Output byte Output count

Encode run
lengths

Encode run
length

*

Count first byte

Fig. 1.1 Example of a JSP-diagram.

An advantage of structured programming is that it simplifies formal verification
of program correctness from specifications, for example through what is known as
the Hoare calculus [41] (see also [40, 60]). Typically, we consider a specification
to be a pair [p,q] of state conditions1. A program satisfies such a specification if,
whenever its execution starts in a state that satisfies p (called the ‘pre-condition’)
and terminates, the final state satisfies q (called the ‘post-condition’).

In order to illustrate how, together with the Hoare calculus, we can define a notion
of ‘module’ (or component) through which we can define a compositional (bottom-
up) approach to program construction, we introduce another graphical notation that
we will use in other sections to illustrate similar points in other contexts.

An example of what we will call a program module is given in Fig. 1.2. Its mean-
ing is that if, in the program expression C(c1,c2), we bind c1 to a program that
satisfies the specification [p1,q1] and c2 to a program that satisfies the specification
[p2,q2], then we obtain a program that satisfies the specification [p,q].

1 A frame — the set of variables whose values may change during the execution of the program
— can be added as in [60]. For simplicity, we only consider partial correctness in this chapter;
techniques for proving that the program terminates, leading to total correctness, also exist [40, 60].

8 José Luiz Fiadeiro

[p2,q2]

C(c1,c2) [p,q]

[p1,q1]
c1

c2

Fig. 1.2 A program module.

One can identify [p,q] with the interface that is provided by the module, and
[p1,q1] and [p2,q2] with those of ‘components’ that are required by the module so
that, upon binding, the expression forms a program that meets the specification [p,q].
Notice that the module does not need to know the inner workings of the components
that implement [p1,q1] and [p2,q2] in order to make use of them, thus enforcing a
form of encapsulation.

Using this notation, we can define a number of module schemas that capture the
rules of the Hoare calculus and, therefore, define the basic building blocks for con-
structing more complex programs. In the Appendix (Fig. 1.30) we give the schemas
that correspond to assignments, sequence, iteration, and selection. Two instances of
those schemas are presented in Fig. 1.3: one for assignment and one for iteration.

Modules can be composed by binding a requires-interface of one module with
the provides-interface of another. Binding is subject to the rules of refinement [60]:
[p,q]v[p′,q′] iff p′ a p and q′ ` q. That is, [p′,q′] refines [p,q] if its pre-condition
p′ is weaker than p and its post-condition q′ is stronger than q. This is illustrated in
Fig. 1.4.

The result of the binding is illustrated in Fig. 1.5: the body of the right-hand-side
module is used to (partially) instantiate the program expression of the left-hand-side
module; the resulting module has the same provides-interface as the left-hand-side
module, and keeps the unused requires-interface of the left-hand-side module and
the requires-interface of the right-hand-side module. A concrete example is given in
Fig. 1.6 for the binding of the two modules depicted in Fig. 1.3 (notice that, x being
an integer program variable, the condition x > 0 entails x≥ 1).

These notions of program module and binding are, in a sense, a reformulation
of structured programming intended to bring out the building blocks or component
structure that results from the executional abstractions. Notice that, through those
modules, it is the program as a syntactic expression that is being structured, not the
executable code: there is encapsulation with respect to the specifications as argued
above — the interface (specification) provided by a module derives only from the
interfaces (specifications) of the required program parts — but not with respect to

1 The Many Faces of Complexity in Software Design 9

while x>0
do c [x≥0,x=0] [x>0,x≥0]

x:=x–1 [x≥1,x≥0]

c

Fig. 1.3 An instance of the assignment schema and one of iteration.

[p2,q2]

C(c1,c2) [p,q]

[p1,q1]

C'(c'1) [p',q']

p2 ⊢ p'
q2 ⊣ q'

[p'1,q'1]⊑

c1

c2
c'1

Fig. 1.4 Binding two modules.

the executable code: in the second module on Fig. 1.3, one cannot reuse code gen-
erated for c to generate code for whilex > 0 do c. Other programming abstractions
exist that allow for code to be reused, such as procedures.

Procedural abstractions are indeed a way of developing resources that can be
reused in the process of programming an application. Resources can be added to
program modules through what we would call a uses-interface. Examples are given
in Fig. 1.7, which correspond to two of the schemas discussed in [60] (see also [40]):
one for substitution by value and the other for substitution by result. Uses-interfaces
are different from requires-interfaces in the sense that they are preserved through

10 José Luiz Fiadeiro

[p'1,q'1]

 C(c1,C'(c'1)) [p,q]

[p1,q1]
c1

c'1

Fig. 1.5 The result of the binding in Fig. 1.4.

while x>0
do x:=x–1 [x≥0,x=0]

Fig. 1.6 The result of binding the modules in Fig. 1.3.

composition, i.e., there is no syntactic substitution like in binding. Like before, the
module does not need to know the body of the procedure in order to make use of it,
just the specification, thus enforcing a form of encapsulation.

JSP-diagrams can be viewed as providing an architectural view (avant la lettre,
as the notion of software architecture emerged only much later) of programs. To
make the connection with other architectural views reviewed in later sections of this
chapter, it is interesting to notice JSP-diagrams can be combined with the notion
of program module that we defined above. Essentially, we can replace the syntactic
expressions inside the modules by JSP-diagrams as illustrated in Fig. 1.8. Binding
expands the architecture so that, as modules are combined, the JSP-architecture of
the program is built.

1 The Many Faces of Complexity in Software Design 11

Proc(A) [p[f\A],q[f0\A0]]

procedure
Proc(value f:T)
≙ [p,q]

Proc(a) [p,q]

procedure
Proc(result f:T)
≙ [p,q[a\f]]

Fig. 1.7 Two schemas for procedural abstraction (see [60] for details). By A0 we denote the value
of the expression A before the execution of the command (procedure call).

Encode run
lengths [p",q"] [p",q"] Encode

run length [p',q'] [p,q]
*

Encode
run length [p,q]

*
 [p",q"] Encode run

lengths

⊑

Fig. 1.8 Building JSP-diagrams through program-module composition.

12 José Luiz Fiadeiro

1.3 Programming in-the-large

1.3.1 Modules and module interconnection languages

Whereas the program modules and JSP-diagrams discussed in the previous section
address the complexity of understanding or developing (correct) executional struc-
tures, they do not address the complexity that arises from the size of programs (mea-
sured in terms of lines of code). This is why the distinction between programming
in-the-small and programming in-the-large was introduced in [18]:

By large programs we mean systems consisting of many small programs (modules), pos-
sibly written by different people. We need languages for programming-in-the-small, i.e.,
languages not unlike the common programming languages of today, for writing modules.
We also need a “module interconnection language” for knitting those modules together into
an integrated whole and for providing an overview that formally records the intent of the
programmer(s) and that can be checked for consistency by a compiler.

Notice that, as made clear by the quote, the term programming in-the-small is
not derogatory: ‘small’ programs whose correctness can be formally proved will
always play an essential role in building ‘large’ software applications that we can
trust to operate safely in mission-critical systems (from avionics to power plants to
healthcare, inter alia). The problem arising at the time was that, as the scope and
role of software in business grew, so did the size of programs: software applications
were demanded to perform more and more tasks in all sorts of domains, growing
very quickly into millions of lines of code. Sheer size compromised quality: delivery
times started to suffer and so did performance and correctness due to the fact that
applications became unmanageable for the lone programmer.

To address this problem, programming in-the-large offered a form of decomposi-
tion that addressed the global structure of a software application in terms of what its
modules and resources are and how they fit together in the system. The main differ-
ence with respect to programming in-the-small is in the fact that one is interested not
in structuring the computational process, but the software-construction (and evolu-
tion) process2. Hence, the resulting components (modules) are interconnected not
to ensure that the computation progresses towards the required final state (or post-
condition, or output), but that, in the final application, all modules are provided with
the resources they need (e.g., the parsing module of a compiler is connected to the
symbol table). In other words, it is the flow of resources among modules, not of
control, that is of concern.

The conclusions of Parnas’ landmark paper [62] are even clearer in this respect:

[...] it is almost always incorrect to begin the decomposition of a system into modules on
the basis of a flowchart. We propose instead that one begins with a list of difficult design
decisions or design decisions which are likely to change. Each module is then designed

2 Procedural abstractions, as mentioned at the end of Section 1.2, do offer a way of simplifying
program construction by naming given pieces of program text that would need to be repeated
several times, but they are not powerful enough for the coarse-grained modularity required for
programming in-the-large.

1 The Many Faces of Complexity in Software Design 13

to hide such a decision from the others. Since, in most cases, design decisions transcend
time of execution, modules will not correspond to steps in the processing. To achieve an
efficient implementation we must abandon the assumption that a module is one or more
sub-routines, and instead allow subroutines and programs to be assembled collections of
code from various modules.

That is to say, we cannot hope and should not attempt to address the complex-
ity of software systems as products with the mechanisms that were developed for
structuring complex computations. That is why so-called module interconnection
languages (MILs) were developed for programming in-the-large [63]. Indeed, the
quote from [18] makes clear that the nature of the abstraction process associated
with programming in-the-large is such that one can rely on a compiler to link all the
modules together as intended by the programmer(s). Hence, MILs offered primitives
such as export/provide/originate and import/require/use when designing individual
modules at the abstract level so as to express the dependencies that would need to
be taken into account at the lower level when “knitting the modules together”.

 2

verify system integrity before implementation. An MIL also provides means of standardizing communication among
members of a programming team and of standardizing documentation of system structure.

The syntax primitives of an MIL describe the flow of resources among modules. A resource is any entity that can be
named in a programming language (e.g. variables, constants, procedures, type definitions, etc.) and that can be made
available for reference by another module within a given software system. There are four basic syntax primitives in
MILs, provide, require, has-access-to and consists-of. Provide may also be called synthesize or export and require
may also be called inherit or export. A must attribute may also precede the primitives.

An example of an MIL description taken from [Prie87] is shown below. Note that declarations such as module,
function, real and integer are also part of the MIL syntax.

module ABC
 provides a,b,c
 requires x,y
 consist-of function XA, module YBC

 function XA
 must-provide a
 requires x
 has-access-to module Z
 real x, integer a
 end XA

 module YBC
 must-provide b,c
 requires a,y
 real y, integer a,b,c
 end YBC
end ABC

ABC

XA YBC

Z

has-access-to

a,b,c
x,y

b,c

a
a,y

x

The MIL description of a module specifies the resources required and provided by the module and becomes the
interface with other modules and subsystems, Module descriptions are the actual code of a MIL and are used when
assembling or integrating a software system in order to verify system integrity.

