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!!     ABSTRACT 
 
 
The occlusion of a cerebral artery or stroke often results in neuronal deficit 

and/or patient death. A partial recovery often follows non-fatal stroke and 

this may be due to the activation of the progenitor cells in the Sub-

Ventricular Zone (SVZ) naturally occurring after ischemia. In order to 

clarify the role of the SVZ neurogenesis in animal recovery, the effect of 

neurogenesis inhibition and boosting were studied in the mouse Middle 

Cerebral Artery occlusion model (MCAo). 6 to 10-week-old male mice 

were pre-treated with intracranial injections of lentiviral vector (LV) or 

integration deficient lentiviral vectors (IDLV), in order to target the SVZ. 

The IDLV carried an expression cassette encoding for a precursor Glial 

cell-derived neurotrophic factor (GDNF) or the tetanus toxin fragment C 

(TTC), which recently has been demonstrated to have growth factor like 

behaviour.  Another group of animals received the LV carrying a double 

promoter expression cassette encoding for an eGFP, and in order to inhibit 

the cell cycle in targeted cells the shRNA_Cyclin D1.  All vectors were 

co-injected with the LV_ pHR’SIN-cPPT-SEW, which contains an eGFP 

cassette. Two weeks later the animals received the MCAo, and for three 

weeks the sensorimotor behaviour was tested. Neurological assessment 

showed the sensory-motor debilitation was significant increased after the 

treatment with the LV_shRNA_CyclinD1 (* p<0.05); the IDLV_GDNF 

and IDLV_TTC groups showed a trend to improve neurological deficit in 

the subjects alive until day 5. In the IDLV_GDNF, the SVZ’s derived 

green cells were positively correlated with the ischemic volume, *p<0.05 

R=0.68, and the neurodegeneration, ***p<0.001 R=0.92. Moreover, while 

the SVZ neurogenesis inhibition reduced life expectancy, the boosting 

significantly improved it.  Immunofluorescence analysis showed a 

migration extended to the striatum and cortex with a max distance of 1.87 

mm from the SVZ. 



 
 

5 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENT 1 

ABSTRACT 4 

TABLE OF FIGURE AND TABLES 9 

TABLE OF THE NAMES AND ABBREVIATIONS 12 

CHAPTER 1 17 

BACKGROUND AND GENERAL INTRODUCTION 18 
1.1 GENERAL INTRODUCTION 18 
1.2 STROKE AND NEUROGENESIS 18 
1.2.1 NEUROGENESIS IN RODENT BRAIN 23 
1.2.2 REGULATION AND MAINTENANCE OF THE BRAIN NEUROGENIC 
AREAS: THE GROWTH FACTORS FAMILY 25 
1.2.2.1 EGF AND FGF2 25 
1.2.2.2 IGF-1 25 
1.2.2.3 CYCLIN D1 26 
1.2.2.4 GDNF 30 
1.2.2.5 TTC 31 
1.2.3 INCREASE OF GROWTH FACTOR PRODUCTION AFTER ISCHEMIA 32 
1.3 NEUROGENIC ENVIRONMENT 32 
1.3.1 THE NICHES 32 
1.3.2 NEUROGENIC AREAS 33 
1.3.2.1 SVZ IN PHYSIOLOGICAL AND PATHOLOGICAL CONDITIONS 33 
1.3.2.2 SGZ IN PHYSIOLOGICAL AND PATHOLOGICAL CONDITIONS 34 
1.4 LENTIVIRAL VECTORS 35 
1.4.1 BRIEF HISTORY AND GENERAL BACKGROUND 35 
1.4.2 HIV LIFE CYCLE 36 
1.4.3 LENTIVECTOR SYSTEMS 40 
1.4.4 IDLVS 41 
1.5 RNAI AND SHRNA 42 

AIMS OF THE PROJECT 45 

CHAPTER 2 46 

MATERIALS AND METHODS 47 
2.1 CLONING 47 
2.1.1 STANDARD CLONING TECHNIQUE 47 



 
 

6 
 

2.1.1.1 RESTRICTION ENZYME DIGESTS 47 
2.1.1.2 GEL ELECTROPHORESIS AND DNA EXTRACTION 48 
2.1.1.3 KLENOW POLYMERASE REACTION 49 
2.1.1.4 LIGATION 49 
2.1.1.5 BACTERIAL TRANSFORMATION and CLONE                      
AMPLIFICATION 51 
2.2 LENTIVIRAL VECTOR PRODUCTION 52 
2.2.1 CELL LINES 52 
2.2.2 VECTOR PREPARATION 53 
2.2.3 TITRATION 55 
2.2.3.1 FLOW CYTOMETRY 55 
2.2.3.2 qPCR 56 
2.3 IN VITRO TRANSDUCTION FOR CYCLIND1 DOWN-REGULATION 58 
2.3.1 TRANSDUCTION 58 
2.4 VIABILITY ASSAY 59 
2.4.1 MTT 59 
2.5 PROTEIN ANALYSIS 60 
2.5.1 WESTERN BLOT 60 
2.5.2 IMMUNO REACTION 62 
2.6 IN VIVO STUDY 63 
2.6.1 ANIMALS 63 
2.6.2 ANIMAL MODELS 64 
2.6.3 MCAO MODEL 64 
2.6.4 INTRACRANIAL INJECTIONS 67 
2.6.5 BEHAVIOURAL TESTS 69 
2.6.6 ASSESSMENT OF RECOVERY BY WEIGHT RESCUE 71 
2.6.7 TRANSCARDIAL PERFUSION 71 
2.7 HISTOLOGY 72 
2.7.1 SECTIONING 72 
2.7.2 HISTOLOGICAL ANALYSIS 73 
2.7.2.1 INFARCT VOLUME QUANTIFICATION 73 
2.7.2.1.1   HAEMATOXYLIN AND EOSIN STAINING 75 
2.7.2.1.2 IMMUNOFLUORESCENCE 75 
2.7.2.1.3 CELL COUNTING 78 
2.7.3 STATISTICAL TESTS 78 

RESULTS 81 

CHAPTER 3 82 

3.1 INHIBITION OF CELL CYCLE 83 
3.2 METHODS 84 
3.2.1 CLONING A DOMINANT NEGATIVE CYCLIN D1 INTO A THIRD 
GENERATION LV 84 
3.2.2 SEQUENCING 86 
3.3 LV_PRRLSC_SEGFP_CDNCND1W IN VITRO ASSAYS 89 
3.3.1 PRRLSC_SEGFP_CDNCND1W: PROTEIN EXPRESSION ANALYSIS 89 
3.3.2 LV_PRRLSC_SEGFP_CDNCND1W: VIABILITY ASSAY BY MTT 91 
3.4 CELL CYCLE INHIBITION BY A 93 



 
 

7 
 

SHRNA_CYCLIN D1 93 
2.4.1 DOWN REGULATION OF CYCLIN D1 PROTEIN BY SHRNA_CYCLIN D1 94 
3.4.2 EFFECT OF CYCLIN D1 DOWN REGULATION ON THE CELL CYCLE: 
CELL VIABILITY BY MTT 97 
3.5 CONCLUSION 99 

CHAPTER 4 100 

4.1 MIDDLE CEREBRAL ARTERY OCCLUSION - A LONG TERM STUDY 101 
4.1.1 ANIMALS 102 
4.1.2 MODEL EVALUATION 103 
4.1.2.1 ANIMALS LOST AND EXCLUDED FROM THE ANALYSIS 103 
4.1.2.2 0-28 FOCAL DEFICIT TEST 103 
4.1.2.3 WEIGHT RESCUE 106 
4.1.2.4 SURVIVAL PROPORTION 108 
4.1.3 INFARCT VOLUME QUANTIFICATION AND DATA CORRELATION 110 
4.1.3.1 ISCHEMIC VOLUME QUANTIFICATION 112 
4.1.4 SPEARMAN’S RANK CORRELATION COEFFICIENT 115 
4.1.5 CONCLUSION 117 

CHAPTER 5 118 

5.1 SVZ-RMS NEUROGENESIS MODULATION IN NON-ISCHEMIC 
CONDITIONS 119 
5.2 METHODS 121 
5.3 HOMOLOGY BETWEEN RAT AND MOUSE GDNF 123 
5.4 IDLV_GDNF AND IDLV_TTC 123 
5.5 HISTOLOGY AND CELL COUNTING 124 
5. 6 CONCLUSION 134 

CHAPTER 6 135 

6.1 SVZ-RMS NEUROGENESIS MODULATION IN STROKE 136 
6.2 METHODS 137 
6.3 ANIMALS LOST AND EXCLUDED FROM THE ANALYSIS 140 
6.4 HISTOLOGY 140 
6.4.1 POSITIVE CONTROL: SVZ-DERIVED NEURONAL PROGENITOR CELLS 
IN THE OLFACTORY BULBS 140 
6.4.2 EFFECT OF MCAO ONE MONTH AFTER: THE ISCHEMIC BRAIN 144 
6.4.3 EVALUATION OF THE ISCHEMIC ENVIRONMENT 152 
6.4.4   EGFP-POSITIVE CELLS IN THE ISCHEMIC AREA 157 
6.4.5 IDLV_GDNF INJECTION IN THE SVZ IMPROVED THE NATURAL 
RESPONSE TO ISCHEMIA. 163 
6.4.6 LV_SHRNA_CYCLIND1 REDUCED RECOVERY ABILITY AFTER MCAO 166 
6.4.7 TREND TOWARDS IMPROVED NEUROLOGICAL RECOVERY IN 
IDLV_GDNF AND IDLV_TTC 170 
6.4.8 SURVIVAL PROPORTION 177 



 
 

8 
 

6.4.9 TREATMENTS ALTERING THE SURVIVAL EXPECTANCY 179 
6.4.10 SPEARMAN’S RANK CORRELATION COEFFICIENT BETWEEN THE 
BEHAVIOUR SCORE AT DAY 30 AND THE ISCHEMIC VOLUME ESTIMATION
 181 
6.4.11 CONCLUSION 183 

CHAPTER 7 188 

7.1 DISCUSSION 189 
7.2 TROUBLESHOOTING 200 

BIBLIOGRAPHY 202 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

9 
 

TABLE&OF&FIGURE&and&TABLES!
 
Figure 1.f1  Middle cerebral artery occlusion,                                                                22 

Figure 1.f2. Sub-Ventricular Zone (SVZ) (Taupin and Gage, 2002),                             24 

Figure 1.f.3. Rostroal-mygratory stream and SVZ (Taupin and Gage, 2002),                25 

Figure 1.f4. Cyclin D1 pathway,                                                                                     28 

Figure 1.f5. Chromatin remodelling by HDACs, HATs and histone methylase (Adcock, 

Ford et al. 2006),                                                                                                             29 

Figure 1.f6. Stroke induces up regulation of GFR α1 receptor (Arvidsson, Kokaia et al. 

2001),                                                                                                                               30 

Figure 1.f7. Lentivirus life cycle,                                                                                    39 

Table 1.1.t1. Table of the HIV proteins (Frankel and Young 1998),                              40 

Figure 1.f8. iRNA by Kim and Rossi 2007,                                                                    44 

 

Table 2.1.t1. Antibodies concentrations used in the western blot assay,                        63 

Figure 2.f1  Oxygenated blood circulatory system of a rodent,                                      67 

Figure 2.f2. Ischemic areas induced by for 1h_MCAo,                                                  69 

Figure 2.f2 Evaluation of the Ischemic regions by Immunofluorescence,                      74 

Table 2.1.t2. Primary and secondary antibody concentration used in the 

Immunofluorescence experiment,                                                                                   77 

 

Figure 3.f1. pRRLsc_Segfp_CdnCND1W lenti backbone,                                             86 

Figure 3.f2. Alignment between mouse dnCyclin D1 (in black) and the mouse wt Cyclin 

D1 (in green),                                                                                                                   88 

Figure 3.f3. Cyclin D1 protein variation after LV_dnCyclinD1 transduction,               90 

Figure 3.f4. MTT assay for LVs_dnCyclin D1,                                                              92 

Figure 3.f5. Thermo scientific pGIPZ_shRNAs expression cassette map,                     93 

Figure 3.f6. Western Blot analysis for LVs_shRNA_Cyclin_D1_92 and 95,                96 

Figure 3.f7. Viability assay by MTT, shRNA_Cyclin_D1_92 and 95,                          98 

 

Figure 4.f1. 0-28 focal deficit test: MCAo groups vs. sham operated animals,            104 

Figure 4.f2. 0-28 focal deficit test in the survived population,                                     105 

 Figure 4.f3. Body weight variation,                                                                             107 

Figure 4.f4. Survival curve,                                                                                           109 

Figure 4.f5. Ischemic pMCAo brain,                                                                             111 



 
 

10 
 

Figure 4.f6. tMCAo brain,                                                                                             112 

Figure 4.f7. Infarct volume quantification,                                                                   114 

Figure 4.f8.  Positive correlation between the behavioural score at day 14 and the 

ischemic volume quantification,                                                                                    116  

 

Table 5.t1. SVZ neurogenesis modulators based on LVs and IDLVs.                          122  

5.f1 Blast alignment,                                                                                                      123 

Figure 5.f1. Migrated eGFP positive cells in the OB: LV_shRNA_Empty group,       126 

Figure 5.f2. SVZ-RMS neurogenesis inhibition by LV_shRNA_CyclinD1,                127 

Figure 5.f3. SVZ-RMS neurogenesis inhibition by LV_shRNA_CyclinD1,                128 

Figure 5.f4. SVZ-RMS neurogenesis enhancement by IDLV_GDNF,                         129  

Figure 5.f5. SVZ-RMS neurogenesis enhancing by IDLV_GDNF,                             130 

Figure 5.f6. SVZ-RMS-OB  migration in an animal treated with LV_ pHR’SIN-cPPT-

SEW  and LV_pRRLcC_TTC_IRESeW,                                                                      131 

Figure 5.f7. NPCs derived cells in the OB three weeks after LV_shRNA_Empty 

injection,                                                                                                                        132 

Figure 5.f8. SVZ’s neurogenesis quantification after lentiviral modulation,                133 

 

Table 6.f1. LVs and IDLVs used in the experiment with the related titre,                   139 

Figure 6.f1. Positive control: eGFP positive cells migrated into the OBs,                   142 

Figure 6.f2. Positive control: effect of the inhibition of the SVZ neurogenesis in the 

OBs,                                                                                                                               143 

Figure 6.f3. MCAo-induced migration of NPCs to the lesion areas,                            145 

Figure 6.f4. eGFP positive cells in the ischemic striatal region,                                   146 

Figure 6.f5. Increase in eGFP expressing cells in the ipsilateral SVZ and aca,            147 

Figure 6.f6 eGFP and DCX positive niche like structure in the ischemic striatum,     148 

Figure 6.f7. eGFP positive niche like structure in the ischemic cortex,                        149 

Figure 6.f8 EGFP positive cells localized within the corpus callosum,                        150 

Figure 6.f9. Possible radial migration pathway SVZ-aca,                                             151 

Figure 6.f10. Volume quantification of the regions covered by activated microglia,   153 

Figure 6.f11. Glial scar quantification,                                                                          154 

Figure 6.f12. Quantification of the neurodegenerative regions,                                    155 

Figure 6.f13. Infarct volume quantification,                                                                 156 

Figure 6.f14 eGFP positive cells in the ischemic area: shRNA_Cyclin D1,                 157 

Figure 6.f15. eGFP positive cells in the ischemic area: IDLV_GDNF,                        159 



 
 

11 
 

Figure 6.f16. eGFP positive cells in the ischemic area: IDLV_ TTC injected group,  160 

Figure 6.f17. Analysis of phenotype in the eGFP positive cells migrated to the ischemic 

environment,                                                                                                                  162 

Figure 6.f18. The IDLV_GDNF increased the neurogenic response to ischemia,        164  

Figure 6.f19. Linear regression analysis of the ischemic volume and the eGFP positive 

cells located there: IDLV_GDNF injected group,                                                         165 

Figure 6.f20. Neurological recovery in the surviving populations: effect of 

LV_shRNA_CyclinD1 after 1h_MCAo,                                                                       167 

Figure 6.f21 LV_shRNA_CyclinD1 increased the number of deaths during the first 5 

days post ischemi,a                                                                                                        168 

Figure 6.f22. Body weight variation after surgical procedures: LV_shRNA_CyclinD1 

injected group,                                                                                                               169 

Figure 6.f23. Paradox of the neurological deterioration in the growth factor-treated 

groups: effect of IDLV_GDNF and IDLV_TTC,                                                         172 

Figure 6.f24. Neurological recovery during the first five days after 1h_MCAo: 

IDLV_GDNF injected group,                                                                                        173 

Figure 6.f25. Neurological recovery during the first five days after 1h_MCAo: 

IDLV_TTC injected group,                                                                                           174 

Figure 6.f26. 0-28 Focal deficit test dot plots evaluation,                                             175 

Figure 6.f27. Body weight variation after surgical procedures: IDLV_pRRL GDNF and 

IDLV_pRRL TTC injected groups,                                                                               176 

Figure 6.f28. Survival proportion,                                                                                 178 

Figure 6.f29. Life expectancy,                                                                                       180 

Figure 6.f30. Evaluation of the analysis: correlation between the behavioural score at 

day 30 and the ischemic volume quantification,                                                           182 

 

 
 
 
 
 



 
 

12 
 

TABLE OF THE NAMES AND 
ABBREVIATIONS 
 

 
AIDS, Acquired immune deficiency syndrome 

Ang-1, angioprotein 1 

 Ang-1, Angioprotein 1 

AP, anterior-posterior 

CA, Capsid protein 

CCND1, Cyclin D1 

CD4, cluster of differentiation 4 

Cdk4, Cyclin-dependent kinase 4 

CMV, cytomegalovirus promoter 

CNS, Central Nervous System 

CSF, cerebrospinal fluid 

CSF, cerebrospinal fluid 

CXCR4, chemokine CXC Motif Receptor 4 

CXCR4, C-X-C chemokine receptor type 4 

DG, dentate gyrus 

DG, dentate gyrus 

dnCyclin D1, dominant negative Cyclin D1 

dNTPs, deoxynucleosides triphosphate 

dsDNA, double-stranded DNA 

dsRNA, double stranded RNA 

DV, dorso-vental 

E2F, transcription factor 

E2F, Transcription Factor Element 2 

EGF, Epidermal Growth Factor 

FGF, Fibroblast Growth Factor 

 GDNF, Glial cell-line derived growth factor 

HDAC,  histone deacetylase complex 

HIV-1, human immunodeficiency virus type 1 



 
 

13 
 

IDLV, Integration Deficient Lentiviral Vector 

IDLV_pRRLcC_pGDNF_IRESeW, Integration deficient  

IDLV_pRRLcC_TTC_IRESeW,  

IDLVs, integration deficient lentivectors 

IGF-1, Insulin Growth Factor 1 

IN, Integrase 

Integration deficient Lentiviral vector_ pRRLcC_TTC_IRESeW 

IU/ml, Infection Units per millilitre  

LB Amp, LB medium enriched with Ampicillin 

Lentivial vector_pGIPZs_shRNA_Cyclin_D1_640492 

Lentiviral vector_ pGIPZs_ shRNA_Cyclin_D1_640495 

Lentiviral vector_ pRRLcC_pGDNF_IRESeW 

Lentiviral vector_pGIPZs_shRNA_Cyclin_D1_Empty 
LV_ dnCyclinD1, Lentiviral vector_ pRRLsc_Segfp_CdnCND1W 

LV_pHR’SIN-cPPT-SEW, Lentiviral vector_ pHR’SIN-cPPT-SEW 

LV_shRNA_Cyclin_D1_92,  

LV_shRNA_Cyclin_D1_95,  

LV_shRNA_Cyclin_D1_Empty,  

LVs, lentivectors 

M1, Motor cortex 1 

M2, Motor cortex 2 

MA, Matrix protein 

MCAo, Middle Cerebral artery occlusion 

ML, medio-lateral 

MOI , multiplicity of infection  

MOI, Multiplicity of Infection 

MTT, 3 – (4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazoliumbromide 

mV, milliVolt 

Naf, Neutrophil/activating factor 

NC, Nucleocapsid protein 

NCS1, Neuronal calcium sensor-1 

NPCs, Neural progenitor cells 



 
 

14 
 

NS, nervous system  

OB, Olfactory bulb 

PI, Propidium Iodide 

PIC, preintegration complex 

PIC, Pre-Integration complex 

pMCAo, permanent Middle Cerebral Artery occlusion 

pMCAo, permanent_MCAo 

PR, Protease 

R, correlation coefficient in linear regression analysis 

Rb, retinoblastoma protein  

RISC, RNA-induced silencing complex 

RMS, Rostral Migratory Stream 

RNAi, RNA interference 

rpm, rotation per minute 

RT, Retrotranscriptase 

RT, reverse transcriptase 

RTC, reverse transcription complex 

S1, Somato-sensory cortex 1 

SDF-1, Stromal Derived Growth Factor 

SDF-1, stromal-derived factor-1 

SFFV, spleen focus-forming virus promoter 

SGZ, Sub-Granular Zone 

shRNA, short hairpin RNA 

ssDNA, single stranded DNA 

SU, Surface protein or gp120 

SVZ, Sub-Ventricular Zone 

Swi/Snf1, SWItch/Sucrose Non-Fermentable 

TGFβ1, Transforming growth factor β 

TGFβ1, Transforming Growth Factor β1 

Tie2, endothelium-specific receptor tyrosine kinase 2 

Tie2, Tyrosine-protein kinase receptor 2 

TM, Transmembrane protein or gp41 



 
 

15 
 

tMCAo, temporary Middle Cerebral Artery occlusion 

TTC, Tetanus toxin fragment C 

Vif, Viral infectivity factor 

Vpr, Viral protein r 

VSV-G, glycoprotein G of the vesicular stomatitis virus 

VSV-G, Glycoproteins G of the Vesicular Stomatitis Virus 

ρ, correlation coefficient in Spearman’s rank correlation coefficient 

analysis  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

16 
 

 

PART 1 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 



 
 

17 
 

 
 

 

 

CHAPTER 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

18 
 

BACKGROUND AND GENERAL INTRODUCTION 
 

1.1 GENERAL INTRODUCTION 
 

Every year in the UK 53,000 people die because of stroke, a major cause 

of mortality (9% of all total deaths). Stroke is also responsible for over 

9,500 premature deaths every year (data from the Stroke Foundation, 

published on http://www.scribd.com). 

 

Therapeutic treatments currently in use are very limited and only a small 

fraction of survivors is able to have a complete recovery. Recovery 

depends on the damage severity and only therapies based on rehabilitation 

seem to significantly improve patient conditions; in any case neuronal 

degeneration resulting from stroke, can be rescued by rehabilitation. 

Rehabilitation improves network functionality by enhancing plasticity in 

surviving neurons.  

 

Although a complete understanding of the disease’s outcome is not 

clarified yet, new strategies to improve patients’ conditions and to increase 

survivors are currently studied by numerous laboratories. On this view, the 

understanding of the brain’s ability to respond to ischemia could help 

development of new strategies, and could offer a significant contribution 

in the war against this disease.  

 

1.2 STROKE AND NEUROGENESIS 
 

Ischemic brain damage occurs in two different ways:  

• Ischemic stroke, occurring by an occlusion of a cerebral artery or stroke, 

that gives rise to neurodegeneration and/or neural damage, both in the 
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core1 region  and in surrounding penumbral2 areas  (Bederson, Pitts et al. 

1986) 

• Haemorrhagic stroke, occurring when a weakened blood vessels 

ruptures, causing a more localized and  reduced neuronal damage.  

 

There are several animal models that emulate some of the clinical features 

of stroke damage. One of the most common in use is the focal ischemia 

animal model by the occlusion (permanent or temporary) of the Middle 

Cerebral Artery (MCAo) (Figure 1.f1). The MCAo produces a reduction 

of cerebral blood flow within the striatum and the cerebral cortex, 

resulting in loss of cells. The damage depends on the duration of the 

occlusion; initial damage is localised in the striatum, while over 30 

minutes of occlusion can produce extensive damage across the brain 

(motor cortex, hippocampus and somatosensory cortex) (Menzies, Hoff et 

al. 1992; Traystman 2003; Adcock, Ford et al. 2006 Menzies, et al., 1992, 

Traystman, 2003). 

 

Numerous studies have reported that the MCAo produces an increase in 

proliferation of progenitors in the rodent Sub-Ventricular Zone (SVZ) and 

Sub-Granular Zone (SGZ). This was first described in 2001 (Jin, Minami 

et al. 2001) demonstrating an increase in the number of the Neural 

progenitor cells (NPCs) born in the SVZ and SGZ after ischemia3 (Jin, 

Minami et al. 2001; Zhang, Zhang et al. 2001; Arvidsson, Collin et al. 

2002; Parent, Vexler et al. 2002). 

In an experiment performed by Parent et al. (2002), the increase in the 

number of NPCs was detected as the increase of the BrdU labelled cells in 

the perinfarct regions ten days after MCAo (Parent, Vexler et al. 2002). 

                                                
1 The core region is where the highest damage occurs due to neurodegeneration resulting in a 75-
90% reduction in blood flow. 
2 The penumbra area is the area surrounding the core, where neurodegeneration is reduced but 
cellular damage is still significant. 
3 Ischemia, the reduction of blood supply responsible for neurodegeneration and severe cellular 
damage, is synonymous with stroke 
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Moreover, Thirty-five days after MCAo, many of the “new born cells” 

expressed DARPP-32 or Calbindin4  (Arvidsson, Collin et al. 2002; Parent, 

Vexler et al. 2002).  

Gu et al. in 2000 administrated the cell proliferation marker 5-

bromodeoxyuridine (BrdU) to Wistar rats, which thereafter underwent 

MCAo. The immunofluorescence proved a majority of glia, microglia and 

endothelial cells labelled with the BrdU, moreover 3% to 6% of this cells 

expressed the neuronal specific marker Map-2.  These cells were randomly 

distributed on the neocortical layer II and IV (Gu, Brannstrom et al. 2000). 

Many laboratories in analogue projects confirm these studies (Zhang, 

Zhang et al. 2001; Arvidsson, Collin et al. 2002; Parent, Vexler et al. 

2002; Gotts and Chesselet 2005). Concordant with our observations, these 

data demonstrated that the multiplication of progenitors is naturally 

stimulated by neurodegeneration. 

 

Besides, 18 days after MCAo Yamashita and colleagues were able to 

detect, 98% of progenitors in the striatum (n = 1108 cells) and they were 

co-expressing Dcx and βIII-tubulin5 (Yamashita, Ninomiya et al. 2006).  

In the experiment reported by Yamashita et al. (2006) the post ischemic 

detection of NPCs was obtained by an Ax-CAN-Cre plasmid injection into 

the lateral ventricle of CAG-CAT-Cre transgenic mice. This technique 

allowed long lasting expression and detection of eGFP in NPCs migrated 

from the SVZ to the ischemic regions. The analysis after death 

demonstrated a 29% (n = 5 cells) of eGFP-positive cells co-expressing 

NeuN (Yamashita, Ninomiya et al. 2006). Immunoelectron microscopy 

proved that the eGFP-positive axons contained presynaptic vesicles and 

formed synapses with the neurons located in the surrounding area 

(Yamashita, Ninomiya et al. 2006).  

