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Abstract. Service-oriented systems rely on software applications that
offer services through the orchestration of activities performed by ex-
ternal services procured on the fly when they are needed. This pa-
per presents an overview of a graph-based framework developed around
the notions of service and activity module for supporting the design
of service-oriented systems in a way that is independent of execution
languages and deployment platforms. The framework supports both be-
haviour and quality-of-service constraints for the discovery, ranking and
selection of external services. Service instantiation and binding are cap-
tured as algebraic operations on configuration graphs.

1 Introduction

Service-oriented systems are developed to run on global computers and respond
to business needs by interacting with services and resources that are globally
available. The development of these systems relies on software applications that
offer services through the orchestration of activities performed by other services
procured on the fly, subject to a negotiation of service level agreements, in a
dynamic market of service provision. The binding between the requester and the
provider is established at run time at the instance level, i.e., each time the need
for the service arises. Over the last few years, our research has addressed some
challenges raised by this computing paradigm, namely:

(i) to understand the impact of service-oriented computing (SOC) on software
engineering methodology;

(ii) to characterise the fundamental structures that support SOC indepen-
dently of the specific languages or platforms that may be adopted to de-
velop or deploy services;

(iii) the need for concepts and mechanisms that support the design of service-
oriented applications from business requirements;

(iv) the need for mathematical models that offer a layer of abstraction at which
we can capture the nature of the transformations that, in SOC, are operated
on configurations of global computers;

(v) the need for an interface theory for service-oriented design.
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As a result of (i) above, we identified two types of abstractions that are
useful for designing service-oriented systems: business activities and services.
Activities correspond to applications developed by business IT teams according
to requirements provided by their organisation, e.g., the applications that, in a
bank, implement the financial products that are made available to the customers.
The implementation of activities may resort to direct invocation of components
and can also rely on services that will be procured on the fly. Services differ
from activities in that they are applications that are not developed to satisfy
specific business requirements of an organisation; instead they are developed to
be published in ways that they can be discovered by activities.

Taking into account this distinction, we developed a graph-based framework
for the design of service-oriented systems at a level of abstraction that supports
this “business-oriented” perspective. In this framework, services and activities
are defined through activity modules and service modules, respectively. These
modules differ in the type of interface and binding they provide to their clients,
which in the case of activities is for direct invocation or static binding (e.g.,
human-computer interaction or system-to-system interconnections established
at configuration time) and, in the case of services, for dynamic discovery and
binding. Activity and service modules are graph-based primitives that define a
workflow and the external services that may need to be procured and bound to
in order to fulfil business goals. Behaviour and service-quality constraints can be
imposed over the external services to be procured. These constraints are taken
into account in the processes of discovery, ranking and selection.

The proposed design framework is equipped with a layered graph-based
model for state configurations of global computers. Configurations are made to
be business reflective through an explicit representation of the types of business
activities that are active in the current state. This model captures the transfor-
mations that occur in the configuration of global computers when the discovery
of a service is triggered, which results in the instantiation and binding of the
selected service.

In this paper, we present an overview of this framework. In Sec. 2, we present
the notions of service and activity modules, the cornerstone of our framework,
grounded on an interface theory for service-oriented design. In Sec. 3, we present
a model for state configurations of global computers that in Sec. 4 is used to
provide the operational semantics of discovery, instantiation and binding. We
conclude in Sec. 5 by pointing to other aspects of SOC that have been investi-
gated within the framework.

2 Design Primitives for Service-oriented Systems

The design primitives we propose for service-oriented systems were inspired by
the Service Component Architecture (SCA) [22]. As in SCA, we view SOC as
providing an architectural layer that can be superposed over a component infras-
tructure – what is sometimes referred to as a service overlay. More concretely,
we adopt the view that services are delivered by ensembles of components (or-



chestrations) that are able to bind dynamically to other services discovered at
run time. For the purposes of this paper, the model that is used for defining
orchestrations is not relevant. As discussed in Sec. 2.1, it is enough to know that
we have a component algebra in the sense of [9] that makes explicit the structure
of the component ensembles.

We illustrate our framework with a simplified credit service: after evaluating
the risk of a credit request, the service either proposes a deal to the customer or
denies the request; in the first case and if the proposal is accepted, the service
takes out the credit and informs the customer of the expected transfer date. This
activity relies on an external risk evaluator that is able to evaluate the risk of
the transaction.

2.1 The Component Algebra

We see the ensembles of components that orchestrate services as networks in
which components are connected through wires. For the purpose at hand, the
nature of these components and the communication model is not relevant. The
design framework is defined in terms of a set COMP of components, a set PORT
of ports that components make available for communication with their environ-
ment, a set WIRE of wires for interconnecting pairs of ports, and a component
algebra built around those elements. In the sequel we use ports(c) and ports(w)
to denote, respectively, the set of ports of a component c and the pair of ports
interconnected by a wire w.

Definition 1 (Component Net). A component net α is a tuple 〈C,W, γ, µ〉
where:

– 〈C,W 〉 is a simple finite graph: C is a set of nodes and W is a set of edges.
Each edge is an unordered pair {c1, c2} of nodes.

– γ is a function assigning γc∈COMP to every c∈C and γw∈WIRE to every
w∈W .

– µ is a W -indexed family of bijections µw establishing a correspondence be-
tween ports(γw) and the components {c1, c2} interconnected by w, such that:
1. For every P∈ports(γw), P∈ports(µw(P )).
2. If w′={c1, c3} is an edge with c2 6= c3, then µw(c1) 6= µw′(c1).

