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Abstract 

Familial Alzheimer‟s disease is often caused by mutated forms of one of two 

highly related presenilin proteins. In order to unravel the effects on signalling 

pathways caused by these aberrant proteins, a model is required in which all 

wild-type presenilin protein activity is deleted to enable the investigation of 

disease-related signal transduction. Deletion of both mammalian presenilin 

genes is highly problematic, as gene deletion causes lethality at an early 

embryonic stage. Therefore, this current study set out to develop a model 

system to aid the understanding of presenilin protein signalling. 

 

Dictyostelium discoideum is the simplest biomedical model possessing two 

presenilin homologues (PsenA and PsenB). Deletion of either D. discoideum 

presenilin gene did not cause an aberrant developmental morphology, however, 

deletion of both presenilin genes led to a severe developmental phenotype. This 

phenotype was rescued by reintroducing D. discoideum psenB, suggesting a 

compensatory mechanism of both D. discoideum presenilin proteins.  

 

Functionality of this model in the analysis of the human PS1 (hPS1) was shown 

through expression of hPS1 in the D. discoideum presenilin null background. 

hPS1 expression restored wild-type development, suggesting the human 

protein is functional in D. discoideum. A conserved function between human 

and D. discoideum proteins was established through a Notch cleavage assay. 

Analysis revealed that both D. discoideum presenilin proteins were able to 

cleave Notch, confirming a functional conservation.  

 

Calcium dysregulation has previously been linked to FAD and presenilin 

proteins. The work presented here revealed that calcium influx into the cytosol 

was significantly upregulated in D. discoideum presenilin mutant cells. 

 

This study is the first to describe a conserved function between human and D. 

discoideum presenilin proteins. This model provides therefore an excellent 

system to further investigate cellular roles of human presenilin in basic cell 

function and disease-related signalling.    
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Chapter 1 

Introduction 

1.1 Alzheimer’s disease 

Alzheimer‟s disease (AD) is the most prevalent form of dementia and was first 

described by Alois Alzheimer in 1907. Dementia currently affects 26 million 

people worldwide and is predicted to rise to 90 million cases in 2050 worldwide 

if no cure or prevention is being found (Maccioni et al., 2001; Brookmeyer et al., 

2007). The majority of AD cases are sporadic (late-onset) and occur after the 

age of 65. The cause(s) of sporadic AD are still unknown but genome-wide 

studies have identified genes which increase the likelihood of developing 

sporadic AD, such as apoE4, which was shown to increase the risk by ~60% by 

the age of 85 (Bertram et al., 2010). This degenerative disease and the 

resulting demand of care stretches national health insurance services and the 

financial burden of dementia amounts to £17 billion a year in the UK (Knapp 

and Prince, 2007).  

1.2 Symptoms  

AD causes the loss of brain mass through a decline in neurons of the 

hippocampus and cortex (Huang and Mucke, 2012). Patients display a 

substantial pathogenesis and neuronal loss before onset of symptoms, and the 

disease progress can be divided into three stages (Terry and Davies, 1980):  

1. Mild dementia, also referred to as mild cognitive impairment (MCI), can 

last up to 4 years after onset. It includes symptoms such as difficulties 

with abstract thinking and language, poor reasoning, depressions, and 

memory loss along with mood swings.  

2. Moderate dementia can last up to 10 years and include symptoms such 

as amnesia, aggression and loss of fine motor skills. At this stage, 

patients require carers.  

3. Severe dementia is the stage in which patients are bedridden, fully 

dependent on carers and suffer from exhaustion and apathy. This stage 
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may last up to three years before patients die of secondary causes such 

as pneumonia.  

1.3 Hypothesis of pathogenesis 

The cause(s) of the loss of brain mass in AD that lead to cognitive decline is yet 

to be unravelled. However, post-mortem analysis of patient brains identified two 

major pathological changes. Neurofibrillary tangles are found within neuronal 

cells and amyloid plaques are found in extracellular spaces (Huang and Mucke, 

2012). Further, numerous biochemical changes are observed such as oxidative 

stress and neuroinflammation (Selkoe, 2011). Whether amyloid plaques and 

neurofibrillary tangles are the cause or consequence of AD remains to be 

determined.   

1.3.1 Amyloid hypothesis 

Accumulations of extracellular amyloid proteins consist of conglomerates of 4 

kDa peptides with beta sheet structures that derive from a transmembrane 

protein, the amyloid precursor protein (APP). Three enzyme complexes which 

process APP proteins have been identified and are directly linked to the 

aggregation of amyloid plaques: α-secretase, β-secretase and γ-secretase 

where the latter contains presenilin 1/2 (PS1/PS2), anterior pharynx defective 

(Aph), presenilin enhancer 2 (pen-2) and nicastrin (Huang and Mucke, 2012). 

The cleavage of APP can occur in a non-amyloidogenic and an amyloidogenic 

pathway. The non-amyloidogenic pathway involves α-secretase cleaving APP 

which gives rise to a large N-terminal fragment (aAPPα) that is released into the 

extracellular space (Fig. 1.1). The C-terminal is then processed by γ-secretase 

to produce a short p3 fragment and the amyloid intracellular domain which acts 

as a transcriptional factor (Selkoe, 1997). 
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Fig.1.1 Amyloid precursor protein processing. In the non-amyloidogenic pathway APP is 
cleaved first by α-secretase and then by γ-secretase to produce AICD, sAPPα and p3. The 
amyloidogenic pathway leads to β-secretase cleavage followed by γ-secretase cleavage 
generating AICD, sAPPβ and Aβ (36-43) fragment which can then aggregates to form plaques. 

 

In the amyloidogenic pathway however, β-secretase (termed BACE) cleaves 

APP and the product (sAPPβ) is released into the extracellular medium (Fig. 

1.1). The remaining fragment is then cleaved by γ-secretase and Aβ peptides 

are produced ranging from 36-43 amino acids (Laferla et al., 2007). Aβ40 and 

Aβ42 are the predominant isoforms with the shorter isoform being the more 

common one and the longer isoform the more fibrillogenic (more likely to 

develop fine fibrils). In AD, a shift towards the amyloidogenic pathway takes 

place causing an alteration in the Aβ42 to Aβ40 ratio that leads to an 

accumulation of Aβ42 and extracellular plaques are formed (Gotz and Ittner, 

2008). In addition to extracellular Aβ, soluble Aβ fragments within neurons have 

been identified and mounting evidence suggests that the neurotoxic effects are 

linked to several biochemical dysregulations in AD brains (Laferla et al., 2007; 

Swerdlow, 2011). 

Genetic analysis has shown that mutations in APP, PS1 and PS2 can cause 

autosomal dominant AD where mutations trigger an increase of Aβ42 fragments 

thus leading to amyloid plaque deposition (Gotz and Ittner, 2008). This rare 

form of AD is termed Familial Alzheimer‟s Disease (FAD) which shares the 

common pathological hallmarks with the sporadic form of AD but has an onset 

of disease from as early as 20 years of age. Thus, patients are considered to 

have FAD if the disease has been diagnosed before the age of 65 and genetic 
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mutations in AD-associated proteins have been established (Maccioni et al., 

2001).  

1.3.2 Tau hypothesis 

As recently as the 1980s, tau, a micro-tubule-associated protein, was 

discovered to be a core protein of intracellular neurofibrillary tangles (Maccioni 

et al., 2001). Researchers have since tried to unravel the clinical importance 

and cellular pathways of tau regulation. It was found that tau is phosphorylated 

by serine/threonine kinases such as glycogen synthase kinase-3 beta (GSK-3β) 

that aids the assembly and stabilisation of microtubules (Hanger and Noble, 

2011).  In the AD diseased brain, hyperphosphorylation of tau leads to its 

dissociation from microtubules leading to aggregation and the formation of 

highly insoluble tangles (Wang et al., 2007). PS1 has been shown to interact 

and regulate tau phosphorylation through GSK-3β, as FAD mutations in PS1 

were found to hyperphosphorylate tau and promote tau tangle aggregation 

(Takashima et al., 1998). Tau tangles have also been linked to mitochondria 

dysregulation affecting the electron transport chain and ATP production similar 

to that seen with Aβ (Ittner et al., 2011). After decades of independent research 

investigations into tau and Aβ, a link between these proteins has only been 

recently proposed (Nicholson and Ferreira, 2009). It was shown that Aβ 

increases neuronal calcium concentrations leading to the activation of kinases 

that in turn hyperphosphorylate tau leading to tau aggregations within the 

neuron (Wray and Noble, 2009). The recent understanding of a tau and Aβ 

interaction further supports the complexity of AD and requires ongoing research 

efforts in order to find therapeutic agents targeting both proteins (Selkoe, 2011). 
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1.3.3 Hypothesis of neuroinflammation 

In recent years, researchers in the field of AD have begun to widen their 

investigations outside of tau and Aβ, into inflammation processes which may 

lead to neuronal loss. Here, microglia activation has gained considerable 

attention as it is a universal feature of AD and other neurodegenerative 

diseases and head trauma (Tuppo and Arias, 2005). Microglia cells form part of 

the immune response of the brain and Aβ has been shown to activate microglia 

phagocytosis which in turn clears plaques. However, microglia cells have been 

found to accumulate fragmented DNA which may originate from neuronal injury 

and death (Mrak, 2012; Li et al., 2004). It has been proposed that microglia 

activation is initially beneficial in plaque clearance but overexpression of pro-

inflammatory cytokines at cytotoxic levels causes acute neuroinflammation, 

formation of tangles and neuronal death (Mrak, 2012).  Pro-inflammatory 

cytokines have also been linked to calcium dysregulation within neurons and 

subsequent microglia activation. Furthermore, Aβ has been suggested to 

stimulate calcium dependent secretory phospholipase A2 resulting in production 

of arachidonic acid which is then converted into pro-inflammatory eicosanoids 

which then causes neuronal damage (Paris et al., 2000).  

1.3.4 Mitochondrial dysfunction and oxidative stress 

hypotheses 

Another hypothesis of AD aetiology surrounds the neurotoxic effects caused by 

intracellular Aβ causing calcium dysregulation leading to mitochondrial and 

synaptic dysfunction and oxidative stress (Hauptmann et al., 2006). Oxidative 

stress and mitochondrial dysfunction have therefore become a new focus of 

research in the AD field. It has been shown that intracellular soluble Aβ binds to 

mitochondria and even accumulates in mitochondria, leading to dysregulated 

cell functions and cell death. Aβ has been shown to negatively regulate 

amyloid-binding alcohol dehydrogenase in mitochondria and increased levels of 

hydrogen peroxides and decreased ATP production (Muirhead et al., 2010). 

Further, it has been reported that Aβ interacts directly with cyclophilin D on 

mitochondria that in turn causes calcium dysregulation in mitochondria and 
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therefore alters synaptic function (Readnower et al., 2011). Aβ has also been 

suggested to increase reactive protein species which inhibit mitochondrial 

enzymes such as cytochrome oxidase leading to electron transport chain 

dysfunction and cell death (Casley et al., 2002).  

Despite numerous studies reporting cellular dysregulation affecting numerous 

signalling pathways, the underlying cause of AD is yet to be determined. 

Therefore, to help unravel the underlying cause(s) of AD the linking factor(s) 

between the observed biochemical alterations need to be found.  

1.4 Diagnosis and treatment 

The lack of definite diagnostic tools and biological markers makes the diagnosis 

of AD difficult. A combination of neurological and psychiatric tests are currently 

employed to diagnose AD, however only a post mortem analysis of brain tissue 

gives unambiguous results (Mayeux, 2003). To date, no cure has been found 

but therapeutic agents have been marketed such as Memantine and Donezepil 

which target NMDA receptors or inhibit cholinesterase and improve cognitive 

functions (Salawu et al., 2011). Immunotherapy is a new strategy in defeating 

AD and pre-clinical studies in transgenic APP mice have shown a clearance of 

Aβ plaques but not intracellular Aβ and tau plaques (Schenk et al., 1999; 

Delrieu et al., 2012). However, translation into human clinical trials did not yield 

the expected results as plaque clearance did not improve the cognitive decline 

or side effects caused the trials to be haltered (Delrieu et al., 2012). 

Nevertheless, development of immunotherapies against plaques and tangles 

continues with some trial outcomes still outstanding. 

1.5 Presenilin 

In mammalian systems, presenilin proteins have been shown to interact with a 

variety of molecules, thus regulating a multitude of signalling pathways. 

Presenilin proteins are multipass transmembrane aspartic endopeptidases and 

act either as the catalytic core of the γ-secretase complex or via γ-secretase 

independent functions (McCarthy et al., 2009). For the γ-secretase complex to 
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assemble, presenilin proteins are required to undergo endoproteolytic cleavage 

within exon 9 before they can associate with anterior pharynx-defective 1 

protein (Aph-1), presenilin enhancer 2 protein (PEN-2) and nicastrin (De 

Strooper, 2003). It has been shown that both presenilin proteins can act as the 

catalytic core of the γ-secretase complex but PS1 has been shown to be more 

active in APP cleavage than PS2, suggesting overlapping but yet distinct 

biological processes (Lai et al., 2003). These results were supported by the 

weaker developmental phenotype in mice lacking PS2-/- when compared to PS1-

/- mice (van Tijn et al., 2011). The multimeric γ-secretase complex is responsible 

for intramembranous cleavage of type I transmembrane proteins such as APP 

and Notch-1. To date, no uniform target recognition sites for cleavage have 

been identified for the γ-secretase complex but the multitude of reported 

substrates suggests a variety of target sites (McCarthy et al., 2009). γ-secretase 

independent functions for presenilin proteins have emerged but only very few 

mechanisms have been identified (Parks and Curtis, 2007). One of the best 

established examples is Wnt-mediated signalling where PS1 acts as a scaffold 

protein and promotes β-catenin phosphorylation and ultimate degradation (Koo 

and Kopan, 2004).  

1.6 Presenilin in Alzheimer’s disease 

Presenilin proteins have been linked to FAD due to the discovery of 185 point 

mutations in PS1 and 13 mutations in PS2 in FAD patients. However, not all 

reported mutations appear to have a pathological nature (Cruts and Van, 1998).  

A dominant negative FAD mutation can be caused by insertion, deletion or 

substitutions of nucleotides resulting in a change of amino acid sequence. The 

mean age of FAD onset is dependent of the position of the mutation, and can 

be as early as 20 years of age with 35 years being the mean age of death 

(Rogaeva et al., 2001). Most of these mutations have been found to increase 

the Aβ42 to Aβ40 ratio through the γ-secretase complex and amyloidogenic 

pathway. Further, FAD mutations cause biochemical and pathological changes 

which mirrors those observed in sporadic AD. Therefore, understanding of the 

basic cellular roles of presenilin and their role in disease may help to unravel 

the underlying cause of AD and may potentially offer a therapeutic target for 
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drug development studies. To date, presenilin proteins have been linked to a 

multitude of signalling pathways and a selection of these are discussed in detail 

in the current study. 

1.7 Signalling pathways affected by presenilin dysregulation 

1.7.1 Notch signalling 

Notch is a transmembrane receptor that, when cleaved, gives rise to an 

intracellular domain that regulates gene transcription (Robey, 1997). A role for 

presenilin-dependent Notch cleavage was first found in Caenorhabditis elegans 

where deletion of presenilin produced the same phenotype as the mutant 

lacking the Notch homologue (Levitan and Greenwald, 1995). Notch itself has 

first been discovered in D. melanogaster and has since been shown in various 

systems to play a critical role in neuronal development and in the adult brain a 

role in neurogenesis and neuritic growth (Woo et al., 2009; Selkoe and Kopan, 

2003; Robey, 1997). There are four isoforms of the Notch protein (1-4) which 

are predominantly expressed in the hippocampus and are involved in learning 

and memory which are both affected in AD patients (Berezovska et al., 1998).  

Notch are single pass integral type I receptors and undergo a series of cleavage 

events (Woo et al., 2009). The first cleavage (S1) is carried out by a furin-like 

convertase and generates a mature Notch receptor on the cell surface (Fig. 

1.2). Delta like or Jagged ligands of neighbouring cells then bind the mature 

Notch receptor which allows cleavage by tumor necrosis factor alpha converting 

enzyme (TACE; S2). This then allows the last cleavage event by the γ-

secretase complex (S3), which generates the Notch intracellular domain 

(NICD). This subsequently translocates into the nucleus where it interacts with 

the C-promoter binding factor-1 (Woo et al., 2009). Presenilin proteins play a 

key role as part of the γ-secretase complex in Notch cleavage, as S3 cleavage 

is significantly reduced if not completely abolished in the presence of selected 

FAD mutations (Moehlmann et al., 2002). These findings together with the 

involvement of Notch in neurogenesis and memory suggest presenilin and 
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Notch proteins as an interesting target to investigate the cognitive decline in AD 

patients. 

 

 

Fig.1.2 Notch reporter cleavage by Tumor Necrosis Factor Alpha Converting Enzyme (TACE) 

and γ-secretase. A ligand binds to the mature Notch receptor which allows the S2 cleavage by 
TACE and the shedding of the extracellular domain. The γ-secretase performs then the S3 
cleavage, releasing the Notch Intracellular Domain (NICD) which translocates to the nucleus. 

1.7.2 Wnt signalling 

Several FAD mutations in PS1 potentiate neuronal death through a 

dysregulation of β-catenin via the Wnt pathway, making this protein interaction 

interesting to the Alzheimer‟s disease research community (Zhang et al., 1998). 

Wnt signalling has been shown to regulate embryogenesis, neurotransmitter 

release and neuronal plasticity (Murayama et al., 1998). The Wnt protein was 

first described in D. melanogaster where its binding to frizzled receptors leads 

to a stabilisation of β-catenin within the cell, allowing translocation to the 

nucleus to control gene transcription (Sharma and Chopra, 1976). For this 

process, Wnt requires frizzled receptor binding, which in turn activates a 

dishevelled protein (Dsh) that associates with Axin at the receptor (Fig. 1.3). 

The association of Axin with the promoter prevents phosphorylation of β-catenin 

through the GSK-3β/Axin/APC complex and degradation by polyubiquitination 

and proteasomes (Logan and Nusse, 2004). Soriano et al. (2001) has shown 

that PS1 interacts with β-catenin and as deletion of PS1 led to a decrease in 

ubiquitination and therefore stabilisation of β-catenin. Since accumulation of the 
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phosphorylation of β-catenin took place in PS1 deficient cells, the authors 

concluded that PS1 interacts directly with ubiquitin ligase (Soriano et al., 2001). 

Presenilin proteins have also been shown to act as a scaffold that regulates β-

catenin stabilisation via a non-canonical Wnt pathway (Boonen et al., 2009). 

This process involves PS1, protein kinase A (PKA) and GSK-3 which leads to 

the phosphorylation and degradation of β-catenin (Kang et al., 2002). Here it 

was shown that mouse fibroblasts lacking PS1 present a hyperproliferation 

phenotype due to the lack of β-catenin degradation (Soriano et al., 2001). 

Further, it was shown that γ-secretase inhibitors (inhibiting the catalytic activity 

of presenilin proteins) did not affect this β-catenin regulation, suggesting that 

this process is a γ-secretase independent process (Meredith, Jr. et al., 2002).  

 

 

Fig.1.3 The Wnt signalling pathway. In the absence of Wnt binding to the frizzled receptor, 
APC, Glycogen Synthase Kinase 3β (GSK) and Axin bind and phosphorylate β-catenin. This 
phosphorylation lead to the ubiquitination and degradation of β-catenin and PS1 is proposed to 
regulate this process. Upon Wnt binding, dishevelled protein (Dsh) promotes Axin to the 
receptor which leads to a destabilisation of the APC/GSK-3/Axin complex and stabilisation of β-
catenin, allowing translocation to the nucleus. 
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1.7.3 Calcium signalling 

Calcium dysregulation has also been associated with neurodegeneration 

involved in AD. Oxidative stress and metabolic dysfunction are important 

contributors to the elevated neuronal calcium levels which are likely to cause 

neuronal excitation and synaptic death (Mattson and Chan, 2003). The 

endoplasmic reticulum (ER) regulates cytosolic calcium levels by acting as a 

calcium store and calcium store overloading was shown in AD models (Ito et al., 

1994; Supnet and Bezprozvanny, 2011). As presenilin proteins localise to the 

ER it has been thought that they play a role in calcium homeostasis (Mattson, 

2010). Several different mechanisms have been proposed for this (Fig. 1.4): 

It has been shown that PS1 interacts with both the inositol (1,4,5) trisphosphate 

(IP3) receptor and ryanodine receptor (RyR), and an increased calcium release 

into the cytosol has been recorded with FAD mutations or deletion of presenilin 

proteins (Tu et al., 2006a; Cheung et al., 2008). Although, the exact mechanism 

of this regulation is still unknown, Tu and collegues (2006a) suggested that 

presenilin proteins form calcium leak channels independent of the γ-secretase 

complex. These calcium leak channels are proposed to regulate steady-state 

ER calcium levels which in the presence of FAD mutated presenilin proteins 

results in high intraluminal and low cytosolic calcium concentrations. This 

hypothesis has however been recently challenged by Shilling et al. (2012) as 

they were unable to find corroborative evidence. Despite this conflicting 

evidence, calcium dysregulation is a major hallmark of AD and is likely to cause 

cell death. This outlined research has provided a direct link between calcium 

homeostasis and presenilin proteins making further investigations necessary.   

 

 



Chapter 1 

 24
 

 

Fig.1.4 ER calcium signalling controlled by PS1. Schematic diagram of selected mechanisms 

through which PS1 regulates calcium homeostasis. PS1 interacts directly with the inositol 
(1,4,5) trisphosphate (IP3) and ryanodine receptor (RyR), thus regulating calcium (black dots) 
release from the ER. Furthermore, PS1 itself has been shown to channel calcium from the ER 
into the cytosol through formation of a leak channel.  

1.8 Presenilin models 

Despite the difference in risk factors for sporadic and inherited forms of AD, 

presenilin proteins are directly linked to the histopathological changes observed 

in both forms of AD. Thus, understanding the physiological role of presenilin 

proteins in their normal and aberrant forms is of high importance to help 

understand AD and potentially provide a novel drug target. 

To date, mice are the most widely used model to understand presenilin proteins 

and their downstream signalling. Despite advances in developing this research 

model over the last years, it should be noted that mouse models do not exhibit 

neurofibrillary tangles and only seldom neuronal loss, although plaque formation 

can be assessed in FAD transgenic mice (Hall and Roberson, 2011; Qing et al., 

2008). Notwithstanding the recent advances in the discovery of therapeutic 

agents, the basis of presenilin signalling in AD pathologies is yet to be fully 

established.  To investigate presenilin signalling, both presenilin genes need to 

be deleted in order to establish signalling pathways and proteins controlled by 

presenilin proteins.  This however, proves difficult in mice as both presenilin 

genes are expressed throughout embryogenesis into adulthood. Deletion of 

both ps1 alleles has been shown in mice to be perinatal lethal and down-

regulatory to the Notch pathway resulting in a neuronal loss (Shen et al., 1997; 

Handler et al., 2000). The mouse model lacking both ps2 alleles does not 

present a severe phenotype. The ideal model lacking both alleles of ps1 and 
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ps2 is not viable, resulting in embryonic death with neural tube disorganisation 

through a disruption of Notch signalling in early development (Donoviel et al., 

1999). One way to overcome this has been suggested using a conditional 

model lacking both alleles of ps1 and ps2 only in the forebrain, allowing 

investigations into neuronal atrophy and altered cognitive behaviour after 10 

months when amyloid plaques have formed (Feng et al., 2004; van Tijn et al., 

2011).  