 

                                                
4 DARPP-32 and calbindin are Medium-sized spiny neuronal markers 
5  Neuronal  marker 



 
 

21 
 

More recently Ohira et al. (2010) reported a new neurogenic area in rat 

neocortical layer one which is activated after ischemia (Ohira, Furuta et 

al.; Ohira, Furuta et al. 2010).  
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           Figure 1.f1  Middle cerebral artery occlusion. 

a) Map of the regions that receive blood supply delivered by the Middle Cerebral Artery, 
recognizable by the yellow areas,Sinauer Associates, 2002. b) C57/Bl/6, six week-old 
male, received 1 h MCAo and two weeks later was killed by transcardial perfusion; the 
staining was performed by Haematoxylin and Eosin. 
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1.2.1 NEUROGENESIS IN RODENT BRAIN   
 

NPCs are self-renewing, multipotent cells able to differentiate into 

ependymal cells, neurons, astrocytes and oligodendrocytes (Taupin and 

Gage 2002). The existence of active or quiescent NPCs in the adult 

mammalian nervous system was demonstrated within the neocortical layer 

one, SGZ and SVZ (Ohira, Furuta et al.; Altman and Das 1965; Corotto, 

Henegar et al. 1993; Luskin 1993). In physiological conditions activation 

of NPC divisions in the SVZ produces new-born cells able to migrate 

through the Rostral Migratory Stream (RMS), reaching the Olfactory 

Bulbs (OBs). Toward the migratory pathway and in the OBs, migrating 

neuroblasts differentiate in interneurons, glomerular and periglomerular 

cells (Figure 1.f2 and 1.1.f3) (Doetsch, Garcia-Verdugo et al. 1997).  

 

In some circumstances, for example after stroke, NPCs deviate from their 

“physiological pathway” and migrate toward the damage regions (Gotts 

and Chesselet, 2005). Once they reach the ischemic areas, NPCs associate 

with reactive astrocyte and blood vessels to produce neurovascular niche 

like structures (Ohab, Fleming et al. 2006; Thored, Arvidsson et al. 2006; 

Yamashita, Ninomiya et al. 2006). 

 

The NPCs dissected from SVZ can be cultured in vitro with the use of 

mitogens (EGF or FGF2), and they grow as free-floating spheres 

(neurospheres). Upon mitogens removal, neurospheres can differentiate 

into adult neurons, astrocytes or oligodendrocytes (Lennington, Yang et al. 

2003). 
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Figure 1.f2. Sub-Ventricular Zone (SVZ) (Taupin and Gage, 2002).  
 
The SVZ is a neurogenetic area located on the wall of the third cerebral ventricle. NSCs 
here are maintained in a quiescent state until appropriate stimuli occur to affect their 
division, migration and differentiation.  
 

 
 

Figure 1.f.3. Rostroal-mygratory stream and SVZ (Taupin and Gage, 

2002) 

The picture shows a sagittal section of a rodent brain; highlighted the SVZ 
from which the neuroblasts migrate toward the OBs. The neuroblasts 
travel in a chain-like structure that transient on a specialized route called 
RMS; the route terminates at OBs level. 
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1.2.2 REGULATION AND MAINTENANCE OF THE 
BRAIN NEUROGENIC AREAS: THE GROWTH FACTORS 
FAMILY 

 

The Nerve Growth Factor (NGF) was discovered in the late forty by Rita 

Levi Montalcini and Stanley Cohen; since then, the interest for this 

compound and its big family had seen an increasing attention and wide 

therapeutics application (Orts Llorca 1988; Hamburger 1993; Aloe 2004). 

The NGF comprises a big family of proteins that are involved in neuronal 

survival as well as stimulate dendritic branching and plasticity. In the 

Nervous System (NS) the Growth Factor (GF) family is highly expressed 

during development, as well as in the adult is an important factor for 

neuronal survival and plasticity (Pardon 2010). The GF family is currently 

applied in brain research with particular interest for the regulation and 

survival of NPCs. 

 

1.2.2.1 EGF AND FGF2 
 

Self-renewal and long-term survival of NPCs is stable when maintained in 

culture by two well known GF: the Epidermal Growth Factor (EGF), and 

Fibroblast Growth Factor 2 (FGF2) (Reynolds and Weiss 1992; Kuhn, 

Winkler et al. 1997). Some studies investigating the effects of EGF and 

FGF2 on telencephalon development, have demonstrated the closely 

regulated control of such molecules: FGF2 is produced early and during E 

8.56, whilst EGF is expressed only at E14.47 (Tropepe, Sibilia et al. 1999; 

Maric, Maric et al. 2003). In the adult NS SVZ’s NPCs express both EGF 

receptor and the FGF receptor 1, and hence respond to either EGF or 

FGF2 (Gritti, Frolichsthal-Schoeller et al. 1999). 

1.2.2.2 IGF-1 
 

                                                
6  Embryonic day 8,5.  
7  Embryonic 14,4. Between eighteenth and nineteenth days of embryo life time 
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Yan et al. (2006) demonstrated that Insulin Growth Factor 1 (IGF1) is 

produced by astrocytes in the rat penumbral cortex. This is one of the post-

ischemic up-regulated diffusible factors detectable after focal ischemia, 

and acts to promote progenitor cell proliferation. Interestingly, no IGF-1 

positive cells were observed in the post-ischemic dentate gyrus (DG) and 

SVZ (Yan, Sailor et al. 2006). IGF-1 is an endogenous mitogen which acts 

widely during development including in neurogenic areas. The action of 

IGF-1 is closely related to the concomitant occurrence of mitogens like 

EGF or FGF-2, and promotes differentiation after its withdrawal (Kalluri, 

Vemuganti et al. 2007). 

 

1.2.2.3 CYCLIN D1 
 

Cell cycle activation is strictly regulated by a number of factors known as 

cyclins. Cyclin D1 is a limiting molecule that promotes the progression 

from G1 to S phases of mitosis. Many factors controls Cyclin D1 gene 

transcription; for example, the interaction of many growth factors like 

EGF with the specific membrane receptor, can induce activation of the 

ERK and PI3/Akt pathways, in turn responsible to increase Cyclin D1 

transcription and the protein accumulation in the cytoplasmic region 

(Burch and Heintz 2005). The cytoplasmic accumulation of Cyclin D1 

leads to Cdk4 association, in turn responsible for the complex activation.  

As kinase-complex, it starts to interact with different cellular pathways by 

protein phosphorylation; for instance, the phosphorylation of the 

Retinoblastoma protein (Rb) determines the reduction of affinity with the 

E2F and in turn this is responsible for the cell cycle progression (Burch 

and Heintz 2005). Rb is a repressor factor that binds8 the Transcription 

Factor Element 2 (E2F). The kinase activity of CyclinD1/Cdk4 complex 

phosphorylates Rb/E2F, which is in turn responsible for the release of Rb 

                                                
8             E2F is able to activate many genes involve in S phase progression, particularly cyclin E 
gene 
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and E2F activation (Dowdy, Hinds et al. 1993; Ewen, Sluss et al. 1993) 

(Figure 1.f4).    

When the cell cycle is blocked in G1, the E2F is inactive by the binding to 

the Rb protein. In these circumstances, Rb recruits the histone deacetylase 

(HDAC) and methyltransferase (HMT) making the DNA inaccessible for 

E2F (Brehm, Miska et al. 1998; Luo, Postigo et al. 1998; Magnaghi-Jaulin, 

Groisman et al. 1998; Nielsen, Schneider et al. 2001). At DNA level, the 

modification of histone tails by HDAC and HMT, causes them a variation 

in charge by deacetylation and methylation of its lysine and arginine 

aminoacids. This results in an alteration of chromatin structure, and is in 

turn responsible for gene silencing (Figure 1.f5). The close association 

between the histone complex and DNA prevents any access for enzymes 

and factors necessary for transcription (Figure 1.f5) (Coqueret 2002). 
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Figure 1.f4. Cyclin D1 pathway.  
 
Extracellular stimuli, such the binding of growth factors (GF) to the receptor can increase 
the amount of the cytoplasmic Cyclin D1, which becomes active by interaction with 
Cdk4. As a complex CyclinD1-cdk4 migrates in the nucleus where the Kinase activity of 
CDK4 phosphorylate the Rb-E2F complex and is responsible for the release of the 
transcription factor E2F. E2F as last is involved in DNA ultra-structure modifications and 
S-phase genes activation.  
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Figure 1.f5. Chromatin remodelling by HDACs, HATs and histone 
methylase (Adcock, Ford et al. 2006).  
 
Chromatin remodelling systems: histone acetyltransferase complex (HAT) adds the acetyl 
group to the histone tails; this modification reduces DNA condensation, thus increasing 
enzyme accessibility. The inverse action is performed by HDAC for a reduced DNA 
accessibility and gene silencing. The methylation by HMT often follows deacetylation 
creating a stronger gene silencing.   
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1.2.2.4 GDNF 
 
The glial cell-line derived growth factor (GDNF), acting through the 

glycosylphosphatidylinositol- (GPI) receptor c-Ret, a transmembrane 

tyrosine kinase receptor, and the glial cell line-derived neurotrophic factor 

family receptor α 1, 2, 3 and 4, GFR α1, α2, α3 and α4, is able to promote 

cell survival and in vitro neuron differentiation. Moreover, it was 

demonstrated that GFR α1 mRNA is up-regulated in SVZ and Cortex after 

2 hours MCAo (Figure 1.f6) (Arvidsson, Kokaia et al. 2001).  

 

Stroke induces widespread changes in gene expression for glial cell line-

derived neurotrophic factor family receptors in the adult rat brain. 

Dempsey et al. (2003) proved a direct effect of GDNF on SVZ expansion. 

Prior to the ischemia being induced by MCAo, the animals were subjected 

to 24 hours intracerebroventricular infusion of GDNF, and one week after 

a significant increase in NPCs was noted in the SVZ (Dempsey and 

Kalluri 2007). The newly-formed NPCs survived for three weeks post 

MCAo (Dempsey, Sailor et al. 2003). 

 

 

 

 
 

Figure 1.f6. Stroke induces up regulation of GFR α1 receptor (Arvidsson, 
Kokaia et al. 2001).  
 
Effect of 2h_MCAo and 24h of reperfusion in a rat brain: the ischemia increased GFR α1 
mRNA in the SVZ and Cortex. 
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1.2.2.5 TTC 
 

The tetanus toxin is a neurotoxin secreted from the Clostridium tetani 

bacteria. The toxin comprises two polypeptide chains connected by a 

disulfide bond. The heavy chain can be divided into two different regions: 

the binding domain and the translocation domain. The binding domain is 

able to bind the gangliosides onto the nerve terminals and to be up taken 

by neurons. The neurotoxin, once in neurons, can be transported along the 

axon and across synapses and it can act at several sites within the Central 

Nervous System (CNS) and sympathetic NS. The translocation domain 

allows the neurotoxin to access cytosol. The light chain is a zinc 

endopeptidase that once activated by cytoplasmic enzymes, is able to cut 

the disulphide bond between the two chains. Moreover, it cuts 

Synaptobrevin 2 and determines the block of the release of GABA and 

Glycine to motor neurons, in turn causing the persistent muscle contraction 

symptomatic of tetanus (Roux, Saint Cloment et al. 2005; Caleo and 

Schiavo 2009). 

The tetanus toxin fragment C (TTC) is the C terminal portion of the heavy 

chain that is considered non-toxic, and in research is used as a neuronal 

tract tracer.  

 

Many studies have demonstrated the effect of TTC on improving 

compound delivery, such as that of mature GDNF in the CNS to provide 

neuro-protection to axotomized motor neurons (Larsen, Benn et al. 2006). 

Moreover, its neurotrophic-like effect was quite recently demonstrated in 

the ALS mouse model. In this experiment conducted by Moreno-Igoa et al. 

in 2009, naked DNA encoding for the TTC was intramuscularly injected in 

the transgenic SOD1G93A mouse model; the treatment improved hindlimb 

muscle innervation, delayed the ALS onset through improved motor 

neuron survival, and mediated lifespan elongation (Moreno-Igoa, Calvo et 

al. 2010). 
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1.2.3 INCREASE OF GROWTH FACTOR PRODUCTION 
AFTER ISCHEMIA 
 

After ischemia many growth factors and related receptors are up-regulated 

within the damaged tissue (Lippoldt, Reichel et al. 2005). Some published 

studies pointed out possible relationships between post MCAo 

neurogenesis and growth factors (Dempsey and Kalluri 2007). The action 

of these stimulating factors is not always closely related to the 

proliferation of neural progenitors, some of which can induce mitosis, like 

EGF and FGF2, while others block cell self-renewal. Transforming 

Growth Factor β1 (TGFβ1) is an example of a factor which blocks self-

renewal; its action directly interrupts cell division through up-regulation of 

mitosis inhibitors (Yamashita, Ninomiya et al. 2006). 

 

1.3 NEUROGENIC ENVIRONMENT 

1.3.1 THE NICHES 
 

Stem cells are distinguished from other cell types by two specific 

characteristics: they can generate identical daughter cells from division or 

self-renewal and they can produce different cell types after differentiation. 

In order to control and regulate self-renewal and multipotency, the specific 

environment of the neuronal niche is required. This niche provides 

paracrine and autocrine signals, in turn responsible for stem cell activation, 

differentiation and finally, niche support cells. Within the neuronal niche, 

stem cells are anchored to the basal lamina or stromal cells; the 

organization of this micro-environment provides a specific substrate which 

is pivotal to cells’ orientation and division, and to modulate regulatory 

factors and metabolites accessibility (Riquelme, Drapeau et al. 2008; 

Imayoshi, Sakamoto et al. 2009; Ming and Song 2011; Yao, Mu et al. 

2012). 
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1.3.2 NEUROGENIC AREAS 
 

1.3.2.1 SVZ IN PHYSIOLOGICAL AND PATHOLOGICAL 
CONDITIONS  
 

The SVZ is located along the lateral wall of the third ventricle, and 

consists of a layer of quiescent cells separated from cerebrospinal fluid 

(CSF) by multi-ciliate ependymal cells. The newly-born cells originate 

from the SVZ migrate in a chain-like structure toward the RMS pathway 

by which they reach the OBs. Within the OBs the newly-formed inhibitory 

interneurons, granules and periglomerular cells are integrated into the 

neuronal network (Belluzzi, Benedusi et al. 2003).  

 

In pathological conditions, for example, post MCAo, SVZ progenitors 

respond to the damage through reactivation of the cell cycle and migration 

toward the ischemic areas (Wurmser, Palmer et al. 2004). The migration 

occurs via chain like structures closely associated with endothelial cells. 

Once they reach the ischemic area, they associate with astrocytes and 

express Dcx (Yamashita, Ninomiya et al. 2006). This cluster organization 

resembles the neuronal niches located in the neurogenic areas (Louissaint, 

Rao et al. 2002; Alvarez-Buylla and Lim 2004; Wurmser, Palmer et al. 

2004; Yamashita, Ninomiya et al. 2006). Migrating neuroblasts use 

chemoattractant molecules to reach the infarct area. Stromal Derived 

Growth Factor (SDF-1) and Angioprotein 1 (Ang-1) are proteins secreted 

by endothelial cells and are up-regulated in hypoxic conditions. These 

proteins regulate stem cell differentiation and migration through the 

receptors Tie2 and CXCR4 (Ohab, Fleming et al. 2006). Angiogenesis is 

associated with neurogenesis in the niche environment (Leventhal, Rafii et 

al. 1999; Alvarez-Buylla and Lim 2004; Wurmser, Palmer et al. 2004). 

Moreover Ohab et al. (2006) demonstrated a functional link between the 

formation of new blood vessels and neuroblast migration occurring post 

MCAo. In this study they inhibited angiogenesis via endostatin treatment, 
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and demonstrated a 10-fold Dcx-positive cell reduction in the perinfarct 

area (Ohab, Fleming et al. 2006). 

1.3.2.2 SGZ IN PHYSIOLOGICAL AND PATHOLOGICAL 
CONDITIONS 
 

The SGZ is located within the hippocampus, between the granule cell 

layer of the dentate gyrus (DG) and the hilus. This neurogenic area has 

been demonstrated to be present in mammals, especially in superior 

primate brain. The granular zone forms relatively late during development 

(around one week before birth) and produces neurons over the whole 

lifetime. Numerous factors regulate the SGZ. For instance, the SGZ is 

negatively regulated by age and stress hormones (corticosterone and 

cortisol), and positively regulated by estrogen, progesterone and 

antidepressants (Galea, Spritzer et al. 2006; Brinton, Thompson et al. 

2008; Schoenfeld and Gould 2012)  

 

The SGZ produces and integrates in the hippocampus circuit around ten 

thousand newborn neurons in a life time. The hippocampus is a limbic 

structure involved in learning and memory. Learning increases 

neurogenesis in SGZ and promotes survival of newly generated cells 

(Gould, Beylin et al. 1999). Once new NPCs have been generated, they 

migrate for a short distance in the granular layer, extending dendrites to 

the molecular layer and starting to pull out the growth cone along the 

mossy fibre path. These cells are completely able to be reinserted into the 

neuronal network and to become actively functional.  

The SGZ seems to have at least two different astrocyte populations: radial 

and horizontal astrocytes. The radial astrocytes express Nestin and extend 

basal processes into the granule cell layer. The horizontal astrocytes which 

are in turn generated by the radial astrocytes do not express nestin and 

express S100; they extend basal processes under the granule cell layer 

(Riquelme, Drapeau et al. 2008). 
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Although SGZ and SVZ are well established areas of neurogenesis in 

many animal models, in humans the notion of existence of an SVZ-like 

region is still controversial (Curtis, Kam et al. 2007; Sanai, Berger et al. 

2007).  

 

1.4 LENTIVIRAL VECTORS 
 

1.4.1 BRIEF HISTORY AND GENERAL BACKGROUND 
 
The idea of using viral vectors to deliver genes into eukaryotes was first 

conceived in the late 1970s, from the meeting of molecular virology and 

the first characterization studies of genetic diseases with Mendelian 

inheritance. Among the multiple types of viral vectors available, lentiviral 

vectors have relatively high coding capacity (around 7.5 kb), low 

immunogenicity and the ability to transduce non-dividing cells. The most 

commonly used lentiviral vectors are derived from HIV-1 (Cockrell and 

Kafri 2003; Cockrell and Kafri 2007). 

 

In 1991 and 1992 the ability of the Human Immunodeficiency Virus type 

1(HIV-1) to infect non-dividing macrophages and non-proliferating cells 

was demonstrated in vitro (Weinberg, Matthews et al. 1991; Lewis, Hensel 

et al. 1992). The aptitude to infect non-dividing cells depends on the 

preintegration complex (PIC). This complex contains diverse viral proteins 

(Viral protein r, Vpr; Viral matrix protein; integrase), some host proteins 

(including the Barrier-to-autointegration factor) and the viral dsDNA or 

provirus. The main role of the complex is to mediate the active transport of 

the dsDNA through the nuclear pores, and to allow the integration into the 

host chromatin (Fouchier and Malim 1999). The integrase is the protein 

responsible for the viral DNA integration and, as discussed below, a single 

substitution in its amino acid chain sequence can reduce or prevent the 

catalytic activity. In this case, the non-integrated vector DNA can remain 
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in an episomal state, and be efficiently transcribed, particularly in 

quiescent cells (Yanez-Munoz, Balaggan et al. 2006). 

 

The initial lentiviral vectors produced did not have a wide tropism, but 

were limited to transduction of CD4-producing target cells, and with high 

probability of producing replication competent particles (Poznansky, 

Lever et al. 1991; Buchschacher and Panganiban 1992). A real 

improvement followed the introduction of pseudotyping, by which the wt 

HIV envelope protein is substituted with that from other virus having 

wider tropism, particularly the Vesicular Stomatitis Virus envelope 

glycoprotein G (VSV-G). Crucial was also the introduction of new 

strategies to reduce the likelihood of recombination events between vector 

components (Naldini, Blomer et al. 1996). These pseudotyped LV were 

able to efficiently transduce human cells in culture and rat neurons in vivo 

(Naldini, Blomer et al. 1996; Naldini, Blomer et al. 1996). 

 

The most important limitation of these first viral systems was the 

biosafety: the probability to produce replication-competent elements in the 

host organism was a big obstacle for possible therapeutic applications. 

From 1997 many genes involved in the viral replication were eliminated, 

and the viral genome was first split into 3 different plasmids (second 

generation LV) then into four (third generation LV) (Sakuma, Barry et al. 

2012). This not just reduced the probability of recombination between viral 

vector plasmids, improving the biosafety, but also increased vector genes 

delivering capability. In order increased  biosafety, LVs were developed 

from non-primate Lentiviruses (Naldini 1998). 
 
 

1.4.2 HIV LIFE CYCLE  
 
The human immunodeficiency virus (HIV) is the virus responsible for the 

Acquired Immune Deficiency Syndrome (AIDS) (Janssen, St Louis et al. 
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1992; Maeda and Mitsuya 2007; Sullivan, Patel et al. 2011; Owen 2012). 

HIVs belong to the lentivirus genus, within the retrovirus family. 

Lentiviruses are complex retroviruses which in addition to gag, pol and 

env contain accessory genes. The HIV life cycle can be divided into early 

and late stages. The early stage starts with the interaction of the viral 

envelope protein gp120 with the macrophages receptor CD4, also located 

on the surface of T-helper lymphocytes; both of them are important cells 

of the immune system. After the first interaction between pg120 and CD4, 

a third protein; the trans-membrane chemokine receptor CCR5 is recruited. 

The co-receptor CCR5, together with the CD4, determines the site where 

the viral envelope fuses with the host cellular membrane and the viral 

nucleocapsid accesses the cytoplasm. After the macrophages infection, a 

pg120 modified protein is expressed on the cellular membrane, in turn 

responsible for the interaction with a different receptor located on the T-

cells membrane, the CXCR4 (Nguyen and Taub 2002). The result of this 

infection is a severe reduction of both macrophages and T-cells, in turn 

responsible for the development of AIDS (Figure 1.f7). 

 

The viral genome consists of ~9-kb RNA encoding for 15 different 

proteins (Table 1.1.t1) (Frankel and Young 1998). Once in the host 

cytoplasm the viral nucleocapsid is disassembled (uncoating), and a pre-

integration complex (PIC) is formed. Once built, the PICs are able to 

mediate the nuclear transport and the provirus integration (Figure 1.f7) 

(Nisole and Saib 2004). 

 

The late stage begins when the double strand cDNA is integrated into the 

host genome, and gene transcription starts. The first transcripts to be 

translated are Tat, Rev and Nef: Tat controls the rate the proviral 

transcription is activated, Rev is involved in the proviral mRNA splicing 

before the nuclear export, while, Nef is responsible for the particles 

released by endocytosis. The proviral mRNA is retained in the nucleus 

until it is spliced as an effect of the Rev binding to the RRE. The nuclear 
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accumulation of Rev determines the shift between highly spliced mRNA, 

single spliced and un-spliced, and it is responsible for the viral life cycle 

phases. The structural proteins are produced by the Gag and Env 

transcripts, and the viral genome packed into the capsid. The capsid is 

built by a protein-protein interaction of the Gag and Pol polyproteins with 

the Capsid protein (CA). The ssRNA is packed into the capsid as a result 

of the interaction between the Ψ sequences and the NC protein. 

Additionally, the package contains Vif, Vpr, Nef and some cellular tRNA 

(Figure 1.f7) (Frankel and Young 1998; Nielsen, Pedersen et al. 2005). 

 

Budding of the nucleocapsid complex through the plasma membrane 

produces the envelope coating; the envelope in turn contains the 

extracellular gp120 and transmembrane protein gp41, both necessary to 

start the successive interaction with T-helper and macrophages cells 

(Figure 1.f7) (Frankel and Young 1998; Nielsen, Pedersen et al. 2005). 

 

 

 

 

 

 



 
 

39 
 

 
 
 
Figure 1.f7. Lentivirus life cycle.  
 
The picture describes the HIV virus life cycle: interaction and integration with the host, 
transcription, viral particles assembly and as last endocytosis mediated release.  The 
picture was made by Dyana Terry Soenz from Poeschla’s lab and it was downloaded 
online at http://mayoresearch.mayo.edu/mayo/research/poeschla/index.cfm 
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Name of protein Function  Transcript 
MA, matrix Viral assembly, facilitates 

infection in non-dividing 
cell types 

Gag 

CA, capsid Structural protein Gag 
NC, 
nucleocapsid  

Structural protein Gag 

p6,  Mediate the release of 
particles 

Gag 

SU, surface 
protein or gp120 

Surface receptor Env 

TM, 
transmembrane 
protein or gp41 

Surface receptor Env 

PR, Protease Protein cleavage Pol 
RT, Reverse 
transcriptase 

reverse transcription Pol 

IN, Integrase Viral genome integration Pol 
Vif Found in the viral particle Vif 
Vpr Found in the viral particle Vpr 
Nef Found in the viral particle Nef 
Tat Gene regulatory function Part of Vpr-

Vpu-Env 
Rev Gene regulatory function Vpu-Env 
Vpu Indirectly assist the virion 

assembly 
Env 

 
Table 1.1.t1. Table of the HIV proteins (Frankel and Young 1998).  

 

1.4.3 LENTIVECTOR SYSTEMS 
 

The production of lentiviral vectors relies on splitting the necessary 

components into several plasmids, called packaging (encoding viral genes 

required for vector production but not incorporated into the vector 

genome), envelope (encoding a heterologous envelope protein for 

pseudotyping, commonly VSV-G) and transfer (encoding the transgene 

cassette and cis-acting sequences required for vector production, reverse 
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transcription and integration) plasmids. In this study second- and third-

generation LV were used. Lentiviral generations refer to the genes 

encoded by the packaging plasmids. A second-generation system includes 

gag, pol, tat and rev, while a third-generation system uses only gag, pol 

and rev, with the latter one being present on a separate plasmid (Vigna and 

Naldini, 2000). The production on LV particles requires the packaging, 

rev, envelope and transfer plasmids to be co-transfected into producer 

cells. The host cells mainly in use for LV production and used in this 

specific project were the human embryonic kidney HEK293T cell line, due 

to their highly efficient transfection. These plasmids were transfected into 

the HEK 293T cells using a Calcium Phosphate transfection. 

 

1.4.4 IDLVs 
 

The integration process is a pivotal step of the Lentivirus’ life cycle, after 

which the provirus becomes part of the host genome. The Integrase protein 

contained in the PIC complex mediates this step. The integration starts 

with the cleavage of both dinucleotides at the 3’ ends, then the host 

genome is cut and the proviral cDNA is transferred into the gap. Finally 

the gaps are repaired and the ligation occurs. 