What MILs Don't Do

• Loading: This function is usually performed by loaders or other facilities in a development environment.
• Functional System Specification: An MIL only shows the static structure of a software system but does not

specify the nature of its resources.
• Type Specification: An MIL shows and verifies the different paths of communication among modules

within a software system by means of named resources. Some of these resources may be types syntactically
checked by an MIL processor for type consistency throughout the system but an MIL can not check for the
validity of their specifications.

• Embedded Link-edit Instructions: These operations are typically done by the operating system or a separate
command language.

MIL75

MIL75 was developed by DeRemer and Kron [DeRe76] and established the basic ideas and concepts of module
interconnection. MIL75 is based on the concept that system structures can be represented as decomposition trees.
Once a graphical structure for a system is obtained, it is programmed in MIL75 where the code consists of the
description of the modules in each node. The code is processed to verify system integrity and to enhance reliability.

Fig. 1.9 An example of a MIL description taken from [63].

Module-interconnection structures are essential for project management, namely
for testing and maintenance support: they enforce system integrity and inter-module
compatibility; they support incremental modification as modules can be indepen-
dently compiled and linked, and thus full recompilation of a modified system is not
needed; and they enforce version control as different versions (implementations) of
a module can be identified and used in the construction of a system. Figure 1.9 illus-
trates the kind of architecture that is described in such languages. The dependencies
between components concern access to and usage of resources.

In order to illustrate how notions of module can be formalised, we use a very
simple example in which modules consist of procedures, variables and variable ini-

14 José Luiz Fiadeiro

tialisations (similar to [60]3). Procedures can be abstract in the sense that they are
not provided with a fully-developed body (code). Some of those procedures or vari-
ables are exported and some are imported (imported procedures are abstract); the
interface of the module consists of the specifications of exported and imported re-
sources. An example, also borrowed from [60], is given in Fig. 1.10 where frames
are added to pre-/post-condition specifications.

Fig. 1.10 Example of a module borrowed from [60].

Using a diagrammatic notation similar to that used in Section 1.2, we could rep-
resent the module Tag and its interface as in Fig. 1.11. We say that a module is
correct if, assuming that resources (e.g., a procedure Choose) are provided that sat-
isfy the specifications that label the import-interfaces, the body of the module (e.g.,
Tag) implements resources (e.g., procedures Acquire and Return) that satisfy the
specifications that label the export-interfaces.

Binding two such modules together consists in identifying in one module some
of the resources required by the other. This process of identification needs to obey
certain rules, namely that the specification that labels the export-interface of one
module refines the specification of the import-interface of the other module. This is
illustrated in Fig. 1.12 where the specification of Choose is refined by that of Pick
(Pick will accept a set of natural numbers and return a natural number).

Typically, in MILs, the result of the binding is a configuration as depicted in Fig.
1.13. In our case, the edge identifies the particular resource that is being imported. In

3 Notions of module were made available in the wave of programming languages that, such as
Modula-2 [71], followed from structured programming.

1 The Many Faces of Complexity in Software Design 15

Acquire(result t:ℕ)≙
t,u:[u≠ℕ,

 t∉u0 ∧ u=u0∪{t}]

 Return(value t:ℕ)≙
u:[true, u=u0-{t}]

Choose(value s:set ℕ;
result e:ℕ) ≙
e:[s≠∅, e∈s]

module Tag
. . .

Fig. 1.11 An interface for the module in Fig.1.10.

Acquire(result t:ℕ)≙
t,u:[u≠ℕ,

 t∉u0 ∧ u=u0∪{t}]

 Return(value t:ℕ)≙
u:[true, u=u0-{t}]

Choose(value s:set ℕ;
result e:ℕ) ≙
e:[s≠∅, e∈s]

module Tag
. . .

Pick(value z:set ℤ;
result d:ℤ) ≙

d:[z≠∅, d∈z]

module PickM
. . .⊑

Fig. 1.12 Binding modules through refinement.

MILs, the link is represented by a direct reference made in the code inside the mod-
ule (which is interpreted by the compiler as an instruction to link the corresponding
implementations) and, in diagrams, the edge may be used to represent other kinds of
relationships as illustrated in Fig. 1.9. Notice the similarity with the program mod-
ules defined in Section 1.2 where binding defines an operation over JSP-diagrams,
which we can identify with program configurations (or architectures). The differ-
ence between the two notions is that MILs do not operate at the level of control
structures (as JSP-diagrams do) but organisational ones.

Another important aspect of modules is reuse, which can be supported by a
notion of refinement between modules. In the case of our example, and follow-
ing [60] once again, we say that a refinement of a module 〈Exp, Imp,Loc, Init〉
— where Exp, Imp and Loc stand for the sets of exported, imported and local
resources, respectively, and Init is an initialisation command — by another mod-
ule 〈Exp′, Imp′,Loc′, Init′〉 consists of two injective functions exp : Exp→ Exp′ and
imp : Imp→ Imp′ ∪ Loc′ such that, for every e ∈ Exp (resp. i ∈ Imp), e v exp(e)
(resp. imp(i) v i), and init v init′. Notice that exported interfaces of the refined
module can promise more (i.e., they refine the original exported resources) but the
imported interfaces of the original module cannot require less (i.e., they refine the

16 José Luiz Fiadeiro

module PickM
. . .

module Tag
. . .

Fig. 1.13 Linking modules.

corresponding resources in the refined module). Moreover, imported resources of
the original module can be mapped to local resources of the refined one.

1.3.2 Object-oriented programming

Object-oriented programming (OOP)4 can be seen to define a specific criterion for
modularising code: objects group together around methods (variables, functions,
and procedures) all the operations that are allowed on a given piece of the system
state — “Object-oriented software construction is the software development method
which bases the architecture of any software system on modules deduced from the
types of objects it manipulates (rather than the function or functions that the system
is intended to ensure)” [57].

This form of state encapsulation offers a mechanism of data abstraction in the
sense that what is offered through an object interface is a collection of operations
that hide the representation of the data that they manipulate. This abstraction mech-
anism is associated with so-called abstract data types [50] — “Object-oriented soft-
ware construction is the building of software systems as structured collections of
possibly partial abstract data type implementations” [57].

In OOP, modules are classes. A class interface consists of the specifications as-
sociated with the features that it provides to clients — attributes (A), functions (F),
or procedures (P) — and a set of invariants (I) that apply to all the objects of the
class. A class is correct with respect to its interface if the implementations of the
features satisfy their specifications and the execution of the routines (functions or
procedures) maintains the invariants. An example, using a diagrammatic notation
similar to the one used in previous sections, is given in Fig. 1.14.

As modules, classes do not include an explicit import/require interface mech-
anism similar to the previous examples, which begs the question: how can mod-
ules be interconnected? OOP does provide a mechanism for interconnecting objects:

4 We follow Meyer [57] throughout most of this section and recommend it for further reading not
just on object-oriented programming but modularity in software construction as well.

1 The Many Faces of Complexity in Software Design 17

class bankAccount is
. . .

balance: int
A

vip: bool
A

deposit(i:nat):
[true,

balance=balance0+i]

P

withdraw(i:nat):
[i≤balance,

balance=balance0–i]

P

 vip ⊃ balance≥1000
I

Fig. 1.14 The interface of the class bankAccount.

clientship — an object can be a client of another object by declaring an attribute (or
function) whose type is an object class; methods of the client can then invoke the fea-
tures of the server as part of their code5. For example, bankAccount could be a client
of a class customer through an attribute owner and invoke owner.addDeposit(i) as
part of the code that executes deposit(i) so as to store the accumulated deposits that
customers make on all the accounts that they own.

The difference in relation to an import (or required) interface is that clientship
is programmed in the code that implements the classes, not established through
an external interconnection language. In a sense, clientship is a more sophisticated
form of procedure invocation in which the code to be executed is identified by means
of a pointer variable. That is, clientship is essentially an executional abstraction in
the sense of programming in-the-small.

Classes do offer some ‘in-the-large’ mechanisms (and therefore behave as mod-
ules) through the mechanism of inheritance. Inheritance makes it possible for new
classes to be defined by adding new features to, or re-defining features of, exist-
ing classes. This mechanism is controlled by two important restrictions: extension
of the set of features is constrained by the need to maintain the invariants of the
source class; redefinition is constrained by the need to refine the specifications of
the features. An example of a class built by inheriting from bankAccount is given
in Fig. 1.15. These restrictions are important for supporting dynamic binding and
polymorphism, which are run-time architectural techniques that are typically absent
from MILs (where binding is essentially static, i.e., performed at compile time).

5 Import statements can be found in OOP languages such as Java, but they are used in conjunction
with packages in order to locate the classes of which a given class is a client.

18 José Luiz Fiadeiro

class flexibleBankAccount is
inherit bankAccount
attributes credit: nat
redefine withdrawal(i:nat)
 require else i≤balance+credit
invariant vip ⊃ balance≥10000

balance: int
A

vip: bool
A

deposit(i:nat):
[true,

balance=balance0+i]

P

withdraw(i:nat):
[i≤balance+credit,

balance=balance0–i]

P

 vip ⊃ balance≥10000
I

credit: nat
A

Fig. 1.15 The interface of the class flexibleBankAccount, which inherits from bankAccount.

Formally, inheritance can be defined as a mapping ρ between the interfaces of
the two classes, say 〈A,F,R, I〉 and 〈A′,F′,R′, I′〉, such that

1. for every routine r:[p,q] ∈ F∪R, if ρ(r):[p′,q′] then

a. p′ a ρ(p)
b. q′ ` ρ(p0)⊃ ρ(q)

2. I′ ` ρ(I)

Notice that the first condition is a variation on the notion of refinement used in
Section 1.2 in which the post-condition of the redefined routine needs to imply the
original post-condition only when the original pre-condition held before execution.
On the other hand, the original invariant cannot be weakened (it needs to be implied
by the new one). Together, these conditions ensure that an instance of the refined
class can be used where an instance of the original class was expected. Notice the
similarity between this formalisation of inheritance and that of module refinement
discussed in Section 1.3.1.

Multiple and repeated inheritance offer a good example of another operation on
modules: composition, not in the sense of binding as illustrated previously, but on
building larger modules from simpler ones. An example of repeated inheritance
(copied from [57]) is shown in Fig. 1.16: repeatedly inherited features that are not
meant to be shared (for example, address) need to be renamed.

Formally, repeated inheritance can be defined over a pair of inclusions C1
ι1←−C ι2−→C2

between sets of features (inheritance arrows usually point in the reverse direction of
the mappings between features) where C contains the features that are meant to be
shared between C1 and C2; these inclusions give rise to another pair of mappings

1 The Many Faces of Complexity in Software Design 19§15.4 REPEATED INHERITANCE 547

The renaming occurs here at the last stage — in the repeated descendant — but some
or all of it could also have been done by intermediate ancestors FRENCH_DRIVER and
US_DRIVER; all that counts is whether in the end a feature is repeatedly inherited under
one name or more.