Several non-mammalian models have also been shown to provide new insights 

into presenilin protein function and potential neuropathological changes 

observed in AD patients. Caenorhabditis elegans possesses three presenilin 

homologues Sel-12, Hop-1 and Spe-4. Sel-12 has fundamentally contributed 

towards the understanding of presenilin signalling as it provided the first link 

between presenilin and Notch (Levitan and Greenwald, 1995). This biomedical 

model presents an egg-laying deficient (Egl) phenotype upon deletion of sel-12, 

through reduction of lin-12 /notch activity. In this model the human PS1 is able 

to rescue the observed phenotype, providing evidence of a conserved presenilin 

function between human and C. elegans (Levitan and Greenwald, 1995). In 

Drosophila melanogaster, loss of the only presenilin gene results in lethality at 

the larval-pupal transition stage which cannot be rescued by expressing human 

PS1 or PS2. However, FAD D. melanogaster mutants have been created by 

engineering FAD mutations into the D. melanogaster presenilin gene, offering a 

model in which effects of FAD mutations can be assessed by examining head, 

wing, and retina structures (Seidner et al., 2006). Another cost effective model 

for presenilin research is Danio rerio which possesses two presenilin 

homologues (van Tijn et al., 2011). Developmental stages are well 

characterised in this biomedical model, and morpholino antisense-

oligonucleotides are employed to knock-down presenilin proteins. psen1 MO 

(morpholino knock-down) in D. rerio leads to somite defects, defective brain 

development and loss of Notch target gene her6 (HES1 orthologue), whereas 

psen2 MO leads to reduced melanin pigmentation (Nornes et al., 2008). 

Interestingly, MO of psen1 and psen2 does not result in a more severe 

phenotype then PS1 alone, which differs from the lethal effect observed in other 

presenilin models such as the double presenilin knock-out mouse (Nornes et 
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al., 2009; van Tijn et al., 2011). The reason for this might be the lack of a 

complete deletion of presenilin protein activity due to the nature of MO. 

Another more recent model for presenilin activity is Dictyostelium discoideum, a 

well-established system to investigate development and chemotaxis (Williams 

et al., 2006). Recently, McMains et al. (2010) have shown that D. discoideum 

encodes two presenilin protein homologues. The authors report that D. 

discoideum presenilin proteins are able to cleave human APP accurately and 

that presenilin deletion exhibits a developmental phenotype as observed in 

other biomedical models (van Tijn et al., 2011; Gotz and Ittner, 2008). 

Furthermore, D. discoideum offers a system which can help to find cellular drug 

targets and potentially identify novel compounds for human disease such as AD 

(Chang et al., 2012; Ludtmann et al., 2011). 

1.9 Dictyostelium discoideum 

D. discoideum is a social amoeba and is recognised by the US National Institute 

of Health (NIH) as a biomedical model. This haploid eukaryote possesses six 

chromosomes (34Mb) with numerous genes that are homologues to those in 

higher organisms (Williams et al., 2006). On a phylogenetic scale, Eichinger et 

al. (2005) have shown that the divergence of D. discoideum from a common 

eukaryotic ancestor took place soon after the plant and animal split, confirming 

earlier proteomic analysis by Bapteste et al. (2002) (Fig. 1.5). D. discoideum 

can be found in soil, feeding on bacteria and yeast. Upon starvation, amoebae 

stop dividing and enter a developmental cycle (Weijer, 2004). In this cycle, a 

single cell in a population will start releasing cyclic AMP (cAMP) in a pulsatile 

manner and this signal is relayed from surrounding cells enabling chemotaxis to 

take place. This leads to the aggregation of around 105 amoeba, enabling the 

differentiation into prespore and prestalk cells, and finally form a mature fruiting 

body. Spores in the fruiting body are ultimately released to germinate in the 

presence of nutrition (Fig. 1.6) (Weijer, 2004). 
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Fig.1.5 Proteome-based eukaryotic phylogeny.  D. discoideum diverged soon after the 

plant/animal split but before the divergence of yeast. Taken from Eichinger (2005). 
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Fig.1.6 Developmental life cycle of D. discoideum. Amoeba start to develop upon starvation and 

chemotax towards an excreted cAMP signal of neighboring cells via aggregation streams. After 
9h, cells form a mound before starting to form a slug and develop into stalk cells (dead cells) 
and a forming a fruiting body after 24h. The fruiting body holds spores which are released to 
germinate in the presence of a food source. Image from Weijer and Williams (2009). 

 

D. discoideum development can be divided into an early, mid and late stage 

which depend upon differential regulation of a multitude of genes, allowing 

chemotaxis, formation of aggregation and differentiation into stalk and spore 

cells. For a cell to undergo chemotaxis and aggregation it must sense 

extracellular cAMP. G protein-coupled receptors play a vital role in this process, 

and in initiating chemotaxis (Kim et al., 1996). D. discoideum possess four G 

protein-coupled receptors that bind extracellular cAMP named cAR1-4 (cAMP 

receptors 1-4), and these are differently expressed throughout development. 

cAR1 is the main receptor involved in chemotaxis and streaming during early 

development in D. discoideum and is mainly expressed in the first 2-8h of 

development (DictyExpress) (Kim et al., 1996). Activation of cAR1 through 
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cAMP binding leads to a translocation of the Gβγ-subunit to phosphatidylinositol 

3-kinase (PI3K) which in turn phosphorylates phosphatidylinositol 4,5-

bisphosphate (PIP2) to generate phosphatidylinositol 3,4,5-bisphosphate (PIP3) 

(Fig. 1.7). PIP3 is traditionally thought to be involved in chemotaxis but also 

interacts with cytosolic regulator of adenylate cyclase (CRAC) which in turn 

activates adenylate cyclase (ACA) and cAMP production (Sun and Devreotes, 

1991). The importance of cAR1 in D. discoideum development has been shown 

in a mutant lacking cAR1 and cAR3 which is not able to aggregate (Kim et al., 

1997). 

 

Fig.1.7 Schematic diagram of cAMP binding to the cAR1 receptor and downstream signalling. 
cAMP binds to the cAR1 receptor which leads to a translocation of the βγ-subunit to 
phosphatidylinositol 3-kinase (PI3K). PI3K in turn phosphorylates phosphatidylinositol 4,5-
bisphosphate (PIP2) to generate phosphatidylinositol 3,4,5-bisphosphate (PIP3) which then 
initiates downstream signalling such as chemotaxis and cAMP synthesis. 

 

The second and third stage of D. discoideum development requires initiation of 

cell fate decisions to allow formation of a mature fruiting body consisting of stalk 

and spore cells. The decision of which cells develop into pre-stalk or pre-spore 

cells depends upon the cell cycle phase of each individual cell at the start of 

starvation. Typically, cells in early stages of the cell cycle develop into pre-stalk 

cells to eventually form stalk cells. Cells in later stages of the cell cycle 

differentiate into pre-spore and then mature spore cells (Briscoe and Firtel, 

1995). To regulate these cell-fate decisions cAMP and DIF (differentiation-

inducing factor) are secreted from cells post-aggregation, where cAMP 

regulates gene transcription of late-development and pre-spore genes, and DIF 
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regulates pre-stalk gene transcription. These two morphogens regulate two 

genes involved in stalk cell production (extracellular matrix A (ecmA) and 

extracellular matrix B (ecmB) (Aubry and Firtel, 1999). cAMP has been shown 

to bind to cAR3 and regulate stalk cell production though a negative regulation 

of ecmB transcription via zaphod K kinase 1 (ZAK-1) and glycogen synthase A 

(a homologue of GSK-3β) (Fig. 1.8 A). It was further shown that DIF inhibits 

GSK-A, allowing ecmB transcription and stalk cell production (Fig. 1.8 B) 

(Schilde et al., 2004). These stalk cells are dead vacuolated cells that provide 

an example of autophagy (programmed cell death) necessary for the formation 

of mature fruiting bodies (King, 2012). 

 

 

Fig.1.8 Schematic diagram of stalk cell production in D. discoideum. (A) The binding of cAMP to 
the cAR3 receptor leads to a downstream zaphod K kinase 1 (ZAK-1) activation which in turn 
phosphorylates Gsk-A. Gsk-A inhibition of ecmB gene transcription prevents stalk cell 
production. (B) Dif inhibits Gsk-A allowing ecmB transcription and therefore stalk cell production.  

 

For the final stage of D. discoideum development, spore cell production requires 

high intracellular cAMP in order to activate PKA and induce spore cell 

production (Loomis, 1998). Intracellular cAMP levels are maintained by ACA 

which produces cAMP and the phosphodiesterase, RegA, which breaks down 

cAMP to form 5‟AMP (Fig. 1.9) (Thomason et al., 1999a). In D. discoideum, 

RegA activity is inhibited by a histidine kinase (DhkA) to elevate intracellular 

cAMP levels which leads to spore cell differentiation (Loomis, 1998). 
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Fig.1.9 Schematic diagram of spore cell production in D. discoideum. Intracellular cAMP is 
produced by adenylate cyclase (ACA) which in turn is broken down by RegA 
(phosphodiesterase). However in late development, histidine kinase (DhkA) inhibits RegA which 
allows intracellular cAMP levels to rise, which in turn activates protein kinase A (PKA) to allow 
spore cell production. 

 

Studies of D. discoideum chemotaxis progressed the understanding of 

eukaryotic cell mobility. It was suggested that calcium may play a role as a 

chemoattractant as stimulation with cAMP and calcium leads to greater 

chemotaxis rates (Scherer et al., 2010). Calcium has also been shown to 

directly regulate velocity and pseudopod formation in this amoeba and global 

cAMP stimulation of aggregation-competent cells (7h into development) leads to 

a rapid influx of calcium into the cytosol from the extracellular medium and 

intracellular stores such as the ER (Wilczynska et al., 2005). The exact 

mechanism of how calcium influx is regulated is still elusive, but Fisher and 

Wilczynska (2006) have suggested that calcium influx from the extracellular 

medium results in a release of calcium stored in the ER. Further, D. discoideum 

possesses homologues of calcium channels and calcium pumps, of which 

inositol-1,4,5-trisphosphate receptor-like protein (IPLA) is the best studied 

channel (Traynor et al., 2000). The presence of this calcium channel suggests 

calcium release from ER stores is facilitated via G protein-coupled receptor 

activation (such as cAR1) and protein lipase C and IP3 production during 

chemotaxis. However, deletion of IPLA did not affect chemotaxis despite a lack 

of calcium influx from the extracellular medium (Traynor et al., 2000). Although 

these differing reports leave a role for calcium in chemotaxis and development 

in D. discoideum unclear, calcium has been shown to regulate cell fate 

decisions in D. discoideum, as deletion of IPLA or reduction of intracellular 
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calcium concentration prevented autophagic death upon DIF stimulation which 

is required for stalk cell differentiation (Lam et al., 2008; Jaffe, 1999). 

D. discoideum has been employed to understand cellular movements and cell 

fate decisions but development of knock-out techniques allowed multiple gene 

manipulations within one cell line, allowing more detailed analysis of a multitude 

of signaling pathways (Parent, 2004; Faix et al., 2004). The sequencing of the 

D. discoideum genome has also opened new directions of research using this 

model, since it contains proteins encoding homologues associated with a 

variety of human diseases and disorder (Annesley and Fisher, 2009). For 

example, Myre et al. (2011) and Wang et al. (2011) have employed D. 

discoideum to investigate cellular functions of the Huntington protein (htt) which 

is a homologue of the disease causing in Huntington‟s disease. Wang et al. 

(2011) showed that deletion of D. discoideum Htt affects chemotaxis and 

cytokinesis through a myosin II deficiency. Ongoing studies in this model may 

help to unravel the biochemical malfunction in Huntington‟s disease and 

ultimately help treat this progressive neurological disorder. D. discoideum has 

also aided the understanding of a protein causing Miller–Dieker lissencephaly 

(LIS1) which is a regulator of dynein. The high similarity of the D. discoideum 

protein to the human disease causing protein allowed the identification of LIS1 

binding partners (Rho-GTPase, Rac1A). This research provided the first link of 

the LIS1 protein to the mechanism causing deficient neuronal actin dynamics 

observed in lissencephaly (Rehberg et al., 2005). Ongoing work in this area 

offers a system which allowed analysis of lissencephaly associated mutations in 

LIS1 and their effects on microtubule interactions and centrosome and nuclei 

coupling (Williams et al., 2006).  

These examples outline the potential of D. discoideum to aid the understanding 

of human disease. Another line of research complements this translational 

approach, as D. discoideum has been employed to investigate drug-sensitive 

signalling pathways (Williams et al., 2006; Li et al., 2000). For example, lithium 

and valproate are bipolar disorder treatments, with an unknown mode of action. 

Exposure of D. discoideum to these compounds resulted in altered 

developmental phenotypes which led to the identification and characterisation of 

molecular targets of these drugs (Williams et al., 1999). It was shown that 
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lithium acts inhibitory on inositol (1,4,5) triphosphate levels which supports the 

inositol depletion theory of bipolar disorder drug action (Williams et al., 1999). 

Recently, D. discoideum has been employed to identify compounds, based on 

the structure of valproate, that show improved control of seizures in animal 

models that additionally lack the side effects observed with valproate (Chang et 

al., 2012). This research was initiated in D. discoideum and successfully 

translated to primary mammalian neurons, clearly indicating the successful 

translation of research discoveries from D. discoideum to mammals. 
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1.10 Study aims 

Presenilin proteins are central to the cleavage of APP and play a role in tau 

phosphorylation - two key processes associated with AD pathogenesis. Due to 

the vital nature of these proteins, research into understanding the cellular roles 

of presenilin proteins have been slow. Understanding the two related presenilin 

proteins in D. discoideum, may help to unravel basic cellular functions of 

presenilin proteins which translate into mammalian systems. 

 

 Analyse structure and evolutionary relatedness of D. discoideum 

presenilin proteins to those of other species on bioinformatic level. 

 Study the role of presenilin proteins in D. discoideum development. 

 Establish conserved function between human and D. discoideum 

presenilin proteins. 

 Investigations into signalling pathways controlled by presenilin proteins. 

 Examine a role for presenilin proteins in D. discoideum calcium 

homeostasis. 

 

This study will be beneficial to establish a novel biomedical model for presenilin 

signalling. 
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Materials and Methods 

2.1 Reagents 

Agarose and Taq polymerase were purchased from Bioline (London, UK); 

Blasticidin and Penicillin/Streptomycin solution from PAA (Pasching, Austria). 

Calcium chloride, Ethanol and Isopropanol were obtained from VWR 

(Lutterworth, UK). HL-5 medium, SM agar and SOC broth were purchased from 

Formedium (Hunstanton, UK) and Ethidium Bromide tablets were from Bio-RAD 

(Hemel Hempstead, UK). Phusion Hot Start II polymerase was obtained from 

NEB (Hitchin, UK).T4 DNA ligase, Proteinase K, GeneRuler DNA ladders and 

all restriction enzymes were obtained from Fermentas (St. Leon-Rot, Germany), 

whereas Tris/Borate/EDTA buffer was purchased from Fisher (Loughborough, 

UK). Magnesium chloride, LB Agar Tablets, LB Broth, SYBR Green, cAMP and 

all other chemicals were obtained from Sigma (Dorset, UK). 

2.2 Molecular kits  

High Speed Plasmid Maxi, Midi, Mini-prep and Qiaquick Gel Extraction kits 

were purchased from Qiagen (Crawley, UK). The High Pure RNA Isolation kit 

was obtained from Roche (Burgess Hill, UK) and the First strand cDNA 

synthesis kit was bought from Fermentas (St. Leon-Rot, Germany). The DNA-

free Dnase kit was obtained from Life Technologies (Grand Island, USA).  

2.3 Plasmids 

plPBLP and pDEX-NLS-cre were obtained from Dr Jan Faix (Hannover, 

Germany). CRAC-GFP, pDM317, pDM323, and pDM448 were obtained from 

Dictybase (Veltman et al., 2009). Prof Paul Fisher (Melbourne, Australia) 

supplied pPROF120; Dr. Annette Mueller-Taubenberger (Munich, Germany) 

provided the GSK-GFP plasmid and Prof Jeffrey Williams (Dundee, UK) 

supplied ecmA PKAcat full length, psA PKAcat truncated and psA full length 
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plasmids. The human PS1D385A plasmid was supplied by Dr Richard Killick 

(London, UK) and pFLAG-CMV 5a was obtained from Sigma (Dorset, UK).  

2.4 Antibodies 

The anti-GFP antibody and GFP-Booster were obtained from ChromoTek 

(Planegg-Martinsried, Germany), whereas Dr Annette Mueller-Taubenberger 

(Munich, Germany) supplied the anti-calnexin antibody. The goat anti-mouse 

IgG (NEB 4409s; Alexa fluor 555) was purchased from NEB (Hitchin, UK).  

2.5 Software 

Statistical analysis was conducted using Prism 5 (GraphPad Software, Inc.). 

Phylogenetic analysis was performed using MEGA 5 (Kumar et al., 2008). 

Microscopic images were captured using Image Pro Plus 6.3 (Media 

Cybernetics, Inc.). DNA analysis was carried out by employing pDRAW32 

(Kjeld, 2006). Image J was employed to analyse CRAC localisation (Rasband, 

1997).   

2.6 Statistics 

Experimental data were shown as means ± standard error of the mean. 

Statistical analysis between samples was performed using an unpaired 

Student‟s t-test after normal distribution was confirmed by employing the 

Kolmogorov-Smirnov test. Differences were considered to be significantly 

different if p < 0.05 (*). 

2.7 Maintenance of D. discoideum 

D. discoideum (Ax2) cells were stored at -80°C and scrapings were taken at 

monthly intervals, and grown at 21°C on a SM agar plate (Formedium, UK) 

containing Raoultella planticola. After 3-4 days incubation, a small amount of D. 

discoideum cells from the growth zone was taken and transferred into a liquid 

dish containing axenic medium (HL-5; 100 µg/ml penicillin/streptomycin). The 
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dish was kept at 21°C and, when required, adherent cells were washed off the 

dish and transferred into a 100 ml flask containing 30 ml axenic medium. The 

culture was then left shaking at 120 rpm (21°C) and harvested in mid-log phase 

(4x106 cell/ml). Cell counts were carried out using a Neubauer haemocytometer 

(Hawksley; Hatfield, UK). 

2.8 Development assay 

The development assay was performed as previously described by Boeckeler et 

al. (2006) using 107 cells. Briefly, cells were put on a black 0.45µm membrane 

(Millipore; Watford, UK) positioned on an absorbent pad (Millipore; Watford, UK) 

containing phosphate buffer. After 24h incubation at 21°C, development images 

were taken using a dissection microscope (Leica; London, UK) and QiCAM 

(QImaging; Surrey, Canada). 

2.9 DNA extraction 

Once cells reached confluence, 200 µl of the cell suspension were transferred 

into a 0.2ml PCR tube and centrifuged at 1000 x g for 3 min. Supernatant was 

removed, 48µl lysis buffer (50mM KCl, 10mM Tris pH 8.3, 2.5 M MgCl2, 0.45% 

NP40, 0.45% Tween20) with 2µl Proteinase K (21.4mg/ml) added and mixed. 

After 5min incubation at room temperature, samples were boiled at 95°C for 

1min. 5µl of the crude DNA extract was used to screen for homologous 

integration by PCR. 

2.10 Polymerase chain reaction  

DNA of D. discoideum was amplified by PCR using NH4 reaction buffer (670mM 

Tris-HCl (pH 8.8 at 25°C), 160mM (NH4) 2SO4, 0.1% stabilizer), 1mM dNTPs, 

5mM MgCl2, 2units BIOTAQ DNA polymerase, 10pmol of each 3‟ and 5‟ primer. 

PeqSTAR thermocycler (Peqlab; Sarisbury Green, UK) program: 4 min at 94°C 

denaturation, followed by 30 cycles of denaturation for 30 s at 94°C, annealing 

for 30 sec  (primer dependant temperature) and extension at 72°C (dependent 

on product length) followed by a final extension of 10 min at 72°C. 
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2.11 Gel electrophoresis 

PCR products were size-fractionated using 1% agarose gels containing 

ethidium bromide and tris-borate-EDTA buffer. 10 µl of PCR product or 2µl 

plasmid were loaded on to the gel with 1x DNA loading dye. 5µl of either 100bp 

Plus or 1Kb GeneRuler DNA ladder were used as molecular weight markers. 

The gel was run at 100 Volts for 40 min and samples were visualized using a 

BIO-RAD Gel Documentation 2000 system. 

2.12 RNA extraction 

D. discoideum cells (1x107 *) were developed on filters (Millipore; Watford, UK) 

and harvested at predetermined time points (see individual experimental 

results). RNA was then extracted using the High Pure RNA Isolation Kit 

according to the manufacturer‟s instructions. * 2x107 cells were extracted for 

24h time points to ensure sufficient amounts of RNA.  

2.13 Reverse transcriptase PCR 

RNA was treated with the DNA free kit to remove residual genomic DNA and 

coding DNA (cDNA) was synthesised by employing the First Strand cDNA 

Synthesis kit. For the expression profile, presenilin genes were amplified from 

the generated cDNA and expression was quantified using ImageJ (Rasband, 

2007). 

2.14 Mutagenesis and overlap extension PCR 

Overlap extension PCR was employed to create wild type human PS1 and 

insertion of FAD mutations into D. discoideum psenB (Ho et al., 1989). PCRs 

for two overlapping PCR fragments were performed using Phusion Hot Start II 

polymerase (1x HF buffer, 200µl dNTPS, 0.5µM of each Primer, 1unit 

polymerase; 15 cycles) and products were gel purified. A full length product was 

then amplified using 2µl of each purified PCR fragments and two outside 

primers (15 cycles).  
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2.15 Creating a knock-out construct 

Two ~500bp fragments were PCR amplified from wild type genomic DNA using 

Taq polymerase. The primers used contained enzyme restriction sites so that 

the fragments could be ligated into the plpBLP vector backbone (Faix et al., 

2004). The PCR product was then purified using a MicroSpin column (GE 

Healthcare Life Sciences; Little Chalfont, UK) before the product and vector 

were double-digest by employing suitable restriction enzymes. Subsequently, 

the digested fragment was ligated into vector using T4 DNA ligase at various 

vector:insert ratios and incubated overnight which was followed by an heat 

inactivation (Fig. 2.1). 5µl of the resultant construct was then transformed into 

chemically competent E. coli cells. The plasmids from resultant colonies were 

then prepared and digested with restriction enzymes to verify the presence of 

vector and insert. Upon this confirmation, the second fragment was ligated into 

the previously prepared plasmid in the same way as described above. 

 

 

Fig.2.1 Creation of a knock-out construct. Genomic presenilin gene fragments were amplified, 
restriction sites (BamHI, PstI NcoI, KpnI) inserted, and fragments ligated into pLPBLP vector 
containing a blasticidin resistance cassette.  

2.16 Transformation of D. discoideum by electroporation 

The knock-out construct was double digested with BamHI and KpnI, purified 

using isopropanol precipitation and added into a 4mm electroporation cuvette. 

Before electroporation, 1x107 cells were counted and pre-chilled on ice for 
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10min and centrifugated for 3 min at 800xg (4°C). Next, cells were washed 

three times with ice cold sterile phosphate buffer and resuspended in 700µl 

electroporation buffer (10mM NaPO4, 50mM sucrose). Cells were then 

transferred to the electroporation cuvette containing 10µg of the digested knock-

out construct. This was followed by one pulse (0.85kV, 25 µF) using a 

GenePulser Xcell electroporator (BIO-RAD, Hemel Hempstead, UK) after which 

the cuvette containing the cells was placed on ice for 10min. 8 µl MgCl2 (0.1M) 

and CaCl2 (0.1M) were added to the cells, followed by a 15min incubation and 

transferral of cells into into 10 ml of axenic medium (HL-5 medium) containing 

penicillin and streptomycin. 100 µl of the cell suspension was then transferred 

into each well of a 96 well plate (Peqlab; Sarisbury Green, UK) and placed into 

a 21°C incubator over night. The next day, 100µl of double concentrated 

blasticidin (20µg/ml) was added to each well to select for transformed cells. The 

media was then changed every week (10µg/ml blasticidin) and cells were grown 

to confluence before PCR screens were performed.  