This definition reflects component-and-connector architectural configurations
where the mapping µ defines the attachments between component ports and
connector roles. Because in SOC communication is essentially peer-to-peer, we
take all connectors to be binary. The fact that the graph is simple means that all
interactions between two components are supported by a single wire and that no
component can interact with itself. Through (2), ports of a component cannot
be used in more than one connection.

The ports of a component net that are still available for establishing further
interconnections, i.e., not connected to any other port, are called interaction-
points:



Definition 2 (Interaction-point). An interaction-point of a component net
α=〈C,W, γ, µ〉 is a pair 〈c, P 〉 where c∈C and P∈ports(γc) such that there is
no edge {c, c′}∈W such that µ{c,c′}(c)=P . We denote by Iα the set of interaction-
points of α.

Component nets can be composed through their interaction points via wires
that interconnect the corresponding ports.

Definition 3 (Composition of Component Nets). Let α1=〈C1,W1, γ1, µ1〉
and α2= 〈C2,W2, γ2, µ2〉 be component nets such that C1 and C2 are disjoint,
(wi)i=1...n a family of wires, and 〈ci

1, P
i
1〉i=1...n and 〈ci

2, P
i
2〉i=1...n families of

interaction points of, respectively, α1 and α2, such that: (1) each wi is a wire
connecting {P i

1, P
i
2}, (2) if ci

1 = cj
1 and ci

2 = cj
2 then i = j, (3) if ci

1 = cj
1

with i 6= j, then P i
1 6= P j

1 and (4) if ci
2 = cj

2 with i 6= j, then P i
2 6= P j

2 . The
composition

α1

ni=1...n

〈ci
1,P i

1〉,wi,〈ci
2,P i

2〉
α2

is the component net defined as follows:

– Its graph is 〈C1 ∪ C2,W1 ∪W2 ∪
⋃

i=1...n{ci
1, c

i
2}〉.

– Its functions γ and µ coincide with that of α1 and α2 on the corresponding
subgraphs. For the new edges, γ{ci

1,ci
2}=wi and µ{ci

1,ci
2}(P

i
j ) = ci

j.

In order to illustrate the notions just introduced, we take the algebra of
Asynchronous Relational Nets (ARN) defined in [13]. In that algebra, compo-
nents interact asynchronously through the exchange of messages transmitted
through channels. Ports are sets of messages classified as incoming or outgoing.
A component consists of a finite collection of mutually disjoint ports and a set
of infinite sequences of sets of actions (traces), each action being the publication
of an outgoing message or the reception of an incoming message (for simplicity,
the data that messages may carry is ignored). Interconnection of components is
established through channels – a set P of messages and a set of traces. A wire
consists of a channel and a pair of injections µi:P→Pi that uniquely establishes
connections between incoming and outgoing messages.
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Fig. 1. An example of an ARN with two components connected through a wire.

Fig. 1 presents an example of an ARN with two components connected
through a wire, which support part of the activities involved in the request of



a credit. The net has two nodes {c:Clerk, e:RiskEvaluator} and a single edge
{c, e}:wce.

The component Clerk has four ports. Its behaviour Λc is as follows: after
the delivery of the first creditReq message on port P 1

c , it publishes getUserRisk
on port P 2

c and waits for the delivery of userRiskValue in the same port; if
the credit request comes from a known user, this may be enough for making
a decision on the request and sending approved or denied ; if not, it publishes
getRisk on P 3

c and waits for the delivery of riskValue for making the decision;
after sending approved (if ever), Clerk waits for the delivery of accept , upon
which it publishes processCredit on P 4

c and waits for expectedDate; when this
happens, it sends transferDate.

The component RiskEvaluator has a single port and its behaviour is quite
simple: every time request is delivered, it publishes result . The wire wce inter-
connects ports P 3

c and Pe and establishes that the publication of getRisk in P 3
c

will be delivered in Pe under the name request and the publication of request in
Pe will be delivered in P 3

c under the name riskValue.
The example presented in Fig. 1 can also be used to illustrate the composition

of ARNs: this ARN is the composition of the two single-component ARNs defined
by Clerk and RiskEvaluator via the wire wce.

2.2 The Interface Algebra

As discussed in the introduction, the interfaces of services and business activi-
ties need to specify the functionality that customers can expect as well as the
dependencies that they may have on external services.

In our approach, a service interface identifies a port through which the service
is provided (provides-point), a number of ports through which external services
are required (requires-points) and a number of ports for those persistent com-
ponents of the underlying configuration that the service will need to use once
instantiated (uses-points). Activity interfaces are similar except that they have a
serves-point instead of a provides-point. The differences are that the binding of
provides and requires-points is performed by the runtime infrastructure whereas
the binding of uses and serves-points has to be provided by developers.

In addition, interfaces describe the behavioural constraints imposed over the
external services to be procured and quality-of-service constraints through which
service-level agreements can be negotiated with these external services during
matchmaking. The first are defined in terms of a logic while the latter are ex-
pressed through constraint systems defined in terms of c-semirings [5].