The features age and pass_birthday, which have not been renamed along any of the
inheritance paths, will remained shared, as desired.

A replicated attribute such as address will, as noted, yield a new field in each of the
instances of the repeated descendant. So assuming there are no other features than the ones
listed, here is how instances of the classes will look:

(Instances of FRENCH_DRIVER and US_DRIVER have the same composition as those of
DRIVER as shown.)

This is the conceptual picture, but with a good implementation it must be the concrete
representation too. Particularly important is the ability not to replicate the fields for shared
attributes such as age in FRENCH_US_DRIVER. A naïve implementation would replicate
all fields anyway; some fields, such as the duplicate age field, would simply never be used.
Such waste of space is not acceptable, since it would accumulate as we go down inheritance

FRENCH_US_
DRIVER

DRIVER

US_
DRIVER

FRENCH_
DRIVER

pass_birthday
pay_fee

age
address
violation_count

pay_ fee pay_french_fee
violation_count

 french_violations_count

address french_address

pay_fee pay_us_ fee
violation_count

 us_violations_count

address us_address

Sharing and
replication

Attribute
replication

violation_count

address

age

(DRIVER)

(FRENCH_US_DRIVER)

french_violation_count
french_address

age

us_violation_count
us_address

Fig. 1.16 An example of repeated inheritance borrowed from [57].

C1
ρ1−→C′ρ2←−C2 that define an amalgamated union of the original pair. An amalgamated

union is an operation on sets and functions that renames the features of C1 and C2
that are not included in C when calculating their union. In relation to the speci-
fications of the shared routines, i.e., routines r′:[p′,q′] ∈ F′∪R′ such that there is
r ∈ F∪R with r′ = ρ1(ι1(r)) = ρ2(ι2(r))), we obtain:

1. p′ = ρ1(p1)∨ρ2(p2)
2. q′ = ρ1(p10 ⊃ q1)∧ρ2(p20 ⊃ q2)

where ιn(r):[pn,qn]. These are the combined pre-/post-condition rules of Eiffel,
which give the semantics of interface composition.

The reason we detailed these constructions is that they allow us to discuss the
mathematical semantics of refinement (including inheritance) and composition. We
have already seen that logic plays an essential role in the definition of specifications
and refinement or inheritance. Composition (in the sense of repeated inheritance)
can be supported by category theory, a branch of mathematics in which notions of
structure can be easily expressed and operations such composition can be defined
that preserve such structures. For instance, one can express refinement (or inheri-
tance) as a morphism that preserves specifications (i.e., through refinement map-
pings), from which composition operations such as repeated inheritance result as
universal constructions (e.g., pushouts in the case at hand). Amalgamated union is
an example of a universal construction and so are conjunction and disjunction —
composition (in the sense of repeated inheritance) operates as disjunction on pre-
conditions but as conjunction on post-conditions precisely because the inheritance
morphism is co-variant on post-conditions but contra-variant on pre-conditions.
Several other examples are covered in [21], some of which will be discussed in
later sections.

The use of category theory in software modularisation goes back many years and
was pioneered by J. Goguen — see, for example, [39] for an overview of the use

20 José Luiz Fiadeiro

of category theory in computer science and [12] for one of the first papers in which
the structuring of abstract data type specifications was discussed in mathematical
terms6. Abstract data types (ADTs) are indeed one of the pillars of object-oriented
programming but it would be impossible to cover in this chapter the vast literature
on ADT specification. See also [38] on how ADTs can be used in the formalisation
of MILs. Finally, it is important to mention that ADTs, specifications (pre-/post-
conditions and invariants) as well notions of abstraction and refinement/reification,
are also at the core of languages and methods such as VDM [44], B [1] and Z [72],
each of which offer their own modularisation techniques.

1.3.3 Component-based software development

The article of the Scientific American quoted in Section 1.1.2 offers component-
based software explicitly as a possible way out of the ‘software crisis’. However, one
problem with the term ‘component’ is that, even in computer science, it is highly
ambiguous. One could say that every (de)composition method has an associated
notion of component: ça va de soi. Therefore, one can talk of components that are
used for constructing programs, or systems, or specifications, and so on. In this
section, we briefly mention the specific notion of component-based software that is
usually associated with the work of Szyperski [67]7 because, on the one hand, it does
go beyond MILs and object-oriented programming as discussed in the previous two
sub-sections and, on the other hand, it is supported by dedicated technology (e.g.,
Sun Microsystem’s Enterprise JavaBeans or Microsofts’s COM+) and languages
and notations such as the UML (e.g., [15]), thus offering a layer of abstraction that
is available to software designers.

Indeed, component-based development techniques are associated with another
layer of abstraction that can be superposed over operating systems. So-called com-
ponent frameworks make available a number of run-time layers of services that
enforce properties such as persistence or transactions over which one can rely on
when developing and interconnecting components to build a system. By offering in-
terconnection standards, such frameworks also permit components to be connected
without knowing who designed them, thus promoting reuse.

Components are not modules in the sense of programming in-the-large (cf. Sec-
tion 1.3): a component is a software implementation that can be executed, i.e., a re-
source; a module is a way of hiding design decisions when organising the resources
that are necessary for the construction of a large system such as the usage of compo-
nents. Components also go beyond objects in the sense that, on the one hand, com-
ponents can be developed using other techniques than object-oriented programming

6 See also [37] on the applications of category theory to general systems theory.
7 “A software component is a unit of composition with contractually specified interfaces and ex-
plicit context dependencies only. A software component can be deployed independently and is
subject to composition by third parties.”

1 The Many Faces of Complexity in Software Design 21

and, on the other hand, the interconnection mechanisms through which components
can be composed are also quite different from clientship.

More specifically, one major difference between a component model and an
object-oriented one is that all connections in which a component may be involved
are made explicit through provides/exports or requires/imports interfaces that are
external to the code that implements the component — “in a component setting,
providers and clients are ignorant of each other” [67]. In the case of OOP, connec-
tions are established through clientship and are only visible by inspecting the code
that implements the objects — the client holds an explicit reference to and calls the
client, i.e., the connections are not mediated by an interface-based mechanism that is
external to the code. That is, one could say that objects offer a white-box connection
model whereas components offer a black-box one.

Whereas components in the sense discussed above are essentially a way of mod-
ularising implementation (and promoting reuse), there is another important aspect
that is often associated with components — their status as architectural elements and
the way they modularise change, i.e., the focus is on “being able to manage the total
system, as its various components evolve and its requirements change, rather than
seeking to ensure that individual components are reusable by multiple component
systems” [15].

From the point of view of complexity, the aspects of component-based software
that interest us are the notions of interface and binding/composition of a component
model. Typically, a component specification is defined in terms of the interfaces
that the component provides (or realizes) and those that it requires (or uses), and
any dependencies between them. An interface is, as before, a set of operations, each
specified via pre-/post-conditions, and an ‘information model’ that captures abstract
information on the state of the component and the way the operations relate to it.
Specific notations have been proposed within the UML for supporting the definition
of components or component specifications, including the ‘lollipop’ for provided
interfaces and the ‘socket’ for required interfaces. An example is shown in Fig.
1.17, using the stereotype ‘specification’ to indicate that the architecture applies to
component specifications, not to instances (implementations) [15].

Connections between components are expressed through ‘assembly connectors’
by fitting balls into sockets — they bind the components together but do not com-
pose them. However, components can have an internal structure that contains sub-
components wired together through assembly connectors. The rules and constraints
that apply to such forms of composition are not always clear, especially in what
relates to specifications.

1.4 Programming in-the-many

We borrow the term ‘programming in-the-many’ from Nenad Medvidović [54] and
use it to mark the difference between the concern for size that is at the core of pro-
gramming in-the-large and the complexity that arises from the fact that systems are

22 José Luiz Fiadeiro

«specification»
bankAccount

«specification»
cstRpst

ICstLookupIAcctMgt

+balance():money
+deposit(money)
+withdraw(money)

«interface»
IAcctMgt

context IAcctMgt::withdraw(a:money)
pre: a≤balance()
post: balance()=balance()@pre – a

Fig. 1.17 An example of a component specification architecture using UML notation.

ever more distributed and heterogeneous, and that software development requires
the integration and combination of possibly ‘incompatible’ systems. An important
driver for this more modern emphasis comes from the pressures that are put on
systems to be flexible and agile in the way they can respond to change. As put in
[32], “[...] the ability to change is now more important than the ability to create [e-
commerce] systems in the first place. Change becomes a first-class design goal and
requires business and technology architectures whose components can be added,
modified, replaced and reconfigured”.

This is not to say that research in component-based development has not ad-
dressed those challenges. For example, design mechanisms making use of event
publishing/subscription through brokers and other well-known patterns [34] have
found their way into commercially available products that support various forms of
agility in the sense that they make it relatively easy to add or remove components
without having to redesign the whole system. However, solutions based on the use of
design patterns are not at the level of abstraction in which the need for change arises
and needs to be managed. Being mechanisms that operate at the design level, there
is a wide gap that separates them from the application modelling levels at which
change is better perceived and managed. This conceptual gap is not easily bridged,
and the process that leads from the business requirements to the identification and
instantiation of the relevant design patterns is not easily documented or made oth-
erwise explicit in a way that facilitates changes to be operated. Once instantiated,
design patterns code up interactions in ways that, typically, requires evolution to be

1 The Many Faces of Complexity in Software Design 23

intrusive because they were not conceived to be evolvable: most of the times, the
pattern will dissolve as the system evolves.

Therefore, the need arises for semantic primitives founded on first principles
through which interconnections can be externalised, modelled explicitly, and evolved
directly, leading to systems that are ‘exoskeletal’ in the sense that they exhibit their
configuration structure explicitly [47]. This is why, in this section, we would like
to emphasise a different form of abstraction and decomposition that promotes ‘con-
nectors’ to the same status as components as first-class elements in software archi-
tectures8 [66].

Connector abstractions [56] and the architectural styles that they promote are
also supported by developments in middleware [58, 59], including the use of reflec-
tion [46]. An important contribution to this area comes from so-called coordination
languages and models [36]. These languages promote the separation between ‘com-
putation’ and ‘coordination’, i.e., the ability to address the computations that need
to take place locally within components to implement the functionalities that they
advertise through their interfaces separately from the coordination mechanisms that
need to be superposed on these computations to enable the properties that are re-
quired of the global behaviour of the system to emerge. An example is Linda [35],
implemented in Java through JavaSpaces, part of the Jini project (see also IBM’s
TSpaces as another example of coordination middleware). Another example is Man-
ifold [5]. Whereas, in Linda, components communicate over shared tuple-spaces
[7], Manifold is based on an event-based communication paradigm — the Idealized
Worker Idealized Manager (IWIM) model [3].