2.17 Screening for potential knock-out and knock-in mutants 

PCR screens with three primer sets were performed on DNA extracted from 

transformants growing in the presence of blasticidin (Fig. 2.2). The first primer 

set (3‟ outside primer + 5‟ inside primer) amplifies a genomic control. The 

second primer pair amplifies a vector control band (3‟ inside primer and 5‟ BsR 

primer). The third primer set amplifies knock-out diagnostic product which is 

only present in homologous integrants (3‟ outside primer + 5‟ BsR primer). All 

PCR screens were performed employing Taq polymerase and a normal PCR 

protocol (30 cycles). 
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Fig.2.2 Knock-out screen using three primer sets. The first set amplifies a genomic control band 
and is amplified in wild type as well as all transformed cells. The second set produces a vector 
control product which is only amplified in transformed cells; whereas the third primer set 
amplifies a diagnostic band only produced in homologous integrants.  

2.18 BsR excision 

BsR cassettes were excised to allow multiple gene deletion in one cell line. To 

do so, 107 knock-out mutant cells were harvested and prepared for 

electroporation as previously described (2. 16) (Fig. 2.2). Cells were then 

electroporated with 30µg of pDEX-NLS-cre vector using two pulses of 0.75KV 

(25µF) with a 5sec interval. After electroporation, 0.5ml of HL-5 medium was 

added and cuvettes were incubated on ice for 5min. The content of cuvettes 

was transferred into a petri dish containing 12ml HL-5 medium and incubated 

over night at 22°C. Subsequently, 20µg/ml of G418 antibiotic was added to the 

dish to act as a selection agent for cells containing the pDEX-NLS-cre vector. 

Selection media was changed at day 3 and day 5. Once colonies were visible, 

the entire plate was harvested and washed once and resuspended in 1ml KK2 

buffer (16.16mM KH2PO4, 4.01mM K2HPO4). Various dilutions of this cell 

suspension were plated onto SM agar plates containing Raoultella planticolla 

which were then incubated at 22°C for 3-7 days. Colonies were then transferred 

into a 24 well dish and selective antibiotic was added to select for transformants 

containing the vector. 
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Fig.2.3  BsR excision through introduction of a Cre-loxP recycling cassette. The knock-out 
construct contains a BSR cassette which is framed by loxP  sites. The Cre protein (pDEX-NLS-
cre vector) is employed to recycle the BSR cassette which leaves a single LoxP site and stop 
codons in all six reading frames behind (Faix et al., 2004). 

2.19 Overexpressing constructs  

Overexpression constructs were created to express green fluorescently tagged 

presenilin proteins. To do so, full-length cDNA was amplified using Phusion Hot 

Start II polymerase and appropriate enzyme restriction sites were inserted 

through primers. These PCR products were then cloned into GFP 

overexpressing vectors (pDM317 and pDM323, or pDM448). PCR products had 

to be in frame at the 5‟ end and contain a stop codon at the 3‟ end to ensure an 

N-terminal tagged GFP expression. For the C-terminal tagged vectors, the PCR 

product did not contain a 3‟ end stop codon ensuring expression of a C-terminal 

GFP tagged protein. All constructs were sequenced to ensure mutation-free 

expression (GATC Biotech; London, Germany).  

2.20 Transformation of D. discoideum by calcium chloride 

precipitation 

Overexpression constructs were transformed into D. discoideum cells using 

CaCl2 transformation. Axenic grown cells (107 cells) were transferred into a 9cm 

tissue culture dish and allowed to settle on the surface for 30min. The medium 

was exchanged to 10ml MES-HL5 (0.6% (w/v) yeast, 22.2mM glucose, 1% 

(w/v) bacterial peptone, 6.65mM MES; pH7.1) and incubated for 1.5h at RT. 

The DNA was prepared by adding 15µg DNA to 600µl dH2O and 600µl 2x HBS 

(273mM NaCl, 9.65mM KCL, 1.66mM Na2H2PO4, 41mM HEPES, 11.1mM D-

Glucose; pH 7.05) and precipitated using 76µl 2M CaCl2. The solution was left 
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for 25min at room temperature. Subsequently, MES-HL5 was removed and 

1.2ml DNA solution was directly added to the culture dish. After 30min 

incubation at room temperature, 10ml MES-HL5 was gently added and cells 

were incubated for a further 3h at room temperature. The medium was 

removed, 2ml of a 15% glycerol stock (2.5ml 60%glycerol, 2.5ml dH2O, 5ml 

2xHBS) were added to the culture dish and gently distributed by rocking of 

plate. After 2min all glycerol was carefully removed and 10ml axenic medium 

added. Cells were allowed to recover over night before being equally distributed 

onto 10 Micrococcus luteus lawn (G418 resistant) SM plates (25µg/ml) and 

incubated at room temperature.  

2.21 Knock-in construct  

For the wild type knock-in cassette, 5‟ and 3‟ psenB flanking regions were 

amplified and enzyme restriction sites inserted by PCR. The fragments were 

ligated into pLPBLP vector resulting in a BsR cassette being inserted into the 

first intron of psenB upon homologues integration. For the knock-in cassette 

carrying a FAD mutation (L-V), overlap extension PCR (2. 14) was employed to 

insert the mutation into the 3‟ psenB flanking region. The electroporation, PCR 

screening and BsR excision were carried out as described in 2.16, 2.17 and 

2.18. 

2.22 Monolayer stalk cell assay 

For a monolayer stalk cell assay, 1x106 cells per condition were washed twice 

and re-suspended in 1.5ml stalk cell buffer [1x stalk salts (200mM NaCl2, 1M 

KCl, 100mM CaCl2); 10mM MES, 1u/ml Penicillin/Streptomycin) before being 

transferred into a 6cm cell culture dish. Cells were incubated for 24h with the 

addition of 5mM cAMP at 22°C. The following day, the cells were rinsed twice 

with stalk cell buffer followed by the addition of stalk cell buffer containing either 

5mM cAMP or 5mM cAMP and 100nM DIF. After a further 24h, stalk cell counts 

were carried out, using an Olympus IX71 bright field microscope. 
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2.23 SDS-PAGE and Western Blotting 

For western blots, 1x107 D. discoideum cells were lysed by addition of 1x 

sample buffer (62.4mM Tris pH6.8, 2% (w/v) SDS, 2% (v/v) β-mercaptoethanol, 

5% (v/v) glycerol, bromophenol blue). The samples were boiled for 10min and 

placed onto ice prior to addition of phosphatase inhibitor. Sodium Dodecyl 

Sulfate (SDS) PolyAcrylamide Gel Electrophoresis (SDS-PAGE) was carried 

out using a separate stacking and resolving gel. The resolving gel contained 

0.375M Tris-HCl (pH 8.8), 9% (v/v) acrylamide, 0.1% (w/v) SDS, 0.25% (v/v) 

TEMED and 0.3% (w/v) ammonium persulphate (APS). The stacking gel 

contained 0.125M Tris (pH 6.8), 7% (v/v) acrylamide, 0.1% (w/v) SDS, 0.25% 

(v/v) TEMED and 0.3% (w/v) APS. The protein samples (15µl) and PageRuler 

Plus standard (4µl) were loaded onto the gel. The chamber was then connected 

to a power pack (BioRad; Hemel Hempstead, UK) and the gel run at 150 

Volts/35mA for 90min. 

After electrophoresis the separated proteins were transferred to a PVDF 

membrane using a TRANS-BLOT SD semi-dry transfer apparatus (BioRad). 

Four 10cm x 7cm pieces of blotting paper and PVDF membrane were soaked in 

blotting buffer (20mM Tris, 0.2M Glycine, 20% (v/v) Methanol). After loading of 

the blotting cassette, the whole apparatus was attached to a power pack 

(BioRad; Hemel Hempstead, UK) and the transfer was carried out at 15 

Volts/300mM for 90min.  

To block non-specific antibody binding sites, the membrane was incubated on a 

platform in 5% (w/v) semi-skimmed dried milk in Tween/Tris buffered saline 

(TTBS; 15 mM Tris, 0.1% (v/v) Tween-20, 0.15M NaCl) for 1h. The membrane 

was then incubated with gentle agitation with anti-GFP antibodies (1:1000) over 

night at 4°C.The next day, the membrane was washed three times with TTBS 

and incubated with secondary anti-rat antibody (1:5000; IRDye800) for 1h at 

room temperature. This was followed by three washes with TTBS and protein-

antibody complexes were visualised using an Odyssey SA Infrared Imaging 

System (LI-COR Biosciences; Lincoln, USA).  
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2.24 Fluorescence microscopy 

Monoclonal antibodies against calnexin were kindly provided by Annette Müller-

Taubenberger. For immunofluorescence labelling, overexpressor cell lines were 

allowed to settle to cover slip for 20min prior to 4% paraformaldyhyde fixation 

for 10min and permeabilization using 0.5% TritonX-100 for 5min. Subsequently, 

cells were washed three times with PBS Tween20, blocked with BSA before 

labelling with anti-calnexin antibodies over night at room temperature in a 

humidified chamber. Cells were washed with PBS Tween20 and incubated with 

goat anti-mouse secondary antibody for 30min. The GFP-signal was enhanced 

by incubation with a GFP-booster for 1h. Subsequently, cells were washed 

three times with PBS Tween20 and nuclei were stained using DAPI. 

Fluorescence microscopy was carried out using Olympus IX71 at 60x 

magnification with a QImaging RetigaExi Fast1394 digital camera.  

2.25 Quantative RT-PCR 

Total RNA of D. discoideum RNA was extracted using the High Pure RNA 

Isolation kit. cDNA was amplified using First Strand cDNA Synthesis Kit as 

previously described. The qPCR was set up in a QIAgility (Qiagen; Crawley, 

UK) to ensure accurate pipetting. Real-time amplification with SYBR Green was 

performed using a Rotor-Gene 6000 (Qiagen; Crawley, UK). Triplicate samples 

were collected at each time point and two qRT-PCR technical replicates were 

carried out and levels of transcription were quantified using the 2-ΔΔC
T method.  

2.26 Calcium assay 

To assess calcium homeostasis in D. discoideum cells, the plasmid pPROF120 

encoding the calcium sensitive apoaequorin was transformed into these cells by 

employing calcium chloride precipitation and the calcium assay was performed 

as described in (Allan and Fisher, 2009). In brief, 108 cells were incubated in 

5ml of MES development buffer (10mM MES of pH 6.2, 10mM KCl, 0.25mM 

CaCl) containing coelenterazine-h (0.5µg/ml dissolved in 20% w/v Pluronic F-

127) for 7h in shaking suspension. This was followed by one wash with MES 
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development buffer to remove residual coelenterazine-h. The coelenterazine-h 

allows an in vivo reconstitution of the functional photoprotein which upon 

calcium binding results produces luminescence which can be detected by a 

photometer. In order to measure calcium influx upon cAMP stimulation, the total 

light emission possible was determined to normalise the aequorin luminescence 

signals. These values allowed calculation of an in vitro calcium concentration-

effect curve upon 1µM cAMP stimulation. All measurements were carried out in 

a New Brunswick ATP Photometer as described in (Allan and Fisher, 2009) and 

analysed by employing the R statistical package (R Core Team, 2012).  
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Chapter 3 

D. discoideum contains two presenilin genes (PsenA and PsenB) and no 

detailed bioinformatic characterisation has previously been carried out on 

either of these proteins. This chapter investigates the structure and homology 

of D. discoideum presenilin proteins and compares it to presenilin proteins of 

other species using sequence alignments, domain structure analysis, 

hydropathy and phylogenetic analysis.  

3.1 Homology of D. discoideum presenilin proteins 

To establish an evolutionary link between presenilin proteins of D. 

discoideum other species the NCBI Basic Local Alignment Search Tool 

(BLAST) was employed (Altschul et al., 1990). This program aligns D. 

discoideum presenilin amino acid sequences to presenilin protein sequences 

of other species and generates overall identity and similarity scores and e-

values according to their relatedness (Table 3.1, 2). The results showed that 

both D. discoideum presenilin proteins are similar to those of other species 

such as D. melanogaster (fruit fly) and B. floridae (lancelet) but to a lesser 

extend to C. elegans (nematode; Hop-1). Furthermore, the analysis revealed 

that PsenA shares greater homology with the PS2 (highest identities; Table 

3.1); whereas PsenB shows highest identities to human PS1 (Table 3.2). It 

should be noted that the homology identities/scores did not change when 

only highly conserved regions (i.e. peptidase domain) were analysed (data 

not shown). 
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Species Length of Protein (aa) Identity % Positives % E-value 

D. discoideum PsenA 622 100 100 0 

D. discoideum PsenB 473 38 59 1e-64 

Human PS1 467 27 48 3e-53 

Human PS2 448 40 64 2e-42 

C. elegans Sel-12 444 29 49 5e-51 

C. elegans Hop-1 358 26 45 1e-34 

P. patens Psen 477 28 51 5e-55 

D. rerio PS1 456 30 50 2e-51 

D. rerio PS2 441 36 59 1e-42 

D. melanogaster Psen 541 31 55 2e-61 

A. thaliana PsenA 453 30 55 6e-55 

A. thaliana PsenB 337 31 52 2e-54 

B. floridae Psen 525 32 52 3e-74 

O. sativa Psen 459 30 51 2e-50 

Table 3.1 BLAST analysis of full length D. discoideum PsenA. The table shows the name of 
organism and presenilin homologue, protein length, identity (%), similarity (%) and e-value. 
The results represent comparisons of PsenA to presenilin proteins spanning across several 
kingdoms. 
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Table 3.1 BLAST analysis of full length D. discoideum PsenB. The table shows the name 
of organism and presenilin homologues, protein length, identity (%), similarity (%) and e-
value. The results represent comparisons of PsenB to presenilin proteins spanning 
across several kingdoms.  

 

3.2 Phylogenetic analysis 

To further characterise the relatedness of both D. discoideum presenilin 

proteins to those of other species, the Molecular Evolutionary Genetics 

Analysis program (MEGA5) was employed to reconstruct a phylogenetic tree 

(Kumar et al., 2008). Using the neighbour-joining method, a wide range of 

presenilin proteins from several kingdoms were analysed using a bacterial 

signal peptide, peptidase-like 2A, to root the resultant tree (Fig. 3.1). The 

analysis revealed that both D. discoideum presenilin proteins are basal to the 

animal clade and are distinctly different from presenilin proteins of the plant 

clade. The phylogenetic analysis, with high confidence in the bootstrapped 

Species Length of Protein Identity % Positives % E-value 

D. discoideum PsenB 473 100 100 0 

D. discoideum PsenA 622 38 59 2e-74 

Human PS1 463 34 58 2e-48 

Human PS2 448 30 50 9e-49 

C. elegans Sel-12 444 31 55 4e-22 

C. elegans Hop-1 358 27 46 4e-29 

P. patens Psen 477 35 55 8e-28 

D. rerio PS1 456 34 56 8e-37 

D. rerio PS2 441 31 50 1e-55 

D. melanogaster Psen 541 35 59 9e-33 

A. thaliana PsenA 453 35 54 1e-25 

A. thaliana PsenB 337 38 58 2e-32 

B. floridae Psen 467 40 59 8e-40 

O. sativa Psen 478 33 52 1e-29 
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tree, reveals a close relatedness of D. discoideum to human presenilin 

proteins.  

 

Fig.3.1 Phylogenetic tree of aspartic acid peptidases. Presenilin genes of various species 

were used reconstruct a tree using neighbouring-joining method with a bootstrap (500): PS1 
Human (Uniprot accession number: P49768); PS2 Human (P49810); PsenA D. discoideum 
(Q54ET2); PsenB D. discoideum (Q54DE8); PS1 Danio rerio (Q9W6T7); PS2 Danio rerio 
(Q90ZE4); Sel-12 Caenorhabitis elegans (P52166); Psen Drosophila melanogaster 
(O02194); PsenA Arabidopsis thaliana (O64668); PsenB Arabidopsis thaliana (Q9SIK7); 
Psen Oryza sativa (Q6AUZ8); Psen Physcomitrella patens (A9S846). The tree was rooted 
using signal peptide peptidase-like 2A (Q8TCT8). C. elegans Hop-1 and Spe-4 were omitted 
as the high evolutionary rate might cause a long-branch attraction artefact. D. discoideum 
presenilin proteins are basal to the animal clade, whilst plant presenilin proteins are part of a 
separate clade. 

3.3 Presenilin protein domain structure 

Since the BLAST analysis and phylogenetic analysis suggested conservation 

between human and D. discoideum presenilin proteins, a more detailed 

domain analysis was carried out. In agreement with BLAST and phylogenetic 

analysis, aligning D. discoideum and human presenilin amino acid 

sequences using ClustalW, identified highly conserved regions (Fig. 3.2). 

Human presenilin proteins possess a A22A-type peptidase domain and this 

domain was found to be highly conserved in both D. discoideum presenilin 

proteins (Fig. 3.2; yellow box) (Page and Di, 2008). Within this domain, in 

mammalian systems, presenilin proteins require two conserved catalytic 
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aspartic acid residues which are found in the transmembrane motif „YD‟ 

towards the N-terminal and in a „GLGDF‟ motif towards the C-terminal of the 

proteins. The alignment revealed that both D. discoideum presenilin proteins 

possess conserved motifs containing aspartic acid sites (Fig. 3.2; red box). 

Furthermore, PsenA as well as PsenB possess a „PAL‟ sequence which, in 

mammalian systems, is required for γ-secretase assembly (Fig. 3.2; green 

box).    

Fig.3.2 Partial amino acid alignment of human and D. discoideum presenilin proteins. The 
presenilin peptidase domain (yellow) is conserved in D. discoideum presenilin proteins. 
Further, both aspartic acid residues (orange) and „PAL‟ (green) sequence are present in D. 
discoideum and human presenilin proteins.”*” identical residue; “:” conserved substitution; “.” 
Semi-conserved substitution. 

 

3.4 Transmembrane region analysis 

It is well established that presenilin proteins are transmembrane proteins with 

a cytosolic loop (De Strooper and Annaert, 2010). The topology of these 

presenilin proteins is still subject to debate but in recent years, nine 

transmembrane regions have been the favoured model for presenilin proteins 

(Henricson et al., 2005). A similar topology was found for D. discoideum 
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presenilin proteins since the domain structure analysis revealed multiple 

conserved regions resembling transmembrane domains of human presenilin 

proteins.  Using the hydrophobicity analysis tool DAS, the properties of each 

amino acid sequence was analysed and secondary structure topology 

predictions for human and D. discoideum presenilin proteins were made 

(Cserzo et al., 2002). This analysis revealed that both human presenilin 

proteins possess 10 transmembrane regions in comparison to 9 regions seen 

in both D. discoideum proteins (Fig. 3.3). However, when assessing the 

hydrophobicity plot of both human presenilin proteins, two twin peaks are 

observed, suggesting this region may contain only one transmembrane 

domain rather than two. PsenA and PsenB were predicted to comprise 9 

transmembrane regions with extended cytosolic N-termini and extracytosolic 

C-termini. Further, PsenA was predicted to have a large cytosolic loop similar 

to that seen in human presenilin proteins, whereas PsenB appeared to 

possess only a small cytosolic region. An additional analysis (ClustalW) of 

the predicted transmembrane regions revealed that PsenA transmembrane 

regions are more similar to PS1 and PS2 than PsenB regions (Table 3.3; 

(Chenna et al., 2003)). 
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Fig.3.3 Hydrophobicty plot of human and D. discoideum presenilin proteins. Analysis 
revealed that both D. discoideum presenilin proteins are predicted to have 9 transmembrane 
regions (peaks). X-axis represents amino acid numbers, whereas the y-axis shows the 
transmembrane score. 

 

 
 

 

 

 

 

 

 

 
Table 3.3 Homology of transmembrane regions in human and D. discoideum presenilin 

proteins. This table shows ClastalW alignment scores of D. discoideum presenilin and 
human presenilin TM regions. TM regions of human presenilin proteins are more conserved 
in PsenA than PsenB (highlighted scores). 

 PS1 PS2 PsenA PsenB  PS1 PS2 PsenA PsenB 

TM 1 100 91 33 27 TM 1 91 100 27 27 

TM 2 100 85 45 40 TM 2 85 100 50 35 

TM 3 100 66 44 27 TM 3 66 100 33 38 

TM 4 100 55 38 55 TM 4 55 100 50 22 

TM 5 100 100 66 44 TM 5 100 100 66 44 

TM 6 100 77 55 44 TM 6 77 100 50 38 

TM 7 100 100 66 75 TM 7 100 100 66 75 

TM 8 100 90 57 66 TM 8 90 100 61 61 

TM 9 100 85 45 45 TM 9 85 100 50 50 
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3.5 FAD mutations in presenilin 

The continuously updated Alzheimer disease and frontotemporal dementia 

mutation database currently lists (retrieved 1st July 2012) 185 Familial 

Alzheimer‟s Disease (FAD) mutations for PS1 affecting 101 amino acids 

(Cruts and Van, 1998), whereas 18 amino acids are reported to be affected 

in PS2. Analysis of cellular changes caused by these mutations is difficult 

and biomedical models are being developed to investigate signalling 

pathways affected by FAD mutations. One of these models is D. 

melanogaster, where FAD mutations were engineered into the presenilin 

gene and phenotypes assessed (Seidner et al., 2006). To assess whether 

similar work could be carried out D. discoideum, conserved amino acids in D. 

discoideum presenilin proteins were identified which are affected by FAD 

mutations in human presenilin proteins. 

A full length amino acid alignment of both human and D. discoideum 

presenilin proteins was generated using the ClustalW alignment tool. Further, 

each individual amino acid that is altered in FAD was highlighted in the D. 

discoideum presenilin amino acid sequence. Analysis of 101 amino acid 

residues revealed that 52% of these residues are conserved in PsenA, 

PsenB or both (Fig. 3.4, 3.5). Further analysis of 18 FAD-inducing mutations 

in PS2 showed that 34% of the residues are conserved in both D. discoideum 

presenilin (Fig. 3.4). Furthermore, most of the conserved sites are located in 

transmembrane regions and key catalytic domains of both D. discoideum 

presenilin proteins (Fig. 3.5). 



Chapter 3 

55 
 

Human PS1              ---------------MTELPAPLS--YFQNAQMSEDNHLSNTVRSQND------------ 31 

Human PS2              ---------------MLTFMASDSEEEVCDERTSLMSAESPTPRSCQE------------ 33 

D. discoideum PsenA    --MKENEDEINKTDEKYKIKNPSNNGNNKNKNNNNNNNNNNNNNNNNNNNNNN------N 52 

D. discoideum PsenB    MSSDNNNDPFDLNEDGHDYFNRVSTTTSPNRQSINSSPKQSSPKSTNNNDDKNNIILDLN 60 

                                .     : .    .  . . .. ::             

 

Human PS1              -----------------------NRERQEHNDRRSLGHPEPLSNGRPQGNSRQVVE---- 64 

Human PS2              -----------------------GRQGPEDGENTAQWRSQENEEDGEEDPDRYVCSGVPG 70 

D. discoideum PsenA    NNNNNNGNSNLENIEGLNKYNIYKKKKGKNESNTSLNNIYISSPNLSERSDNSIGSYCTN 112 

D. discoideum PsenB    DNNNDNNNTNNYNDE---DIDVDNKNKFENKDNTYNSNGGSNNKNKNKKKDNKSNNSSDN 117 

                                 ::  :. ..    .    . .  :  ..   .     

