
GLL parse-tree generation

Elizabeth Scott and Adrian Johnstone

Department of Computer Science
Royal Holloway, University of London

Egham, Surrey, United Kingdom

Abstract

Backtracking techniques which are often used to extend recursive descent (RD)
parsers can have explosive run-times and cannot deal with grammars with left re-
cursion. GLL parsers are fully general, worst-case cubic parsers which have the
recursive descent-like property that they are easy to write and to use for grammar
debugging. They have the direct relationship with the grammar that an RD parser
has. In this paper we give an algorithm for generating GLL parsers which build
an SPPF representation of the derivations of the input, complementing our exist-
ing GLL recognition algorithm, and we show that such parsers and recognisers are
worst-case cubic.

Key words: generalised parsing, recursive descent, GLL parsing, RNGLR and
RIGLR parsing, context free languages

In this paper we present the GLL (Generalised LL) parsing algorithm which
handles any context free grammar, including those with ambiguity, and which
we shall prove has worst-case cubic performance. The algorithm has the ‘re-
cursively decent’ property: parsers may be constructed straightforwardly by
hand directly from the grammar, and the resulting parsers may easily be traced
using a conventional language debugger because they have a straightforward
relationship with the grammar itself.

This simple mapping between grammar rules and parser fragments allows pro-
grammers to think operationally about grammars whilst retaining the declar-
ative nature of the grammar specification. In this respect GLL parsers are
significantly different to approaches based on backtracking and lookahead ex-
tensions of deterministic parsers [13,14,1,24,9,5] including algorithms such as

Email address: e.scott@rhul.ac.uk, a.johnstone@rhul.ac.uk (Elizabeth
Scott and Adrian Johnstone).

Preprint submitted to Elsevier Science 3 August 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28902048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aho and Ullmann’s TDPL and GTDPL [3] (more recently popularised as
Parsing Expression Grammars [8] and their associated Packrat parsers [7]).

The problem with TDPL and greedy backtracking strategies generally is that
although the rules from which they are constructed look like context free
grammar rules, the parsers may not fully explore the derivation space of the
grammar, and so the language accepted may not be the same as the language
specified by the typographically identical context free grammar. Software en-
gineers may get nasty surprises when a perfectly sensible looking input is
rejected by such a parser.

For users whose grammars are near-deterministic, recursive descent (RD) style
parsing continues to be appealing. This is in large part due to the fact that an
RD parser is essentially a procedural version of the grammar itself, and hence,
in the language design phase, semantic action insertion is easy and grammar
debugging is more tractable. In addition, for LL(1) grammars, RD parsers
are linear in the size both of the grammar and the input string, while even
LR(0) parse tables can be exponential in the size of the grammar [21]. How-
ever, few ‘real’ grammars are LL(1) and devotees of the alternative bottom-up
stack-based table driven approach, pioneered by Knuth in his seminal 1960’s
paper [11], often cite the restrictive nature of the LL(1) conditions, particu-
larly the need to avoid left recursion, as justification for their preference. In
practice, grammars for real languages such as Java and C are also not LR(1),
and no grammar with hidden left recursion (see Section 1) is LR(1).

The Natural Language Processing (NLP) community has always had to cope
with the full expressive power of context free grammars. A variety of ap-
proaches have been developed and remain popular including CYK [25], Ear-
ley [6] and Tomita style GLR parsers [20,12,16]. Although GLR parsing has
not been universally adopted by the NLP community — perhaps because of
its complexity compared to the easier to visualise CYK and Earley meth-
ods — GLR has the attractive property for computer science applications that
it achieves linear performance on LR-deterministic grammars whilst grace-
fully coping with fully general grammars. Since most computing applications
involve near-deterministic grammars, GLR has been taken up for language
re-engineering applications. It is used, for example, in ASF+SDF [22] and
Stratego [23], and even Bison has a partial GLR mode [2]. We have devel-
oped [16,19] more efficient variants of GLR-parsing including a worst-case
cubic time algorithm, BRNGLR, based on binarised derivation forests. How-
ever, at their heart all GLR parsers have a shift-reduce automaton (usually
table based) and considerable book keeping to handle the sequentialisation of
the naturally parallel partial parses. As a result, nobody could accuse a GLR
parser for, say, C++, of being easy to read, and by extension easy to use for
grammar debugging.

2

In our preliminary conference paper [17] we introduced a new algorithm, Gen-
eralised LL (GLL) recognition, which handles all (including left recursive)
context free grammars and runs in worst-case cubic time. In that paper we
also reported on experimental results for GLL recognisers (but not parsers)
for hard highly ambiguous grammars, as well as for the standard grammars
for ANSI-C and Pascal. The construction is so straightforward that imple-
mentation by hand is feasible: indeed we produced a hand constructed GLL
recogniser for ANSI C.

In this paper we extend the GLL algorithm to a full parser and prove that the
parsers have worst-case cubic complexity for any context free grammar. We
show that run times are commensurate with our BRNGLR algorithm, and
entirely practical for traditional parser applications such as language front
ends.

1 Background

A context free grammar (CFG) consists of a set N of nonterminal symbols,
a set T of terminal symbols, an element S ∈ N called the start symbol, and
a set of grammar rules of the form A ::= α where A ∈ N and α is a string
in (T ∪N)∗. The symbol ε denotes the empty string. We often compose rules
with the same left hand sides into a single rule using the alternation symbol,
A ::= α1 | . . . | αp. We refer to the strings αj as the alternates of A.

A derivation step is an expansion γAβ⇒γαβ where γ, β ∈ (T ∪ N)∗ and
A ::= α is a grammar rule. A derivation of τ from σ is a sequence

σ⇒β1⇒β2⇒ . . .⇒βn−1⇒βn = τ , also written σ
∗⇒τ or, if n > 0, σ

+⇒τ .

A nonterminal A is left recursive if there is a string µ ∈ (T ∪N)∗ such that

A
+⇒Aµ, and nullable if A

∗⇒ε. If A
∗⇒βAµ where β

+⇒ε we say A has hidden left
recursion.

An LL(1) recursive descent parser consists of a collection of parse functions,
one for each nonterminal A in the grammar. The function selects an alternate,
α, of the rule for A, according to the current symbol in the input string being
parsed, and then calls the parse functions associated with the symbols in α.
It is possible that the current input symbol will not uniquely determine the
alternate to be chosen, and if A is left recursive the parse function can go into
an infinite loop.

Traditional LR-table based parsers [11,16] use a stack to record the traversal
of a finite state automaton rendition of the grammar. GLR parsers extend
LR-parsers to deal with non-determinism by spawning parallel processes, each

3

with their own stack. This approach is made practical by combining the stacks
into a Tomita-style graph structured stack (GSS) which shares common initial
substacks and recombines stacks when their associated processes converge. A
GSS is simply a directed graph whose nodes are grouped into ‘levels’ by the
value of the input pointer position at the time the node was created. We write
(L, i) to indicate a node labelled L at level i. It is conventional to have an
arc from an element on the stack to the element below it, and for the bottom
element, $, of the stack to be drawn on the left. For example, the GSS (which
relates to the example in Section 2.3)

L0, 0$, 0 RS2 , 1 RS2 , 2 RS1 , 3

RS1
, 2RA1

, 0

RS1
, 1

RA1
, 1

� � �

H
HH

HHY �
�
�

�
�	

��
����@

@
@

@
@I

�

SSo SSo

��/

�
 �	�
 �	�
 �	
�
 �	

�
 �	

�
 �	�
 �	
�
 �	�
 �	

has four levels and represents the stacks

[$, L0, RA1] [$, L0, RS2 , RA1] [$, L0, RS1 , RA1] [$, L0, RS2 , RS1]
[$, L0, RS1 , RS1] [$, L0, RS2 , RS2 , RS1] [$, L0, RS1 , RS2 , RS1]

Direct left recursion is not a problem for LR parsers, but hidden left recursion
can result in non-termination essentially because infinitely many stacks are
constructed. Our Tomita-style RNGLR algorithm [16] and our Aycock and
Horspool-style RIGLR algorithm [15] both use a modified type of GSS which
can include cycles, allowing application to all context free grammars. For ex-
ample, the GSS below represents the infinitely many stacks [$, L0, RA1 , . . . , RA1 , RS1]

L0, 0$, 0 RA1
, 1 RS1

, 2� ��
�
 �	�
 �	�
 �	�
 �	

�

In the RD-based GLL algorithm presented in this paper we use RIGLR-style
‘descriptors’ (see next section) to represent the multiple process configurations
which result from non-determinism, and a GSS to explicitly manage the parse
function call stacks in a way that copes with left recursion.