More concretely, we consider that sentences of a specification logic SPEC
are used for specifying the properties offered or required. The particular choice
of the specification logic – logic operators, their semantics and proof-theory –
can be abstracted away. For the purpose of this paper, it is enough to know
that the logic satisfies some structural properties, namely that we have available
an entailment system (or π- institution) 〈SIGN , gram,`〉 for SPEC [17, 11]. In
this structure, SIGN is the category of signatures of the logic: signatures are
sets of actions (e.g., the actions of sending and receiving a message m, which



we denote, respectively, by m! and m¡) and signature morphisms are maps that
preserve the structure of actions (e.g., their type, their parameters, etc). The
grammar functor gram:SIGN→SET generates the language used for describing
properties of the interactions in every signature. Notice that, given a signature
morphism σ:Σ→Σ′, gram(σ) translates properties in the language of Σ to the
language of Σ′. Translations induced by isomorphims (i.e., bijections between
sets of actions) are required to be conservative.

We also assume that PORT is equipped with a notion of morphism that
defines a category related to SIGN through a functor A:PORT→SIGN . The
idea is that each port defines a signature that allows to express properties over
what happens in that port. We use AP to denote the signature corresponding
to port P . Moreover, we consider that every port P has a dual port P op (e.g.,
the dual of a set of messages classified as incoming or outgoing is the same set
of messages but with the dual classification).

For quality-of-service constraints, we adopt so-called soft constraints, which
map each valuation of a set of variables into a space of degrees of satisfaction A.
The particular soft-constraint formalism used for expressing constraints is not
relevant for the approach that we propose. It is enough to know that we consider
constraint systems defined in terms of a fixed c-semiring S, as defined in [5]:

– A c-semiring S is a semiring of the form 〈A,+,×, 0, 1〉 in which A represents
a space of degrees of satisfaction. The operations × and + are used for
composition and choice, respectively. Composition is commutative, choice is
idempotent and 1 is an absorbing element (i.e., there is no better choice than
1). S induces a partial order ≤S (of satisfaction) over A: a ≤S b iff a+ b = b.

– A constraint system defined in terms of c-semiring S is a pair 〈D,V 〉 where
V is a totally ordered set (of variables), and D is a finite set (domain of
possible values taken by the variables).

– A constraint consists of a subset con of V and a mapping def :D|con|→A
assigning a degree of satisfaction to each assignment of values to the variables
in con.

– The projection of a constraint c over I⊆V , denoted by c ⇓I , is 〈def ′, con′〉
with con′ = con ∩ I and def ′(t′) =

∑
{t∈D|con|:t↓con

con′=t′} def (t), where t↓Y
X

denotes the projection of Y -tuple t over X.

We start by defining a notion of service and activity interface.

Definition 4 (Service and Activity Interface). An interface i consists of:

– A set I (of interface-points) partitioned into a set I→ with at most one
element, which (if it exists) is called the provides-point and denoted by i→,
a set I← the member of which are called the requires-points, a set I↑ with at
most one element, which (if it exists) is called the serves-point and denoted
by i↑, a set I↓ the member of which are called the uses-points, such that
either I→ or I↑ is empty.

– For every r∈I, a port Pr and a consistent set of formulas Φr over APr .
– For every r∈I←∪I↓, a consistent set of formulas Ψr over the amalgamated

union of APr and AP op
r

.



– A pair C = 〈Ccs, Csla〉 where Ccs is a constraint system 〈CD, CV 〉 and Csla is
a set of constraints over Ccs.

A service interface i is an interface such that I↑ is empty and I→ is a singleton.
Conversely, an activity interface i is an interface such that I→ is empty and I↑

is a singleton.

The formulas Φr at each interface-point r specify the protocols that the
element requires from external services (in the case of requires-points) or from
other components (in the case of uses-points) and those that it offers to customer
services (in the case of the provides-point) or to users (in the case of the serves-
point). The formulas Ψr express requirements on the wire through which the
element expects to interact with r. C defines the constraints through which SLAs
can be negotiated with external services during discovery and selection.
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Fig. 2. An example of a service interface.

In Fig. 2, we present an example of an interface for a credit service using a
graphical notation similar to that of SCA. On the left, we have a provides-point
CSCustomer through which the service is provided; on the right, a requires-
point IRiskEvaluator through which an external service is required; and, on
the bottom, two uses-points through which the service connects to persistent
components (a database that stores information about users and a manager of
approved credit requests).

In this example, the specification of behavioural properties is defined in linear
temporal logic. For instance, Φc includes �(creditReq ¡ ⊃ 3(approved !∨denied !))
specifying that the service offers, in reaction to the delivery of the message
creditReq , to reply by publishing either approved or denied . Moroever, Φc also
specifies that if accept was received after the publication of approved , then
transferDate will eventually be published. On the other hand, Φe only includes



�(getRisk ¡ ⊃ 3riskValue!) specifying that the required service is asked to re-
act to the delivery of getRisk by eventually publishing riskValue. Ψe specifies
that the wire used to connect the requires-point with the external service has to
ensure that the transmission of both messages is reliable.

The quality-of-service constraints are defined in terms of the c-semiring 〈[0, 1],
max,min, 0, 1〉 of soft fuzzy constraints. SLA CreditService declares three con-
figuration variables – c.amount (the amount conceded to the customer), e.fee
(the fee to be paid by the credit service to the risk evaluator service) and e.cfd
(the confidence level of the risk evaluator) – and has two constraints: (1) the
credit service targets only credit requests between 1000 and 10 000; (2) the fee
f to be paid to the risk evaluator must be less than 50, the confidence level c
must be greater than 0.9 and, if these conditions are met, the preference level is
given by c−0.9

0.2 + 50−f
100 .

