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Abstract 

Human conduct is often guided by conformist preferences, with “conformity” being the act 

of changing one’s behaviour to match the purported beliefs of others. Informal norms 

regulating human behaviour play a crucial role in directing people’s expectations, thereby 

favouring uniformity of behaviour. This thesis develops such insights by exploring the 

conditions for different categories of norms to be in operation. The first essay [Chapter1] 

considers the motive that drives players when facing a problem of coordinating one 

another’s actions for their mutual benefit. Chapter 1 suggests that for a “convention” (i.e.: 

a solution to a coordination game with multiple equilibria) to be in operation, conformity is 

dependent on the states one is aware of, that is, the specifications of the contingencies that 

each player perceives in the context of a given game. The second essay [Chapter2] focuses 

on the motivation that makes people comply with default rules of behaviour when facing a 

social dilemma (i.e.: a “mixed-motive” game). Chapter 2 suggests that individuals may feel 

guilt at violating a norm, and this painful emotion generates conformity under precisely 

stated conditions. The essay models a “norm” as a rule that dictates a set of strategy 

profiles: it is assumed that players hold a conjecture about the active player’s norm-

complying actions; a norm-driven decision maker is then modelled as a player with 

conformist preferences whose utility function is a linear combination of material and 

psychological payoffs. The third essay [Chapter3] provides an experimental test for 

conformist motivations by investigating the extent to which the peers’ behaviour (as 

presumed by other players) serves the individual as a means to guiding her actions. 

Specifically, the experiment of Chapter 3 is designed to measure the impact of the beliefs of 

players in the same role on behaviour; the data show evidence of conformity being present. 
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Introduction  

Surveys from various disciplines (including sociology, cognitive psychology 

and neuroscience) support the view that human conduct is often guided by 

conformist preferences – which thrive on behavioural expectations within a 

society or group – with “conformity” being the act of changing one‟s 

behaviour to match the purported beliefs of others. Informal norms regulating 

human behaviour play a crucial role in directing people‟s expectations, 

thereby favouring uniformity of behaviour within a given social group. By 

serving as equilibrium selection devices, norms reduce transaction costs in 

economic interactions that present multiple equilibria or, in some cases, 

promote efficient solutions. The present thesis develops these insights, in 

order to improve our understanding of such norms by explaining the 

underpinning conditions for different categories of norms to be in operation 

among players with conformist motivations. Indeed, the literature proposes 

various mechanisms for uniform social behaviour – which in turn relate to a 

variety of conformist preferences – including a pure coordination motive, 

social disproval and the internalization of absolute norms of conduct. 

The first essay [Chapter 1] considers the first mechanism or, precisely, 

the motive that drives players when facing a problem of coordinating one 

another‟s actions for their mutual benefit. Chapter 1 suggests that for a 

“convention” (i.e.: a certain solution to a coordination game with multiple 

equilibria) to be in operation, conformity is dependent on the states one is 

aware of, that is, the specifications of the contingencies that each player 

perceives in the context of a given game (e.g.: contextual cues). The essay 

proposes a theoretical framework for the player‟s own perception of the game 

so as to show that a convention is in place whenever members of a social 
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group use, and expect others to use, similar conceptual schemes: this is 

done by implementing a system of multiple state spaces ordered by 

expressive power, and a notion of the players‟ (un)awareness, in such a way 

as to provide a precise link between the players‟ perception of the game and 

the associated strategy labels. In brief, conventions are devised as the result 

of a four-step procedure: (i) perception; (ii) labelling; (iii) salience 

comparison; (iv) expected utility maximization.  

The second essay [Chapter 2] focuses on the second mechanism or, 

precisely, the motivation that makes people comply with default rules of 

behaviour when facing a social dilemma (i.e.: a “mixed-motive” game1). 

Chapter 2 suggests that individuals may feel guilt at violating a norm, and this 

painful emotion generates conformity under precisely stated conditions. The 

essay models a “norm” as a rule that dictates a set of strategy profiles: it is 

assumed that players, conditional on each history of an extensive form game, 

hold a conjecture about the active player‟s norm-complying actions available 

at that history; a norm-driven decision maker is then modelled as a player 

                                  

1
 Following Thomas Schelling‟s ([1960], Ch. 4) classification of games, strategic interactions 

can be categorized as “pure motive” and “mixed motive” games. The former are situations in 

which the players‟ preferences are rank-correlated with respect to outcomes, as in the 

games of pure coordination (positive correlation) or in the games of pure conflict, also known 

as zero-sum games (negative correlation). On the other hand, mixed-motive games present 

a non correlated structure of preferences, due to their mix of coordination opportunities and 

conflicting motivations: as Schelling puts it, «“[m]ixed-motive” refers not, of course, to an 

individual‟s lack of clarity about his own preferences but rather to the ambivalence of his 

relation to the other player – the mixture of mutual dependence and conflict, of partnership 

and competition» (p. 89). 
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with conformist preferences, whose utility function is a linear combination of 

her material payoff and a component representing the social cost of 

deviating. A “social norm” is said to exist and to be followed by a population if 

players have conditionally conformist preferences, hold correct beliefs, and 

are sensitive enough to the social cost of deviating. (The aforementioned 

third mechanism for uniform social behaviour, that is, the case of absolute 

norms of conduct is here considered as the feature of a special family of 

norm-driven agents, i.e.: those with unconditional preferences for conformity 

to a norm, which therefore constitutes a “moral norm”.) 

The third essay [Chapter 3] provides an experimental test for 

conformist motivations (in mixed-motive games) by investigating the extent to 

which the peers‟ presumed behaviour serves the individual as a means to 

guiding her own actions. The first hypothesis is that the experimenter should 

be able to predict a conformist player‟s behaviour from the conformist‟s 

guess about the behaviour of other players in the same role. Now, it should 

be noted that a false consensus effect hypothesis will predict an analogous 

correlation between beliefs and behaviour (although with an inverse causal 

relationship); given that, in order to disentangle consensus from conformity, 

one of the experimental treatments of Chapter 3 introduces an exogenous 

variation in beliefs by showing subjects some aggregate information about 

the others‟ beliefs. Indeed, if the experimenter can predict a subject‟s choice 

from the subject‟s guess (about the behaviour of other participants in the 

same role) in conjunction with the subsequently transmitted information about 

others‟ guesses, then one has effectively disentangled consensus from 

conformity and provided evidence in support of a conformity hypothesis. In 

fact, if false consensus is present, then there will be a causal relationship 

from behaviour to beliefs, and thus there will not be an effect of providing 

exogenous information; but if, on the other hand, conformity is present (in 

which case the causality runs from beliefs to behaviour), one will find that 
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exogenously varying beliefs has an impact on behaviour. More specifically, 

the experiment measures the impact of the beliefs of players in the same 

role, on behaviour, in a Trust Game: in brief, the data show that the 

transmitted information can influence one‟s behaviour, with the strength of 

the impact depending on one‟s prior beliefs; therefore, the data show 

evidence of conformity being present. 

Before proceeding, I shall stress that the rule-based approach to 

conformity here pursued does considerably differ from the approach followed 

in notable alternative accounts of conformity, such as the models of 

informational cascades (e.g.: Banerjee [1992], Bikhchandani et al. [1992]) or 

esteem-based models (e.g.: Bernheim [1994]), in a sense that – while those 

models simply assume an agent to care about the others‟ information or 

esteem – there the others‟ actions do not directly enter each agent‟s utility 

function. Conversely, the present thesis focuses on conformity in situations 

where an individual‟s payoff directly depends on what the others do; in fact, 

although the present definitions and conditions for conventions or social 

norms to apply differ from one another (i.e.: “conventions” apply to 

coordination games, while “social norms” apply to mixed-motive games), in 

both cases the essence of such unwritten rules is defined by the fact that 

both imply belief-based solutions to problems of strategic interdependence. 
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I. A Theory of Conformity to Conventions with 

Incompletely-Aware Players  
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I.1. Introduction 

The “theory of convention” found its first comprehensive formulation within 

David Hume's theory of justice, elaborated in his Treatise of Human Nature 

(Hume [1740]). Then, the first game-theoretic analysis of conventions was 

developed by David Lewis in his Convention: A Philosophical Study (Lewis 

[1969]): this defined conventions as behavioural regularities satisfying some 

special conditions and inducing a “pure coordination equilibrium” (i.e.: a 

regular pattern of behaviour that is a strict Nash equilibrium in a coordination 

game with two or more strict Nash equilibria).2 Note that Lewis acknowledged 

his debt to Thomas Schelling – from whom he had borrowed the idea of 

modelling conventions as equilibria of coordination games – according to 

Schelling [1960] in fact, in solving coordination problems, we are often driven 

by apparently insignificant factors that make one of the feasible strategies 

“salient”. Also, it should be recalled that, according to the philosophical 

literature (Bicchieri [2006]), a convention is simply a descriptive norm which 

does not imply a commitment to compliance, but is useful since it coordinates 

people‟s expectations by acting as a signal that eases interaction; as Ken 

Binmore [2007] points out, in the Driving Game nobody cares which 

convention we use,3 there is no reason why either of the equilibria should be 

preferred to the other, yet «[i]n practice, we solve many coordination games 

                                  

2
 For recent reconstructions of Lewis‟ philosophical theory of convention, see: Cubitt and 

Sugden [2003]; Sillari [2005]. 

3
 The Driving Game is as follows: two players have to choose the side of the road upon 

which to drive: if they coordinate on either side, both get an equal payoff; if they do not 

coordinate, neither player receives anything. 
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by appealing to focal points that are determined by the context in which a 

game occurs. For example, people drive on the left in Japan and on the right 

in the United States. Such conventions are usually the result of historical 

accidents, but not always» (Binmore [2007], p. 268).  

The starting point of this essay is that certain features of the game as 

experienced by the player – which would not explicitly enter the formal 

description of a standard game  – can effectively make some strategy profiles 

focal. Therefore, the core of the problem is to provide a framework for the 

player‟s own perception of the strategic situation so as to show that 

coordination is possible because “normal” players use, and expect others to 

use, similar conceptual schemes. Thus, here it is suggested that, for a 

convention to be in operation, conformity is dependent on the states 

perceived by the agents, that is, the specifications of the contingencies that 

each player perceives in the context of a given decision problem (e.g.: 

contextual cues). In this respect, I shall build on Heifetz et al.‟s [2006] model 

of unawareness so as to account for multiple descriptions of the world: as in 

their model, here a system of multiple, ordered state spaces and surjective 

projections (from each state space to every space that is weakly “less 

expressive”) is adopted: the result is a powerful framework allowing for the 

players to be unaware of some features of the game as captured by 

alternative state spaces. 

Then, building on Sugden‟s [1995] and Casajus‟ [2000] approaches, 

the present theory defines the players‟ own framing system in such a way as 

to allow for the possibility that both stochastic and non-stochastic procedures 

may determine the labelling of strategies. Yet, departing from Sugden‟s and 

Casajus‟ models, here each player‟s labelling of strategies depends directly 

on her perception of the game, that is, on the states she is aware of: 

therefore, this study provides a precise link between a player‟s information 

function and her labelled strategies. Also, this study departs from the existing 
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literature in that it introduces a binary relation (i.e.: a complete preordering) 

on each set of strategy labels, thereby allowing the salience comparison of 

pairs of labelled strategies. Further, the introduction of two requirements 

capturing the notions of symmetry and salience has the effect of restricting 

the set of a player‟s mixed strategies. It follows that conventions arise as the 

result of a four-step procedure: (i) perception; (ii) labelling; (iii) salience 

comparison; (iv) expected utility maximization. 

Before proceeding, a quick note on methodology: this essay aims at 

explaining, in a static perspective, why conventions occur. While many 

commentators suggest alternative analyses of conventions (or, more 

generally, of coordination problems) based on evolutionary dynamics or on 

bounded rationality (i.e.: Level-k models), such approaches are not explored 

here as the present theory revolves around one-shot games played by (fully) 

rational utility-maximizers. In this respect, this model may be considered part 

of a body of literature sometimes referred to as “team-reasoning”. 

The remainder of the study is organized in this manner: I.2. introduces 

some general notation and concepts on strategic form games, coordination, 

and unawareness; I.3. proposes a game, and reviews some alternative 

analyses; I.4. formally expounds the model; I.5. discusses an equilibrium 

solution, and I.6. concludes. 

  

I.2. Preliminaries 

I.2.a. Notation on strategic form games 

A strategic form game is formalized by a structure  𝑁,  𝑆𝑖 𝑖∈𝑁 ,  𝑢𝑖 𝑖∈𝑁 , where: 

𝑁 =  1, … , 𝑛  is the set of players, 𝑆𝑖  is the set of player 𝑖’s pure strategies, 𝑢𝑖  

is 𝑖’s payoff function. 
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Each player 𝑖 has a finite set 𝑆𝑖  of pure strategies, with generic 

element 𝑠𝑖,𝑎  (the first subscript indicating a certain player, the second 

subscript a certain strategy, with 𝑎 ∈  1, … , 𝑚  for a given 𝑚 ∈ ℤ+), where 

𝑠𝑖,𝑎 ∈ 𝑆𝑖 =  𝑠𝑖,1, 𝑠𝑖,2, … , 𝑠𝑖,𝑚 ; in order not to make the notation overly 

cumbersome, in what follows I shall dispense with the comma that separates 

the two subscripts and denote a generic strategy-index simply by 𝑠𝑖𝑎 . Note 

that, throughout this essay, each of a player‟s pure strategies is assigned an 

index which uniquely identifies that strategy: this means that, for example, in 

the aforementioned Driving Game each player 𝑖 has a finite set 𝑆𝑖  of pure 

strategies with generic element 𝑠𝑖𝑎 , where 𝑠𝑖𝑎 ∈ 𝑆𝑖 =  𝑠𝑖1, 𝑠𝑖2  for ∀ 𝑖 ∈ 𝑁 =

 1,2 ; it should be further stressed that the English words “left” and “right” do 

not enter the formal structure of the game. Given that, a strategy profile 𝑠 is a 

tuple of strategies, with one strategy for each player of the game: let 𝑆 =

 𝑆𝑖𝑖∈𝑁  be the set of strategy profiles; similarly define 𝑆−𝑖 =  𝑆𝑗𝑗≠𝑖  for players 

𝑗 other than 𝑖. 

The material payoffs of players‟ strategies (as well as the players‟ 

preferences) are described by functions 𝑢𝑖 : S → ℝ, with 𝑖 ∈ 𝑁; the payoffs to 

player 𝑖 are therefore written as 𝑢𝑖 𝑠 ≡ 𝑢𝑖   𝑠𝑗𝑎  
𝑗 ∈𝑁

  for ∀ 𝑠𝑗𝑎 ∈ 𝑆𝑗 , where 

𝑠 =  𝑠𝑗𝑎  
𝑗 ∈𝑁

 denotes a strategy profile.4 To keep the exposition simple, I shall 

often focus on 2-player games, although the analysis applies equally well to 

any n-player normal form game: in the 2-player case, it is common to put the 

strategy of Player 1 first so that the payoffs to player 𝑖, with 𝑖 ∈ 𝑁 (𝑁 =  1,2 ), 

are written as 𝑢𝑖 𝑠1𝑎 , 𝑠2𝑎   for ∀ 𝑠1𝑎 ∈ 𝑆1, ∀ 𝑠2𝑎 ∈ 𝑆2; with respect to the order 

                                  

4
 The lower subscript 𝑗 ∈ 𝑁 indicates that 𝑠 contains one element 𝑠𝑗𝑎  for every 𝑗 ∈ 𝑁. 
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of the players‟ strategies when writing a strategy profile, the notation adopted 

here removes any ambiguity since every strategy-index belongs to exactly 

one player (e.g.:  𝑠1𝑎 , 𝑠2𝑎   indicates the same strategy profile as  𝑠2𝑎 , 𝑠1𝑎 ), 

hence the order of the players‟ actions does not matter since the strategies 

contained in each player‟s strategy set have different indices, that is, 

𝑆𝑖 ∩ 𝑆𝑗 = ∅ for ∀ 𝑗 ≠ 𝑖.5 

A mixed strategy for player 𝑖 gives the probabilities that action 𝑠𝑖𝑎 ∈ 𝑆𝑖 

will be played: let a generic mixed strategy for player 𝑖 be denoted by 𝜍𝑖 , 

where 𝜍𝑖 ∈ Σ𝑖 ≡ ∆ 𝑆𝑖 , with Σ𝑖  denoting the set of 𝑖’s mixed strategies and 

∆ 𝑆𝑖  being the set of probability measures over 𝑆𝑖 ; a generic mixed strategy 

for player 𝑖 can be represented as a vector of probabilities 

𝜍𝑖 =  𝑝 𝑠𝑖1 , 𝑝 𝑠𝑖2 , … , 𝑝 𝑠𝑖𝑚   . In the 2-player case, with a slight abuse of 

notation, let 𝑢𝑖 𝜍1, 𝜍2 =   𝑝 𝑠1𝑎 𝑠2𝑎 ∈𝑆2𝑠1𝑎∈𝑆1
𝑝 𝑠2𝑎  𝑢𝑖 𝑠1𝑎 , 𝑠2𝑎   indicate the 

payoffs to player 𝑖 for the profile of mixed strategies 𝜍 =  𝜍1, 𝜍2 . 

I.2.b. Coordination games, symmetries, and labels 

Following in Lewis‟ [1969] wake – who defined a “convention” as a regular 

pattern of behaviour that is a strict Nash equilibrium in a coordination game 

with multiple strict Nash equilibria – the present theory revolves around one-

                                  

5
 Note that the strategies contained in each player‟s strategy set have different indices 

because the first subscript of a strategy-index always identifies a certain player; for example 

in the aforementioned Driving Game, with 𝑁 =  1,2 , the strategy sets are 𝑆1 =  𝑠11 , 𝑠12  and 

𝑆2 =  𝑠21 , 𝑠22 . Also notice that, given that only one-shot games in strategic form are to be 

analysed here, in this essay I refer to “strategies” and “actions” interchangeably. 
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shot games (played without communication) in which the payoff table is 

completely symmetrical between players and strategies.  

Before defining symmetries, it may be worth recalling that a 

coordination problem is a situation with a number of outcomes on which 

agents can coordinate their actions for mutual benefit; such situations can be 

categorized as “pure coordination” or “impure coordination” games if – at 

each equilibrium outcome – all players receive the same payoff or not, 

respectively. Some pure coordination games, which present the below payoff 

structure for ∀ 𝑖 ∈ 𝑁, are referred to as matching games: 

 

𝑢𝑖 𝑠1𝑎 , 𝑠2𝑎 , … , 𝑠𝑛𝑎  =  
1 𝑖𝑓 𝑎 = 𝑎 = ⋯ = 𝑎 
0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 , 

  (1.2.1) 

 

for all 𝑎, 𝑎 , … , 𝑎 ∈  1, … , 𝑚 . Compactly, a matching game is a structure 

Γ𝑛
𝑚 =  𝑁,  𝑆𝑖 𝑖∈𝑁 ,  𝑢𝑖 𝑖∈𝑁 , where 𝑖 ∈ 𝑁 =  1, … , 𝑛  and 

𝑠𝑖𝑎 ∈ 𝑆𝑖 =  𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑚   for ∀ 𝑖 ∈ 𝑁 (for given 𝑛, 𝑚 ∈ ℤ+, 𝑛 = 𝑚 or 𝑛 ≠ 𝑚), 

with  𝑢𝑖 𝑖∈𝑁 being defined as in formula (1.2.1):6 the aforementioned Driving 

Game is an instance of Γ2
2. 