2 Generalising recursive descent

In [17] we gave a presentation of the GLL recognition algorithm, which fol-
lows the recursive descent approach but is applicable to all grammars. The
insight behind GLL comes in part from our work on Aycock and Horspool
style RIGLR parsers [15]. Aycock and Horspool [4] developed an approach
designed to reduce the amount of stack activity in a GLR parser. Their algo-
rithm does not admit grammars with hidden left recursion, but we have given

4

a modified version, the RIGLR algorithm, which is general. In their original
paper, Aycock and Horspool described their automata based algorithm as a
faster GLR parser but it is our view that the algorithm is closer in principle
to a generalised LL parser. It is this observation that led us to apply the tech-
niques that we developed for RNGLR and RIGLR parsing to give a general
recursive descent-style algorithm. We refer the reader to [17] for further moti-
vational discussion, and recommend this paper and our more implementation
oriented discussion [10] to readers who are not already familiar with gener-
alised parsing. In this section we describe the GLL recogniser informally in
terms of recursive descent. We shall use the terminology from [17] so that the
reader can refer to this if they wish. Some of the functions introduced here
will be modified in the later formal description to incorporate derivation tree
construction, which was not discussed in [17].

2.1 Algorithm control flow

As we have said, an RD parser consists of a collection of parse functions
associated with the grammar nonterminals. There is a section in the parse
function parseX() for each alternate x1 . . . xk of the grammar rule for X, and
there is a line in the section for each symbol xi in the alternate. If xi is a
terminal it is matched to the current input symbol and if it is a nonterminal
then the corresponding parse function is called.

For example, consider the grammar

S ::= a S | A S d | ε A ::= b

We assume that the input string is held in an array I, that i denotes the index
of the current input symbol and that error() is a function which terminates
the whole parser and returns a suitable error message. The symbol $ denotes
the end-of-string symbol and the last entry in I is set to $.

All strings of terminals derivable from ASd have the form bu, thus we guard
the selection of the corresponding code with a test I[i] = b. For a one-symbol
lookahead RD parser all the alternate choices are uniformally guarded with
tests of this form. Then we have the following parse functions for the above
grammar.

parseS() {
if (I[i] = a) {

if(I[i] = a) { i := i+ 1;} else error()
parseS(); return }

if (I[i] = b) {
parseA(); parseS()

5

if(I[i] = d) { i := i+ 1 } else error(); return } }

parseA() {
if (I[i] = b) {

if(I[i] = b) { i := i+ 1 } else error(); return }
error() }

We think of an RD parser as ‘walking’ the grammar using a given input string.
The function parseX() selects an alternate, α, of the rule for X, according to
the current symbol in the input string being parsed, and then calls the parse
functions associated with the symbols in α.

If the parser is implemented in a typical high level programming language, a
call to a parse function parseX() will cause the address of the action immedi-
ately after the call (the return address) to be written to the function call stack
and the algorithm execution will jump to the start of the code for parseX().
When the end of the function is reached the return address is popped off the
stack and the algorithm execution jumps to that address.

The problem is that the choice of alternate is not always uniquely determined
by the current input symbol, and this can cause a näıve RD parser to incor-
rectly reject an input.

We shall use the grammar Γ0, a modification of the grammar above, as a
running example.

S ::= a S | A S d | ε
A ::= a

We have the following parse functions for Γ0.

parseS() {
if (I[i] = a) {

if(I[i] = a) { i := i+ 1;} else error()
parseS(); return }

if (I[i] = a) {
parseA(); parseS()
if(I[i] = d) { i := i+ 1 } else error(); return } }

parseA() {
if (I[i] = a) {

if(I[i] = a) { i := i+ 1 } else error(); return }
error() }

In this case the RD parser will not work correctly because the second alternate
will never be reached. The GLL algorithm explores all the execution paths
through the algorithm, but to do this it needs to explicitly manage the function

6

call and return mechanism in order to support multiple call stacks.

We replace the parse functions for Γ0 with labels and goto statements and an
explicit stack. We also add a final statement labelled L0 which checks whether
the parser has read all the input. The length of the input is denoted by m.
We assume that the stack is initialised with L0 on the bottom, and that there
is a function push(R) which pushes its argument on to the top of the stack,
and a function pop() which takes the top element off the stack and makes it
the current label, denoted by L.

LS: if (I[i] = a) {
if(I[i] = a) { i := i+ 1 } else error()
push(RS1); goto LS

RS1 : pop(); goto L }

if (I[i] = a) {
push(RA1); goto LA

RA1 : push(RS2); goto LS

RS2 : if(I[i] = d) { i := i+ 1 } else error()
pop(); goto L }

else pop(); goto L

LA: if (I[i] = a) {
if(I[i] = a) { i := i+ 1 } else error()
pop(); goto L }

else error()

L0: if (i = m) return success else error()

Of course, if we run this algorithm with input ad it reports an error at L0.

2.2 Dealing with nondeterminism

The problem with the parser given at the end of the previous section is that
two alternates of the rule for S can be chosen when the first input symbol a
has been seen, and from the structure of the algorithm, it will always be the
first one aS.

The GLL algorithm addresses this by creating a ‘descriptor’ for each valid
choice and then pursuing all of the corresponding execution threads in turn.
A set R of pending descriptors is maintained and the GLL algorithm has an
outer loop, labelled L0, which removes a descriptor from R and resumes the
corresponding execution thread.

7

Execution forks occur at the start of a parse function, when the alternate is
chosen. The start of each alternate has to be recorded, so these are labelled.
Each thread has an associated current stack but it would be impractical to keep
a separate copy of each stack for each thread. The stacks are merged together
into a single structure, the GSS, and the GSS node which corresponds to the
top of the stack(s) associated with a given thread is included in the descriptor.

Thus, in this section, descriptors are triples which contain a label, a stack
node and an input position (L, u, i). (In our later formal description of the
parser, descriptors will be extended to include tree nodes.) When a descriptor
is removed from R the process execution is resumed at position L, with input
symbol I[i] and stack whose stack top is u.

Because the stacks are merged, it is possible for a descriptor to represent sev-
eral threads with different stacks. When a stack node is popped it may create
several stacks which had previously been merged. Thus the pop() function
creates descriptors, one for each of these stacks, which are added to R, and
a call to pop() is immediately followed by a return to the outer loop of the
algorithm and the selection of the next element from R.

We use cU to denote the current stack top, a GSS node, and cI to denote the
current input position, an integer. The function add() creates a new descriptor
and adds it to R. To avoid repeated processing of threads, add() only creates
a descriptor if it has not already been created. We replace the push() function
in the näıve RD parser with a function create() which creates a new GSS node
as a parent of the current stack top, if a suitable node does not already exist,
and then returns this node. We will not go into further details of the functions
pop(), add() and create() here. Formal descriptions of the versions of these
functions needed for the parser version of GLL are given in Section 3.3 and
the detailed behaviour of the recogniser versions of these functions, as they
are used in this section, are given in [17].

The following is a sketch version of the GLL recognition algorithm for Γ0

which shows the ‘shape’ of the control flow. The bookkeeping details for the
full algorithm are discussed in the next section.

L0: if R 6= ∅ {
remove (L, u, i) from R; goto L }

if (cI = m) return success else error()

LS: if (I[cI] = a) add(LS1 , cU , cI)
if (I[cI] = a) add(LS2 , cU , cI)
add(LS3 , cU , cI); goto L0

LS1 : cI := cI + 1
cU := create(RS1 , cU , cI); goto LS

8

RS1 : pop(cU , cI); goto L0

LS2 : cU := create(RA1 , cU , cI); goto LA

RA1 : cU := create(RS2 , cU , cI); goto LS

RS2 : if(I[cI] = d) { cI := cI + 1 } else error()
pop(cU , cI); goto L0

LS3 : pop(cU , cI); goto L0

LA: if (I[cI] = a) add(LA1 , cU , cI)
goto L0

LA1 : cI := cI + 1
pop(cU , cI); goto L0

Note, a simple RD parser implements an ε-alternate by omitting the final
error() call at the end of the parse function, thus causing the parse function
to return normally having done nothing. In the general case it maybe that
both the ε-alternate and other alternates form valid execution threads so we
have to explicitly create a descriptor for this case.