Composition of interfaces is an essential ingredient of any interface algebra.
As discussed before, activities and services differ in the form of composition they
offer to their customers. In this paper, we focus on the notion of composition
that is specific to SOC, which captures the binding of a service or activity with
a required service.

Definition 5 (Interface Match). Let i be an interface, r∈I← and j a ser-
vice interface. An interface match from 〈i, r〉 to j consists of a port morphism
δ:P i

r→P j
j→ such that Φj

j→`δ(Φi
r) and a partial injective function ρ:Ci

V →Cj
V . In-

terface i is said to be compatible with service interface j w.r.t. requires-point r
if (1) I and J are disjoint, (2) blevel(Ci

sla⊕ρCj
sla) >S 0 and (3) there exists a

match from 〈i, r〉 to j.

An interface match defines a relation between the port of the requires-point
r of interface i and the port of the provides-point of j in such a way that the
required properties are entailed by the provided ones. Moreover, the function ρ
identifies the configuration variables in the constraint systems of the two inter-
faces that are shared. The formulation of condition (2) above relies on a com-
position operator ⊕ρ that performs amalgamated unions of constraint systems
and constraints, taking into account the shared configuration variables. These
operations are defined as follows.

Definition 6 (Amalgamation of Constraints). Let S1=〈D1, V1〉 and S2=〈D2,
V2〉 be two constraint systems and ρ:V1 → V2 a partial injective function.

– S1⊕ρS2 is 〈D,V 〉 where D is D1∪D2 and V is V1⊕ρV2, the amalgamated
union of V1 and V2. We use ιi to denote the injection from Vi into V1⊕ρ V2.

– Let c=〈con, def 〉 be a constraint in Si. ρ(c) is the constraint 〈ιi(con), def ′〉
in S1⊕ρS2 where def ′(t) is def (t) for t ∈ D

|con|
i and 0 otherwise.

– Let C1,C2 be sets of constraints in, respectively, S1 and S2. C1⊕ρC2 is
ρ(C1)∪ρ(C2).

The consistency of a set of constraints C in S=〈D,V 〉 is defined in terms of
the notion of best level of consistency as follows:



blevel(C) =
∑

t∈D|V |

∏
c∈C

def c(t ↓V
conc

)

Intuitively, this notion gives us the degree of satisfaction that we can expect
for C. We choose (through the sum) the best among all possible combinations
(product) of all constraints in C (for more details see [5]). C is said to be con-
sistent iff blevel(C) >S 0. If a set of constraints C is consistent, a valuation for
the variables used in C is said to be a solution for C and can be also regarded
as a constraint.

Definition 7 (Composition of Interfaces). Given an interface i compatible
with a service interface j w.r.t. r, a match µ=〈δ, ρ〉 between 〈i, r〉 and j, and a so-
lution ∆ for (Ci

cs⊕ρCj
cs)⇓ιj◦ρ(Ci

V ), the composition i ‖r:µ,∆ j is 〈K→,K←,K↑,K↓,

P, Φ, Ψ, C〉 where:

– K→ = I→, K← = J← ∪ (I← \ {r}), K↑ = I↑ and K↓ = I↓ ∪ J↓.
– P,Φ, Ψ coincides with P i, Φi, Ψ i and P j , Φj , Ψ j on the corresponding points.
– C = 〈Ci

cs⊕ρCj
cs,(Ci

sla⊕ρCj
sla) ∪ {∆}〉.

Notice that the composition of interfaces is not commutative: the interface
on the left plays the role of client and the one on the right plays the role of
supplier of services.

2.3 Service and Activity Modules

A component net orchestrates a service interface by assigning interaction-points
to interface-points in such a way that the behaviour of the component net val-
idates the specifications of the provides-points on the assumption that it is in-
terconnected to component nets that validate the specifications of the requires-
and uses-points through wires that validate the corresponding specifications.

In order to reason about the behaviour of component nets we take the be-
haviour of components c∈COMP and wires w∈WIRE to be captured, respec-
tively, by specifications 〈Ac, Φc〉 and 〈Aw, Φw〉 in SPEC defining the language of
components and wires to be the amalgamated union of the languages associated
with their ports. Given a pair of port morphisms θ1:P1→P ′1 and θ2:P2→P ′2, we
denote by 〈θ1, θ2〉 the unique mapping from the amalgamated sum of AP1 and
AP2 to the amalgamated sum of AP ′1

and AP ′2
that commutes with θ1 and θ2.

Notice that nodes and edges denote instances of components and wires, re-
spectively. Different nodes (resp. edges) can be labelled with the same component
(resp. wire). Therefore, in order to reason about the properties of the component
net as a whole we need to translate the properties of the components and wires
involved to a language in which we can distinguish between the corresponding
instances. We take the translation that uses the node as a prefix for the elements
in their language. Given a set A and a symbol p, we denote by (p. ) the function
that prefixes the elements of A with ‘p.’. Note that prefixing defines a bijection
between A and its image p.A.



Definition 8 (Component Net Properties). Let α = 〈C,W, γ, µ〉 be a com-
ponent net. Aα =

⋃
c∈C c.(Aγc

) is the language associated with α and Φα is the
union of, for every c ∈ C, the prefix-translation of Φγc by (c. ) and, for every
w∈W , the translation of Φγw by µw, where, for a∈AP , µw(a)=µw(P ).a.