The concept of symmetry is developed by Harsanyi and Selten [1988], 

Ch. 3: here a slightly simpler definition that best suits the purposes of this 

study is employed. 

                                  

6
 Recall that, throughout this essay, it is assumed that material payoffs describe the 

consequences of the players‟ actions as well as their preferences. 
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Definition I.1. Given a strategic form game 𝐺, with 𝑆𝑖 ∩ 𝑆𝑗 = ∅ for ∀ 𝑗 ≠ 𝑖, a 

symmetry of the game is a pair of bijective functions  𝜙,  𝜎𝑖 𝑖∈𝑁 , where 

𝜙: 𝑁 → 𝑁 and 𝜎𝑖 : 𝑆𝑖 → 𝑆𝜙 𝑖  for ∀ 𝑖 ∈ 𝑁, such that 𝑢𝑖 𝑠 = 𝑢𝜙 𝑖   𝜎𝑗  𝑠𝑗𝑎   
𝑗 ∈𝑁

  

for each player 𝑖 ∈ 𝑁 and each strategy profile 𝑠 =  𝑠𝑗𝑎  
𝑗 ∈𝑁

. 

 

In a nutshell, a symmetry is a way of exchanging the names (i.e.: indices) of 

players and strategies that leaves the payoffs – hence the solution/s – of the 

game unchanged: obviously, if one exchanges via  𝜙,  𝜎𝑖 𝑖∈𝑁  the players 

and the strategies of a game and this yields in all cases the same payoffs (as 

those of each strategy profile prior to the exchange of names), then such a 

pair of bijective functions has generated the same game. Similarly, one could 

define a new game 𝐺 ′ =  𝑁′ ,  𝑆𝑖
′ 𝑖∈𝑁′ ,  𝑢𝑖

′ 𝑖∈𝑁′   in such a way as to rename ex 

novo the players and the strategies but leave the payoffs as in the original 

game 𝐺: that is easily done by introducing a pair of bijective functions 

 𝜙 ,  𝜎 𝑖 𝑖∈𝑁′  , with 𝜙 : 𝑁 → 𝑁′  and 𝜎 𝑖 : 𝑆𝑖 → 𝑆𝜙  𝑖 
′  for ∀ 𝑖 ∈ 𝑁′ , such that 𝑢𝑖 𝑠 =

𝑢𝜙  𝑖 
′   𝜎 𝑗  𝑠𝑗𝑎   

𝑗 ∈𝑁′
  for each player 𝑖 ∈ 𝑁′  and each strategy profile 𝑠 =

 𝑠𝑗𝑎  
𝑗 ∈𝑁′ .

7 Again, the solutions of 𝐺 and 𝐺 ′  are necessarily the same, which 

implies that the solutions of any game in strategic form have to be 

                                  

7
 In Harsanyi and Selten‟s [1988] terminology, such a pair of bijective functions is referred to 

as a renaming or, equivalently, as an isomorphism with no positive linear payoff 

transformations. Two games 𝐺 and 𝐺 ′  are called isomorphic if at least one isomorphism from 

𝐺 to 𝐺 ′  exists. 
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independent of the ordering or naming of players/strategies: this result – 

known as “invariance with respect to isomorphisms” – is formalized by 

Harsanyi and Selten [1988], Ch. 3; further, since a strategy could be named 

(i.e.: indexed) differently, in equivalent games, invariance with respect to 

isomorphisms implies that strategies that are distinguishable only with 

respect to each strategy-index should be assigned the same probabilities in a 

solution.  

Given that, Casajus [2000] suggests a definition of “symmetric 

strategies” which draws on Harsanyi and Selten‟s notion of symmetry of a 

game: (adapting it to the notation and definition of symmetry of the present 

essay) two pure strategies 𝑠𝑖𝑎 ∈ 𝑆𝑖 and 𝑠𝑖 ′ 𝑎 ∈ 𝑆𝑖 ′  of 𝐺 are said to be 

symmetric if there exists a symmetry  𝜙,  𝜎𝑖 𝑖∈𝑁  of 𝐺 such that 𝜎𝑖 𝑠𝑖𝑎  = 𝑠𝑖 ′ 𝑎 . 

For example, in the Driving Game Γ2
2, 𝑠11 and 𝑠12 are symmetrical with 𝑠21 

and 𝑠22, respectively; again, this implies that the only symmetry-invariant 

equilibrium in mixed strategies must assign them the same probability, i.e.: 

  
1

2
,

1

2
 ,  

1

2
,

1

2
  . 

Although neither Schelling [1960] nor Lewis [1969] defined any such 

formal concept of symmetry of strategic forms, both pioneered the study of 

coordination in games whose payoff table is symmetrical between players 

and strategies. In particular, Schelling drew attention to the importance of 

contextual cues (or “focal points”) in coordination problems: in effect, players 

can sometimes solve coordination games by resorting to apparently 

insignificant factors that make one of the feasible actions salient, thereby 

breaking any symmetry of strategies; put differently, this means that the 

context in which games appear – or the way games are framed – may affect 

the way people play them. Building on Schelling‟s intuition, Sugden [1995] 

enriches the mathematical structure of a game by introducing a rule that 

assigns to each of a player‟s strategies a private label representing the way 
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the very player describes the game to herself (e.g.: in Γ2
2 one player may have 

a rule such that 𝑠𝑖1 ↦ 𝑙𝑒𝑓𝑡 and 𝑠𝑖2 ↦ 𝑟𝑖𝑔𝑕𝑡, or vice versa); there the players‟ 

descriptions of strategies are privately observed permutations of the analyst‟s 

naming (i.e.: indexing) of strategies. As Sugden points out: 

The labels that a player uses will depend in part on psychological and cultural 

factors: for example, where one player sees “left and right”, another might see 

“east and west”. There is a sense in which the labels that players use reflect 

what is salient for them: we might say that the left-right distinction is salient for 

some players and the east-west distinction for others. (p. 537) 

While Sugden‟s [1995] theory accounts for coordination in games where a 

stochastic procedure determines the (one-dimensional) label each player 

privately assigns to each of her strategies, Casajus [2000] provides a 

complementary framework for the analysis of coordination games where a 

non-stochastic structure called “frame” describes the players‟ own 

representation (i.e.: labelling) of strategies by associating them with a set of 

attributes (e.g.: colour or shape of an object to choose). More precisely, 

Casajus builds on Bacharach [1993] and Janssen [2001] by defining a multi-

dimensional system for the labelling of strategies,8 in addition to a 

requirement on solutions based on Harsanyi and Selten‟s invariance with 

respect to isomorphisms.  

I.2.c. Knowledge and unawareness 

The present theory compromises on Sugden‟s and Casajus‟ approaches, as 

it defines the players‟ own framing system in such a way as to allow for the 

                                  

8
 This body of literature was initiated by Gauthier [1975]. 
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possibility that both stochastic and non-stochastic procedures may determine 

the labelling of strategies. Moreover, this study postulates that different 

labellings arise among players by virtue of the different sets of states each 

player may be aware of (where the multiple state spaces picture the 

specifications of the contingencies each player perceives in the context of a 

given decision problem). More precisely, here, each player’s labelling of 

strategies depends directly on her perception of the game, that is, on the 

states she is aware of: therefore, this study provides a precise link between 

the players‟ perception of the game (given by their information functions) and 

their labelled strategies. 

Before introducing the concept of (un)awareness, I shall briefly present 

the standard model of knowledge and the problems associated with it.9 For a 

given strategic form game  𝑁,  𝑆𝑖 𝑖∈𝑁 ,  𝑢𝑖 𝑖∈𝑁 , a model of knowledge is a 

structure   Ω, 𝑞 ,  I𝑖 𝑖∈𝑁 , where: Ω is the set of states, 𝑞 is a probability 

measure over Ω, I𝑖  is the information partition of player 𝑖 (with I𝑖  being a 

partition of Ω). Given the state space Ω – where each 𝜔 ∈ Ω is a description 

of the contingencies that the agent considers to be relevant in the context of 

the game at hand – each player 𝑖 has an information (set-valued) function 𝐼𝑖  

that associates with every state 𝜔 ∈ Ω a non-empty subset 𝐼𝑖 𝜔 ⊆ Ω (with 

𝐼𝑖 𝜔  being interpreted as the set of states the agent considers possible 

when the true state is 𝜔). It is assumed that   Ω, 𝑞 ,  I𝑖 𝑖∈𝑁  satisfies the 

                                  

9
 The standard model of knowledge corresponds to the S-5 system of epistemic logic, and is 

due to Hintikka [1962]. The concept of common knowledge was suggested by Lewis [1969], 

whereas Aumann [1976] gave the mathematically-precise (set-theoretic) definition which is 

habitually used in the economics literature. 
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following properties: (i) 𝜔 ∈ 𝐼𝑖 𝜔  for ∀ 𝜔 ∈ Ω; (ii) 𝜔′ ∈ 𝐼𝑖 𝜔 ⟹ 𝐼𝑖 𝜔
′ = 𝐼𝑖 𝜔 . 

To sum up, when representing a socio-economic application in game-

theoretic terms, given a (unique) state space Ω, uncertainty is generically 

captured by assuming that the agent 𝑖 does not know which is the true state, 

knowing instead only which cell 𝐼𝑖 𝜔  of a partition I𝑖  of Ω contains the true 

state 𝜔. 

Now, unawareness characterizes an epistemic state in which “one 

does not know an event,10 and does not know that she does not know it, and 

so on ad infinitum”.11 While a notion of unawareness as described here 

encompasses the perfectly realistic situation in which an agent is simply 

ignorant as to the existence of some contingency, it turns out that – under the 

assumptions of the standard partitional model of knowledge – it is not 

possible to account for such a situation. In fact, the information function 𝐼𝑖  

associates with every state 𝜔 ∈ Ω a non-empty subset 𝐼𝑖 𝜔  of Ω, and this 

implies that the agent cannot be unaware of anything: having an information 

partition I𝑖  entails that, if she does not know an event, then she knows she 

does not know it. To further clarify this point, I shall recall that player 𝑖 is said 

to know event 𝐸 (with 𝐸 ⊆ Ω), at state 𝜔, if 𝐼𝑖 𝜔 ⊆ 𝐸; writing K𝑖 𝐸  as a 

shorthand for the set of states in which 𝑖 knows 𝐸, one can define a 

knowledge function K𝑖  (mapping the power set of Ω into itself) by K𝑖 𝐸 =

                                  

10
 As is customary, an event 𝐸 is defined as a subset of the state space. 

11
 In a controversial statement to the press Donald Rumsfeld (as the United States Secretary 

of Defense) claimed: «[T]here are known knowns; there are things we know we know. We 

also know there are known unknowns; that is to say we know there are some things we do 

not know. But there are also unknown unknowns – the ones we don't know we don't know». 
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 𝜔 ∈ Ω: 𝐼𝑖 𝜔 ⊆ 𝐸 . It is well known that the knowledge function K which is 

derived from an information function 𝐼 satisfies the following properties: 

 

 𝑘. 𝑖: necessitation   K Ω = Ω 

 𝑘. 𝑖𝑖: monotonicity   𝐸 ⊆ 𝐹 ⟹ K 𝐸 ⊆ K 𝐹  

 𝑘. 𝑖𝑖𝑖: conjunction   K 𝐸 ∩K 𝐹 = K 𝐸 ∩ 𝐹  

 𝑘. 𝑖𝑣: axiom of knowledge   K 𝐸 ⊆ 𝐸 

 𝑘. 𝑣: axiom of transparency   K 𝐸 ⊆ K K 𝐸   

 𝑘. 𝑣𝑖: axiom of wisdom   ∼K 𝐸 ⊆ K ∼ K 𝐸 . 12 

 

A few comments are in order. Properties (k.i-iii) are bookkeeping 

assumptions satisfied by knowledge functions derived from any information 

function; besides, if the information function is partitional, then (k.iv-vi) are 

satisfied as well. Of particular interest is (k.vi), which implies that whenever 

an agent does not know an event, she knows she does not know it (which 

plainly eliminates the possibility of unawareness): for this reason, 

Geanakoplos [1989] circumvents the problem by using non-partitional 

information structures; yet, Dekel et al. [1998] propose three intuitive 

properties for unawareness and show that they are not compatible at all with 

the standard state space specification (and in particular with the above (k.i-

ii)). As a consequence of Dekel et al.‟s [1998] impossibility results, a few 

attempts at modelling multi-person unawareness have been put forward 

either by making use of the modal syntax within the semantic structures or by 

                                  

12
 ∼ denotes negation. 
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means of set-theoretic specifications involving a lattice structure:13 the latter 

approach models a system of multiple state spaces explicitly ordered by 

“expressive power”. 

In what follows I shall draw on Heifetz et al.‟s [2006] specification of 

such epistemic states, in order to allow for the players to be unaware of some 

representations of the situation (as captured by different state spaces).14 

Thus, the goal of the essay is to provide a framework for the player‟s own 

comprehension of the game so as to show that coordination is possible when 

certain players use – and expect others to use – similar conceptual schemes: 

so, for a convention to be in operation, conformity is dependent on the states 

(e.g.: contextual cues) perceived by similar players (e.g.: agents sharing a 

collection of attitudes, values, goals, and practices characterizing a certain 

group, organization or institution). 

 

I.3. A game and a comparison of alternative analyses 

I shall introduce the following game (henceforth “Choose an Object”). Players 

are presented with a tray with six cubic objects, which are then placed into a 

                                  

13
 For the former class of models see Heifetz et al. [2008], for the latter see Heifetz et al. 

[2006], among the others. 

14
 A related idea – known as “indirect realism” – has been popular in the history of 

philosophy, being developed by many authors including Bertrand Russell, Baruch Spinoza, 

René Descartes, and John Locke: indirect realism is a position broadly comparable to a 

certain view of perception in natural science, according to which individuals do not 

experience the external world as it really is, but know only interpretations of the way the 

world is (Hawking and Mlodinow [2010], Ch. 3). 
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bag all at once.15 (Such objects are cubic blocks, which the experimenter 

identifies by the numbers 1 to 6; such numbers are invisible to the players.) 

The colours of the cubes are as follows: objects no. 1-2 are grey, objects no. 

3-4 are red, objects no. 5-6 are black; the objects are otherwise identical in 

shape, size, material, etc.. Given that, the experimenter takes three blocks 

out of the bag, one by one at random in front of all players, and places them 

on a table in an orderly fashion. Players are then privately asked to choose 

one of the objects (subjects cannot communicate with one another); the 

players‟ utility is defined as in formula (1.2.1) above, that is, assuming 

 𝑁 = 2, each player‟s payoff is 1 if both choose the same object, 0 

otherwise. 

Using the notation introduced in section I.2.a. above, the analyst‟s 

description of the game is as follows: each object represents a distinct 

strategy, that is, 𝑠𝑖𝑎 ∈  𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖6  for ∀ 𝑖 ∈ 𝑁; notice that no contextual 

cues enter the analyst‟s description of the game, in fact – to the analyst – 

Choose an Object simply consists of  
6
3
 =

6!

3!3!
= 20 strategic games, where 

Nature randomly (and publicly) determines the one game to be played; so, 

each of the 20 games differs from the others only in the names of the 

available strategies, with the strategies of each of the 20 strategic games 

being denoted by 𝑆𝑖
′ =  𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖3 , 𝑆𝑖

′′ =  𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖4 , 𝑆𝑖
′′′ =  𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖5 , 

𝑆𝑖
′′′′ =  𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖6 , etc. for ∀ 𝑖 ∈ 𝑁. For instance, 𝑠𝑖1 denotes the strategy of 

choosing object no. 1, 𝑠𝑖2 denotes the strategy of choosing object no. 2, etc. 

for ∀ 𝑖 ∈ 𝑁; again, it should be stressed that  𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖3  represents only the 

                                  

15
 The initial positions on the tray are not clearly identifiable. 
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analyst‟s naming of the strategies (all such strategy-indices are invisible to 

the players, as are the numbers on the objects which the analyst uses to 

identify the blocks). 

Now, assume Nature has selected the strategic game of which the set 

of strategies is 𝑆𝑖
′ =  𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖3  for ∀ 𝑖 ∈ 𝑁: further to the discussion in 

section I.2.b. above, notice that 𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖3 are symmetric strategies; it follows 

that the only symmetry-invariant equilibrium in mixed strategies must assign 

them the same probability. Therefore, the only symmetry-invariant equilibrium 

is the profile of mixed strategies 𝜍 =  𝜍1, 𝜍2  where, using the above notation, 

a mixed strategy is given by the vector of probabilities 

𝜍𝑖 =  𝑝 𝑠𝑖1 , 𝑝 𝑠𝑖2 , 𝑝 𝑠𝑖3  =  
1

3
,

1

3
,

1

3
  for ∀ 𝑖 ∈ 𝑁. Similarly, if Nature selects 

the strategic game with set of strategies 𝑆𝑖
′′ =  𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖4  for ∀ 𝑖 ∈ 𝑁, the only 

symmetry-invariant strategy profile is 𝜍 =  𝜍1, 𝜍2 , where a mixed strategy is 

given by the vector of probabilities 𝜍𝑖 =  𝑝 𝑠𝑖1 , 𝑝 𝑠𝑖2 , 𝑝 𝑠𝑖4  =  
1

3
,

1

3
,

1

3
  for 

∀ 𝑖 ∈ 𝑁.  

From the above analysis it is evident that all such 20 strategic games 

are isomorphic (see footnote 7), that is, to the analyst their mathematical 

structures represent exactly the same decision problem, and as such should 

not be treated differently (Harsanyi and Selten [1988], Ch. 3). Instead, 

Variable Frame Theory (Bacharach [1993], Bacharach and Bernasconi 

[1997]) would analyze Choose an Object as follows: once Nature has 

selected a strategic game, the cubic blocks will present (colour-perceiving) 

players with either two or three different colours, hence two/three different 

“feasible acts” (besides a completely randomized act). Therefore, in the case 

in which the blocks are of only two colours, Variable Frame Theory (along 

with Janssen [2001]) suggests that players should choose the one block of a 

different colour: for instance, assume Nature has selected the strategic game 

with set of strategies 𝑆𝑖
′ =  𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖3  for ∀ 𝑖 ∈ 𝑁; recalling that objects no. 1-
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2 are grey and object no. 3 is red, Bacharach would predict that players 

choose the red object (i.e.: 𝑠𝑖3 for ∀ 𝑖 ∈ 𝑁) with probability one. 