2.3 A GLL recogniser for Γ0

In summary then, a GLL recogniser includes labelled lines of three types: re-
turn, nonterminal and alternate. Return labels, RXi

, are used to label what
would be parse function call return lines in a recursive descent parser. Nonter-
minal labels, LX , are used to label the first line of what would be the code for
the parse function for X in a recursive descent parser. Alternate labels, LXj

,
are used to label the first line of what would be the code corresponding to the
jth-alternate, αj say, of X. The outer loop of the algorithm is labelled L0.

As we described above, the return labels are stored in a GSS whose nodes
contain a return label and an input string position. For the GSS node, cU ,
corresponding to the top of the current stack, the function create(L, u, i) finds
or creates, and then returns, a GSS node labelled (L, i) which has child node
u. The GSS is initialised to have L0 at the bottom and when this node is
popped the control flow moves to the final test for the end of string symbol.
To avoid an empty GSS at this point, a dummy base node labelled $ is created
as a child of the first node (L0, 0).

Process descriptors of the form (L, u, i), created by add(L, u, i), are held in a
set R. To avoid creating the same descriptor twice we maintain sets

Ui = {(L, u) | (L, u, i) has been added to R}

9

and a descriptor (L, u, i) is only added to R if (L, u) is not already in Ui. To
reduce the space requirements each Uk may be deleted once all descriptors
(L, u, j) such that j ≤ k have been processed.

(For a GLL parser the edges of the GSS are labelled and create() and add()
have different input parameters in this case, see Section 3.3.)

We assume that the input has length m and is stored in an array I whose
entries are indexed from 0 to m. The last entry in I, I[m], is set to end-of-
string symbol $. The cI denotes the current input index.

The following is a full GLL recognition algorithm for Γ0 and the first example
GSS in Section 1 is the GSS produced when this algorithm is executed on the
input aad$.

create GSS nodes u1 := (L0, 0), u0 := $ and an edge (u0, u1)
cI := 0; R := ∅; cU := u1
for 0 ≤ j ≤ m { Uj := ∅ }
goto LS

L0: if (R 6= ∅) { remove (L, u, j) from R
cU := u; cI := j; goto L }

else if ((L0, u0,m) ∈ Um) report success else report failure

LS: if (I[cI] = a) { add(LS1 , cU , cI); add(LS2 , cU , cI) }
if (I[cI] ∈ {d, $}) add(LS3 , cU , cI)
goto L0

LS1 : cI := cI + 1
if (I[cI] ∈ {a, d, $}) { cU := create(RS1 , cU , cI); goto LS }
else goto L0

RS1 : pop(cU , cI); goto L0

LS2 : cU := create(RA1 , cU , cI); goto LA

RA1 : if (I[cI] ∈ {a, d}) { cU := create(RS2 , cU , cI); goto LS }
else goto L0

RS2 : if(I[cI] = d){ cI := cI + 1; pop(cU , cI) }; goto L0

LS3 : pop(cU , cI); goto L0

LA: if (I[cI] = a) add(LA1 , cU , cI); goto L0

LA1 : cI := cI + 1; pop(cU , cI); goto L0

3 Building derivation trees

Ultimately we want a translator to generate target code and for this the se-
mantics of the input must be established. Simply knowing that the input is
syntactically correct is not adequate. The semantics of a language are usually

10

reflected in the syntactic structure and thus the semantic analyser can use
the derivation of the input as a starting point. Parsing algorithms differ from
recognisers in that they also produce some form of the derivation of the input.

For LL(1) grammars, that is grammars for which the choice of alternate in a
parse function is always uniquely determined by the input symbol, the exten-
sion of an RD parser to include derivation tree construction is trivial. Thus
the distinction between a recogniser and a parser is often blurred. However,
in general the extension of a recogniser algorithm to one which constructs
derivations is not straightforward, see [18] for an illustration of this based
on Earley’s algorithm. In the rest of this paper we describe the GLL parsing
algorithm.

3.1 Shared packed parse forests (SPPF) and parser descriptors

A derivation tree is an ordered tree whose root is labelled with the start sym-
bol, leaf nodes are labelled with a terminal or ε and interior nodes are labelled
with a nonterminal, A say, and have a sequence of children corresponding to
the symbols on the right hand side of a rule for A.

A grammar is ambiguous if there is some string which has two or more deriva-
tion trees. For some grammars some strings have infinitely many derivation
trees and thus general parsers cannot simply construct all the possible deriva-
tion trees.

The complexity of parsing algorithms continues to be an open problem. There
is no known linear time general parsing algorithm; the best practical gen-
eral algorithms have cubic complexity. In their recogniser forms the CYK
algorithm [25] is worst-case cubic order on grammars in Chomsky normal
form and Earley’s algorithm [6] is worst-case order cubic on general context
free grammars and worst-case quadratic order on non-ambiguous grammars.
For the parser versions the situation is even more complicated. Earley’s own
sketch of a parsing version of his algorithm is incorrect and Tomita’s GLR
algorithm [20], which was designed with tree building in mind, is unbounded
polynomial order even on some ε-free grammars.

GLR parsers represent the complete set of derivation trees for a string using
a shared packed parse forest (SPPF) which is designed to reduce the space
required to represent multiple derivation trees. In an SPPF, nodes which have
the same tree below them are shared and nodes which correspond to different
derivations of the same substring from the same nonterminal are combined by
creating a packed node for each family of children. In order to create a cubic
Earley parser [18] and the worst-case cubic BRNGLR parser [19] we used a
binarised form of SPPF which contains additional intermediate nodes. As we

11

shall show, GLL recognisers are also worst-case cubic complexity and we can
also turn them in to worst-case cubic parsers using binarised SPPFs.

In binarised SPPFs there are nodes labelled with positions on the right hand
sides of grammar rules, as well as nodes labelled with grammar symbols. A
grammar slot is any position immediately before or after any symbol in any
alternate. We write grammar slots in the same way as LR(0) items are written,
so X ::= α · β is the grammar position immediately after the last symbol in
α. Then, a binarised SPPF has three types of SPPF nodes: symbol nodes,
with labels of the form (x, j, i) where x is a terminal, nonterminal or ε and
0 ≤ j ≤ i ≤ m; intermediate nodes, with labels of the form (t, j, i); and
packed nodes, with labels for the form (t, k), where 0 ≤ k ≤ m and t is a
grammar slot, X ::= α · β. We shall call (j, i) the extent (j, i are the left and
right extents respectively) of the SPPF symbol or intermediate node and k
the pivot of the packed node. The packed nodes allow the SPPF to represent
multiple derivation trees and the intermediate nodes ensure that the SPPF
has at worst-cubic size.

Terminal symbol nodes have no children. Nonterminal symbol nodes, (A, j, i),
have packed node children of the form (A ::= γ·, k) and intermediate nodes,
(t, j, i), have packed node children with labels of the form (t, k), where j ≤
k ≤ i. While symbol and intermediate nodes may have several children, a
packed node has one or two children, the right child is a symbol node (x, k, i),
and the left child (if it exists) is a symbol or intermediate node, (s, j, k). For
example, for the rule X ::= x1x2x3x4 we have SPPF fragment

x4, q, i

X, j, i

x3, p, q

x2, k, px1, j, k

d
d
d

@
@R

@
@R

�
�	

�
�	

�
�	

packed node

intermediate node �
 �	

�
 �	

�
 �	
�
 �	�
 �	

X ::= x1x2x3 · x4, j, q

X ::= x1x2 · x3x4, j, p

PPPPPq

Note: of course the SPPFs have unnecessary packed nodes in the (very com-
mon) case that a nonterminal does not generate any ambiguity. Once the parse
is complete the SPPF can be walked and the packed nodes which are ‘only
children’ can be removed. This can also be done as the SPFF is constructed
by only constructing packed nodes when a second family of children is added
to a node. In this case some care must be taken in the implementation because
the label of the potential first packed node will have to be stored in case it is
needed. We shall not consider this optimisation further in this paper.