The set Φα consists on the translations of all the specifications of the com-
ponents and wires using the nodes as prefixes for their language. Notice that
because we are using bijections, these translations are conservative, i.e. nei-
ther components nor wires gain additional properties because of the transla-
tions. However, by taking the union of all such descriptions, new properties may
emerge, i.e., Φα is not necessarily a conservative extension of the individual de-
scriptions.

Definition 9 (Orchestration). An orchestration of an interface i consists of:

– a component net α=〈C,W, γ, µ〉 where C and I are disjoint;
– an injective function θ:I → Iα that assigns a different interaction-point to

each interface-point; we write r θ−→c to indicate that θ(r) = 〈c, Pc〉 for some
Pc∈ports(γc);

– for every r of I→ ∪ I↑, a port morphism θr:Pr→Pcr
where r θ−→cr;

– for every r of I← ∪ I↓, a port morphism θr:P op
r →Pcr

where r θ−→cr;

If i is a service interface, we require that⋃
r∈I←∪I↓

( r.Φr ∪ µr(Ψr) ) ∪ Φα ` ci→ .(θi→(Φi→))

where µr(a) = r.a for a∈APr and µr(a) = cr.θr(a) for a∈AP op
r

. We use α �θ i
to denote an orchestrated interface.

Consider again the single-component ARN defined by Clerk . This ARN, to-
gether with the correspondences CSCustomer 7→ 〈Clerk , P 1

c 〉, IRiskEvaluator 7→
〈Clerk , P 3

c 〉, IUserDB 7→ 〈Clerk , P 2
c 〉 and ICreditMgr 7→ 〈Clerk , P 4

c 〉, defines an
orchestration for the service interface ICreditService. The port morphisms in-
volved are identity functions. The traces in Λc are such that they validate Φc on
the assumption that Clerk is interconnected through IRiskEvaluator , IUserDB
and ICreditMgr to component nets that validate, respectively, Φe, Φu and Φm

via wires that validate Ψe, Ψu and Ψm.
Services are designed through service modules. These modules define an or-

chestrated service interface, the initialisation conditions for the components and
the triggers for the requires-points (stating when external services need to be
discovered). The proposed framework is independent of the language used for
specifying initialisation conditions and triggers: we assume that we have available
a set STC of conditions and a set TRG of triggers.

Definition 10 (Service and Activity Module). A service (resp. activity)
module consists of an orchestrated service (resp. activity) interface α �θ i and



a pair of mappings 〈trigger, init〉 such that trigger assigns a condition in STC
to each r∈I← and init assigns a condition in STC to each c in the nodes of α.

We use interface(M), orch(M) and θM to denote, respectively, i, α and θ;
M→ and M← to denote, respectively, i→ and I←; Ccs(M) and Csla(M) to denote,
respectively, the constraint system and the set of constraints of i.

The service interface ICreditService orchestrated by Clerk together with
a initialization condition for Clerk and a trigger condition for IRiskEvaluator
define the service module CreditService. We do not illustrate these condi-
tions because their formulation depends on the formalism used for specifying
the behaviour of components and wires (e.g., state machines, process calculi,
Petri-nets). See [15, 16] for examples in SRML, a modelling language for SOC
that we defined in the Sensoria project.

Definition 11 (Service Match). Let M be a module and r∈M←. A service
match for M w.r.t. r is a triple 〈S, µ, w〉 where

– S is a service module such that the set of nodes of orch(S) is disjoint from
that of orch(M) and interface(M) is compatible with interface(S) w.r.t. r,

– µ is an interface match from 〈interface(M), r〉 to interface(S),
– w is a wire connecting ports {P, P ′} such that Φw ` 〈θM

r , θS
S→ ◦ ρ〉(ΨM

r ),
assuming that θM (r)=〈c, P 〉 and θS(S→)=〈c′, P ′〉.

Proposition and Definition 12 (Module Composition) Let M be a ser-
vice (resp. activity) module with interface i and r∈M←; 〈S, µ, w〉 a service
match for M w.r.t. r with µ=〈δ, ρ〉 and j = interface(S); ∆ a solution for
(Ci

cs⊕ρCj
cs)⇓ιj◦ρ(Ci

V ). The composition M⊕r:µ,w,∆ S is the service (resp. activity)
module with:

– (i ‖r:µ,∆ j) �θ (orch(M)
n

θi(r),w,θj(j→)
orch(S)), where θ coincides with θi

on the interface-points inherited from i and with θj on those inherited from
j

– trigger and init have the conditions that are inherited from M and S.

M ⊕r:µ,w S is the composition in which no additional constraints are imposed on
the external services, i.e., M ⊕r:µ,w,∅ S.

Fig. 3 illustrates the elements involved in the composition of CreditService
(presented before) and RiskEvalService. The interface of this new service
has the provides-point RECustomer , with Φr including �(request ¡ ⊃ ©result !),
and its constraint system includes the configuration variables r.fee and r.cfd
constrained by r.fee=−3+ 3

(1−r.cfd) . The orchestration of this service is provided
by the single-component ARN with the component RiskEvaluator involved in
the ARN presented before with κRECustomer being the identity.