The catalytic activity of integrase can be disrupted by mutations, the most 

commonly used leading to a change from aspartic acid 64 to valine on the 

polypeptide chain. This change causes a significant reduction in proviral 

integration, and an increase in the formation of episomal DNA vector 

circles, which can be efficiently transcribed and are metabolically stable in 

non-dividing cells (Leavitt, Robles et al. 1996; Yanez-Munoz, Balaggan et 

al. 2006). Such Integration Deficient Lentiviral Vector (IDLVs) can 

transduce target cells and allow transgenic expression. Dividing cells, as 

the NPCs, can be efficiently transduced by IDLV; in this case the episomal 

vector as well as the encoded transgene are expected to be progressively 
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diluted through cell division (Yanez-Munoz, Balaggan et al. 2006; 

Wanisch and Yanez-Munoz 2009). 

 

1.5 RNAi and shRNA 
 
RNA interference or RNAi is a post-transcriptional regulatory system, 

occurring from nematodes to fungi, and is a very important mechanism by 

which organisms can temporarily interrupt mRNA translation and protect 

themselves from viral attack. It was first described in 1990 by Napoli et al. 

and then by Guo and Kemphues in 1995, both of whom did not have a real 

understanding of the biological significance behind the event they were 

looking at. In the experiment accomplished by Guo and Kemphues, the C. 

elegance par-1 gene expression silencing was attempted and achieved by 

injection of an anti-sense or a sense strand RNA. To have a clarification 

about the mechanism behind the RNA mediated “gene silencing”, we had 

to wait for a 1998 publication in Nature by Fire et al. In this paper they 

reported a strong “gene silencing” mediated by double-stranded RNA. At  

most a modest effect was found when a single-stranded RNA (sense or 

anti-sense) was injected. They coined the term RNAi to describe the event, 

and Fire and Mello were awarded with a Nobel Prize in 2006.  

 

The interference system acts through small pieces of RNA (21-23 nt), 

obtained from a double strand RNA (dsRNA), cleavage by the 

endoribonuclease DICER. The short RNA is recruited by the RNA-

induced silencing complex (RISC), which once assembled with the 

siRNA, is able to recruit the complementary or partially complementary 

mRNA, and produces respectively degradation or silencing (Figure 1.f8) 

(Kim and Rossi 2007). 

 

Using the RNAi pathway, the shRNA can silence or degrade mRNA and 

can be a powerful tool for gene therapy. The shRNA is a small sequence of 

RNA that can shape as hairpin and is widely in use for gene silencing by 
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blocking mRNA translation. It can be delivered by viral (for example LVs) 

and non-viral vectors,  (McIntyre and Fanning 2006; Mahmood ur, Ali et 

al. 2008). 
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Figure 1.f8. iRNA by Kim and Rossi 2007 (Strategies for silencing human 
disease using RNA interference).  
 
RNAi is a mechanism by which organisms can block mRNA translation and self-protect 
against some recognized viruses. The mechanism is mediated by a double strand RNA 
and is in turn recognized and cleaved by the ribonuclease DICER, once the siRNA is 
produced, and can interact with the RISC complex. Once the RISC is bound, it recognizes 
and activates mRNA cleavage.  
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!!!!!!!AIMS OF THE PROJECT 
 
As the growing body of evidence suggests, neurogenesis occurs in 

pathological conditions such as stroke, neurodegenerative diseases and 

severe brain damage. The exact role of this event is not completely 

understood and has not yet been clarified. In order to better understand 

SVZ neurogenesis in ischemic conditions, this project aims to boost and 

inhibit neurogenesis and assess the effect of the treatments in a long-term 

study.  

 

The project can be divided in four separate aims: 

1. To set up a neurogenesis inhibition system based on LVs 

2. To set up and validate an MCAo model for long-term study 

3. To set up an LV-based system to detect and quantify neurogenesis 

in vivo in the presence or absence of stroke 

4. To study the effect of SVZ neurogenesis modulation on post-

ischemic recovery. 
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MATERIALS AND METHODS 
 

 2.1 CLONING  

2.1.1 STANDARD CLONING TECHNIQUE  

 
The plasmids used for this project were designed using Vector NTI 

software from Invitrogen, and the production was achieved through 

techniques of molecular biology.  

 

The plasmid DNA was first amplified by heat shock transformation in Top 

10 E. coli cells. Bacteria that incorporated the exogenous DNA or 

transformed bacteria, acquired one or more antibiotic resistance that was 

encoded in the plasmid; these resistance was then used to select the desired 

colony. In this case an ampicillin resistance was encoded in the plasmid 

DNA sequence. Once the plasmid was incorporated in the bacteria the 

cells acquired the resistance and there were selected by growing in an 

Ampicillin enriched medium (both techniques are described below). 
 

After the colony was amplified, the DNA was extracted and enzymatic 

digestions were used to excise the undesired sequences from the original 

plasmids; compatible ends were bounded by Ligase T4 reaction. 

 

To ensure the correct sequence on the selected plasmid, enzymatic 

digestions were used as well as the plasmid was entirely sequenced as 

below reported. 

 

2.1.1.1 RESTRICTION ENZYME DIGESTS 
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The DNA extracted from Top ten E. Coli cells was cut by digestion with 

restriction enzymes, selected in order to obtain compatible strand ends to 

be successively ligated by the T4 Ligase reaction. 

 

20 µl of total digestion reagents, contained 2 µl of enzyme’s buffer, 1 µl of 

the selected restriction enzyme and 1 µg of plasmid DNA, was mixed and 

incubated over night at 37°C. The reaction efficiency was estimated by gel 

electrophoresis, from which the correct size band was assessed and 

purified.  

 

2.1.1.2 GEL ELECTROPHORESIS AND DNA EXTRACTION 

 
MATERIALS 

 

Loading buffer, Sigma 

Agarose, Sigma 

Ethidium bromide, Sigma 

GeneRuler 1 kb, Fermentas 

QIAgen gel extraction kit, QIAgen 
 

SOLUTIONS AND BUFFERS 

 

 10X TAE  

48.4 g of Tris base [tris(hydroxymethyl)aminomethane] 
         11.4 ml of glacial acetic acid (17.4 M) 

3.7 g of EDTA, disodium salt 
Deionized water 
 
The 1X TAE was obtained in a 1:10 dilution. 
 
 

Digested DNA was re-suspended in loading buffer, and loaded in 0.8% 

agarose gel containing 0.5 µg/ml of ethidium bromide; as a DNA reference 

the GeneRuler ladder 1 kb was used. DNA was run in 1% TAE buffer at 

50 V for 30-45 minutes. 



 
 

49 
 

After electrophoresis, DNA fragments were detected by illumination under 

UV light, and the correct size band was excised from the gel and purified 

with the QIAgen extraction kit, following manufacturer’s instructions. 

Briefly, the cut band was first weighted; 3 volumes of buffer QG (w/v) 

were added per unit of gel slice and incubated at 50°C for 10 minutes. 1 

gel unit of isopropanol was added to the solution and applied to a 

QIAquick spin column, then centrifuged for 1 minute. The flow-through 

was discarded and 0.5 ml of buffer QG was added to the column and 

centrifuged for one more minute. 0.75 ml of PE buffer was added to the 

column and washed out by centrifugation. The column was placed in a 

clean tube and the DNA eluted with 30 µl of EB.   

 

2.1.1.3 KLENOW POLYMERASE REACTION  

 
Klenow Polymerase, Promega 

Klenow Polymerase Buffer, Promega 

BSA, Promega 

 

Klenow Polymerase allows filling 5’ ends obtained by specific enzymatic 

digestion. 

The reaction mixture contained 2.5 µl of DNA (0.1-1 µg), 1 µl of Klenow 

Polymerase buffer, 2 µl of dNTPs 2 mM, 1 µl of BSA and 2.5 µl of water; 

the solution was incubated for 1 hour at room temperature, and 

successively the enzyme activity was stopped in a 75°C thermostat for 10 

minutes.   

 

2.1.1.4 LIGATION 

 
MATERIALS  
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T4 Ligase, Promega 

T4 ligase Buffer, Promega 

BSA 10%, Promega 
 

DNA fragments were ligated together with a T4 Ligase reaction; a starting 

amount of 100 ng of Backbone DNA was used. The insert concentration 

was calculated with the following formula: 

(1) !"!!"#!"# ÷ !"!!"#$%& = !"!!"#$!%&' ÷ !"!!"#$!%&' 

(2) !"!!"#$%& = !"#$%&#'!(× !"!!"#$%&
!"!!"#$!%&' 

 

Depending on the structure of the ends of the molecules (two sticky ends, 

two blunt ends or one sticky and one blunt end) the equation in (1) 

becomes: 

 

To join two sticky ends 

 

(3) !"!!"#$%& ÷ !"!!"#$%& ×3 = (!"!!"#$!%&' ÷ !"!!"#$!%&')×1 

To join one sticky end and one blunt 

          

(4)! !"!!"#$%& ÷ !"!!"#$%& ×5 = (!"!!"#$!%&' ÷ !"!!"#$!%&')×1 

 

To join two blunt ends 

         

(5)! !"!!"#$%& ÷ !"!!"#$%& ×10 = (!"!!"#$!%&' ÷ !"!!"#$!%&')×1 

 

10 µl of the ligation mix contained 1% of BSA 1 µl, 10% of ligase buffer 1 

µl, DNA as calculated above, 1 µl of T4 Ligase, and water. The reaction 

was incubated over night at 18ºC. The day after, the ligated DNA was 

introduced into the bacteria by heat shock transformation, clones selected 

with ampicillin, amplified and DNA extracted (see below).  
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2.1.1.5 BACTERIAL TRANSFORMATION and CLONE                      

AMPLIFICATION 

 
MATERIALS  

 

LB Broth, Sigma  

Bacteriological Agar for Molecular Biology, Sigma 

Ampicillin, Sigma    
                  
1-1.5 µl of plasmid DNA was introduced in Top ten competent cells by 

heat shock transformation.  E. Coli Top ten cells stored at -80°C were 

slowly defrosted on ice and the DNA added to the tube. DNA 

incorporation was heat induced; the bacteria-DNA solution was placed at 

42ºC for 45 seconds, then quickly the tube was put back on ice. 

Transformed bacteria were incubated for 1 hour in an antibiotic free LB 

medium at 37°C, then spread onto ampicillin plates and incubated over 

night at 37°C.  The day after, the positive clones were selected and 

amplified in the conditional LB medium.  

 

2.1.1.6 PLASMID DNA EXTRACTION  

 
MATERIALS 

 

Miniprep and Maxiprep kit, QIAgen  

 

Plasmid DNA extraction from bacteria was achieved by QIAgen Miniprep 

and Maxiprep. For 1 to 5 ml (150 to 500 ml for Maxiprep) of inoculated 

bacteria 250 µl of P1 buffer was added (10 ml for Maxiprep), followed by 

250 µl of P2 buffer and 350 µl of P3 buffer (10 ml of each buffer for 

Maxiprep), each time gently inverting the tube 4-6 times (Maxiprep were 

incubated on ice for 30 minutes). The tube was centrifuged at 13,000 rpm 

for 10 minutes (Maxiprep were centrifuged at 3500 rpm for 30 minutes), 
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and the supernatant added to the QIAprep spin column. The tube was 

centrifuged at maximum speed and the flow-through discharged 

(Maxiprep were filtered by gravity and the flow-through collected in a 50 

ml falcon tube). After washing with 500 µl of PB buffer and 750 µl of PE 

buffer the DNA was eluted with 50 µl of EB buffer. In the case of 

Maxiprep, 10 ml of QBT buffer was used to equilibrate the Quiagen-tip 

500, and then the flow-through was applied to the column, as well as 2 x 

30 ml of buffer QC. The DNA was eluted by adding 15 ml of buffer QF; it 

was then precipitated with 10.5 ml of isopropanol and centrifuged at max 

speed for 30 minutes. After discharging the liquid and let the DNA air dry, 

the pellet was re-suspended in a suitable volume of TE buffer.  

 

2.2 LENTIVIRAL VECTOR PRODUCTION 
 

2.2.1 CELL LINES 
 
MATERIALS  

 

DMEM, PAA 

FBS, PAA  

Penicillin and Streptomycin , PAA 

Trypsin/EDTA solution , PAA 

PBS, PAA 

 

All cell lines used were maintained in a Dulbecco’s modified medium 

enriched with 10% foetal bovine serum and antibiotics 

(streptomycin/penicillin), under 5% CO2 and controlled humidity. The 

cellular confluence was tightly controlled, and was not allowed to expand 

for more than 80% of the total free surface.  

Cells used in the project: 
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• HEK 293T is the human kidney epithelial cell line engineered to 

constitutively express the SV40 large T antigen. The HEK 293T cell line 

was used to produce LV. 

• HeLa cells are human fibroblasts isolated from a patient who had cervix 

cancer in 1951. These cells respond very well to LV transduction and were 

used for titration. 

• NIH3t3 cells are mouse fibroblasts. These cells have an overexpression 

of the v-H-Ras protein, in turn responsible for an increase level of Cyclin 

D1 (Liu, Chao et al. 1995). The increased amount of Cyclin D1 produces a 

shorter G1 and it is responsible for the tumorigenic phenotype. This cell 

line was used to assess variation of CyclinD1 protein content and the cell 

cycle blocking, as effect of the LVs_dnCyclinD1 and 

LVs_shRNA_CyclinD1 transduction.  

 

2.2.2 VECTOR PREPARATION 
 
MATERIALS  

 

Water, Sigma-Aldrich 

2.5 M CaCl2, Sigma-Aldrich 

HEPES, Sigma-Aldrich 

NaCl, Sigma-Aldrich 

Na2 HPO4, Sigma-Aldrich  

Polybrene, Sigma-Aldrich 

DNAse I, Promega 

TE endotoxin free, Quiagen 

Filter 0,22-µm-pore-size, Nalgene 

 

Third or second generation HIV-based LVs  was obtained via transfection 

of respectively four and three plasmids into HEK 293T cells (Yanez-

Munoz, Balaggan et al. 2006). 
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CALCIUM PHOSPHATE TRANSFECTION 

2-2.5 x106 cells were plated two days before transfection in a 15 cm plate; 

this cellular concentration produces two days later a transfection optimum 

confluence (60-70%). 

 

LVs were produced by Calcium Phosphate transfection. On the 

transfection day, between 1 and 4 hours before starting the procedure, the 

medium was replaced with 18 ml of fresh DMEM,. 

To optimize vector packaging the following molar DNA ratios were used:  

  

1. For a third generation LV 
                 Env (pMD2.VSV-G): rev (pRSV-REV): packaging (pCMVΔR8.74): transfer plasmid = 1:1:1:2 

 

2. For a second generation LV  
                 Env (pMD2.VSV-G): Packaging (pMDLg/pRRE): transfer plasmid = 1:1:2  

 

The plasmid DNA mixture was re-suspended in TE buffer and water; the 

final concentration for the TE solution was 0.1 %. 

 

DNA complexes were induced by adding 125 µl of CaCl2 drop-by-drop 

while vortexing for 1 minute, then 1’250 µl of 2xHBS were added.  

 

The solution contained the DNA complexes were added to the cells and 

left 14-16 hours in the incubators. At 16 hours, the medium was replaced 

with a fresh one. 

 

The vectors were harvested at 48 and 72 hours post-transfection. 

 

HARVESTING 

The medium was collected and centrifuged at 2,500 rpm for 10 minutes, 

and then the supernatant filtered via a 0.22 µm pore size. Vector 

concentration was achieved by overnight centrifugation at 4,000 rpm and 

4°C. The day after, the supernatant was discarded and the pellet re-
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suspended in 50 µl of DMEM with no supplements.  To remove debris, 

LVs were centrifuged for 10 minutes at 4,000 rpm and 4°C; finally DNAse 

5 u/ml and MgCl2 10 mM was added to the collected supernatant. 

 

2.2.3 TITRATION 
 
MATERIALS 

  

Polybrene, Sigma-Aldrich  

PFA, Sigma-Aldrich  

 

HeLa cells were used to titrate LVs. We used two titration systems; one 

was based on eGFP expression estimated by Flow Cytometry, while for all 

vectors without an eGFP cassette, the titre was estimated by qPCR.  

 

2.2.3.1 FLOW CYTOMETRY 

 

TRANSDUCTION 

At day zero 105 cells were plated out per six well plate well. The day after, 

the cells were transduced by replacing the medium with 2 ml of fresh 

DMEM containing Lentivector particles. To titrate each batch, ten-fold 

vector dilutions were prepared in complete DMEM; the range used for the 

transductions was from 10-3 to 10-6. 8 µg/ml of polybrene was added to the 

plates to improve transduction efficiency. 3 days later cells were harvested 

and fixed in 1% PFA. 

 

ESTIMATION OF INFECTION UNITS 

The number of eGFP positive cells per sample was estimated by Flow 

Cytometry. Transduction occurs by multiple or single infection events per 

cell; in order to estimate the number of vectors based on the number of 

green cells, it is important to exclude samples for which the possibility of 
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multiple infection events is high. Based on the assumption that with less 

than 10% of green cells, the transduction event occurs only by a single 

infection, the number of green cells could be used as a good estimation for 

the number of vectors originally present during the transduction. The titre 

was expressed in Transducing Units per millilitre (TU/ml) and was 

calculated using the following formula: 

 

(6) !"#$!!"#$%&'("!!"#$/!"(!"/!") != [!×!! ]×! 

 

F = frequency of green cells 

C = total number of cells at day zero 

V = volume of inoculum  

D = Lentiviral vector dilution 

2.2.3.2 qPCR 

 
MATERIALS 

DNeasy blood & tissue kit, QIAgen 

TaqMan, Applied Biosystems 

SensiMix Syber No Rox Kit, Bioline 

Ethanol 99-100%, Sigma-Aldrich  

 

Vectors without a functional eGFP cassette were titrated by qPCR.   

 

TRANSDUCTION 

The day before transduction 105 cells were placed in a six well plate; 24 

hours later the transduction was performed. For each batch two serial 

dilutions were prepared: 1:2,000 and 1:20,000 that for a 108IU/ml vector 

correspond to MOIs 0.5 and 0.05.  One day after the cells were harvested; 

the DNA was extracted using the DNeasy blood and tissue kit from 

QIAgen, and eluted in 400 µl of PBS.  
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DNA EXTRACTION 

For the DNA extraction 20 µl of Proteinase K and 200 µl of AL buffer 

were added together, placed in a 56°C bath and incubated for 10 minutes. 

After adding 200 µl of Ethanol 99-100% the samples were loaded onto a 

DNeasy Mini spin column and centrifuged at 800 rpm for 1 minute. After 

discharging the collecting tube and the flow-through within, the buffers 

AW1 and AW2 were added to the column. Each buffer was centrifuged at 

800 rpm for 1 minute and consequently flow-through discharged. The 

DNA was eluted from the column with 200 µl of AE buffer.  

 

qPCR REACTION  

Two different reactions were conducted separately for the titration of the 

lentivectors: the LRT reaction quantified the number of copies of the 

lenti_backbone, while the Actin reaction quantified the number of Actin 

gene copies in the sample.  

 

LRT reaction, LVs copies number:  

Sample volume = 6.25 µl 

Primer concentration= 300mM 

Standards=102-107 copies of pHR’SIN-cPPT-SEW/reaction 

Starting cycle: 50°C 2 minutes, 95°C 10 minutes, 50x (95°C 15 sec, 60°C 

1 minute) 

 

Actin reaction, internal standard: 

Sample volume= 5 µl 

Primer concentration= 300mM 

Probe concentration=200 mM 

Standards=10-106 copies Hela cell equivalents (genomic DNA) 

Starting cycle: 50°C 2 minutes, 95°C 10 minutes, 50x (95°C 15 sec, 60°C 

1 minute). 
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The number of LRT copies normalized to cell number using the Actin 

gene is a very sensitive estimation of the vector genome copies that have 

completed reverse transcription per transduced cell, and it can be used for 

the estimation of vector titre.  

Formula to estimate the vector titre: 

 

(7) !"/!" = (#!"!!"#$%&!!"#!!"#×!")
(#!"!!"#$%&!!"#!!"#$%×!")×!×!  

 

 

D = dilution factor 

C = total number of cells at day zero 

(#!"!!"#$%&!!"#!!"#×64)= total number of LRT copies in the 

transduced sample 

!(#!"!!"#$%&!!"#!!"#$%×80)= total number of actin copies in the 

transduced sample 

 

 2.3 IN VITRO TRANSDUCTION FOR CyclinD1 

DOWN-REGULATION  

 
 MATERIAL 

 

Polybrene, Sigma-Aldrich 

 

After packaging, LVs_dn_Cyclin D1 and LVs_shRNA were tested for 

their in vitro effect on the NIH3t3 cell line by using a viability assay and 

Western blot.  

 
 

2.3.1 TRANSDUCTION  
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At day zero, 2.5 x 105 cells were plated in a serum enriched medium; the 

transduction was performed the day after with 8µg/ml of Polybrene. 

 

The multiplicity of infection (MOI) is a parameter used to standardize the 

amount of virus or vector added per cell for in vitro treatments; in the case 

of vectors: 

 

MOI = Transducing Units / cell 

 

 2.4 VIABILITY ASSAY  

 

2.4.1 MTT 

 
MATERIAL 

 

Thyazolyl Blue Tetrazolium Blue (MTT), Sigma-Aldrich 

DMSO, Sigma Aldrich 

 

The viability assay was used to diagnose the effect of dnCyclin D1 and 

shRNA_Cyclin D1 on the NIH3t3 cell cycle. 

 

At day zero 0.5 x 105 cells were placed in a 6 well plate and were 

transduced the day after. The viability assay was performed by adding 100 

µl of MTT for 4’000 cells and incubating for 3 hours at 37°C. After 

incubation the medium containing MTT (5 µg/ml) was discharged and the 

plates were left to dry overnight at room temperature. 250 µl of DMSO 

was used per well to dissolve the crystals formed from the reaction 

between MTT and the mitochondrial enzyme Reductase. The samples 

were analysed by spectrophotometer at λ = 570 nm. Because the Reductase 

is directly proportional to the number of cells metabolically active, the 
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absorbance produced by the reaction with MTT is directly proportional to 

the live cells number and can be used to estimate their concentration. 

 

 2.5 PROTEIN ANALYSIS  

 

!!!!!!2.5.1!WESTERN!BLOT!
 
MATERIALS  

 

Complete EDTA free lysis buffer, Roche 

Protein quantification, Bio-Rad 

Immobilon P transfer membrane, Millipore 

Sodium dodecyl sulphate, Sigma-Aldrich 

2-mercaptoethanol, Sigma-Aldrich 

TRIZMA, Sigma-Aldrich 

Glycine, Sigma-Aldrich 

NaCl, Sigma-Aldrich 

Tween 20, Sigma-Aldrich 

Glycerol, Sigma-Aldrich 

Dried milk, Tesco  
 

SOLUTIONS AND BUFFERS 

 

1. Laemmli Buffer 2X 

4% SDS 
10% 2-mercaptoethanol  
20% Glycerol 
0.125 M TRIZMA 
pH 6.8 
 
2. Migration Buffer 10X 

0.25 M TRIZMA 
1.9 M  Glycine 
1% SDS 
pH 8.3 
 

3. Transfer Buffer 10X  
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            48 mM TRIZMA 
39 mM Glycine 
0.375% SDS (37.5 ml of 10% SDS) 
 
Cells were transduced with the method previously described, harvested by 

adding 50 µl of complete EDTA-free lysis buffer and scraped from the 

plate using a cell scraper. The lysate was spun at high speed, and the 

supernatant collected and stored at -80°C.  

 

PROTEIN CONTENT ASSAY 

Protein concentration, expressed in µg/µl, was estimated by Bio-Rad 

protein assay. Briefly, after obtaining a dilution of 1-5 times for each 

protein sample, 160 µl of the standard or the sample was added to the well 

in a 96 well plate; 40 µl of the dye reagent was added soon after. Because 

the protein interaction with the dye causes a colour change in a 

concentration dependent manner, using the BSA standard samples is 

possible to build a standard curve that matches absorbance with protein 

concentration. The standard curve allows the estimation of the protein 

content in the unknown samples (protocol available through Thermo 

Scientific web site, TECH TIP #57). 
 

SDS-PAGE GEL   

The samples were denatured by incubation with Laemmli buffer at 95°C 

for 10 minutes. Denatured proteins were loaded in a 12% SDS-Page gel by 

which they were separated according to size. Gels were placed in a Bio-

Rad apparatus and covered by 1x migration buffer. Introducing a potential 

difference of 200 V for 1-1.5 hours in the apparatus, subsequently induced 

migration.  

The electro-transfer technique allowed protein mobilization from a gel to 

an Immobilon P membrane. For the electro-transfer, a sandwich like 

structure was built using sponges with some Whitman paper and in the 

middle the membrane facing the gel. 
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The blotting was loaded in a transfer buffer with the same Bio-Rad 

apparatus used for protein separation. For the electro-transfer 100 V was 

applied for 1 hour.  

 

2.5.2 IMMUNO REACTION 

 
MATERIALS  
 
Tween 20, Sigma-Aldrich 

Milk, Tesco 

PBS tablets, Sigma-Aldrich 

Mouse anti Cyclin D1, # C7464, Sigma Aldrich 

Rabbit anti alpha tubulin, # T8660, Sigma Aldrich 

Goat anti mouse 800, # 926-31066, Odyssey® 

Rabbit anti goat Alexa fluor 680, #A20984, Invitrogen 
 
SOLUTIONS AND BUFFERS 
 
PBS_T 
Phosphate buffer saline 1 M 
Tween 20 0.025% 
 
BLOCKING SOLUTION 
PBS_T 
Milk 5% 
 
After the electro-transfer the membrane was incubated for 1 hour at room 

temperature in blocking solution, then overnight at 4°C with the antibody 

of interest diluted in the PBS-T buffer. The day after the membrane was 

washed twice in PBS-T, and incubated for 1.5 hours at room temperature 

with the secondary antibody. The antibodies’ concentration used is 

described in Table 2.1.t1 

After incubation the membrane was washed twice in PBS_T and analysed 

by Odyssey technology. 
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Antibody company concentration 

Anti-mouse Cyclin D1 Invitrogen 1:1000 

Anti-rabbit alpha tubulin Invitrogen 1:1000 

Alexa Fluor, Goat anti 

rabbit 680 

Invitrogen 1:30,000 

Alexa Fluor  Donkey anti 

mouse 700 

Invitrogen 1:30,000 

 

Table 2.1.t1. Antibodies concentrations used in the western blot assay. 
 

2.6 IN VIVO STUDY  
 

2.6.1 ANIMALS 
 

All procedures in live animals conformed with Animals (Scientific 

Experimentation) Act 1986, were carried out under the appropriate UK 

Home Office licences, and had LREC approval. 

 

Six-ten week old male C57BL/6 mice were used to perform MCAo; this 

strain has a reduced Willis Circle’s posterior communicating artery, in turn 

responsible for a high sensitivity to ischemia. These are widely used to 

produce the Middle Cerebral Artery occlusion model or MCAo (Fujii, 

Hara et al. 1997; Small and Buchan 2000).  