The importance of this separation in enabling change can be understood when
we consider the complexity that clientship raises in understanding and managing
interactions. For example, in order to understand or make changes to the way ob-
jects are interconnected, one needs to examine the code that implements the classes
and follow how, at run time, objects become clients of other objects. This becomes
very clear when looking at a UML collaboration diagram for a non-trivial system.
In a sense, clientship brings back the complexity of ‘spaghetti’ code by using the
equivalent of goto’s at the level on interactions.

Several architectural description languages (ADLs) have emerged since the 90s
[55]. Essentially, these languages differ from the MILs discussed in Section 1.3.1
in that, where MILs put an emphasis on how modules use other modules, ADLs
focus instead on the organisation of the behaviour of systems of components inter-
connected through protocols for communication and synchronisation. This explains
why, on the semantic side, ADLs tend to be based on formalisms developed for sup-
porting concurrency or distribution (Petri-nets, statecharts, and process calculi, inter
alia). Two such ADLs are Reo [4], which is based on data streams and evolved from

8 As could be expected, the term ‘architecture’ is as ambiguous as ‘component’. We have argued
that every discipline of decomposition leads to, or is intrinsically based on, a notion of part (com-
ponent) and composition. The way we decompose a problem, or the discipline that we follow in
the decomposition, further leads to an architecture, or architectural style, that identifies the way the
problem is structured in terms of its sub-problems and the mechanisms through which they relate
to one another.

24 José Luiz Fiadeiro

the coordination language Manifold mentioned above, and Wright [2], based on the
process algebra CSP — Communicating Sequential Programs [42].

In order to illustrate typical architectural concepts and their formalisation, we
use the basic notion of connector put forward in [2]: a set of roles, each of which
identifies a component type, and a glue that specifies how instances of the roles
are interconnected. The example of a pipe is given in Fig. 1.18 using the language
COMMUNITY [31] (CSP is used in [2]).

design asender[t] is
out val:t, cl:bool
prv rd:bool
do prv prod[val,rd]: ¬rd∧¬cl,false → rd’
▯ prv close[cl]: ¬rd∧¬cl,false → cl’
▯ send[rd]: rd,false → ¬rd’

design areceiver[t] is
in val:t, eof:bool
out cl:bool
do rec: ¬eof∧¬cl,false →
▯ prv close[cl]: ¬cl,eof∧¬cl → cl’

design apipe[t] is
in i:t, cl:bool
out o:t, eof:bool
prv rd:bool
do put: true,false →
▯ prv next[rd]: ¬rd,false → rd’
▯ get[rd]: rd → ¬rd’
▯ prv signal[eof]: ¬rd∧cl,false → eof’

send

put

get

rec

prod

cl

cl i

val

o

valeof

eof

Fig. 1.18 An example of a connector (pipe) in CommUnity.

The roles and the glue of the connector are COMMUNITY ‘designs’, which pro-
vide specifications of component behaviour that can be observed over communica-
tion channels and actions. A COMMUNITY design consists of:

• A collection of channels, which can be output (written by the component, read
by the environment), input (read by the component, written by the environment),
or private (local to the component) — denoted O, I and Pc, respectively.

• A collection A of actions. Every action a is specified in terms of

– The set Wa of output and private channels that the action can write into (its
write-frame); for example, the action prod of asender can write into the chan-
nels val and rd, but not into cl, i.e., Wprod = {val,rd}.

– A pair La, Ua of conditions — the lower (or safety) guard and the upper (or
progress) guard — that specify a necessary (La) and a sufficient (Ua) condi-

1 The Many Faces of Complexity in Software Design 25

tion for the action to be enabled, respectively; for example, action close of
areceiver is only enabled when cl is false — Lclose ≡ ¬cl — and is enabled if
eof is true and cl is false — Uclose ≡ eof ∧¬cl. When the two guards are the
same, we write only one condition as in the case of action get of apipe.

– A condition Ra that describes the effects of the action using primed channels
to denote the value taken by channels after the action has taken; for example,
action signal of apipe sets cl to true — Rsignal ≡ cl′.

Actions can also be declared to be private, the set of which is denoted by Pa.

Each role is connected to the glue of the connector by a ‘cable’ that establishes
input/output communication and synchronisation of non-private actions. Notice that
all names are local, meaning that there are no implicit interconnections based on the
fact that different designs happen to use the same names for channels or actions.
Therefore, the cable that connects apipe and areceiver identifies eof of apipe with
eof of areceiver, o with val, and get with rec. This means that areceiver reads eof
from the channel eof of apipe and val from o, and that apipe and areceiver have to
synchronise to execute the actions get and rec.

Designs can be abstract (as in the examples on Fig. 1.18) in the sense that they
may not fully determine when actions are enabled or how they effect the data made
available on channels. For example, action prod of asender has val in its write-
frame but its effects on val are not specified. Making the upper (progress) guard
false is another example of underspecification: the lower guard defines a necessary
condition for the action to be enabled but no sufficient condition is given. Such
abstract designs can be refined until they are fully specified, in which case the design
is called a program. A program is, essentially, a collection of guarded commands.
Non-private actions are reactive in the sense that they are executed together with
the environment; private actions are active because their execution is only under the
control of the component.

An example of a refinement of apipe is given in Fig 1.19. Formally, refinement
consists of two mappings — one on channels, which is co-variant, and the other on
actions, which is contra-variant. In the example, the refinement mapping introduces
a new private channel — a queue — and is the identity on actions. The mappings
need to preserve the nature of the channels (input, output, or private) and of actions
(private or non-private). Private actions do not need to be refined but non-private
ones do, in which case their effects need to be preserved (not weakened), lower
guards can be weakened (but not strengthened) and upper can be strengthened (but
not weakened), i.e., the interval defined by the two guards must be preserved or
shrunk. For example, for all actions of rpipe, the lower and upper guards coincide.
A given action can also be refined by a set of actions, each of which needs to satisfy
the same constraints. Finally, new actions introduced during the refinement cannot
include output channels of the abstract design in their write frames. A full formal
definition can be found in [31].

COMMUNITY encapsulates one of the principles that have been put forward for
modularising parallel and distributed programs — superposition or superimposition
[14, 33, 45]. Indeed, programming in-the-many arose in the context of the advent of

26 José Luiz Fiadeiro

design rpipe[t] is
in i:t, cl:bool
out o:t, eof:bool
prv q:queue(t); rd:bool
do put[q]: ¬full(q) → q'=enqueue(i,q)
▯ prv next[rd,q]: ¬empty(q)∧¬rd → o'=head(q) ∧ q'=tail(q) ∧ rd’
▯ get[rd]: rd → ¬rd’
▯ prv signal[eof]: ¬rd∧cl∧empty(q) → eof’

Fig. 1.19 A refinement of the design apipe.

concurrency and distribution, i.e., changes in the operating infrastructure that em-
phasise cooperation among independent processes. Programmers find concurrency
‘complicated’ and, therefore, a source of complexity in software design. For exam-
ple, it seems fair to say that extensions of OOP with concurrency have failed to
make a real impact in engineering or programming practice, one reason being that
the abstractions available for OOP do not extend to concurrency in an intuitive way.
In contrast, languages such as Unity [14], on which COMMUNITY is based, have
put forward proper abstractions and modularisation techniques that follow on the
principles of structured programming.

In Fig. 1.20 we present a COMMUNITY design for a luggage-delivery cart. The
context is that of a simplified airport luggage delivery system in which carts move
along a track and stop at designated locations for handling luggage. Locations in the
track are modelled through natural numbers modulo the length of the circuit. Pieces
of luggage are also modelled through natural numbers, zero being reserved to model
the situation in which a cart is empty. According to the design cart, a cart is able
to move, load and unload. It moves by incrementing loc while it has not reached its
destination (the increment is left unspecified). The current destination is available in
dest and is retrieved from the bag each time the cart stops to load, using a function
Dest that we assume is provided as part of a data type (e.g., abstracting the scanning
of a bar code on the luggage), or from the environment, when unloading, using
the input channel ndest. Loading and unloading take place only when the cart has
reached its destination.

design cart is
in nbag, ndest:nat
out loc,dest:nat
prv bag:nat
do move[loc]: loc≠dest → loc'>loc
▯ load[bag,dest]: loc=dest ∧bag=0 → bag'=nbag ∧ dest'=Dest(nbag)
▯ unload[bag,dest]: loc=dest ∧bag≠0 → bag'=0 ∧ dest'=Dest(nbag)

Fig. 1.20 A COMMUNITY design of an airport luggage-delivery cart.

1 The Many Faces of Complexity in Software Design 27

In Fig. 1.21 we present a superposition of cart: on the one hand, we distinguish
between two modes of moving —- slow and fast; on the other hand, we count the
number of times the cart has docked since the last time the counter was reset. No-
tice that controlled cart is not a refinement of cart: the actions move slow and
move fast do not refine move because the enabling condition of move (which is
fully specified) has changed. Like refinement, superposition consists of a co-variant
mapping on channels and a contra-variant mapping on actions. However, unlike re-
finement, the upper guard of a superposed action cannot be weakened — this is
because, in the superposed design, actions may occur in a more restricted context
(that of a controller in the case at hand). In fact, superposition can be seen to capture
a ‘component-of’ relationship, i.e., the way a component is part of a larger system.
Another difference in relation to refinement is the fact that input channels may be
mapped to output ones, again reflecting the fact that the part of the environment
from which the input could be expected has now been identified. Other restrictions
typical of superposition relations apply: new actions (such as reset) cannot include
channels of the base design in their write-frames; however, superposed actions can
extend their write-frames with new channels (e.g., load and unload now have count
in their write-frames).

design controlled_cart is
in nbag, ndest:nat
out count,loc,dest:nat
prv bag:nat
do move_slow[loc]: 0<|loc–dest|≤2 → loc'=loc+1
▯ move_fast[loc]: |loc–dest|>2 → loc'>loc
▯ load[bag,dest,count]: loc=dest ∧bag=0 → bag'=nbag ∧ dest'=Dest(nbag) ∧ count'=count+1
▯ unload[bag,dest,count]: loc=dest ∧bag≠0 → bag'=0 ∧ dest'=Dest(nbag) ∧ count'=count+1
▯ reset[count]: true,false → count'=0

Fig. 1.21 A superposition of the COMMUNITY design cart shown in Fig. 1.20.