 

Human PS1              -----------------------------------------QDEEEDEELTLKYGAKHVI 83 

Human PS2              -----------------------------------------RPPGLEEELTLKYGAKHVI 89 

D. discoideum PsenA    KTMKSENSIINIETLFRDSVSEQNSDECGSKVDKDLDEDDDDDDDETEVPELVDYSEMIV 172 

D. discoideum PsenB    EEADENTSLIS------DSEPLLNKKE---KDDEQIEIENLDGEDYDDEVSLQDFSSMIV 168 

                                                                      :   *   :. :: 

 

Human PS1              MLFVPVTLCMVVVVATIKSVSFYTRKDGQLIYTPFTEDTET-------VGQRALHSILNA 136 

Human PS2              MLFVPVTLCMIVVVATIKSVRFYTEKNGQLIYTPFTEDTPS-------VGQRLLNSVLNT 142 

D. discoideum PsenA    SILYPVCITMVIVVLAIRAISSSTSKNSQI-VEISNDNSGGNGDSSSGADKMVFDSVVNS 231 

D. discoideum PsenB    SIIIPVSITMMAVVFFVKYLNNQTLYASTLSYTIAGGSSGGGSGADSITGNSFVDSLIVA 228 

                        :: ** : *: **  :: :   *   . :       .:         ..:  ..*:: : 

 

Human PS1              AIMISVIVVMTILLVVLYKYRCYKVIHAWLIISSLLLLFFFSFIYLGEVFKTYNVAVDYI 196 

Human PS2              LIMISVIVVMTIFLVVLYKYRCYKFIHGWLIMSSLMLLFLFTYIYLGEVLKTYNVAMDYP 202 

D. discoideum PsenA    LIFLAVIILSTTIMVVLYKFKLMKALYAWLMGTSILLLGVFGGFLFLILLAYLNLGLDYV 291 

D. discoideum PsenB    GIVLGMIIVTTVAFVLLYKYRCLKILYGWLFLSVGMMLGSFGTTFFQAMLSAANLPLDYI 288 

                        *.:.:*:: *  :*:***::  * ::.**: :  ::*  *    :  ::   *: :**  

 

Human PS1              TVALLIWNFGVVGMISIHWKGPLRLQQAYLIMISALMALVFIKYLPEWTAWLILAVISVY 256 

Human PS2              TLLLTVWNFGAVGMVCIHWKGPLVLQQAYLIMISALMALVFIKYLPEWSAWVILGAISVY 262 

D. discoideum PsenA    TFVIVVWNFSVGGIVCIFWYSPKLLNQGYLISISVLMALFFSR-LPDWTTWGILSIVSIY 350 

D. discoideum PsenB    TFAFLIFNFTVCGIIGVFWYAHQYVNQLYLVIISVLMAISLTR-LPQWTIFTLLVIVAIY 347 

                       *. : ::** . *:: :.* .   ::* **: **.***: : : **:*: : :*  :::* 

 

Human PS1              DLVAVLCPKGPLRMLVETAQERNETLFPALIYSSTMVWLVNMAEGDPEAQRRVSKNSKYN 316 

Human PS2              DLVAVLCPKGPLRMLVETAQERNEPIFPALIYSSAMVWTVGMAKLDPSSQG--ALQLPYD 320 

D. discoideum PsenA    DIFAVLCPGGPLRILIETAQKRNE-NIPAMIYNASIYIGMIYNEDNLENNNNNNNNNNIE 409 

D. discoideum PsenB    DLFAVLCPRGPLKVLVELSQERNE-NIPALVY---------------------------- 378 

                       *:.***** ***::*:* :*:***  :**::*                             

 

Human PS1              AESTER------------------------------------------------------ 322 

Human PS2              PEMEE------------------------------------------------------- 325 

D. discoideum PsenA    LNINEVDIENNNNNEDENKNNTEDGNNNNNKNKNNNNNNNNRIENENGAENSSENGSITP 469 

D. discoideum PsenB    ------------------------------------------------------------ 

                                                                             

 

Human PS1              -----------ESQDTVAENDDGGFSEEWEAQRDSHLGPHRSTPESRAAVQELSSSILAG 371 

Human PS2              -----------DSYDSFGEPS---YPEVFEPPLTGYPG------------EEL------- 352 

D. discoideum PsenA    PPTIPNFIKDEKEINRSSGSNGFPNFKKCANDNILIGDAETNDEIVSNAESSIDSTISES 529 

D. discoideum PsenB    ------------ETGKGSDSN--------------------------------------- 387 

                                   . .  .  .                                        

  

Human PS1              EDPEERGVKLGLGDFIFYSVLVGKASATASGDWNTTIACFVAILIGLCLTLLLLAIFKKA 431 

Human PS2              EEEEERGVKLGLGDFIFYSVLVGKAAATGSGDWNTTLACFVAILIGLCLTLLLLAVFKKA 412 

D. discoideum PsenA    YVKPKQSIRLGLGDFVFYSVLIGKAASYQIT---TVFTVFIAIITGLFLTLILLAVFRRA 586 

D. discoideum PsenB    -------LKLGLGDFIFYSLLISRAALVHMS---CVFSTFIAILTGLFLTLLCLAIFKKA 437 

                              ::******:***:*:.:*:         .:: *:**: ** ***: **:*::* 

 

Human PS1              LPALPISITFGLVFYFATDYLVQPFMDQLAFHQFYI 467 

Human PS2              LPALPISITFGLIFYFSTDNLVRPFMDTLASHQLYI 448 

D. discoideum PsenA    LPALPMSIIFGIIVFFLTFKILIQYIYFLGENQIFV 622 

D. discoideum PsenB    LPALPISIFLGILFYYLSNNFLTPFIEALTLSQIFV 473 

                       *****:** :*::.:: :  ::  ::  *   *::: 

 

Fig.3.4 Amino acid alignment of full length human and D. discoideum presenilin proteins. 

Highlighted amino acids represent reported residues affected by missense mutations in PS1 
(red) and in PS2 (blue). Amino acid residue highlighted in yellow indicate endoproteolytic 
cleavage site.”*” identical residue; “:” conserved substitution; “.” semi-conserved substitution. 
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Fig.3.5 Secondary structure of human PS1. Amino acids affected by FAD mutations in PS1 are highlighted in red, and those 

conserved in both D. discoideum presenilin proteins are highlighted in blue. D. discoideum presenilin proteins possess 52% of the 
amino acids affected by FAD [modified from Cruts and Van (1998)]. 



Chapter 3 

57 
 

3.6 Discussion 

This chapter analysed the structure and homology of the two D. discoideum 

presenilin proteins. Bioinformatic tools employed in this analysis allowed 

catalytic domain structure, transmembrane regions and phylogenetic analysis of 

both D. discoideum presenilin proteins.  

3.6.1 Conservation of presenilin proteins across kingdoms 

To investigate potential structural conservation between D. discoideum 

presenilin proteins and those of other species, a BLAST analysis was carried 

out. Regions of high similarity were found by this analysis and revealed that D. 

discoideum presenilin proteins are similar to those of other species such as D. 

melanogaster and B. floridae. Further, PsenA was shown to be more similar to 

human PS2 than PS1 as similarities and identities were higher. PsenB was 

more similar to human PS1 as identities and similarities were higher in 

comparison to human PS2.  

A phylogenetic tree was reconstructed to support the relatedness between D. 

discoideum presenilin proteins to those of other species. Amoebozoa are one of 

the earliest eukaryotic branches and the phylogenetic analysis found that D. 

discoideum PsenA and PsenB are basal to the animal clade, thus showing 

relatedness to human presenilin proteins. Further, this tree resembles the tree 

of life where the branch of amoebozoa diverged after the split between animals 

and plants (Chisholm et al., 2006). Many organisms such as human, D. rerio 

and A. thaliana possess two presenilin gene copies, whereas other species 

such as D. melanogaster and O. sativa possess only one presenilin gene 

(Tandon and Fraser, 2002). Hashimoto-Gotoh et al. (2003) have attempted to 

unravel the approximate time of this gene duplication event and different 

phylogenetic tree methods suggested that presenilin gene duplications occurred 

independently in different phyla. The gene duplication event is suggested to 

have occurred in the vertebrate lineage after the split from cephalochordates 

(Martinez-Mir et al., 2001). Hashimoto-Gotoh et al. (2003) suggest that a gene 

duplication event occurred independently in the plant lineage as, for example, 
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A. thaliana possesses two presenilin genes and O. sativa only one. These 

independent gene duplications in different phyla, including D. discoideum, 

suggest a functional requirement for these events to have taken place. To date, 

lower organisms such as yeast, fungi or bacteria are not known to possess 

presenilin genes (Hashimoto-Gotoh et al., 2003). 

3.6.2 Presenilin protein structure 

Presenilin proteins belong to the subfamily A22A of endopeptidases which 

comprise a peptidase domain, two catalytic aspartic acid residues and a „PAL‟ 

sequence for endoproteolytic cleavage and γ-secretase function (Wang et al., 

2006). To confirm that D. discoideum presenilin proteins are „true presenilin 

proteins‟ possessing these catalytic regions and to further support conservation 

between human and D. discoideum presenilin proteins, a domain structure 

analysis was carried out. This analysis revealed that PsenA and PsenB possess 

a peptidase domain, both containing fully conserved catalytic aspartic acid 

residues as well as a „PAL‟ sequence. Since PsenA and PsenB amino acids are 

moderately conserved, one would expect to observe a similar one-dimensional 

topology as seen in human presenilin proteins. To analyse the one-dimensional 

structure, hydropathy plots were generated and transmembrane regions 

compared. This analysis predicted 9 transmembrane regions for both D. 

discoideum presenilin proteins showing a high resemblance to the 

transmembrane regions of human presenilin proteins as they also were 

predicted to comprise 9 transmembrane regions (Spasic et al., 2006; Henricson 

et al., 2005). Furthermore, the hydropathy analysis predicted that PsenA 

contains a large cytosolic loop, characteristic for presenilin proteins, whereas 

PsenB is predicted to have only a small cytosolic loop. To fully establish the 

one-dimensional structure of D. discoideum presenilin proteins, X-ray 

crystallography needs to be carried out, however, this work is still outstanding 

for human presenilin proteins due to large hydrophobic domains of presenilin 

and the γ-secretase complex (Takagi et al., 2010).  

 

Structural analysis of D. discoideum presenilin proteins revealed conservation 

of key catalytic sites, which support the assertion that D. discoideum presenilin 
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protein localisation and function might be similar to those seen in mammalian 

systems (Wolfe et al., 1999). These functions may involve assembly of a γ-

secretase complex and cleavage of type I transmembrane proteins since D. 

discoideum possesses all other subunits required for this protease complex 

(Nicastrin (Q54JT7), Aph-1 (Q55FS3), and Pen-2 (Q54BR1)). Despite the 

presence of all γ-secretase subunits, to date there are no known endogenous 

integral membrane proteins such as APP and Notch-1 that are cleaved by D. 

discoideum. Nevertheless, McMains et al. (2010) have shown that D. 

discoideum is able to cleave truncated APP which was overexpressed in this 

amoeba supporting the theory of γ-secretase functions in D. discoideum.  

3.6.3 FAD mutations 

The pathological and biochemical changes of sporadic AD phenocopy the 

alterations observed in FAD. Therefore, analysis of biochemical changes 

caused by FAD mutations might give a deeper insight into the aetiology of AD. 

This current study showed that 52% of all amino acids affected by FAD in 

human PS1 and a further 34% of all amino acids affected in PS2 are conserved 

in PsenA and PsenB. Therefore, FAD mutations could be engineered into D. 

discoideum presenilin genes similar to the work seen in D. melanogaster 

(Seidner et al., 2006). Recent work by Kim and Kim (2008) showed that one 

third of all reported PS1 FAD mutations are located to amino acid residues 

which are conserved in a wide variety of species (D. discoideum not analysed). 

Further, the group found that 75% of all FAD mutations occur in TM regions 

which are likely to cause damage to the presenilin protein function which was 

also found in this current study. Histopathological changes, such as presence of 

amyloid plaques and tau tangles, have been reported for many of these 

mutations however, it should be assumed that each mutation affects more than 

one signalling pathway since presenilin proteins have been linked to numerous 

downstream targets   (Parihar and Hemnani, 2004; McCarthy et al., 2009). 

Thus, the majority of biochemical alterations caused by FAD mutations remain 

to be identified. The current study revealed suitable sites for mutagenesis in 

PsenA and PsenB such as the leucine residue 392 in PsenB which corresponds 

to the residue 286 in PS1. In mammalian cell lines, research showed that the 

http://www.uniprot.org/uniprot/Q54JT7


Chapter 2 

60 
 

mutation L268V caused an imbalance in phospholipid and calcium homeostasis 

which can both be analysed in D. discoideum (Landman et al., 2006; Guo et al., 

1996; Allan and Fisher, 2009; Pawolleck and Williams, 2009).  

 

This bioinformatics analysis here presented suggests that D. discoideum 

presenilin proteins share related peptidase structures with the human and 

presenilin proteins of other species. Therefore, D. discoideum offers a system 

that allows analysis of presenilin signalling in the absence of Notch-1, APP and 

tau homologues. Further, this novel presenilin model may enable the analysis of 

altered cell signalling caused by FAD mutations. Ultimately, the development of 

this promising presenilin model may provide a deeper insight into biochemical 

changes of AD.  
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Chapter 4 

Presenilin proteins play a critical role in growth and development in animal 

models (Parks and Curtis, 2007). To investigate the role of presenilin in 

growth and development in D. discoideum, this chapter describes the 

deletion of D. discoideum presenilin genes. Gene expression, growth and 

development were assessed in these mutants, and phenotypes were then 

rescued by complementation. 

4.1 Expression of D. discoideum presenilin genes throughout 

development 

Presenilin gene expression was investigated in D. discoideum throughout 

development. A semi-quantitative Reverse Transcriptase PCR (RT-PCR) 

study was carried out to generate an expression profile for psenA and psenB. 

RNA was extracted at four hourly intervals throughout development and 

cDNA was synthesised. To ensure an equal amount of cDNA was analysed 

from each sample, a constantly expressed housekeeping gene (glycogen 

synthase) was amplified from each sample as a loading control (Iranfar et al., 

2003). This control also served as an indicator of genomic DNA 

contamination within the cDNA sample. To assess transcription of each D. 

discoideum presenilin gene, primers were designed to amplify across psenA 

and psenB specific cDNA regions. Semi-quantitative analysis was carried out 

by measurement of the intensity of each amplified presenilin cDNA fragment. 

Both presenilin genes were transcribed in vegetative cells (0h; Fig. 4.1A, B). 

At 4-12h, psenA transcription levels increased and stayed constant 

throughout the remaining development stages (Fig. 4.1A, B). psenB showed 

a constant high gene transcription throughout development when compared 

to psenA. Assuming identical primer binding and amplification rates of both 

gene products, psenA transcription is significantly lower expressed than 

psenB in the vegetative stage (0h) and early developmental stages (4h). The 

developmental expression patterns are consistent with dictyExpress 
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database for gene expression obtained by RNA sequencing  (Rot et al., 

2009) (Fig. 4.1C). 

A 

           

 

Fig.4.1 Gene expression of psenA and psenB throughout development. (A) A representative 

gel image of psenA, psenB and glycogen synthase (glcs; loading control) PCR products. 
Drawings represent multicellular structures at stated times. (B) Quantification of presenilin 
gene expression. Numbers indicate hours into development; average percent expression of 
both genes compared to psenB expression at 0h. (C) Expression profile of psenA and psenB 
adapted from Run dictyExpress. Values shown are means (±S.E.M; n=3) *** p<0.001; ** 
p<0.01; * p<0.05.  

4.2 Creating presenilin knock-out cassettes 

In order to investigate the cellular and developmental role of psenA and 

psenB, knock-out cell lines were created using the pLPBLP/Cre-loxP system 

(Faix et al., 2004). For this approach, knock-out cassettes were created with 

a region of each gene replaced by a Blasticidin resistance cassette (BsR 

cassette; Fig. 4.2A). Both 5‟ and 3‟ targeting fragments (~500bp) of each 

gene were amplified by PCR with appropriate restriction sites introduced by 

PCR primers. Each PCR product was then cloned into the pLPBLP vector on 

B C 
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either site of the BsR cassette (Fig. 4.2A, B) (Faix et al., 2004). This was 

followed by restriction digests to verify each gene-specific plasmid before 

transformation into wild type D. discoideum took place (Fig. 4.2C, D).  

 

             

Fig.4.2 Preparing a presenilin knock-out construct. (A) Schematic of presenilin targeting 

fragments amplified to generate knock-out vectors. (B) psenA knock-out construct containing 
a 442bp 5‟ and a 500bp 3‟ targeting fragment. Cre/LoxP sites indicate start of the BsR 
cassette. (C) Restriction digest of psenA knock-out construct using BamHI and PstI to cut 
out the 5‟ targeting fragment and NcoI and KpnI to cut out the 3‟ targeting fragment. (D) 
Restriction enzyme digest of knock-out construct using BamHI and KpnI resulting in a 
linearised knock-out cassette and vector backbone, whereas the undigested constructs 
shows supercoiled DNA. 

4.3 Creation of single presenilin knock-out mutants 

To ablate each presenilin gene, wild type (Ax2) cells were transformed with a 

BamHI and KpnI digested knock-out construct targeting either psenA or 

psenB and selected for integration by resistance to antibiotic (Blasticidin; Fig. 

4.2D). Resultant transformants were PCR screened for homologous 

integration of the knock-out construct (Adley et al., 2006). In brief, DNA 
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derived from transformants grown in 96 well plates was amplified using three 

sets of primer: a genomic control primer set annealing outside and inside of 

the knock-out cassette flanking region (G); a vector control primer set 

consisting of a primer inside of the BsR cassette and inside of the knock-out 

cassette flanking region (V); and a knock-out diagnostic primer set (KO) 

using a primer annealing outside the knock-out cassette region and inside 

the BsR cassette (Fig. 4.3A, B). Genomic and vector control bands were 

present in non-homologous integrants, whereas genomic, vector control and 

knock-out diagnostic products were amplified in homologous integrants only 

(Fig. 4.3A). This PCR screening method was performed on both termini of 

the knock-out cassette to verify homologous integration into the targeted 

gene.     

             A            

 

 

 

 

 

              B 

 

Fig.4.3 PCR screen of D. discoideum colonies growing in the presence of Blasticidin 
following transformation with a presenilin knock-out construct (shown for psenB). (A) 
Untransformed cells not growing in presence of Blasticidin (1) show a PCR product for the 
genomic control (G) only. Non-homologous transformants (2) show a PCR product for the 
genomic and vector (V) controls. Homologous integrants (3) show a PCR product for 
genomic, vector controls and a knock-out (KO) diagnostic band. (B) Schematic of PCR 
screen using genomic, vector control and knock-out diagnostic primer sets. BsR=Blasticidin 
resistance.  



Chapter 4 

65 
 

 

The frequency of homologous integration events for each of the presenilin 

genes was very low. This led to a modification of the transformation protocol 

in which gel purification of the digested knock-out constructs removed the 

pLPBLP backbone (2895bp) ensuring transformation of the knock-out 

cassette only (2446bp). Furthermore, different wild type D. discoideum 

laboratory strains and double electro-pulses were tested to improve 

homologous integration rates; however, none of these approaches were 

successful. Screening of in excess of 3000 clones identified two psenA- and 

one psenB- cell line. These transformants were then sub-cloned and PCR 

screened on both termini of the knock-out cassette to ensure isogenic cell 

lines (Fig. 4.4A). To verify gene disruption of the identified psenB- and psenA- 

mutants, a RT-PCR on cDNA was carried (Fig. 4.4B). 

       

A 

 

B 

 

Fig.4.4 PCR identification of psenA and psenB knock-out mutants. (A) For both isogenic 
psenA

-
 and psenB

-
 mutants,

 
5‟ and 3‟ termini were screened for homologous integration with 

the above outlined six primer sets (genomic (G) control, vector (V) controls, and knock-out 
(KO) diagnostic band). (B) Reverse Transcriptase PCR analysis of the psenB in wild type 
(WT) psenA

-
 and psenB

- 
mutants after BsR excision, using a primer pair amplifying across 

the deleted region (D). Amplification of glcs was chosen as an internal control (G).  
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4.4 Developmental analysis of single presenilin knock-out 

mutants 

To determine whether deletion of either presenilin gene causes a 

developmental defect in D. discoideum, each deleted cell line was developed 

on nitrocellulose filters and fruiting body morphology was assessed after 24h. 

Both independently identified psenA- and the single psenB- cell lines showed 

wild type fruiting body formation, with sori and stalks showing no gross 

change when compared to the parent strain (Fig.5). 

 

 

Fig.4.5 Effects of single presenilin gene deletion on development of D. discoideum. Wild 

type and single presenilin mutant cell lines developed on nitrocellulose filters and fruiting 
body morphology was assessed. Wild type, psenA

-
 and psenB

- 
cell lines developed mature 

fruiting bodies within 24h with no gross change in development; seen from an aerial view at 
low magnification (top) and from a side angle at high magnification (bottom). Size bar= 1mm. 

4.5 Blasticidin resistance cassette excision 

Since no developmental phenotype was observed for each single presenilin 

mutant cell line, a double presenilin knock-out mutant was created. Excision 

of the BsR cassette in a single presenilin knock-out mutant is necessary for 

the ablation of a second presenilin gene in a single cell line. For this excision 

process, psenB
-
 clones were transformed with a pDEX-NLS-Cre construct 

encoding Cre-recombinase and transformants were selected over a period of 
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26 days (Faix et al., 2004). Dilution plating of the resultant resistant colonies 

enabled the identification of isogenic colonies sensitive to Blasticidin 

(suggests excision of BsR cassette). PCR amplification across the deleted 

region in the psenB- cell line produced an 875bp fragment, compared to a 

fragment of 1156bp for the wild type cell line (Fig. 6). The psenB- (non BsR 

excised) cell line would be predicted to show a 2398bp fragment in this 

amplification but this was not achieved due to rich AT regions in the BsR 

cassette (data not shown). 

  

 

Fig.4.6 PCR analysis of D. discoideum psenB
 
in wild type and psenB

-
 cells following BsR 

excision. A primer pair flanking the BsR cassette, amplifying across the deleted region of 
psenB

-
, was employed to identify BsR excised psenB

-
 mutant cells. The primer pair amplified 

an 1156bp PCR product in wild type cells and an 875bp product in BsR excised psenB
- 

mutant cells.  

4.6 Creation of a double presenilin knock-out mutant 

To delete both presenilin genes in a single D. discoideum cell line, the BsR 

excised psenB- cell line was transformed with the psenA knock-out construct. 

Again, transformants growing in the presence of Blasticidin were PCR 

screened for homologous integration of the psenA knock-out cassette. As for 

ablation of psenB in wild type cells, several thousand Blasticidin resistant 

clones were screened yielding one double presenilin knock-out clone (psenB-

/A-; Fig. 4.7A). 
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Repeating the BsR cassette excision of the psenA- BsR cassette in the 

psenB-/A- cell line allowed PCR amplification across both deleted gene 

regions to confirm deletion of a central part from each presenilin gene in this 

cell line (Fig. 4.7B). 