 

All experiments were conducted blind; the animals were randomized and 

injected with a coded viral batch. A colleague, who was neither familiar 

nor involved in this study, prepared the coded vials and prepared a sealed 

envelope with the key to the batches used. The envelope was opened only 

after terminating the histological cell quantification.  
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Females were excluded from the project as the oestrus cycle hormones 

(estradiol and estrogens) produce arterial vasodilatation and improve 

endothelial functions; this is reflected in a reduction of cardiovascular 

disease risk factor, and provides an active protection from ischemia 

(Etgen, Jover-Mengual et al.). In addition, female hormones have a 

protective effect that might interfere with the results and data analysis.  

 

2.6.2 ANIMAL MODELS  
 

An animal model is a powerful tool to investigate diseases; the main idea 

is to reproduce a specific human condition in order to examine it and 

develop possible therapies.  

There are a number of ways to validate an animal model:  

• Predictive validity, the ability to respond to drugs, already in use to treat 

the disease the model is meant to reproduce. 

• Construct validity, refers to the theoretical clarification of how and why 

an animal model would mimic a human disease.   

• Etiological validity, the etiology of the model and the disease of the 

model is meant to emulate must have points in common.    

• Face validity, refers to the phenomenological similarity between the 

behaviour shown by the model and symptoms related to the disease. 

 

It is very unlikely that a model has all of these qualities simultaneously, 

but a good model could only have one or two of them. 

The MCAo produces severe neuronal damage and death within the 

striatum cortex and the hippocampal formation, and is therefore widely 

used as focal ischemia model.  

2.6.3 MCAo MODEL  
 
MATERIALS: 
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Isofluorane, Baxter 

 

The MCAo is performed under general anaesthesia using a mix of 

isoflurane, oxygen and nitrous oxide. The anaesthesia effectiveness was 

assessed by paw pinching and constantly monitored during the surgery.  

 

The procedure was performed through a midline incision of the neck and 

the subsequent isolation of the right common carotid artery at the level of 

its bifurcation, from which the internal and the external carotid originate 

(Figure 2.f1). The blood flow was interrupted through the use of four 

knots, two located in the common carotid at different levels and one in 

each branch of the upper bifurcation. The protocol used in this project to 

induce permanent and temporary MCA occlusion is currently in use, and it 

was previously described by Gibson and Murphy 2004 (Gibson and 

Murphy 2004). 

 

Once the blood flow was interrupted, and a small hole was produced on 

the artery’s wall, a 6-0 monofilament nylon suture, coated with clear 

silicon was inserted and advanced up the ICA to the level of the Middle 

Cerebral Artery. This model produces major neurodegeneration and 

cellular damage in the ipsilateral hemisphere, although minor effects are 

visible also in the contralateral.  

 

Different variations of the model based on the occlusion time were 

investigated in this project. For the permanent_MCAo, pMCAo, the 

filament was permanently left in place, while for the temporary_MCAo, 

tMCAo, it was alternately left for either one hour (1h_MCAo) or thirty 

minutes (30’_MCAo). The temporary occlusion of the MCA is associated 

with reperfusion that occurs with the blood flux restoration. The 

reperfusion is responsible for oxidative stress and a mechanical increase of 

the blood pressure; both factors are responsible to increase cellular damage 

and neuronal degeneration.  
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Some negative control animals were included, that underwent “sham” 

surgery. The sham animals were produced in two different ways; for the 

pMCAo, the sham received only the carotid dissection and its exposure. In 

the tMCAo model, after the cerebral occlusion, the normal flow was not 

completely restored, because a small piece of filament was left in the main 

carotid. For this reason, in the sham animals produced in the experiments 

involving the tMCAo, the main carotid was exposed and a small piece of 

the filament was left in the main branch. 

 

After the surgery the animals were placed on a heat pad and wet pellet was 

administrated in a petri-dish at least for one week after the ischemic event.  
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Figure 2.f1  Oxygenated blood circulatory system of a rodent. 
The common carotid brings the oxygenated blood from the Aortic arch to the head. The 
bifurcation divides the common carotid in an external and an internal branch. The Middle 
Cerebral Artery is the extension of the internal carotid; this artery delivers oxygenated 
blood to the Circles of Willis. This key structure is responsible for the reduction in aortic 
blood pressure and flow sorting in the main vessels. The occlusion of the Middle Cerebral 
Artery interrupts the blood flux and is responsible for neuronal damage and death. The 
picture was on line downloaded at 
http://www.biologycorner.com/worksheets/rat_circulatory.html.  
 
 
 

        2.6.4 INTRACRANIAL INJECTIONS 

 
MATERIALS: 

 

Hypnorm, Vetapharma  

Hypnovel, Roch 
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Animals were anesthetised using an intraperitoneal injection of a mixture 

of Hypnorm, Hypnovel and water (1:1:2). After a complete anaesthesia 

was induced, they were placed in a stereotactic frame having the head 

blocked by ear bars and a mouth bar. The skin was cut and the skull 

exposed and drilled, then the syringe electronically inserted through it. A 

micro pump was used to slowly introduce the fluids in the brain. For the 

SVZ modulation in absence of stroke, two bilateral injections, 5µl of LV, 

were performed at the beginning of the RMS. For the SVZ modulation in 

ischemic conditions 4 injections, 3 µl each of LV, per brain, were 

performed. The animals were returned to their cage and 3 weeks after they 

were killed by transcardial perfusion. The brains were processed as 

described below:  

 

The bregma was used as a reference, and alternatively the beginning of the 

RMS or the SVZ was injected. For the RMS the coordinates used were 

previously described by Goncalves B. et al. (2008), AP 0.75, ML 1.2, DV 

-1.7 (Goncalves, Suetterlin et al. 2008). SVZ injections were designated 

according to our preliminary experiments (Figure 2.f2). From preliminary 

data, the majority of the damage was located around bregma AP ±1. Since 

the SVZ neurogenic islands are mostly concentrated in the front brain, as 

the literature suggested, and the strength of the SVZ response is closely 

dependent on the distance to the neurogenic islands and the damage 

severity, we decided to select the SVZ injection sites as the closer regions 

to the front ischemic damage produced by 1h_MCAo Figure 2.f2. The 

coordinates were the following: SVZ_1 (AP, 0.25; ML, ± 0.96, DV -2.75), 

and SVZ_2 (AP, 0.86; ML, ± 0.72, DV -3). 
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Figure 2.f2. Ischemic areas induced by for 1h_MCAo.  

 
The picture shows the localization of the ischemic areas for 1h MCAo subjects.  Each dot 
represents a single brain slice located at a specifically identified distance from bregma. In 
green the damage produce in the hippocampal formation between AP -0.94 and -4.24; in 
red the damage involved the front brain, AP 1.94 and -2.30 (sensorimotor cortex and 
striatum). The majority of the damage was located between bregma AP -1 and +1. n=7.    

 
 

2.6.5 BEHAVIOURAL TESTS 

 

MCAo animals were tested for their sensorimotor behaviour by the 0-28 

focal deficit test (Clark, Gunion-Rinker et al. 1998). This test is based on 

observations of the sensory-motor behaviour developed post-surgery, and 

it is meant to detect damage in the somato-sensory (S1), motor cortex (M1, 

M2), and striatum. The use of a grid allows detecting defect in 

coordination, weakness, and motor deficit. This test comprises multiple 

tasks, for each of them a score from 0 to 4 was assigned (0=normal, 

4=maximum defect). The final result is the sum of all the scores given for 

each task.  

The tasks are described below: 

1. Body Symmetry. To detect M1 and 2 damage. The animal is 

lifted through its tail and the asymmetry is observed between 

           DORSAL AND VENTRAL 
                 HYPPOCAMPUS  
                 AP -0.94/-4.24 

                        STRIATUM-M1 and S1 
                            AP +1.94/-2.30 

ANTERPOSTERIO

ISCHEMIC AREA INDUCED BY 1h_MCAo 
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forelimbs and hind-limbs.  A score zero is assigned for a normal 

phenotype, one for a slight asymmetry, two for a moderate 

asymmetry, three for a prominent asymmetry and four for an extreme 

asymmetry. 

2. Gait. To detect M1, M2 and striatal damage. The animal is left 

free to move and its gait is observed.  A score zero is assigned for a 

normal gait, one if  its gait looks stiff and/or inflexible, two if it limps, 

three if it shows trembling, drifting and/or falling and four if it doesn’t 

walk at all. 

3. Climbing.  To detect M1, M2 and striatal damage. The animal is 

located on a centre of a grid, and after the grid is inclined 45° the 

motor behaviour is observed.  A score of zero is assigned for normal 

climbing, one if it climbs with strain and limb weakness, two if it 

holds onto slope or it does not climb, three if the animal slides down 

slope and shows unsuccessful effort to prevent fall or four if it slides 

immediately and does not try to prevent fall. 

4. Circling behaviour. To detect M1 and M2. Movement is observed 

when the animal is on its cage and left free to move on the bench. A 

score of zero is assigned when no circling behaviour is observed, one 

when the animal turns predominantly to one side, two when it is 

irregularly circling to one side, three when this circling is constant and 

four when it is pivoting, swaying or does not move at all. 

5. Front limb asymmetry. To detect M1 and M2 damage. The front 

limbs are observed by lifting the animal’s tail as well as allowing it to 

move freely on the bench. A score of zero is assigned for a normal 

symmetry, one when the asymmetry is slight, two when a marked 

asymmetry is present, three for a prominent asymmetry and four when 

it does not move any limb and/or the body. 

6. Compulsory circling. To detect striatal damage, the animal is 

observed on its cage and ambulating on the bench. A score of zero is 

assigned when no compulsory circling is present, one when a 

tendency to turn to one side is observed, two when the animal makes 
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circles to one side, three if it pivots to one side sluggishly and four if it 

does not advance. 

7. Whisker response. To detect S2 damage. The whiskers are lightly 

touched and the response on its face and limbs is observed. If the animal 

shows symmetrical response a score zero is assigned, one for a light 

asymmetry, two for a prominent asymmetry, three when the ipsi-lateral 

response is absent and contralateral response is diminished, and four when 

bilateral proprioceptive response is absent .  

 

2.6.6 ASSESSMENT OF RECOVERY BY WEIGHT 

RESCUE 

 

Surgery causes fluids to be lost as well as a release of stress hormones. 

Both factors affect animal body weight. Post-surgery weight recovery is a 

general indicator for the animal heath, and it is a well-accepted system to 

monitor post-surgery recovery (Modo, Stroemer et al. 2000; Ashioti, 

Beech et al. 2007).  

 

2.6.7 TRANSCARDIAL PERFUSION 

 
MATERIALS: 

 

Paraformaldehyde, Sigma-Aldrich 

PBS tablets, Sigma-Aldrich 

Dolethal, Vetoquinol 

 

       Animals were killed by transcardial perfusion at different times after 

surgery. An appropriate dose of intraperitoneal injection of pentobarbital 

was used to induce deep anesthesia, whence the ribs were cut out and the 

heart exposed. Blood was drained from a laceration in the right atrium, and 
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a needle connected to the peristaltic pump was inserted on the left 

ventricle. The perfusion was performed by delivering an appropriate 

volume of PBS solution to avoid intravascular thrombi; to fix tissues, a 

second cycle of 4% PFA at 4 °C was transcardially administrated. Tissue 

fixation was evaluated by hand skin colour (turned white) and the muscle 

rigidity. The brain was dissected and stored in 4% PFA for no less than 4 

days. .  

 

 2.7 HISTOLOGY  

 

2.7.1 SECTIONING  

 

Different systems were optimised for brain sectioning: cryo-sections for 

cryostat (12-20 µm), paraffin wax-embedded brains for microtome 

sections (6-12 µm) and unembedded, PFA-perfused brains for vibratome 

(50-100 µm). 

 

CRYOSTAT  

To process the brain with the cryostat, the tissues were quickly frozen in 

isopentane at -45°C and stored at -80°C. Half an hour before cutting, the 

brains were acclimatized in the cryostat at -20°C; the cryostat produced 

slices of thickness 16 µm. The sections were left to dry at room 

temperature and then stored at -80°C. Before any histological treatment 

was started brain slices were fixed in 4% PFA and then dried at room 

temperature. 

 

MICROTOME 

To process tissues with the microtome, perfused brains were embedded in 

paraffin by the St George’s Histology facility. 12 µm sections were 

obtained with the microtome and left overnight at 37°C. Before any 
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treatment was performed sections were deparaffinized by Histochoice or 

Xylene.  

 

 

VIBRATOME 

To process tissues with the vibratome, perfused brains were fixed to the 

vibratome plate by super glue, and 50 µm sections were cut.  

 

2.7.2 HISTOLOGICAL ANALYSIS  

          

2.7.2.1 INFARCT VOLUME QUANTIFICATION 
 

The infarct size for animals subjected to pMCAo and tMCAo and killed 

two weeks post-surgery, was estimated by Haematoxylin and Eosin 

staining. This technique is widely used for the assessment of the ischemic 

damage (Isayama, Pitts et al. 1991; Lin, He et al. 1993; Okuno, Nakase et 

al. 2001); differently from 2,3,5-triphenyltetrazolium chloride (TTC) 

staining that it is only applicable when the animal is killed within a week 

post MCAo, it allows damage detection also at later stages (Frankle 1976). 

Unfortunately the sensitivity of the system depends on the damage severity 

and the time between the ischemic event and the animal death. For long 

term experiments, such as one month or more post stroke, an 

Immunofluorescence to detect glia, microglia and neurons can be much 

more informative and sensitive (Chiamulera, Terron et al. 1993; 

Yoshikawa, Akiyoshi et al. 2008; Popp, Jaenisch et al. 2009). For these 

reasons the ischemic volume in long-term MCAo was estimated by 

Immunofluorescence. In this study inflammation, glial scar and 

neurodegeneration were first analysed singularly, and then the average 

between them was uses as best estimation of the ischemic environment 

(Figure 2.f2).  
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For each animal, five regions localized at +2.5, 1.7, 0, -1.7, and -3 mm 

distance to bregma were evaluated; consecutive sections were treated with 

anti-GFP and either anti-GFAP, anti-Iba1 or anti-Beta III. The 

Haematoxylin and eosin staining was also performed on adjacent sections. 

Sequentially cut sections were finally quantified for the ischemic 

environment, and the NPCs eGFP positive there localized (Figure 2.f2). 

 

 

 
 

Figure 2.f2 Evaluation of the Ischemic regions by Immunofluorescence 
Deparaffinized sections were treated with antibodies to detect Beta III tubulin 
(neurons), GFAP (astroglia) and Iba1 (microglia), for details see the 
Immunofluorescence paragraph. Each analysed area was evaluated by four 
consecutive sections, each of these treated with anti-GFP and an anti-cellular 
marker. The assessment of inflammation (Iba1 positive), glial scar (GFAP 
positive) and neurodegeneration (Beta III positive) areas were used to extrapolate 
the best ischemia estimation, or more simply the average between the areas. In 
the top image there is a section from the same animal treated with Haematoxylin 
and Eosin. All the section were localized at same level.  
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2.7.2.1.1   HAEMATOXYLIN AND EOSIN STAINING  
 

MATERIALS: 

 

Haematoxylin, Sigma-Aldrich 

Eosin, Sigma-Aldrich 

HCl, Sigma-Aldrich 

Ethanol 99.9%, Fisher Scientifics 

Histochoice, Sigma-Aldrich 

 

To deparaffinise sections of tissue, slices were treated for 5 minutes at 

room temperature with Histochoice. The haematoxylin staining was 

incubated on the slides for 5 minutes at room temperature; the tissue was 

rinsed in water and treated with a differentiating solution (0.5%HCl and 

70% Ethanol). After the differentiating solution reaction, the sections were 

rinsed in water and treated for 30 seconds with eosin at room temperature. 

Tissue re-hydration was achieved by bath with increased concentrations of 

Ethanol and finally the coverslips were mounted so that the sample could 

be observed in the microscope. The slices were evaluated with a Zeiss 

Observer D1 light microscope. 

           

         2.7.2.1.2 IMMUNOFLUORESCENCE 
 
SOLUTIONS AND BUFFERS: 

 
PERMEABILIZING SOLUTION:  
 
PBS 
Tween 20   0.5% 
 
BLOCKING SOLUTION: 
 
Permeabilizing solution 
BSA 3% 
 
ANTIBODY SOLUTION: 
 
Permeabilizing solution 
BSA 1% 
 



 
 

76 
 

MATERIALS: 

 

BSA, Sigma-Aldrich 

Tween 20, Sigma-Aldrich 

PBS tablets, Sigma-Aldrich 

Mouse GFP, Abcam 

Rabbit GFP, Invitrogen 

Rabbit DCX, Abcam 

Rabbit GFAP, Dako 

Rabbit beta III, Sigma-Aldrich 

Rabbit Iba1, Wako 

The details regarding the antibodies are described on Table 2.1.t2. 

 

The immunofluorescence was performed on vibratome as well as 

microtome-cut sections. The tissues were permeabilized with the 

permeabilizing solution; 50 µm sections were incubated overnight at 4°C, 

while 12 µm sections were incubated for 30 minutes at room temperature. 

After permeabilization the sections were blocked for one hour with the 

blocking solution, and incubated with the primary antibody previously 

diluted in antibody solution; the reaction was carried out overnight at 4°C.  

 

The day after, the slices were washed 3 times in permeabilizing solution, 

and then the secondary antibody was added to the sections and incubated 

for 1.5 hours at room temperature. After washing out the secondary 

antibody, the coverslips were mounted on the Superfrost Plus slides and 

slices observed under light microscope. 

Vibratome sections were Immunofluorescence processed in a 12 well 

plate, then mounted on the glass slides with coverslips. 

 

The concentrations used for the primary and the secondary antibody 

reactions are described in the following table (Table 2.1.t2). 
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Table 2.1.t2. Primary and secondary antibody concentration used in the 

Immunofluorescence experiment.  

 

 

 

 

 

 

 

Marker Protein Company Prod. # Species Conc. secondary Concentration 

neuron Beta III Sigma-

Aldrich 

T2200 Rabbit 1:500 Alexa 

Fluor, 

dokey-

anti rabbit  

555 

1:700 

glia GFAP Dako Z 0334 Rabbit 1:500 Alexa 

Fluor, 

dokey-anti 

rabbit  555 

1:1000 

neuroblast DCX Abcam Ab18723 Rabbit 1:500 Alexa 

Fluor, 

dokey-anti 

rabbit  555 

1:500 

microglia Iba1 Wako 01919741 Rabbit 1:500 Alexa 

Fluor, 

dokey-anti 

rabbit  555 

1:500 

Transduced 

cells 

GFP Abcam Ab1218 Mouse 1:500 Alexa 

Fluor, 

goat-anti 

mouse 

488 

1:700 

Transduced 

cells 

GFP Abcam Ab6556 Rabbit 1:500 Alexa 

Fluor, 

dokey-

anti rabbit  

555 

1:700 
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2.7.2.1.3 CELL COUNTING   

 
To quantify SVZ neurogenesis occurring in physiological conditions, both 

the OBs were entirely sliced with the microtome and treated with an 

antibody against eGFP. The quantification reflects the actual number of 

eGFP positive cells that migrated to OBs within three weeks of injection. 

 

Quantification in ischemic conditions was estimated by counting the eGFP 

positive cells located in the damaged area. Five regions per brain, situated 

at specific distance points from bregma were quantified: AP +2.5, 1.7, 0, -

1.7, and -3 mm distance to bregma. To evaluate the ischemic environment 

and estimate the number of the migrated SVZ progenitor cells expressing 

eGFP, each of these regions were evaluated by immunofluorescence 

performed on four consecutive sections (10 µm each) located at the 

specified points distance to bregma (AP +2.5, 1.7, 0, -1.7, and -3 mm).  

 

The number of green cells in the ischemic area was first assessed on the 

four consecutive sections (10 µm each) used to analyse the brain region in 

study (AP +2.5, 1.7, 0, -1.7, and -3 mm). The cell density was first 

estimated for each of these regions (40 µm) and in the whole ischemic 

damage.  

 

The total number of green cells in the ischemic environment was then 

estimated by multiplying the density of the green cells in the whole 

damage for the total damage thickness (µm).  

 

2.7.3 STATISTICAL TESTS 
 

 
Batteries of statistical tests were used to analyse behaviour, histology and 

weight rescue. To evaluate the model two parameters were observed: the 

sensorimotor behaviour measured by the 0-28 focal deficit test, and the 
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variation of the body weight. Because the focal deficit assessment is a non-

parametric test, it is not based on a Normal distribution, and so is 

evaluated by the Mann-Whitney rank sum test. The weight variation does 

follow the Normal distribution and is affected by time and treatment. It 

was evaluated by the two-way ANOVA; further analysis at selected time 

points were also evaluated by the Student’s t test. All the cellular and 

infarct volume quantifications were analysed by the un-paired Student’s t 

test and two-way ANOVA. Western Blot analysis and MTT were 

compared by the one-way ANOVA; when a comparison of multiple MOIs 

was involved a two-way ANOVA was used instead. The data correlation 

was performed by a linear regression when both the variables were 

distributed on a Normal curve; for non-parametric data the Spearman’s 

rank Correlation Coefficient was calculated. The survival proportion was 

evaluated by the Gehan-Breslow-Wilcoxon test. This test was selected 

because compared  with  the log-rank (Mantel-Cox) test that gives same 

“weight to deaths” at all-time points, it assigns the score differently 

depending on when the death occurs and for this specific analysis is 

considered more sensitive.  
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PART 2 
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  RESULTS 
 

UNDERSTANDING THE IMPORTANCE OF NEUROGENESIS IN 
ISCHEMIC CONDITIONS 

 
The aim of this project is to understand the effect of positive and negative 

modulation of the SVZ’NPCs naturally-occurring post-ischemia. Part 2 of 

the manuscript reports the results to assess the question, and it is divided in 

four main chapters: 

 

1. Development of an efficient cell cycle inhibitor system.  

2. Optimisation of conditions for the long-term study of the Middle 

Cerebral Artery occlusion model. 

3. Evaluation of the efficiency of SVZ-RMS neurogenesis 

stimulation and inhibition in absence of stroke. 

4. Evaluation of the effect of SVZ neurogenesis modulation in 

ischemic conditions. 
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CHAPTER 3 
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3.1 INHIBITION OF CELL CYCLE 
 

SUMMARY  
 
As discussed in Chapter 1, EGF1, EGF2 and IGF1 are widely used in 

research to improve the survival ability of neurons in culture. Moreover 

they are activated during embryogenesis, after stroke, and are also 

involved in cell fate determination and differentiation. The pathway shared 

by these mitogens involves an early binding with a Tyrosine Kinase 

receptor and the activation of a Map Kinase pathway producing the Cyclin 

D1 cytoplasmic accumulation. Last steps concern the Cdk4-CyclinD1 

complex formation, nuclear imports, releases of E2F by the Rb suppressor, 

and activation of the S phase genes (Kornmann, Arber et al. 1998). 

 

In this project the cell cycle arrest was achieved by direct inhibition of the 

Cyclin D1 activity. The goal was accomplished by a LV-based system in 

vitro validated on NIH3t3 fibroblasts. Two different strategies were 

attempted in order to obtain an efficient cell cycle inhibition: the first one 

was intended to block Cyclin D1 activity by cloning a dominant negative 

Cyclin D1 cDNA into a third generation Lentiviral backbone. The plasmid 

was packed into LV and was assessed in vitro. This approach was not 

successful and although much effort was invested to produce the clone and 

to test it in vitro, there was no convincing evidence of an in vitro cell cycle 

inhibition. The second approach we evaluated was based on a second 

generation LV encoding for a shRNA_CyclinD1. The two commercial 

transfer plasmids pGIPZs we tested were designed and cloned by Thermo 

Scientific: pGIPZs_shRNA_CyclinD1_92 (clone 92) and 

pGIPZs_shRNA_CyclinD1_95 (clone 95). Each clone encodes for a 

different hairpin sequence that binds different regions in the CyclinD1 

mRNA. Both plasmids were used to produce LVs and they were evaluated 

in vitro by Cyclin D1 protein down regulation and cell viability assays. 

Although both hairpins were able to make the G1 phase shorter and to 
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induce cellular death, we decided to select clone 92 because vector 

packaging was highly efficient. 

 

During these in vitro investigations we observed a diffuse death phenotype 

already occurring at 24 hours post transduction; according to the literature, 

Cyclin D1 is not just a cell cycle checkpoint factor but it is also involved 

in cellular fate and apoptosis (Han, Ng et al. 1999; Ino and Chiba 2001). 

From the data collected, we concluded the LV_ 

pGIPZs_shRNA_CyclinD1is a valid system to block cellular 

multiplication by either blocking of the G1 phase or apoptosis induction. 

 

3.2 METHODS 

3.2.1 CLONING A DOMINANT NEGATIVE CYCLIN D1 
INTO A THIRD GENERATION LV 
 

pRRLsc_Segfp_CdnCCND1W construct was made using the standard 

cloning procedure described in Chapter 2. The dnCyclin D1 gene sited into 

pFlex_dnCyclinD1 was kindly gifted by Dr. Diehl from Howard Hughes 

Institute, Memphis, and it was inserted into a double expression cassette 

backbone, pRRLsc_Segfp_CNCS1W created by Dr. Yip Ping from Kings 

College London. 

  

The peculiarity of pRRLsc_Segfp_CNCS1W plasmid is the double gene 

expression cassette, where two genes are driven by two different 

promoters, CMV and SFFV. The first cassette is driven by the SFFV 

promoter leading the eGFP expression, while the second cassette contains 

the NCS1 gene under the CMV promoter. The 

pRRLsc_Segfp_CdnCCND1W transfer plasmid produced and used in this 

project was obtained replacing the NCS1 gene with the dnCyclinD1 

sequence. The ability of the mutant to inhibit cell cycle in NIH3t3 cells 
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was previously demonstrated by Diehl and Sherr in 1997 (Diehl and Sherr 

1997). 

 

The cloning strategy was designed using Vector NTI software (Figure 

3.f1); briefly the host backbone was linearized by SpeI digestion (SpeI, 

Promega), then a treatment with Polymerase Klenow was used to blunt the 

ends before a second digestion with XhoI was performed (XhoI, Promega). 

To obtain the excision of the dnCyclinD1 cDNA from the parental 

pFlex_dnCyclinD1, a first cut aimed to linearize the plasmid was obtained 

with BamHI (BamHiI, Promega), followed by a treatment with Polymerase 

Klenow and a second digestion with XhoI. Ligation was performed as 

previously described in Chapter 2; successful cloning was validated by 

diagnostic restriction digests and gel electrophoresis (Figure 3.f1).  
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Figure 3.f1. pRRLsc_Segfp_CdnCND1W lenti backbone. 
 
The map above was elaborated by Vector NTI software and shows the replacement of 
NCS1 gene with the dnCyclin D1 cDNA. On the right is the restriction analysis. Cloning 
was performed by the classical cloning technique; the lentibackbone was introduced into 
Top ten E.Coli cells by heat shock transformation and after DNA extraction the selected 
clone was digested with restriction enzymes.  Expected bands: XhoI 8966 kb, PstI 6739 
kb, 1178 kb, 962 kb, 87 kb, EcoRI 5494 kb, 1924 kb, 1551 kb. 
 