COMMUNITY combines the modularisation principles of superposition with the
externalisation of interactions promoted by coordination languages. That is, al-
though superposition as illustrated in Fig. 1.21 allows designs to be extended (in
a disciplined way), it does not externalise the mechanisms through which the ex-
tension is performed — the fact that the cart is subject to a speed controller and a
counter at the docking stations. In COMMUNITY, this externalisation is supported
by allowing designs to be interconnected with other designs. In Figs. 1.22 and 1.23,
we show the designs of the speed controller and the counter, respectively.

Neither the speed controller nor the counter make reference to the cart (as with
refinement, names of channels and actions are treated locally). Therefore, they can
be reused in multiple contexts to build larger systems. For example, in Fig 1.24 we
depict the architecture of the controlled cart as a system of three components inter-

28 José Luiz Fiadeiro

design speed is
in dest,loc:nat
do slow[loc]: 0<|loc–dest|≤2 → loc'=loc+1
▯ fast[loc]: |loc–dest|>2 → loc'>loc

Fig. 1.22 A COMMUNITY design of a speed controller.

design counter is
out count:nat
do inc[count]: true,false → count'=count+1
▯ reset[count]: true,false → count'=0

Fig. 1.23 A COMMUNITY design of a counter.

connected through cables that, as in the case of connectors, establish input/output
and action synchronisation.

fast

unloadloadinc

slow

destdest

loc loc

ndestcount

move

reset

speedcartcounter

Fig. 1.24 The COMMUNITY architecture of the controlled cart.

The design controlled cart depicted on Fig. 1.21 is the result of the composi-
tion of the components and connections depicted on Fig. 1.24. This operation of
composition can be formalised in category theory [51], much in the same way as
repeated inheritance (cf., 1.3.2) except that the morphisms in COMMUNITY capture
superposition. The notion of refinement discussed above can also be formalised in
category theory and refinement can be proved to be compositional with respect to
composition — for example, one can refine speed by making precise the increment
on the location; this refinement carries over to the controlled cart in the sense that
the composition using the refined controller yields a refinement of the controlled
cart. Full details of this categorical approach to software systems can be found in
[21].

Extensions of COMMUNITY supported by the same categorical formalisations
can be found in [52] for location-aware mobile systems (where location is defined
as an independent architectural dimension) and in [26] for event-based architec-
tures. Notions of higher-order architectural connectors were developed in [53] and
dynamic reconfiguration was addressed in [69].

1 The Many Faces of Complexity in Software Design 29

Finally, notice that, as most ADLs, COMMUNITY does not offer a notion of
module in the sense of programming in-the-large, i.e., it does not provide coarser
structures of designs (though the notion of higher-order architectural connectors
presented in [53] goes in that direction by offering a mechanism for constructing
connectors). Through channels and actions, COMMUNITY offers an explicit notion
of interface through which designs can be connected, but neither channels nor ac-
tions can be seen as provided or required interfaces.

1.5 Programming in-the-universe

Given the tall order that the terms ‘small’, ‘large’ and ‘many’ have created, we
were left with ‘universe’ to designate yet another face of complexity in software
design, one that is more modern and sits at the core of the recent quotes with which
we opened this chapter. The term ‘universe’ is also not too far from the designa-
tion ‘global (ubiquitous) computing’ that is often used for characterising the de-
velopment of software applications that can run on ‘global computers’, i.e., “com-
putational infrastructures available globally and able to provide uniform services
with variable guarantees for communication, co-operation and mobility, resource
usage, security policies and mechanisms” (see the Global Computing Initiative at
cordis.europa.eu/ist/fet/gc.htm). It is in this context that we place
service-oriented architectures (SOA) and service-oriented computing (SOC).

1.5.1 Services vs components

SOC is a new paradigm in which interactions are no longer based on the exchange
of products with specific parties — clientship as in object-oriented programming —
but on the provisioning of services by external providers that can be procured on the
fly subject to a negotiation of service level agreements (SLAs). A question that, in
this context, cannot be avoided, concerns the difference between component-based
and service-oriented design. Indeed, the debate on CBD vs. SOC is still out there,
which in our opinion reflects that there is something fundamental about SOC that is
not yet clearly understood.

A basic difference concerns the run-time environment that supports both ap-
proaches. Component models rely on a homogeneous framework in which com-
ponents can be plugged in and connected to each other. Services, like components,
hide their implementations but, in addition to components, they do not reveal any
implementation-platform or infrastructure requirements. Therefore, as put in [67],
services are more self-contained than typical components. However, as a conse-
quence, interactions with services are not as efficient as with objects or components,
a point that is very nicely put in [65]: where, in OO, clientship operates through a
direct mapping of method invocation to actual code and, in CBD, invocation is per-

30 José Luiz Fiadeiro

formed via proxys in a slower way but still within a communication environment
that is native to the specific component framework, SOC needs to bridge between
different environment boundaries and rely on transport protocols that are not neces-
sarily as performant.

Indeed, where we identify a real paradigm shift in SOC — one that justifies new
abstractions and decomposition techniques — is in the fact that SOAs provide a
layer of middleware in which the interaction between client and provider is medi-
ated by a broker, which makes it possible to abstract from the identity of the server
or of the broker when programming applications that need to rely on an external
service. Design patterns or other component-oriented solutions can be used for me-
diating interactions but abstraction from identity is a key feature of SOC: as put in
[20], services respond to the necessity for separating “need from the need-fulfilment
mechanism”. 9

Another difference between components and services, as we see it, can be ex-
plained in terms of two different notions of ‘composition’. In CBD, composition
is integration-oriented — “the idea of component-based development is to indus-
trialise the software development process by producing software applications by
assembling prefabricated software components” [20]; “component-based software
engineering is concerned with the rapid assembly of systems from components” [6].
The key aspect here is the idea of assembling systems from (reusable) components,
which derives from the principle of divide-and-conquer.

Our basic stance is that what we are calling programming in-the-universe goes
beyond this assembly view and abandons the idea that the purpose of programming
or design is to build a software system that is going to be delivered to a customer;
the way we see this new paradigm is that (smaller) applications are developed to
run on global computers (like the Web) and respond to business needs by engag-
ing, dynamically, with services and resources that are globally available at the time
they are needed. Because those services may in turn require other services, each
such application will create, as it executes, a system of sub-systems, each of which
implements a session of one of the services that will have been procured.

For example, a typical business system may rely on an external service to supply
goods; in order to take advantage of the best deal available at the time the goods
are needed, the system may resort to different suppliers at different times. Each
of those suppliers may in turn rely on services that they will need to procure. For
instance, some suppliers may have their own delivery system but others may prefer
to outsource the delivery of the goods; some delivery companies may have their own
transport system but prefer to use an external company to provide the drivers; and
so on. In summary, the structure of an application running on a global computer,
understood as the components and connectors that determine its configuration, is
intrinsically dynamic.

9 Notice that mechanisms that, as SOAP, support interconnections in SOAs, do not use URLs
(universal resource locators) as identities: “there is no built-in guarantee that the URL will indeed
refer back to an object actually live at the sending process, the sending machine, or even the sending
site. There is also no guarantee that two successive resolution requests for the same URL will yield
the same object” [67].

1 The Many Faces of Complexity in Software Design 31

Therefore, the role of architecture in the construction of a service-oriented system
needs to go beyond that of identifying, at design time, components that developers
will need to implement or reuse. Because these activities are now performed by
the SOA middleware, what is required from software architects is that they identify
and model the high-level business activities and the dependencies that they have
on external services to fulfil their goals. A consequence of this is that, whereas
the notion of a ‘whole’ is intrinsic to CBD — whether in managing construction
(through reuse) or change (through architecture) — SOC is not driven by the need
to build or manage such a whole but to allow applications to take advantage of
a (dynamic) universe of services. The purpose of services is not to support reuse
in construction or manage change of a system as requirements evolve, but to allow
applications to compute in an open-ended and evolving universe of resources. In this
setting, there is much more scope for flexibility in the way business is supported
than in a conventional component-based scenario: business processes need not be
confined to fixed organisational contexts; they can be viewed in more global contexts
as emerging from a varying collection of loosely coupled applications that can take
advantage of the availability of services procured on the fly when they are needed.

1.5.2 Modules for service-oriented computing

A number of ‘standards’ have emerged in the last few years in the area of Web
Services promoted by organisations such as OASIS10 and W3C11. These include
languages such as WSDL (an XML format for describing service interfaces), WS-
BPEL (an XML-based programming language for business process orchestration
based on web services) and WS-CDL (an XML-based language for describing
choreographies, i.e., peer-to-peer collaborations of parties with a common business
goal).

A number of research initiatives (among them the FET-GC2 integrated project
SENSORIA [70]) have been proposing formal approaches that address different as-
pects of the paradigm independently of the specific languages that are available to-
day for Web Services or Grid Computing. For example, recent proposals for service
calculi (e.g., [9, 13, 49, 68]) address operational foundations of SOC (in the sense of
how services compute) by providing a mathematical semantics for the mechanisms
that support choreography or orchestration — sessions, message/event correlation,
compensation, inter alia.

Whereas such calculi address the need for specialised language primitives for
programming in this new paradigm, they are not abstract enough to address those
aspects (both technical and methodological) that concern the way applications can
be developed to provide business solutions independently of the languages in which
services are programmed and, therefore, control complexity by raising the level of

10 www.oasis-open.org
11 www.w3.org

32 José Luiz Fiadeiro

abstraction and adopting coarser-grained decomposition techniques. The Open Ser-
vice Oriented Architecture collaboration12 has been proposing a number of specifi-
cations, namely the Service Component Architecture (SCA), that address this chal-
lenge:

SCA is a model designed for SOA, unlike existing systems that have been adapted to SOA.
SCA enables encapsulating or adapting existing applications and data using an SOA ab-
straction. SCA builds on service encapsulation to take into account the unique needs asso-
ciated with the assembly of networks of heterogeneous services. SCA provides the means to
compose assets, which have been implemented using a variety of technologies using SOA.
The SCA composition becomes a service, which can be accessed and reused in a uniform
manner. In addition, the composite service itself can be composed with other services [...]
SCA service components can be built with a variety of technologies such as EJBs, Spring
beans and CORBA components, and with programming languages including Java, PHP and
C++ [...]
SCA components can also be connected by a variety of bindings such as WSDL/SOAP
web services, JavaTM Message Service (JMS) for message-oriented middleware systems
and J2EETM Connector Architecture (JCA) [61].

In Fig. 1.25 we present an example of an SCA component and, in Fig. 1.26, an
example of an SCA composite (called ‘module’ in earlier versions). This composite
has two components, each of which provides a service and has a reference to a ser-
vice it depends on. The service provided by component A is made available for use
by clients outside the composite. The service required by component A is provided
by component B. The service required by component B exists outside the composite.