The match between the two services is given by the mappings δ: getRisk 7→
request , riskValue 7→ result and ρ: e.fee 7→ r.fee, e.cfd 7→ r.cfd . The required
property included in Φe translated by δ is �(request ¡ ⊃ 3result !) which is triv-
ially entailed by Φr. For the composition of the two services, we take the wire wce
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Fig. 3. Example of a service match.

also used in the ARN presented in Fig. 1 (its properties entail δ(Ψe)) and the con-
straint cfd = 0.9095. This confidence level implies that the fee is approximately
30. This pair of values is one that provides the best level of consistency among
the solutions for (Csla(CreditService)⊕ρ Csla(RiskEvalService)) ⇓{fee,cfd}.

The result of this composition is a service module whose interface has two
uses- and two provides-points (inherited from CreditService), the variables
c.amount, fee and cfd subject to the constraints inherited from the two interfaces
and also cfd = 0.9095∧ fee = 30.14917. The service is orchestrated by the ARN
presented in Fig. 1.

This example illustrates how the proposed notion of composition of services
can be used for obtaining more complex services from simpler ones. The service
provider of IRiskEvaluator was chosen at design-time as well as the SLA and
the result of this choice was made available in a new service CreditService⊕
RiskEvalService.

3 Business-reflective configurations

As mentioned before, component nets define configurations of global computers.
In order to account for the way configurations evolve, it is necessary to consider
the states of the configuration elements and the steps that they can execute. For
this purpose, we take that every component c∈COMP and wire w∈WIRE of a
component net may be in a number of states, the set of which is denoted by
STATE c and STATEw, respectively.

Definition 13 (State Configuration). A state configuration F is a pair 〈α,S〉,
where α=〈C,W, γ, µ〉 is a component net and S is a configuration state, i.e., a
mapping that assigns an element of STATE c to each c∈C and of STATEw to
each w∈W .



A state configuration 〈α,S〉 may change in two different ways: (1) A state
transition from S to S ′ can take place within α – we call such transitions ex-
ecution steps. An execution step involves a local transition at the level of each
component and wire, though some may be idle; (2) Both a state transition from
S to S ′ and a change from α to another component net α′ can take place – we
call such transitions reconfiguration steps. In this paper, we are interested in the
reconfigurations steps that happen when the execution of business activities trig-
gers the discovery and binding to other services. In order to determine how state
configurations of global computers evolve, we need a more sophisticated typing
mechanism that goes beyond the typing of the individual components and wires:
we need to capture the business activities that perform in a state configuration.
We achieve this by typing the sub-configurations that, in a given state, execute
the activities with activity module, thus making the configurations reflective.

Business configurations need also to include information about the services
that are available in a given state (those that can be subject to procurement).
We consider a space U of service and activity identifiers (e.g., URIs) to be given
and, for each service and activity that is available, the configuration has in-
formation about its module and for each uses-point u: (i) the component cu

in the configuration to which u must be connected and (ii) a set of pairs of
ports and wires available for establishing a connection with cu. This information
about uses-points of modules captures a ‘direct binding’ between the need of
u and a given provider cu, reflecting the fact that composition at uses-points
is integration-oriented. The multiplicity of pairs of ports and wires opens the
possibility of having a provider cu serving different instances of a service at the
same time.

We also consider a space A of business activities to be given, which can be
seen to consist of reference numbers (or some other kind of identifier) such as
the ones that organisations automatically assign when a service request arrives.

Definition 14 (Business Configuration). A business configuration is 〈F ,P,
B, C〉 where

– F is a state configuration
– P is a partial mapping that assigns to services s∈U , a pair

〈PM (s), {Pu(s) : u ∈ PM (s)↓}〉
where PM (s) is a service module and Pu(s) consists of a node cu in F (i.e.,
a component instance) and a set of pairs 〈Pu

i , wu
i 〉, where each Pu

i is a port
of γcu distinct from the others and wu

i is a wire connecting Pu
i and the port

of u that satisfies the properties Ψu imposed by PM (s). The services and
activities in the domain of this mapping are those that are available in that
state.

– B is a partial mapping that assigns an activity module B(a) to each activity
a∈A (the workflow being executed by a in F). We say that the activities in
the domain of this mapping are those that are active in that state.

– T is a mapping that assigns an homomorphism T (a) of graphs orch(B(a)) →
F to every activity a∈A that is active in F . We denote by F(a) the image
of T (a) – the sub-configuration of F that corresponds to the activity a.



Let us consider a configuration in which CreditService (presented before)
and CreditActivity are available. The latter is an activity that the same
provider makes available in order to serve requests that are placed, not by other
services, but by applications that interact with users (e.g., a web application
that supports online credit requests). Suppose that the configuration also de-
fines that the uses-points IUserDB and ICreditMgr of both interfaces should be
connected, respectively, to UserDB and CreditMgr – a database of users and
a manager of approved credit requests that are shared by all instances of this
service and activity. The other elements of the business configuration are (par-
tially) described in Fig. 4. It is not difficult to recognise that there are currently
two active business activities – AAlice and ABob. Intuitively, both correspond
to two instances of the same business logic (two customers requesting a credit
using the same business activity) but at different stages of their workflow: one
(launched by BobUI ) is already connected to a risk evaluator (BobREval) while
the other (launched by AliceUI ) has still to discovery and bind to a risk eval-
uator service. The active computational ensemble of component instances that
collectively pursue the business goal of each activity in the current state are
highlighted through a dotted line.