3.2.2 SEQUENCING  
 

The original dnCyclin D1 sequence contains two point mutations 

producing a Threonine conversion in an Alanine in position 156 and 286. 

The substitution in position 156 results in a lack of the ability to form an 

active complex with Cdk4, in turn responsible for the phosphorylation of 

the Rb protein, which heads E2F activation. Moreover, the position 286 is 

a proline-directed phosphorylation site that drives protein ubiquitination 

and degradation; the mutation at this site prevents protein phosphorylation, 

polyubiquitination and stabilizes dnCyclin D1 (Diehl et al 1997). 

 

The pRRLsc_Segfp_CdnCyclinD1 expected sequence was confirmed by 

DNA sequencing techniques performed by Eurofins Mwg/ Operon. In 
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addition, an alignment between dnCyclinD1 and the WT orf isoform was 

made by BLAST in order to ensure the location of the mutation sites 

(Figure 3.f2).  

 

The alignment confirmed the two mutations in position 156 and 286. 

Furthermore, two additional mutations had arisen; a point mutation in 

position 18 responsible for a substitution of a Serine with a Proline, and 

another one in position 160, which changes a Phenylalanine with a 

Leucine (Figure 3.f2). 
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Figure 3.f2. Alignment between mouse dnCyclin D1 (in black) and the 
mouse wt Cyclin D1 (in green).  
 
The alignment shows the two point mutations producing the expected Threonine 
conversion into Alanine (position 156 and 286 on amino acid chain). Two extra 
mutations were identified, causing Serine-18 to be substituted with a Proline, and 
Phenylalanine-160 was substituted with a Leucine. 
 



 
 

89 
 

3.3 LV_pRRLsc_Segfp_CdnCND1W IN VITRO 
ASSAYS 
 
pRRLsc_Segfp_CdnCND1W was packed into LV and in vitro tested for  

protein expression and the effect on the cellular multiplication. 

 

As control, we used a second-generation LV carrying and expression 

cassette for eGFP: LV_pHR’SIN-cPPT-SEW. 

 

3.3.1 pRRLsc_Segfp_CdnCND1W: PROTEIN EXPRESSION 
ANALYSIS 
 
Western Blot analysis was done with the assumption that the mutant’s 

amino acid substitutions do not significantly affect the protein size, and 

that the immunoblotting reaction is not sensitive enough to discriminate 

between the endogenous and the exogenous isoforms. Under these 

conditions the translation of the exogenous dnCyclin D1 protein would be 

detectable as a general increase in the cytoplasmic amount of Cyclin D1. 

  

LV_ dnCyclinD1, 1.62 x 108 IU/ml, or control LV_pHR’SIN-cPPT-SEW9 

1.7 x 109 IU/ml, were used to transduce 2 x 105 NIH3t3 cells. The 

transduction conditions were set up in order to achieve MOI 3, 15 and 30. 

Although the blotting analysis revealed a general trend of increasing 

Cyclin D1 protein, especially for MOI 3, the two-way ANOVA did not 

highlight any significant difference between groups (Figure 3.f3). 

 

The cells were harvested at day 8 post-transduction. Higher MOI and 

different harvesting days were also tested with similar results.  

 

 

                                                
9 LV_pHR’SIN-cPPT-SEW, Second generation Lentiviral used as control, it only expresses the 
eGFP gene. 
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a) 

 
 

 
b) 

 
 
 

Figure 3.f3. Cyclin D1 protein variation after LV_dnCyclinD1 
transduction.  
 
NIH3t3 transduction by LV_dnCyclinD1 and LV_ pHR’SIN-cPPT-SEW. Cells 
were transduced at different MOI and harvested at day 8 post-transduction. (a) 
The two green bands in the Western Blot lower panel are both Cyclin D1 and 
they were quantified singularly (CCND1 lower band and CCND1 upper band) as 
well as together (CCND1), part b of the figure. The quantifications were obtained 
comparing the relative Cyclin D1 expression to the endogenous alpha-tubulin. (b) 
The samples were normalized with the mock. Values represent mean ± SEM 
(n=3). No statistical significance using two-way ANOVA was found. 

 



 
 

91 
 

3.3.2 LV_pRRLsc_Segfp_CdnCND1W: VIABILITY ASSAY BY 
MTT 
 
 
The ability to induce a blockage of the cell cycle and/or apoptosis was 

evaluated by a viability assay. The test used is based on the colour 

variation of the yellow, water-soluble dye 3 – (4,5-dimethylthiazol-2-yl) 

2,5-diphenyltetrazoliumbromide (MTT) into a blue-violet water insoluble 

formazan. This reaction is partially dependent on the succinate 

dehydrogenase, and it could be used as cellular respiration indicator as 

well as to detect live cells. 

 

LV_dnCyclin D1 (6.6 x 107 IU/ml) and LV_ pHR’SIN-cPPT-SEW (5.10 

x108 IU/ml) were used to transduce 5,000 NIH3t3 cells in a 24 well plate. 

The MTT assay was performed at day 8 post-transduction. 

 

The assay did not detect any significant change in proliferation in the 

LVs_dnCyclin D1 treated NIH3t3 cells, as shown by two-way ANOVA 

(Figure 3.f4). 
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Figure 3.f4. MTT assay for LVs_dnCyclin D1.  
 
The MTT assay was performed with three different MOI (3, 15 and 30) and the 
samples analysed at day 8 post-transduction. Transduced cells were treated with 
MTT for 3 hours at 37°C and crystal formations were left to dry overnight at 
room temperature. The absorbance was read at wavelength 560nm and the 
samples were normalized to the mock. Values represent mean ±SEM (n=3). 
There was no statistical difference in MTT conversion (live cell number) within 
the LVs treated groups, as shown by two-way ANOVA. 
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3.4 CELL CYCLE INHIBITION BY A 

 shRNA_Cyclin D1 
 

The second approach tested was a second-generation LV based system, 

encoding a small hairpin shRNA direct against Cyclin D1 mRNA. The two 

tested hairpins were commercially available from Thermo Scientifics 

(Figure 3.f5) and were packed into a second generation LV. For this 

experiment, the same control used for the pRRLsc_Segfp_CdnCND1W in 

vitro assays was used.  

 

The hairpin sequences were elaborated by Thermo Scientific: 

 

1. Clone pGIPZ_shRNA_640492,  

               Mature sense (5’-3’): ATTGCATGTTCGTGGCCTCTAA 

               Mature antisense (3’-5’): TTAGAGGCCACGAACATGCAAG 

2. Clone pGIPZ_shRNA_640495,  

               Mature sense (5’-3’):  ATGCCACAGATGTGAAGTTCAT 

               Mature antisense (3’-5’): ATGAACTTCACATCTGTGGCAC 

 

 
 
 
 Figure 3.f5. Thermo scientific pGIPZ_shRNAs expression cassette map.  
 
The CMV promoter led the turbo-GFP expression while the IRES is an Internal 
Ribosomal Entry Site for the Puromicin resistance translation. The shRNA is driven by 
the T7-promoter. The WRE or Woodchuck Hepatitis Virus Posttranscriptional is a 
regulatory element that enhances expression of the transgenes. The pUC is the bacterial 
origin of replication, for high copy replication and maintenance in E. coli while the 
AmpR transcription (Ampicillin resistance). The LRTs are the Long Terminal Repeats 
that are important to start the viral reverse-transcription. Ultimately the Sv40 Ori is the 
Simian vacuolating virus 40 origin of replication. 
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2.4.1 DOWN REGULATION OF CYCLIN D1 PROTEIN BY 
shRNA_CYCLIN D1 
 
Cyclin D1 down regulation was evaluated by Western Blot at day 1 post-

transduction in NIH3t3 cells; the method is described in Chapter 2. 

Briefly, NIH3t3 cells were transduced with LVs_shRNA_Cyclin_D1_92 

(5 x 107 IU/ml) or LVs_shRNA_Cyclin D1_95 (9 x 107 IU/ml) or control 

LVs_ shRNA_empty (108 IU/ml). The day after the cells were scraped 

from the plate and the proteins extracted and separated by SDS-page gel 

electrophoresis. After protein transfer to a nitrocellulose membrane the 

immunoblotting was performed. The bands’ relative intensity was 

estimated by Odyssey technology and analysed by one-way Anova. 

 

The analysis was performed in four groups:  

• LV_shRNA_Cyclin_D1_95  

• LV _shRNA_Cyclin_D1_92 

• LV_ pHR’SIN-cPPT-SEW   

• mock.  

After evaluating the best experimental conditions to achieve an efficient 

protein down regulation, MOI 75 was selected as the more effective.   

 

At day 1 post-transduction, cells treated with both the hairpins directed 

against Cyclin D1 drastically reduced cell number and caused extensive 

damage (Figure 3.f6, part a). 

 

The LV_shRNA_Cyclin_D1_95 treated group showed efficient Cyclin D1 

protein down regulation, but it was difficult to pack the transfer plasmid 

into LV (Figure 3.f6). The impossibility of producing a large LV stock did 

not allow for repetition of the experiment for the purpose of statistical 

analysis. 
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Cyclin D1 protein down regulation by clone 92 was repeated in triplicate 

analysed by one-way ANOVA and the Bonferroni’s post hoc test. Cyclin 

D1 protein was statistically significant lower in the samples treated with 

LV_shRNA_Cyclin_D1_92 compared to the group treated with 

LV_pHR’SIN-cPPT-SEW; **p<0.01 by one-way ANOVA (parts b) and c) 

of Figure 3.f6). 
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Figure 3.f6. Western Blot analysis for LVs_shRNA_Cyclin_D1_92 and 
95. 
 
a) Images show the NIH3t3 cells at day 1 post transduction, just prior to 
harvesting. b) Down regulation of Cyclin D1 induced by LV_shRNA_Cyclin D1 
clone 92 (red) and 95 (orange) c) LV_shRNA_Cyclin_D1_92 induced a 
statistically significant Cyclin D1 protein down regulation when compared to the 
LV_ pHR’SIN-cPPT-SEW **p<0.01.  Statistical analysis by one-way 
ANOVA, values represent mean ±SEM (n=3).  

a 

b 

c 
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!

3.4.2 EFFECT OF CYCLIN D1 DOWN REGULATION ON 
THE CELL CYCLE: CELL VIABILITY BY MTT 

 

NIH3t3 cells were transduced with LV_shRNA_Cyclin_D1_92 (5 x 107 

IU/ml) or LV_shRNA_Cyclin_D1_95 (9 x 107 IU/ml) or LV_ 

shRNA_empty (108 IU/ml). After 24 hours the viability assay was 

performed by MTT, for details see Chapter 2. The experimental conditions 

were planned to achieve MOI 25, 70, 100 and 150, and the data were 

normalized with the mock, analysed by two-way ANOVA and the 

Bonferroni’s post hoc test. Both tested hairpins reduced cell viability 

(reductase level) at MOI 70, whilst at MOI 150 the 

LV_shRNA_Cyclin_D1_92 reduced the reductase level to 60% of the 

level present in the control group, and the LV_shRNA_Cyclin_D1_95 at 

MOI 100 reduced it to 50% of the control group. Metabolically active cells 

were significantly reduced in the LV_shRNA_Cyclin_D1_92 treated 

group at MOI 70, *p<0.05, MOI 100, **p<0.01, and at MOI 150, 

***p<0.001 (a) and b) Figure 3.f7). Metabolically active cells were 

reduced also for the LV_shRNA_Cyclin_D1_95 treated group, for which a 

significant reduction was observed at MOI 70 and 100, ***p<0.001 (c) 

and (d) of Figure 3.f7) 
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Figure 3.f7. Viability assay by MTT, shRNA_Cyclin_D1_92 and 95.  
 
a), c) effect of shRNA_Cyclin D1 on NIH3t3 cells 24 hours post transduction b), 
d) both clones 92 and 95 showed reduced cell viability which was linearly 
dependent on the vector concentration (MOI), *p<0.05, **p<0.01 and 
***p<0.001 for clone 92, and ***p<0.001 for clone 95 (MOI 70 and 100), both 
were compared to the LV_shRNA_Empty. Values represent mean ±SEM (n=3); 
the data were analysed with two-way ANOVA.  
 
 
 
 
 
 

 

a b 

c d 



 
 

99 
 

3.5 CONCLUSION 
 
The inhibition of the cell cycle was attempted using two LV based 

systems. The first was meant to introduce a dominant negative isoform of 

the Cyclin D1 protein, in turn causing a reduction of the endogenous 

isoform activity and the G1 phase block. Although we found a trend of 

increasing Cyclin D1 protein (as results of the endogenous and exogenous 

protein detection by western blot), especially at MOI 3, we found no 

evidence for the dominant negative activity; possibly a result of the two 

extra mutations that the sequencing pointed out. 

 

The second cell cycle inhibitor system was intended to induce a down-

regulation of the Cyclin D1 mRNA, in turn responsible for a reduction of 

the protein translation and consequently G1 phase blocking. Both hairpins 

in the study produced the Cyclin D1 protein down-regulation with clear 

inhibitory effects on cell cycle and apoptosis. The analysis of protein and 

the cell viability accordingly suggest that the LV_shRNA_Cyclin D1 

system is an efficient tool to block cell cycle in G1. It was repeatedly 

found that Clone 95 was difficult to pack into LVs, and for this reason 

shRNA_CyclinD1_92 was selected for the in vivo studies.  
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4.1 MIDDLE CEREBRAL ARTERY OCCLUSION - 

A LONG TERM STUDY 
 
SUMMARY 

 

The use of animals in this study was conducted in agreement with the 

Animals Scientific Procedures Act 1986, and approved in detail by the 

local research ethics committee. 

 

 

The MCAo is the ischemic model we selected to study the effect of 

neurogenesis modulation in post ischemic recovery. 

We can divide this project into two main experiments: 

1. To evaluate the effect of SVZ neurogenesis inhibiting in the post 

ischemic recovery 

2. To evaluate the effect of SVZ neurogenesis enhancing in the post 

ischemic recovery 

The experiments were planned in order to study the effect of the 

treatments across the 30 days following   MCAo. The first milestone in 

achieving these goals was to develop and set up the stroke model. 

 

Ischemic models are quite variable in terms of damage severity and 

survival expectations, and because in this study we planned to combine 

LV intracranial injections with MCAo, the first concern was to find the 

best conditions to have a reliable ischemic model which was robust 

enough to survive and exhibit recovery over 30 days post-ischemia. 

 

The aim of this chapter is to demonstrate the efforts made to develop and 

analyse the MCAo models, so that the best conditions to apply experiment 

1 and 2 as described above can be selected.  
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The MCAo model is a very invasive procedure that produces the 

obstruction of the Middle Cerebral Artery, in turn responsible for extended 

neuronal damage and cell death. The damage severity is closely dependent 

on the duration of the artery occlusion and on the subject’s ability to 

respond to the specific treatment. For the successful experiment, there 

needs to be a good number of ischemic animals which are able to survive 

for long term study; a necessity for a rigorous statistical evaluation of the 

model. Three different variants of the ischemic model were studied: 

pMCAo, 1 hours MCAo (1h_MCAo) and 30 minutes MCAo 

(30’_MCAo).  

 

A high proportion of the deaths as well as the majority of the recovery 

took place during the first ten days after the artery occlusion. The recovery 

curve for tMCAo models covered the first ten days post-surgery, after 

which the majority of the animals acquired an almost normal phenotype. 

The permanent occlusion produced the enduring blood flow interruption 

which was minimally stabilized over time, and the risk of death was high 

across all periods in this case. 

 

4.1.1 ANIMALS 
 
 
C57 Bl/6, male, six to ten week-old were used for the MCAo animals. This 

strain was selected above the others because of its sensitivity to MCAo, 

which is due to the reduced development of Willis’ Circle (Yang, 

Kitagawa et al. 1997). 

 

Post-surgery, the animals were injected daily with glucose-saline until they 

showed ability to feed themselves autonomously. In accordance with the 

UK standard animal cage conditions, a stimulating environment was 

introduced through the use of white tubes in the cage. The animals were 

killed by a transcardial perfusion two weeks after surgery; method 

described in Chapter 2.  
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4.1.2 MODEL EVALUATION 
 
The MCAo animals were evaluated daily for two weeks after the operation 

using the 0-28 focal deficit test described in Chapter 2. After death, the 

ischemic volume was estimated using Haematoxylin and Eosin staining 

described in Chapter 2. To assess the effectiveness of the surgery the 

ischemic animals were compared to the sham. In addition, the difference 

between the effects of the occlusion time was evaluated to highlight the 

most suitable model for long term study. 

 

4.1.2.1 ANIMALS LOST AND EXCLUDED FROM THE ANALYSIS  
 

Thirty-two animals were permanently occluded in the MCA but only four 

survived for two weeks post-surgery. In this group, three brains where lost 

during the cryo-processing. The tMCAo allowed a better survival; ten 

1h_MCAo animals were produced and eight survived, for 30’_MCAo, six 

animals were produced and all of them survived. We assumed all the 

animals died because of the ischemia. 

4.1.2.2 0-28 FOCAL DEFICIT TEST 
 

MCAo induced neurological damage responsible for a post-surgery 

sensory-motor impoverishment. The ischemic outcome is very strong 

during the first 36 hours, where the majority of deaths were also 

concentrated. An improvement was observed across the first ten days, after 

which the phenotype looked very similar to the sham subjects. 

 

All groups presented a strong deficit in the sensorimotor phenotype 

significantly different from the correspondent sham operated animals, as 

shown by the Mann-Whitney rank sum test which gave ****p<0.0001 

(Figure 4.f1). 
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The neurological recovery for the tMCAo models was evaluated by the 

analysis of the mean’s rank Mann-Whitney, and there was no statistical 

difference between the groups (Figure 4.f2).  

 

 

 
 

Figure 4.f1. 0-28 focal deficit test: MCAo groups vs. sham operated 

animals 

The neurological improvement was monitored daily by the 0-28 focal deficit test. 
The test is a battery of sensory-motor tasks, for which, based on the severity of 
damage, a score between 0-4 is assigned. The final score is the sum of the scored 
from each single task. The MCAo behaviour (pMCAo, 1h_MCAo or 30’_MCAo) 
was evaluated in comparison with the sham categories by the mean rank analysis 
Mann-Whitney, with each data point corresponding to the mean rank for the 
group at the specific day after surgery. Each group was individually compared to 
the correspondent sham, and all of them showed a significant post-surgery 
sensory-motor impoverishment, ****p<0.0001, analysis of mean’s rank Mann-
Whitney. pMCAo n =4, 1h_MCAo n =8, 30’_MCAo n=6. 
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Figure 4.f2. 0-28 focal deficit test in the survived population. 1h_MCAo 
vs 30’_MCAo 
 
Neurological improvement post tMCAo. The Mann-Whitney rank sum test did 
not highlight any significant difference in the sensorimotor impoverishment and 
post-surgery recovery produced by 1 hour and 30 minutes of MCA occlusion. 
1h_MCAo n =8, 30’_MCAo n=6, sham n=3. 
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4.1.2.3 WEIGHT RESCUE 
 

A significant body weight variation was observed in all groups after the 

surgery, ****p<0.0001, analysis by the two-way ANOVA. Except for the 

30’_MCAo, no difference between groups was observed. The Bonferroni’s 

post hoc test revealed significant difference between the sham and the 

30’_MCAo at day 2, ***p<0.001, day 3, ****p<0.0001, day 4, ****p<0.0001, 

day 5, ***p<0.001 and day 6, *p<0.05 (Figure 4.f3). 
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Figure 4.f3. Body weight variation  
 
The body weight was expressed as percentage of the pre-operative weight. The 
data were analysed by two-way ANOVA, where the value represents mean ± 
SEM. Although the surgery affected the weight variation in all groups analysed, 
****p<0.000, there was no difference between groups. Only 30’_MCAo group 
was significant different from the control, *p<0.05 by the two-way ANOVA. The 
Bonferroni’s post-hoc test revealed significant difference at day 2, ***p<0.001, 
day 3, ****p<0.0001, day 4, ****p<0.0001, day 5, ***p<0.001 and day 6, 
*p<0.05. pMCAo n =4, 1h_MCAo n =8, 30’_MCAo n=6, sham for pMCAo n=3, 
sham for tMCAo n=3. 
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4.1.2.4 SURVIVAL PROPORTION 
 
After MCAo the number of survivors was drastically reduced. This was 

closely dependent on the occlusion time, which in turn was responsible for 

the severity of the damage. According to the survival curve in Figure 4.f4, 

the occlusion time negatively affected the number of survivors. After the 

permanent occlusion, only 4/32 of animals survived for two weeks post-

surgery, 1 hour occlusion showed 6/10  survivors for the same period of 

time, while  30’_MCAo had a  6/6  survival rate for two weeks. According 

to the survival curve the first week is considered a time where the risk of 

death for both 1h_MCAo and pMCAo is high. There was significantly 

different survival proportion between the pMCAo and 30’_MCAo, 

***p<0.001, and between pMCAo and 1h_MCAo, **p<0.01; moreover, 

the survival fraction was significant different between the pMCAo and the 

sham operated animals, ***p<0.001. The 1h_MCAo group was not 

statistically different from the 30’_MCAo or the sham, analysis by the 

Gehan-Breslow-Wilcoxon Test (Figure 4.f4). 
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Figure 4.f4. Survival curve.  
 
Percentages of survivors post MCAo. pMCAo showed significant different 
survival proportion comparing to 1h_MCAo, **p<0.01, to 30’_MCAo, 
***p<0.001 and the sham group, ***p<0.001, analysis by the Gehan-Breslow-
Wilcoxon Test. pMCAo n=32, 1h_MCAo n=10, 30’_MCAo n=6, sham n=6. 
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4.1.3 INFARCT VOLUME QUANTIFICATION AND DATA 
CORRELATION 
 
MCAo brains were histologically analysed to estimate the ischemic 

volume. The histology of the model depends on the occlusion time and the 

duration of the recovery. Increasing severity of damage was observed in an 

occlusion time-dependent manner, with. the histology of permanent 

MCAo being characterized by a large oedema that extends throughout 

almost the whole ipsilateral hemisphere (Figure 4.f5).  

 

The temporary occlusion was much more variable, with damage in the 

somatosensory cortex, motor cortex, striatum and hippocampus, and is 

often characterized by a variation in the topographic organization of the 

neural network (Figure 4.f6).  Moreover, vacuolation (taken as evidence of 

oedema) was not evident, but extended regions with “accumulation of 

nuclei” visible with the Haematoxylin and Eosin staining (part b) and c) of 

Figure 4.f6) could be observed. 
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Figure 4.f5. Ischemic pMCAo brain.  
 
Ischemic pMCAo brain two weeks after the occlusion of the Middle Cerebral 
Artery. Haematoxylin and Eosin staining in cryo-section. The oedema was 
extended to the ipsilateral hemisphere; at the right bottom of the picture the 
haemorrhagic blood caused by the microcanula insertion. 
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Figure 4.f6. tMCAo brain. 
 
a) Haematoxylin and Eosin staining in microtome cut-sections. 1h_MCAo brain 
two weeks after ischemia b) Detail of the sensory cortex and comparison between 
hemispheres. C) Hyppocampal region in MCAo brain; highlighted the ipsilateral 
region. 

 
 
 
 
 

4.1.3.1 ISCHEMIC VOLUME QUANTIFICATION 
 
 
The ischemic volume was estimated (see Materials and Methods) and 

statistical significance evaluated by one-way ANOVA. For the permanent 

occlusion group three brains were damaged during the cryo cuttings at the 

Cryostat and were not used for the volume quantification. 

a 

b 

c 
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The brain processing for the temporarily occluded groups was performed 

with a different technique as it was found that the MCAo tissues were not 

easily cut by cryostat; for this reason we decided to embed the brains in 

paraffin and to cut them using a Microtome instead. 

 

The average for the ischemic volume in the 30’_MCAo group (n=6) was 

12.3 mm3 with Std Err=4.5, but, possibly because of the limits of the 

technique used, two subjects did not have a clear ischemic damage and 0 

mm3 was assigned. The damage in 1h_MCAo (n=7) was much more clear 

and extended, with an average of 21.4 mm3. The ischemic volume for the 

pMCAo brain was 57.2 mm3 (Figure 4.f7), and although the variability in 

size and location of the ischemic regions was high, the 1h_MCAo’s 

ischemic volume was significantly higher than the sham operated animals, 

**p<0.01, one-way ANOVA. There was no statistical difference between 

30’_MCAo’s ischemic volume and the sham operated animals (Figure 

4.f7).   
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         Figure 4.f7. Infarct volume quantification.  
 
The infarct volume quantification was estimated performing Haematoxylin and 
Eosin staining on five different brain regions, as described in Chapter 2; the 
ischemic areas were observed and quantified using a Zeiss Observer D1 light 
microscope. Significantly higher ischemic volume for 1h_MCAo, **p<0.01; 
values represent mean ± SEM, by one-way ANOVA. 
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4.1.4 SPEARMAN’S RANK CORRELATION 
COEFFICIENT!
 

The ischemic damage is responsible for the specific neurological 

phenotype raised after surgery. Although there is a clear assumption about 

this correlation, its effectiveness depends on the data acquisition and a 

proper analysis. To evaluate the effectiveness of the systems a Spearman’s 

rank Correlation Coefficient test was performed.  

 

The Spearman’s rank correlation coefficient is a non-parametric test to 

assess the extent to which the relationship between two variables can be 

described by a monotonic function; is the rank of the two variables 

correlated by a well-defined relationship?  

 

The direction and the strength of the correlation is described by the ρ (rho) 

coefficient; for ρ =0 there is no correlation, ρ =1 max positive correlation 

and ρ =-1 maximum negative correlation, or in other words for ρ =±1 the 

variables’ relationships is perfectly described by a monotonic function.   

 

Specifically, the histological data were correlated with the score assigned 

to the behavioural phenotype the day the animals were killed. The 

Spearman’s rank Correlation Coefficient test demonstrated a significant 

correlation between the behaviour at day 14 and the ischemic volume, 

*p<0.05, ρ =0.46 (Figure 4.f8). 
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Figure 4.f8.  Positive correlation between the behavioural score at day 14 
and the ischemic volume quantification 
 
Data were analysed by the Spearman’s rank Correlation Coefficient; each triangle 
corresponds to an animal for which the ischemic volume was correlated to the 
behavioural score assigned at day 14. There was a significant positive correlation 
between the data, *p<0.005, ρ =0.46. 
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4.1.5 CONCLUSION 
 
The MCAo models were produced and evaluated based on the behavioural 

phenotype and the ischemic volume quantification. pMCAo and 

1h_MCAo demonstrated strong ischemic phenotypes which were 

behaviourally and histologically assessed. The 30’_MCAo animals 

demonstrated a clear ischemic phenotype which was statistically different 

from the sham, and presented a smaller ischemic volume, sometimes not 

very different from the sham operated brains.  

 

The analysis of the body weight showed a significant post-operative 

variation in all groups, although difference between groups was 

demonstrated significant only for 30’_MCAo compared to the sham.  