12

Grammar slots can be used as the code labels. The label LXi
corresponding

to the alternate X ::= αi is euqivalent to the slot X ::= ·αi and the return
label RXl

is equivalent to Y ::= τX · µ, where this is the slot immediately
after the lth instance of X. Thus, throughout the remainder of this paper, we
shall take the grammar slots together with the labels LX , X ∈ N, and L0 to
be the set of code labels.

In each descriptor, as well as recording the GSS node, return label and in-
put position, we also need to record the current SPPF node. Just before the
descriptor is constructed a new SPPF is created and this is then recorded.
Thus parser descriptors are 4-tuples of the form (L, u, i, w) where w is an
SPPF node, and these are divided into disjoint sets of triples Ui. Descriptors
in which w is not the dummy node will be constructed as the result of a pop
action. The right child of the new node w will be the existing current SPPF
node, and hence will be available, but the left child will need to be retrieved.
For an ambiguous grammar there may be several left children so we record
each one as the label of an edge from the GSS node that will be popped. The
left child is retrieved from the labelled GSS edge when the source node of the
edge is popped. The label of the new SPPF node is the grammar slot which is
also the return label held in the GSS node. The GSS is thus a labelled directed
graph in which the edges are labelled with either an SPPF node or with the
‘dummy’ node $ and the nodes are labelled with a unique pair of the form
(A ::= α · β, i). We call i the index of the GSS node.

We can imagine a GLL parser as having a pointer into the grammar, X ::=
x1 . . . xq ↑ xq+1 . . . xn, and a current input pointer. The grammar pointers
point to slots, X ::= x1 . . . xq · xq+1 . . . xn. 1 At each point in its execution a
GLL parser has a current SPPF node, denoted by cN , corresponding to the
portion of the rule to the left of the current grammar pointer, x1 . . . xq.

As the pointer moves past xq+1 the parser creates a new node, w, as we have
discussed, with a packed node whose left child is cN and whose right child is
the node corresponding to xq+1. Then w becomes the new cN .

xq+1

d
�
�	

w

old cN �
 �	
X ::= . . . xq+1 · xq+2 . . .

X ::= . . . xq · xq+1 . . .

PPPPPq

If xq+1 is a terminal then a corresponding SPPF node (xq+1, cI , cI + 1), where
cI denotes the current input position, is found or constructed. This node is
denoted by cR. If xq+1 is a nonterminal then before moving past xq+1, the

1 Note, these are grammar positions thus if the grammar has repeated rules A ::=
a|a say then there are two distinct slots A ::= ·a.

13

grammar pointer moves to the start of the rules for xq+1 and descriptors are
created to allow for non-deterministic alternate choice.

If xq+1 is a nonterminal, a GSS node, v, labelled with the grammar return
position, X ::= x1 . . . xq+1 ·xq+2 . . . xn, is created and the edge from this node is
labelled with cN . At this point the construction of an SPPF subgraph rooted at
xq+1 begins and there is no current SPPF node. So the descriptors are padded
with a dummy node denoted by $. Similarly, if xq+1 = x1 there is no left
portion of the rule and the dummy node $ is used to label the corresponding
GSS edge.

When the parser finishes ‘matching’ xq+1 the GSS node v is popped and the
return position and SPPF node are recovered, allowing the next SPPF node to
be constructed. In detail there may be several return configurations associated
with a given pop action. For each edge (cU , z, u) in the GSS, where cU denotes
the current stack top, getNodeP () is called to construct an intermediate or
symbol node, w, with a packed node whose left child is the node z retrieved
from the GSS edge between cU and u and whose right child is the SPPF
node corresponding to xq+1. A descriptor of the form (Rxq+1 , u, cI , w) is then
created. When such a descriptor is removed from R execution continues with
the input pointer at position cI , the grammar pointer after xq+1, and cU := u
and cN := w.

3.2 Example

Consider the grammar, Γ1,

S ::= a S b | d | a d b

whose GLL parser is (note RS1 is S ::= aS.b)

read the input into I and set I[m] := $
create GSS node u0 := (L0, 0)
cI := 0; cU := u0
R := ∅; P := ∅
for 0 ≤ j ≤ m { Uj := ∅ }
goto LS

L0: if (R 6= ∅) { remove (L, u, i, w) from R
cU := u; cI := i; cN := w; goto L }

else if (there is an SPPF node (S, 0,m)) report success
else report failure

LS: if (I[cI] ∈ {a}) { add(LS1 , cU , cI , $); add(LS3 , cU , cI , $) }
if (I[cI] ∈ {d}) add(LS2 , cU , cI , $)

14

goto L0

LS1 : cN := getNodeT (a, cI); cI := cI + 1
if (I[cI] ∈ {a, d}) { cU := create(RS1 , cU , cI , cN); goto LS }
else goto L0

RS1 : if (I[cI] = b) cR := getNodeT (b, cI) else goto L0

cI := cI + 1; cN := getNodeP (S ::= aSb., cN , cR);
pop(cU , cI , cN); goto L0

LS2 : cR := getNodeT (d, cI)
cI := cI + 1; cN := getNodeP (S ::= d., cN , cR)
pop(cU , cI , cN); goto L0

LS3 : cN := getNodeT (a, cI); cI := cI + 1
if (I[cI] = d) cR := getNodeT (d, cI) else goto L0

cI := cI + 1; cN := getNodeP (S ::= ad.b, cN , cR)
if (I[cI] = b) cR := getNodeT (b, cI) else goto L0

cI := cI + 1; cN := getNodeP (S ::= adb., cN , cR)
pop(cU , cI , cN); goto L0

The base node, u0, of the GSS is never popped and its label is just a dummy
label. We have used L0 as the dummy label, it is equivalent to the slot S ′ ::= S·
in an ‘augmented’ form of the grammar. However, as this augmented rule is
never used there is no need to actually augment the grammar for a GLL parser.

3.3 The GSS, SPPF and descriptor handling functions

We define firstT(A) = {t ∈ T|∃α(A
∗⇒tα)} and followT(A) = {t ∈

T | ∃α, β(S
∗⇒αAtβ)}. If A is nullable we define first(A) = firstT(A)∪ {ε}

and if S
∗⇒αA we define follow(A) = followT(A)∪ {$}. Otherwise we de-

fine first(A) = firstT(A) and follow(A) = followT(A). We say that a
nonterminal A is LL(1) if (i) A ::= α, A ::= β imply first(α)∩first(β) = ∅,
and (ii) if A

∗⇒ε then first(A) ∩ follow(A) = ∅.

It is the nature of a GSS that a node u is often the top element of several
stacks; the GSS compactness is achieved from node reuse by sharing stack
tops. Thus when the top element is popped, by the function pop(), this can
result in several new stack tops, one for each child of u. New children can be
added to u and if this happens after the node has been popped, then the pop
has to be applied to the new child. It is not possible, in general, to order the
actions so that no pop is applied until after all the children have been added,
so this situation is covered in the create() function as follows. We keep a record
of the pop actions that have been performed so that they can be applied to
new children if necessary. We use a set P which contains pairs (u, z) for which
a pop action has been executed. Suppose that (L, j) is the label of u. When a

15

new edge, labelled w say, is added to u, for all (u, z) ∈ P , the parent node y
of w and z is found or created and the corresponding descriptor is added to
R. See [17] for further details.