 

 

Fig.4.7 PCR analysis of D. discoideum psenB
-
/A

-
 mutant. (A) Homologous integration of 

psenA knock-out cassette in a psenB
-
 background identified by PCR analysis amplifying 

genomic (G), vector (V) and knock-out (KO) products for both 5‟ and 3‟ termini of psenA 
knock-out cassette. (B) Amplification across psenA (a) and psenB (b) in psenB

-
/A

-
 after BsR 

cassette excision produced smaller PCR products showing deletion of large gene regions in 
comparison to wild type cells. 

4.7 Developmental analysis of a double presenilin knock-out 

mutant 

Development of the psenB-/A- mutant was assessed to establish a potential 

role for presenilin proteins in D. discoideum development. As previously 

described, fruiting body structure was assessed 24h into starvation, revealing 

that mutant cells were able to aggregate (early development) but not able to 

develop mature structures (late development). The observed aggregates of 

the psenB-/A- mutant did not show stalks or sori in comparison to the wild 

type cells which did produce mature fruiting bodies (Fig. 4.8). Furthermore, 

streaming of wild type and psenB-/A- mutant cells was assessed over 8h. 

Here, psenB-/A- mutant cells did not appear to form streams, whilst forming 

smaller aggregation territories when compared to wild type cells (Fig 4.9).  
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Fig.4.8 Effects of double presenilin deletion on development of D. discoideum. Wild type and 
psenB

-
/A

-
mutant cells were developed on nitrocellulose filters and assessed using an aerial 

view at low magnification (left) and side view using a high magnification (right). Wild type 
cells produce mature fruiting bodies, whereas psenB

-
/A

-
 mutant cells form aggregates with 

no visible stalks or sori. Size bar=1mm. 
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Fig.4.9 Time-lapse images of streaming wild type and psenB
-
/A

-
 mutant cells. Wild type (left) and psenB

-
/A

-
mutant (right) cells were developed on 

nitrocellulose filters and streaming was assessed. psenB
-
/A

-
 mutant cells appeared to not stream efficiently and form smaller aggregates 4h, when compared 

to wild type cells. Size bar=1mm. 
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4.8 Developmental rescue  

In order to confirm that the psenB-/A- cell line is a genuine knock-out mutant and 

that the developmental phenotype is caused by deletion of both presenilin 

genes, a psenB overexpression vector was created to rescue the 

developmental defect. This vector allowed transcription of psenB under the 

control of a strong actin15 promoter with an actin8 terminator (pDM vector 

series (Veltman et al., 2009). 

To create an overexpression construct, mutation-free cDNA of psenB was 

amplified using a proof-reading polymerase. This process initially proved 

difficult, since 40 independent clones (in an intermediary vector; pCR2.1-TOPO) 

from three separate amplification reactions using Bio-X-Act (Bioline) were 

sequenced and no mutation-free cDNA was identified. Repeating this approach 

using reduced PCR cycles (20 instead of 28) still failed to produce a mutation 

free cDNA. To overcome this, replacing the polymerase with Phusion Hot Start 

II polymerase (NEB) enabled amplification of mutation-free PsenB with 

restriction sites within primers for subsequent cloning into an overexpression 

vector.   

Two non-integrating overexpressing vectors were chosen to express psenB 

cDNA tagged with green fluorescence protein (GFP) at either the N- (pDM317) 

or C- (pDM323) terminal end. The approach of using N- as well as C-terminal 

tagged GFP vectors was chosen to identify and avoid potential interference of 

the GFP tag in localisation and/or protein function. Ligation of the PCR product 

into the pDM vectors was difficult and required transformation into highly 

competent E. coli cells (XL10-Gold Ultracompetent cells; Agilent).  

To rescue the observed psenB-/A- mutant phenotype, the N- or C-terminal 

tagged PsenB overexpressing vectors were transformed into the presenilin null 

cells. The calcium chloride transformation method was employed to ensure a 

high plasmid copy number in transformants. Selection for transformants on 

Micrococcus luteus lawns allowed isolation of multiple independent 

transformants. To confirm that transformants express PsenB-GFP in the psenB-

/A- background, Western blot analysis was carried out using anti-GFP 
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antibodies to probe for PsenB-GFP. The molecular weight of PsenB-GFP is 

predicted to be approximately 80kDa (PsenB 52kDa; GFP 28kDa). A ~80kDa 

protein was successfully detected in the lysate of psenB-/A- overexpressing 

PsenB-GFP mutant cells (Fig. 4.10B). Development of transformants containing 

either N- or C-terminal GFP tagged PsenB revealed that both GFP tagged 

PsenB rescued the developmental phenotype observed in the psenB-/A- mutant, 

thus allowing development of wild type mature fruiting bodies (Fig. 4.10A; 

images for N-terminal PsenB-GFP not shown). This rescue suggests that the 

PsenB-GFP is fully functional and that the GFP tag does not interfere with 

cellular functions of PsenB. Further, PsenB-GFP was overexpressed in wild 

type cells to assess whether constitutively expression of PsenB-GFP affects D. 

discoideum development. These transformants also developed within 24h and 

no gross changes in fruiting body morphology was observed when compared to 

wild type cells (Fig, 4.10A). 
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A           B  

 

Fig.4.10 PsenB-GFP overexpression in psenB
-
/A

-
 mutant cells. (A) Developmental rescue of 

psenB
-
/A

-
 by PsenB-GFP overexpression. psenB

-
/A

-
 mutant cells overexpressing PsenB-GFP 

(N-terminal tagged) were developed on nitrocellulose filters and developmental morphology was 
assessed using an aerial view (left) and side view (right). Overexpression of psenB in the 
psenB

-
/A

-
 cell line allowed development of mature fruiting bodies. PsenB-GFP overexpression 

on wild type development did have no effect on fruiting body morphology. Size bar=1mm. (B) 
Western blot analysis of psenB

-
/A

-
 overexpressing PsenB-GFP mutant cells. An anti-GFP 

antibody was employed to probe against the GFP tag of PsenB in the psenB
-
/A

-
 overexpressing 

mutant (~80kDa). Probing untransformed wild type cell lysate (-) for GFP shows no unspecific 
binding, whereas probing for GFP in lysates of cells overexpressing Crac PH domain (GFP 
tagged; ~41kDa) shows specificity of the antibody (+).  

4.9 Localisation of presenilin B in D. discoideum 

To investigate the localisation of PsenB-GFP in D. discoideum, live cell imaging 

was initially used.   Both psenB-/A- mutants containing either N- or C-terminal 

GFP tagged PsenB, were starved (4h) and light and fluorescence images were 

taken (Fig. 4.11). Live cell fluorescence imaging revealed that both, the N- and 

C-terminal GFP tagged PsenB localized to membrane structures which 

resemble the endoplasmic reticulum (ER). To verify that the protein localises to 

the ER, cells were fixed and probed for calnexin, an ER and nuclear envelope 

specific protein (Muller-Taubenberger et al., 2001). An overlay of PsenB-GFP 

and calnexin localisation images revealed both proteins co-localised to the ER 

and nuclear envelope (Fig. 4.12). 
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Fig.4.11 Live cell fluorescence images of psenB
-
/A

- 
cells overexpressing PsenB-GFP 4h into 

starvation. Both N- or C-terminal GFP allowed localisation of PsenB to structures which 
resemble the ER and nuclear envelope. Not all cells express PsenB-GFP at detectable levels. 
Texas red channel (615nm) shows auto-fluorescence caused by residual media within the cell. 
Size bar=10µm. 

 

Fig.4.12 Fluorescence images of PsenB-GFP expressed in psenB
-
/A

- 
cells. Cells were fixed and 

permeabilized using paraformaldehyde and TritonX-100 and co-stained using an anti-calnexin 
antibody (ER marker). The overlay image suggests co-localisation of PsenB-GFP and calnexin 
to the ER. DAPI stained the nucleus and provides evidence that PsenB-GFP and calnexin 
localise to the nuclear envelope. Size bar=10µm. 
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4.10 Growth of presenilin mutant cell lines 

To further characterise the role of presenilin proteins in D. discoideum cell 

function, growth generation times of single and double presenilin mutants were 

assessed in shaking culture (Fig. 4.13A, B). In this experiment, cells were 

counted twice per day over a period of 4 days. Generation times for psenA- 

mutant cells (10.65h) and psenB- (9.65h) were not significantly different to wild 

type cells (10.57h). Furthermore, the psenB-/A- mutant took 10.80h for one 

generation to duplicate which was again not significantly different to wild type 

cells. 

 

 

Fig.4.13 Generation times of wild type, psenA
-
, psenB

-
 and psenB

-
/A

-
 cell lines. (A) Cells were 

grown in shaking culture and cells were counted over a period of 96h. Graph represents cell 
growth reaching log-phase. (B) Generation times were calculated and no statistical significance 
was found when comparing wild type to mutant cell lines (±S.E.M; n=3).   
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4.11 Discussion 

In this chapter, the role of presenilin proteins was examined in development and 

growth of D. discoideum, the simplest biomedical model possessing two 

presenilin genes. After analysis of presenilin gene transcription throughout 

development, mutants were created lacking one or both presenilin genes. 

Development and growth were assessed in these mutants and results suggest 

a redundant role for these proteins in development. Functional redundancy was 

then confirmed by overexpression of PsenB and this protein was localised to 

the ER. 

4.11.1 A role for presenilin in D. discoideum development 

To investigate a role for presenilin in D. discoideum development, gene 

transcription was assessed throughout this developmental process by Reverse 

Transcriptase PCR analysis. This analysis revealed that both psenA and psenB 

are expressed in vegetative, growing cells. psenA transcription increases 

between 4 to 12h and is constantly expressed in mid to late development. This 

upregulation suggests a role for psenA in D. discoideum mid to late 

development. High transcription levels were found for psenB throughout growth 

and development. In contrast to psenA, psenB transcription levels imply a 

cellular function in growing as well as developing cells. When directly comparing 

transcription levels of both genes, psenB transcription levels were significantly 

higher than psenA in growth and early development. A differential transcription 

pattern for both presenilin genes may suggest at least partially independent 

roles in growth and development.  

Presenilin genes have been shown to be differentially transcribed throughout 

development in a variety of organisms. In human development, both presenilin 

genes are expressed in the fetal cortex with high ps1 transcription levels (Lee et 

al., 1996). Lee et al. (1996) found that in young adult and aged brain tissue both 

genes are expressed at similar levels. Further, transcription levels of ps1 and 

ps2 are similar in a variety of other tissues, such as spleen and lung in the 

developing fetus. The authors suggest that the differential expression patterns 
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of both genes show at least partial independent functions in human 

development. Presenilin gene expression profiles were assessed in a variety of 

other organisms. For example, Xenopus tropicalis is a widely used model to 

study embryological development and possesses two copies of presenilin (psα 

and psβ) (Hashimoto-Gotoh et al., 2003). Both presenilin genes are transcribed 

at high levels in early oocytes with decreasing levels of psα in maturing oocytes, 

whereas psβ transcription levels remain high (Tsujimura et al., 1997). Again, 

these results suggest independent roles for each of the X. tropicalis presenilin 

genes in development. In the nematode, C. elegans, three presenilin genes 

(sel-12, hop-1, spe-4) are also differentially regulated throughout development 

(Levitan and Greenwald, 1995). Levitan and Greenwald (1995) showed that 

transcription of sel-12 is uniform from embryonic to adult stages, whereas spe-4 

is only expressed in the larval stage 4 where sperm is produced. Further, the 

last presenilin gene, hop-1, is weakly expressed in embryos with increasing 

levels in L2-L4 and high levels in the adult stage. These results show differential 

presenilin gene expression, suggesting partial independent cellular functions. In 

the parasite, Schistosoma mansoni, only one presenilin gene is present. Here, 

gene transcript levels were found to be high in eggs of this parasite thus 

implying a role for presenilin in embryogenesis (Magalhaes et al., 2009). The 

gene transcription results presented in this current study suggest that D. 

discoideum presenilin proteins have independent roles in development. 

In this current study, analysis of transcriptional gene expression was carried out 

by Reverse Transcriptase PCR, although quantitative PCR (qPCR) has recently 

surpassed this method as a more accurate mean to quantify gene expression. 

Nevertheless, the data produced here by Reverse Transcriptase PCR was 

supported by the dictyExpress database (RNA sequencing analysis) and 

Northern blot analysis by McMains et al. (2010) which were both published 

shortly after this study was carried out. However, it should be noted that 

analysis of gene transcription does not necessary translate to protein levels 

(Greenbaum et al., 2003). Western blot analysis would provide information 

about total presenilin protein present throughout development and assist in the 

understanding of the role in D. discoideum development. However, 

commercially available antibodies binding to the N, C-terminal or intracellular 



Chapter 4 

78 
 

loop of human PS1 cannot be used as these regions are weakly conserved in 

D. discoideum, thus antibodies would have to be raised against D. discoideum 

presenilin protein.  

To assess the effects of deleting presenilin genes in D. discoideum, single and 

double presenilin knock-out mutants were produced. Initially knockout 

constructs for each presenilin gene were created. PCR amplification of open 

reading frames allowed creation of psenA and psenB knock-out cassettes 

containing 5‟ and 3‟ gene regions flanking a BsR cassette. These knock-out 

cassettes allowed deletion of large gene regions upon homologous integration 

into the genome, thus deletion of presenilin genes and protein function. The rate 

of homologous integration on both sides of the knock-out cassette was found to 

be very low (<0.1%) requiring the PCR screening of in excess of 5000 

transformants. The vast majority of transformants contained the knock-out 

cassette non-homologously integrated into the genome, showing that 

electroporation of the construct into the cells was successful but homologous 

integration was highly infrequent. Literature describing the use of pLPBLP/Cre-

loxP system (Faix et al., 2004) suggest that non-essential genes can be deleted 

at high frequency in D. discoideum. This low knock-out frequency allowed 

identification of only a small number of independent presenilin mutants. 

Therefore, to ensure correct gene deletion several molecular techniques were 

employed; PCR analysis of transformants using six primer pairs ensured the 

correct position and knock-out of the presenilin genes. Reverse transcriptase 

PCR on RNA level across this deleted gene region after BsR excision showed 

correct gene disruption for psenA- and psenB- strains. 

To assess a role for presenilin proteins in D. discoideum development, fruiting 

body morphology was recorded in single and double presenilin knock-out 

mutants. D. discoideum cell lines lacking either psenA or psenB showed no 

apparent developmental defects since wild type fruiting bodies were observed. 

However, deletion of both presenilin in one cell line resulted in a severe 

developmental defect, as only aggregate structures were observed. These 

structures did not contain visible stalk nor sori structures. These results indicate 

that presenilin proteins play an important role in D. discoideum development. 

Analysis of early developmental streaming of psenB-/A- mutant cells revealed 
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aberrant streaming and aggregation of smaller mounds when compared to wild 

type cells. These results may suggest that presenilin proteins may regulate or 

maintain streams and aggregation territories. A similar deficient streaming 

phenotype has been observed in other D. discoideum such as the cell number 

regulator mutant strain (Tang and Gomer, 2008). Furthermore, since a 

developmental defect was caused by deletion of both presenilin genes but not 

either one individually suggests a redundant role for both proteins, despite 

differential gene expression. It would be of interest to assess gene 

transcriptional levels of psenA- in a psenB- background (and vice versa). This 

analysis may show an upregulation of the intact gene, to provide a 

compensatory mechanism during development of D. discoideum.  

A functional redundancy for both presenilin proteins has been observed in other 

species. In mice, deletion of both ps1 alleles was shown to down-regulate the 

Notch-1 pathway resulting in a neuronal loss and perinatal lethality (van Tijn et 

al., 2011). The mouse model lacking both ps2 alleles is viable, displaying only 

mild pulmonary fibrosis (Herreman et al., 1999). Deleting both presenilin (all 

alleles) genes leads to neural tube disorganisation and disrupted Notch-1 

signalling resulting in death of mice at the embryonic stage (Hall and Roberson, 

2011). A developmental defect is also seen in C. elegans where deletion of  sel-

12 leads to an egg-laying deficiency phenotype via reduction of lin-12/Notch-1 

activity (Levitan et al., 1996). Deletion of sel-12 and hop-1 leads to a more 

severe phenotype including germ-line proliferation defects and embryonic 

lethality (Westlund et al., 1999). Another biomedical model possessing two 

presenilin genes is D. rerio. Morpholino knock-down of psen1 leads to somite 

defects and defective brain development, whereas psen2 morpholino knock-

down results in reduced melanin pigmentation (Nornes et al., 2008). Knock-

down of both presenilin genes does not result in a more severe phenotype 

which may be due to the nature of knock-down studies where small amounts of 

gene products are present in the cell (Nornes et al., 2009). 

In other organisms, presenilin has been shown to regulate development and 

display functional redundancy (Selkoe and Kopan, 2003; Donoviel et al., 1999). 

The study presented here suggest that D. discoideum presenilin proteins 
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regulate development and may possess a functional redundancy as only the 

double presenilin mutant displays a severe developmental defect. 

4.11.2 Complementation and localisation of presenilin 

To confirm the deletion and developmental phenotype of the psenB-/A- mutant, 

GFP tagged PsenB was overexpressed in this cell line. Resulting transformants 

developed into mature fruiting bodies within 24h. Both the N- and C-terminal 

PsenB overexpression rescued the developmental phenotype, suggesting that 

the GFP tag at either end of the protein did not interfere with presenilin protein 

functions.  PsenB-GFP was also overexpressed in wild type cells to investigate 

a potential effect of constitutively expressed PsenB-GFP in D. discoideum 

development. Developmental analysis of these transformants did not reveal a 

gross change in fruiting body morphology. These results combined indicate that 

psenB-/A- mutant is a genuine knock-out cell line and developmental changes in 

this cell line were caused by loss of both presenilin genes. Furthermore, 

phenotype rescue of the psenB-/A- mutant by overexpression of PsenB-GFP 

supports the hypothesis of functional redundancy of presenilin proteins in D. 

discoideum development.  However, in other organisms such as C. elegans 

presenilin proteins were found to possess dissimilar abilities to compensate for 

lost presenilin function (Westlund et al., 1999). Therefore, to further characterise 

D. discoideum presenilin redundancy, PsenA needs to be overexpressed in 

psenB-/A- mutant to establish its role in development and ability to compensate.  

Since overexpression of GFP-tagged PsenB complemented the developmental 

phenotype observed in the psenB-/A- mutant, live cell imaging was initially 

employed to establish its cellular localisation. PsenB-GFP was found to localise 

to membrane structures which resemble the ER and nuclear envelope and this 

was confirmed by calnexin co-localisation (Muller-Taubenberger et al., 2001). 

This localisation to the ER and nuclear envelope appears to be conserved 

widely throughout animal species as shown in human and C. elegans (Li et al., 

1997; Walter et al., 1996; Arduengo et al., 1998) . The role of presenilin at the 

ER is still under investigation but recent studies suggest a role in passive 

calcium leak formation (Tu et al., 2006b). Since the ER is the central site for 
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phospholipid synthesis (Fagone and Jackowski, 2009), a possible link between 

presenilin protein and phospholipids synthesis has also been proposed 

(Landman et al., 2006). This study reported here provides evidence of a 

conserved presenilin protein localisation in human and D. discoideum. 

4.11.3 Growth of presenilin mutant cell lines 

Since a role for presenilin in regulating cell growth was shown in several wide 

ranging models, such as mouse and moss, a similar role for presenilin was 

investigated in D. discoideum (Khandelwal et al., 2007; Soriano et al., 2001). 

Generation times of wild type, single and double presenilin mutant cells were 

examined in shaking axenic culture. No gross changes in generation times were 

observed, despite a developmental defect in D. discoideum lacking all 

presenilin. These results indicate that cytokinesis and pinocytosis, a process 

which is required to take up nutrients in shaking culture, is not affected by 

deletion of presenilin.  

Cell proliferation has been shown to be regulated through PS1 and β-catenin as 

part of the Wnt signalling pathway in mammalian systems (Soriano et al., 2001). 

β-catenin binds to the cytosolic loop of presenilin which negatively regulates β-

catenin activity. Upon deletion of presenilin or the intracellular loop of this 

protein, β-catenin stabilises, leading to hyperproliferation in embryonic mouse 

fibroblasts lacking ps1 (Soriano et al., 2001; Murayama et al., 1998).  Similar 

observations were made in moss, P. patens, where deleting the only presenilin 

gene resulted in longer shoots and a greater number of leaves despite a weakly 

conserved intracellular loop (Khandelwal et al., 2007). These studies suggest 

that despite the large evolutionary distance between mice and P. patens, 

presenilin proteins regulate cytokinesis through the Wnt pathway in both 

systems.   

Since psenB is highly transcribed in the vegetative stage, it would therefore be 

likely to have a role in growing cells. Whilst the work here reported was carried 

out, McMains et al. (2010) confirmed that deletion of presenilin in D. discoideum 

does not affect growth in shaking culture. However, McMains et al. (2010) 

showed that deletion of presenilin (psenA- and psenB-/A-) leads to a significant 
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decrease in phagocytic capture of yeast. To further establish a role for 

presenilin proteins in growing cells, cell adhesion (Bozzaro and Ponte, 1995) or 

induction of morphogenesis (Weijer, 2004) could be investigated. 

4.11.4 Published D. discoideum presenilin mutant data 

In 2010, whilst this current work was undertaken, a collaborator published data 

on D. discoideum presenilin mutants (McMains et al., 2010). Despite regulated 

naming of genes (Dictybase), the authors named D. discoideum presenilin 

genes as follows: ps1 (psenB) and ps2 (psenA). These gene names reflect the 

order of discovery and not homology to either of the human presenilin genes 

(personal communication with McMains). From this published work, deletion of 

psenA (ps2) produced a phenotype with a developmental arrest at the slug 

stage (produces slugs only), whereas deletion of psenB (ps1) had no effect on 

development or fruiting body morphology. Deletion of both presenilin genes in 

one cell line (ps1-/ps2-) mirrored the phenotype described in the psenA-(ps2-) 

mutant. The differences in phenotypes observed in the work submitted here to 

that published by McMains et al. (2010) may be due to background strains 

used, since this current study was based in an Ax2 cell line, and McMains et al. 

(2010) failed to report a strain background. Further differences may have arisen 

due to a different knock-out construct design by McMains et al. (2010), since 

the current study created mutant strains lacking large parts of the gene, thus 

ensuring gene disruption, whereas MacMains et al. (2010) created mutants by 

insertional mutagenesis (without deletions). Similar discrepancies in 

developmental phenotypes following ablation of the same gene have been 

reported by two research groups deleting glycogen synthase kinase A (GSK-A) 

(Schilde et al., 2004; Harwood et al., 1995). Here, Schilde et al. (2004) argued 

that the milder developmental phenotype of GSK-A- mutant cell line was due to 

differences in the parent strains.  
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Chapter 5 

Bioinformatic analysis of both D. discoideum presenilin proteins suggests 

common cellular functions to those of human presenilin proteins. Analysis of the 

two D. discoideum presenilin proteins showed a role for these proteins in 

development. This chapter investigates a conserved role for human PS1 (from 

here onwards PS1) in development and the complementation of the D. 

discoideum psenB-/A- mutant. This was achieved by overexpression of PS1-

GFP in the mutant background to assess developmental rescue and 

localisation. Furthermore, mutant cell lines were assessed for abnormalities in 

stalk and spore cell numbers and quantitative PCR (qPCR) was employed to 

assess developmental gene transcription. To establish whether the role for 

presenilin proteins in D. discoideum development is dependent upon the 

proteolytic activity, overexpression of proteolytic inactive PS1 in a psenB-/A- 

mutant and western blot analysis were performed.  