 

There were only 4/32 of pMCAo survivors at day 14 post-surgery; this 

was significantly different comparing to the tMCAo and sham groups, 

**p<0.01 and ***p<0001 by the Gehan-Breslow-Wilcoxon Test.  Because 

of this small fraction of survivors, we decided the pMCAo model was not 

adequate for further experiments. The 1h_MCAo and 30’_MCAo groups 

showed good survival ability and ischemic phenotype, although the second 

one was much milder.  

 

The reduced lesion volume in the 30’_MCAo group was not statistically 

different from the sham, and for this reason was not selected for the 

project’s next step. The 1h_MCAo group demonstrated reasonable 

survival ability and good ischemic phenotype, clearly visible at 

behavioural and histological level.  

 

The effectiveness of the model analysis, by behavioural and histology tests 

was validated by the Spearman’s rank correlation coefficient, *p<0.005, 

ρ=0.46. 

 



 
 

118 
 

 

 
 
 

CHAPTER 5 
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5.1 SVZ-RMS NEUROGENESIS MODULATION IN 
NON-ISCHEMIC CONDITIONS 
 
SUMMARY 

 

Neurogenesis naturally occurs in physiological conditions. The SGZ in the 

hippocampal formation replaces the granular cells of the dentate gyrus 

(DG) over its entire lifetime. Similarly the SVZ on the wall of the lateral 

ventricles controls the replacement of the glomerular and periglomerular 

cells of the OBs (Bovetti, Gribaudo et al.). The tangential migration 

toward the OBs occurs in a well-known pathway by the RMS (Lennington, 

Yang et al. 2003). 

 

As previously discussed, this project is aimed at understanding the 

importance of neurogenesis occurring in ischemic conditions, using LV-

based systems. The efficiency of the LV_shRNA_Cyclin D1 to inhibit the 

cell cycle in vitro, was already demonstrated and discussed in chapter 3.  

 

The systems we selected to boost SVZ neurogenesis were based on 

integration-deficient lentiviral vectors expressing GDNF or TTC from the 

CMV promoter. IDLV_GDNF and IDLV_TTC were produced using 

transfer plasmids produced by Dr. Sherif Ahmed, having already had their 

in vitro effectiveness proven.  

 

1) pRRLcC_TTC_IRESeW  

2) pRRLcC_pGDNF_IRESeW 

 

The peculiarities of these two lentiviral backbones are: i) the expression 

cassette containing a CMV promoter that drives a precursor GDNF or a 

TTC, ii) an internal ribosome entries site (IRES) and iii) a sequence 

encoding for an eGFP. The IRES is a ribosome binding sequence, which 
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allows translation initiation in the middle of a messenger RNA. The 

translation of the eGFP is under control of the IRES activity.  

 

Unfortunately, once the plasmids were packaged into LVs, the IRES 

functionality was fairly low and for this reason we decided for the in vivo 

study to co-inject the IDLV_GDNF and IDLV_TTC with a separate LV 

carrying an eGFP cassette under the SFFV promoter (LV_ pHR’SIN-

cPPT-SEW).  

 

In Chapter 3 I already discussed and demonstrated that 

LV_shRNA_CyclinD1_92 can inhibit cell cycle in vitro in NIH3T3 cells. 

For in vivo experiments, the LV_shRNA_CyclinD1_92 was used in 

combination with LV_ pHR’SIN-cPPT-SEW to inhibit SVZ progenitor 

multiplication, and for long-term cellular detection (14 days). As a control 

another pGIPZ plasmid carrying an empty hairpin (LV_shRNA_Empty) 

was packed into LV, and used in conjunction with the LV_ pHR’SIN-

cPPT-SEW.  

 

GDNF and TTC were packed into IDLVs. These vectors, as discussed in 

Chapter 1, do not integrate the viral DNA in the host genome; rather in a 

mitotic cell population such as the NPCs of the SVZ, the episomal vector 

is expected to be diluted as the cells divide. As the IDLV cassette is lost 

toward the migration, it is assumed that the effect of GDNF or TTC is 

circumscribed within the SVZ area. Because the eGFP cassette is also 

located in the LV_ pHR’SIN-cPPT-SEW, which has the ability to integrate 

the provirus in the host genome, the detection of the SVZ progenitors by 

eGFP expression is ensured over a long time period.  

 
This chapter reports the evaluation of the neurogenesis modulation in 

physiological conditions, based on the injections of the IDLV_ 

pRRLcC_pGDNF_IRESeW, IDLV_ pRRLcC_TTC_IRESeW, 
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LV_shRNA_CyclinD1_92 or LV_shRNA_Empty at the beginning of the 

RMS, in combination with LV_ pHR’SIN-cPPT-SEW for cell marking. 

5.2 METHODS 
 

C57 Bl/6, male, six-ten week old were injected at the beginning of the 

RMS as previously described by Goncalves B. et al. (2008), AP 0.75, ML 

±1.2, DV -1.7. A total of 10 µl of LVs was injected at day zero, 5 µl of 

vector for each hemisphere (LVs were administrated in un-supplemented 

DMEM). Details of the vector batches used in this experiment are shown 

in Table 5.t1.  

 

After the injections the animals were housed in their own cage with 

normal diet and housing conditions. Three weeks later they were killed by 

transcardial perfusion. The tissues were embedded in paraffin by the St 

George’s Histology facility, and immunofluorescence was performed to 

detect and quantify eGFP-positive cells into the OBs; methods described 

in Chapter 2.  
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Table 5.t1. SVZ neurogenesis modulators based on LVs and IDLVs. 
 
The table illustrates the batches used for the in vivo experiment with the related 
titre. IDLV_GDNF and IDLV_TTC due to the lack of the ability of the IRES 
sequence to start the eGFP translation, and the consequential reduction of the 
gene expression were not titrated by flow cytometer.  
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5.3 HOMOLOGY BETWEEN RAT AND MOUSE 
GDNF 
 

The pRRLcC_pGDNF_IRESeW plasmid used to produce IDLV_GDNF 

encodes a precursor gene from rat. Because our experiments were 

performed in mice, we checked the similarity between mouse and rat 

sequences by a Blast alignment. 

 

Figure 5.f1 presents the results for the Blast alignment between the protein 

sequences: rat GDNF and mouse GDNF. The chain is composed of 199 

amino acids and the identity between the two proteins is 99% (197/199) 

with no gaps.  

 
          

 
 
5.f1 Blast alignment between  mouse GDNF [mus muscolus, GenBank: 
AAB52953.1] and rat GDNF [Rattus norvegicus, GenBank: 
AAM18096.1] 
 
Length=199 
 
Score = 407 bits (1046), Expect = 7e-119, Method: Compositional matrix adjust. 
Identities = 197/199 (99%), Positives = 199/199 (100%), Gaps = 0/199 (0%) 
 
5.4 IDLV_GDNF and IDLV_TTC 
 

The neurogenesis boosting was achieved with a IDLV based system rather 

than the integrative conformation, LV. The integration deficient 

conformation circumscribed the effect of the boosting to the SVZ, as result 

of the cellular proliferation. Moreover because the IDVL_ neurotrophic 
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factor was co-injected with the LV_ pHR’SIN-cPPT-SEW, that carried the 

eGFP cassette, the long-term detection of the NPCs was also possible after 

the migration in the ischemic regions. 

 

5.5 HISTOLOGY AND CELL COUNTING 
 

Three weeks after the injections the animals were killed and 

immunofluorescence labelling was performed to assess effectiveness of 

the injections and to evaluate the efficiency of the SVZ modulator 

systems, based on LVs.   

 

LV_ pHR’SIN-cPPT-SEW in conjunction with the pGIPZs plasmids 

carrying the shRNAs (Figures 5.f1, 5.f2, 5.f3 and 5.f7), or the 

LV_pRRLcC_pGDNF_IRESeW (Figures 5.f4 and 5.f5), or the 

LV_pRRLcC_TTC_IRESeW (Figure 5.f6), was an efficient tool to detect 

SVZ neurogenesis occurring in physiological conditions, to monitor 

migration toward the RMS, and to assess the integration of the neo-born 

neurons into the OBs neuronal network (Figure 5.f7). 

 

Three weeks post injection the LV_shRNA_CyclinD1_92 treated group 

had significantly reduced eGFP positive cells in the OBs, relative either to 

the control group (LV_srRNA_Empty), GDNF and TTC groups (Figure 

5.f2 and Figure 5.f3). Student’s t-test ***p<0.001 (Figure 5.f8). 

 

Under the same conditions, IDLV_GDNF treated group increased the 

number of eGFP positive cells that migrated to the OB, relative to the 

control group (Figure 5.f4 and Figure 5.f5). Student’s t test, *p<0.05, 

(Figure 5.f8). 
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The IDLV_TTC treated group did not exhibit any difference in the number 

of eGFP positive cells migrated to the OBs when compared to the other 

groups (Figure 5.f6 and Figure 5.f8).    
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Figure 5.f1. Migrated eGFP positive cells in the OB: LV_shRNA_Empty 
group. 
 
This animal was injected at the beginning of the RMS with LV_shRNA_Empty 
and LV_ pHR’SIN-cPPT-SEW; the histological analysis was performed three 
weeks later. Anti-mouse eGFP by Abcam (green), nuclear chromatin was 
visualised with DAPI (blue). 
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Figure 5.f2. SVZ-RMS neurogenesis inhibition by LV_shRNA_CyclinD1 
 
Sagittal section of a mouse OBs injected as previous described with 
LV_shRNA_CCND1 and pHR’SIN-cPPT-SEW. Anti-mouse eGFP by Abcam 
(green), nuclear chromatin was visualised with DAPI (blue).  
 
 



 
 

128 
 

 
 

 
 
 
Figure 5.f3. SVZ-RMS neurogenesis inhibition by LV_shRNA_CyclinD1 
 
Sagittal section of a mouse OBs injected with LV_shRNA_CCND1 and 
pHR’SIN-cPPT-SEW. Anti-mouse eGFP by Abcam (green), nuclear chromatin 
was visualised with DAPI (blue).  
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Figure 5.f4. SVZ-RMS neurogenesis enhancement by IDLV_GDNF 
 
Animal injected with IDLVs_pRRL_GDNF and pHR’SIN-cPPT-SEW as 
before reported. Anti-mouse eGFP by Abcam (green), nuclear chromatin was 
visualised with DAPI (blue). 
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Figure 5.f5. SVZ-RMS neurogenesis enhancing by IDLV_GDNF 
 
This animal was injected with IDLVs_pRRL_GDNF and pHR’SIN-cPPT-
SEW. Anti-mouse eGFP by Abcam (green), nuclear chromatin was visualised 
with DAPI (blue). 
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Figure 5.f6. SVZ-RMS-OB  migration in an animal treated with LV_ 
pHR’SIN-cPPT-SEW  and LV_pRRLcC_TTC_IRESeW  
 
Animal injected with LVs_pRRL_TTC and pHR’SIN-cPPT-SEW. Anti-mouse 
eGFP by Abcam (green), nuclear chromatin was visualised with DAPI (blue). 
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Figure 5.f7. NPCs derived cells in the OB three weeks after 
LV_shRNA_Empty injection. 
 
Detail of the OB region in a mouse treated with LV_shRNA_Empty and 
pHR’SIN-cPPT-SEW. The histology was performed three weeks later. 
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Figure 5.f8. SVZ’s neurogenesis quantification after lentiviral modulation.  
 
Quantification of the eGFP positive cells migrated into the OBs three 
weeks post intracranial injections of LV vectors. Both the OBs were 
entirely quantified for green labelled cells. Bars represent mean ±SEM. 
The LV_shRNA_CyclinD1 significantly reduced the green cells in the 
OBs, ***p<0.001. Moreover there was a significant increase of eGFP 
positive cells in the OBs as effect of the IDLV_GDNF, when compared to 
the control (LV_shRNA_Empty) group, *p<0.05. Student’s t-test. Data 
from n=3 animals per group.  
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5. 6 CONCLUSION 
                                                                                                                                  

The effectiveness of the SVZ modulator systems based on intracranial LV 

injections was evaluated in absence of stroke. 

 

The animals received 10 µl of vectors divided into two bilateral injections 

at the beginning of the RMS and the histology was performed three weeks 

later. Each group received an LV carrying either the shRNA_CyclinD1 

sequence, the rat precursor GDNF, the TTC or an Empty hairpin, in 

combination with the LV encoding eGFP (LV_ pHR’SIN-cPPT-SEW).  

 

The LVs-eGFP based system was an efficient tool to detect the SVZ 

progenitors and to monitor them along the migration toward the OBs, as 

previously shown by Goncalves et al, 2008. 

 

The SVZ neurogenesis was efficiently inhibited by the LV_ 

shRNA_CyclinD1, ***p<0.001. Moreover the treatment with 

IDLV_GDNF significantly increased the eGFP positive cells into the OBs, 

where *p<0.05, by the Student’s t-test. LV encoding TTC was without 

effect. 
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6.1 SVZ-RMS NEUROGENESIS MODULATION IN 

STROKE 
 

SUMMARY 
 

Neurogenesis occurs in ischemic conditions in the SVZ and the SGZ 

(Wang, Zhang et al.; Yamashita, Ninomiya et al. 2006).  It was 

demonstrated that the neuronal precursors can produce not only neurons 

but also glial cell types. Because of the high mobility of microglia, a 

possible origin from the SVZ’s progenitors is still debated (Levison, 

Druckman et al. 2003). 

 

Intrastriatal infusion of GDNF by subcutaneous minipump performed just 

before the ischemia and up to day 7 after MCAo produced GDNF 

diffusion to the SVZ and increased cell proliferation (Kobayashi, Ahlenius 

et al. 2006). In addition, intrastriatal infusion between day 13 and day 23 

post ischemia increased the survival of mature neurons generated after 

MCAo (Kobayashi, Ahlenius et al. 2006).  

 

GDNF can be provided as polypeptide or the gene can be delivered by 

vectors. It was demonstrated that there was a lack of ability of the 

recombinant intracerebral administered GDNF in ALS patients, to provide 

trophic support for the degenerating motor neurons (Deierborg, Soulet et 

al. 2008). This lack of the efficacy could be the result of a poor 

bioavailability of the polypeptide in the mammalian brain. 

 

TTC was demonstrated to be an efficient tool for delivering the mature and 

the recombinant GDNF to the extracellular space, where the growth factor 

can provide trophic support to neighbouring cells (Benn, Ay et al. 2005; 

Li, Chian et al. 2009).  In addition, a recent publication demonstrated that 

a growth factor-like property of TTC compound can positively influence 



 
 

137 
 

degenerating motor neurons in an ALS mouse model (Moreno-Igoa, Calvo 

et al. 2010). 

 

The aims of this chapter are: 

• To compare the effects of negative and positive modulators of SVZ 

proliferation on stroke outcome, in order to assess the importance 

of neurogenesis in ischemic conditions 

• To assess possible protective effects of TTC and GDNF pre-

ischemia administered to the SVZ.  

 
6.2 METHODS  
 

C57 BL/6, male, 6-10 weeks old were injected with 12µl of vector 

suspension. LV was used to deliver the shRNA_CyclinD1 and 

shRNA_Empty while IDLV was used for GDNF and TTC. As described 

in the methods, the SVZ was targeted by two injections performed in each 

hemisphere. The coordinates used were the follow: SVZ_1 AP, 0.25; ML, 

± 0.96, DV -2.75, and SVZ_2, AP, 0.86; ML, ± 0.72, DV -3), as described 

in the methods chapter, the coordinates were estimated based on previous 

experiments, as the regions with the major probability to develop an 

ischemic lesion after 1h_MCAo.  

 

In this experiment four different groups of mice were investigated (n=10 

per group);  

i) SVZ neurogenesis inhibition by LV_shRNA_CyclinD1,  

ii) SVZ neurogenesis boosting by IDLV_GDNF, 

iii) SVZ neurogenesis boosting by IDLV_TTC, 

iv) LV_shRNA_Empty (control). 

All vectors were co-injected with the LV_ pHR’SIN-cPPT-SEW that 

carried an eGFP cassette. Except for the LV_shRNA_CyclinD1_92, the 

batches used in this experiment were the same as used for the experiment 
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described in Chapter 5.  The information about batches and titres used is 

illustrated in Table 6.f1. 

 

After the intracerebral injections the animals were returned to their own 

cage with food and water ad libitum. Animals were monitored daily for 

unexpected adverse effects and signs of distress, weighed to monitor post-

surgical recovery; animals underwent 1 hour MCAo at day 14 after 

intracerebral injections. In all cases weight had returned to pre-injection 

level. After the ischemia induction the animals were closely monitored for 

their weight and the temperature, and it was ensured that their conditions 

were not beyond the humane limits set for termination. During the first 2-4 

days the animals were left in a warm cage and glucose-saline was 

intraperitoneally administered.  

 

After MCAo animals’ recovery was followed daily for 30 days by the 0-28 

focal deficit test. They were killed by transcardial perfusion and the brains 

were analysed by immunofluorescence and Haematoxylin and Eosin 

staining as described in Chapter 2.  

 

The experiment was conducted blind; the groups were named as A, B, C 

and D to identify the injections (respectively LV_shRNA_CyclinD1, 

LV_shRNA_Empty, IDLV_GDNF and IDLV_TTC). All histological 

analysis was carried out by myself on this coded material. Only after the 

histology was completed and the green cell numbers and ischemic volume 

quantified, the treatment performed in each group was revealed, and data 

pooled.  
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Table 6.f1. LVs and IDLVs used in the experiment with the related titre. 
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6.3 ANIMALS LOST AND EXCLUDED FROM THE 
ANALYSIS 
 

10 animals per group were investigated, two of them died because of the 

effect of the anaesthesia during the 1h_MCAo. A total of 21 animals 

across all groups died after the ischemia.  

 

1 brain injected with the IDLV_TTC was not properly processed with 

paraffin, and it was not possible to perform the histological evaluation.  

 

1 animal from the LV_shRNA_Empty was excluded from the analysis 

because the behaviour and the histology data deviated from the group’s 

means by more than 2 standard deviations (Chauvenet's criterion).  

 

6.4 HISTOLOGY  
 

6.4.1 POSITIVE CONTROL: SVZ-DERIVED NEURONAL 
PROGENITOR CELLS IN THE OLFACTORY BULBS  
 

As discussed in Chapter 2, injection coordinates were decided based on 

previous experiments. SVZ regions close to the focus of ischemic damage 

produced by 1h_ MCAo were selected.  

 

To demonstrate effectiveness of the injections and long-term detection of 

the NPCs, the OBs were examined to identify eGFP positive cells, 

assumed to have migrated from the neurogenic islands of the SVZ (Figure 

6.f1 and Figure 6.f2).  

 

eGFP positive cells were found in the intrabulbar part of the anterior 

commissure (aci) and in the granular cell layer of the OB (GrO), (Figure 

6.f1). 
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Under the same conditions, and to demonstrate effectiveness of the SVZ 

neurogenesis inhibition, the OBs of the animals treated with the 

LV_shRNA_CyclinD1 were analysed, and compared to the other groups. 

LV_shRNA_CyclinD1 efficiently inhibited neurogenesis as demonstrated 

by the absence of eGFP positive cells in the OB (Figure 6.f2). 
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Figure 6.f1. Positive control: eGFP positive cells migrated into the OBs  
 
OBs of an MCAo animal pretreated with IDLV_GDNF and and LV_ pHR’SIN-
cPPT-SEW. The eGFP positive cells localized within the aci and GrO at 2.80 mm 
anterior from bregma, top picture. The histology was performed 30 days after 
reperfusion by Immunofluorescence; co-staining anti-GFP, (green), and anti-
rabbit GFAP antibody (red)). 
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Figure 6.f2. Positive control: effect of the inhibition of the SVZ 
neurogenesis in the OBs  
 
Animal injected with LVs_shRNA_Cyclin D1/LV_ pHR’SIN-cPPT-SEW and 
underwent to MCAo two weeks later; the OBs region is highlighted. The eGFP 
positive cells localized within the aci and GrO at 2.80 mm anterior from bregma, 
top picture. Histology performed by Immunofluorescence; co-staining mouse 
anti-GFP (Abcam) and rabbit anti-GFAP (Dako).  
 



 
 

144 
 

6.4.2 EFFECT OF MCAo ONE MONTH AFTER: THE 
ISCHEMIC BRAIN 
 
Transient focal ischemia (1h_MCAo) induced migration of NPCs in the 

ipsilateral ischemic area. The neuronal progenitors were found along the 

anterior part of the anterior commissure (aca) and surrounding the lateral 

ventricle (lv) in the ipsilateral hemisphere; some cells extended to the 

caudate putamen (CPu) already in the forebrain at 1.70 mm anterior from 

bregma, (Figure 6.f3). Only a few eGFP positive cells co-expressed a 

marker for differentiated cell types (Iba1, DCX, or GFAP).  

 

eGFP positive cells were found in the CPu: the migrated cells were found 

at 1.17 mm from the ventricles, and some of them looked differentiated, 

but  they were not positive for any of the cellular markers tested (GFAP, 

Iba1, Beta III and DCX), Figure 6.f4. 

 

The ipsilateral SVZ (i.e. ipsilateral to the focal ischemic lesion) but not the 

contralateral was found expanded with an increase of the eGFP positive 

cells (Figure 6.f5 and Figure 6.f6). In addition, some eGFP-labeled cells 

grouped like neurogenic islands were found in the ischemic cortex and 

striatum (Figure 6.f6 and Figure 6.f7). In the cortex the eGFP positive cells 

were found at 1.87 mm from the SVZ (Figure 6.f7). 

 

eGFP positive cells were repeatedly found in white matter tracts (the aca, 

and the corpus callosum; Figure 6.f8 and Figure 6.f9). As previous authors 

suggested, MCAo induced an increase in cell number in these regions 

(Gotts and Chesselet 2005). Moreover, the ipsilateral SVZ expansion 

presented in Figure 6.f9 suggests a possible migratory pathway between 

the SVZ and the aca. 
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Figure 6.f3. MCAo-induced migration of NPCs to the lesion areas. 
 
eGFP positive cells in ischemic striatal regions. In the above images an animal 
was injected with a mix of IDLV_GDNF and LV_ pHR’SIN-cPPT-SEW close to 
the wall of the lateral ventricles and two weeks later underwent to 1h_MCAo. 
The histology was performed by Immunofluorescence; sequentially cut sections 
were treated with a mouse anti-eGFP (Abcam) and a cellular marker to detect 
microglia (rabbit anti-Iba1, Wako), glia (rabbit anti-GFAP, Dako), neurons and 
neuroblasts (rabbit anti-Beta III, Sigma-Aldrich and rabbit anti-DCX, Abcam). 
The eGFP positive cells were found in the aca and CPu, as described by the top 
map, AP 1.70 mm from bregma. Brain map taken from The Brain Mouse Atlas 
by Franklyn and Paxinos. 
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Figure 6.f4. eGFP positive cells in the ischemic striatal region. 
 
The animals were injected close to the wall of the lateral ventricles with a) 
IDLV_TTC and LV_ pHR’SIN-cPPT-SEW b) IDLV_GDNF and LV_ pHR’SIN-
cPPT-SEW. Two weeks later they were subjected to 1h_MCAo. The 
immunostaining was performed with a mouse anti-eGFP (Invitrogen) and 
alternatively a rabbit anti-Beta III (Sigma-Aldrich), or a rabbit anti-GFAP 
(Dako). Region locxalized at AP 1.18 mm from bregma. Brain map taken from 
The Brain Mouse Atlas by Franklyn and Paxinos. 
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Figure 6.f5. Increase in eGFP expressing cells in the ipsilateral SVZ and 
aca 
 
The pictures above derived from an animal treated with IDLV_GDNF/ 
LV_pHR’SIN-cPPT-SEW and consequently subjected to 1h_MCAo; eGFP 
positive cells localized in the ipsilateral SVZ and aca.  The immunofluorescence 
staining was performed with a mouse anti-eGFP (Invitrogen) and a rabbit anti-
Iba1 from (Wako). Section located at AP 0.74 mm from bregma. Brain map taken 
from The Brain Mouse Atlas by Franklyn and Paxinos. 
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Figure 6.f6 eGFP and DCX positive niche like structure in the ischemic 
striatum.  
 
Expansion of the SVZ region in MCAo brain; the neurogenic area was positive 
for DCX, moreover groups of progenitor cells expressing DCX were found in the 
closer striatum. The animal was injected on the wall of the lateral ventricles with 
IDLV_TTC /LV_ pHR’SIN-cPPT-SEW and two weeks later subjected to 
1h_MCAo. The histology was performed by Immunofluorescence; mouse anti-
eGFP (Invitrogen) and a rabbit anti-Iba1 (Wako). The section was localized at AP 
0.74 mm from bregma.  
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Figure 6.f7. eGFP positive niche like structure in the ischemic cortex. 
 
EGFP positive cells localized in the sensory cortex after ischemia. The animal 
was injected on the wall of the lateral ventricles with IDLV_GDNF and LV_ 
pHR’SIN-cPPT-SEW; after two weeks it was subjected to 1h_MCAo. The 
histology was performed by co-staining with mouse anti-eGFP (Invitrogen) and 
rabbit anti-Beta III (Sigma-Aldrich). The eGFP positive cells were at 1.87 mm 
from the closer SVZ; AP 0.74 mm distance from bregma. 
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Figure 6.f8 EGFP positive cells localized within the corpus callosum 
 
 
EGFP positive cells localized within the corpus callosum: some of them co-
expressed GFAP. The animals were injected on the wall of the lateral ventricles 
with LV_shRNA_Empty/LV_ pHR’SIN-cPPT-SEW a) and IDLV_TTC 
/LV_pHR’SIN-cPPT-SEW b), after two weeks underwent 1h_MCAo. The 
histology was performed by Immunofluorescence; mouse anti- eGFP (Invitrogen) 
and alternatively a rabbit anti-Beta III (Sigma-Aldrich) or a rabbit anti-GFAP 
(Dako). The sections were localized at AP 1.18 mm from bregma. 
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Figure 6.f9. Possible radial migration pathway SVZ-aca 
 
Neural progenitors were localized along the SVZ with an enlargement visible at 
the ventral side; the DCX positive cells as well as eGFP positive cells were 
located within and surrounding the aca. The animals were injected on the wall of 
the lateral ventricles with a) IDLV_ GDNF/LV_pHR’SIN-cPPT-SEW or b) 
IDLV_TTC/LV_pHR’SIN-cPPT-SEW and two weeks later they were subjected 
to 1h_MCAo. Immunostaining was performed with a mouse anti-GFP with 
alternatively a rabbit anti-Beta III (Sigma-Aldrich) or a rabbit anti-DCX  
(Abcam). AP 1.18 mm from bregma. 
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6.4.3 EVALUATION OF THE ISCHEMIC ENVIRONMENT 

 
The ischemic volume was evaluated by Haematoxylin and Eosin staining 

and Immunofluorescence techniques. As described in Chapter 2, the 

quantification by Haematoxylin and Eosin alone was not sensitive enough 

to detect the ischemic environment in one-month reperfusion brains. For 

this reason, flanking the classical histology, neurodegeneration, glial scar 

and inflammation process were evaluated by Immunofluorescence.  