Although, through composites, SCA offers coarser primitives for decomposing
and organising systems in logical groupings, it does not raise the level of abstraction.
SCA addresses low-level design in the sense that it provides an assembly model and
binding mechanisms for service components and clients programmed in specific
languages, e.g., Java, C++, BPEL, or PHP. So far, SOC has been short of support
for high-level modelling. Indeed, languages and models that have been proposed
for service modelling and design (e.g., [11, 64]) do not address the higher level of
abstraction that is associated with business solutions, in particular the key charac-
teristic aspects of SOC that relate to the way those solutions are put together dy-
namically in reaction to the execution of business processes — run-time discovery,
instantiation and binding of services.

The SENSORIA Reference Modelling Language (SRML) [30] started to be de-
veloped within the SENSORIA project as a prototype domain-specific language for
modelling service-oriented systems at a high level of abstraction that is closer to
business concerns. Although SRML is inspired by SCA, it focuses on providing a
formal framework with a mathematical semantics for modelling and analysing the
business logic of services independently not only of the hosting middleware but also
of the languages in which the business logic is programmed.

In SRML, services are characterised by the conversations that they support and
the properties of those conversations. In particular:

12 www.osoa.org

1 The Many Faces of Complexity in Software Design 33

Assembly Specification V1.00 March 2007 3

 68

1.2.1 Diagrams used to Represent SCA Artifacts 69

 70

This document introduces diagrams to represent the various SCA artifacts, as a way of 71
visualizing the relationships between the artifacts in a particular assembly. These diagrams are 72
used in this document to accompany and illuminate the examples of SCA artifacts. 73

The following picture illustrates some of the features of an SCA component: 74

Component… …

services

references

properties

Implementation
- Java
- BPEL
- Composite
…

 75

Figure 1: SCA Component Diagram 76

 77

The following picture illustrates some of the features of a composite assembled using a set of 78
components: 79

 80

Fig. 1.25 An example of an SCA component. A component consists of a configured instance of an
implementation, where an implementation is the piece of program code providing business func-
tions. The business function is offered for use by other components as services. Implementations
may depend on services provided by other components – these dependencies are called references.
Implementations can have settable properties, which are data values which influence the operation
of the business function. The component configures the implementation by providing values for
the properties and by wiring the references to services provided by other components [61].

• messages are exchanged, asynchronously, through ‘wires’ and are typed by their
business function (requests, commitments, cancelations, and so on);

• service interface behaviour is specified using message correlation patterns that
are typical of business conversations; and

• the parties engaged in business applications need to follow pre-defined conversa-
tion protocols — requester and provider protocols.

On the other hand, the difference between SRML and more generic modelling
languages is precisely in the fact that the mechanisms that, like message correlation,
support these conversation protocols do not need to be modelled explicitly: they are
assumed to be provided by the underlying SOA middleware. This is why SRML can
be considered to be a domain-specific language: it frees the modeller from the need
to specify aspects that should be left to lower levels of abstraction and concentrate
instead on the business logic.

The design of composite services in SRML adopts the SCA assembly model ac-
cording to which new services can be created by interconnecting a set of elementary
components to a set of external services; the new service is provided through an
interface to the resulting system. The business logic of such a service involves a
number of interactions among those components and external services, but is inde-
pendent of the internal configurations of the external services — the external ser-

34 José Luiz Fiadeiro

Assembly Specification V1.00 March 2007 4

Composite A

Component
AService

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Component
B

Service
- Java interface
- WSDL PortType

Reference
- Java interface
- WSDL PortType

Wire
PromotePromote

Reference

Property
setting

Properties

 81

Figure 2: SCA Composite Diagram 82

 83

The following picture illustrates an SCA Domain assembled from a series of high-level composites, 84
some of which are in turn implemented by lower-level composites: 85

Composite Y

Component
B

Component
A

Composite A
Composite B

Service

Composite X Composite Z

implementation
implementation

PromoteWirePromote

SCA Domain

Reference

 86

Figure 3: SCA Domain Diagram 87

Fig. 1.26 An example of an SCA simple composite. Composites can contain components, ser-
vices, references, property declarations, plus the wiring that describes the connections between
these elements. Composites can group and link components built from different implementation
technologies, allowing appropriate technologies to be used for each business task. [61].

TRAVELBOOKING

 TA:
 TravelAgent

FA:
FlightAgent

HA:
HotelAgentBA:

BookingAgent

PA:
PayAgent

SLA_TB

BP:
c2,≡,d2

BF:
c4,≡,d4

DB:
UsrDB

BD:
c6,i/o,d6

trigPA

trigHA

trigFA

BH:
c3,≡,d3

intBA

Fig. 1.27 The structure of the module TravelBooking. The service is assembled by connecting a
component BA of type BookingAgent to three external service instances PA, HA and FA with in-
terface types PayAgent, HotelAgent and FlightAgent (respectively) and the persistent component
(a database of users) DB of type UsrDB. The wires that interconnect the several parties are BP,
BH, BF, and BD. The interface through which service requesters interact with the TravelBooking
service is TA of type TravelAgent. Internal configuration policies (indicated by the symbol) are
specified, which include the conditions that trigger the discovery of the external services. An exter-

nal configuration policy (indicated by the symbol SLA), specifies the constraints according
to which service-level agreements are negotiated (through constraint optimisation [8]).

1 The Many Faces of Complexity in Software Design 35

vices need only be described by their interfaces. The actual external services are
discovered at run time by matching these interfaces with those that are advertised
by service providers (and optimising the satisfaction of service level agreement con-
straints).

The elementary unit for specifying service assembly and composition in SRML is
the service module (or just module for short), which is the SRML equivalent to the
SCA notion of composite. A module specifies how a set of internal components and
external required services interact to provide the behaviour of a new service. Fig.
1.27 shows the structure of the module TravelBooking, which models a service that
manages the booking of a flight, a hotel and the associated payment. The service is
assembled by connecting an internal component BA (that orchestrates the service)
to three external services (for booking a flight, booking a hotel and processing the
payment) and the persistent component DB (a database of users). The difference
between the three kinds of entities — internal components, external services and
persistent components — is intrinsic to SOC: internal components are created each
time the service is invoked and killed when the service terminates; external services
are procured and bound to the other parties at run time; persistent components are
part of the business environment in which the service operates — they are not cre-
ated nor destroyed by the service, and they are not discovered but directly invoked
as in component-based systems. By TA we denote the interface through which ser-
vice requesters interact with TravelBooking. In SRML, interactions are peer-to-peer
between pairs of entities connected through wires — BP, BH, BF and BD in the
case at hand.

Each party (component or external service) is specified through a declaration of
the interactions the party can be involved in and the properties that can be observed
of these interactions during a session of the service. Wires are specified by the way
they coordinate the interactions between the parties.

If the party is an internal component of the service (like BA in Fig. 1.27), its spec-
ification is an orchestration given in terms of state transitions — using the language
of business roles [30]. An orchestration is defined independently of the language in
which the component is programmed and the platform in which it is deployed; the
actual component may be a BPEL process, a C++ or a Java program, or a wrapped
up legacy system, inter alia. An orchestration is also independent of the parties that
are interconnected with the component at run time; this is because the orchestration
does not define invocations of operations provided by specific co-parties (compo-
nents or external services); it simply defines the properties of the interactions in
which the component can participate.

If the party is an external service, the specification is what we call a requires-
interface and consists of a set of temporal properties that correlate the interactions
in which the service can engage with its client. The language of business protocols
[30] is used for specifying the behaviour required of external services not in terms
of their internal workflow but of the properties that characterise the interactions
in which the service can engage with its client, i.e., their interface behaviour. Fig.
1.28 shows the specification of the business protocol that the HotelAgent service is
expected to follow.

36 José Luiz Fiadeiro

– 5 –

BUSINESS PROTOCOL HotelAgent is

 INTERACTIONS
 r&s lockHotel

 checkin,checkout:date,
 name:usrData
 hconf:hcode
 BEHAVIOUR
 initiallyEnabled lockHotel?

 lockHotel? enables
 lockHotel? until date(time)≥lockHotel.checkin

BUSINESS PROTOCOL PayAgent is

 INTERACTIONS
 r&s payment
 amount:moneyValue,
 payee:accountNumber,
 originator:usrData,
 cardNo:payData

 proof:pcode
 BEHAVIOUR

 initiallyEnabled payment?

LAYER PROTOCOL UsrDB is

 INTERACTIONS
 s&r log
 usr:usrName,
 pwd:password
 s&r getData
 usr:usrName

 traveller:usrData,
 cardNo:payData

 BEHAVIOUR
 initiallyEnabled log?

 log! ∧ log.reply enables getData?

 getData.reply after getData!

Fig. 1.28 The specification of the service interface of a HotelAgent written in the language of
business protocols. A HotelAgent can be involved in one interaction named lockHotel that models
the booking of a room in a hotel. Some properties of this interaction are specified: a booking request
can be made once the service is instantiated and a booking can be revoked up until the check-in
date. The specification language makes use of the events associated with the declared interactions:
the initiation event (֠), the reply event (�), the commit event (X), the cancellation event (8) and
the revoke event (>).

– 3 –

s&r getData
 usr
 traveller,
 carNo

S1

 RStraight.I(usrName)
O(usrData,payData)

R1

r&s getData
 usr
 traveller
 carNo

END MODULE

SPECIFICATIONS

BUSINESS PROTOCOL TravelAgent is

 INTERACTIONS
 r&s login

 usr:usrName, pwd:password
 r&s bookTrip

 from,to:airport,
 out,in:date
 fconf:fcode,
 hconf:hcode,
 amount:moneyValue
 snd payNotify
 status:bool
 snd refund
 amount:moneyValue
 BEHAVIOUR

 initiallyEnabled login?

 login! ∧ login.reply enables
 bookTrip? until time≥login.useBy

 bookTrip? ensures payNotify!

 payNotify! ∧ payNotify.status enables
 bookTrip? until date(time)≥dayBefore(bookTrip.out)

 bookTrip? ensures refund!

Fig. 1.29 The specification of the provides-interface of the service module TravelBooking written
in the language of business protocols. The service can be involved in four interactions (login,
bookTrip, payNotify and refund) that model the login into the system, the booking of a trip, the
sending of a receipt and refunding the client of the service (in case a booking is returned). Five
properties are specified for these interactions.

1 The Many Faces of Complexity in Software Design 37

The specification of the interactions provided by the module (at its interface
level) is what we call the provides-interface, which also uses the language of busi-
ness protocols. Fig. 1.29 shows the specification of the business protocol that the
composite service declares to follow, i.e., the service that is offered by the service
module TravelBooking. A service module is said to be correct if the properties of-
fered through the provides-interface can be guaranteed by the (distributed) orches-
tration performed by components that implement the business roles assuming that
they are interconnected to external services that ensure the properties specified in
the requires-interfaces.