5.1 Developmental rescue using human presenilin 1 

In order to investigate whether D. discoideum and human presenilin proteins 

possess common cellular functions, a psenB-/A- mutant cell line overexpressing 

PS1 was created. For this experiment, a D. discoideum vector expressing PS1 

from a highly expressed constitutive promoter was prepared from a human 

PS1D385A cDNA clone (isoform 2) where the aspartic acid 385 (D385A) was 

eliminated through overlap extension PCR to construct the wild type gene (Fig. 

5.1).The resultant PS1 cDNA was then cloned into pDM448 (N-terminal GFP 

tag) and sequenced to ensure the construct was mutation free. 
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                        A 

 

                                  B                      C 

             
Fig.5.1 Overlap extension PCR to create mutation free ps1 cDNA. (A) Schematic overview of 
the overlap extension PCR where the two primer pairs correct the mutated nucleotides of 
ps1

D385A
 cDNA and were used to amplify two wild type fragments of ps1. These products were 

then combined to amplify full length, mutation free ps1 cDNA. (B) Gel electrophoresis image of 
5‟ and 3‟ fragments which were amplified using a mammalian vector containing ps1

D385A
 as a 

template at various annealing temperatures. (C) 5‟ and 3‟ fragments were used as templates to 
amplify full length wild type ps1 cDNA.    

 

In this experiment, psenB-/A- mutant cells were transformed with the created 

PS1-GFP overexpression construct and colonies growing in the presence of 

antibiotic were screened by PCR for the presence of PS1-GFP in a psenB-/A- 

background. Amplification across the deleted regions of psenA and psenB 

produced smaller fragments in the presenilin null background (confirming 

deletion of the presenilin genes) when compared to the wild type background. 

Furthermore, a PCR primers annealing to ps1 did amplify a PCR product in 

psenB-/A- mutant cells overexpressing PS1 only (Fig. 5.2). 
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Fig.5.2 PCR screen of D. discoideum wild type and psenB
-
/A

-
 mutant cells for the presence of 

human ps1. Primer sets amplify across the deleted region of psenA (A), psenB (B) and human 
ps1 (PS1). DNA of non-transformed cells produced wild type length psenA and psenB PCR 
product and not a ps1 product. DNA of transformed cells produced smaller, knock-out PCR 
products for psenA (A), psenB (B) and a product ps1 (PS1) confirming the presence of the ps1 
overexpressing vector. 

 

D. discoideum psenB-/A- cells expressing PS1-GFP were then developed on 

nitrocellulose filters and fruiting body morphology was assessed after 24h (Fig. 

5.3). These transformants developed into mature fruiting bodies comprising wild 

type stalks and sori, thus showing rescue of the psenB-/A- developmental 

phenotype. Furthermore, wild type cells overexpressing ps1 did not produce an 

altered developmental phenotype when compared to wild type cells.  
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Fig.5.3 Developmental rescue of psenB
-
/A

-
 mutant cells through human PS1 overexpression. 

Wild type, psenB
-
/A

-
, psenB

-
/A

-
 overexpressing PS1 and wild type overexpressing PS1 (N-

terminal tagged GFP) were developed on nitrocellulose filters and developmental morphology 
was assessed using an aerial view (left) and side view (right). Overexpression of human ps1 in 
the psenB

-
/A

-
 cell line allows development of mature fruiting bodies. Expression of PS1 in wild 

type cells did not produce a developmental phenotype. Size bar=1mm.  

5.2 Localisation of human presenilin 1 in D. discoideum 

Since the D. discoideum PsenB-GFP localises to the ER and nuclear envelope 

in psenB-/A- cells (Chapter 4), the localisation of PS1-GFP was also assessed 

using fluorescence imaging. This analysis revealed localisation to cellular 

structures resembling the ER and nuclear envelope (Fig. 5.4). 
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Fig.5.4 Live cell fluorescence images of psenB
-
/A

- 
cells overexpressing PS1. PS1 was tagged 

with an N-terminal GFP to allow localisation using live cell imaging. PS1-GFP localised in 
structures which resemble the ER and nuclear envelope. Not all cells express PS1-GFP at 
detectable levels. Texas red channel (615nm) was used as an internal auto-fluorescence 
control. Size bar=10µm. 

 

To verify whether PS1-GFP localises to the ER and nuclear envelope, psenB-/A- 

PS1-GFP overexpressing cell were fixed and probed for calnexin as described 

in Chapter 4. The overlay of PS1-GFP and calnexin images demonstrates a co-

localisation of PS1-GFP to the ER and nuclear envelope in D. discoideum (Fig. 

5.5).  

 

 

Fig.5.5 Fluorescence images of PS1-GFP overexpressed in psenB
-
/A

- 
cells. Cells were fixed 

and permeabilized using paraformaldehyde and TritonX-100 and co-stained using an anti-
calnexin antibody (ER marker). The overlay image suggests co-localisation of PS1 and calnexin 
to the ER. DAPI stained the nucleus and provides evidence that PS1 and calnexin localise to 
the nuclear envelope. Size bar=5µm. 

5.3 Stalk cell analysis  

To assess the developmental phenotype observed in psenB-/A- mutant cells, a 

more detailed phenotypic analysis was carried out. D. discoideum offers a 

system in which the analysis of individual developmental stages such as stalk 

cell production is possible. Stalk cells production can be induced using DIF 

enabling assessment of stalk cell production in a low-density monolayer. This 
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stalk cell production is inhibited by the addition of cAMP which acts through a 

Gsk-A-dependant inhibition (GSK-3β homologue) (Williams et al., 1999). 

Quantification of stalk cells revealed that ablation of either of the presenilin 

genes did not affect stalk cell production, whereas deletion of both presenilin 

genes resulted in 31% fewer stalk cells (p≤ 0.05) when compared to wild type 

cells (Fig. 5.6) (Harwood, 2008). Analysis of the inhibition of stalk cell 

production using cAMP revealed that the psenB-/A- mutant cells produced 84% 

(p≤ 0.01) less stalk cells when compared to wild type cells. Expression of either 

PsenB-GFP or PS1-GFP in the psenB-/A- background restored stalk cell 

production back to wild type levels (Fig. 5.6). 

 

Fig.5.6 Stalk cell analysis of presenilin mutant strains. DIF induces whereas cAMP inhibits stalk 
cell production in D. discoideum. Ablation of one presenilin gene did not affect stalk cell 
production but ablation of both presenilin genes showed a significant reduction in stalk cell 
number. This effect was rescued by overexpression of PsenB-GFP and PS1-GFP. Images 
represent cell types, where stalk cells are round and vacuolated. Values shown are means 
(±S.E.M; n=3) *** p<0.001; ** p<0.01; * p<0.05. 
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5.4 Spore cell analysis 

To further characterise the developmental phenotype observed in psenB-/A- 

mutant cells, spore cell production was assessed. To do so, wild type and 

presenilin mutant strains were developed for 24h on nitrocellulose filters and 

resultant fruiting bodies (or aggregates) were lysed with detergent to remove all 

non-spore cells. Spore counts revealed that psenA- and psenB- cell lines 

produced 40% less spores than wild type cells (p≤ 0.001; Fig. 5.7). In the 

psenB-/A- mutant cell line 98% decrease in spore cell production was observed 

when compared to wild type spore production. However, spore cell production 

was restored to single knock-out cell lines levels when PsenB-GFP or PS1-GFP 

was overexpressed in the psenB-/A- background (Fig. 5.7). It should be noted 

that PsenB-GFP is able to restore these levels more efficiently when compared 

to PS1-GFP (p≤ 0.05). 

 

Fig.5.7 Spore cell analysis of wild type and presenilin mutant strains. All strains were developed 
on nitrocellulose filters and developmental structures were treated with detergent (lyses non 
spore cells). Spore cell numbers in single presenilin knock-out cell lines were found to be 
significantly decreased with complete ablation of spore cell production in psenB

-
/A

-
 mutant cells. 

Overexpression of PS1-GFP and PsenB-GFP restored spore production to single presenilin 
gene knock-out strain levels. Image represents spore cells. Values shown are means (±S.E.M; 
n=3) *** p<0.001; ** p<0.01; * p<0.05. 
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5.5 qPCR analysis of developmental regulated genes in 

presenilin mutants 

To independently assess developmental changes caused by deletion of both 

presenilin genes, transcriptional gene regulation of developmental markers was 

assessed using quantitative PCR (qPCR). The developmental genes assessed 

by this method are markers for specific developmental stages during early, mid 

and late development of D. discoideum (carA-1, ecmA, psA). In these 

experiments, wild type, psenB-/A-, psenB-/A- overexpressing PsenB-GFP and 

psenB-/A- overexpressing PS1-GFP cells were developed on nitrocellulose 

membranes (Fig. 5.8), and RNA was extracted at six hourly intervals over a 

period of 24h. This RNA was used as a template for cDNA synthesis and gene 

transcription levels were analysed by qPCR.  

 

Fig.5.8 Development of wild type, psenB
-
/A

-
 mutant cells and psenB

-
/A

-
 mutant cells expressing 

either PsenB or PS1 for qPCR analysis. Cells were washed off the nitrocellulose filters at six 
hourly intervals over a period of 24h. This was followed by RNA extraction and cDNA synthesis. 
No images were taken of cells at 0h as no structures are visible on nitrocellulose filters at this 
time point. Development was assessed using an aerial view. Size bar=1mm. 

 

To analyse the early development, expression of the cAMP receptor (car1) was 

assessed as it is required for the streaming phase. This analysis showed that 

psenB-/A- mutant cells had a threefold increase in car1 expression (P< 0.001) at 
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6h compared to wild type cells (Fig. 5.9 A). Throughout mid and late 

development, car1 transcription levels stay higher (P<0.001) when compared to 

wild type cells. The transcription levels of stalk cell marker (ecmA) showed a 

significant decrease (P< 0.001) in psenB-/A- mutant cells throughout early and 

mid-development when compared to wild type expression (Fig. 5.9 B). Analysis 

of the pre-spore specific marker (psA) and late development showed increased 

transcription levels in early and late development for psenB-/A- mutant cells at 

24h (Fig. 5.9 C).  

Gene expression analysis of the rescued strains revealed that the elevated car1 

observed in psenB-/A- transcription was downregulated in the rescued psenB-/A- 

cells (Fig. 5.9 A). At 6 and 12h, overexpression of psenB results in a restored 

transcriptional regulation of car1, when compared to psenB-/A- mutant and wild 

type cells. Transcription of ecmA in psenB-/A- overexpressing PsenB-GFP was 

upregulated and resembles wild type transcription of this gene at 12h (Fig. 5.9 

B). However, at 24h, overexpression of psenB resulted in a significant 

transcriptional upregulation of ecmA (p< 0.001) when compared to wild type 

and psenB-/A- mutant cells. The spore cell marker (psA) is significantly 

upregulated in psenB-/A- overexpressing psenB at 12 and 24h (Fig. 5.9 C; p< 

0.01).  

Overexpression of PS1-GFP in the psenB-/A- background led to a 

downregulation of car1 transcription but did not fully restore wild type car1 

transcription at 6 and 24h (Fig. 5.9 A). ecmA transcription levels were 

upregulated in psenB-/A- cells overexpressing PS1-GFP but wild type levels 

were not fully restored at 12h (Fig. 5.9 B). However, ecmA expression was 

significantly upregulated at 24h when overexpressing PS1-GFP in the psenB-/A- 

background, similar to that observed in psenB
-
/A

-
 cells overexpressing PsenB-

GFP (p< 0.001). The spore cell marker transcription levels (psA) was as well 

significantly upregulated at 12 and 24h (p< 0.001) in psenB-/A- cells 

overexpressing PS1-GFP when compared to wild type and psenB-/A- cells (Fig. 

5.9 C). 
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Fig.5.9 Quantitative PCR analysis of three developmentally regulated genes in wild type, psenB
-

/A
-
 mutant cells and psenB

-
/A

-
 mutant cells expressing either psenB or ps1. (A) car1 (early 

aggregation marker), (B) ecmA (stalk cell marker) and (B) psA (spore cell marker) transcription 
levels were assessed and ig7 was employed as a loading control. (A) car1 transcription was 
significantly upregulated in psenB

-
/A

-
 mutant cells. (B) ecmA transcription was significantly lower 

in psenB
-
/A

- 
cells

 
when compared to wild type cells. (C) No significant changes were observed in 

psA transcription of psenB
-
/A

-
 cells. (A) car1 and (B) ecmA transcription levels were partially 

restored in overexpressing mutant cells when compared to psenB
-
/A

-
 cells. Both rescued strains 

displayed a significantly upregulation in (B) ecmA and (C) psA at 12 and 24h when compared to 
wild type and psenB

-
/A

-
 mutant cells. Values shown are means (±S.E.M; n=3; technical 

duplicates) *** p<0.001; ** p<0.01; * p<0.05.  
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5.6 Western blot analysis  

In higher organisms, presenilin is cleaved through endoproteolysis of the 

intracellular loop in order to carry out γ-secretase functions and only very little 

full length presenilin protein can be found in cell lysates (Honda et al., 2000; 

Haass and De Strooper, 1999). In order to establish whether PsenB-GFP and 

PS1-GFP undergo cleavage in D. discoideum, Western blot analysis was 

carried out. Since both PsenB and PS1 were tagged with a GFP, protein lysates 

of psenB-/A- overexpressing PsenB or PS1 cells were analysed by Western 

blotting using an anti-GFP antibody. The isoform 2 of PS1 consists of 463 

amino acids and gives rise to a molecular weight of ~52kDa. PsenB encodes 

473 amino acids also accounting for a molecular weight of ~52kDa. Both 

proteins contain a GFP tag (~28kDa) which together with PsenB or PS1 gives 

rise to an expected molecular weight of ~100kDa (rather than 80kDa). However, 

it should be noted that an increase in the molecular weight is often found when 

proteins are expressed with a GFP tag. Western blot analysis showed that both 

PsenB-GFP and PS1-GFP were expressed in psenB-/A- cells but neither protein 

underwent endoproteolysis in D. discoideum. The presence of only full length 

~80kDa proteins suggests a lack of endoproteolytic presenilin cleavage in D. 

discoideum (Fig. 5.10).  

 

Fig.5.10 Western blot analysis of lysates from psenB
-
/A

-
 overexpressing either PsenB-GFP or 

PS1-GFP. An anti-GFP antibody was employed to probe for the GFP tag of PsenB-GFP 
(~80kDa) and PS1-GFP (~80kDa) in psenB

-
/A

-
 overexpressing mutants. Probing untransformed 

wild type cell lysate (-) for GFP showed no unspecific binding, whereas probing for GFP in 
lysates of cells overexpressing Crac PH domain-GFP (~41kDa) showed specificity of the 
antibody (+). Probing for GFP in lysates of cells overexpressing either PsenB or PS1, identified 
a single ~100kDa protein band.   
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5.7 Human presenilin 1 can rescue psenB
-
/A

-
 phenotype 

independent of catalytic aspartic acid 

Since no endoproteolytic cleavage of either PsenB-GFP or PS1-GFP was 

detected in D. discoideum, the ability of human PS1 to function in D. 

discoideum development lacking endoproteolytic activity was examined. Human 

PS1 possesses two active catalytic aspartic acid residues (D257 and D385) 

which are required for endoproteolysis and to catalyse γ-secretase functions 

(Wolfe et al., 1999). Mutation of either one of these aspartic acids leads to loss 

of γ-secretase function and thus proteolytic activity (Wolfe et al., 1999). In this 

experiment an endoproteolytic dead PS1 (PS1D385A) was expressed in the 

psenB-/A- mutant cell line and developmental phenotype was assessed. To do 

so, human PS1D385A cDNA was cloned into the D. discoideum expression vector 

pDM448 and transformed into psenB-/A- cells. Transformants were developed 

on nitrocellulose filters and morphology assessment showed that the 

endoproteolytic dead PS1D385A-GFP rescued the altered developmental 

phenotype observed in psenB-/A- cells (Fig. 5.11). The rescue using PS1D385A 

confirms an endoproteolytic independent function for presenilin proteins in D. 

discoideum development.  

 

Fig.5.11 Developmental rescue of psenB
-
/A

-
 mutant cells by PS1

D385A
 overexpression. psenB

-
/A

-
 

and psenB
-
/A

-
 PS1

D385A
 overexpressing cells (N-terminal tagged GFP) were developed on 

nitrocellulose filters and developmental morphology was assessed using an aerial view (left) 
and side view (right). Overexpression of PS1

D385A
 in the psenB

-
/A

-
 cell line allowed development 

of mature fruiting bodies. Size bar=1mm. 
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To investigate whether localisation of human PS1 to the ER and nuclear 

envelope is dependent upon the catalytic aspartic acid residue (D385), live cell 

microscopy of psenB-/A- PS1D385A overexpressing cells was carried out. This 

proteolytic inactive protein, like the wild type protein was found to localise to 

structures resembling the ER and nuclear envelope (Fig. 5.12).  

 

Fig.5.12 Live cell fluorescence images of psenB
-
/A

- 
PS1

D385A
 overexpressing cells 4h into 

starvation. PS1
 D385A

 was tagged with an N -terminal GFP to allow visualisation. The protein was 
found to localise to structures resembling the ER and nuclear envelope. Texas red channel 
(615nm) shows auto-fluorescence caused by residual media within the cell. Size bar=10µm. 

5.8 Notch-1 cleavage assay 

So far, this study has shown that human presenilin is able to rescue the D. 

discoideum developmental phenotype caused by deletion of both endogenous 

presenilin genes. This result suggests that human and D. discoideum have 

functionally conserved roles. To examine the functionality of D. discoideum 

presenilin proteins in mammalian cells, both D. discoideum presenilin proteins 

were expressed in mouse blastocysts lacking all presenilin proteins (BD8 cells; 

PS1-/–PS2–/–) or all but one PS1 allele (BD3 cell; PS1+/–PS2–/–) whilst expressing 

a human truncated version of Notch-1 (Den1) (Donoviel et al., 1999). In this 

experiment, presenilin proteins, as part of the γ-secretase complex, were 

required to cleave human Notch-1 and the activity was assessed using a C-

promoter binding factor-1 reporter assay as described by Hooper et al. (2006). 

In order to assess Notch-1 cleavage through D. discoideum presenilin proteins, 

full length psenA and psenB cDNA was cloned into a mammalian pFLAG-CMV 

5a vector enabling expression of either wild type or FLAG tagged proteins. 

These constructs were transfected into BD8 and BD3 cells and Notch-1 

cleavage was assessed.  
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As a positive control, D. discoideum presenilin proteins and human PS1 were 

expressed in BD3 cells. Analysis of BD3 cells showed that Notch-1 was 

successfully cleaved by the endogenous mouse PS1 and was similar to the 

cleavage levels observed in cells transfected with human PS1 (Fig. 5.13 A; p≤ 

0.05). Analysis of Notch-1 cleavage by D. discoideum presenilin proteins 

revealed that both, Flag tagged and untagged, presenilin proteins were able to 

cleave Notch-1 more efficiently than human and mouse PS1 in the BD3 

background (p≤ 0.01). Analysis of cleavage in a BD8 cell background revealed 

that human PS1 cleaved Notch-1 successfully (Fig. 5.13 B, p≤ 0.01). 

Furthermore, Notch-1 was also successfully cleaved by PsenA (p≤ 0.05) and 

PsenB (p≤ 0.01) when compared to the negative control. It should be noted that 

the Flag tagged did not interfere with the ability of D. discoideum presenilin 

proteins to cleave Notch-1. These results showed that D. discoideum presenilin 

proteins are able to cleave human Notch-1, thus revealing functional 

conservation between both D. discoideum and human PS1. 

 

 

Fig.5.13 Notch-1 cleavage by human and D. discoideum presenilin proteins. Presenilin 

dependant Notch-1 S3 cleavage was assessed by increase in luminescence when compared to 
the Den1 control (reporter and truncated Notch-1 only), human PS1 and D. discoideum 
presenilin proteins. (A) Human PS1 cleaved Notch-1 (Den1) in BD3 mouse blastocyst cells 
(PS1

+/–
PS2

–/–
) as successful as the endogenous mouse PS1. Both tagged and untagged PsenA 

and PsenB cleaved Notch-1. (B) In BD8 mouse blastocyst cells, PS1 cleaved Notch-1 as well 
as both Flag tagged and untagged PsenA and PsenB. Values shown are means (±S.E.M; n=3) 
*** p<0.001; ** p<0.01; *p<0.05.  

 

 

A                      B 
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5.9 Discussion 

This chapter investigated whether there is a functional relationship between D. 

discoideum and human PS1. Here it was shown that human PS1-GFP rescues 

the psenB-/A- developmental phenotype and localises to the same cellular 

structures as PsenB-GFP. This functional relationship was then independently 

confirmed by stalk, spore and qPCR assays. Further, analysis of presenilin 

protein endoproteolysis and developmental assessment of human PS1 with an 

inactive catalytic site revealed that the role for presenilin proteins in D. 

discoideum development is independent of endoproteolytic cleavage of 

presenilin proteins. To investigate the reverse relationship, D. discoideum 

presenilin proteins were expressed in mouse blastocysts, where it was shown 

that the amoeba proteins are capable of cleaving human Notch-1.  

5.9.1 Functional relationship and localisation between human 

D. discoideum presenilin proteins 

This current study employed human PS1 to rescue the D. discoideum 

developmental phenotype caused by deletion of both presenilin genes. In order 

to express PS1 in the D. discoideum psenB-/A- mutant, a vector containing full 

length PS1 was created and into psenB-/A- cells transformed. A development 

assay of psenB-/A- cells overexpressing PS1-GFP revealed that human 

presenilin is able to rescue the developmental defect, where mature fruiting 

bodies with stalks and sori and no gross changes in morphology were observed 

when compared to wild type fruiting bodies.  This work, for the first time, 

describes that human PS1 is able to rescue D. discoideum development in a 

presenilin null background and suggest a functional relatedness between 

human and D. discoideum presenilin proteins. 

Several other groups have attempted to establish a functional relatedness of 

presenilin throughout kingdoms. The most commonly used presenilin model are 

mice lacking either one or both presenilin genes (with both alleles deleted) (van 

Tijn et al., 2011). The deletion of ps1-/- leads to perinatal death, whereas 

deletion of ps1-/- and ps2-/- leads to lethality at embryonic stages. Both mouse 

presenilin models can be rescued by introduction of human PS1 (Wang et al., 
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2003; Qian et al., 1998). In C. elegans, deletion of sel-12 leads to an egg-laying 

deficiency through a down regulation of the Notch-1 pathway. Upon introduction 

of human PS1, this developmental phenotype is rescued, thus showing a 

functional conservation between the nematode and human presenilin proteins 

(Levitan et al., 1996). The biomedical model D. melanogaster possesses only 

one presenilin gene and deletion leads to lethality at the larval-pupal transition 

(Seidner et al., 2006). However, expression of either human PS1 or PS2 did not 

rescue the phenotype despite relative high conservation between human and D. 

melanogaster presenilin proteins (52% identities) (Seidner et al., 2006). The 

early land plant P. patens which also possesses only one presenilin gene, 

displays growth and light response defects upon gene deletion and these 

defects were rescued by introduction of human PS1 (Khandelwal et al., 2007).  