Furthermore, consider the case in which Nature has selected the 

strategic game with set of strategies  𝑠𝑖1, 𝑠𝑖3, 𝑠𝑖5  for ∀ 𝑖 ∈ 𝑁; here the cubic 

blocks present players with three different colours. Thus, in this case 

Bacharach‟s theory would predict three equilibria in pure strategies, that is, 

one in which all players choose the grey object with probability one (i.e.: 

𝑠 =  𝑠𝑖1 𝑖∈𝑁), one in which all players choose the red object (i.e.: 𝑠 =  𝑠𝑖3 𝑖∈𝑁), 

and one in which all players choose the black object (i.e.: 𝑠 =  𝑠𝑖5 𝑖∈𝑁). Unlike 

Bacharach, in this case Janssen [2001] argues that to the players the 

feasible acts (i.e.: the coloured objects) are symmetric, hence – players have 

no particular reason to choose their part of any one of the three solutions, 

and so – a theory of rational play should require that players implement the 

strategy profile 𝜍 =  𝜍1, 𝜍2 , with each strategy being the vector of 

probabilities 𝜍𝑖 =  𝑝 𝑠𝑖1 , 𝑝 𝑠𝑖3 , 𝑝 𝑠𝑖5  =  
1

3
,

1

3
,

1

3
 . 

As mentioned above, Casajus‟ [2000] analysis follows in Bacharach‟s 

and Janssen‟s wake by defining a (multi-dimensional) system for the labelling 

of strategies in such a way as to formalize both (Bacharach‟s and Janssen‟s) 

arguments and take care of Harsanyi and Selten‟s invariance with respect to 

isomorphisms.16 Yet, specifically in the last example (i.e.: strategic game with 

set of strategies  𝑠𝑖1, 𝑠𝑖3, 𝑠𝑖5  for ∀ 𝑖 ∈ 𝑁), because the objects differ in colour 

but are otherwise identical in shape, size, material, etc., Casajus‟ model 

would limit itself to defining one “attribute” (i.e.: colour), thereby labelling the 

                                  

16
 A recent contribution in the same line of research is Alós-Ferrer and Kuzmics [2012].  
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strategies as colour perceiving players see them (i.e.: 𝑠𝑖1 ↦ 𝑔𝑟𝑒𝑦, 𝑠𝑖3 ↦ 𝑟𝑒𝑑, 

and 𝑠𝑖5 ↦ 𝑏𝑙𝑎𝑐𝑘 for ∀ 𝑖 ∈ 𝑁). 

On the other hand, departing from the aforementioned models, the 

theory to be introduced in the next section will argue that in the last example 

(i.e.: strategic game with set of strategies  𝑠𝑖1, 𝑠𝑖3, 𝑠𝑖5  for ∀ 𝑖 ∈ 𝑁) – given the 

same suggested labelling as above (i.e.: 𝑠𝑖1 ↦ 𝑔𝑟𝑒𝑦, 𝑠𝑖3 ↦ 𝑟𝑒𝑑, 𝑠𝑖5 ↦ 𝑏𝑙𝑎𝑐𝑘 

for ∀ 𝑖 ∈ 𝑁) – colour perceivers can coordinate on a unique pure strategy (i.e.: 

𝑟𝑒𝑑) if they feel that primary colours are most prominent (based on a binary 

relation allowing the salience comparison of pairs of alternatives), without 

needing to define any additional attribute.17 Also, the aforementioned models 

would not help us in the case in which players simply (ignore colours but) 

distinguish between the objects by the order in which the experimenter draws 

the blocks from the bag: in fact, the present theory will argue that the block-

order perceivers can end up with a payoff of 1 if they feel that the first object 

to be randomly drawn is more prominent than the others. (Again, notice that 

Casajus‟ framework is based on a non-stochastic labelling structure, like 

Bacharach‟s and Janssen‟s.)   

 

                                  

17
 In effect, it should be stressed that here Casajus [2000] would need to define one 

additional attribute (i.e.: primary-/non primary- colour) so as to label strategies as primary-

colour distinguishing players see them (i.e.: 𝑠𝑖1 ↦ 𝑛𝑜𝑛 𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝑠𝑖3 ↦ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦, and 𝑠𝑖5 ↦

𝑛𝑜𝑛 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 for ∀ 𝑖 ∈ 𝑁), in order to reach the same conclusion. 
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I.4. A model of conventions 

The present theory builds on Sugden‟s and Casajus‟ frameworks so as to 

allow for the possibility that both stochastic and non-stochastic procedures 

may determine the labelling of strategies: for instance, assume it is common 

knowledge (among the block-order perceivers) that each player identifies the 

strategies by the order in which the objects are drawn from the bag and 

placed on the table; then, based on the order of the blocks as drawn by the 

experimenter, one could define a renaming of the strategic game at hand, 

thereby labelling the strategies as the players perceive them, namely 

 𝑓𝑖𝑟𝑠𝑡, 𝑠𝑒𝑐𝑜𝑛𝑑, 𝑡𝑕𝑖𝑟𝑑 .18 Now, it should be noticed that such labelled 

strategies would remain symmetrical with one another, and therefore 

𝑓𝑖𝑟𝑠𝑡, 𝑠𝑒𝑐𝑜𝑛𝑑, 𝑡𝑕𝑖𝑟𝑑 should each still be assigned the same probability in a 

mixed-strategy solution: hence, in order to capture the different degrees of 

                                  

18
 Sugden [1995], building on Crawford and Haller [1990], proposes a set of properties for 

labelling procedures, namely:  𝐴1  scrambling of labels for each player;  𝐴2  independent 

labelling;  𝐴3  common language;  𝐴4  symmetry of labelling between players. Sugden‟s 

analysis then focuses on what he dubs “common-pool labelling procedures”, that is, labelling 

procedures satisfying both  𝐴2  and  𝐴4  or, in plain words, procedures requiring that 

different players‟ labellings are determined by independent random draws from the same 

distribution. On the other hand, the present theory departs from Sugden‟s in that the labelling 

procedures considered here satisfy both  𝐴1  and  𝐴4 , but not  𝐴2 : in a nutshell, the 

labelling procedures I shall focus on have a stochastic element since, for example, the order 

in which the blocks are drawn from the bag and placed on the table is determined by an 

exogenous random process, yet all such random draws are publicly observed by players; 

therefore, here (unlike Sugden [1995], and Crawford and Haller [1990]) players‟ descriptions 

of strategies are publicly observed permutations of the analyst‟s naming (i.e.: indexing) of 

strategies. 
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salience that players may attach to their labelled strategies, the present 

theory introduces a binary relation on the set of players‟ labelled strategies, 

allowing the salience comparison of pairs of alternatives (i.e.: a complete 

preordering, henceforth referred to as a “salience relation”). 

A few comments are in order. First, it is assumed that such a binary 

relation is based on an exogenous criterion that is mutually recognizable, like 

the order in which the objects are drawn by a third party, the consequent 

objects‟ spatial proximity to the players, etc.. It is clear that such a binary 

relation will induce a solution which is arbitrary to a certain degree. As 

Schelling [1960] puts it: 

The solutions are, of course, arbitrary to this extent: any solution is “correct” if 

enough people think so. [...] Most situations – perhaps every situation for 

people who are practiced at this kind of game – provide some clue for 

coordinating behaviour, some focal point for each person‟s expectation of 

what the other expects him to expect to be expected to do. Finding the key, or 

rather finding a key – any key that is mutually recognized as the key becomes 

the key – may depend on imagination more than on logic; it may depend on 

analogy, precedent, accidental arrangement, symmetry, aesthetic or 

geometrical configuration, casuistic reasoning, and who the parties are and 

what they know about each other. (pp. 55-57, italics in original) 

For instance, given a binary relation based on the order in which the objects 

are drawn by the experimenter, here a reason why players may end up 

attaching a greater degree of salience to the object labelled as 𝑓𝑖𝑟𝑠𝑡 is, 

again, provided by Schelling: «If one [...] asks what number, among all 

positive numbers, is most clearly unique, or what rule of selection would lead 

to unambiguous results, one may be struck with the fact that the universe of 

all positive numbers has a “first” or “smallest” number» (Schelling [1960], p. 

94, italics in original). So, in Choose an Object, such a rule of selection would 

result in players – who perceive the strategies as 𝑓𝑖𝑟𝑠𝑡, 𝑠𝑒𝑐𝑜𝑛𝑑, 𝑡𝑕𝑖𝑟𝑑, 

respectively – choosing the first block to be drawn by the experimenter (i.e.: 
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the strategy labelled as 𝑓𝑖𝑟𝑠𝑡), whatever is the strategy-index associated with 

it. 

On a different note, it should be stressed that Sugden [1995] (like 

Crawford and Haller [1990]) accounts for uncertainty regarding the other 

players‟ comprehension of the game in that, as mentioned above, the 

players‟ descriptions of strategies are privately observed permutations of the 

analyst‟s indexing of strategies (see footnote 18). Instead, Casajus [2000] 

(like Bacharach [1993] and Janssen [2001]) models uncertainty by means of 

a sort of game of incomplete information in which the frame (i.e.: labelling) of 

a player is associated with a player‟s “type”. Now, the present theory models 

uncertainty in an original way, which only in part relates to Bacharach, 

Janssen, and Casajus, in that a certain kind of player is associated with a 

certain labelling of strategies (and, in the present theory, in turn with a certain 

binary relation on the set of the player‟s labelled strategies); however, this 

study crucially departs from the existing literature because it implements a 

notion of the players‟ (un)awareness. In effect, by introducing a notion of 

unawareness: (i) the present theory accounts for both stochastic and non-

stochastic labelling procedures, thereby providing a precise link between the 

players‟ perception of the game and their labelled strategies; (ii) it permits to 

explain coordination, in certain cases, even between differently-aware 

players (i.e.: between players that have partially-different sets of labelled 

strategies). 

Therefore, the present theory implements Heifetz et al.‟s [2006] 

system of multiple state spaces so as to account for such different players‟ 

perceptions: for instance, in Choose an Object, players who realize only the 

block orderings will be aware of state space Ω𝐵 =  𝜔𝑖 , 𝜔𝑖𝑖 , 𝜔𝑖𝑖𝑖 , … , 𝜔𝑐𝑥𝑥  , 

where each state refers to one of 120 possible orderings of the objects 

(based on the order of the blocks as drawn by the experimenter); similarly, 

players who realize only the colour differences will be aware of state space 
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Ω𝐶 =  𝜔𝑖 , 𝜔𝑖𝑖 , 𝜔𝑖𝑖𝑖   , … , 𝜔𝑥𝑥     , where each state refers to one of 20 possible 

combinations of the coloured objects (based on the available coloured 

objects drawn by the experimenter, irrespective of the order). Then, as 

mentioned before, each player‟s labelling of strategies will depend directly on 

her perception of the game, that is, on the states she is aware of; given that, 

the present theory restricts the set of each player‟s (mixed) strategies by 

imposing two constraints that are implied by the notions of symmetry-

invariance and salience relation, respectively.   

The exposition of the model is organized in a manner such that each 

of the following sub-sections will describe one of the steps involved in the 

operation of a convention: (i) perception; (ii) labelling; (iii) salience 

comparison; (iv) expected utility maximization. 

I.4.a. A general framework for perception 

Let Ω∗ =  Ω𝑘
𝑘∈𝐾  be the full set of states, with  Ω𝑘 𝑘∈𝐾 being disjoint subsets 

of Ω∗, where 𝐾 is a space-index set and Ω𝑘  denotes a generic set of states;19 

for each 𝑘 ∈ 𝐾 let  Ω𝑘 , 𝑞𝑘  be a finite probability space, with 𝑞𝑘 ∈ Δ Ω𝑘 , 

where 𝑞𝑘  is a probability measure over Ω𝑘  and Δ Ω𝑘  is the set of probability 

measures over Ω𝑘 . The interpretation is that each Ω𝑘  is a collection of 

mutually exclusive specifications of the contingencies that an agent perceives 

in the context of a given decision problem (i.e.: each 𝜔 ∈ Ω𝑘  can be regarded 

as a full description of contingencies that relate to the game, in the player‟s 

own perspective). Notice that, for a given state space Ω𝑘 , only one of the 

                                  

19
 An explicit ordered structure on  Ω𝑘 𝑘∈𝐾 will be introduced below. 
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states – referred to as the “true state” – obtains, thereby depicting how the 

game is actually expressed through the (𝑘-perceiving) player‟s own 

vocabulary (whereas the other states relate to possible, alternative 

descriptions of the game). 

 

Example: Choose an Object (cont’d). I can now discuss the game introduced 

in section I.3. in light of the above definitions. Recall: players who realize only 

the block orderings will be aware of state space Ω𝐵 =  𝜔𝑖 , 𝜔𝑖𝑖 , 𝜔𝑖𝑖𝑖 , … , 𝜔𝑐𝑥𝑥  , 

where each state refers to one of 120 possible orderings of the objects; 

players who realize only the colour differences will be aware of state space 

Ω𝐶 =  𝜔𝑖 , 𝜔𝑖𝑖 , 𝜔𝑖𝑖𝑖   , … , 𝜔𝑥𝑥     , where each state refers to one of 20 possible 

combinations of the coloured objects. Hence,  Ω𝐵 =  
6
3
 3! =

6!

3! 6−3 !
3! = 120, 

and 𝑞𝐵 𝜔 = 1/120 for each ω ∈ Ω𝐵 (i.e.: the probability 𝑞𝐵 𝜔  of each of 

these states occurring, where occurring means “being brought about by the 

experimenter‟s random draws”, is 1/120);20 similarly,  Ω𝐶 =  
6
3
 = 20, and 

𝑞𝐶 𝜔 = 1/20 for each ω ∈ Ω𝐶. Furthermore, in Choose an Object, players 

who realize both the block orderings and the colour differences will be aware 

of the “more expressive” state space Ω𝐵𝐶 =  𝜔𝑖 , 𝜔𝑖𝑖 , 𝜔𝑖𝑖𝑖   , … , 𝜔𝑐𝑥𝑥      , where each 

state includes the description of one of 120 possible orderings along with a 

description of the respective colours of the objects: to sum up,  Ω𝐵𝐶 = 120, 

and 𝑞𝐵𝐶 𝜔 = 1/120 for each ω ∈ Ω𝐵𝐶 . 

 

                                  

20
 For a given set Ω,  Ω  denotes its cardinality. 
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Given the role played by the state spaces in depicting the individual‟s 

perception of the game, it is now convenient to discuss a notion of the 

players‟ (un)awareness. Indeed, as exemplified above, a player may view 

only some of the features of a (multi-person) decision problem (i.e.: some of 

the state spaces in  Ω𝑘 𝑘∈𝐾); or else, a player may be aware of all the 

potential contextual cues (i.e.: the full set of states Ω∗ =  Ω𝑘
𝑘∈𝐾 ), and may 

yet assume that her co-players‟ perceptions are limited. Again, a player of 

Choose an Object (say, Player 𝑖), who is aware of both block orderings and 

colour differences (i.e.: aware of the state space Ω𝐵𝐶), may well assume that 

her counterpart is only aware of Ω𝐵 if she believes that her counterpart is 

colour-blind; she in turn (say, Player 𝑗) – if indeed colour-blind – will not be 

able to conceive of Ω𝐶 as being relevant to the game perceived by her co-

player since she (Player 𝑗) will merely ignore the existence of Ω𝐶. Therefore, I 

shall draw on Heifetz et al.‟s [2006] model of unawareness so as to account 

for such different players‟ perceptions; as in their model, I use a system of 

surjective projections from each state space to every space that is weakly 

less expressive – this sub-section will initially detail such a system of 

projections and follow up with further discussion of the above illustration – the 

application will lead the way to a novel theory of conventions. 

Consider a complete lattice of disjoint spaces 𝑺 =  Ω𝑘 𝑘∈𝐾  and let 

Ω∗ =  Ω𝑘
𝑘∈𝐾  be the union of such spaces (i.e.: the full set of states); recall 

that a state 𝜔 is an element of some space Ω𝑘 . Let ≼ denote an expressivity 

relation, that is, a partial preordering on 𝑺 such that, for any Ω, Ω′ ∈ 𝑺, Ω ≼ Ω′  

means that “Ω′  is weakly more expressive than Ω”: the interpretation is that 
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states in Ω′  give a more detailed description of contingencies.21 Further, let 

𝑟 =  𝑟Ω
Ω′

 
Ω,Ω′ ∈𝑺: Ω≼Ω′  denote a set of surjective projections from each state 

space to every space that is weakly less expressive (i.e.: 𝑟Ω
Ω′

: Ω′ ⟶ Ω is a 

surjective projection from one space, Ω′ , to a weakly less expressive one, Ω; 

if 𝜔 ∈ Ω′ , then 𝑟Ω
Ω′

 𝜔  is the projection of 𝜔 into a weakly less expressive 

space); such mappings are required to commute, that is, if Ω ≼ Ω′ ≼ Ω′′  then 

𝑟Ω
Ω′′

= 𝑟Ω
Ω′

∘ 𝑟Ω′
Ω′′

. If 𝜔 ∈ Ω′ , with a slight abuse of notation, denote by 𝜔Ω

∶= 𝑟Ω
Ω′

 𝜔  the projection of 𝜔 into Ω and, similarly, by 𝜔Ω′ ∶= 𝑟Ω′
Ω′′

 𝜔′ = 𝜔 the 

projection of 𝜔′  into Ω′ , with 𝜔′ ∈ Ω′′ . Given a mapping 𝑟Ω
Ω′

: Ω′ ⟶ Ω and a 

generic (sub)set of states 𝑂, if 𝑂 ⊆ Ω′  denote by 𝑂Ω =  𝜔Ω ∈ Ω: ∃𝜔 ∈

𝑂 s. t. 𝜔Ω = 𝑟Ω
Ω′

 𝜔   the set of all the images of the elements of 𝑂 (i.e.: the 

range of 𝑟Ω
Ω′

|𝑂, namely the range of the restriction of 𝑟Ω
Ω′

 to 𝑂). Let 𝑔 Ω =

 Ω′ : Ω′ ≽ Ω  be the set of state spaces that are at least as expressive as Ω; 

for a generic (sub)set of states 𝑂 – if now 𝑂 ⊆ Ω – denote by 𝑂→ =

   𝑟Ω
Ω′

 
−1

Ω′ ∈𝑔 Ω |𝑂 𝑂  the union of the (inverse) projections from 𝑂 to spaces 

weakly more expressive than Ω (i.e.: all the pre-images of a subset 𝑂 of the 

range of 𝑟Ω
Ω′

).22 

                                  

21
 Regarding the interpretation, the fact that “states in Ω′  give a more detailed description of 

contingencies than states in Ω do” does not mean that elements of the latter are also 

elements of the former, because 𝑺 is a lattice of disjoint spaces. Also note that it is required 

that  Ω ≤  Ω′  .  
22

 The above specification of a lattice of state spaces mostly corresponds to that of Heifetz et 

al. [2006], although I give different interpretation and notation; moreover, note that Heifetz et 

al. [2006] do not define probability measures on each Ω𝑘 . (In this respect, notice that here 
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Given the above apparatus, I can move on to characterize (multi-

space) events: as usual, an event is defined as a subset of a state space, 

although here 𝐸 ⊆ Ω∗ is an event if it is of the form 𝑂→ for some 𝑂 ⊆ Ω, with 

Ω ∈ 𝑺; notice that this implies that an event contains states lying in multiple 

spaces (besides, not every subset of Ω∗ is an event).23 Further, if 𝑂→ is an 

event (with 𝑂 ⊆ Ω𝑘), its negation is defined as ∼ 𝑂→ ∶=  Ω𝑘 ∖ 𝑂 →; if 𝑂 = Ω𝑘 , 

then ∼ 𝑂→ ≡ ∅𝑘  where, for each Ω𝑘 ∈ 𝑺, ∅𝑘  is the vacuous event. Also, the 

conjunction ∧𝜆∈Λ  of a set of events  𝑂𝜆
→ 𝜆∈Λ  is simply the intersection 

 𝑂𝜆
→

𝜆∈Λ , whereas disjunction ∨𝜆∈Λ  is defined from conjunction by the de 

Morgan‟s laws,24 i.e.:  𝑂𝜆
→ = ~  ~𝑂𝜆

→
𝜆∈Λ  𝜆∈Λ . 