CreditMgr: 
ICreditMgr

UserBD: 
IUserBD

AliceClerk:
UIClerk

IRiskEvaluator

IUserDB

SLA_CA

ICreditMgr

CreditUI

AliceUI:
CreditUI

BobClerk:
UIClerk

IUserDB

SLA_CA2

ICreditMgr

UIClerk

CreditUI

BobUI:
CreditUI

RiskEvaluator

BobREval:
RiskEvaluator

ICREDITACTIVITY ICREDITACTIVITY2

UIClerk
w4:w_ucw1:w_uc

w2:w_cd1
w5:w_cd2

w3:w_cm1

w
7:

w
_c

e

We consider a space A of business activities to be given, which can be seen to

consist of reference numbers (or some other kind of identifier) such as the ones that

organisations automatically assign when a service request arrives.

Definition 14 (Business Configuration). A business configuration is �F ,P,B, C�where

– F is a state configuration
– P is a partial mapping that assigns to services s∈U , a pair

�PM (s), {Pu(s) : u ∈ PM (s)↓}�
where PM (s) is a service module and Pu(s) consists of a node cu in F (i.e., a
component instance) and a set of pairs �Pu

i , wu
i �, where each Pu

i is a port of γcu

distinct from the others and wu
i is a wire connecting Pu

i and the port of u that
satisfies the properties Ψu imposed by PM (s). The services and activities in the
domain of this mapping are those that are available in that state.

– B is a partial mapping that assigns an activity module B(a) to each activity a∈A
— the workflow being executed by a in F . We say that the activities in the domain
of this mapping are those that are active in that state.

– T is a mapping that assigns an homomorphism T (a) of graphs orch(B(a)) → F
to every activity a∈A that is active in F . We denote by F(a) the image of T (a) —
the sub-configuration of F that corresponds to the activity a.

Let us consider a situation in which it is available the CREDITSERVICE presented

before and CREDITACTIVITY — an activity that the same provider makes available

in order to serve requests that are placed not by other services but by applications

that interact with users (e.g., a web application that supports credit requests online).

Suppose that the business configuration also defines that the use-points IUserDB and

ICreditMgr of both interfaces should be connected to the component instances UserDB
and CreditMgr , respectively. The other elements of the business configuration are de-

scribed in Figure 5. It is not difficult to recognise there are currently two business ac-

tivities — AAlice and ABob. Intuitively, both correspond to two instances of the same

business logic (two customers requesting a credit using the same business activity) but

at different stages of their workflow: one (launched by LUI) is already connected to a

flight and a hotel agent (LauF and LauH, respectively) but the other (launched by AUI),

also connected to a (different) flight agent (AntF), still has to find a hotel agent. Both

share the component DB (a database of users shared by all instances of the service),

which resides in the bottom layer (for persistency).

B(AAlice) B(ABob)

that there are currently two business activities — AAlice and ABob —- processing

two credit requests issued through user interfaces AliceCreditUI and , respectively, on

behalf of two customers. AAlice is being served by CREDITACTIVITY and AAlice is

being served by CREDITACTIVITY.
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that are shared by all instances of this service and activity). The other elements of the
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that there are currently two active business activities — AAlice and ABob. Intuitively,

both correspond to two instances of the same business logic (two customers requesting

a credit using the same business activity) but at different stages of their workflow: one

(launched by BobCreditUI ) is already connected to a risk evaluator (BobREval ) but

the other (launched by AliceCreditUI ) has still to discovery and bind to a risk evalua-

tor service appropriate for its needs. The active computational ensemble of component

instances that collectively pursue the business goal of each activity in the current state

are highlighted through a dotted line.

T (AAlice) T (ABob)

Other components may be present in the current configuration that account for other

business activities running in parallel with ABob, say activities processing other mort-

gage requests that share the same database MortRegistry or, as depicted in Figure 1,
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Fig. 4. Excerpt of a business configuration.

4 Service Discovery and Binding

Every activity module declares a triggering condition for each requires-point,
which determines when a service needs to be discovered and bound to the current



configuration through that point. Let L=〈F ,P,B, C〉 be the current business
configuration. The discovery of a service for a given activity a and requires-point
r of B(a) consists of several steps. First, it is necessary to find, among the services
that are available in L, those that are able to guarantee the properties associated
with r in B(a) and with which it is possible to reach a service-level agreement.
Then, it is necessary to rank the services thus obtained, i.e., to calculate the
most favourable service-level agreement that can be achieved with each S – the
contract that will be established between the two parties if S is selected. The last
step is the selection of one of the services that maximises the level of satisfaction
offered by the corresponding contract.

Definition 15 (discover(M, r,P)). Let P be a mapping as in Def. 14, M an
activity module and r∈M←. discover(M, r,P) is the set of tuples 〈s, 〈δ, ρ〉, w, ∆〉
such that:

1. s ∈ U and S=PM (s) is defined;
2. 〈S, 〈δ, ρ〉, w〉 is a service match for M w.r.t. r;
3. ∆ is a solution for (Csla(M) ⊕ρ Csla(S))⇓ιS◦ρ(CM

V ) and blevel(Csla(M) ⊕ρ

Csla(S) ∪ {∆}) is greater than or equal to the value obtained for any other
solution of that set of constraints;

4. blevel(Csla(M)⊕ρCsla(S)∪{∆}) is greater than or equal to the value obtained
for any other tuple 〈s′, δ′, ρ′,∆′〉 satisfying the conditions 1-3, above.