When overexpressing human proteins in D. discoideum, which genome has a 

higher adenosine and tyrosine content, an altered codon bias of D. discoideum 

to mammalian genes can lead to a reduction in translation rate (Sharp and 

Devine, 1989). D. discoideum researchers are therefore in favour of 

synthesising heterologous cDNA using a D. discoideum codon bias to ensure 

expression in this amoeba. For example, modification of the nucleotide 

sequence of human chorionic gonadotropin for expression in D. discoideum 

leads to 6-8 fold higher expression levels than the non-modified gene (Vervoort 

et al., 2000). This current study did not adapt this codon bias but yet 

successfully expressed human PS1-GFP in D. discoideum at sufficient levels to 

rescue the developmental phenotype of psenB-/A- mutant. Expression of human 

PS1-GFP in D. discoideum wild type cells did not alter wild type development, 

which may suggest that presenilin proteins regulate downstream molecules 

through an „on/off‟ effect. Future work could include expression of PS2 in a D. 

discoideum presenilin null background to fully understand functional 

conservation between human and D. discoideum presenilin proteins.   

Presenilin protein was shown to localise to the ER and nuclear envelope in 

higher organisms and D. discoideum (Li et al., 1997; Walter et al., 1996; 

Tekirian et al., 2001). Fluorescence microscopy revealed a common localisation 

of PsenB-GFP and PS1-GFP to the D. discoideum ER and nuclear envelope, 

supporting a conserved functional role between these proteins. Since PS1 
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localises to the ER, it may enable analysis of FAD mutations and their effect on 

localisation and cellular effects. In higher systems, wild type presenilin proteins 

and their aberrant forms have been linked to ER leak channels and therefore 

Ca2+ dysregulation (Parks and Curtis, 2007; Tu et al., 2006a). Therefore, D. 

discoideum may offer a suitable system to investigate the effect of FAD 

mutation on Ca2+ signalling in the absence of APP or Notch-1 dysregulation. 

Furthermore, it would be of interest to investigate localisation of PS2 and PsenA 

D. discoideum to further explore the relatedness between these presenilin 

proteins. 

5.9.2 Functional redundancy of D. discoideum presenilin 

After showing that human PS1-GFP is able to rescue the developmental defect 

in the psenB-/A- mutant, the reverse relationship was examined. D. discoideum 

does not possess a defined Notch homologue nor have any other endogenous 

γ-secretase cleavage targets been identified. Because of this, it is highly 

problematic to assess γ-secretase activity in this model. This proteolytic activity 

was therefore assessed in a mammalian cell line. D. discoideum and human 

presenilin proteins were expressed in mouse blastocysts lacking either all 

presenilin genes or all but one ps1 allele. The assay showed that both human 

and D. discoideum presenilin proteins are capable of functioning within the 

mammalian γ-secretase complex to cleave Notch-1. This result confirms 

functional redundancy of presenilin protein activity between D. discoideum and 

humans. Further, this result represents one of the first examples of D. 

discoideum complementing an aberrant phenotype in a mammalian system.  

Most biomedical models used in presenilin research possess a Notch-1 

homologue (Levitan and Greenwald, 1995; Ye and Fortini, 1998). However, P. 

patens possesses homologues of all γ-secretase subunits (Nicastrin, Aph-1, 

Pen2) whilst possessing only one copy of presenilin and lacking a Notch-1 

homologue (Khandelwal et al., 2007). Khandelwal et al. (2007) tried to rescue 

Notch-1 cleavage in mouse fibroblasts (lacking all presenilin activity) using this 

highly diverged presenilin protein but found that P. patens protein is unable to 

associate with the mammalian γ-secretase subunits and cleave human Notch-1. 
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The authors conclude that the P. patens presenilin protein cannot perform γ-

secretase cleavage events in mouse fibroblasts. The work presented here 

suggests that, despite the evolutionary distance between D. discoideum and 

humans, D. discoideum presenilin proteins are able to integrate into the 

mammalian γ-secretase complex and perform Notch-1 cleavage.  

5.9.3 Stalk and Spore cell analysis  

Since deletion of both presenilin genes in D. discoideum leads to a severe 

developmental phenotype with no obvious stalk or spore structures, a more 

detailed analysis was carried out to establish the role of presenilin proteins in D. 

discoideum development. To do so, stalk cell monolayer assays were 

performed on wild type, presenilin single and double null mutant strains as well 

as the rescued strains. Analysis revealed that psenB-/A- mutant cells did 

produce significantly fewer stalk cells when compared to wild type, single 

presenilin knock-out and rescued strains. The presence of cAMP has been 

shown to inhibit stalk cell production in wild type cells but allows around 10-20% 

of all cells to develop into stalk cells. Furthermore, it was shown that psenB-/A- 

cells produce less stalk cells in the presence of cAMP. This suggests that 

deletion of presenilin genes in D. discoideum affects transcription of a gene 

regulating stalk cell production (ecmB) via a Gsk-A regulated pathway (Fig. 1.8) 

(Schilde et al., 2004).  Furthermore, functional redundancy and a compensatory 

effect of both presenilin proteins were demonstrated in this assay as the PsenB-

GFP and PS1-GFP overexpression in the psenB-/A- background restored stalk 

cell production back to single presenilin knock-out and wild type cells levels. 

 

Stalk cell production was as well assessed by McMains et al. (2010), where the 

authors have shown that deletion of psenA (ps2) results in a ~55% decrease in 

spore cell production, whereas deletion of psenB (ps1) shows no significant 

reduction in spore cell numbers when compared to wild type cells. Deletion of 

both presenilin genes leads to a ~50% reduction in spore cells, similar to that 

observed in their ps2- strain. However, the work here presented shows proof for 

a compensatory process of both D. discoideum presenilin proteins on 

developmental, stalk and spore cell level. 
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5.9.4 Developmental gene regulation in presenilin gene mutants 

Analysis of D. discoideum developmental morphology and cell type specific 

differentiation of stalks and spore cells of psenB-/A- cells suggest that presenilin 

proteins play a critical role in multiple signalling pathways involved in D. 

discoideum development. To independently confirm a developmental 

dysregulation caused by presenilin gene ablation, developmentally regulated 

gene transcription was analysed by qPCR.  Analysis of the early developmental 

marker (car1) revealed a 200% upregulation in psenB-/A- cells throughout 

development when compared to wild type cells. This early developmental 

marker is a cAMP surface G-coupled receptor which binds extracellular cAMP 

causing adenylyl cyclase A (ACA) activation, cAMP production and downstream 

PKA activation (Loomis, 1998). PKA in turn stimulates aca and car1 

transcription and inhibits ERK2 allowing internal cAMP to be hydrolysed by a 

phosphodiesterase (RegA) which results in a sophisticated feedback loop 

ensuring adequate response to external cAMP (Fig. 5.14) (Soderbom and 

Loomis, 1998).  

A range of molecular mechanisms for presenilin proteins in D. discoideum may 

explain these observed phenotypes. One possible explanation for the 

upregulation of car1 in the presenilin null background might be a compensatory 

mechanism via PKA. PKA may upregulate car1 gene transcription as it tries to 

compensate for the lack of activation or protein levels of downstream signalling 

molecules such as the cAMP response element-binding protein (CREB/BZPF) 

or GATA-binding transcription factor (STKA) which is required for spore cell 

induction (Chang et al., 1996; Huang et al., 2011). Another explanation might be 

that presenilin proteins are a negative regulator of cAR1 or other signalling 

molecules of this complex signal relay (Fig. 5.14). Evidence that may support 

the latter theory is that psenA transcription is upregulated at 4h whilst car1 

transcription peaks around the same time and decreases from there onwards, 

suggesting negative regulatory mechanism between these molecules (Chubb et 

al., 2006). Further, the increased car1 transcription levels may cause the 

streaming deficient phenotype observed in psenB-/A- allowing cells to 

accumulate in small aggregates with what appears to be smaller cell numbers. 

In order to unravel the role which presenilin proteins play in car1 transcriptional 
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regulation, further analysis needs to be carried out such as cAR1 receptor 

quantification and immunoprecipitation of D. discoideum presenilin. 

 

Fig.5.14 Schematic of D. discoideum aggregation network and feedback loop. cAMP binds 
Car1 which in turn activates ACA and ERK2. ACA synthesises cAMP which activates PKA or is 
excreted to act as a chemoattractant. PKA inhibits ERK2 which allows the phoshodiesterase, 
RegA, to hydrolyse cAMP preventing PKA activation. Extracellular cAMP is broken down by 
another phosphodiesterase (Pde) which permits Car-1 to return to its high-affinity state, allowing 
cAMP binding. This self-regulated circuit allows wavelike aggregation of D. discoideum cells. 
Adapted from Soderbom and Loomis (1998) & Loomis (1998).    

 

Analysis of ecmA transcription levels, a marker for stalk cells (mid-

development), revealed a highly significant downregulation in psenB-/A- cells, 

suggesting a role for presenilin proteins in stalk cell formation. Transcription of 

psenA peaks at 12h whilst ecmA levels start to increase, which may indicate a 

positive regulatory role for this presenilin protein in stalk cell production (Chang 

et al., 1996).  

Further, gene transcriptional analysis revealed that presenilin proteins appear to 

regulate spore cell production since the pre-spore marker was upregulated at 

24h in psenB-/A- cells when compared to wild type cells. Transcription of psA is 

a pre-spore marker, is induced at around 12h and is required, in addition of 

many other genes such as spiA and cotB for spore cell production (Loomis, 

1998). Presenilin proteins may therefore negatively regulate the expression of 

psA. 
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Gene transcriptional analysis of psenB-/A- overexpressing PsenB-GFP or PS1-

GFP revealed that both strains showed a reverse of the increase in car1 and a 

decrease in ecmA transcription back to wild type levels. Here it was shown that 

PsenB-GFP was able to restore wild type transcription levels more efficiently 

than PS1-GFP which may be due some structural differences in the amino acid 

sequences. Furthermore, analysis of both rescued strains revealed highly 

significant upregulation in psA gene transcription at 12h and ecmA gene 

transcription at 24h in comparison to the wild type and psenB-/A- strain. On the 

genetic level, these results indicate that presenilin proteins regulate gene 

transcription of these genes as positive effector at 12h and 24h. 

Transcriptional analysis of developmentally regulated genes revealed that 

presenilin proteins appear to have critical roles in multiple pathways of D. 

discoideum development. However, it should be noted that protein levels and 

activity should be assessed, as gene transcription does not necessary translate 

into protein function. Here again, the lack of commercially available antibodies 

makes analysis on protein level difficult. Furthermore, this qPCR analysis 

confirmed that PS1-GFP rescued the transcriptional dysregulation in psenB-/A- 

cells suggesting a functional redundancy for presenilin proteins in D. 

discoideum.  

5.9.5 Endoproteolysis of presenilin proteins in D. discoideum 

In higher organisms, presenilin is cleaved within the intracellular loop with only 

small amounts of full length presenilin detectable (Haass and De Strooper, 

1999). The small amounts of full length PS1 are found mostly in the nuclear 

envelop, whereas processed PS1 has been associated with the ER (Honda et 

al., 2000). Presenilin of higher organisms showed cleavage of the intracellular 

loop giving rise to a ~34kDa amino and ~22kDa carboxyl fragment (Haass and 

De Strooper, 1999). 

To investigate whether presenilin proteins undergo endoproteolysis in D. 

discoideum, Western blot analysis carried out on lysates of psenB-/A- 

overexpressing PsenB-GFP or PS1-GFP revealed that there is no evidence of 

endoproteolytic cleavage of either human or D. discoideum presenilin proteins 
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in this model. McMains et al. (2010) have independently shown that D. 

discoideum PsenA is not cleaved, however the importance of this finding was 

not further discussed in their publication. As the importance of presenilin protein 

cleavage was demonstrated in higher organisms, these results suggest that the 

role for presenilin proteins in D. discoideum may be γ-secretase independent 

(Spasic and Annaert, 2008).  

Perhaps the best way to further investigate an endoproteolytic-independent 

function is to examine developmental rescue with a catalytic inactive presenilin 

protein the function of presenilin proteins in D. discoideum development. In 

mammalian systems, two aspartic acids (257 and 385) are required for 

cleavage of presenilin protein and proper γ-secretase function (Wolfe et al., 

1999). Therefore, PS1 lacking one catalytic aspartic acid was transformed into 

the psenB-/A- to assess an endoproteolytic independent role for presenilin 

proteins in D. discoideum development. As seen in psenB-/A- cells 

overexpressing PS1, PS1D385A was able to rescue the developmental 

phenotype observed in the psenB-/A- mutant. Furthermore, live cell imaging 

revealed that PS1D385A also localised to the ER and nuclear envelope. These 

results suggest the role of presenilin proteins in D. discoideum does not require 

endoproteolytic cleavage of presenilin proteins. If by extension to that shown in 

mammalian systems, this blocks correct formation of the γ-secretase complex, 

this also suggests that the developmental in D. discoideum is independent of γ-

secretase activity. 

Mutation of either one of these active sites results in loss of γ-secretase, thus 

disruption in Notch-1 cleavage in mouse fibroblasts and reduction of APP 

cleavage in mouse neuroblastoma cells (Kim et al., 2001; Kim et al., 2005). 

However, mature fruiting bodies of psenB
-
/A

-
 cells overexpressing PS1

D385A 

suggest that development of D. discoideum requires presenilin protein but not a 

γ-secretase catalytic aspartic residue and endoproteolysis. This result is in 

agreement with a study by Khandelwal et al. (2007) where both human PS1 and 

PS1D385A were able to rescue the growth phenotype observed in P. patens 

lacking presenilin protein. Thus, the authors come to the conclusion that growth 

regulation in this organism is a γ-secretase independent function. This current 

study suggests that the role of presenilin proteins in D. discoideum development 
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may also be a γ-secretase independent function due to the lack of 

endoproteolytic cleavage and requirement of the catalytic residue. Further, in 

mammalian γ-secretase complexes, the aspartic acids represent the catalytic 

core for the cleavage of type I integral membrane proteins which in turn 

supports a γ-secretase independent function for presenilin proteins in D. 

discoideum development (Haass and De Strooper, 1999; Spasic and Annaert, 

2008).  

The results of the current study suggest a γ-secretase independent role for 

presenilin proteins in D. discoideum development in contrast to that suggested 

by McMains et al. (2010). They expressed D. discoideum PsenADD/AA (PS2DD/AA) 

in the developmentally defective psenA- (ps2-) presenilin mutant. Development 

was not rescued in psenA- overexpressing PsenADD/AA cells, thus the authors 

concluded that the presenilin function in D. discoideum development is γ-

secretase dependent. Aspartic acid residues in human PS1 are located at 

amino acid residues 257 and 385 (Small, 2001), whereas corresponding 

residues in D. discoideum are located at residues 351, 543 (PsenA) and 348, 

394 (PsenB). However, McMains et al. (2010) mutated aspartic acid residues 

237 and 429 to alanine residues. As these residues do not correspond to 

aspartic acids, it is unclear if either the wrong amino acids were mutated or if 

the reporting of the work was incorrect. D. discoideum possesses homologues 

of all subunits required for the γ-secretase complex (Nicastrin, Aph-1 and Pen-

2). McMains et al. (2010) showed that this γ-secretase complex cleaved 

truncated human APP expressed in D. discoideum cells. These results suggest 

that D. discoideum possesses γ-secretase dependant proteolytic functions. 

They also ablated other members of the γ-secretase complex which produced a 

phenotype similar to the psenB-/A- mutant cell line reported in this thesis. This 

would suggest that the γ-secretase complex is required for D. discoideum 

development without depending on endoproteolytic cleavage of presenilin 

proteins.  
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Chapter 6 

After showing that the role of presenilin protein in D. discoideum development is 

independent of endoproteolysis, this chapter presents work to develop a new 

knock-in method which allows expression of FAD associated mutations in the 

endogenous D. discoideum presenilin gene. In addition, GSK-A, PKA and 

calcium pathways downstream of presenilin were examined. 

6.1 FAD mutation knock in into D. discoideum presenilin gene 

A new method was developed to knock-in FAD mutations into the endogenous 

psenB. The knock-in method was based on knocking in a blasticidin resistant 

cassette flanked by a loxP site enabling cassette excision. The knock-in plasmid 

was generated using pLPBLP where flanking target regions were derived from 

gDNA, starting from within the intron into the open reading frame of one flanking 

region with the other flanking region bearing a FAD mutation (Fig. 6.1). A 

control knock-in plasmid was generated which did not contain a FAD mutation. 

Integration of the knock-in cassette, followed by a blasticidin resistance cassette 

excision allows FAD mutation expression from an endogenous presenilin gene. 
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Fig.6.1 Schematic of homologous integration of a knock-in construct bearing a FAD mutation. 

Two flanking regions were amplified by PCR, where both flanking regions started in the first 
intron of psenB and reaching into the coding region of psenB, with the 3‟ end containing a FAD 
(L285V). The knock-in construct was digested and transformed into D. discoideum cells. Upon 
homologous integration of the knock-in construct, the blasticidin resistance cassette (BsR) was 
inserted into the first intron of psenB. Excision of the blasticidin resistance cassette allowed 
endogenous expression of psenB bearing a FAD mutation.  

 

Two knock-in constructs were created to test this novel method of knock-in 

constructs in D. discoideum. The first generated knock-in construct did not 

contain a FAD associated mutation and was transformed as a negative control, 

whereas the second construct contained a mutation changing leucine to valine 

which corresponds to the FAD L286V mutation (Furukawa et al., 1998). 

Transformation of both constructs was performed in a wild type and psenB-/A- 

background, and transformants growing in the presence of the antibiotic 

selection were screened by PCR for homologous integration of the knock-in 

construct (as described in Chapter 3). The frequency of homologous integration 

events for both knock-in constructs into psenB was very low. Despite screening 

in excess of 1500 transformants, only one homologously integrated 

transformant was identified (Fig. 6.2). This transformant was from a wild type 

cell line using the psenB control knock-in construct. Subsequently, the 

blasticidin resistance cassette of this transformant was excised and 

gDNA/cDNA of psenB was sequenced to assess splicing efficiency (Fig. 6.3, A, 

B). Sequencing of the gDNA revealed the presence of 50 additional nucleotides 

in the intron that include a translational stop codon and one loxP site consistent 
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with excision of the blasticidin resistance cassette. Sequence analysis of the 

derived cDNA showed that the RNA was correctly spliced, despite the 50 

additional nucleotides contained in the gDNA. 

 

Fig.6.2 PCR identifications of wild type psenB knock-in mutant. For the psenB control knock-in 

in a wild type background, 5‟ and 3‟ termini were screened for homologous integration with four 
primer sets (genomic (G) control, vector (V) controls, and 5‟ and 3‟ knock-in diagnostic bands). 
 

 

Fig.6.3 psenB sequence results of a wild type and control knock-in transformant. (A) Sequence 
analysis of gDNA from wild type (untransformed) and wild type control knock-in showed that 
after excision of the blasticidin resistance cassette, 50 additional nucleotides were present in 
the psenB intron. (B) Sequence analysis of cDNA from wild type (untransformed) and wild type 
control knock-in showed no difference between the two cDNA sources, indicating correct inton 
excision. (C) The chromatogram of cDNA sequencing reactions shows resolved peaks 
indicating a high confidence in the sequencing results. Arrows indicate splicing sites. 
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After confirmation of correct splicing in the wild type cell line containing the 

negative control psenB knock-in construct, development of this transformant 

was assessed to establish a potential developmental defect caused by this 

novel knock-in method. To do so, fruiting body morphology was assessed after 

24h, revealing that the mutant cells were able to aggregate and form mature 

fruiting bodies (Fig. 6.4). No gross changes in stalks and sori structures were 

observed when compared to wild type fruiting body morphology.  

 

Fig.6.4 Effects of presenilin knock-in on development of D. discoideum. Wild type and knock-in 
control (wild type background with blasticidin resistance cassette removed) cell lines were 
developed on nitrocellulose filters and fruiting body morphology was assessed. Both cell lines 
developed mature fruiting bodies within 24h with no gross changes in development; shown from 
an aerial view at low magnification (left) and from a side angle at high magnification (right). Size 
bar= 1mm. 

6.2 Glycogen synthase kinase as a possible downstream target 

of D. discoideum presenilin proteins 

In mammals, PS1 has been shown to interact with and regulate GSK-3β 

(Chapter 1). The work presented here therefore investigated whether the 

altered developmental phenotype of psenB-/A- mutant cells was caused by a 

lack of GSK-3β signalling. Therefore, the D. discoideum GSK-3β homologue 

(GSK-A) was expressed from a constitutively active promoter, giving expression 

in all cell types in psenB-/A- mutant cells and development was assessed and 

compared to that of wild type and psenB-/A- cells. psenB-/A- overexpressing 

GSK-A-GFP (provided by Annette Muller-Taubenberger) were not able to form 

mature fruiting bodies as observed in wild type cells (Fig. 6.5). This result 

suggests the developmental defect caused by loss of both presenilin genes in 

D. discoideum was not caused by a loss of GSK-A levels.  
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Fig.6.5 Overexpression of GSK-A-GFP in psenB
-
/A

-
 mutant cells. Wild type, psenB

-
/A

-
 and 

psenB
-
/A

-
 overexpressing GSK-A-GFP were developed on nitrocellulose filters and 

developmental morphology was assessed after 24h, shown from an aerial view at low 
magnification (left) and from a side angle at high magnification (right). Overexpression of GSK-
A-GFP did not rescue the developmental phenotype observed in psenB

-
/A

-
 mutant cells. Size 

bar= 1mm. 

6.3 Protein Kinase A as a potential downstream target of D. 

discoideum presenilin proteins  

In mammalian systems, PKA regulates GSK-3β with presenilin proteins acting 

as a scaffold protein (Kang et al., 2002). The work presented here therefore 

investigated whether the altered developmental phenotype of psenB-/A- mutant 

cells was caused by a lack of PKA signalling. 

To do so, active PKA (catalytic domain) was expressed from vectors under the 

control of developmental regulated promoters. These promoters, ecmA (pre-

stalk) and psA (pre-spore) were employed to allow cell type specific expression 

of active PKA. Furthermore, it was shown that expression of a truncated active 

PKA protein allows a more stable expression in D. discoideum (personal 

communication with Jeff Williams, University of Dundee). Therefore, the study 

presented here expressed full length as well as truncated active PKA in psenB-

/A- mutant cells. Upon transformation of these plasmids, transformants were 

developed on nitrocellulose filters and fruiting body morphology was assessed 
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(Fig. 6.6). This analysis revealed that neither full nor truncated length of the 

active PKA was able to rescue the aberrant developmental phenotype observed 

in psenB-/A- mutant cells. These results suggest that the developmental defect 

caused by deletion of both presenilin genes in D. discoideum is not caused by 

an activation of PKA.  

 

Fig.6.6 Overexpression of the catalytic, active, domain of PKA in psenB-/A- mutant cells. Wild 
type, psenB

-
/A

-
, psenB

-
/A

-
 ecmA:PKA full length, psenB

-
/A

-
 psA:PKA full length, psenB

-
/A

-
 

psA:PKA truncated were developed on nitrocellulose filters and fruiting body morphology was 
assessed. All cell lines expressing PKA cat full or truncated length did form aggregates within 
24h but lacked stalk cells and sori when compared to wild type cells. The mutant phenotypes 
did resemble that seen in psenB

-
/A

-
 mutant cells. Developmental structures are seen from an 

aerial view at low magnification (left) and from a side angle at high magnification (right). Size 
bar= 1mm. 
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6.4 Calcium homeostasis in presenilin mutants 

Presenilin proteins have been associated with calcium homeostasis in 

mammalian systems (Chapter 1). The work presented here investigates a role 

for presenilin proteins in calcium signalling regulation in D. discoideum. In these 

experiments, calcium influx upon cAMP stimulation was assessed in single and 

double presenilin knock-out cell lines. These calcium measurements were 

carried out by employing the aequorin method which involved transforming a 

plasmid encoding the calcium sensitive photoprotein apoaequorin (lacking the 

prosthetic group) into cells. Cytosolic calcium levels were measured in cells, 

starved in shaking suspension for 7h, loaded with the coelenterazine where a 

transient increase in luminescence was measured (Allan and Fisher, 2009). 