 

Example: Choose an Object (cont’d). From the above discussion it is clear 

that a complete lattice of disjoint spaces 𝑺 =  Ω𝑘 𝑘∈𝐾, with Ω∗ =  Ω𝑘
𝑘∈𝐾 , is 

given by 𝑺 =  Ω∅, Ω𝐵 , Ω𝐶 , Ω𝐵𝐶 . Using the above notation, the set of state 

spaces that are at least as expressive as the – uninformative – empty set 

Ω∅ ∶=  ∅  is denoted by 𝑔 Ω∅ =  Ω∅, Ω𝐵 , Ω𝐶 , Ω𝐵𝐶 . For space constraints the 

following figure illustrates all the aforementioned state spaces, but only part 

                                                                                              

the probability measure defined on some space Ω is obviously related to that defined on Ω′ , if 

Ω ≼ Ω′ , but for the purposes of the current study it is not necessary to explore this further.) 

23
 In Heifetz et al.‟s [2006] terminology, if 𝐸 is an event in the above sense, then 𝑂 is called 

the “basis” of 𝐸 and Ω = Ω 𝐸  is the “base-space”. On a different note, it should be stressed 

that here 𝑓|𝑂 indicates the restriction of a certain mapping 𝑓, e.g.: if 𝑓: 𝑋 → 𝑌 is a mapping 

and 𝑂 ⊆ 𝑋, I denote the restriction of 𝑓 to 𝑂 by 𝑓|𝑂, that is, the function from 𝑂 to 𝑌 such that 

𝑓|𝑂 𝑜 = 𝑓 𝑜  for ∀𝑜 ∈ 𝑂 (in Heifetz et al.‟s [2006] terminology, “restriction” refers instead to 

the projection of a state into a less expressive space). 

24
 ~  𝑂𝜆𝜆∈Λ  =   ~𝑂𝜆 𝜆∈Λ ; ~  𝑂𝜆𝜆∈Λ  =   ~𝑂𝜆 𝜆∈Λ . 
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of the states: specifically, it shows only the states associated with the case 

where Nature has selected the strategic game with set of strategies 𝑆𝑖 =

 𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖3  for ∀ 𝑖 ∈ 𝑁; recalling that objects no. 1-2 are grey and object no. 3 

is red, such states are represented in the form of a sequence of blocks (in 

Ω𝐵) or a string symbolizing the coloured objects available (in Ω𝐶) or a 

sequence of blocks and colours (in Ω𝐵𝐶).25 

 

 

Figure I.1 - Some state spaces and projections in Choose an Object 

 

                                  

25
 For instance, assume that the state 𝜔 =  1,2,3 , with 𝜔 ∈ Ω𝐵 , obtains: such a state 

provides information about the order in which the experimenter drew the blocks from the 

bag, where each integer corresponds to the number of each object. Similarly, in the case of 

the state 𝜔 = 𝑔𝑔𝑟, with 𝜔 ∈ Ω𝐶 , such a state provides information about the colours of the 

blocks, where 𝑔 stands for “grey” and 𝑟 for “red”. 
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Notice that projections are indicated by arrows:26 it is clear that Ω𝐵 and Ω𝐶 

both describe contingencies in a less expressive way than are described in 

Ω𝐵𝐶 ; Ω∅ in turn describes contingencies in such a way as not to provide any 

information about the order in which the experimenter drew the blocks from 

the bag or about the colours of the blocks. Recalling that  Ω𝐶 =  
6
3
 = 20, let 

Ω𝐶 =  𝜔𝑖 , 𝜔𝑖𝑖 , 𝜔𝑖𝑖𝑖   , … , 𝜔𝑥𝑥     ≡

 
𝑔𝑟𝑟, 𝑔′𝑟𝑟, 𝑟𝑔𝑔, 𝑟′𝑔𝑔, 𝑔𝑏𝑏, 𝑔′𝑏𝑏, 𝑏𝑔𝑔, 𝑏′𝑔𝑔, 𝑟𝑏𝑏, 𝑟′𝑏𝑏,

𝑏𝑟𝑟, 𝑏′𝑟𝑟, 𝑔𝑟𝑏, 𝑔′𝑟𝑏, 𝑔𝑟′𝑏, 𝑔𝑟𝑏′ , 𝑔′𝑟′𝑏, 𝑔′𝑟𝑏′ , 𝑔𝑟′𝑏′ , 𝑔′𝑟′𝑏′
 ;27 also, recall that 

state space Ω𝐵 is defined as Ω𝐵 =  𝜔𝑖 , 𝜔𝑖𝑖 , 𝜔𝑖𝑖𝑖 , … , 𝜔𝑐𝑥𝑥   with each state 

referring to one of 120 possible orderings of the objects, whereas state space 

Ω𝐵𝐶  is defined as Ω𝐵𝐶 =  𝜔𝑖 , 𝜔𝑖𝑖 , 𝜔𝑖𝑖𝑖   , … , 𝜔𝑐𝑥𝑥       with each state including the 

description of one of 120 possible orderings along with a description of the 

respective colours of the objects. Given that, consider the event 𝐸 that 

“Nature selects one or more grey blocks”: let 𝑂 denote the set of states 

 
𝑔𝑟𝑟, 𝑔′𝑟𝑟, 𝑟𝑔𝑔, 𝑟′𝑔𝑔, 𝑔𝑏𝑏, 𝑔′𝑏𝑏, 𝑏𝑔𝑔, 𝑏′𝑔𝑔,

𝑔𝑟𝑏, 𝑔′𝑟𝑏, 𝑔𝑟′𝑏, 𝑔𝑟𝑏′ , 𝑔′𝑟′𝑏, 𝑔′𝑟𝑏′ , 𝑔𝑟′𝑏′ , 𝑔′𝑟′𝑏′
 , hence  𝑂 = 16, with 𝑂 ⊂ Ω𝐶; 

using the inverse projections from 𝑂 to spaces weakly more expressive than 

Ω𝐶 (i.e.: the state spaces 𝑔 Ω𝐶 =  Ω𝐶 , Ω𝐵𝐶 ), one can finally define the event 

                                  

26
 Identity maps and compositions of projections are not shown in the figure. 

27
 Notice that, for example, 𝑔𝑟𝑟 and 𝑔′𝑟𝑟 describe, respectively: the case in which the 

experimenter draws two red blocks and one of the grey blocks; the case in which the 

experimenter draws two red blocks and a grey block other than that of 𝑔𝑟𝑟. Note that, in 

practice, not even colour perceiving players would tell 𝑔𝑟𝑟 from 𝑔′𝑟𝑟; yet, to the analyst the 

difference matters as each state is associated with a different grey block, hence a different 

strategy-index. As regards players – if they are indeed colour perceivers – they simply 

realize that, say, 𝑔𝑟𝑟 obtains when the experimenter randomly draws the objects associated 

with it. 
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𝐸 as the set 𝑂→, with  𝑂→ = 16 + 16 ⋅ 6 = 112. Furthermore, the event that 

“Nature does not select one or more grey blocks” (i.e.: the negation of 𝐸) is 

defined by the set ∼ 𝑂→, with  ∼ 𝑂→ = 4 + 4 ⋅ 6 = 28. It follows that, unlike in 

the standard partitional models of knowledge, here it is possible that some 

states belong neither to an event nor to its negation: in fact, 𝑂→ ∪ ~𝑂→ ⊂ Ω∗ 

(i.e.: 𝑂→ ∪ ~𝑂→ ≠ Ω∗, as  𝑂→ +  ∼ 𝑂→ ≠  Ω∗ ), which implies that there are 

states one could be unaware of (e.g.: those that do not belong to 𝑂→ ∪ ~𝑂→). 

 

 This sub-section concludes by detailing a set of properties for 

information functions 𝐼𝑖  (accounting for multiple state spaces), which have 

been proposed by Heifetz et al. [2006]. Recall that, for each player 𝑖 ∈ 𝑁, I𝑖  

was referred to as the information partition of player 𝑖, and 𝐼𝑖  as the 

information (set-valued) function associating with every state 𝜔 ∈ Ω a non-

empty subset 𝐼𝑖 𝜔 ⊆ Ω (with 𝐼𝑖 𝜔  being interpreted as the set of states the 

agent considers possible when the true state is 𝜔).28 At this point it is 

convenient to extend such an information structure so as to account for 

multiple state spaces: henceforth, unless otherwise stated, the letter 𝐼 will 

stand for a generalized information function, that is, a set-valued function 

(with I here denoting merely a collection of mutually disjoint subsets of Ω∗) 

that associates with every state 𝜔 ∈ Ω∗ (with Ω∗ =  Ω𝑘
𝑘∈𝐾 ) a non-empty 

subset 𝐼 𝜔 ⊆ Ω∗; formally, for each player 𝑖 ∈ 𝑁, a generalized information 

                                  

28
 See section I.2.c. above. 
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function is defined as 𝐼𝑖 : Ω
∗ → 2Ω∗

∖ ∅.29 It is assumed that such a function 

satisfies the following properties: 

 

 𝑔𝑖. 𝑖: confinedness   𝜔 ∈ Ω′′ ⟹ ∃ Ω′ ≼ Ω′′  𝑠. 𝑡. 𝐼𝑖 𝜔 ⊆ Ω′  

 𝑔𝑖. 𝑖𝑖: reflexivity   ∀ 𝜔 ∈ Ω∗, 𝜔 ∈  𝐼𝑖 𝜔  
→

 

 𝑔𝑖. 𝑖𝑖𝑖: stationarity   𝜔′ ∈ 𝐼𝑖 𝜔 ⟹ 𝐼𝑖 𝜔
′ = 𝐼𝑖 𝜔  

 𝑔𝑖. 𝑖𝑣: projections preserve awareness    𝜔 ∈ Ω′′  𝑎𝑛𝑑 𝜔 ∈ 𝐼𝑖 𝜔  𝑎𝑛𝑑 Ω′ ≼ Ω′′  

⟹ 𝜔Ω′ ∈ 𝐼𝑖 𝜔Ω′   

 𝑔𝑖. 𝑣: projections preserve ignorance    𝜔 ∈ Ω′′  𝑎𝑛𝑑 Ω′ ≼ Ω′′  

⟹  𝐼𝑖 𝜔  
→

⊆  𝐼𝑖 𝜔Ω′   
→

 

 𝑔𝑖. 𝑣𝑖: projections preserve knowledge    Ω′ ≼ Ω′′ ≼ Ω′′′  𝑎𝑛𝑑 𝜔

∈ Ω′′′  𝑎𝑛𝑑 𝐼𝑖 𝜔 ⊆ Ω′′  ⟹  𝐼𝑖 𝜔  
Ω′ = 𝐼𝑖 𝜔Ω′  . 

 

A few comments are in order. Properties (gi.ii-iii) reproduce the standard 

properties of any traditional (partitional) information function: reflexivity says 

that a player never excludes the true state from the set of states she regards 

as possible; stationarity says that a player uses the consistency or 

inconsistency of states with her information to make inferences about the 

state. Properties (gi.i) and (gi.iv-vi) have been proposed by Heifetz et al. 

[2006]: confinedness says that the states a player considers as possible at a 

certain state 𝜔 ∈ Ω′′  are all described with a vocabulary no more expressive 

than Ω′′ ; properties (gi.iv-vi) compare a player‟s information set at a certain 

                                  

29
 For a given set Ω, 2Ω denotes its power set. 
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state 𝜔 with the information set at the projection of 𝜔 into a weakly less 

expressive space. The rationale is to guarantee that the states a player 

considers as possible at some 𝜔 ∈ Ω′′  can be described by that very player in 

a weakly less detailed – yet consistent – way for some Ω′ ≼ Ω′′ . Given that, 

one may introduce an unawareness operator which, now, can indeed capture 

the case in which a player does not know an event and does not know that 

she does not know it. 

The following definition of an “indirect-realism knowledge structure” 

compactly characterizes the above general framework for perception.  

 

Definition I.2. Given a strategic form game 𝐺, an indirect-realism knowledge 

structure (henceforth simply a “knowledge structure”) of 𝐺 is given by 

 𝐾,  Ω𝑘 , 𝑞𝑘 𝑘∈𝐾 , ≼,  𝑟Ω
Ω′

 ,  I𝑖 𝑖∈𝑁 , with each component being defined as 

above.30 

 

Before proceeding, I shall note that a knowledge structure of this form (along 

with the associated frame, to be introduced in the next sub-section) is 

comparable to the approach to scientific inquiry referred to as “model-

dependent realism”. As physicist Stephen Hawking puts it: «According to 

model-dependent realism, it is pointless to ask whether a model is real, only 

whether it agrees with observation. If there are two models that both agree 

with observation [...], then one cannot say that one is more real than another. 

                                  

30
 I𝑖  is here informally defined as a collection of mutually disjoint subsets of Ω∗; see formula 

(1.4.1) in the next sub-section for a more precise definition of I𝑖 . 
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One can use whichever model is more convenient in the situation under 

consideration. [...] Model-dependent realism applies not only to scientific 

models but also to the conscious and sub-conscious mental models we all 

create in order to interpret and understand the everyday world. There is no 

way to remove the observer – us – from our perception of the world, which is 

created through our sensory processing and through the way we think and 

reason. Our perception – and hence the observations upon which our 

theories are based – is not direct, but rather is shaped by a kind of lens, the 

interpretive structure of our human brains» (Hawking and Mlodinow [2010], 

pp. 61-62). 

I.4.b. From perception to labelling 

I can now turn to define the other ingredients of this theory of conformity in 

coordination games by introducing a perception-based model of labelling, in 

such a way as to allow for the possibility that both stochastic and non-

stochastic procedures may determine the labelling of strategies. Given a set 

of properties 𝑇, with generic element 𝑡, in what follows a “label” is defined as 

a rule that assigns to every element 𝑠𝑖𝑎  of the strategy set 𝑆𝑖  a unique 

element 𝜋 of a set Π𝑡  of instances of property 𝑡. 

 

Definition I.3. Given a strategic form game 𝐺, a label is a function 𝜆𝜔
𝑡  that 

assigns to each strategy-index 𝑠𝑖𝑎 ∈ 𝑆𝑖  one element from a set Π𝑡  of 

instances of property 𝑡; that is, a label 𝜆𝜔
𝑡 : 𝑆𝑖 → Π𝑡  is a rule that expresses 

strategies as an instance of a given property. 

 

In a nutshell, given a class of sets ℘ =  Π𝑡 : 𝜋 is an instance of property 𝑡 𝑡∈𝑇, 

a label function represents strategies as an instance 𝜋 of some property 𝑡 

(with 𝑡 ∈ 𝑇). For example, if 𝑡 is the property “colour”, then Π𝑡  is the set of 
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instances of colours, e.g.: Π𝑡 =  𝑔𝑟𝑒𝑦, 𝑟𝑒𝑑, 𝑏𝑙𝑎𝑐𝑘 . Hence, for some 𝑠𝑖𝑎 ∈ 𝑆𝑖 , 

𝜆𝜔
𝑡  𝑠𝑖𝑎   denotes a perception-based labelled strategy (henceforth simply a 

“labelled strategy”) and 𝜆𝜔
𝑡  𝑆𝑖  denotes the set of labelled strategies. The 

interpretation is that a label conveys the descriptions by which players 

recognize strategies. 

Now, it is assumed that a 𝜏-tuple of labels, with 𝜏 =  𝑇 , is associated 

with each state 𝜔 ∈ Ω∗: let Λ denote the set of labels, with generic element 

𝜆𝜔
𝑡 ; (general) “availability” is a rule that assigns to each state a certain 

number (𝜏) of labels. 

 

Definition I.4. Given a strategic form game 𝐺 and the full set of states 

Ω∗ =  Ω𝑘
𝑘∈𝐾 , availability is an injective set-valued function 𝜑 that assigns to 

each state 𝜔 ∈ Ω𝑘  (for all Ω𝑘 ∈ 𝑺, with 𝑺 =  Ω𝑘 𝑘∈𝐾) a 𝜏-tuple of labels 𝜆𝜔
𝑡 ∈ Λ 

(with 𝜏 =  𝑇 ); that is, availability 𝜑: Ω∗ → Λ is a rule associating with each 

state 𝜔 a certain number of labels 𝜆𝜔
𝑡  by which to express strategies with the 

vocabulary of Ω𝑘 . 

 

To sum up, given the set Λ of labels, for each state there exists a distinct 𝜏-

tuple of labels 𝜆𝜔
𝑡 ∈ Λ, where 𝜏 equals the cardinality of the set 𝑇 of 

properties. In what follows, for each state 𝜔 ∈ Ω∗ I shall use bold letters to 

denote such a 𝜏-tuple of labels, i.e.: 𝝀𝜔 ∶=  𝜆𝜔
𝑡 ′

, 𝜆𝜔
𝑡 ′′

, … , 𝜆𝜔
𝑡𝜏

 . Note that it is 

assumed that, if a certain state 𝜔 belongs to some space Ω𝑘  which is not rich 

enough to express a particular property 𝑡′ , then 𝜆𝜔
𝑡 ′

 is not defined at 𝑆𝑖 .   

 

Example: Choose an Object (cont’d). Recall that a complete lattice of disjoint 

spaces 𝑺 =  Ω𝑘 𝑘∈𝐾 , with Ω∗ =  Ω𝑘
𝑘∈𝐾 , is given by 𝑺 =  Ω∅, Ω𝐵 , Ω𝐶 , Ω𝐵𝐶 . 