Persistent components can interact with the other parties synchronously, i.e., they
can block while waiting for a reply. The properties of synchronous interactions are
in the style of pre/post condition specification of methods as discussed in Section
1.3.2.

The specifications of the wires consist of connectors (in the sense of Section 1.4)
that are responsible for binding and coordinating the interactions that are declared
locally in the specifications of the two parties that each wire connects. In a sense,
SRML modules are a way of organising interconnected systems in the sense of pro-
gramming in-the-many, i.e., of offering coarser-grained abstractions (in the sense
of programming in-the-large) that can respond to the need for addressing the com-
plexity that arises from the number of interactions involved in the distributed sys-
tems that, today, operate at the larger scale of global computers like the Web. This
matches the view that services offer a layer of organisation that can be superposed
over a component infrastructure (what is sometimes referred to as a service over-
lay), i.e., that services are, at a certain level of abstraction, a way of using software
components and not so much a way of constructing software. We have explored
this view in [28] by proposing a formalisation of services as interfaces for an alge-
bra of asynchronous components understood as configurations of components and
connectors.

Through this notion of service-overlay, such configurations of components and
connectors expose conversational, stateful interfaces through which they can dis-
cover and bind, on the fly, to external services or expose services that can be dis-
covered by business applications. That is, services offer an abstraction for coping
with the run-time complexity of evolving configurations. A mathematical semantics
for this dynamic process of discovery, binding and reconfiguration has been de-
fined in [29], again using the tools of category theory: modules are used for typing
configurations understood as graphs; such graphs evolve as the activities that they
implement discover and bind to required services.

An example of this process is shown in the Appendix. Fig. 1.31 depicts a run-
time configuration (graph) where a number of components execute business roles
and interact via wires with other components. The sub-configuration encircled
corresponds to a user-interface AUI interacting with a component ant. This sub-
configuration is typed by the activity module A ANT0 (an activity module is similar
to a service module but offering a user-interface instead of a service-interface). Be-
cause the activity module has a requires-interface, the sub-configuration will change
if the trigger associated with TA occurs. This activity module can bind to the service

38 José Luiz Fiadeiro

module TravelBooking (depicted in Fig. 1.27) by matching its requires-interface
with the provides-interface of TravelBooking and resolving the SLA constraints of
both modules (see Fig. 1.32). Therefore, if the trigger happens and TravelBooking
is selected, the configuration will evolve to the one depicted on Fig. 1.33: an in-
stance AntBA of BookingAgent is added to the configuration and wired to Ant and
DB (no new instances of persistent components are created). Notice that the type of
the sub-configuration has changed: it now consists of the composition of A ANT0
and TravelBooking. Because the new type has several requires-interfaces, the con-
figuration will again change when their triggers occur.

Typing configurations with activity modules is a form of reflection, a technique
that has been explored at the level of middleware to account for the evolution of
systems [46]. In summary, we can see SOC as providing a layer of abstraction in
which the dynamic reconfiguration of systems can be understood in terms of the
business functions that they implement and the dependencies that those functions
have on external services. This, we claim, is another step towards coping with the
complexity of the systems that operate in the global infrastructures of today.

1.6 Concluding remarks

This chapter is an attempt to make sense of the persistent claim that, in spite of
the advances that we make on the way we program or engineer software systems,
software is haunted by the beast of complexity and doomed to live in a permanent
crisis. Given the complexity of the task (pun intended), we resorted to abstraction
— we did our best to distill what seemed to us to have been key contributions to the
handling of complexity — and decomposition by organising these contributions in
four kinds of ‘programming’: in-the-small (structured programming), in-the-large
(modules, objects, and components), in-the-many (connectors and software archi-
tectures), and in-the-universe (services). The fact that, to a large extent, these forms
of programming are organised chronologically, is not an accident: it reflects the fact
that, as progress has been made in computer science and software engineering, new
kinds of complexity have arisen. We started by having to cope with the complexity
of controlling execution, then the size of programs, then change and, more recently,
‘globalisation’.

What remains constant in this process is the way we attempt to address com-
plexity: abstraction and decomposition. This is why we insisted in imposing some
degree of uniformity in terminology and notation, highlighting the fact that notions
of module, interface, component, or architecture have appeared in different guises to
support different abstraction or decomposition techniques. Although we chose not
to go too deep into mathematical concepts and techniques, there is also some degree
of uniformity (or universality) in the way they support notions of refinement or com-
position — for example, through the use of categorical methods — even if they are
defined over different notions of specification — for example, pre/post-conditions
for OO/CBD and temporal logic for SOC.

1 The Many Faces of Complexity in Software Design 39

As could be expected, we had to use a rather broad brush when painting the
landscape and, therefore, we were not exhaustive and left out many other faces of
complexity. For example, as put in the 27/01/2009 edition of the Financial Times,
cloud computing is, today, contributing to equally ‘complex’ aspects such as man-
agement or maintenance:

Cloud computing doesn’t work because it’s simpler than client-server or mainframe com-
puting. It works because we shift the additional complexity to a place where it can be man-
aged more effectively. Companies such as Amazon and Google are simply a lot better at
managing servers and operating systems than most other organisations could ever hope to
be. By letting Google manage this complexity, an enterprise can then focus more of its own
resources on growth and innovation within its core business.

To us, this quote nails down quite accurately the process through which com-
plexity has been handled during the last fifty years or so: “we shift the additional
complexity to a place where it can be managed more effectively”. That is, we ad-
dress complexity by making the infrastructure (or middleware) more ‘clever’ or by
building tools that translate between levels of abstraction (e.g., through compilation
or model-driven development techniques). For example, the move from objects to
components to services is essentially the result of devising ways of handling in-
teractions (or clientship): from direct invocation of code within a process (OO), to
mediation via proxys across processes but within a single component framework
(CBD), and across frameworks through brokers and transport protocols (SOA) [65].

Unfortunately (or inevitably), progress on the side of science and methodology
has been slower, meaning that abstractions have not always been forthcoming as
quickly as they would be needed to take advantage of new layers of infrastructure,
which justifies that new levels of complexity arise for humans (programmers, de-
signers, or analysts) when faced with new technology: notions of module tend to
come when the need arises for managing the complexity of developing software
over new computation or communication infrastructures. The answer to the mystery
of why, in spite of all these advances, software seems to live in a permanent crisis,
is that the beast of complexity keeps changing its form and we, scientists, do take
our time to understand the nature of each new form of complexity and come up with
right abstractions. In other words, like Paddington Bear, we take our time to abstract
business functions from the handling of bank notes (with or without marmalade).

Acknowledgements Section 1.4 contains material extracted from papers co-authored with Antónia
Lopes and Michel Wermelinger, and Section 1.5 from papers co-authored with Antónia Lopes,
Laura Bocchi and João Abreu. I would like to thank them all also Mike Hinchey for giving me the
opportunity (and encouraging me) to contribute this chapter.

References

1. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University Press, New
York, NY, USA (1996)

40 José Luiz Fiadeiro

2. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans. Softw. Eng.
Methodol. 6(3), 213–249 (1998)

3. Arbab, F.: The IWIM model for coordination of concurrent activities. In: P. Ciancarini, C. Han-
kin (eds.) COORDINATION, LNCS, vol. 1061, pp. 34–56. Springer (1996)

4. Arbab, F.: Reo: a channel-based coordination model for component composition. Mathemat-
ical Structures in Computer Science 14(3), 329–366 (2004)

5. Arbab, F., Herman, I., Spilling, P.: An overview of manifold and its implementation. Concur-
rency - Practice and Experience 5(1), 23–70 (1993)

6. Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R.,
Wallnau, K.: Volume II: Technical Concepts of Component-Based Software Engineering.
Technical Report CMU/SEI-2000-TR-008 ESC-TR-2000-007 (2000)

7. Banâtre, J.P., Métayer, D.L.: Programming by multiset transformation. Commun. ACM 36(1),
98–111 (1993)

8. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimiza-
tion. J. ACM 44(2), 201–236 (1997)

9. Boreale, M., et al.: SCC: A service centered calculus. In: M. Bravetti, M. Núñez, G. Zavattaro
(eds.) WS-FM, LNCS, vol. 4184, pp. 38–57. Springer (2006)

10. Brown, A.W.: Large-Scale, Component Based Development. Prentice Hall PTR, Upper Saddle
River, NJ, USA (2000)

11. Broy, M., Krüger, I.H., Meisinger, M.: A formal model of services. ACM Trans. Softw. Eng.
Methodol. 16(1) (2007)

12. Burstall, R.M., Goguen, J.A.: Putting theories together to make specifications. In: IJCAI, pp.
1045–1058 (1977)

13. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred programming for
web services. In: De Nicola [16], pp. 2–17

14. Chandy, K.M., Misra, J.: Parallel program design: a foundation. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA (1988)

15. Cheesman, J., Daniels, J.: UML components: a simple process for specifying component-
based software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2000)

16. De Nicola, R. (ed.): Programming Languages and Systems, LNCS, vol. 4421. Springer (2007)
17. Denning, P.J.: The field of programmers myth. Commun. ACM 47(7), 15–20 (2004)
18. DeRemer, F., Kron, H.H.: Programming-in-the-large versus programming-in-the-small. IEEE

Trans. Software Eng. 2(2), 80–86 (1976)
19. Dijkstra, E.W.: A Discipline of Programming, 1st edn. Prentice Hall PTR, Upper Saddle River,

NJ, USA (1976)
20. Elfatatry, A.: Dealing with change: components versus services. Commun. ACM 50(8), 35–39

(2007)
21. Fiadeiro, J.L.: Categories for Software Engineering. Springer (2004)
22. Fiadeiro, J.L.: Software services: Scientific challenge or industrial hype? In: Z. Liu, K. Araki

(eds.) ICTAC, LNCS, vol. 3407, pp. 1–13. Springer (2004)
23. Fiadeiro, J.L.: Physiological vs. social complexity in software design. In: ICECCS, p. 3. IEEE

Computer Society (2006)
24. Fiadeiro, J.L.: Designing for software’s social complexity. IEEE Computer 40(1), 34–39

(2007)
25. Fiadeiro, J.L.: On the challenge of engineering socio-technical systems. In: M. Wirsing, J.P.