The discovery process for an activity module and one of its requires-points r
also provides us with a wire to connect r with the provides-point of the discovered
service. By Def. 11, this wire guarantees the properties associated with r in B(a).

The process of binding an activity to a discovered service for one of its
requires-points can now be defined:

Definition 16 (Service Binding). Let L=〈F ,P,B, T 〉 be a business configu-
ration with F = 〈α,S〉, a an active business activity in L and r∈B(a)←.

– If F(a) |= triggerB(a)(r) and discover(B(a), r,L) 6= ∅, then binding B(a) to
r using any of the elements in discover(B(a), r,P) is enabled in L.

– Binding B(a) to r using 〈s, 〈δ, ρ〉, w, ∆〉∈discover(B(a), r,L), and assuming
that PM (s)=S, induces a business configuration 〈〈α′,S ′〉, P,B′, T ′〉 such
that:
• B′(x) = B(x), if x 6= a and B′(a) is the activity module B(a)⊕r:µ,w,∆ S
• if θB(a)(r)=〈c, P 〉 and θS(S→)=〈c′, P ′〉, α′ is α

f
Ξ αS where

∗ αS is a component net obtained by renaming the nodes in orch(S)
in such a way this set becomes disjoint from the set of nodes of
orch(B(a)),

∗ c′′ is the node in αS corresponding to c′,
∗ Ξ={〈〈T (c), P 〉, w, 〈c′′, P ′〉〉, 〈〈cu, Pu

i 〉, wu
i , θS(u)〉:u ∈ S↑} where cu

is the component identified by Pu(s), Pu
i is a port in Pu(s) that is

still available for connection and wu
i is the corresponding wire, as

defined by Pu(s).



• S ′ coincides with S in the nodes of α and assigns, to every node c in αS,
a state that satisfies initS(c).

• T ′ is the homomorphism that results from updating T with the renaming
from orch(S) to αS.

That is to say, new instances of components and wires of S are added to the
configuration while existing components are used for uses-interfaces, according
to the direct bindings defined in the configuration.
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instances that collectively pursue the business goal of each activity in the current state
are highlighted through a dotted line.

T (AAlice) T (ABob)

Other components may be present in the current configuration that account for other
business activities running in parallel with ABob, say activities processing other mort-
gage requests that share the same database MortRegistry or, as depicted in Figure 1,
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Fig. 5. Reconfiguration step induced by a service binding.

Figure 5 illustrates the binding process. On the left side is depicted part of the
business configuration L1, before the activity ABob has bound to a risk evaluator
service (activity AAlice was not yet active at this time). On the right side is de-
picted the result of the binding of IRiskEvaluator to the service RiskEvalService
using the service match presented in Fig. 3. This means that this service is,
among all the services available in P1 that fit the purpose, one of the services
that best fits the quality-of-service constraints. According to what discussed in
Sec. 2.3, the contract established between the two parties is a confidence level
of 0.9095 and a fee of 30.14917.

5 Conclusions

In this paper, we presented an overview of a graph-based framework for the
design of service-oriented systems developed around the notion of service and
activity module. Service modules, introduced in [14], were originally inspired by



concepts proposed in SCA [22]. They provide formal abstractions for compos-
ite services whose execution involves a number of external parties that derive
from the logic of the business domain. Our approach has also been influenced
by algebraic component frameworks for system modelling [10] and architectural
modelling [2]. In those frameworks, components are, like services, self-contained
modelling units with interfaces describing what they require from the environ-
ment and what they themselves provide. However, the underlying composition
model is quite different as, unlike components, services are not assembled but, in-
stead, dynamically discovered and bound through QoS-aware composition mech-
anisms. Another architectural framework inspired by SCA is presented in [25].
This framework is also language independent but its purpose is simply to offer
a meta-model that covers service-oriented modelling aspects such as interfaces,
wires, processes and data.

Our notion of service module also builds on the theory of interfaces for
service-oriented design proposed in [13], itself inspired by the work reported
in [9] for component based design. Henzinger and colleagues also proposed a
notion of interface for web-services [4] but the underlying notion of composition,
as in component-based approaches, is for integration.

We presented a mathematical model that accounts for the evolutionary pro-
cess that SOC induces over software systems and used it to provide an oper-
ational semantics of discovery, instantiation and binding. This model relies on
the mechanism of reflection, by which configurations are typed with models of
business activities and service models. Reflection has been often used as a means
of making systems adaptable through dynamic reconfiguration (e.g. [8, 19, 20]).
A more detailed account of the algebraic properties of this model can be found
in [15].

The presented framework was defined in terms of abstractions like COMP ,
PORT and WIRE so that the result was independent of the nature of compo-
nents, ports and wires and of the underlying computation and communication
model. In the same way, we have considered that the behavioural constraints
imposed over the interface-points were defined in terms of a specification logic
SPEC . A large number of formalisms have been proposed for describing each of
these concepts in the context of SOC – e.g., process-calculi [7, 18, 26], automata-
based models [3, 23] and models based on Petri-nets [21, 24]. An example of the
instantiation of the framework is provided by the language SRML [12, 16], a
modelling language of service-oriented systems we have developed in the context
of Sensoria project. This modelling language is equipped with a logic for spec-
ifying stateful, conversational interactions, and a language and semantic model
for the orchestration of such interactions. Examples of quantitative and qualita-
tive analysis techniques of service modules modelled in SRML can be found in
[1, 6].
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