Now, the set of properties can be defined as 𝑇 ∶=  ∅, 𝐵, 𝐶 , where 𝑡 = 𝐵 is the 
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“order” property while 𝑡 = 𝐶 is the “colour” property; 𝑡 = ∅ is the “null” 

property, which does not explain anything. The set of labels can be defined 

as Λ ∶=  𝝀𝜔  𝜔∈Ω∗ where, for each 𝜔 ∈ Ω∗, 𝝀𝜔 ∶=  𝜆𝜔
∅ , 𝜆𝜔

𝐵 , 𝜆𝜔
𝐶  . Again, it should 

be stressed that if 𝜔 belongs to some Ω𝑘  not rich enough to characterize a 

particular property 𝑡′ , then 𝜆𝜔
𝑡 ′

 is not defined at 𝑆𝑖 , e.g.: if some state 𝜔 

belongs to Ω𝐵, then 𝜆𝜔
𝐶  is not defined at 𝑆𝑖  (similarly, if 𝜔 ∈ Ω𝐶, 𝜆𝜔

𝐵  is not 

defined at 𝑆𝑖). Given that, consider the case where the experimenter 

randomly draws the objects from the bag in a way as captured by state 

𝜔 =  4𝑟, 5𝑏, 6𝑏 , with 𝜔 ∈ Ω𝐵𝐶 : clearly, 𝜔 =  4𝑟, 5𝑏, 6𝑏  is the state associated 

with the case where Nature has selected the strategic game with set of 

strategies 𝑆𝑖 =  𝑠𝑖4, 𝑠𝑖5, 𝑠𝑖6  for ∀ 𝑖 ∈ 𝑁. Hence, using the above notation, the 

value of the availability function at 𝜔 =  4𝑟, 5𝑏, 6𝑏  is 𝜑 𝜔 =  𝜆𝜔
∅ , 𝜆𝜔

𝐵 , 𝜆𝜔
𝐶   and 

the label functions 𝜆𝜔
𝐵 : 𝑆𝑖 → Π𝐵 , 𝜆𝜔

𝐶 : 𝑆𝑖 → Π𝐶 , and 𝜆𝜔
∅ : 𝑆𝑖 → Π∅ are given as 

follows.31 

 

 

 

 

                                  

31
 Recall that the analyst identifies the strategies with the numbers of the objects (object no. 

4 is red and objects no. 5-6 are black). In this connection, it should be stressed once again 

that – although such numbers are invisible to the players – the experimenter‟s random draws 

are publicly observed by the players: therefore, here players‟ descriptions of strategies are 

publicly observed permutations of the analyst‟s indexing of strategies (see footnote 18). 
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𝑆𝑖  𝜆𝜔
𝐵  𝑠𝑖𝑎   𝜆𝜔

𝐶  𝑠𝑖𝑎   𝜆𝜔
∅  𝑠𝑖𝑎   

𝑠𝑖4 𝑓𝑖𝑟𝑠𝑡 𝑟𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 

𝑠𝑖5 𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑙𝑎𝑐𝑘 𝑜𝑏𝑗𝑒𝑐𝑡 

𝑠𝑖6 𝑡𝑕𝑖𝑟𝑑 𝑏𝑙𝑎𝑐𝑘 𝑜𝑏𝑗𝑒𝑐𝑡 

 

Furthermore, let 𝑟 =  𝑟Ω
Ω𝐵𝐶

 
Ω,Ω𝐵𝐶 ∈𝑺: Ω≼Ω𝐵𝐶

 denote a set of surjective projections 

from Ω𝐵𝐶  to every space Ω that is weakly less expressive: for example, if 

Ω = Ω𝐵, then 𝜔Ω ≡ 𝑟
Ω𝐵
Ω𝐵𝐶

 𝜔  represents the projection of 𝜔 into the weakly 

less expressive space Ω𝐵, that is, 𝜔Ω =  4,5,6 ; from the above discussion it 

follows that, in this case, 𝜆𝜔Ω
𝐶  𝑆𝑖  is not defined. 

 

Given that each player‟s labelling of strategies should depend on her 

possibly limited perception of the game, it is convenient to define each 

“individual availability” as the restriction of (general) availability 𝜑 to a 

particular subset of Ω∗, namely to the “set of player 𝑖‟s perceivable states” 

(henceforth denoted by Ω𝑖
∗ for each 𝑖 ∈ 𝑁). In order to do so, I shall first recall 

that (given a complete lattice of disjoint spaces 𝑺 =  Ω𝑘 𝑘∈𝐾) ≼ is a partial 

preordering on 𝑺 such that, for any Ω, Ω′ ∈ 𝑺, Ω ≼ Ω′  means that Ω′  is weakly 

more expressive than Ω. Then, for each player 𝑖 ∈ 𝑁 let 𝐾 𝑖 ⊆ 𝐾 denote player 

𝑖‟s space-index set and, given that, let Ω𝑖
𝑚𝑎𝑥  denote the maximum (or 
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greatest) state space player 𝑖 is aware of, that is, Ω𝑖
𝑚𝑎𝑥 = max

𝑘∈𝐾 𝑖

  Ω𝑘 𝑘∈𝐾 : the 

interpretation is that Ω𝑖
𝑚𝑎𝑥  depicts “the most expressive state space 

perceivable to player 𝑖”.32 Hence, for each 𝑖 ∈ 𝑁 let I𝑖  be defined as: 

 

I𝑖 =  Ω𝑘 Ω𝑘∈𝑺: Ω𝑘≼Ω𝑖
𝑚𝑎𝑥 . 

(1.4.1) 

 

Given that, one can derive the set of player 𝑖’s perceivable states, for each 

𝑖 ∈ 𝑁, as Ω𝑖
∗ ∶=  Ω𝑘 ≡Ω𝑘∈𝑺: Ω𝑘≼Ω𝑖

𝑚𝑎𝑥  Ω𝑘
𝑘∈𝐾 𝑖

. I can now proceed to define 

each player‟s individual availability – henceforth denoted by 𝜑𝑖  for ∀ 𝑖 ∈ 𝑁 – 

as the restriction of (general) availability 𝜑 to the set Ω𝑖
∗ of 𝑖‟s perceivable 

states: 

 

𝜑𝑖 = 𝜑|Ω𝑖
∗ . 

(1.4.2) 

 

                                  

32
 Note that – given a partial preordering on 𝑺, and an information function 𝐼𝑖  – the maximum 

(or greatest) state space player 𝑖 is aware of can be derived for each 𝑖 ∈ 𝑁 by taking the 

maximum across the sets of the images of the states in Ω𝑘  (for ∀ Ω𝑘 ∈ 𝑺), i.e.: Ω𝑖
𝑚𝑎𝑥 =

max
Ω𝑘∈𝑺

   𝐼𝑖 𝜔 𝜔∈Ω𝑘  
Ω𝑘∈𝑺. In plain words, Ω𝑖

𝑚𝑎𝑥  is obtained by taking the maximum across all the 

state spaces player 𝑖 considers possible (with  𝐼𝑖 𝜔 𝜔∈Ω𝑘 = 𝐼𝑖 Ω
𝑘 ), therefore Ω𝑖

𝑚𝑎𝑥  simply 

represents to player 𝑖 the most expressive possible state space. 
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To sum up, given a strategic form game 𝐺 and the associated knowledge 

structure  Ω∗,  Ω𝑘 , 𝑞𝑘 𝑘∈𝐾 ,  I𝑖 𝑖∈𝑁 , 𝑖‟s individual availability is an injective set-

valued function 𝜑𝑖  that assigns to each state 𝜔 ∈ Ω𝑘  – for all Ω𝑘 ∈ I𝑖  – a 𝜏-

tuple of labels 𝜆𝜔
𝑡 ∈ Λ. Again, the intuition is that each player‟s labelling of 

strategies depends on her own (i.e.: possibly limited) perception of the game. 

The following definition compactly characterizes a “frame” as a 

structure that, in conjunction with a knowledge structure, fully determines the 

player‟s own comprehension and description of a certain strategic form 

game. 

 

Definition I.5. Given a strategic form game 𝐺 and the associated knowledge 

structure  𝐾,  Ω𝑘 , 𝑞𝑘 𝑘∈𝐾 , ≼,  𝑟Ω
Ω′

 ,  I𝑖 𝑖∈𝑁 , a frame is a description of 𝐺 and is 

given by  Ω∗, φ, Λ, 𝑇,  Π𝑡 𝑡∈𝑇 , with each component being defined as above. 

 

It should be noticed that the current formalization of the players‟ 

comprehension and description of a game, although somehow related to that 

of Casajus [2000], crucially differs from it by accounting for both stochastic 

and non-stochastic procedures in the specification of the labelling of 

strategies (see footnote18). Moreover, while Casajus directly allows for 

different label functions across players, here the frame does not vary directly 

with players (in fact, it varies with properties 𝑡 ∈ 𝑇), however different 

labellings may be employed among players by virtue of the different players‟ 

information functions: once again, here each player‟s labelling of strategies 

depends on her perception of the game.  

Further, going back to the game of Choose an Object – and 

considering again the case where state 𝜔 =  4𝑟, 5𝑏, 6𝑏  occurs – it is clear 

that 𝜆𝜔
𝐵  generates an isomorphic game (see footnote 7), that is, to the analyst 
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the mathematical structures of the original game with strategies 𝑆𝑖 =

 𝑠𝑖4, 𝑠𝑖5, 𝑠𝑖6  and of the game with labelled strategies 

𝜆𝜔
𝐵  𝑆𝑖 =  𝑓𝑖𝑟𝑠𝑡, 𝑠𝑒𝑐𝑜𝑛𝑑, 𝑡𝑕𝑖𝑟𝑑  represent exactly the same decision problem, 

and as such should not be treated differently (Harsanyi and Selten [1988], 

Ch. 3).33 Thus, since 𝜆𝜔
𝐵  𝑠𝑖4 , 𝜆𝜔

𝐵  𝑠𝑖5 , 𝜆𝜔
𝐵  𝑠𝑖6  are symmetric strategies, 

players ought to assign them the same probability in a symmetry-invariant 

equilibrium: what follows formalizes this argument by making use of the 

notion of a frame. 

 

Remark I.1. Given a strategic form game 𝐺, and the associated knowledge 

structure  𝐾,  Ω𝑘 , 𝑞𝑘 𝑘∈𝐾 , ≼,  𝑟Ω
Ω′

 ,  I𝑖 𝑖∈𝑁  and frame  Ω∗, φ, Λ, 𝑇,  Π𝑡 𝑡∈𝑇 : 

 𝑓𝑜𝑟 ∀ 𝑠𝑖𝑎 , 𝑠𝑖𝑎 ∈ 𝑆𝑖 : 𝑎 ≠ 𝑎 ;  𝜆𝜔
𝑡  𝑠𝑖𝑎  = 𝜆𝜔

𝑡  𝑠𝑖𝑎   s.t. 𝜆𝜔
𝑡 ∈ 𝜑𝑖 Ω𝑖

∗   

⟹ 𝑝 𝑠𝑖𝑎  = 𝑝 𝑠𝑖𝑎  . 

 

A few observations are in order. First, notice that remark I.1 simply says that 

if two strategies with different indices (i.e.: 𝑠𝑖𝑎 , 𝑠𝑖𝑎 ∈ 𝑆𝑖 : 𝑎 ≠ 𝑎 ) are labelled in 

the same way for a given property 𝑡 ∈ 𝑇 (i.e.: 𝜆𝜔
𝑡  𝑠𝑖𝑎 = 𝜆𝜔

𝑡  𝑠𝑖𝑎  ), then the 

probability with which they are chosen by player 𝑖 must be the same (i.e.: 

𝑝 𝑠𝑖𝑎  = 𝑝 𝑠𝑖𝑎  ) for some 𝜆𝜔
𝑡 , provided that 𝑖 can actually conceive of those 

labelled strategies (i.e.: 𝜆𝜔
𝑡 ∈ 𝜑𝑖 Ω𝑖

∗ , with 𝜑𝑖 Ω𝑖
∗  denoting the range of 

individual availability 𝜑𝑖). Also, note that remark I.1 (which, following Casajus 

[2000], is derived from Harsanyi and Selten‟s requirement of invariance with 

                                  

33
 Conversely, it is also clear that 𝜆𝜔

𝐶  does not generate an isomorphic game.  
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respect to isomorphisms) uses some version of Bernoulli‟s “principle of 

insufficient reason” (i.e.: if the strategies are indistinguishable except for their 

names, then each should be assigned the same prior belief); similarly the 

frameworks of Bacharach [1993] and Janssen [2001] too, more or less 

implicitly, use some version of Bernoulli‟s principle of insufficient reason.  

I.4.c. From labelling to salience comparison 

From the above discussion it is now clear that the solution concepts of all the 

aforementioned models – as a consequence of their use of the principle of 

insufficient reason – depend on the number of strategies which are labelled 

in the same way: in other words, coordination heavily depends on the rarity of 

some labelled strategies relative to all other labelled strategies. Indeed, what 

those models lack is an appreciation of the degree of salience of each 

labelled strategy (for a given property). 

 

Example: Choose an Object (cont’d). Consider the case where the 

experimenter randomly draws the objects from the bag in a way as captured 

by state 𝜔 =  4𝑟, 5𝑏, 6𝑏 , with 𝜔 ∈ Ω𝐵𝐶 : again, 𝜔 =  4𝑟, 5𝑏, 6𝑏  is the state 

associated with the case where Nature has selected the strategic game with 

set of strategies 𝑆𝑖 =  𝑠𝑖4, 𝑠𝑖5, 𝑠𝑖6  for ∀ 𝑖 ∈ 𝑁. Now, I shall temporarily make 

the assumption that no player is aware of the block orderings, hence no 

player conceives of any labelling more expressive than the colour identifier: 

therefore, given I𝑖 =  Ω∅, Ω𝐶  for ∀ 𝑖 ∈ 𝑁 – and denoting Ω ≡ Ω𝐶 – let 

𝜔Ω ≡ 𝑟
Ω𝐶
Ω𝐵𝐶

 𝜔  be the projection of 𝜔 into the weakly less expressive space 



 

- 53 - 

 

Ω𝐶; it follows that 𝜆𝜔Ω
𝐶 ∈ 𝜑𝑖 𝜔Ω , with 𝜆𝜔Ω

𝐶 : 𝑆𝑖 → Π𝐶 being given as before for 

∀ 𝑖 ∈ 𝑁.34 Recall that remark I.1 states that if two different strategies are 

labelled in the same way (for a given property 𝑡 ∈ 𝑇), then the probability with 

which they are chosen by player 𝑖 must be the same for some 𝜆𝜔
𝑡 ∈ 𝜑𝑖 Ω𝑖

∗ . 

So, in this case remark I.1 implies that 𝑝 𝑏𝑙𝑎𝑐𝑘 ≡ 𝑝  𝜆𝜔Ω
𝐶  𝑠𝑖5  = 𝑝  𝜆𝜔Ω

𝐶  𝑠𝑖6   

for 𝜆𝜔Ω
𝐶 ∈ 𝜑𝑖 𝜔Ω ,35 however it does not say anything about 𝑝 𝑏𝑙𝑎𝑐𝑘  being 

greater or less than 𝑝 𝑟𝑒𝑑 . In effect, many may probably feel that red is 

more salient than black. 

 

In order to capture the different degrees of salience that players may 

attach to their labelled strategies, this sub-section introduces a binary relation 

on the set of instances of property 𝑡 (or, equivalently, on the set of labelled 

strategies via 𝜆𝜔
𝑡 ). 

 

Definition I.6. Given a set Π𝑡  of instances of property 𝑡, with 𝑡 ∈ 𝑇, salience 

is a binary relation ≽𝑡  defined on Π𝑡  which allows the comparison of pairs of 

instances 𝜋, 𝜋′  of 𝑡 (hence, the comparison of pairs of alternative labelled 

strategies via 𝜆𝜔
𝑡 , when 𝜆𝜔

𝑡  𝑠𝑖𝑎  = π,  𝜆𝜔
𝑡  𝑠𝑖𝑎  = π′  for some 𝜆𝜔

𝑡 ∈ Λ); that is, 

                                  

34
 The above assumption implies that, in this example, 𝜆𝜔

𝐵  is not defined for any 𝜔 ∈ Ω𝑖
∗. 

35
 Similarly, if one lets 𝜔Ω∅ ≡ 𝑟

Ω∅
Ω𝐵𝐶

 𝜔  be the projection of 𝜔 into the least expressive space 

Ω∅, obviously given that 𝜆𝜔
Ω∅

∅ ∈ 𝜑𝑖 Ω𝑖
∗  for ∀ 𝑖 ∈ 𝑁, in this example remark I.1 also implies 

that 𝑝 𝑜𝑏𝑗𝑒𝑐𝑡 ≡ 𝑝  𝜆𝜔
Ω∅

∅  𝑠𝑖4  = 𝑝  𝜆𝜔
Ω∅

∅  𝑠𝑖5  = 𝑝  𝜆𝜔
Ω∅

∅  𝑠𝑖6   for 𝜆𝜔
Ω∅

∅ ∈ 𝜑𝑖 𝜔Ω∅ . 
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salience is a complete preordering on Π𝑡  such that, for any π, π′ ∈ Π𝑡 , π ≽𝑡 π′  

means that “𝜋 is weakly more salient than 𝜋′ ”. 

 

In brief, given a class of sets ℘ =  Π𝑡 : 𝜋 is an instance of property 𝑡 𝑡∈𝑇, recall 

that a label function represents strategies as an instance 𝜋 of some property 

𝑡 (with 𝑡 ∈ 𝑇). For example, denoting by 𝑡 = 𝐶 the colour property, Π𝐶  is the 

set of instances of colours, e.g.: Π𝐶 =  𝑔𝑟𝑒𝑦, 𝑟𝑒𝑑, 𝑏𝑙𝑎𝑐𝑘 ; hence, in this case, 

salience ≽𝐶  allows the comparison of pairs of alternative colour-labelled 

strategies, e.g.: 𝑟𝑒𝑑 ≽𝐶 𝑔𝑟𝑒𝑦 ≽𝐶 𝑏𝑙𝑎𝑐𝑘. Similarly, in the case where players 

identify the strategies by the order in which the objects are randomly drawn 

from the bag, denote by 𝑡 = 𝐵 the order property and let Π𝐵  be the set 

 𝑓𝑖𝑟𝑠𝑡, 𝑠𝑒𝑐𝑜𝑛𝑑, 𝑡𝑕𝑖𝑟𝑑 ; hence, in this case, salience ≽𝐵 allows the comparison 

of pairs of alternative order-labelled strategies, e.g.: 

𝑓𝑖𝑟𝑠𝑡 ≽𝐵 𝑠𝑒𝑐𝑜𝑛𝑑 ≽𝐵 𝑡𝑕𝑖𝑟𝑑.36 

Note that, for the sake of simplicity, the present theory assumes that 

salience is based on an exogenous criterion: in effect, one may think of 

salience as a (biology- or culture-dependent) binary relation based on a 

mutually recognizable criterion; as a consequence, for a given game and 

associated knowledge and frame structures, it is assumed that there exists a 

unique salience relation ≽𝑡  for each property 𝑡 ∈ 𝑇. 