Banâtre, M.M. Hölzl, A. Rauschmayer (eds.) Software-Intensive Systems and New Comput-
ing Paradigms, LNCS, vol. 5380, pp. 80–91. Springer (2008)

26. Fiadeiro, J.L., Lopes, A.: An algebraic semantics of event-based architectures. Mathematical
Structures in Computer Science 17(5), 1029–1073 (2007)

27. Fiadeiro, J.L., Lopes, A.: A model for dynamic reconfiguration in service-oriented architec-
tures. In: M.A. Babar, I. Gorton (eds.) ECSA, LNCS, vol. 6285, pp. 70–85. Springer (2010)

28. Fiadeiro, J.L., Lopes, A.: An interface theory for service-oriented design. In: D. Gian-
nakopoulou, F. Orejas (eds.) FASE, LNCS, vol. 6603, pp. 18–33. Springer (2011)

29. Fiadeiro, J.L., Lopes, A., Bocchi, L.: An abstract model of service discovery and binding.
Formal Asp. Comput. (to appear)

1 The Many Faces of Complexity in Software Design 41

30. Fiadeiro, J.L., Lopes, A., Bocchi, L., Abreu, J.: The SENSORIA reference modelling language.
In: Wirsing and Hölzl [70], pp. 61–114

31. Fiadeiro, J.L., Lopes, A., Wermelinger, M.: A mathematical semantics for architectural con-
nectors. In: R.C. Backhouse, J. Gibbons (eds.) Generic Programming, LNCS, vol. 2793, pp.
178–221. Springer (2003)

32. Fingar, P.: Component-based frameworks for e-commerce. Commun. ACM 43(10), 61–67
(2000)

33. Francez, N., Forman, I.R.: Superimposition for interacting processes. In: J.C.M. Baeten, J.W.
Klop (eds.) CONCUR, LNCS, vol. 458, pp. 230–245. Springer (1990)

34. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable object-
oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1995)

35. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang. Syst. 7(1),
80–112 (1985)

36. Gelernter, D., Carriero, N.: Coordination languages and their significance. Commun. ACM
35(2), 96–107 (1992)

37. Goguen, J.A.: Categorical foundations for general systems theory. In: F. Pichler, R. Trappl
(eds.) Advances in Cybernetics and Systems Research, pp. 121–130. Transcripta Books (1973)

38. Goguen, J.A.: Reusing and interconneccting software components. IEEE Computer 19(2),
16–28 (1986)

39. Goguen, J.A.: A categorical manifesto. Mathematical Structures in Computer Science 1(1),
49–67 (1991)

40. Gries, D.: The Science of Programming, 1st edn. Springer-Verlag New York, Inc., Secaucus,
NJ, USA (1981)

41. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12, 576–580
(1969)

42. Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA (1985)

43. Jackson, M.A.: Principles of Program Design. Academic Press, Inc., Orlando, FL, USA (1975)
44. Jones, C.B.: Systematic software development using VDM (2nd ed.). Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA (1990)
45. Katz, S.: A superimposition control construct for distributed systems. ACM Trans. Program.

Lang. Syst. 15(2), 337–356 (1993)
46. Kon, F., Costa, F.M., Blair, G.S., Campbell, R.H.: The case for reflective middleware. Com-

mun. ACM 45(6), 33–38 (2002)
47. Kramer, J.: Exoskeletal software. In: ICSE, p. 366 (1994)
48. Kramer, J.: Is abstraction the key to computing? Commun. ACM 50(4), 36–42 (2007)
49. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. In: De

Nicola [16], pp. 33–47
50. Liskov, B., Zilles, S.: Programming with abstract data types. In: Proceedings of the ACM

SIGPLAN symposium on Very high level languages, pp. 50–59. ACM, New York, NY, USA
(1974)

51. Lopes, A., Fiadeiro, J.L.: Superposition: composition vs refinement of non-deterministic,
action-based systems. Formal Asp. Comput. 16(1), 5–18 (2004)

52. Lopes, A., Fiadeiro, J.L.: Adding mobility to software architectures. Sci. Comput. Program.
61(2), 114–135 (2006)

53. Lopes, A., Wermelinger, M., Fiadeiro, J.L.: High-order architectural connectors. ACM Trans.
Softw. Eng. Methodol. 12(1), 64–104 (2003)

54. Medvidović, N., Mikic-Rakic, M.: Programming-in-the-many: A software engineering
paradigm for the 21st century

55. Medvidović, N., Taylor, R.N.: A classification and comparison framework for software archi-
tecture description languages. IEEE Trans. Software Eng. 26(1), 70–93 (2000)

56. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software connectors. In:
ICSE, pp. 178–187 (2000)

57. Meyer, B.: Object-oriented software construction (2nd ed.). Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1997)

42 José Luiz Fiadeiro

58. Mikic-Rakic, M., Medvidović, N.: Adaptable architectural middleware for programming-in-
the-small-and-many. In: M. Endler, D.C. Schmidt (eds.) Middleware, LNCS, vol. 2672, pp.
162–181. Springer (2003)

59. Mikic-Rakic, M., Medvidović, N.: A connector-aware middleware for distributed deployment
and mobility. In: ICDCS Workshops, pp. 388–393. IEEE Computer Society (2003)

60. Morgan, C.: Programming from specifications. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA (1990)

61. OSOA: Service component architecture (2007). Version 1.00
62. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.

ACM 15, 1053–1058 (1972)
63. Prieto-Diaz, R., Neighbors, J.M.: Module interconnection languages. J. Syst. Softw. 6, 307–

334 (1986)
64. Reisig, W.: Modeling- and analysis techniques for web services and business processes. In:

M. Steffen, G. Zavattaro (eds.) FMOODS, LNCS, vol. 3535, pp. 243–258. Springer (2005)
65. Sessions, R.: Fuzzy boundaries: Objects, components, and web services. Queue 2, 40–47

(2004)
66. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging discipline. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA (1996)
67. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edn.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2002)
68. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: A model of service-oriented

computation. In: S. Drossopoulou (ed.) ESOP, LNCS, vol. 4960, pp. 269–283. Springer (2008)
69. Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach to software architecture

reconfiguration. Sci. Comput. Program. 44(2), 133–155 (2002)
70. Wirsing, M., Hölzl (Eds), M.: Rigorous Software Engineering for Service-Oriented Systems,

LNCS, vol. 6582. Springer (2011)
71. Wirth, N.: Programming in MODULA-2 (3rd corrected ed.). Springer-Verlag New York, Inc.,

New York, NY, USA (1985)
72. Woodcock, J., Davies, J.: Using Z: specification, refinement, and proof. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA (1996)

1 The Many Faces of Complexity in Software Design 43

Appendix

c1;c2 [p,q]

c1:
[p,r]

c2:
[r,q]

if A then c1
else c2 [p,q]

[p∧A,q]

[p∧(¬A),q]

x:=E [p[x\E],p]

while A
do c [p,p∧(¬A)] c:

[p∧A,p]

c1

c2

c

c1

c2

Fig. 1.30 Module schemas for assignment, sequence, iteration, and selection.

44 José Luiz Fiadeiro

Ant

DB

LauPay

Lau

CPL

LauBA
CBL

LauF

LauH

BFL

BHL
LUI

AUI

BPL

LL

AA

BDL

A_ANT0

TA:
TravelAgent

AT:
a,≡,b

SLA_ANT0

Ant:
FunTrav

AUI:
TravUI

AA:a10,i/o,b10

trigTA

intAnt

Fig. 1.31 A configuration, a sub-configuration of which is typed by an activity module.

1 The Many Faces of Complexity in Software Design 45

⊥

C
om

pa
tib

ili
ty

C

on
si

st
en

cy

A_
AN

T0

TA
:

Tr
av

el
Ag

en
t

AT:
a,≡,bSL

A_
AN
T0

A
nt

:
Fu

nT
ra

v

A
U

I:
Tr

av
U

I

AA:a10,i/o,b10

tri
gT

A

in
tA

nt

TR
AV

EL
BO

O
KI

N
G

FA
:

Fl
ig

ht
Ag

en
t

H
A

:
H

ot
el

Ag
en

t
B

A
:

Bo
ok

in
gA

ge
nt

PA
:

Pa
yA

ge
nt

SL
A_
TB

B
P:

c 2
,≡

,d
2

B
F:

c 4
,≡

,d
4

D
B

:
U

sr
D

B

B
D

:
c 6

,i/
o,
d 6

tri
gP

A

tri
gH

A

tri
gF

A

B
H

:
c 3

,≡
,d
3

in
tB

A

 T

A
:

Tr
av

el
Ag

en
t

Fig. 1.32 Matching the activity module of Fig. 1.31 with the service module TravelBooking.

46 José Luiz Fiadeiro

Ant AntBA
CBA

DB

LauPay

Lau

CPL

LauBA
CBL

LauF

LauH

BFL

BHL
LUI

AUI

BPL

LL

AA
BDA

BDL

A_ANT1

CBA:
a8,≡,d1

SLA_ANT1

Ant:
FunTrav

AUI:
TravUI

AA:a10,i/o,b10

FA:
FlightAgent

HA:
HotelAgentAntBA:

BookingAgent

PA:
PayAgentBP:

c2,≡,d2

BF:
c4,≡,d4

DB:
UsrDB

BDA:
c6,i/o,d6

trigHA

trigFA

BH:
c3,≡,d3

trigPA

intAnt
intAntBA

Fig. 1.33 The reconfiguration resulting from the binding in Fig. 1.32.

Index

SENSORIA, 31
SENSORIA Reference Modelling Language

(SRML), 32, 33, 35, 37
1968 NATO Conference on Software

Engineering, 5

Architectural Description Languages
COMMUNITY, 24–29
Reo, 23
Wright, 24

Bear, Paddington, 2, 3, 39

Complexity
and Cloud Computing, 39

Complexity Crisis, 4
Composition, 7, 10, 11, 18–21, 23, 28, 30, 35,

38
Coordination Languages

Linda, 23
Manifold, 23, 24

Dallas International Airport Baggage Handling
System

Software Problems, 4
Denning, Peter, 3
DeRemer, Frank, 4, 5
Dijkstra, Edsger W., 6

Exports Interface, 14, 21

Feldman, Stuart, 1

Goguen, Joseph A., 19

Hoare calculus, 8

Imports Interface, 14, 21
Inheritance, 17–19, 28

Jackson Structured Programming (JSP), 6

Kron, Hans H., 4, 5
Kyffin, Steven, 1

Marmalade Stains
Bank Note, 2
Source Code, 3

McIlroy, Douglas, 5
Medvidović, Nenad, 5, 21
Meyer, Bertrand, 16

Parnas, David Lorge, 12
Pre/Post Conditions, 7, 8, 14, 18–21, 37, 38
Programming Languages

Eiffel, 19
Modula-2, 14
Unity, 26

Provided Interface, see Provides Interface
Provides Interface, 8, 21, 37, 38

Redshaw, Toby, 4
Refinement, 8, 15, 18–20, 25–28, 38
Required Interface, see Requires Interface
Requires Interface, 8, 9, 21, 37

Service Component Architecture (SCA),
32–35

Software Crisis, 1, 2, 5, 20
Superposition, 25, 27, 28
Szyperski, Clemens Alden, 20

Uses Interface, 9

47