 

The ischemic environment is composed of degenerating neurons, glial scar 

and activated microglia, with each of these variables changing with time 

and the brain restoration. The localization and quantification of the 

ischemic damage by one of these parameters alone would give only a 

partial view of the damage. For this reason the average volume between 

the glial scar, the inflammation and the neurodegeneration was performed 

and evaluated as the best estimation of the ischemia.  

 

IDLV_GDNF as well as the IDLV_TTC treated groups, showed 

significant increase of the inflammation volume compared to the control, 

*p<0.05, Student’s t test (Figure 6.f10). Diversely, the volume of the glial 

scar and the volume occupied by degenerating neurons (ischemic core) 

was the same when the groups were compared (Figure 6.f11 and Figure 

6.f12).  

 

The ischemic volume was estimated to be between 5 and 15 mm3 with no 

difference between groups (Figure 6.f13). 
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Figure 6.f10. Volume quantification of the regions covered by activated 
microglia. 
 
Estimation of the inflammation reaction after ischemia. The analysis was 
accomplished by detecting Iba1 expressing cells using a rabbit anti-Iba1 antibody 
(Wako). The Student’s t test pointed out an increase of the inflammation process 
in the IDLV_GDNF and IDLV_TTC treated groups, *p<0.05; values represent 
mean ± SEM. LV_shRNA_Cyclin D1 n=3, LV_shRNA_Empty n=3, 
IDLV_GDNF n=7 and IDLV_TTC n=4. 
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Figure 6.f11. Glial scar quantification 

 
Estimation of the glia scar formation after ischemia. The analysis was 
performed by quantification of the volume covered by GFAP expressing 
cells. No variation was detected in the groups under analysis. In the plot the 
values represent mean ± SEM; analysis by the Student’s t test. 
LV_shRNA_Cyclin D1 n=3, LV_shRNA_Empty n=3, IDLV_GDNF n=7 
and IDLV_TTC n=4. 
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Figure 6.f12. Quantification of the neurodegenerative regions.  
 
Estimation of the core region (neurodegeneration) after ischemia. The analysis 
was performed by quantification of the volume where Beta III was under 
expressed. No variation was detected in the groups under analysis. The analysis 
was accomplished using a rabbit anti-Beta III antibody (Sigma-Aldrich). In the 
plot the values represent mean ± SEM; analysis by the Student’s t test. 
LV_shRNA_Cyclin D1 n=3, LV_shRNA_Empty n=3, IDLV_GDNF n=7 and 
IDLV_TTC n=4. 
 



 
 

156 
 

 
 
Figure 6.f13. Infarct volume quantification. 
 
The ischemic volume quantification was estimated as the average between 
the volume of neurodegeneration (down-regulation of Beta III), glial scar 
(up-regulation of GFAP or activated astrocytes) and the inflammation (up-
regulation of Iba1 or activated microglia). There was no difference in the 
ischemic volume produced after 1h_MCAo. Values represent mean ± SEM; 
analysis by the Student’s t test. LV_shRNA_Cyclin D1 n=3, 
LV_shRNA_Empty n=3, IDLV_GDNF n=7 and IDLV_TTC n=4.  
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           6.4.4   eGFP-POSITIVE CELLS IN THE ISCHEMIC AREA 

 
eGFP positive cells were counted in the ischemic regions after 30 days of 

reperfusion. The counting was performed in 5 regions per brain, that were 

identified at specific position from bregma:  AP +2.5, 1.7, 0, -1.7, and -3 

mm. As described in Chapter 2, for each of these regions (AP +2.5, 1.7, 0, 

-1.7, and -3 mm) four consecutive sections were co-stained with a mouse 

anti- eGFP from Sigma-Aldrich and a specific cellular marker (rabbit anti-

Iba1 from Wako, rabbit anti-GDNF from Dako, rabbit anti-Beta III from 

Invitrogen and rabbit anti-DCX by Abcam). The estimation of total 

number of green cells in the ischemic volume is described in the Chapter 

2.   

 

The injection of the LV_shRNA_CyclinD1in the SVZ efficiently reduced 

the number of eGFP positive cells in the ischemic environment, **p<0.01, 

Student’s t test (Figure 6.f14).  

 

The injection of the IDLV_GDNF in the SVZ increased the eGFP positive 

cells in the MCAo brains, *p<0.05, Student’s test (Figure 6.f15).  

 

Due to high variability between subjects, the IDLV_TTC treated group did 

not show any significant variation of the eGFP positive cells migrated to 

the ischemic areas (Figure 6.f16).  

 

The characterization of the phenotype for the eGFP expressing cells did 

not point out a predominant phenotype (Figure 6.f17). One month post 

MCAo, the neural progenitors born in the SVZ and migrated in the 

ischemic boundaries, were for the most part not positive for any of the 

cellular markers tested.  

 

There were no convincing eGFP positive cells co-expressing Beta III 

(Figure 6.f17). As many papers reported neurodegeneration occurs very 
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early after the differentiation; Lindvall and Kokaia (2004) described the 

80% of the stroke-generated neurons died during the first 14 days post 

ischemia (Lindvall and Kokaia 2004). Moreover, a diffuse expression of 

lipofuscin in dying and dead cells did not allow sure discrimination 

between the eGFP and lipofuscin. Regarding the remaining markers: 

GFAP was 0.31% of the total green cells, while Iba1 0.29% and DCX 

0.33%. (Figure 6.f17). 
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Figure 6.f14 eGFP positive cells in the ischemic area: 
LV_shRNA_CyclinD1 group.  
 
Quantification of eGFP positive cells in ischemic region; group treated with 
LV_shRNA_Cyclin D1 and  LV_ pHR’SIN-cPPT-SEW. The animals 
treated with LV_shRNA_CyclinD1 drastically reduced the number of eGFP 
positive cells estimated within the ischemic regions, **p<0.01. Values 
represent mean ±SEM; Student’s t test.  
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Figure 6.f15. eGFP positive cells in the ischemic area: IDLV_GDNF 
injected group. 
 
MCAo group treated with IDLV_GDNF and  LV_ pHR’SIN-cPPT-SEW. 
IDLV_GDNF increased the number of eGFP positive cells within the ischemic 
regions *p<0.05. Values represent mean ±SEM; Student’s t test. 
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Figure 6.f16. eGFP positive cells in the ischemic area: IDLV_ TTC 
injected group. 
 
Quantification of eGFP positive cells within the ischemic region; group treated 
with IDLV_TTC and  LV_ pHR’SIN-cPPT-SEW. The number of eGFP positive 
cells estimated in the ischemic boundaries was not statistically different from the 
control. Values represent mean ±SEM; p=0.42, Student’s t test. 
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Figure 6.f17. Analysis of phenotype in the eGFP positive cells migrated to 
the ischemic environment. 
 
The eGFP positive cells localized in the ischemic region where evaluated for the 
phenotype by Immunofluorescence. 99.07% of the eGFP positive cells did not 
co-express any of the marker assessed (Iba1, Beta III, GFAP, DCX). 
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6.4.5 IDLV_GDNF INJECTION IN THE SVZ IMPROVED 
THE NATURAL RESPONSE TO ISCHEMIA. !
 
Ischemia-induced proliferation of neural progenitors has been extensively 

demonstrated (Le Magueresse, Alfonso et al.; Sugiura, Kitagawa et al. 

2005; Yamashita, Ninomiya et al. 2006). The quiescent NPC population 

responds to stimuli released by the ischemic environment. With the 

hypothesis of a linear relationship between the damage severity and SVZ 

response, the correlation between the ischemic damage and eGFP positive 

cells located there was analysed by linear regression.  

 

Although the relationship was not statistically significant in the control 

group (R10=0.19), the IDLV_GDNF significantly improved it with 

*p<0.05 and R=0.68, as proved by the linear regression analysis.  The 

treatment with the LV_shRNA_CyclinD1 reduced the coefficient to 

0<R<0.005. The linear regression analysis for the IDLV_TTC group was 

not statistically significant where R= 0.16 (Figure 6.f18). 

 

The linear relationship between the green cells migrated in the ischemic 

regions and the volume (or damage severity) was further analysed by 

possible correlation between green cells and glial scar, green cells and 

inflammation or green cells and neurodegeneration. Although there was no 

linear relationships between the green cells and glial scar or inflammation, 

the neurodegeneration volume (or core volume) was highly associated 

with the number of migrated NPCs in the ischemic regions, ***p<0.001 

and R=0.92, Linear Regression analysis (Figure 6.f19). 

 
 

                                                
10 R is the correlation coefficient and is a measure of the goodness of fit of the linear regression. 
It can vary between 0 and 1; 0 when there is no linear relationships between the variables X and 
Y, while for R=1 there is a perfect distribution of the X on the line, in turn this allow a complete 
predictability of the Y values knowing the related X.    
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Figure 6.f18. The IDLV_GDNF increased the neurogenic response to 
ischemia.  
 
1h_MCAo induced neurogenesis of the SVZ in a damage-severity dependent 
manner. The treatment with the IDLV_GDNF boosted the SVZ response, 
*p<0.05, by the Linear Regression analysis. The R values highlighted an increase 
in the linear relationships between the damage severity and the neurogenesis of 
the SVZ. IDLV_GDNF R=0.68, LV_shRNA_Empty R=0.1, IDLV_TTC R=0.16 
and LV_shRNA_CyclinD1 0<R<0.005 
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Figure 6.f19. Linear regression analysis of the ischemic volume and the 
eGFP positive cells located there: IDLV_GDNF injected group. 
 
The linear regression analysis was performed to evaluate which part of the 
ischemic environment had influenced most the neurogenesis of the SVZ. There 
was no linear relationships between the number of eGFP positive cells and the 
glial scar, as well as the inflammation process; conversely the neurodegeneration 
affected the response of the SVZ the most with ***p<0.001 and R=0.92 
estimated by linear regression analysis.  
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6.4.6 LV_shRNA_CyclinD1 REDUCED RECOVERY 
ABILITY AFTER MCAo!

 
The neurological damage was evaluated on a daily basis by the 0-28 focal 

deficit test described in Chapter 2.  

 

The analysis of the survivors11 treated with the LV_shRNA_CyclinD1 

showed a significant reduced recovery ability during the first two weeks 

post ischemia, as demonstrated by the Mann-Whitney rank sum test that 

gave *p<0.05 (Figure 6.f20). After day 14, the animals’ behaviour was 

very similar to the LV_shRNA_Empty (control group).  

 

LV_shRNA_CyclinD1 drastically increased the frequency of death during 

the first five days post ischemia, with 5 out 9 subjects suffering this fate 

(Figure 6.f21). 

 

The analysis of the variation of the body weight did not show difference in 

the groups after the intracranial injections (part a) of Figure 6.f22). A trend 

to delayed recovery of pre-operative weight was visible in the 

LV_shRNA_CyclinD1 group after 1h_MCAo (part b) of Figure 6.f22). 

Moreover, day 3 after 1h_MCAo was further analysed by the Student’s t 

test that demonstrated a statistically reduced body weight with *p<0.001 

(part c) of Figure 6.f22) 

 

 

 
 
 
 

                                                
11 The survivors (or survival population) are the ischemic animals that were able to survive for 
30 days after 1h_MCAo 
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Figure 6.f20. Neurological recovery in the surviving populations: effect of 
LV_shRNA_CyclinD1 after 1h_MCAo 
 
The neurological improvement was assessed on a daily basis by the 0-28 focal deficit 
test. LV_shRNA_CyclinD1 group showed a significant increase in the ischemic 
sensory-motor phenotype rose after ischemia, *p<0.05, Mann-Whitney rank sum test. 
Values represent the median of the score assigned. For the LV_shRNA_CyclinD1 group 
n=3, and for the LV_shRNA_Empty group n=3. One animal treated with the Empty 
hairpin was excluded from the analysis because it was greater than 2 standard deviations 
from the mean, Chauvenet's criterion. 
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Figure 6.f21 LV_shRNA_CyclinD1 increased the number of deaths during 
the first 5 days post ischemia.  
 
LV_shRNA_Cyclin D1 group reduced the number of survivors after ischemia. 
The curves were analysed in pair by the Gehan-Breslow-Wilcoxon.  
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Figure 6.f22. Body weight variation after surgical procedures: 
LV_shRNA_CyclinD1 injected group. 
 
Analysis of the variation of the body weight in the survival populations. There 
was no difference in the groups after the intracranial injections (part a) of the 
picture), although after 1h_MCAo there was a trend to delay the weight rescue 
for the LV_shRNA_Cyclin D1 injected group (part b) of the picture). Values 
represent mean ± SEM; analysis by the two-way ANOVA.  The variation of the 
body weight was significantly different at day 3 post 1h_MCAo, *p<0.005; 
analysis by the Student’s t test (part c) of the picture). For the 
LV_shRNA_CyclinD1 group n=3, and for the LV_shRNA_Empty group n=3.  
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6.4.7 TREND TOWARDS IMPROVED NEUROLOGICAL 
RECOVERY IN IDLV_GDNF AND IDLV_TTC 
 

Post ischemic neurological improvement was assessed as previously 

described in Chapter 2.   

 

From a first analysis of survivors both the IDLVs treated groups, GDNF 

and TTC, presented a reduction of the post-operation neurological 

improvement compared to the control (Figure 6.f23). The neurological 

improvement was analysed by the Mann-Whitney rank sum test that 

demonstrated a statistically reduction of the sensorimotor recovery after 

1h_MCAo; ***p<0.001 for IDLV_TTC and ** for IDLV_GDNF, both 

compared to the control group. 

 

After a detailed analysis of the subjects, a trend of surviving and of 

proportionally reducing damage was associated with the growth factor 

treated groups, especially for IDLV_GDNF. Because the control group 

lost many animals with a severe and intermediate ischemia, only mildly 

affected subjects were able to survive until day 30 post MCAo, while the 

survivors of the growth factors treated groups also comprised subjects with 

an intermediate stroke.  In such circumstances the groups under 

comparison are extremely diverged in terms of stroke severity, in turn 

affecting the response to the treatments and the following statistical 

analysis. 

 

To avoid a misleading data analysis due to an imbalance between the 

control and the growth factor-treated groups, the first five days were 

considered to have a bigger population with similar characteristics to 

compare. The analysis of the subjects alive at least until day 5 post 

1h_MCAo showed a trend of improving neurological outcome after 

ischemia, for both the IDLV_GDNF and IDLV_TTC treated groups 

(Figure 6.f24 and Figure 6.f25). This trend for IDLV_GDNF injected 
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group was associated to p=0.065 by the Mann-Whitney rank sum test 

(Figure 6.f24). 

 

Figure 6.f26 shows the entire data set of the neurological recovery for the 

MCAo animals under analysis. From the plots is possible to evaluate the 

MCAo effect on the sensorimotor behaviour across the first 7 post-

operative days. The treatment with the IDLV_GDNF tended to reduce the 

severity of the ischemia, as shown by the reduced average and lower 

variability for the 0-28 focal deficit score. Moreover, the intermediate 

ischemic subjects that had been treated with the IDLV_GDNF survived 

longer compared to the other subjects with the same ischemic severity but 

that received a different treatment, Figure 6.f26. 

 

The analysis of the body weight did not highlight any difference after the 

intracranial injections for the IDLV_GDNF and IDLV_TTC groups, 

although the body weight tended to be lower in the IDLV_TTC injected 

group (part a) of Figure 6.f27). In addition, after 1h_MCAo these groups 

showed a trend towards reduced post-operation weight, both in 

comparison with the control group (part b) and c) of Figure 6.f27); the 

analysis was performed by the two-way ANOVA. Day 3 and 4 were 

further analysed by the Student’s t test that demonstrated a significant 

reduction of the body weight of the IDLV_GDNF treated group compared 

to the control, **p<0.01 (part d) and e) of Figure 6.f27). 
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Figure 6.f23. Paradox of the neurological deterioration in the growth 
factor-treated groups: effect of IDLV_GDNF and IDLV_TTC. 
 
Analysis of the animals survived for 30 days after 1h_MCAo. Neurological 
improvement was assessed on a daily basis by the 0-28 focal deficit test. There 
was a paradoxical increased of the ischemic phenotype for the growth factors 
treated groups. The curves were analysed by the Mann-Whitney rank sum test 
that assigned **p<0.001 for the difference between the LV_shRNA_Empty and 
the IDLV_GDNF; while ***p<0.0001 for the LV_shRNA_Empty and the 
IDLV_TTC. Values represent the mean of the ranks at specific time points after 
1h_MCAo. For the LV_shRNA_Empty group n=3, for the IDLV_GDNF group 
n=7 and for the IDLV_TTC group n=5.  
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Figure 6.f24. Neurological recovery during the first five days after 
1h_MCAo: IDLV_GDNF injected group. 
 
Evaluation of the ischemic phenotype for subjects survived until day 5 post 
surgery. The analysis revealed a trend of improving the sensory-motor 
performance in the IDLV_GDNF treated group. Values represent the rank’s 
mean, p=0.065, Mann-Whitney rank sum test. LV_shRNA_Empty group n=7, 
IDLV_GDNF n=9 
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Figure 6.f25. Neurological recovery during the first five days after 
1h_MCAo: IDLV_TTC injected group. 
 
Evaluation of the ischemic phenotype for subjects surviving until day 5 post 
surgery. The analysis revealed a trend of improving the sensory-motor 
performance in the IDLV_TTC treated group. Values represent the rank’s mean, 
p=0.11, Mann-Whitney rank sum test. LV_shRNA_Empty group n=7, 
IDLV_TTC n=6 
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Figure 6.f26. 0-28 Focal deficit test dot plots evaluation. 
 
The plots above show how the developing over time of the ischemic phenotype 
after 1h_MCAo; this was evaluated on the survival fraction by the 0-28 focal 
deficit test. The plots were analysed by the Mann-Whitney rank sum test but not 
difference between groups was found statistically significant at any time point.  
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Figure 6.f27. Body weight variation after surgical procedures: 
IDLV_pRRL GDNF and IDLV_pRRL TTC injected groups. 

 
There was no difference in weight variation developed after intracranial 
injections. In addition, no statistically different body weight variation was 
observed after 1h MCAo, even though a trend of reduced weight gain occurring 
post-operation was evident in both groups  (b) and c) of the picture). Values 
represent mean ± SEM; analysis by the two-way ANOVA. The IDLV_GDNF 
treated group was further analysed at post-operational day 3 and 4 by the 
Student’s t test; statistically significant body weight reduction in the animals 
treated with the IDLV_GDNF either at day 3 and 4 after 1h_MCAo, **p<0.01 
(part d ) and e) of the picture). For the IDLV_GDNF group n=7, for the 
IDLV_TTC n=5 and for the LV_shRNA_Empty group n=3.  
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6.4.8 SURVIVAL PROPORTION  

 
Although a large proportion of subjects died across the experiment 

because of the ischemia, the LVs treated groups tended to deviate from the 

expected number of deaths depending on the treatment received. 

 

Only 40% of subjects in the control group survived the experiment (30 

days post 1h_MCAo). The survival rate was 33% for the 

LV_shRNA_CyclinD1, 55% for the IDLV_TTC and 70% for the 

IDLV_GDNF.  

 

The comparison between the LV_shRNA_CyclinD1and the IDLV_GDNF 

by the Gehan-Breslow-Wilcoxon Test, demonstrated significant difference 

survival proportion between groups, *p<0.05, (Figure 6.f28). 
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Figure 6.f28. Survival proportion. 
 
Treatments affect survival proportion: 33% for the LV_shRNA_Cyclin D1 group, 
70% the IDLV_GDNF, 55% the IDLV_TTC and 40% the LV_shRNA_Empty 
group. The curves were analysed in pair by the Gehan-Breslow-Wilcoxon Test; 
there was significant different survival fraction between the IDLV_GDNF and 
the LV_shRNA_Cyclin D1 treated groups, *p<0.05. 
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6.4.9 TREATMENTS ALTERING THE SURVIVAL 
EXPECTANCY 

 

The survival expectancy is the probability of surviving with a defined 

ischemic status. For instance, for an extremely severe stroke (for instance a 

20 score by the 0-28 focal deficit test), it is very unlikely that survival will 

last for more than 36 hours. In other words there is a negative correlation 

between the ischemia severity and life expectancy.  

 

This analysis was performed by associating the ischemic severity, 

behaviourally assessed at day 212 post stroke, with the number of days the 

animals survived post-surgery. The modulation of the SVZ neurogenesis 

by LVs and IDLVs affected the life expectancy in MCAo animals. A 

**p<0.01 and a ρ=-0.84 was associated to the control group; this means 

there is a negative correlation between the ischemia severity and life 

expectancy. Animals treated with the LV_shRNA_CyclinD1 showed a 

stronger correlation with ***p<0.001 and ρ=-0.928.  On the other hand the 

treatment with the growth factors reduced this negative correlation: 

IDLV_GDNF was *p<0.05 with ρ=-0.644 and the IDLV_TTC was 

*p<0.05 with ρ=-0.732, Spearman’s rank Correlation Coefficient (Figure 

6.f29).  
 
 
 
 
 
 
 

                                                
12 Day 2 was selected because generally it was the day the animals presented the highest sickness 
score, in terms of behaviour and frequency of death. After day 2 they tended to start the 
recovery. 
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Figure 6.f29. Life expectancy 
 
Spearman’s rank Correlation Coefficient between the neurological phenotype, 
estimated by the 0-28 focal deficit test at day 2, and the number of days the 
animal survived post ischemia. There was a statistically significant correlation 
between the ischemia severity and the number of days the subjects survived after 
1h_MCAo; for the LV_shRNA_Empty treated group, **p<0.01 and ρ13=-0.84. 
The modulation of the SVZ neurogenesis by LVs and IDLVs affected this 
correlation. The LV_shRNA_CyclinD1 was ***p<0.001 and ρ=-0.928, the 
IDLV_GDNF was *p<0.05 and ρ =-0.644 while the IDLV_TTC was *p<0.05 
and ρ =-0.732. LV_shRNA_Empty group n=10, IDLV_GDNF n=10, IDLV_TTC 
n=9 and LV_shRNA_CyclinD1 n=9. 

 
 
 
                                                
13 . The ρ value quantifies the direction and magnitude of the correlation  



 
 

181 
 

6.4.10 SPEARMAN’S RANK CORRELATION 
COEFFICIENT BETWEEN THE BEHAVIOUR SCORE AT 
DAY 30 AND THE ISCHEMIC VOLUME ESTIMATION 

 
The Spearman’s rank correlation coefficient analysis was performed 

between the score assigned to the animals the last day they were alive and 

the related ischemic volume. As shown by Figure 6.f30 there is a positive 

correlation between the two variables, *p<0.05 with ρ=0.5.  
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Figure 6.f30. Evaluation of the analysis: correlation between the 
behavioural score at day 30 and the ischemic volume quantification. 
 
The correlation between the behavioural phenotype assessed by the 0-28 focal 
deficit test and the ischemic volume quantification was performed by the 
Spearman’s rank Correlation Coefficient.  There is a significant correlation 
between the parameters analysed, *p<-0.05 with ρ=0.5.  
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6.4.11 CONCLUSION 
 

The injections of LVs and IDLVs in the SVZ were efficient tools to 

detect and monitor NPCs in the ischemic brain over a long time period (up 

to 30 days) (Figure 6.f1 to Figure 6.f9). 

 

Suppression of Cyclin D1 by the LV_shRNA_CyclinD1 efficiently 

inhibited neurogenesis of the SVZ as demonstrated by the low numbers of 

eGFP positive cells in the OBs and in the ipsilateral region (Figure 6.f2 

and Figure 6.f5). The number of eGFP-positive cells in the ischemic 

regions was significantly lower than in the control injected with empty 

vector, **p<0.01 by the Student’s test (Figure 6.f14). 

 

The eGFP positive cells were mainly found in the aca, CPu, cortex   

and corpus callosum (Figure 6.f2, 6.f6, 6.f7 and 6.f8). The maximum 

distance SVZ-derived cells were found from the SVZ was 1.17 mm in 

striatum (Figure 6.f6) and in the cortex was 1.87 mm (Figure 6.f7). 

 

Groups of eGFP positive cells like neurogenic islands were found in the 

cortex and striatum (Figure 6.f6 and Figure 6.f7). 

 

EGFP positive cells were found in the ipsilateral aca (Figure 6.f5). 

Moreover, the SVZ expansion was positive for DCX and eGFP and it was 

extended to the aca in the ispilateral but not the contralateral hemisphere; 

this suggests a possible radial migratory pathway for the NPCs (Figure 

6.f9) (Gotts and Chesselet 2005). 

 

The inhibition of neurogenesis in the SVZ by LV_shRNA_CylinD1 

did not alter the recovery of body weight or behavioural function after the 

intracranial injections, but delayed the restoration of the pre-ischemic 

weight after 1h_MCAo (Figure 6.f22). Moreover, the neurological 

improvement was statistically lower than the control and growth factors 
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treated groups, *p<0.05, Mann-Whitney rank sum test (Figure 6.f20). The 

“SVZ neurogenesis inhibition group” (i.e. CyclinD1-suppressed) 

drastically reduced its number of animals that survived across the first 5 

days post 1h_MCAo (Figure 6.f21).  

 

IDLV_GDNF and IDLV_TTC injected in the wall of the lateral 

ventricles increased the number of the intermediate ischemic subjects 

surviving the experiment. These subjects were able to improve their initial 

neurological conditions, mostly evident during the first five days post 

stroke (Figure 6.f24 and Figure 6.f25).  

 

From a first analysis of the survivors after 30 days of reperfusion a 

paradoxical worsening of neurological recovery became apparent (Figure 

6.f23). This impoverishment was found statistically different to the 

control, respectively **p<0.01 for the IDLV_GDNF and ***p<0.001 for 

IDLV_TTC; analysis by the Mann-Whitney rank sum test. 

  

MCAo is a very efficient model of stroke although high variability of 

ischemia severity is intrinsic to the model itself. For instance in a group of 

MCAo animals produced under the same conditions, three subgroups 

based on the damage severity and location can be recognised: the mild, the 

intermediate and the severe ischemic group.  Each of these responds 

differently in terms of survival ability and post operation recovery. In this 

experiment the modulation of the SVZ strongly affected the ability of the 

subgroups to respond to ischemia, by means the IDLV_GDNF increased 

life expectancy for the intermediate ischemic subgroup and improved 

conditions in the mild animals. The comparison with the control group, 

which lost all the intermediate and severe subjects during the first ten days 

post operation, resulted in a misleading data analysis by which the 

treatment with growth factors looked to reduce the neurological recovery. 

Some laboratories avoid complications like this by a selections of the 

subjects based on the location and the damage size severity (Smith, 
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Stroemer et al.). In this project, due to the limited number of animals 

available, a proper selection of the subjects with similar ischemic 

characteristics was not possible as it would lead to insufficient statistical 

power. For this reason an analysis of the first five days post-surgery was 

performed in order to have more subjects to compare with similar features 

(Figure 6.f24 and Figure 6.f25).  