 

                                  

36
 The symbol used to denote salience, for some 𝑡 (i.e.: a binary relation ≽𝑡  defined on the 

set Π𝑡  of instances of property 𝑡) must not be confused with the symbol used to denote 

expressivity (i.e.: a binary relation ≼ defined on a complete lattice 𝑺 of disjoint state spaces). 
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Example: Choose an Object (cont’d). In the case of the colour property, one 

may argue that primary colours are most salient: this could be captured 

adopting the “RGB” colour model. RGB is an additive colour model, used in 

computer graphics, in which red, green and blue light are added together in 

various ways to reproduce a broad range of colours (the name of the model 

comes from the initials of the three additive primary colours, i.e.: 𝑅 =red, 

𝐺 =green, and 𝐵 =blue). In computing, the three component values are 

usually inputted as integers in the range 0 to 255; here – given the set of 

integers 𝑋 =  0,1,2, … ,255 , with generic element 𝑥 – one can easily define 

the set Π𝐶  of instances of colours as the set of 3-dimensional vectors 

Π𝐶 ≡ 𝑋3 =  𝜋 =  𝑥𝑅 , 𝑥𝐺 , 𝑥𝐵 : 𝑥𝑣 ∈ 𝑋 𝑓𝑜𝑟 ∀ 𝑣 = 𝑅, 𝐺, 𝐵 . Next, one needs to 

define a notion of length of a vector in 𝑋3, that is, a norm on 𝑋3 (i.e.: 

 ⋅ : 𝑋3 → ℝ+): for example, consider the sup norm, defined as the absolute 

value of the largest component of a vector, that is,  𝜋 ∶= max
𝑣

   𝑥𝑣 : 𝑣 =

𝑅, 𝐺, 𝐵 . Now, consider the case where Nature has selected the strategic 

game with set of strategies  𝑠𝑖1, 𝑠𝑖3, 𝑠𝑖5  for ∀ 𝑖 ∈ 𝑁, and let the set of colour-

labelled strategies be given by  𝑔𝑟𝑒𝑦, 𝑟𝑒𝑑, 𝑏𝑙𝑎𝑐𝑘 , with 𝑠𝑖1 ↦ 𝑔𝑟𝑒𝑦, 𝑠𝑖3 ↦ 𝑟𝑒𝑑, 

and 𝑠𝑖5 ↦ 𝑏𝑙𝑎𝑐𝑘 for ∀ 𝑖 ∈ 𝑁. Then, from computer graphics we know that a 

common shade of grey is given by the vector 𝜋 =  127,127,127 , red is given 

by the vector 𝜋 =  255,0,0 , and black by the vector 𝜋 =  0,0,0 : it is clear 

that the sup norm implies that  𝑟𝑒𝑑 >  𝑔𝑟𝑒𝑦 >  𝑏𝑙𝑎𝑐𝑘 . Finally, salience 

relation ≽𝐶  can be defined accordingly, thereby indicating that primary 

colours are most salient, that is, 𝑟𝑒𝑑 ≽𝐶 𝑔𝑟𝑒𝑦 ≽𝐶 𝑏𝑙𝑎𝑐𝑘.37 

                                  

37
 The assumption that I have arbitrarily made here (that primary colours are more salient 
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The next assumption follows from the introduction of a salience 

relation. 

 

Assumption I.1. Given a strategic form game 𝐺 and the associated 

knowledge structure  𝐾,  Ω𝑘 , 𝑞𝑘 𝑘∈𝐾 , ≼,  𝑟Ω
Ω′

 ,  I𝑖 𝑖∈𝑁 , frame 

 Ω∗, φ, Λ, 𝑇,  Π𝑡 𝑡∈𝑇 , and salience relations  ≽𝑡 𝑡∈𝑇 : 

 
𝑓𝑜𝑟 ∀ 𝑠𝑖𝑎 , 𝑠𝑖𝑎 ∈ 𝑆𝑖 : 𝑎 ≠ 𝑎 ;  𝜆𝜔

𝑡  𝑠𝑖𝑎  , 𝜆𝜔
𝑡  𝑠𝑖𝑎  ∈ Π𝑡  s.t. 𝜆𝜔

𝑡  𝑠𝑖𝑎 = 𝜋, 𝜆𝜔
𝑡  𝑠𝑖𝑎  = 𝜋′

𝑎𝑛𝑑  π ≽𝑡 π′   𝑎𝑛𝑑  𝜆𝜔
𝑡 ∈ 𝜑𝑖 Ω𝑖

∗ 
  

⟹ 𝑝 𝑠𝑖𝑎  ≥ 𝑝 𝑠𝑖𝑎  . 

 

Assumption I.1 simply says that if two strategies with different indices (i.e.: 

𝑠𝑖𝑎 , 𝑠𝑖𝑎 ∈ 𝑆𝑖 : 𝑎 ≠ 𝑎 ) are labelled differently for a given property 𝑡 ∈ 𝑇 (i.e.: 

𝜆𝜔
𝑡  𝑠𝑖𝑎  = 𝜋, 𝜆𝜔

𝑡  𝑠𝑖𝑎  = 𝜋′ ) and if the instances of property 𝑡 with which 𝑠𝑖𝑎  and 

𝑠𝑖𝑎 , respectively, are associated are the first more salient than the second 

(i.e.: π ≽𝑡 π′ ), then the probability with which they are chosen by player 𝑖 

should be such that the former is weakly more likely than the latter (i.e.: 

                                                                                              

than others), in fact, has some sort of scientific foundation. The modern RGB colour model is 

derived from the Young-Helmholtz tri-chromatic colour vision theory, which was developed in 

the 19th century (by polymaths Thomas Young and Hermann von Helmholtz) in order to 

explain the way the photoreceptor cells of human eyes enable colour vision. According to 

such a theory, in fact, there exist three types of photoreceptors (now referred to as “cone 

cells”) in the eye, each of which is sensitive to a particular range of visible light. Evidence 

that the eye does contain three types of cone has effectively been provided relatively 

recently by examining the light emerging from the eye after reflection off the retina. 



 

- 57 - 

 

𝑝 𝑠𝑖𝑎  ≥ 𝑝 𝑠𝑖𝑎  ) for some 𝜆𝜔
𝑡 , provided that 𝑖 can actually conceive of those 

labelled strategies (i.e.: 𝜆𝜔
𝑡 ∈ 𝜑𝑖 Ω𝑖

∗ ). 

 

Example: Choose an Object (cont’d). Going back to the case where 𝜆𝜔Ω
𝐶 ∈

𝜑𝑖 𝜔Ω , with label function 𝜆𝜔Ω
𝐶 : 𝑆𝑖 → Π𝐶 and salience relation ≽𝐶 being 

defined as above, remark I.1 and assumption I.1 imply that 𝑝  𝜆𝜔Ω
𝐶  𝑠𝑖5  =

𝑝  𝜆𝜔Ω
𝐶  𝑠𝑖6  ≡ 𝑝 𝑏𝑙𝑎𝑐𝑘 ≤ 𝑝 𝑟𝑒𝑑 ≡ 𝑝  𝜆𝜔Ω

𝐶  𝑠𝑖4   for 𝜆𝜔Ω
𝐶 ∈ 𝜑𝑖 𝜔Ω . Therefore, 

player 𝑖‟s (mixed) strategies – respecting remark I.1 and assumption I.1 for 

𝜆𝜔Ω
𝐶  – can be represented as the vector of probabilities 

𝜍𝑖 =  𝑝 𝑠𝑖4 , 𝑝 𝑠𝑖5 , 𝑝 𝑠𝑖6  =  𝑝𝑖 ,
1

2
𝑝 𝑖 ,

1

2
𝑝 𝑖  with 𝑝𝑖 ≥ 𝑝 𝑖  (𝑝 + 𝑝 𝑖 = 1).  

 

To sum up, remark I.1 and assumption I.1 have the effect of restricting the 

set of (mixed) strategies by imposing constraints that capture the notions of 

symmetry and salience, respectively. Before proceeding to the next sub-

section, I shall abuse notation denoting by 𝜌𝑖 𝜆.
𝑡  a generic (mixed) strategy 

of player 𝑖 respecting remark I.1 and assumption I.1 for some 𝜆.
𝑡 . (In the 

above example, 𝜌𝑖 𝜆𝜔Ω
𝐶  ≡  𝑝𝑖 ,

1

2
𝑝 𝑖 ,

1

2
𝑝 𝑖  with 𝑝𝑖 ≥ 𝑝 𝑖  (𝑝 + 𝑝 𝑖 = 1).)   

I.4.d. Expected utility maximization 

The last step involved in the operation of a convention is an expected utility 

maximization. As mentioned above, the present theory models uncertainty in 

an original way, which is only in part similar to Bacharach [1993] in that a 

certain kind of player – or rather, here, a player perceiving certain states – is 

associated with a certain labelling of strategies (and, in the present theory, in 

turn with a certain binary relation on the set of the player‟s labelled 

strategies). In fact, given the set of a player‟s actually realized attributes, 
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Bacharach assumes that the distribution of such sets of realized attributes in 

the population of players is exogenously given:38 Bacharach uses this 

distribution to derive the “subjective probability that a player having a 

repertoire assigns to the other player having some other repertoire”; in doing 

so, Bacharach [1993] (as well as Janssen [2001] and Casajus [2000]) 

assumes that each player believes that her co-player‟s repertoire is some 

subset of, or equal to, her own repertoire. Now, while Bacharach [1993] does 

not provide a solid foundation for those assumptions (in terms of a 

knowledge structure),39 the present theory justifies its own construction by 

employing an indirect-realism knowledge structure as defined in section I.4.a. 

above. Besides, this study departs from the existing literature also because, 

as it will soon be clear, by implementing a notion of the players‟ 

(un)awareness it effectively permits to explain coordination, in certain cases, 

even between differently-aware players (i.e.: between players that have 

partially-different sets of labelled strategies). 

Thus, I shall introduce a few more definitions. Given a complete lattice 

of disjoint spaces 𝑺 and an expressivity relation ≼ (i.e.: a partial preordering 

on 𝑺 as defined in section I.4.a. above), let 𝑺 denote the set of minimal 

                                  

38
 The sets of attributes are referred to as “families” in Bacharach‟s [1993] terminology (each 

family roughly corresponds to the set of instances of property 𝑡 of the present theory); 

Bacharach refers to a set of such families as a “repertoire”. 

39
 Bacharach and Stahl [2000] justify those assumptions by implementing a Level-k model of 

bounded rationality. 



 

- 59 - 

 

elements of 𝑺\Ω∅.40 Similarly, given I𝑖 =  Ω𝑘 Ω𝑘∈𝑺: Ω𝑘≼Ω𝑖
𝑚𝑎𝑥  for each 𝑖 ∈ 𝑁 (as 

defined in formula (1.4.1) above), let I
𝑖
 denote the set of minimal elements of 

I𝑖\Ω∅. Before proceeding, it should be noted that the reason why I have 

defined such sets is that each space Ω ∈ 𝑺 may (or may not) describe the 

states 𝜔 ∈ Ω∗ according to one property (or basic vocabulary), whereas all 

the spaces more expressive than those in 𝑺 just employ various 

combinations of those basic vocabularies. (For example, in the game of 

Choose an Object, 𝑺 ∶=  Ω∅, Ω𝐵 , Ω𝐶 , Ω𝐵𝐶 , therefore 𝑺 =  Ω𝐵 , Ω𝐶 ; if player 𝑖 is 

not aware of the block orderings, then I𝑖 =  Ω∅, Ω𝐶  and I
𝑖

=  Ω𝐶 , that is, Ω𝐶 

is his only basic vocabulary.) Given that, let 𝜐 Ω  denote the objective 

probability of a player being aware of some space Ω ∈ 𝑺. So, for each Ω ∈ 𝑺, 

𝜐 Ω  represents the probability of success in a Bernoulli trial, where the 

outcomes of the experiment are success (being interpreted as the “outcome 

that a player is aware of Ω”) and failure (being interpreted as the “outcome 

that a player is not aware of Ω”). It is assumed that the probabilities of a 

player being aware of different spaces in 𝑺 are mutually independent (and 

exogenously given). 

Now, the present theory assumes that players are naïve in the 

following way: if player 𝑖 is aware of some state spaces (i.e.: aware of those 

contained in I𝑖  and unaware of those in 𝑺\I𝑖), then she presumes that her 

co-player may be aware of one space in I
𝑖
∪ Ω∅ only; that is, player 𝑖 

                                  

40
 Given a relation ≼ on 𝑺, Ω ∈ 𝑺 is a minimal element if there is no element Ω ∈ 𝑺 (with 

Ω ≁ Ω, where ≁ means “not equivalent” or rather, here, “not iso-expressive”) such that Ω ≼

Ω. 
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believes that I𝑗 ⊆ I
𝑖
∪ Ω∅ and  I𝑗  = 1. Hence, the assumption of 

independence across state spaces Ω ∈ 𝑺 makes it possible that player 𝑖’s 

prior belief 𝜏𝑖 Ω   about 𝑗 being aware of Ω  is derived from 𝜐 as follows: 

 

𝜏𝑖 Ω  

∶=

 
 
 
 
 

 
 
 
 

𝜐 Ω    1 − 𝜐 Ω  Ω∈I
𝑖
\Ω 

  𝜐 Ω    1 − 𝜐 Ω  Ω∈I
𝑖
\Ω  +   1 − 𝜐 Ω  Ω∈I

𝑖Ω ∈I
𝑖

: Ω ∈ I
𝑖
,

𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 : Ω ∉ I
𝑖
∪ Ω∅,

  1 − 𝜐 Ω  Ω∈I
𝑖

  𝜐 Ω    1 − 𝜐 Ω  Ω∈I
𝑖
\Ω  +   1 − 𝜐 Ω  Ω∈I

𝑖Ω ∈I
𝑖

: Ω = Ω∅, I
𝑖
≠ ∅,

1 : Ω = Ω∅, I
𝑖

= ∅.

  

(1.4.3) 

 

A few comments are in order. First, it should be noticed that formula (1.4.3) 

implies that player 𝑖 presumes the other player not to be aware of state 

spaces weakly more expressive than those in I
𝑖
∪ Ω∅; besides, the first line 

of the formula shows that, for all the spaces in I
𝑖
, 𝜏𝑖 Ω   is given by the ratio 

of the “objective probability of being aware of Ω  only” to the “sum of the 

objective probabilities of being aware of (only) each of the spaces in I
𝑖
 and 

the probability of being aware of Ω∅ only”.41 (This ensures that the 𝜏𝑖 Ω   sum 

                                  

41
 The “probability of being aware of Ω∅ only” is given by the product of the objective 

probabilities of being unaware of all the spaces in I
𝑖
. 
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to unity for ∀ Ω ∈ I
𝑖
∪ Ω∅.) Further, the third line of the formula gives the value 

of 𝜏𝑖 Ω = Ω∅  when player 𝑖 is aware of at least one space weakly more 

expressive than Ω∅ (i.e.: when I
𝑖
 is non-empty), while the fourth line gives the 

value of 𝜏𝑖 Ω = Ω∅  when player 𝑖 is unaware of any space weakly more 

expressive than Ω∅ (i.e.: when I
𝑖
 is empty). 

The interpretation is the following. Suppose that 𝐺 is played many 

times between players 𝑖 and 𝑗, with players drawn at random from large 

populations: then, 𝜏𝑖 ⋅  may be interpreted as the statistical distribution of the 

“mixed strategies 𝜌𝑗  𝜆.
.  respecting remark I.1 and assumption I.1 for the 

available 𝜆.
𝑡”, in a population of agents playing 𝐺 in the role of player 𝑗 (in 

other words, 𝜏𝑖 ⋅  may be thought of as the distribution of the basic 

vocabularies, hence the distribution of the strategies labelled according to the 

available 𝑡 ∈ 𝑇, hence the distribution of 𝜌𝑗  𝜆.
. ).42 In fact, if these statistical 

distributions are observed, each 𝜏𝑖 Ω   may also represent 𝑖‟s probabilistic 

belief about player 𝑗 respecting remark I.1 and assumption I.1 for the 

available 𝜆.
𝑡 , in a play of 𝐺. It should be highlighted that if the agent who is 

drawn to play in the role of player 𝑗 happened to be aware indeed of state 

spaces in I𝑗 ⊆ I𝑖  – yet of spaces weakly more expressive than those in 

I
𝑖
∪ Ω∅ (e.g.: in other words, if 𝑗 herself were aware of Ω𝐵𝐶) – then by 

                                  

42
 Obviously, for each set 𝜆.

𝑡 𝑆𝑗   there is an infinite number of mixed strategies 𝜌𝑗  𝜆.
𝑡  

respecting remark I.1 and assumption I.1 (for some given 𝑡). Yet, for simplicity, one can think 

of the belief about 𝜌𝑗  𝜆.
𝑡  as a degenerate point belief, for each 𝑡 ∈ 𝑇: as it will soon be clear, 

expected utility maximization will imply that it is so (i.e.: for each 𝑡 ∈ 𝑇, individuals play one 

and only one profile of mixed strategies). 
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disregarding 𝜏𝑖 Ω
𝐵𝐶  little would be lost: in effect, although 𝑗 will actually be 

able to describe the current situation according to each of the basic 

vocabularies (properties) available in I
𝑖
, she will still have to play a mixed 

strategy respecting remark I.1 and assumption I.1 for one of the available λ.
𝑡  

only; as a consequence, from 𝑖‟s perspective, 𝑗 will be expected to play a 

mixed strategy respecting remark I.1 and assumption I.1 for one of the λ.
𝑡  

which the vocabularies available in I
𝑖
∪ Ω∅ permit to define, as captured by 

formula (1.4.3) above.43 Therefore, 𝜏𝑖 Ω
𝑡  is interpreted as “player 𝑖‟s prior 

belief  about player 𝑗 respecting remark I.1 and assumption I.1 for 𝜆.
𝑡 , in a 

play of 𝐺”. 

 

Example: Choose an Object (cont’d). Recall that 𝑺 ∶=  Ω∅, Ω𝐵 , Ω𝐶 , Ω𝐵𝐶 , which 

implies that 𝑺 =  Ω𝐵 , Ω𝐶 ; further, if player 𝑖 is aware of both block orderings 

and colour differences, then I𝑖 =  Ω∅, Ω𝐵 , Ω𝐶 , Ω𝐵𝐶  and I
𝑖

=  Ω𝐵 , Ω𝐶 . Now, 

the above assumption about the players‟ naïveté implies that player 𝑖 will 

presume that player 𝑗 must be aware of either Ω∅ or Ω𝐵 or Ω𝐶 (but not of a 

union of Ω𝐵 and Ω𝐶). In the case in which the agent who is drawn to play in 

the role of player 𝑗 happened to be aware of state spaces in I𝑗 ⊆ I𝑖  – yet of 

spaces weakly more expressive than those in I
𝑖
∪ Ω∅ (i.e.: Ω𝐵𝐶) – then she 

will still have to play a mixed strategy respecting remark I.1 and assumption 

I.1 for one of the available λ.
𝑡  only: for instance, if player 𝑗 happens to be 

                                  

43
 On a different note it should be stressed that, obviously, in the case in which it is possible 

for some 𝑗 in the population to be aware of state spaces not in I𝑖  (i.e.: if I𝑗 ⊈ I𝑖), then the 

notion of unawareness implies that (for some player 𝑖) 𝜏𝑖  will not be defined at those spaces. 
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aware of both Ω𝐵 and Ω𝐶 (i.e.: I𝑗 =I
𝑖

=  Ω∅, Ω𝐵 , Ω𝐶 , Ω𝐵𝐶 ), then from 𝑖‟s 

perspective 𝑗 will be expected to play a mixed strategy respecting remark I.1 

and assumption I.1 for one of the λ.
𝑡  which the vocabularies available in 

I
𝑖
∪ Ω∅ permit to define, that is, either 𝜌𝑗  𝜆.