The three functions add(), create() and pop(), mentioned above, which build
the GSS and create and store processes for subsequent execution are now
defined as follows. (Throughout α and β denote possibly empty strings of
terminals and nonterminals, x denotes a single terminal or nonterminal, and
L denotes a code label, i.e. a grammar slot or LX or L0.)

add(L, u, i, w) {
if ((L, u, w) 6∈ Ui { add (L, u, w) to Ui, add (L, u, i, w) to R } }

pop(u, i, z) {
if (u 6= u0) {

let (L, k) be the label of u
add (u, z) to P
for each edge (u,w, v) {

let y be the node returned by getNodeP (L,w, z)
add(L, v, i, y)) } } }

create(L, u, i, w) {
if there is not already a GSS node labelled (L, i) create one
let v be the GSS node labelled (L, i)
if there is not an edge from v to u labelled w {

create an edge from v to u labelled w
for all ((v, z) ∈ P) {

let y be the node returned by getNodeP (L,w, z)
add(L, u, h, y) where h is the right extent of z } }

return v }

We also use a function test(), which checks the current input symbol against
the current nonterminal and alternate, to provide a one-symbol lookahead
guard on descriptor creation.

test(y, A, α) {
if (y ∈ first(α)) or (ε ∈ first(α) and y ∈ follow(A)) { return true }
else { return false } }

The following functions build the SPPF.

getNodeT (x, i) {
if (x = ε) h := i else h := i+ 1
if there is no SPPF node labelled (x, i, h) create one

16

return the SPPF node labelled (x, i, h) }

getNodeP (X ::= α · β, w, z) {
if (α is a terminal or a non-nullable nontermial and if β 6= ε) return z
else {

if (β = ε) t := X else t := (X ::= α · β)
suppose that z has label (q, k, i)
if (w 6= $) {

suppose that w has label (s, j, k)
if there does not exist an SPPF node y labelled (t, j, i) create one
if y does not have a child labelled (X ::= α · β, k)

create one with left child w and right child z }
else {

if there does not exist an SPPF node y labelled (t, k, i) create one
if y does not have a child labelled (X ::= α · β, k)

create one with child z }
return y } }

4 Formal definition of the GLL approach

In this section we give the formal templates required to generate a GLL parser
from a context free grammar.

Each nonterminal instance on the right hand sides of the grammar rules is
given an instance number. We write Al to indicate the lth instance of nonter-
minal A. Each alternate of the grammar rule for a nonterminal is also given
an instance number. We write A ::= αk to indicate the kth alternate of the
grammar rule for A.

4.1 Dealing with grammar slots

We begin by defining the part of the algorithm which is generated for a gram-
mar slot A ::= α · β. We name the corresponding lines of the algorithm
code(A ::= α · β).

For a terminal a we define

code(A ::= α · aβ) = if(I[cI] = a) cR := getNodeT (a, cI) else goto L0

cI := cI + 1; cN := getNodeP (A ::= αa · β, cN , cR)

17

For a nonterminal instance Xl we define

code(A ::= α ·Xlβ) = if(test(I[cI], A,Xβ) {
cU := create(RXl

, cU , cI , cN); goto LX }
else goto L0

RXl
:

4.2 Dealing with alternates

For each production A ::= αk we define code(A ::= αk) as follows. Let αk =
x1x2 . . . xf , where each xp, 1 ≤ p ≤ f , is either a terminal or a nonterminal
instance of the form Xl.

If f = 0 then αk = ε and

code(A ::= ε) = cR := getNodeT (ε, cI); cN := getNodeP (A ::= ·, cN , cR)
pop(cU , cI , cN); goto L0

If f = 1 and x1 is a terminal then

code(A ::= x1) = cR := getNodeT (x1, cI); cI := cI + 1
cN := getNodeP (X ::= x1., cN , cR)
pop(cU , cI , cN); goto L0

If f ≥ 2 and x1 is a terminal then

code(A ::= αk) = cN := getNodeT (x1, cI); cI := cI + 1
code(A ::= x1 · x2 . . . xf)
. . .
code(A ::= x1 . . . xf−2 · xf−1xf)
code(A ::= x1 . . . xf−1 · xf)
pop(cU , cI , cN); goto L0

If f ≥ 1 and x1 is a nonterminal instance Xl then

code(A ::= αk) = cU := create(RXl
, cU , cI , cN); goto LX

RXl
: code(A ::= x1 · x2 . . . xf)
. . .
code(A ::= x1 . . . xf−2 · xf−1xf)
code(A ::= x1 . . . xf−1 · xf)
pop(cU , cI , cN); goto L0

18

4.3 Dealing with rules

Consider the grammar rule A ::= α1 | . . . | αp. We define code(A) as follows.

code(A) = if(test(I[cI], A, α1)) { add(LA1 , cU , cI , $) }
. . .
if(test(I[cI], A, αp)) { add(LAp , cU , cI , $) }
goto L0

LA1 : code(A ::= α1)
. . .

LAp : code(A ::= αp)

4.4 Building a GLL parser for a general CFG

We suppose that the nonterminals of the grammar Γ are A, . . . , X.
m is a constant integer whose value is the length of the input
I is a constant integer array of size m+ 1
cI is an integer
GSS is a digraph whose nodes are labelled with elements of the form (L, j)
and whose edges are labelled with SPPF nodes
cU is a GSS node, cN and cR are SPPF nodes
P is a set of GSS node, SPPF node pairs, used by create()
R is a set of parser descriptors
Ui corresponds to a set of parser descriptors with right extent i.

Then the GLL parsing algorithm for Γ is given by:

read the input into I and set I[m] := $
create GSS node u0 = (L0, 0)
cU := u0; cN := $; cI := 0
for 0 ≤ j ≤ m { Uj := ∅}
R := ∅; P := ∅
goto LS

L0: if R 6= ∅ {
remove a descriptor, (L, u, i, w) say, from R
cU := u; cN := w; cI := i; goto L }

else if (there exists an SPPF node labelled (S, 0,m)) { report success }
else { report failure }

LA: code(A)
. . .

LX : code(X)

19

4.5 A GLL parser for Γ0

read the input into I and set I[m] := $
create GSS node u0 := (L0, 0)
R := ∅; P := ∅
cU := u1; cN := $; cI := 0
for 0 ≤ j ≤ m { Uj := ∅ }
goto LS

L0: if (R 6= ∅) { remove (L, u, i, w) from R
cU := u; cI := i; cN := w; goto L }

else if (there exists and SPPF node labelled (S, 0,m)) report success
else report failure

LS: if (test(I[cI], S, ASd)) add(LS1 , cU , cI , $)
if (test(I[cI], S, aS)) add(LS2 , cU , cI , $)
if (test(I[cI], S, ε)) add(LS3 , cU , cI , $)
goto L0

LS1 : cU := create(RA1 , cU , cI , cN); goto LA

RA1 : if (test(I[cI], S, Sd)) {cU := create(RS1 , cU , cI , cN); goto LS}
else goto L0

RS1 : if(I[cI] = d) cR := getNodeT (d, cI) else goto L0

cI := cI + 1; cN := getNodeP (S ::= ASd·, cN , cR)
pop(cU , cI , cN); goto L0

LS2 : cN := getNodeT (a, cI); cI := cI + 1
if (test(I[cI], S, S) {cU := create(RS2 , cU , cI , cN); goto LS}
else goto L0

RS2 : pop(cU , cI , cN); goto L0

LS3 : cR := getNodeT (ε, cI); cN := getNodeT (S ::= ·, cN , cR)
pop(cU , cI , cN); goto L0

LA: if (test(I[cI], A, a)) add(LA1 , cU , cI , $); goto L0

LA1 : cR := getNodeT (a, cI); cI := cI + 1
cN := getNodeP (A ::= a·, cN , cR)
pop(cU , cI , cN); goto L0

4.6 Improvement for LL(1) nonterminals

In the case where a grammar is LL(1) a recursive descent parser will be deter-
ministic and, equivalently, a GLL algorithm will remove a descriptor from R
immediately after it is inserted. Even if the grammar is not LL(1), the GLL
algorithm does not need to create descriptors for the LL(1) nonterminals (see
Section 3.3 for the definition of an LL(1) nonterminal). The GLL recogniser
described in [17] uses a different template for code(A) for an LL(1) nontermi-
nal. In this template the calls to add(L, cU , cI , $) are replaced with the code

20

at L. This reduces the number of elements added to R but does not effect
the order of the algorithm. We can make the same modification to the parser
version presented in this paper, and we would expect production implementa-
tions to do so as this improves the runtime and space requirements for typical
grammars and input strings.

However, even without these improvements the parser is worst-case cubic, as
we shall show in the next section. We have presented the algorithm in its pure
form in this paper as fewer special cases make it easier for the reader to reason
about the algorithm’s behaviour.

5 The complexity of a GLL parser

Suppose that the input string has length m. We begin by looking at the main
algorithm flow as determined by the goto statements.

A GLL parser has a main loop which removes elements from R. After an ele-
ment is removed the parser jumps to a label L. Looking at the code templates
we see that the parser execution then continues linearly until either a goto
L0 statement is executed, beginning the next iteration of the main loop, or a
create() or pop() function call is made. In the former case, once the function
call returns, there is a jump to a label of the form LA, an m-independent
number of calls to the add() function, and then a jump to L0. In the latter
case, when the pop() call returns there is a jump to L0.