 

The analysis of the animals that survived up to day 5 after MCAo and 

treated with LV_GDNF, showed a reduced ischemic phenotype (p=0.065) 

(Figure 6.f24).   

 

Accordingly the number of survivors with an intermediate severe 

lesion, and therefore a delay of the reduction of the inflammation process 

and brain restoration, the IDLV_GDNF as well as the IDLV_TTC injected 

groups presented a statistically significant increase of the inflammation 

volume,*p<0.05, Student’s t test (Figure 6.f10).  

 

Because the LV_shRNA_CyclinD1 lost many subjects with an 

intermediate severe lesion already during the first 5 days after MCAo, 

while the control group still had subjects with an equivalent damage at the 

same time point, the comparison between these two groups at early stage 

was considered misleading, since compared groups with different stroke 

severity and for this reason was not introduced in this manuscript. The 

analysis of the survivors after 30 days post MCAo resulted in more 

balanced conclusion because it only included milder subjects in both 

groups. 

 

The treatments differed in the survival proportion. Comparing to the 

control group that had a survival rate of 40%, the SVZ neurogenesis 

inhibition group (LV_shRNA_CyclinD1 injected) had only 33%, the 

neurogenesis augmented group (IDLV_GDNF) had 70% and the 

IDLV_TTC ended the experiment with 55% of subjects surviving. A 
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comparison between the effect of IDLV_GDNF and LV_shRNA_CycinD1 

showed there was a significant trend to increase or decrease (respectively) 

survival rate depending on how the neurogenesis of the SVZ responded, 

*p<0.05  (Figure 6.f28).  

 

The modulation of the SVZ produced variation in the animal’s life 

expectancy. The severity of the ischemia was negatively correlated with 

the number of days the subject survived after the injury, as the Spearman’s 

rank correlation coefficient proved for the LV_shRNA_Empty, **p<0.01 

with ρ=-0.86. The negative correlation can change in magnitude depending 

on the modulation of the progenitors proliferation in the SVZ; the 

neurogenesis boosting by IDLV_GDNF reduced the negative correlation 

with *p<0.05 and ρ= -0.644, while the LV_shRNA_CyclinD1 increased it 

with ***p<0.001 and ρ=-0.928. IDLV_TTC also reduced the negative 

correlation with *p<0.05 and ρ=-0.732 (Figure 6.f29).    

 

IDLV_GDNF injection close to the wall of the SVZ improved the 

natural response of neurogenesis to ischemia. The hypothesis that there is 

a positive linear correlation between the lesion severity and the ability of 

the SVZ to respond to ischemia was evaluated by a linear regression. 

Although it was not possible to assess a significant correlation between 

these variables in the control group, a strong correlation was statistically 

significant in the IDLV_GDNF treated group, *p<0.05 with R=0.68 by 

linear regression analysis (Figure 6.f18). Further studies on the correlation 

between the number of eGFP cells and the neurodegeneration volume 

demonstrated a strong relationship with ***p<0.001 and R=0.92; no 

correlation was found between the number green cells and the volume of 

glial scar, nor between the number of green cells and the volume occupied 

by activated  microglia (Figure 6.f19). 

 

The analysis of the body weight variation did not highlight any 

difference after the intracranial injections, even though the IDLV_TTC 
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treated group tended to have a reduced body weight already at this stage 

(part a) of Figures 6.f22 and 6.f27).  The neurogenesis boosting and 

inhibiting groups showed a trend to reduce the body weight recovery 

comparing to the control, this was particularly evident during the first 

week after MCAo. The group treated with the LV_shRNA_Cyclin D1 

presented a statistically significant reduced body weight at day 3 after 

1h_MCAo (part c) of Figure 6.f22), for which *p<0.05 was estimated by 

the Student’s t test. In addition, the animals treated with the IDLV_GDNF 

reduced the body weight at day 3 and 4 after 1h_MCAo, for which 

**p<0.01 was assigned by the Student’s t test (part d) and e) of Figure 

6.f27).   

 

The histology and behavioural analysis was validated by the 

Spearman’s rank Correlation Coefficient, which demonstrated a 

statistically significant data correlation, *p<0.05 with ρ=0.5 (Figure 6.f30). 
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7.1 DISCUSSION 
 

Neurogenesis occurs in physiological as well as pathological 

conditions and it has been demonstrated in rodents and mammals  

(Bovetti, Gribaudo et al.; Wang, Zhang et al.; Lennington, Yang et al. 

2003; Yamashita, Ninomiya et al. 2006). Although in physiological 

conditions the role of neurogenesis has mostly been clarified (Whitman 

and Greer 2009; Shruster, Melamed et al. 2010; Yoshizaki and Osumi 

2010), in pathological conditions, for example after stroke, it is still not 

completely understood.  

 

Neurogenesis occurs post ischemia, but the newly-generated neurons tend 

to die during the first two weeks after injury (Lindvall and Kokaia 2004). 

Moreover, the production of glial cell types from SVZ progenitors is also 

possible (Voigt 1989; Zhang, Zhang et al. 2004; Menn, Garcia-Verdugo et 

al. 2006)  

 

Determining the role of neurogenesis in the SVZ would allow a better 

understanding of the brain’s functions and help to guide possible 

therapeutic strategies to improve stroke patients’ conditions. Motivated by 

these reasons this project intended to compare the effect of positive and 

negative modulation of SVZ neurogenesis on the outcome following focal 

brain ischemia. 

 

The first achievement of this study was the production of an efficient 

cell cycle inhibitor system based on LVs, which was designed to be used in 

vivo to block proliferation of the SVZ progenitors. The system was centred 

on the inactivation of the Cyclin D1 protein, which is a vital participant in 

G1 phase of the cell cycle; the inhibition of the Cyclin D1 activity is 

responsible for to the cell cycle arrest (Fu, Wang et al. 2004; Lange and 

Yee 2011). 
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The first method tested was a dominant negative isoform of Cyclin D1 that 

was cloned into a third generation Lentiviral backbone, and packed into 

LVs. This strategy was not successful, possibly due to two unexpected 

extra mutations in the dominant negative Cyclin D1. The results from the 

in vitro studies did not show any convincing effect of the LV_dnCyclinD1 

on the NIH3t3 cell, evaluated by Western Blot and MTT cell viability 

assay. 

 

The second strategy adopted was based on a shRNA directed against the 

Cyclin D1 mRNA, originally cloned into a second generation Lentiviral 

backbone by Thermo Scientific and packed in LVs. This G1 blocking 

system was validated in vitro by Western Blot analysis and MTT cell 

viability assay. Both investigations in agreement showed down regulation 

of the target protein and an efficient effect on cell proliferation and 

apoptosis.   

 

The mouse MCAo model was evaluated by different occlusion times 

in order to achieve an optimal ischemic model for long-term study. These 

experiments were important to allow the best model selection and to 

optimize post-operative care strategies. As described by Modo et al. 

(2000), animal care after the ischemia is crucial for the achievement of a 

successful experiment (Modo, Stroemer et al. 2000); MCAo is a very 

invasive procedure that needs some careful post-operative care in order to 

maximize life expectancy. On the other hand the analysis of the occlusion 

time was pivotal to establish which model was the best in terms of high 

survival rate with sufficient ischemic damage.  

 

The MCAo is a very well established model, and has been in use since 

1975 (Robinson, Shoemaker et al. 1975). One of the major issues with the 

model is the reproducibility of the infarct incidence and the lesion severity 

(Bederson, Pitts et al. 1986). There have been many studies focused on 

developing tools to recognize the source of variability, and in turn modify 
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the experimental procedure to improve the model. In 1986 Bederson et al. 

tried to address the problem by looking at variation of cannula insertion in 

relation to the damage produced. They recognized that uniform severe 

infarction only occurred when the MCA was occluded from its origin to 

the junction with the inferior cerebral vein. When the occlusion started at 2 

mm proximal to the MCA origin, the uniformity of the damage in the 

group was already compromised (Bederson, Pitts et al. 1986). The Middle 

cerebral artery in the rodent is located on the surface of the olfactory tract; 

from this first tract multiple branches originate and diverge to supply blood 

to different brain regions. For example, the medial perforating and the 

leticulo-striate originate between the beginning of the MCA and the lateral 

edge of the olfactory tract; these branches provide blood to the posterior 

part of the caudate-putamen complex. Conversely the anterior part of the 

caudate-putamen complex receives blood from the lateral striated branches 

originating from the MCA and from the Hubner’s arteries that originate 

from the anterior cerebral artery (ACA) (Tamura, Graham et al. 1981). 

 

Considering the entry site for the cannula at the carotid artery level, the 

surgery is considered performed once the cannula reaches the beginning of 

the MCA at the level of the olfactory tract; a proper blockage at this point 

ensures that all branches are blocked as well. Although all surgeries are 

performed in the same way, and the cannula is held in place by a suture on 

the main carotid artery (close to the entry site), movements are still 

possible (for example due to a convulsion or animal rotation) and these can 

be responsible for sliding the cannula down from the original site.  

 

Although the two models investigated, the pMCAo and the tMCAo, are 

both considered highly variable, in the temporary occlusion the restoration 

of blood flow is responsible for augmenting the cerebral damage and 

introducing variability. The cerebral flux restoration or reperfusion, can 

produce physical (due to the effect of the restored flux high pressure on the 

cerebral tissue) and chemical (oxidative stress, ROS production from 
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mitochondria) damage (Jung, Kim et al. 2010). Each tMCAo animal can 

experience a completely different damage induced by reperfusion; this can 

be dependent on the pressure of the restored flux as well as the oxidative 

stress and the amount of the ROS can vary. These parameters are subject-

specific and are very likely responsible for the increased variability 

observed in the temporary occlusion model (Heiss 1987; Badruddin, Taqi 

et al. 2011) 

 

In this study the major concern regarding the permanent occlusion was the 

extremely high incidence of death observed during the first 36 hours. In 

addition, a proper recovery was not observed for the surviving subjects. 

Since this project originated with the intention of understanding the 

possible relationship between SVZ neurogenesis and recovery, we 

concluded that the temporary occlusion model (1 hour of occlusion) was 

the most suitable in terms of ischemic phenotype, long-term survival and 

recovery capability.  

 

The neurogenesis augmentation systems were based on IDLV 

encoding for a precursor GDNF or a TTC cassette. In previous 

experiments Dr. Ahmed, who produced these transfer plasmids, 

demonstrated the in vitro effectiveness for both systems. 

 

The use of the IDLVs to deliver either the GDNF or the TTC cassette, was 

driven by the needs to assess the effect of the SVZ neurogenesis rather 

than the effect of the growth factors on the ischemic areas. Since the IDLV 

does not integrate into the host genome, in mitotically active populations, 

such as the SVZ neurogenic islands, the vector should be diluted out 

through sequential cell divisions (Wanisch and Yanez-Munoz 2009). In 

addition, the progenitor cells that originate in the SVZ leave the 

neurogenic area to reach the ischemic boundaries. In such circumstances 

the IDLVs containing the growth factors GDNF or TTC should remained 

localized, and are supposed to promote proliferation only surrounding the 
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injection site. The LV carrying the eGFP cassette was co-injected with the 

IDLVs, integrates the viral DNA into the host genome and is retained 

through cellular proliferation. For this reason eGFP is detectable not just 

surrounding the injection sites, but also in the migrated population found 

in the ischemic regions and the OBs.  

 

          In order to prove the effect of the neurogenesis modulator systems 

based on LVs and IDLVs in vivo, normal c57/bl6 mice were injected at the 

beginning of the RMS. Three weeks later the animals were killed to detect 

and quantify NPCs migrated at OBs level; technique reported by 

Goncalves et al. 2007. 

 

Many laboratories have attested that GDNF improves post-ischemic 

recovery; it was widely applied to improve stem cell transplantation 

(Chen, Gao et al. 2009; Lee, Park et al. 2009; Shen, Li et al. 2010), to 

stimulate SVZ neurogenesis by intra-cerebral infusion (Dempsey, Sailor et 

al. 2003; Kobayashi, Ahlenius et al. 2006), and to reduce edema and 

infarct size (Abe 2003). All these studies proved an effect of the GNDF in 

ischemic condition, although a direct action on the NPCs multiplication 

was not yet proved. The treatment in absence of stroke demonstrated a 

direct effect of GDNF on the NPCs multiplication in ependymal layer, for 

which *p<0.05 was assigned (comparison to the control), analysis by the 

Student’s t test. 

 

The TTC fragment has been described as a factor involved in the 

relocation of exogenous GDNF and IGF-1 (mature isoform) to the 

extracellular space after translation, with the effect of improving survival 

of degenerating neurons in rodents (Larsen, Benn et al. 2006; Roux, Saint 

Cloment et al. 2006; Chian, Li et al. 2009; Li, Chian et al. 2009; Moreno-

Igoa, Calvo et al. 2012). In addition, it has been reported in an ALS mouse 

model to reduce the decline in hindlimb muscle innervation and in turn to 

delay the disease onset (Moreno-Igoa, Calvo et al. 2010). The purpose of 
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this study was to understand the possible applicability of the TTC fragment 

to stroke therapy. Although, due to the high variability it is not possible to 

completely exclude an augmentation of the SVZ neurogenesis after the 

TTC treatment and in absence of stroke, a significant effect was not 

statistically demonstrated. On the other hand, at least some of the subjects 

treated with the IDLV_TTC had a strong boost of the SVZ proliferation.  

 

The purpose of this study was to understand the importance of the 

endogenous neurogenesis occurring in stroke by inhibition of the NPCs 

cell cycle. Although some studies already attempted a similar investigation 

by localized irradiation of the SVZ cells (Lazarini, Mouthon et al. 2009; 

Achanta, Capilla-Gonzalez et al. 2012), this project has the merit to be the 

first achieved the sub-ependymal layer cell cycle inhibition by lentiviral 

vector. The advantage of this system is the specificity of the target by 

which only NPCs are affected by the treatment; only mitotic cells 

transcribed and transduce Cyclin D1 for the cell cycle regulation, ensuring 

no effect for the post-mitotic cells in the surrounding area. The injection at 

RMS level proved the strength of the cell cycle regulation by Cyclin D1; 

for instance the mRNA inhibition was able to almost completely inhibit 

NPCs multiplication, estimated by quantification of the migrated cells at 

OBs level, (***p<0.001, Student’s t test). 

 

         The neurogenesis modulation systems were used to assess the role of 

the SVZ proliferation on stroke recovery. In this study the vectors were co-

injected at SVZ level and the MCAo was performed fourteen days later. 

The animals’ behaviour was observed for one month to detect the influence 

of the treatments on recovery, and then an histological evaluation was 

performed in order to assess ischemia, and to detect in this area the neural 

progenitor cells SVZ derived. 

 

         The SVZ derived eGFP+ cells were found in the aci, aca, GrO, CPu, 

sensorimotor cortex, SVZ and corpus callosum. The maximum distance 
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from the SVZ, where the migrated eGFP expressing cells were found, was 

in the cortex, 1.87 mm away; this long migration was in agreement with 

preceding publications (Yamashita, Ninomiya et al. 2006; Zhang, 

LeTourneau et al. 2007; Kreuzberg, Kanov et al. 2010; Young, Brooks et 

al. 2011).  

 

In accordance with the literature, we recurrently found eGFP positive cells 

toward the aca (Gotts and Chesselet 2005).  Moreover as shown in Figure 

6.f9, the DCX positive cells migrating from the ependymal layer at the 

bottom of the third ventricle, to the aca ventrally localized, suggest a 

possible migratory pathway induced after ischemia. In agreement with 

previous publications, we hypothesized that at least some of the cells 

utilized the aca for migration, similarly with the migration occurring 

through the corpus callosum in the same conditions (Imitola, Raddassi et 

al. 2004; Gotts and Chesselet 2005). 
 

As described before, we found migrated cells in the cortex and striatum; 

moreover eGFP positive cells were localized across the corpus callosum 

and anterior commissure. It might be possible in addition to the radial 

migration; the NPCs use the commissure and the corpus callosum as “free 

way” to drive into the neuronal tissue and reach the ischemic environment.   

 

As Yamashita et al reported previously, some of the cells migrated from 

the SVZ were found in the ischemic cortex and striatum were spread 

through the tissue, while others were grouped-like neurogenic islands 

(Yamashita, Ninomiya et al. 2006). 

 

In agreement with previous in vivo and in vitro experiments, the LVs and 

IDLVs efficiently affected the SVZ progenitors multiplication; this was 

estimated based on the number of the eGFP positive cells migrated in the 

ischemic environment after ischemia. The animals pre-treated with 

LV_shRNA_CyclinD1 presented an extremely reduced number of eGFP 
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positive cells in the ischemic regions, for which **p<0.01was assigned. 

Conversely, a statistically significant increase of eGFP positive cells was 

estimated for the animals treated with IDLV_GDNF, *p<0.05.  The 

IDLV_TTC, as already reported in the previous in vivo experiment, 

showed an extremely high variability; in addition the low number of 

survivors (n=10, 5 survivors) did not allow any reliable estimation of the 

treatment effect. For these reasons and although the increased variability 

within the survival fraction, it was not possible to evaluate the effect of the 

treatment. These analyses were performed by the Student’s t test. 

 

In the IDLV_GDNF treated group the number of eGFP+ cells migrated 

into the ischemic regions after stroke was positively correlated with the 

damage volume, *p<0.05 with R=0.68, by linear regression analysis.  

Moreover, a further analysis between the eGFP+ cells and each specific 

component of the ischemic environment, revealed a strong correlation 

exclusively with the neurodegeneration fraction (core region), ***p<0.001 

and R=0.92, but not with the glial scar or the microglia covered volume. 

From the literature, it is known that SVZ proliferation is highly regulated 

by factors and compounds acting over long distances. This regulation 

occurs lifelong in physiological conditions; for example, the OBs induce 

multiplication and migration of the SVZ progenitors toward the RMS 

(Kazanis 2009). In a very similar way and in pathological conditions, for 

example after stroke or a traumatic brain injury (TBI), the SVZ progenitors 

are induced to multiply and migrate toward the lesion area (Kernie and 

Parent 2010; Luzzati, De Marchis et al. 2011).  It is also well known that 

the ischemic environment produces factors involved in controlling SVZ 

proliferation and migration (Salazar-Colocho, Lanciego et al. 2008; 

Whitney, Eidem et al. 2009; Yoneyama, Shiba et al. 2011). Since diverse 

cellular populations compose the ischemic environment, the data presented 

in this study support the hypothesis of a tight regulation of SVZ 

proliferation dependent on the core region (neurodegenerative area). It 

might be possible that, analogue to the activated astrocytes that produce 
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chemokine like SDS-1 to induce migration of the NPCs, the core region 

acts long distance on the ependymal cells proliferation (Hill, Hess et al. 

2004; Jaerve and Muller 2012; Wang, Huang et al. 2012). 

 

The pre-treatment of the SVZ with the IDLV_GDNF increase the 

survival rate while LV_shRNA_Cyclin D1 reduced it; the survival curves 

in these two groups were statistically different. Moreover, the life 

expectancy, defined as the ability to survive with a defined ischemic 

status, was increased when subjects were treated with IDLV_GDNF, as 

well as it decreased when the treatment was LV_shRNA_CyclinD1.         

 

Take in consideration the limited investigation power allowed by the 

selected behavioral test (0-28 focal deficit test), the groups were analyzed 

and compared using non-parametric statistic. MCAo animals previously 

injected with the LV_shRNA_CyclinD1 were compared to the control 

group for the sensorimotor phenotype. The analysis demonstrated a 

significant increase in the ischemic phenotype and delay of recovery 

evaluated by the Mann-Whitney rank sum test, *p<0.05. This analysis was 

performed on the fraction of survivors.  

 

MCAo animals previously injected with the IDLV_GDNF or IDLV_TTC 

and survived for thirty days after the ischemia were initially evaluated for 

the sensorimotor impoverishment. From this preliminary investigation, the 

groups treated with the growth factor and TTC had a significant reduction 

in the sensory-motor performance when compared to the control  

(**p<0.01 for IDLV_GDNF and ***p<0.001 for IDLV_TTC).   

Considering the survival rate (70% in the GDNF and 55% in the TTC 

versus 40% in the control) and the improvement of the life expectancy, but 

conversely the reduced post-operative body weight and the significant 

increase in inflammation volume, we hypothesize a selection agent 

affected the survival fraction in these groups. Despite the longer survival, 

these subjects were still highly ischemic, while the same sub-population in 
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the control group was already dead after the first week post MCAo. In 

these conditions the comparison between groups was highly unbalanced 

because attempted to compare subjects with different brain damage 

severity (and different location), which may have significantly skewed the 

results. Following on this, the animals that survived at least until day 5 

after ischemia were analysed for the sensorimotor behaviour. Under these 

circumstances, is our belief that both groups included a more heterogenic 

ischemic population with similar characteristics (as at this stage the 

intermediate severity subjects in the control group were still alive). The 

sensory-motor recovery for the survivors of the GDNF treated group that 

were alive up to day five, although did not prove a statistically significant 

improvement in comparison to the control group, showed a clear trend to 

recovery.  

 

        Although IDLV_GDNF improved animal healing, a complete 

recovery was not observed for all surviving subjects, especially the ones 

with severe ischemic damage. However, the rate of sensorimotor recovery 

varied, being proportional to the initial damage, and faster in IDLV_GDNF 

treated subjects. From the animals’ observation, it looks reasonable to 

postulate that the modulation of the SVZ affected mostly the ability to 

survive more than the motor recovery. In addition, and in agreement with 

the literature, the pre-treatment with GDNF reduced the severity of the 

ischemia within the group, highlighting a protective effect from ischemia 

onset and progression (Yu, Liu et al. 2007; Chu, Wang et al. 2008).  

 

The histological analysis did not show any sign of tissue re-building, 

which taken together with the disperse location of the migrated cells seems 

to suggest a different role of the NPCs in stroke. The data from the 

survival proportion, life expectancy and sensorimotor behaviour suggest 

the SVZ is an important factor involved in recovery. In addition the 

number of eGFP positive cells estimated in the ischemic boundaries was 

not big enough to justify such a large effect on animal survival. For these 
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reasons we cannot exclude a role of these cells on the animal healing 

process; it seems reasonable to postulate an indirect influence of the SVZ 

progenitors on the ischemic lesion. It might be the case that these cells are 

involved in brain restoration by producing growth factors in turn 

responsible to improve neuronal survival, and branching in the penumbra 

area.  

 

        Many studies are currently focused on brain repair by stem cells 

transplantation or improvement of the endogenous neurogenesis by growth 

factors therapy. Although some of them involving human and animal 

models demonstrated neurological improvement, the efficiency and 

potentiality of the treatment as well as the mechanism of action is still not 

clarified (Dibajnia and Morshead 2012; Maucksch, Vazey et al. 2012; 

Oliveira, Pillat et al. 2012; Sakata, Narasimhan et al. 2012; Song, 

Mohamad et al. 2012). One of the major issue of stem cells transplantation, 

is the engrafted cells survival, between 5 and 10% of the originally 

transplanted cells; this makes even more difficult to comprehend how the 

treatment could have any effect on the neurological outcome (Fainstein, 

Cohen et al. 2012; Mora-Lee, Sirerol-Piquer et al. 2012; Wang, Forsythe et 

al. 2012). Many of these researches failed to prove a proficient tissue re-

building, leaving open the doubt of a real effect of the treatment over the 

sometime weak proves for the neurological enhancement. Something to 

keep in mind and suggested from this thesis, is the possibility of a different 

action of the endogenous neurogenesis in the healing process. In addition, 

the functionality of the NPCs (endogenous and exogenous) might go over 

the “simple” tissue formation, and we might need to start looking at the 

phenomena under different light and prospective. 

 

The ability to repair by replacement is not necessary the only way for 

recovery, and if it is very efficient for the majority of the organs healing 

process, it might not applicable for the Nervous System. The Nervous 

System is matter of memories and connections built up in a lifetime, 
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repairing by replacement might not be the most efficient way to heal. The 

neurological significance of a neuron is not just the ability to receive input 

and release output, but the specificity of the connections and excitability is 

like a code that reflects the organism regulation. It is very possible that the 

system receives more benefit by enhancing plasticity rather than replacing 

dead neurons. Under this light an improvement of this study with a bigger 

number of subjects and a proper selection of the behavioural tests would 

better clarify the brain healing potentiality and open new strategies for 

brain restoration.  

 

 

7.2 TROUBLESHOOTING 
 

During the project development a number of issues rose up; in this session 

I will describe some of the problems met and trouble shutting.    

 

         The analysis in vitro of the LV_dnCyclinD1 did not clarify the 

effectiveness of the mutant. Although the cell cycle analysis was 

performed at different time points after transduction, the efficacy of the 

mutant was not proved or clarified.  The major issue with the experimental 

design used, was the absence of an inducible promoter to drive the 

dnCyclinD1 expression, combined with an antibiotic resistance gene for 

selection. These two modifications on the transfer plasmid would make 

possible the selection of an uniform population that is efficiently 

transduced, in addition to a better control of the transgene transcription at 

the desired time point. The predicted effect would be to reduce issues 

related on selection agents on the non-transduced fraction, over the portion 

that activates the mutant and reduce or block the cell cycle. The non-

transduced fraction will always have a faster or active cell cycle leading a 

time dependent amplification (the NIH3t3 doubling time is 2 days), in turn 

affecting protein and viability analysis of the whole system (transduced 

and non-transduced fraction). 
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 In vivo behavioural examination was limited by a not exhaustive test, 

only able to detect a portion of the damage produced by 1h_MCAo. The 

analysis of the sensorimotor phenotype was assessed based on the 0-28 

focal deficit test, which allows evaluation of damage located in the 

sensorimotor cortex and striatum. Because the lesion of many subjects 

extended to the hippocampus, the behavioural analysis performed was not 

sufficient to evaluate the whole effect of the ischemia, and perform a 

proper comparison. Although the MCAo model is known to induce 

damage to the striatum and sensorimotor cortex, as the literature reported, 

the most severe ischemic subjects can show damage extended also to the 

hippocampal formation and hypothalamus (Liu, Solway et al. 1998; 

Gerriets, Stolz et al. 2003; Nikonenko, Radenovic et al. 2009; Li, Pang et 

al. 2012). For a proper evaluation of the model, subject selection based on 

damage severity and location, in addition to proper behavioral tests is 

strongly recommended. Alternatively, the use of an heterogenic battery of 

tests needs to be performed. Considering these factors, the model could 

have been more exhaustively analyzed with further tests like the Morris 

water maze, the 8 arms radial maze or the t-maze (Hodges 1996; Sharma, 

Rakoczy et al. 2010; Nikbakht, Zarei et al. 2012).  

 

   Ultimately, the statistic power was very small due to the reduced 

size groups performed. The number of subjects used in an experiment 

depends on the survival fraction expected at the end of the treatment. In an 

animal study (especially when the behavior is evaluated) a minimum of 10-

15 subjects (survivors) is recommended. On the light of the survival 

fraction estimated by this project a minimum number of 30-32 animals per 

group would have been advisable (especially for the SVZ inhibition 

group).   
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