𝐶  or 𝜌𝑗  𝜆.
𝐵  or 𝜌𝑗  𝜆.

∅ .  

 

Before proceeding it should be noted that (while the reason for the above 

simplifying assumption is that the introduction of salience  ≽𝑡 𝑡∈𝑇 allows the 

comparison of pairs of strategies, each expressed as an instance of an 

exclusive property 𝑡 ∈ 𝑇) such an assumption is likely to make no difference 

to expected utility maximizing behaviour, besides sparing us some 

complications. 

Given that, I can now turn to define the expected payoff to player 𝑖, as 

follows. 

 

Definition I.7. Given a strategic form game 𝐺 and the associated knowledge 

structure  𝐾,  Ω𝑘 , 𝑞𝑘 𝑘∈𝐾 , ≼,  𝑟Ω
Ω′

 ,  I𝑖 𝑖∈𝑁 , frame  Ω∗, φ, Λ, 𝑇,  Π𝑡 𝑡∈𝑇 , salience 

relations  ≽𝑡 𝑡∈𝑇, and distribution 𝜐, the expected payoff to player 𝑖 is defined 

as: 

 

E𝜍𝑖 ,𝜌−𝑖 ,𝜐 𝑢𝑖|I𝑖 =   𝜏𝑖 Ω 𝑢𝑖 𝜍𝑖 , 𝜌−𝑖 𝜆.
𝑡  + 𝜏𝑖 Ω

∅ 𝑢𝑖  𝜍𝑖 , 𝜌−𝑖 𝜆.
∅  

𝑡∈𝑇: 𝑡≠∅Ω∈I
𝑖

, 

 

where 𝜍𝑖  is a generic mixed strategy of player 𝑖, and 𝜌−𝑖 𝜆.
𝑡  is a profile of 

strategies of all players other than 𝑖 respecting remark I.1 and assumption I.1 

for some 𝜆.
𝑡  (with 𝜌−𝑖 𝜆.

𝑡 =  𝜌𝑗  𝜆.
𝑡  

𝑗 ∈𝑁: 𝑗≠𝑖
 and 𝜌−𝑖 𝜆.

∅ =  𝜌𝑗  𝜆.
∅  

𝑗 ∈𝑁: 𝑗≠𝑖
). 
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It is clear that the expected payoff to player 𝑖 depends on her perception 

(hence labelling) and salience comparison, which implies that players with 

different knowledge functions face different games. In a nutshell, the second 

term of the above expected utility function represents the share of the payoff 

due to 𝑖‟s belief about her co-player(s) being unaware of any state space 

more expressive than the uninformative Ω∅: as a result, (before playing 𝑖 

presumes that) every other player completely randomizes as imposed by 

remark I.1 on the case where Ω = Ω∅ (i.e.: 𝜌−𝑖 𝜆.
∅ ). Then, the first term 

represents the share of the payoff due to 𝑖‟s belief about her co-player(s) 

being aware of (only) each of the spaces in I
𝑖
 (which is the reason for the 

summation across Ω ∈ I
𝑖
); notice that, for each Ω ∈ I

𝑖
, players are required 

to take a mixed strategy respecting remark I.1 and assumption I.1 for 𝜆.
𝑡 ≠ 𝜆.

∅ 

(i.e.: 𝜌−𝑖 𝜆.
𝑡 , which is the reason for the summation across ∀ 𝑡 ∈ 𝑇: 𝑡 ≠ ∅). In 

this regard, it should be highlighted that – for each space Ω ∈ 𝑺 – there exists 

only one property 𝑡 ≠ ∅ (with 𝑡 ∈ 𝑇) according to which 𝜆.
𝑡  may express 

strategies: this implies that only one 𝜆.
𝑡 ≠ 𝜆.

∅ is actually defined for each state 

𝜔 ∈ Ω, with Ω ∈ 𝑺. It follows that in the first term of definition I.7, for each 

space Ω ∈ I
𝑖
, 𝜌−𝑖 𝜆.

𝑡  denotes a profile of strategies of all players 𝑗 ≠ 𝑖 

respecting remark I.1 and assumption I.1 for the only one label function 

𝜆.
𝑡 ≠ 𝜆.

∅ which is actually defined. 

 

Example: Choose an Object (cont’d). Given 𝑺 =  Ω∅, Ω𝐵 , Ω𝐶 , Ω𝐵𝐶 , recall that 

the set of properties is defined as 𝑇 ∶=  ∅, 𝐵, 𝐶 , where 𝑡 = 𝐵 is the “order” 

property while 𝑡 = 𝐶 is the “colour” property; 𝑡 = ∅ is the “null” property, 

which does not explain anything. The set of labels is defined as Λ ∶=  𝝀𝜔  𝜔∈Ω∗ 

where, for each 𝜔 ∈ Ω∗, 𝝀𝜔 ∶=  𝜆𝜔
∅ , 𝜆𝜔

𝐵 , 𝜆𝜔
𝐶  . Again, it should be stressed that if 
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𝜔 belongs to some Ω not rich enough to characterize a particular property 𝑡′ , 

then 𝜆𝜔
𝑡 ′

 is not defined at 𝑆𝑖 , e.g.: if some state 𝜔 belongs to Ω𝐵, then 𝜆𝜔
𝐶  is not 

defined at 𝑆𝑖  (similarly, if 𝜔 ∈ Ω𝐶, 𝜆𝜔
𝐵  is not defined at 𝑆𝑖). 

To make the analysis more interesting, I shall now return to one of the 

cases considered in section I.3. above, namely the case where the 

experimenter randomly draws the objects from the bag in a way as captured 

by the following state: 𝜔 =  1𝑔, 3𝑟, 5𝑏 , with 𝜔 ∈ Ω𝐵𝐶 ; more specifically, 

𝜔 =  1𝑔, 3𝑟, 5𝑏  is the state associated with the case where Nature has 

selected the strategic game with set of strategies 𝑆𝑖 =  𝑠𝑖1, 𝑠𝑖3, 𝑠𝑖5  for ∀ 𝑖 ∈ 𝑁. 

Besides, let  ≽𝑡 𝑡∈𝑇 be defined as before, i.e.: 𝑟𝑒𝑑 ≽𝐶 𝑔𝑟𝑒𝑦 ≽𝐶 𝑏𝑙𝑎𝑐𝑘 and 

𝑓𝑖𝑟𝑠𝑡 ≽𝐵 𝑠𝑒𝑐𝑜𝑛𝑑 ≽𝐵 𝑡𝑕𝑖𝑟𝑑. 

Recall that 𝜌𝑗  𝜆.
𝑡  denotes a generic mixed strategy of player 𝑗 

respecting remark I.1 and assumption I.1 for some 𝜆.
𝑡 . Now, considering the 

projection of 𝜔 into Ω𝐶, in this case one gets 

𝜌𝑗  𝜆𝜔
Ω𝐶

𝐶  ≡  𝑝 𝑠𝑗1 , 𝑝 𝑠𝑗3 , 𝑝 𝑠𝑗5  , where 𝑝 𝑠𝑗3 ≥ 𝑝 𝑠𝑗1 ≥ 𝑝 𝑠𝑗5  (with 

𝑝 𝑠𝑗1 + 𝑝 𝑠𝑗3 + 𝑝 𝑠𝑗5 = 1); on the other hand, considering the projection of 

𝜔 into Ω𝐵, one gets 𝜌𝑗  𝜆𝜔
Ω𝐵

𝐵  ≡  𝑝 𝑠𝑗1 , 𝑝 𝑠𝑗3 , 𝑝 𝑠𝑗5  , where 𝑝 𝑠𝑗1 ≥

𝑝 𝑠𝑗3 ≥ 𝑝 𝑠𝑗5  (with 𝑝 𝑠𝑗1 + 𝑝 𝑠𝑗3 + 𝑝 𝑠𝑗5 = 1); moreover, considering the 

projection of 𝜔 into Ω∅, one gets 𝜌𝑗  𝜆𝜔
Ω∅

∅  ≡  𝑝 𝑠𝑗1 , 𝑝 𝑠𝑗3 , 𝑝 𝑠𝑗5  , where 

𝑝 𝑠𝑗1 = 𝑝 𝑠𝑗3 = 𝑝 𝑠𝑗5 =
1

3
.  

Further, in order to simplify the notation, I shall drop the player-index 

and simply write 𝑝1, 𝑝3, 𝑝5 for 𝑝 𝑠𝑗1 , 𝑝 𝑠𝑗3 , 𝑝 𝑠𝑗5  (∀ 𝑗 ∈ 𝑁), respectively. 

Thus, it is clear that – if 𝑗 is aware of Ω𝐶 only – a mixed strategy of player 𝑗 

respecting remark I.1 and assumption I.1 for 𝜆𝜔
Ω𝐶

𝐶  can be written as 

𝜌𝑗  𝜆𝜔
Ω𝐶

𝐶  =  𝑝1, 𝑝3, 𝑝5 , where 𝑝3 ≥ 𝑝1 ≥ 𝑝5; then, assuming the game is 

played between two players 𝑖, 𝑗, the expected payoff to both players is 
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maximized only when players 𝑖 and 𝑗 play the same mixed strategy, and 

hence amounts to  𝑝1 2 +  𝑝3 2 +  𝑝5 2, which in turn implies that the mixed 

strategy that uniquely maximizes player 𝑖‟s payoff subject to the above 

constraint is given by the vector of probabilities  𝑝1, 𝑝3, 𝑝5 =  0,1,0  (i.e.: 

more explicitly, in definition I.7, if 𝜏𝑖 Ω
𝐶 = 1 the payoff to player 𝑖 is 

maximized when 𝜍𝑖 = 𝜌𝑗  𝜆𝜔
Ω𝐶

𝐶  ⟹ 𝜍𝑖 =  0,1,0 ). On the other hand – if 𝑗 is 

aware of Ω𝐵 only – a mixed strategy of player 𝑗 respecting remark I.1 and 

assumption I.1 for 𝜆𝜔
Ω𝐵

𝐵  can be written as 𝜌𝑗  𝜆𝜔
Ω𝐵

𝐵  =  𝑝1, 𝑝3, 𝑝5 , where 

𝑝1 ≥ 𝑝3 ≥ 𝑝5; then, the expected payoff to both players is again maximized 

only when players 𝑖 and 𝑗 play the same mixed strategy, and hence amounts 

to  𝑝1 2 +  𝑝3 2 +  𝑝5 2, which here implies that the mixed strategy that 

uniquely maximizes player 𝑖‟s payoff subject to the above constraint is given 

by the vector of probabilities  𝑝1, 𝑝3, 𝑝5 =  1,0,0  (i.e.: in definition I.7, if 

𝜏𝑖 Ω
𝐵 = 1 the payoff to player 𝑖 is maximized when 𝜍𝑖 = 𝜌𝑗  𝜆𝜔

Ω𝐵
𝐵  ⟹ 𝜍𝑖 =

 1,0,0 ). Moreover – if 𝑗 is aware of Ω∅ only – the mixed strategy of player 𝑗 

respecting remark I.1 and assumption I.1 for 𝜆𝜔
Ω∅

∅  can be written as 

𝜌𝑗  𝜆𝜔
Ω∅

∅  =  𝑝1, 𝑝3, 𝑝5 , which here implies that the mixed strategy that 

uniquely maximizes player 𝑖‟s payoff is 𝜍𝑖 = 𝜌𝑗  𝜆𝜔
Ω∅

∅  ⟹ 𝜍𝑖 =  
1

3
,

1

3
,

1

3
 . 

Now, assume that I𝑖 =  Ω∅, Ω𝐵 , Ω𝐶 , Ω𝐵𝐶 , hence I
𝑖

=  Ω𝐵 , Ω𝐶 ; then, the 

assumption about the players‟ naïveté in forming beliefs about the 

opponents‟ (un)awareness implies that, before playing, 𝑖 will presume that 

player 𝑗 must be aware of either Ω∅ or Ω𝐵 or Ω𝐶 (but not of a union of Ω𝐵 and 

Ω𝐶). It is clear that player 𝑖‟s expected payoff is given by: E𝜍𝑖 ,𝜌−𝑖 ,𝜐 𝑢𝑖|I𝑖 =

  𝜏𝑖 Ω 𝑢𝑖 𝜍𝑖 , 𝜌−𝑖 𝜆.
𝑡  + 𝜏𝑖 Ω

∅ 𝑢𝑖  𝜍𝑖 , 𝜌−𝑖 𝜆.
∅  𝑡∈𝑇: 𝑡≠∅Ω∈I

𝑖
≡

𝜏𝑖 Ω
𝐶 𝑢𝑖  𝜍𝑖 , 𝜌−𝑖  𝜆𝜔

Ω𝐶
𝐶   + 𝜏𝑖 Ω

𝐵 𝑢𝑖  𝜍𝑖 , 𝜌−𝑖  𝜆𝜔
Ω𝐵

𝐵   +
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𝜏𝑖 Ω
∅ 𝑢𝑖  𝜍𝑖 , 𝜌−𝑖  𝜆𝜔

Ω∅
∅   . Therefore, the mixed strategy of player 𝑖 that 

uniquely maximizes E𝜍𝑖 ,𝜌−𝑖 ,𝜐 𝑢𝑖|I𝑖  is as follows: 

 𝜍𝑖 =  0,1,0  for 𝜏𝑖 Ω
𝐶 > 𝜏𝑖 Ω

𝐵  and 𝜏𝑖 Ω
𝐶 >

1

3
𝜏𝑖 Ω

∅ ; 

 𝜍𝑖 =  1,0,0  for 𝜏𝑖 Ω
𝐵 > 𝜏𝑖 Ω

𝐶  and 𝜏𝑖 Ω
𝐵 >

1

3
𝜏𝑖 Ω

∅ ; 

  𝜍𝑖 =  
1

3
,

1

3
,

1

3
  for 𝜏𝑖 Ω

∅ > 3𝜏𝑖 Ω
𝐶  and 𝜏𝑖 Ω

∅ > 3𝜏𝑖 Ω
𝐵 ; 

 𝜍𝑖 =  
1

2
,

1

2
, 0  for 𝜏𝑖 Ω

𝐶 = 𝜏𝑖 Ω
𝐵 >

2

3
𝜏𝑖 Ω

∅ . 

For instance, consider the case of 𝜐 Ω  being defined as 𝜐 Ω𝐵 =
1

4
, 𝜐 Ω𝐶 =

1

2
. Formula (1.4.3) above implies: 

𝜏𝑖 Ω
𝐶 ≡

1
2

3
4

1
8 +

3
8 +

3
8

=
3

7
; 

𝜏𝑖 Ω
𝐵 ≡

1
4

1
2

1
8 +

3
8 +

3
8

=
1

7
; 

𝜏𝑖 Ω
∅ ≡

3
4

1
2

1
8 +

3
8 +

3
8

=
3

7
. 

It follows that, in this case, the mixed strategy of player 𝑖 that uniquely 

maximizes E𝜍𝑖 ,𝜌−𝑖 ,𝜐 𝑢𝑖 |I𝑖  is 𝜍𝑖 =  0,1,0 , that is, 𝑖 chooses the red object.44 

                                  

44
 Notice that, as mentioned above, players with different knowledge functions face different 

games. Here this means that if player 𝑖 is unaware of the block orderings, then I𝑖 =  Ω∅, Ω𝐶  
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The above example shows that player 𝑖‟s best response (to the expected 

strategies of player 𝑗 respecting remark I.1 and assumption I.1) varies with 

the objective probability 𝜐 Ω  of a player being aware of some space Ω ∈ 𝑺.  

 

I.5. Conventions as equilibria 

This section defines a “convention” as an equilibrium of a game with which a 

frame and a set of salience relations are associated.  

 

Definition I.8. Given a strategic form game 𝐺 and the associated knowledge 

structure  𝐾,  Ω𝑘 , 𝑞𝑘 𝑘∈𝐾 , ≼,  𝑟Ω
Ω′

 ,  I𝑖 𝑖∈𝑁 , frame  Ω∗, φ, Λ, 𝑇,  Π𝑡 𝑡∈𝑇 , salience 

relations  ≽𝑡 𝑡∈𝑇, and distribution 𝜐, a convention of 𝐺 is a profile of mixed 

strategies 𝜍∗ =  𝜍𝑖
∗ 𝑖∈𝑁 such that for ∀ 𝑖 ∈ 𝑁: 

𝜍𝑖
∗ ∈ arg max

𝜍𝑖∈∆ 𝑆𝑖 
E𝜍𝑖 ,𝜌−𝑖 ,𝜐 𝑢𝑖|𝐼𝑖 𝜔  . 

 

In plain words, a convention is in place if every player 𝑖 ∈ 𝑁 maximizes 

E𝜍𝑖 ,𝜌−𝑖 ,𝜐 𝑢𝑖|𝐼𝑖 𝜔  , given her knowledge function: I give a dual interpretation. 

                                                                                              

and I
𝑖

=  Ω𝐶 . Hence, in this case, player 𝑖‟s expected payoff is simply given by: 

E𝜍𝑖 ,𝜌−𝑖 ,𝜐 𝑢𝑖|I𝑖 =   𝜏𝑖 Ω 𝑢𝑖 𝜍𝑖 , 𝜌−𝑖 𝜆.
𝑡  + 𝜏𝑖 Ω

∅ 𝑢𝑖  𝜍𝑖 , 𝜌−𝑖 𝜆.
∅  𝑡∈𝑇: 𝑡≠∅Ω∈I

𝑖
≡

𝜏𝑖 Ω
𝐶 𝑢𝑖  𝜍𝑖 , 𝜌−𝑖  𝜆𝜔

Ω𝐶
𝐶   + 𝜏𝑖 Ω

∅ 𝑢𝑖  𝜍𝑖 , 𝜌−𝑖  𝜆𝜔
Ω∅

∅   . 
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Conventions as the result of a game of incomplete information with 

“blind” players. Again, suppose that 𝐺 is played many times between 𝑖 and 𝑗, 

with players drawn at random from large populations: as before, 𝜏𝑖 ⋅  is 

thought of as the statistical distribution of the “mixed strategies 𝜌𝑗  𝜆.
.  

respecting remark I.1 and assumption I.1 for the available 𝜆.
𝑡”, in a population 

of agents playing 𝐺 in the role of player 𝑗; besides, each 𝜏𝑖 Ω   also 

represents 𝑖‟s prior belief about player 𝑗 respecting remark I.1 and 

assumption I.1 for the available 𝜆.
𝑡 , in a play of 𝐺. Now – assuming that an 

individual does not get to see who the matched co-player is until after having 

played – a convention is in place if every player maximizes E𝜍𝑖 ,𝜌𝑗 ,𝜐 𝑢𝑖|𝐼𝑖 𝜔  , 

given her beliefs  𝜏𝑖 Ω  
Ω∈I

𝑖
∪Ω∅: since 𝑖‟s way of deriving  𝜏𝑖 Ω  

Ω∈I
𝑖
∪Ω∅ from 

an exogenously given  𝜐 Ω  
Ω∈𝑺

 depends on I
𝑖
, it follows that a convention is 

implemented when every pair of matched players is characterized by the 

same knowledge function.   