For a GLL recogniser it is reasonably easy to prove that the algorithm is worst-
case O(m3). The GSS nodes have unique labels of the form (R, i), 0 ≤ i ≤ m,
thus there are at most O(m) of them, each of which has at most O(m) out-
edges. Using an O(m2) array the GSS can be implemented so that lookup
executes in constant time with respect to m. The set P used by create()
can also be implemented to allow constant look-up time, thus both pop() and
create() execute in worst-case O(m) time. The recogniser descriptors have the
form (L, u, i) where u is a GSS node. Thus there are at most O(m2) elements
added to R and thus the complexity of the full GLL recogniser is at most
O(m3).

For a GLL parser we have to work harder to ensure that the algorithm is worst-
case cubic. As we have already discussed, we have to ‘binarise’ the SPPF. In
addition we have to create SPPF nodes at the correct points in the algorithm.
It would be natural to store the two current SPPF children in the descriptor
and then form their parent node w after the return call which has constructed
them. This is because it is the calling slot which determines the label of the
parent node. However, this may potentially create O(m3) descriptors. Thus

21

we have exploited the fact that the calling slot information can be included in
the corresponding GSS node to allow the pop() function to create the parent
node before it creates the descriptor, thus descriptors contain only one SPPF
node.

It is also necessary to ensure that getNodeP () and getNodeT () execute in
time independent of m. This can be done because, as we shall show, there are
at most O(m2) SPPF nodes with O(m) children, and each of these children
has out-degree at most two, thus, as all other SPPF nodes have at most two
children, and the SPPF can be represented using an O(m3) array. In fact there
are more efficient SPPF implementations which still ensure that the getNode
functions are constant time, but for the complexity proof we require only the
existence of some constant look-up time representation of at most cubic size.

The algorithm has been designed so that at any point if cU , the current GSS
stack-top node, has index j then the current SPPF node, cN , is either $ or
has extent (j, cI) or will not be used further before being reinitialised at L0.
In particular, for any descriptor (L, u, i, w) we have that either w = $ or w
has extent (j, i) where u has index j. This is certainly true at the start of
the algorithm. We consider the points in the algorithm where the values of
cI , cN and cU are changed. Looking at the code templates we see that cI and
cN are always assigned together in a manner that ensures that cN has extent
(j, cI). When cN is assigned a new value the value of its left extent, j, does
not change thus the relationship with cU is preserved. The value of cU is only
changed by a call to the create function. This function finds or creates a GSS
node, v, indexed with cI and labels an edge from v to cU with cN . This is
the only way in which parts of the GSS are constructed so we have that all
edges in the GSS are of the form (v, w, u) where if v has index i and u has
index j then w = $ or w has extent (j, i). After create returns, cU is indexed
by cI , the algorithm performs an action of the form goto LX, then constructs
descriptors (LXj

, cU , cI , $) and performs goto L0. Thus cN is not used after
cU is changed by create. Descriptors constructed at labels of the form LX

have SPPF node $. Descriptors constructed by the pop function have the form
(L, u, i, x) where there is a GSS edge (v, w, u). Looking at the pop function,
at the time of creation we have v = cU , i = cI and x has grandchildren w
and cN . Thus, if v has index k and u has index j then w has extent (j, k) and
cN has extent (k, i) so x has extent (j, i). If (v, z) ∈ P then looking again at
the pop function which creates these pairs, we have that w has left extent the
index, g say, of cU so x has extent (g, h). Thus, in both cases the relationship
above holds for cI , cU and cN when these values are reinitialised at L0. We
summarise this discussion in the following lemma.

Lemma 1 (a) For any descriptor (L, u, i, w) we have that either w = $ or w
has extent (j, i) where u has index j.
(b) For any element (u, z) ∈ P we have that z has left extent j where u has

22

index j.
(c) Given a GSS (v, w, u) edge from v to u labelled w, suppose that v has
label (R,A ::= αX · β, i) and u has label (R′, t, j). If α = ε then w = $, if
α = x, where x is a terminal, nonterminal or ε, then w has label (x, j, i), and
if |α| ≥ 2 then w is the intermediate node with label (A ::= α ·Xβ, j, i).

Theorem 2 For a GSS generated by a GLL parser for a CFG Γ on an input
string of length m, each node is the source node for at most O(m) edges, and
hence the GSS has at most O(m) nodes and O(m2) edges.

Proof The node u0 has no out-edges. All the other GSS nodes have unique
labels of the form (R,A ::= αX ·β, i) where R is the label associated with the
grammar slot A ::= αX · β and 0 ≤ i ≤ m. Thus the GSS has at most O(m)
nodes.

For a GSS edge (v, w, u) whose source node is v, target node is u and whose
label is the SPPF node w, the extent of w is (j, i) where j, i is the index of
u, v respectively. Thus there are at most O(m) edges whose source node is v
and hence the GSS has at most O(m2) edges.

Theorem 3 The SPPF generated by a GLL parser on an input string of
length m has at most O(m3) nodes and edges.

Proof The SPPF terminal symbol nodes have labels of the form (a, i, i+ 1)
and there are m of these. The SPPF ε nodes have labels (ε, i, i) and hence there
are at most m of these. The SPPF nonterminal symbol nodes have labels of
the form (A, j, i) and there are at most O(m2) of these.

The intermediate nodes have labels of the form (t, j, i), where there is a gram-
mar slot A ::= α · β, so there are at most O(m2) of these.

The packed nodes are children of a symbol or intermediate node and have
labels (t, k) where t is a grammar slot A ::= α · β. If the parent node is a
nonterminal it has label (A, j, i) and if it is an intermediate node it has label
(t, j, i), for some 0 ≤ j ≤ i ≤ m. So there are at most O(m) packed node
children of each parent and hence the SPPF has at most O(m3) packed nodes,
and at most O(m3) nodes in total.

The packed nodes have at most two children so there are at most O(m3) edges
whose source node is a packed node. The symbol and intermediate nodes have
at most O(m) children, all of which are packed nodes. Thus there are at most
O(m3) edges whose source node is symbol or intermediate node. This gives a
total of at most O(m3) edges.

Theorem 4 The runtime and space complexities for a GLL parser for a CFG
Γ are at most O(m3).

23

Proof Theorems 3 and 2 show that the space required for the SPPF and
GSS is at most O(m3).

We have seen, Lemma 1(a), that there are at most O(m2) descriptors and the
function add ensures that each one is added to R at most once. Thus the outer
loop of the algorithm, at L0, executes at most O(m2) times. We now consider
the execution of the algorithm for one descriptor (L, u, i, w).

If L is of the form LA then the algorithm calls add an m-independent number
of times, and then jumps back to L0. The Ui are equivalent to disjoint subsets
of R and are each of size O(m). Thus add() can be implemented to execute
the search in time independent of m.

If L is of the form LAl
then the algorithm may make several calls to the

getNode functions, but the number of these calls is bounded by the length of
the grammar rule. The SPPF can be implemented to permit constant search
time so these calls do not add to the complexity of the algorithm. Eventually
the algorithm will get to either a jump to L0 or a call to pop or create. Since
a GSS node has at most O(m) out edges and P has at most O(m) elements
corresponding to a given node v, both of these functions have complexity at
most O(m). When a pop function returns the algorithm immediately jumps to
L0. When create returns the algorithm jumps to a label of the form LX and
then jumps to L0 after an m-independent number of call to add.

If L is of the form LRk
the algorithm behaves in the same way as when L is

of the form LAl
. Thus we have that the complexity of the algorithm between

jumps to L0 is worst-case O(m) and hence the overall complexity of a GLL
algorithm on worst-case grammars is O(m3).

6 Implementation and experimental results

In this section we look at some details of our implementations and give perfor-
mance statistics for both highly ambiguous ‘pathological’ grammars and for
the ANSI-C standard grammar. We shall show that parsing of long strings in
worst-case grammars is practical on current computer systems, and the indi-
cations are that parsing of conventional near-deterministic grammars can be
made competitive with traditional techniques.