Using this approach, calcium response upon cAMP stimulation was recorded 

and calcium kinetics were assessed in wild type and presenilin knock-out 

mutants (Fig. 6.7). 

 

Fig.6.7 Representative graph of a calcium response recording upon cAMP stimulation. In 
addition to basal calcium level measurements, three other measurements were taken: (A) 
Length until calcium response after cAMP stimulation; (B) Length of calcium response; (C) 
Magnitude of calcium response. Recording duration was 90 seconds. 
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Fig.6.8 Kinetics of calcium responses in wild type and presenilin knock-out cell lines. Resting 

levels, time until the calcium response and the length of the calcium response were analysed. 
None of these parameters were significantly different in presenilin mutant cell lines when 
compared to wild type cell kinetics. Values shown are means (±S.E.M; n≥5). No values were 
found to be significantly different from wild type controls.  

 

Analysis of the basal calcium levels revealed that presenilin single and double 

null mutant cell lines do not have altered levels when compared to the wild type 

cell line (Fig. 6.8). Furthermore, the time from cAMP stimulation until calcium 

release and the length of the response did not show significant changes in 

presenilin mutant cell lines when compared to wild type cells (Fig. 6.8). 

However, the magnitude of the cAMP induced calcium response was elevated 

in the single as well as the double presenilin knock-out cell lines when 

compared to that of wild type cells (Fig. 6.9). In these experiments, the psenA- 

mutant showed a 2 fold (p< 0.05) increase in the calcium response when 

compared to the wild type cell line. Analysis of the calcium kinetics in psenB- 

and psenB-/A- mutant cell lines showed a 2 - 2.5 fold increase (p< 0.01) in the 
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magnitude of the calcium response. These results suggest a role for presenilin 

proteins in D. discoideum signal-induced calcium homeostasis. 

 

 

Fig.6.9 Magnitude of cAMP induced calcium response in wild type and presenilin mutant cell 

lines. The magnitude of calcium response is significantly upregulated in psenA
-
, psenB

-
 and 

psenB
-
/A

-
 cell lines when compared to wild type levels. Values shown are means (±S.E.M; n≥5) 

*** p<0.001; ** p<0.01; *p<0.05. 
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6.5 Discussion 

This chapter described the development of a novel knock-in method in D. 

discoideum exemplified by psenB and the analysis of a role for presenilin 

proteins in regulating GSK-A, PKA and calcium signalling pathways in D. 

discoideum. 

6.5.1 Endogenous FAD mutation expression in D. discoideum 

A goal of biomedical research in biomedical systems is to better understand 

human diseases. In FAD, research would involve the characterisation of FAD-

inducing mutations and the effects on signalling pathways in D. discoideum. 

Expression of these mutations could be achieved through overexpression from 

a constitutively active promoter or integration into the endogenous presenilin 

gene locus, thus allowing endogenous expression of the mutation.  

The regions of high conservation of D. discoideum and human presenilin 

proteins enable the engineering of FAD mutations into the endogenous 

presenilin genes of D. discoideum. To do so, two knock-in constructs were 

designed which allowed integration into psenB without altering the coding or 

intergenic regions adjacent to the gene. Insertion of the blasticidin resistance 

cassette into the first intron of psenB upon homologous integration ensured 

intact gene transcription and splicing following blasticidin resistance gene 

excision using Cre recombinase. The lack of homologous integration events 

prevented an analysis of an endogenous expressed FAD mutation (L286V) 

(Furukawa et al., 1998). Nevertheless, one wild type cell line containing the 

control knock-in construct was generated, showing that this novel knock-in 

method does not cause altered cDNA sequences in D. discoideum. 

In D. discoideum, regularly employed knock-in methods involve insertion of the 

antibiotic resistant selection cassette into downstream intergenic regions as 

shown in the RacB mutants produced by Park et al. (2004). In other model 

organisms, FAD mutations are regularly expressed under a constitutively active 

promoter (actin 15) or under the endogenous presenilin promoter as shown in 

D. melanogaster (Seidner et al., 2006; Tu et al., 2006a). The endogenous 
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promoters of psenA and psenB have not been defined which currently prevents 

expression of these genes under an endogenous promoter control from a non-

integrating vector, such as the pDM vector series (Veltman et al., 2009). 

However, since the present study showed that human PS1 is able to rescue the 

developmental phenotype of psenB-/A-, it is feasible to express human PS1 

bearing FAD mutations in psenB-/A- mutant cells, allowing analysis of 

biochemical changes caused by these mutations. 

This method prevents phenotypic changes due to overexpression of proteins at 

toxic levels. Furthermore, despite the drawback of a low frequency of 

homologous integration into psenB, this novel method opens new ways of 

expressing endogenous proteins containing mutations or proteins tags in D. 

discoideum.  

6.5.2 Glycogen synthase kinase regulation through presenilin 

proteins in D. discoideum 

GSK-3β is a serine/threonine kinase that phosphorylates a multitude of 

downstream targets such as the cyclic AMP responsive binding element 

(CREB) and tau which can lead to tau tangle formation as observed in AD 

(Wang et al., 2010; Rankin et al., 2007). In mammalian systems, it was 

proposed that presenilin may interact with GSK-3β as a scaffold independent of 

γ-secretase function (Martinez, 2010). The work presented here, investigated 

whether GSK-A acts downstream of presenilin proteins in D. discoideum and 

whether it can rescue the aberrant developmental phenotype observed in 

psenB-/A- by constitutively expressing GSK-A-GFP. Developmental assessment 

of psenB-/A- cells overexpressing GSK-A-GFP showed that the phenotype was 

not rescued, thus further work will be required to establish whether GSK-A acts 

downstream of presenilin proteins in D. discoideum.  

In humans, presenilin proteins directly interact with GSK-3β affecting several 

downstream signalling pathways including tau and β-catenin (Takashima et al., 

1998). D. discoideum does not possess a tau homologue but a β-catenin 

homologue and a Wnt-like pathway has been proposed in this amoeba (Sun 

and Kim, 2011). In D. discoideum, inhibition of GSK-A is required for cells to 
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undergo stalk cell differentiation (Schilde et al., 2004). However, it is still 

unknown whether GSK-A is inactivated via phosphorylation or through removal 

from the nucleus where it controls ecmB transcription and therefore stalk cell 

production. It was shown that cAMP binding to cAR3 results in increased GSK-

A activity (substrate phosphorylation) resulting in an increased inhibition of stalk 

cell production (Plyte et al., 1999). Therefore, deletion of cAR3 or GSK-A leads 

to in increased proportion of stalk cells, confirming a common signalling 

pathway for these molecules. Furthermore, overexpression of GSK-A in wild 

type background does not alter development nor stalk cell production, 

suggesting a tight control of the GSK-A pathway by other signalling molecules 

where D. discoideum presenilin proteins may play a role as previously 

suggested in mammalian systems (De Strooper and Annaert, 2001). To confirm 

an interaction between D. discoideum presenilin proteins and GSK-A, 

immunoprecipitation of PsenA and PsenB may show direct binding to GSK-A. 

Furthermore, identification of altered GSK-A phosphorylation and kinase activity 

could be performed in psenB-/A- mutant cells to further identify a signalling 

interaction (Ryves et al., 1998; Plyte et al., 1999).  

6.5.3 Protein kinase A regulation through presenilin proteins in 

D. discoideum 

PKA is a holoprotein which consists of a regulatory and a catalytic subunit. 

Upon cAMP binding to the regulatory subunit, the catalytic subunit is released 

which in turn regulates downstream signalling such as CREB (Beglopoulos and 

Shen, 2006). Activated PKA is a key signalling molecule in D. discoideum 

development and required for spore cell production (Escalante and Vicente, 

2000). Therefore, in a collaboration with Pauline Schaap and Christina Schilde 

(University of Dundee) analysed intracellular cAMP levels in wild type, psenB-/A-

psenB-/A- overexpressing PsenB-GFP and psenB-/A- overexpressing PS1-GFP. 

These experiments identified a ~3 fold increase (p≤ 0.005) in cytosolic cAMP in 

the psenB-/A- mutant cells at 8h into development when compared to wild type 

cells (Fig. 6.10). PsenB-GFP restored cAMP levels back to wild type levels in 

psenB-/A- cells, whereas PS1-GFP only partially restored this level. The 

increase in cytosolic cAMP would suggest an increased PKA activity and thus 
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elevated spore cell production as observed in the regA- (phosphodiesterase) 

mutants where elevated cAMP levels led to precocious development and spore 

production (Thomason et al., 1999b). However, as previously shown psenB-/A- 

mutant cells did not show an accelerated development nor increased spore 

cells production. These data imply that the activation of PKA activity may be 

inhibited in psenB-/A- cells. Therefore, active PKA was expressed in psenB-/A- 

mutant cells under developmentally regulated promoters. Developmental 

assessment of active PKA transformants showed that the altered phenotype of 

psenB-/A- mutant cells was not rescued.  

In mammals, presenilin proteins have been shown to interact with PKA and 

GSK-3β as a scaffold protein providing structural support rather than a catalytic 

γ-secretase function (Kang et al., 2002). Presenilin proteins positively regulate 

CREB via PKA which has been associated with memory formation and neuronal 

survival in mammals (Beglopoulos and Shen, 2006). D. discoideum possesses 

a CREB-like transcription factor (BzpF) that binds a cAMP response element 

homologue that acts downstream of PKA and bzpf- mutant displays a delayed 

development with aberrant spore structures (Huang et al., 2011). Future work 

may include expressing the CREB-like protein in the psenB-/A- mutant to assess 

whether the aberrant developmental phenotype can be rescued using this 

approach to establish a common signalling pathway. It should be noted that 

PKA is localised in the cytosol as well as nucleus (Woffendin et al., 1986). 

Therefore, considering that presenilin proteins are found to localise not only to 

the ER but also to the nuclear envelope, a role for presenilin in the shuttling of 

PKA into the nucleus may be investigated. This could be achieved through 

localisation studies of PKA in psenB-/A- and wild type cells. Further experiments 

are required to establish if presenilin proteins have a role in PKA regulation in 

D. discoideum. 
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Fig.6.10 cAMP levels in wild type, psenB
-
/A

-
, psenB

-
/A

-
 overexpressing PsenB-GFP or 

overexpressing PS1-GFP. Bars connected by lines represent data sets that were significantly 
different from each other at P<0.005. Unlinked sets were not significantly different at P<0.05. 
Values are shown are means (±S.E.M; n=5; technical triplicate). 

 

6.5.4 A role for presenilin in D. discoideum calcium signalling 

Calcium is involved in many signalling pathways such as CREB and protein 

kinase C signalling and neuronal calcium dysregulation contributes to the 

biochemical alterations observed in debilitating diseases such as AD 

(Marambaud et al., 2009). Presenilin proteins have been proposed to regulate 

calcium homeostasis in mammalian systems (Chapter 1), which led to the work 

carried out here, where calcium measurements were performed in D. 

discoideum presenilin protein mutant strains. Analysis of the generated strains 

revealed that calcium influx into the cytosol upon cAMP stimulation was 

significantly elevated in presenilin mutant strains, suggesting an inhibitory role 

for presenilin proteins in D. discoideum signal-induced calcium homeostasis.  

In recent years, the calcium leak hypothesis has been a favoured model for the 

role of presenilin proteins in calcium dysregulation observed in FAD. It was 

suggested that presenilin proteins regulate calcium stores through forming 

calcium leak channels, independent of γ-secretase, and that deletion of 
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presenilin proteins or introduction of FAD mutations lead to an overload of these 

stores which resulted in an increased calcium response upon stimulation (Tu et 

al., 2006a). However, one recent commentary suggests that there is insufficient 

evidence for presenilin proteins forming leak channels (Shilling et al., 2012). 

Another hypothesis has been proposed, where presenilin proteins directly 

interact with the IP3 receptor leading to altered receptor gating, resulting in 

elevated calcium responses in the presence of FAD mutations (Cheung et al., 

2008). Calcium dysregulation in D. discoideum presenilin null mutants supports 

a negative regulatory role for presenilin proteins in calcium homeostasis and 

potentially an IP3 receptor interaction. D. discoideum possess a homologue of 

IP3 receptor (IPLA) which is situated at the ER and the localisation of presenilin 

proteins to the ER in D. discoideum provides evidence for an interaction. 

However, in order to support an interaction between presenilin proteins and 

IPLA, an immunoprecipitation experiment would also need to be performed. 

Nevertheless, the data gathered in D. discoideum presenilin mutants and 

evidence from mammalian systems supports the hypothesis that presenilin 

proteins negatively regulate calcium homeostasis.  

Since this work presented here provides evidence supporting previous reports 

from mammalian systems that presenilin proteins play a role in calcium 

homeostasis, D. discoideum offers a novel system to further investigate this 

hypothesis. Furthermore, since reports have shown that calcium dysregulation 

leads to neuronal death in AD and FAD, D. discoideum offers a novel drug 

screen system to identify compounds that reverse calcium dysregulation.   
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Conclusion 

Structure and phylogeny of presenilin proteins in D. 

discoideum 

Presenilin proteins are conserved in a multitude of organisms, ranging from 

human to A. thaliana. D. discoideum possesses two presenilin protein 

homologues which contain regions of high homology to human presenilin 

proteins. These regions are predominantly found in transmembrane regions, 

which include two aspartic acid residues and the „PAL‟ sequence that are 

required for proper γ-secretase function in mammalian systems. The 

conservation throughout evolution in many organisms and expression in 

development and adulthood suggests a critical role for presenilin proteins in 

survival of the organism. 

Presenilin proteins regulate development in D. discoideum 

Presenilin proteins have been shown to regulate many signalling pathways in 

multicellular organisms (van Tijn et al., 2011). Specifically, a role for presenilin 

proteins has been proposed in Notch signalling leading to lethal developmental 

abnormalities in several biomedical models such as M. musculus and C. 

elegans (Woo et al., 2009). The work presented here investigated a role for 

presenilin proteins in D. discoideum development. As observed in other model 

organisms, deletion of both presenilin proteins led to a severe developmental 

phenotype in D. discoideum which was not observed in cell lines lacking only 

one presenilin gene. This suggested a compensatory mechanism in which 

PsenA can compensate for PsenB and vice versa despite differing gene 

transcription throughout development. The hypothesis of a compensatory 

mechanism was confirmed by the rescue of the developmental phenotype 

observed in psenB-/A- cells overexpressing PsenB-GFP. Furthermore, stalk cell 

and spore cell assays, where deletion of both presenilin genes resulted in a 

downregulation of specific cell type differentiation, supported an underlying 

compensatory mechanism of both presenilin proteins in D. discoideum (Chapter 
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5). These findings mirror those observed in C. elegans where deletion of a 

single presenilin gene led to a milder phenotype than the more severe 

phenotype upon deletion of both presenilin genes (Westlund et al., 1999). The 

work presented here showed that presenilin proteins play a regulatory role in D. 

discoideum as development is severely altered upon deletion of both presenilin 

genes.   

Conserved function of D. discoideum and human presenilin 

proteins 

The development of the D. discoideum cell line lacking both presenilin genes 

was rescued by overexpression of human PS1-GFP, similar to the growth 

phenotype rescue observed in P. patens when complemented with human PS1 

(Khandelwal et al., 2007). Despite evolutionary distance, expression of PS1-

GFP allowed development of mature fruiting bodies in the absence of 

endogenous presenilin proteins in D. discoideum. Not only was the 

developmental rescue shown through fruiting body morphology but also by 

employing stalk, spore cell and gene transcription analysis (Chapter 5). 

However, the overall rescue with PS1-GFP was not as efficient as observed 

when overexpressing PsenB-GFP. This may be due to differences in amino 

acid sequence of presenilin proteins of human and D. discoideum.  

Since human PS1 rescues D. discoideum development, this amoeba offers a 

novel system to analyse interacting partners and identify novel presenilin-

regulated signalling pathways. Furthermore, the effects of PS1 containing FAD 

mutations can be readily assessed in this model in isogenic cell lines produced 

without the need of continuous transfection or animal usage.  

Presenilin proteins have a role in calcium signalling of D. 

discoideum 

In higher organisms, presenilin proteins regulate calcium homeostasis and 

expression of FAD mutations leads to an increased influx into the cytosol from 

calcium stores (Tu et al., 2006a; Cheung et al., 2008). Analysis of D. 
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discoideum revealed that deletion of either presenilin protein led to an increased 

calcium influx into the cytosol upon cAMP stimulation. Since these results mirror 

results obtained in higher organisms, three possible hypotheses of the role or 

roles of presenilin proteins in D. discoideum can be proposed (Fig. 7.1): (1) 

Interaction of presenilin with the IP3 receptor may negatively regulate calcium 

release upon IP3 binding, thus leading to a higher influx of calcium into the 

cytosol upon presenilin protein deletion. (2) Presenilin proteins may form 

passive calcium leak channels which lead to an intracellular calcium store 

overload, which in turn upon cAMP stimulation results in a greater calcium influx 

from stores into the cytosol. (3) Gene transcriptional analysis revealed that car1 

was significantly upregulated in psenB-/A- cells. Assuming that the mRNA was 

translated into proteins, more cAR1 would be present on the cell membrane 

leading to activity of phospholipase C, using PIP2 to produce more 

diacylglycerol and IP3 which then causes binding to the IP3 receptor and calcium 

release. However, this hypothesis does not involve presenilin proteins directly 

but instead a compensatory transcriptional upregulation of car1 upon presenilin 

deletion. 

Whether all, one or none of these mechanisms can be attributed to presenilin 

proteins in D. discoideum is yet to be answered. Nevertheless, D. discoideum 

may provide a model to further investigate the calcium store overloading 

hypothesis reported in AD and FAD as well as the effects of human PS1 

bearing FAD mutations on calcium homeostasis as part of a translational 

biology study.  

Role of presenilin proteins in development is endoproteolytic 

independent 

In higher organisms, presenilin proteins require endoproteolysis, in order to 

integrate into the γ-secretase complex (Haass and De Strooper, 1999). Western 

blot analysis of PsenB-GFP and PS1-GFP showed that neither of these proteins 

were cleaved in D. discoideum unlike in mammalian systems, where only small 

amounts of full length protein can be found (Honda et al., 2000). To support 

these findings, human PS1-GFP lacking a catalytic site and unable to undergo 
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endoproteolytic cleavage was expressed in the psenB-/A- mutant cells. 

Developmental studies showed that this altered protein rescued the 

developmental phenotype. These findings revealed that presenilin proteins are 

not required to undergo endoproteolysis in order to function in D. discoideum 

development.  

To assess whether the reverse relationship between D. discoideum and human 

presenilin proteins is true, a Notch cleavage assay was performed in mouse 

blastocysts using D. discoideum presenilin proteins. Here it was shown, that 

both D. discoideum presenilin proteins were capable of cleaving human Notch 

expressed in mouse blastocysts. This work presented here showed that human 

and D. discoideum presenilin proteins have common cellular functions, as 

predicted in the bioinformatic analysis (Chapter 3). 

Since the role for D. discoideum presenilin was demonstrated to be 

independent of endoproteolytic cleavage of presenilin proteins, it is unclear if 

this ancient homologue is capable of a γ-secretase assembly. No endogenous 

proteolytic target has been identified by McMains et al. (2010) but the authors 

have shown that D. discoideum presenilin proteins are capable of cleaving 

human APP, suggesting a γ-secretase cleavage function. It is possible that the 

γ-secretase function in D. discoideum does not require endoproteolytic 

cleavage of presenilin proteins in order to function. 

Presenilin proteins may act as a scaffold protein in D. 

discoideum development 

The aberrant developmental phenotype observed in the psenB-/A- mutant 

lacked all stalk and spore head structures found in mature wild type fruiting 

bodies. GSK-A, cAMP and PKA are the major signalling molecules involved in 

stalk and spore cell production which initiated the analysis of these pathways. 

The data provided by Pauline Schaap and Christina Schilde showed that 

intracellular cAMP levels were significantly raised in psenB-/A- cells at 8h into 

development, which would suggest an increase in PKA activity and early spore 

production as observed in regA- cells (Thomason et al., 1999b). However, the 
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lack of a precocious development of psenB-/A- cells suggests that presenilin 

gene deletion may reduce PKA activation and that the elevated cAMP levels 

may be a compensatory mechanism. This compensation may be regulated 

through an upregulation of car1 transcription level in the early stages of 

development (6h-12h). A role for reduced PKA activation in the presenilin 

double null mutant was investigated by overexpressing the activated form of 

PKA (catalytic domain). This did not rescue the developmental phenotype 

(Chapter 6).  

In mammalian systems, presenilin proteins interact with GSK-3β as a scaffold 

protein, facilitating activation and/or phosphorylation of downstream targets 

(Martinez, 2010). Therefore, the aberrant developmental phenotype of psenB-

/A- cells may have arisen through decreased GSK-A activity or target 

phosphorylation. Overexpression of GSK-A in these cells did not rescue the 

altered phenotype, thus suggesting that deletion of presenilin proteins does not 

downregulate the levels of GSK-A. In mammalian systems, GSK-3β has been 

shown to be phosphorylated and therefore inhibited by PKA in a complex where 

presenilin proteins have a scaffold function independent of γ-secretase activity 

(Fang et al., 2000; Doble and Woodgett, 2003). If presenilin proteins in D. 

discoideum development act as a scaffold protein to GSK-A and PKA, 

overexpression of GSK-A and PKA (activated protein) would not rescue the 

aberrant phenotype. This is due to the lack of presenilin proteins and their 

scaffold function psenB-/A- cells, preventing inhibition of GSK-A activity by PKA, 

thus preventing stalk cell production.  

Furthermore, this lack of scaffold function may also interfere with the activation 

or downstream signalling of PKA in spore cell production (Fig. 7.1). In order to 

support this hypothesis, presenilin protein, PKA and GSK-A 

immunoprecipitation, PKA and GSK-A phosphorylation assays and specific 

kinase activity assays need to be performed in single and double presenilin null 

mutants and complemented presenilin protein cell lines.   
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Fig.7.1 Schematic diagram of proposed cellular roles for presenilin proteins in D. discoideum. 
cAMP binding to cAR1/3 activates phospholipase C (PLC) and adenylate cyclase (ACA), 
allowing PIP2  and cAMP production which regulates several downstream targets. The role for 
presenilin proteins in calcium homeostasis could be regulated through three functions: 
Presenilin proteins regulate negatively the IP3 receptor; presenilin proteins form calcium leak 
channels; presenilin regulates car1 transcription and therefore calcium release. The role for 
presenilin proteins in D. discoideum development could be a structural scaffold function through 
which it regulates PKA, GSK and therefore stalk and spore production. 

 

D. discoideum could provide a greater insight into presenilin 

protein signalling and familial Alzheimer’s disease  

Microorganisms such as Escherichia coli and Saccharomyces cerevisiae have 

provided a great insight into the molecular basis of a multitude of signalling 

molecules, cell cycle regulation, immune cell function and dysregulation in 

human disease. The importance of biological research using simple model 

organisms and translational biology has been acknowledged by the wide 

scientific community, as microorganisms are featured in Nobel prizes almost 

every year since 2001 (except 2004 and 2010). All living organisms originate 

from one common ancestor with molecular and cellular functions often being 

conserved throughout evolution. Studies in microorganisms and biomedical 
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models provided great insights into underlying mechanisms of human disease 

as for example employing C. elegans provided a first link between presenilin 

protein and Notch (Levitan and Greenwald, 1995). Therefore, the evidence 

reported here for conservation of presenilin protein functions in D. discoideum 

may open new research avenues for investigations into presenilin protein 

function and FAD related signalling.  
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