6.1 Implementing dynamic goto

The parser and recogniser algorithms presented here and in [17] use a ‘dy-
namic’ goto statement in the sense that labels are assigned to variables, and

24

the construction goto L is used where L is variable containing a label. This
is done to allow descriptors to contain control flow contexts.

In assembly language, direct implementation is easy since the address of a
piece of code is a first class object, but only a few high level programming lan-
guages provide variables that can hold labels — for instance early FORTRAN
compilers supported the assigned GO TO statement (although it was deleted
from FORTRAN-95). More interestingly, the GNU C99 and C++ compilers
provide the &&label operator which returns a void* pointer representing the
address of the labelled code, and allows constructions such as goto *ptr so
that control can be transferred to the value of a void pointer acting as la-
bel variable. However, use of these extension features is rightly deprecated by
those interested in safety and security of code. Of course, some languages such
as Java do not provide support for even static goto statements.

A more structured alternative may be to encode the parser fragments as sep-
arate functions and use function pointers. However, function call and return
represents a potentially significant overhead at runtime given that many parser
fragments are extremely short. In Java implementations, encoding the frag-
ments as member functions and using virtual dispatch may be faster than using
state-based dispatch. We shall explore these issues in a future engineering-
oriented paper.

As we mentioned above, our preferred technique is to establish an enumeration
corresponding to the labels within the parser, and effectively use a state-
machine based approach to dispatch the fragments. In effect, we associate a
unique integer with each label and use that integer in the descriptors.

In C, then, the following set of fragments with assumed start state L0:

L0: action goto L1;
L1: action goto L2;
L2: action goto L0;

is written as

enum states {L0, L1, L2};

enum states state=L0;

while(1) switch(state) {

case L0: /*action*/ state = L1; break;

case L1: /*action*/ state = L2; break;

case L2: /*action*/ state = L0; break; }

There is an overhead here compared to the assembler level implementation:
at the end of each fragment we load the state variable with the next fragment
to be executed, and then break out of the switch, loop back and re-evaluate

25

the state variable. The implementer may wish to use static goto statements
if they are available for the static jumps.

6.2 Implementing R

Elements are only added toR once so the setR can be implemented efficiently
as a stack or as a queue. As written in the algorithm R is a set so there is
no specified order in which its elements are processed. If, as we have done,
R is implemented as a stack then the effect will be a depth-first parse trace,
modulo the fact that left recursive calls are interrupted at the start of the
second iteration. Thus, the flow of the algorithm will be essentially that of a
recursive descent parser.

On the other hand, R could be implemented as a set of subsets Rj which
contain the elements of the form (L, u, j, w). It is easy to see that if R doesn’t
contain any elements of the form (L, u, k, w) with k ≤ j then no further
elements of this form will be created. Thus, if the elements of Rj are processed
before any of those in Rj+1, 0 ≤ j < m, then the sets Uj will be constructed
in the corresponding order allowing Uj to be deleted once Rk = ∅, k ≤ j.

6.3 Implementing queries

Function create(L, u, i, w) contains the conditional:

if there is not already a GSS node labelled (L, i) . . .

Similarly, function getNodeT (x, i) contains the clause

if there is no SPPF node labelled (x, i, h) . . .

and function getNodeP (X ::= α · β, z, w)

if there does not exist an SPPF node y labelled (t, j, i) . . .

We could implement these queries by linearly searching the SPPF or GSS
structures, but of course they are worst-case cubic and quadratic, respectively,
in the length of the input, so a linear search could require quadratic or cubic
time. To preserve the worst-case cubic execution time of the GLL algorithm,
we need to be able to answer queries in constant time.

A simple solution is to maintain arrays SPPFindex and GSSindex of pointers
to nodes, with each possible SPPF or GSS node having its own unique cell in

26

the corresponding index array. If the node has not yet been created, then the
cell is NULL. If it has, then the cell points to the node.

In the case of the SPPF, a label comprises a grammar slot and three indices
ranging over 0 . . .m so we need a four dimensional array of such pointers.
This ensures the cubic time complexity of the algorithm but, as SPPFindex
is always of cubic size, it implies cubic space for all cases, independent of the
size of the SPPF itself. This is impractical for strings of lengths in the tens of
thousands. Even the GSS size is always quadratic in the length of the input.
For real languages the level of ambiguity is low and the size of the SPPF and
GSS will be much closer to linear in the size of the input.

A straightforward engineering solution is to not allocate full arrays but instead
to pre-allocate one dimension and then allocate subsidiary vectors on demand.
For a two-dimensional array of, say, integers we initially allocate only an array
P of pointers to one dimensional arrays of integers. When accessing element
[i, j] we first check to see whether P [i] is NULL. If it is, then we allocate an
array corresponding to the missing row, before accessing element P [i][j]. In
worst-case this does not save space, but when we have SPPF’s which are much
less than cubic sized, significant savings can be made whilst maintaining the
unit-time lookup property. For a full discussion of this approach see [10]. The
results reported in the next section use this technique to reduce the size of
SPPFindex.

6.4 Performance whilst parsing a highly ambiguous language

The following grammar, Γ2,

S ::= b | S S | S S S

is highly ambiguous; standard GLR parsers for Γ2 are O(m4). In [19] we re-
ported that the GLR version of Bison could not parse b20 and even our effi-
cient RNGLR algorithm requires 884.141 CPU seconds to parse b100, whilst
the binary-forest BRNGLR algorithm requires only 1.232 CPU seconds. The
measurements in that paper were made on a 1.6GHz Pentium-M (in full power
mode) with 256 MByte of memory running Windows-XP. The code was com-
piled using the Intel compiler bundled with the Borland 5.01 C++ develop-
ment suite, optimised for speed.

We have constructed a GLL recogniser and a GLL parser for Γ2 by hand.
On the same system used for experiments in [19] with input string b100, the
recogniser completed in 1.182 CPU seconds, and the parser in 3.034 CPU sec-
onds. These times are commensurate with BRNGLR, although a little slower.
However, there are subtle effects that we have not yet fully investigated. For

27

Table 1
GLL data structure statistics for Γ2

m GSS GSS |U | max(|Ui|) SPPF SPPF SPPF

nodes edges nonpacked packed edges

nodes nodes

50 247 18,189 31,372 1,699 2,550 61,300 183,850

100 497 73,864 125,247 3,449 10,100 495,100 1,485,200

150 747 167,039 281,622 5,199 22,650 1,676,400 5,029,050

200 997 297,714 500,497 6,949 40,200 3,980,200 11,940,400

250 1,247 465,889 781,872 8,699 62,750 7,781,500 23,344,250

300 1,497 671,564 1,125,747 10,449 90,300 13,455,300 40,365,600

350 1,747 914,739 1,532,122 12,199 122,850 21,376,600 64,129,450

400 1,997 1,195,414 2,000,997 13,949 160,400 31,920,400 95,760,800

450 2,247 1,513,589 2,532,372 15,699 202,950 45,461,700 136,384,650

500 2,497 1,869,264 3,126,247 17,449 250,500 62,375,500 187,126,000

instance, using an experimental EBNF GLL template, a GLL parser for the
EBNF grammar Γ′2

S ::= b | S S [S]

(which is, perhaps, the ‘natural’ EBNF version of Γ2) parses b100 in only 0.941
CPU seconds.

To demonstrate the practicality of GLL on even such highly ambiguous gram-
mars, we ran the parser and recogniser for Γ2 on input strings b50, b100, . . . b500.
For convenience we used a faster machine with an Intel Xeon E5450 processor
running at 3GHz under openSuse 11.1 (64-bit mode) with 24GByte of physical
memory. On this machine, b100 is parsed in 0.746 CPU seconds for the fully
optimised version — a factor four speed up over the Centrino based system
used in the previous experiments.

Figure 6.4 shows the results for standard compilation with g++ and fully opti-
mised for speed compilation using the -O3 option. Each data point represents
the mean of five separate runs. From top to bottom (slowest to fastest) the
curves represent the mean run times for the unoptimised parser, the opti-
mised parser, the unoptimised recogniser and the optimised recogniser. All
four curves are cubic to a high level of confidence with R2 values differing
from one only in the fourth decimal place.

The sizes of the GSS and SPPF structures for the GLL parser for Γ2 are shown
in Table 1.

28

y = 9E-07x

3

+ 2E-05x

2

- 0.0113x

R² = 0.9998

y = 2E-06x

3

- 8E-05x

2

+ 0.0026x

R² = 0.9999

y = 2E-06x

3

- 9E-05x

2

+ 0.003x

R² = 1

100

120

140

160

180

200

220

C

P

U

s

e

c

o

n

d

s

GLL performance on Gamma2

y = 8E-07x

3

+ 2E-05x

2

- 0.0103x

R² = 0.9996

0

20

40

60

80

0 50 100 150 200 250 300 350 400 450 500

Input string length, n

Fig. 1. Cubic performance on Γ2

6.5 Performance on the standard ANSI-C grammar

For simplicity, the hand written recognisers and parsers used in the previous
section do not make full use of potential space saving techniques and so are
rather demanding of virtual memory.

As we have discussed in Section 3.1, extending recognition algorithms to
parsers is a non-trivial process. For strings consisting of several thousand
tokens and grammars such as ANSI-C where the number of grammar slots
(which forms the constant of proportionality) is in the hundreds, pre-allocation
of cubic space for the SPPF is impractical. We can deal with this, as above,
by allocating one or two dimensions of the array on demand. Alternatively,
our production GLL parser generator, ART, uses a more flexible approach in
which the full array space is divided into a large number, K, of sub-spaces.
Enough memory is allocated to hold just one of these sub-spaces, and the
element at location v in the full array is then mapped to location (v mod-
ulo K). Elements are chained together into lists, just as they would be in a
hash table using open addressing; in fact this approach is equivalent to using a
hash table except that the hash function guarantees that there is a fixed upper

29

Table 2
Parsing ANSI-C

Input length GSS nodes GSS edges |U | CPU secs

4,291 60,638 219,263 447,962 0.248

26,551 417,204 1,510,486 3,122,639 1.802

36,827 564,437 2,042,843 4,178,346 2.492

bound to the length of each list, and so the worst-case cubic performance is
not compromised. For applications in which good average case (as opposed to
best possible worst-case) performance is desired, a more conventional hashing
function may be used to ensure best possible utilisation of the sub-array lists.

Table 2 shows the results of running a GLL parser for the ANSI-C 89 gram-
mar implemented using this approach. The input strings are the source code
for bool, a Quine-McCluskey Boolean minimiser (4,291 tokens), the source
code for RDP, a recursive descent parser generator (26,551 tokens), and the
source code for GTB, our Grammar Tool Box (36,827 tokens). The input has
already been tokenised so no lexical analysis needed to be performed. For long
strings, we achieve a parse rates of around 14,500 tokens per second. Stan-
dard g++ compiles optimised C++ on the same system at around 8,500 tokens
per second. Let us assume for the sake of argument that the runtime of the
LALR parser used within g++ is negligible, then replacing it with our GLL
based parser would result in compilation performance of around 5,400 tokens
per second. This shows that using generalised parsers based on the GLL algo-
rithm is practical, even for standard programming languages whose syntax is
designed for near-deterministic parsing.

7 Conclusions and final remarks

In [17] we showed that GLL recognisers are straightforward to construct and
reported on a hand constructed recogniser for the standard ANSI-C grammar:
the experimental data reported shows that the GLL algorithm is practical. In
this paper we have shown how to construct, in a similarly easy manner, a
worst-case cubic GLL parser for any context free grammar. GLL parsers have
the desirable property of recursive descent parsers that the parser structure
matches the grammar structure.

The GLL algorithm can be modified in a straightforward way so that it does
not require parallel process construction in the parts of the grammar that are
LL(1). In addition, there are opportunities to implement the data structures
in ways that lower the algorithm ‘constants of proportionality’, giving better
average space and runtime performance particularly in the typical case of a

30

grammar with little or no ambiguity. These implementation issues will be
discussed in a future paper.

References

[1] JAVACC home page. http://javacc.dev.java.net, 2000.

[2] Gnu Bison home page. http://www.gnu.org/software/bison, 2003.

[3] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation and
Compiling, volume 1 — Parsing of Series in Automatic Computation. Prentice-
Hall, 1972.

[4] John Aycock and Nigel Horspool. Faster generalised LR parsing. In Compiler
Construction, 8th Intnl. Conf, CC’99, volume 1575 of Lecture Notes in
Computer Science, pages 32 – 46. Springer-Verlag, 1999.

[5] Peter T. Breuer and Jonathan P. Bowen. A PREttier Compiler-Compiler:
Generating higher-order parsers in C. Software Practice and Experience,
25(11):1263–1297, November 1995.

[6] J Earley. An efficient context-free parsing algorithm. Communications of the
ACM, 13(2):94–102, February 1970.

[7] Bryan Ford. Packrat parsing:: simple, powerful, lazy, linear time, functional
pearl. SIGPLAN Not., 37(9):36–47, 2002.

[8] Bryan Ford. Parsing expression grammars: a recognition-based syntactic
foundation. SIGPLAN Not., 39(1):111–122, 2004.

[9] Adrian Johnstone and Elizabeth Scott. Generalised recursive descent parsing
and follow determinism. In Kai Koskimies, editor, Proc. 7th Intnl. Conf.
Compiler Construction (CC’98), Lecture Notes in Computer Science 1383,
pages 16–30, Berlin, 1998. Springer.

[10] Adrian Johnstone and Elizabeth Scott. Modelling GLL parser implementations.
In M.van den Brand B.Malloy, S.Staab, editor, SLE 2010, volume 6563 of
Lecture Notes in Computer Science, pages 42–61. Springer-Verlag, 2011.

[11] Donald E Knuth. On the translation of languages from left to right. Information
and Control, 8(6):607–639, 1965.

[12] Rahman Nozohoor-Farshi. GLR parsing for ε-grammars. In Masaru Tomita,
editor, Generalized LR Parsing, pages 60–75. Kluwer Academic Publishers, The
Netherlands, 1991.

[13] Terence Parr. ANTLR home page. http://www.antlr.org.

[14] Terence John Parr. Language translation using PCCTS and C++. Automata
Publishing Company, 1996.

31

[15] Elizabeth Scott and Adrian Johnstone. Generalised bottom up parsers with
reduced stack activity. The Computer Journal, 48(5):565–587, 2005.

[16] Elizabeth Scott and Adrian Johnstone. Right nulled GLR parsers. ACM
Transactions on Programming Languages and Systems, 28(4):577–618, July
2006.

[17] Elizabeth Scott and Adrian Johnstone. GLL parsing. In Jurgen Vinju and
Torbjorn Ekman, editors, LDTA’09 9th Workshop on Language Descriptions,
Tools and Applications, also in Electronic Notes in Theoretical Computer
Science, 2009.

[18] Elizabeth Scott and Adrian Johnstone. Recognition is not parsing – SPPF-style
parsing from cubic recognisers. Science of Computer Programming, 75:55–70,
2010.

[19] Elizabeth Scott, Adrian Johnstone, and Giorgios Economopoulos. BRNGLR:
a cubic Tomita style GLR parsing algorithm. Acta Informatica, 44:427–461,
2007.

[20] Masaru Tomita. Efficient parsing for natural language. Kluwer Academic
Publishers, Boston, 1986.

[21] E Ukkonen. Upper bounds on the size of LR(k) parsers. Inform, Proc. Letters,
20:99–103, 1985.

[22] M.G.J. van den Brand, J. Heering, P. Klint, and P.A. Olivier. Compiling
language definitions: the ASF+SDF compiler. ACM Transactions on
Programming Languages and Systems, 24(4):334–368, 2002.

[23] Eelco Visser. Program transformation with Stratego/XT: rules, strategies,
tools, and systems in StrategoXT-0.9. In C.Lengauer et. al, editor, Domain-
Specific Program Generation, volume 3016 of Lecture Notes in Computer
Science, pages 216–238. Springer-Verlag, Berlin, June 2004.

[24] Albrecht Wöß, Markus Löberbauer, and Hanspeter Mössenböck. LL(1) conflict
resolution in a recursive descent compiler generator. In G.Goos, J. Hartmanis,
and J. van Leeuwen, editors, Modular languages (Joint Modular Languages
Conference 2003), volume 2789 of Lecture Notes in Computer Science, pages
192–201. Springer–Verlag, 2003.

[25] D H Younger. Recognition of context-free languages in time n3. Inform. Control,
10(2):189–208, February 1967.

32