Conventions as the result of a game with differently-aware players. 

Consider an awareness operator 𝐴𝑖 𝐸 = K𝑖 𝐸 ∪K𝑖 ∼ K𝑖 𝐸  , where the 

knowledge operator is derived from a generalized information function 𝐼𝑖  

respecting properties (gi.i-vi), as in section I.4.a. above. Similarly to the 

“everybody knows” and the “common knowledge” operators, one can define 

“everybody is aware” and “common awareness” operators. (Indeed, Heifetz 

et al. [2006] prove that when everybody is aware of an event 𝐸, then 

everybody is also aware that everybody is aware of 𝐸: it follows that the 

events “everybody is aware of 𝐸” and “common awareness of 𝐸” coincide.) 

Now – assuming that an individual does get to see who the matched co-

player is before playing – a convention is in order if every player maximizes 

E𝜍𝑖 ,𝜌𝑗 ,𝜐 𝑢𝑖 |𝐼𝑖 𝜔  , given her beliefs  𝜏𝑖 Ω  
Ω∈I

𝑖
∪Ω∅: yet, contrary to the previous 

case, here player 𝑖 has access to 𝑗‟s information, therefore she can use the 
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awareness operator in a way similar to the knowledge operator so as to 

define what “𝑖 is aware of 𝑗 being aware of”. For example, in the game of 

Choose an Object, let player 𝑖 be aware of both block orderings and colour 

differences (i.e.: I𝑖 =  Ω∅, Ω𝐵 , Ω𝐶 , Ω𝐵𝐶  and I
𝑖

=  Ω𝐵 , Ω𝐶 ) while player 𝑗 be 

aware of colour differences only (i.e.: I𝑗 =  Ω∅, Ω𝐶  and I
𝑗

=  Ω𝐶 ). Using the 

awareness operator, it follows that 𝐴𝑖  ∼ 𝐴𝑗  Ω
𝐵  : as a consequence, 𝑖 can 

be thought of as updating her beliefs so that 𝜏 𝑖 Ω
𝑐 = 1; it is clear that, in this 

case, a convention corresponds to the profile of mixed strategies  𝜌𝑖 𝜆.
𝐶  

𝑖∈𝑁
 

respecting remark I.1 and assumption I.1 for 𝜆.
𝐶 such that  𝜍𝑖 =  0,1,0  

𝑖∈𝑁
. It 

should be noticed that here, contrary to the previous case, for a convention to 

be in operation it is not necessary that every pair of players is characterized 

by the same knowledge function, but just that every player is commonly  

aware of a state space, that is, I𝑖 ∩ I𝑗 ≠ ∅.45 Once again, it should be 

stressed that it would be impossible to model such a situation by using 

standard information structures in which the knowledge function only satisfies 

the standard properties (k.i-vi) described in section I.2.c. above: as a matter 

of fact, in a standard single-space information structure there will always be 

common knowledge of the unique state space. 

                                  

45
 In the case in which I𝑖 ∩ I𝑗 ≠ ∅ and there is not a unique optimal convention (i.e.: as in the 

case where I𝑖 = I𝑗 =  Ω∅, Ω𝐵 , Ω𝐶 , Ω𝐵𝐶  for a given pair of players  𝑖, 𝑗 ), then one may 

assume that individuals play the mixed strategy respecting remark I.1 and assumption I.1 

with strategies labelled and ranked according to the property (or basic vocabulary) 𝑡 that has 

maximum prior probability 𝜏𝑖 Ω
𝑡 . 
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The following proposition applies to the latter of the above 

interpretations/settings, thereby relating conventions to Aumann‟s [1974, 

1987] notion of correlated equilibrium. 

 

Proposition I.1. Take a strategic form game 𝐺 and the associated 

knowledge structure  𝐾,  Ω𝑘 , 𝑞𝑘 𝑘∈𝐾 , ≼,  𝑟Ω
Ω′

 ,  I𝑖 𝑖∈𝑁 , frame 

 Ω∗, φ, Λ, 𝑇,  Π𝑡 𝑡∈𝑇 , and salience relations  ≽𝑡 𝑡∈𝑇 . Let 

𝜍𝑖
𝑡 𝜔 ∈ arg max

𝜍𝑖∈∆ 𝑆𝑖 
E𝜍𝑖 ,𝜌−𝑖 ,𝜐 𝑢𝑖|𝐼𝑖 𝜔

∗   denote an optimal strategy when 

strategy-indices are expected to be labelled and ranked according to some 

𝑡 ∈ 𝑇, given that 𝜔 ∈ Ω∗ obtains. Let 𝜍𝑡 𝜔∗  denote a convention defined by 

strategy profile  𝜍𝑖
𝑡 𝜔∗  

𝑖∈𝑁
: the set of all such strategy profiles (one for each 

 𝐼𝑖 𝜔  
𝑖∈𝑁

) is a correlated equilibrium of 𝐺. 

Proof. Consider a game (e.g.: Choose an Object, with 𝑺 =  Ω∅, Ω𝐵 , Ω𝐶 , Ω𝐵𝐶 ), 

where every pair of matched players is characterized by the same knowledge 

function: for simplicity, assume that every pair of players is aware of either 

𝑡 = 𝐶 or 𝑡 = 𝐵 (i.e.: I𝑖 = I𝑗 =  Ω∅, Ω𝐶  or I𝑖 = I𝑗 =  Ω∅, Ω𝐵  for every pair 

 𝑖, 𝑗 ). Remark I.1 and assumption I.1, along with the definition of each 

player‟s expected payoff (definition I.7), imply that a convention is a profile of 

strategies in which a pair  𝑖, 𝑗  plays, with probability one, the most salient 

labelled strategy (as ranked by ≽𝐶  or ≽𝐵) in  𝜆𝜔
𝐶  𝑆𝑖 , 𝜆𝜔

𝐶  𝑆𝑗    or 

 𝜆𝜔
𝐵  𝑆𝑖 , 𝜆𝜔

𝐵  𝑆𝑗   , respectively (depending on the state obtaining, and the 

players‟ “awareness type”). Denote a strategy profile given by a pair of such 

strategies by 𝜍𝑡 𝜔 , with 𝑡 ∈  𝐵, 𝐶 . Then, it is straightforward to see that the 

set of all such strategy profiles (one for each  𝐼𝑖 𝜔  
𝑖∈𝑁

, as strategies are 

such that 𝜍𝑖
𝑡 𝜔 = 𝜍𝑖

𝑡 𝜔′  whenever 𝜔 and 𝜔′  are in the same cell of the 

information partition) is a correlated equilibrium of 𝐺, which is simply defined 
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by   Ω𝑡 , 𝑞𝑡 ,  I𝑖 , I𝑗  ,  𝜍𝑖
𝑡 , 𝜍𝑗

𝑡  , where:  Ω𝑡 , 𝑞𝑡  is a finite probability space; 

 I𝑖 , I𝑗   is a profile of partitions of Ω𝑡 ∪ Ω∅;  𝜍𝑖
𝑡 , 𝜍𝑗

𝑡  is a profile of decision 

functions, with 𝜍𝑖
𝑡 : Ω𝑡 → 𝜆.

𝑡 𝑆𝑖  and 𝜍𝑗
𝑡 : Ω𝑡 → 𝜆.

𝑡 𝑆𝑗  . Note that, in order for 

  Ω𝑡 , 𝑞𝑡 ,  I𝑖 , I𝑗  ,  𝜍𝑖
𝑡 , 𝜍𝑗

𝑡   to define a correlated equilibrium, the following 

inequality must hold for all players:  𝑞𝑡 𝜔 𝑢𝑖  𝜍𝑖
𝑡 𝜔 , 𝜍𝑗

𝑡 𝜔  𝜔∈Ω𝑡 ≥

 𝑞𝑡 𝜔 𝑢𝑖  𝜍 𝑖 𝜔 , 𝜍𝑗
𝑡 𝜔  𝜔∈Ω𝑡 ; in other words, for every state 𝜔 ∈ Ω𝑡  (of which 

the probability is 𝑞𝑡 𝜔 ), the strategy 𝜍𝑖
𝑡 𝜔  must be optimal given the other 

player‟s strategy and 𝑖‟s knowledge about 𝜔. It is clear that the inequality 

holds when 𝜍𝑖
𝑡 𝜔  is given as in proposition I.1, hence 

𝑢𝑖
𝑡 ∶=  𝑞𝑡 𝜔 𝑢𝑖  𝜍𝑖

𝑡 𝜔 , 𝜍𝑗
𝑡 𝜔  𝜔∈Ω𝑡  may be referred to as the correlated 

equilibrium payoff to player 𝑖 (generated by conventions  𝜍𝑖
𝑡 𝜔 , 𝜍𝑗

𝑡 𝜔  
𝜔∈Ω𝑡

); 

similarly, 𝑢𝑗
𝑡  is the correlated equilibrium payoff to player 𝑗.∎ 

 

It should be noted that, unlike Aumann‟s traditional notion of correlated 

equilibrium (where strategy choices are pegged on events defined on a 

single state space),  here 𝜔, 𝜔′  are actually the projections of states in Ω𝐵𝐶  

into a weakly less expressive space Ω𝑡 , with 𝑡 ∈  𝐵, 𝐶 . Also, it should be 

stressed that Aumann‟s notion of correlated equilibrium assumes that players 

enter an agreement in the form of a pre-determined collection of decision 

functions; instead – given a set of strategies labelled and ranked according to 

some property (or basic vocabulary) 𝑡 – for a convention to be in place 

players are required to respect remark I.1 and assumption I.1, with the 

strategies to be played being determined as the result of expected utility 

maximization. Interestingly, notice that the idea of conventions (in the sense 

of Lewis [1969]) defined as Aumann‟s correlated equilibria has been explored 

informally by philosopher Peter Vanderschraaf [1998]. Yet, it should be noted 
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that, since Vanderschraaf‟s application of the correlated equilibrium would 

require an explicit agreement between players, that may not capture a great 

deal of social phenomena which involve no explicit act of agreement. (In this 

connection, John Locke [1689] highlighted the notion of a “tacit agreement”, 

with a tacit agreement occurring when there has been no explicit agreement 

but matters are otherwise as if an explicit agreement occurred.)    

 

I.6. Concluding remarks 

This study has presented an original theory of conformity in coordination 

games. The core of the problem has been to provide a framework for the 

player‟s own perception of the strategic situation so as to show that 

coordination may occur when “normal” players use, and expect others to use, 

similar conceptual schemes. Again, here it is suggested that, for a convention 

to be in operation, conformity is dependent on the states perceived by the 

agents: therefore, the model has implemented a notion of unawareness so as 

to account for multiple descriptions of the world. Thus, the present theory has 

defined the player‟s own framing system in such a way as to allow for the 

possibility that both stochastic and non-stochastic procedures may determine 

the labelling of strategies; besides, it has provided a precise link between a 

player‟s information function and her labelled strategies. Further, introducing 

a salience relation on each set of strategy labels, along with two 

requirements (relating to symmetry and salience) has resulted in the set of a 

player‟s mixed strategies being restricted. To sum up, this essay has 

suggested that conventions may arise as the result of a four-step procedure: 

(i) perception; (ii) labelling; (iii) salience comparison; (iv) expected utility 

maximization. Such a theory is consistent with the intuitions of Lewis [1969] 

and Schelling [1960] in that conventions are defined as solutions to 
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coordination games where there are multiple equilibria; also, certain 

characteristics of a strategy set as perceived by the player – which would not 

explicitly enter the formal description of a standard game – here can make 

some strategies more salient than others.  

It should be noted that the game introduced during the exposition of 

the theory is indeed meaningful, as it shows that conventions are determined 

by the context in which the game itself appears and, in part, are the result of 

random eventualities. Moreover, it should be stressed that, in the spirit of 

Schelling [1960], such a theory can work even in the case of impure 

coordination games (or tacit bargaining problems). The intuition is confirmed 

by an experimental study (Mehta et al. [1992]) in which two subjects had to 

agree on how to divide £10 between them, with each bargainer receiving 

zero if no agreement was reached. Before the bargaining took place, 

subjects were dealt four playing cards each, from a deck consisting of 8 

cards, including 4 aces and 4 twos. Subjects were told that a set of 4 aces 

was worth £10 (whereas any other combination of cards was worth nothing), 

and in order to be paid they had to pool their aces and agree on how to 

divide the £10; notice that only situations in which neither player held all 4 

aces were considered in the analysis. Although Mehta et al. observed that 

equal divisions were the modal proposal by holders of 1, 2, or 3 aces, they 

also noted a tendency to give more to the bargainer with more aces: in effect, 

they recorded a second modal demand of only £2.50 by holders of 1 ace. 

Their suggestion is that the bargainers use the cards dealt to them as cues to 

help solve the coordination problem which lies at the heart of the bargaining 

game. Interestingly, reading their essay through the lens of the present 

theory, Mehta et al. seem to implicitly suggest that in their experiment players 

could be aware of (at least) two state spaces (i.e.: one containing three 

states, with each state corresponding to the number of aces held by a player; 
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the other containing only one state) associated with a salience relation, as 

follows: 

We assumed that participants may perceive aces to be worth £2.50 each and 

our prior expectation was that subjects would use this perception in 

conjunction with one of two principles. The principle of “closeness” would lead 

subjects to the rule “distribute according to the value of the cards”. The 

principle of “equality” would lead to the rule “distribute by equal shares”. Thus, 

we would expect the predominant demands to be as follows: (p. 215) 

  “Closeness” “Equality” 

Subjects holding 1 ace £2.5 £5 

 2 aces £5 £5 

 3 aces £7.5 £5 

Indeed, their hypothesis testing confirms that the average demand of 

subjects holding 1 ace is significantly lower than that of subjects holding 2 

aces, which in turn is significantly lower than that of subjects holding 3 aces. 

To conclude, such a game-theoretic study of conventions may 

contribute to shed some light on the mental tâtonnements enabling the 

convergence of players‟ beliefs and the emergence of a stable pattern of 

behaviour in problems with many possible equilibria, thereby tackling the 

widespread equilibrium selection problem for which no satisfactory solution is 

yet known. Possible applications may involve a number of economic 

situations in which all parties can realize mutual gains, but only by making 

mutually consistent decisions: for example, think of the choice of 

technological standards (a product which becomes generally accepted and 

dominant is often considered a de facto standard, even without an 

established norm or requirement about technical systems, e.g.: the QWERTY 

keyboard) or the emergence of aesthetic rules and trends (as a matter of 

fact, every year or so a different colour is made salient by the fashion 

industry).  
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II. A Theory of Belief-Dependent Conformity to 

Social Norms  
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II.1. Introduction 

Socio-economic behaviour is generally modelled on rational choice theory‟s 

prescriptions: economic theory assumes that an agent has preferences 

satisfying some rationality requirements, yet most traditional economic 

applications simply view those requirements as implying that the self-interest 

of the agent is narrowly self-centred and unaffected by the others‟ outcome. 

On the other hand, the widely documented regularities of behaviour 

inconsistent with the standard predictions of models with rational self-centred 

individuals have motivated alternative accounts. Everyday life examples of 

such “incidents” might be brought about by norms that informally prescribe 

how people ought to behave in the community or workplace, and which are 

enforced out of fear of social sanctions: Arrow‟s [1972] investigation suggests 

that entrepreneurs, who could turn a profit on hiring labour cheaply from a 

racially discriminated group, were restrained from doing so owing to the 

establishment of social customs involving discriminatory tastes; or rather, as 

Akerlof [1980] claims, if the custom prohibits an employer from hiring labour 

at a reduced wage, employees will not cooperate in training new workers 

(who undercut existing wages), because by doing so they would suffer a loss 

of reputation for participating in disobeying the norm. Other situations that 

may be explained by the enforcement of informal norms regulating social 

behaviour include the voluntary supply of public goods (Sugden [1984]) and 

reciprocity-based transactions such as gift-giving, etc. (Sacco et al. [2006]).  

The above instances seem to be validated by a wealth of experimental 

evidence in social dilemma (i.e.: mixed-motive) games, which is thoroughly 

collected by Camerer [2003], Ch. 2; Fehr and Schmidt [2006]; Ledyard 

[1995]. Such paradigms as the Prisoner‟s Dilemma, the Ultimatum Game or 

the Trust Game are particularly meaningful since they clearly embody a 

tension – between individual incentives and other motivations – which can be 
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well observed in many everyday social interactions: indeed, the 

aforementioned experimental games all provide support against the 

traditional self-centred view of economic agents and its related descriptive 

predictions. In this connection, the present investigation focuses on the very 

motivation that makes people comply with default rules of behaviour when 

facing a social dilemma; this essay suggests that individuals may feel guilt at 

violating a norm (and this painful emotion generates conformity under 

precisely stated conditions), with a norm being modelled as a rule that 

dictates the strategy profile/s most “appropriate” for each decision node of a 

given mixed-motive game in extensive form. 

According to a line of thought which has been popular especially 

among philosophers, mixed-motive games make it possible to highlight that, 

in some cases, traditional economic applications do not seem normatively 

adequate either (Gold and Sugden [2007; 2008]). A famous puzzle is 

suggested by the Prisoner‟s Dilemma: there a positive theory (implicitly 

assuming that the agent only cares about her own material payoff) would 

forecast that both subjects will defect, whereas experimental evidence 

(collected in Sally [1995]) shows that almost half of the subjects in the 

laboratory cooperate;46 besides, a normative theory – neutral on matters of 

social welfare – would suggest that both players ought to defect, however 

both would benefit from mutual cooperation. In a nutshell, mixed-motive 

games raise some problems since the “conventional” fashion, in which 

                                  

46
 For a review of Prisoner‟s Dilemma experiments, see also: Colman [1995], Ch. 9; Cooper 

et al. [1996]; Davis and Holt [1993], Ch. 9; Goeree and Holt [2001]; Ledyard [1995]. Early 

experiments are more extensively discussed in: Lave [1962]; Rapoport and Chammah 

[1965], Pt. 1. 
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economic applications are modelled, may appear to be unconvincing with 

regard to both its positive and normative facet. In this respect, it should be 

stressed that game theory (in its classic, normative form) is certainly effective 

in prescribing strategies that maximize the individual player‟s payoff, even 

though in most mixed-motive games it fails to induce collectively desirable 

outcomes; on the other hand, most economists reply to this argument by 

pointing out that there is no such normative problem or, equivalently, that the 

above analysis would be correct only if the Prisoner‟s Dilemma were a game 

with just one player (Binmore [2007], Ch. 19). Now, whichever view is 

correct, the Prisoner‟s Dilemma leaves us with a problem of externalities, and 

a consequent policy-modelling problem: indeed, in most economic 

applications, the precise tools of analytical game theory are used to describe 

and prescribe the best policy options for actual economic agents, with the 

unfortunate result of promoting socially inefficient allocations.47  

                                  

47
 The one-shot Prisoner‟s Dilemma is an example of a game with a unique Pareto-inefficient 

Nash equilibrium; likewise, the only subgame perfect equilibrium of the finitely-repeated 

Prisoner‟s Dilemma, as every Nash equilibrium, consists of strategies that prescribe 

defection in every period (again, it is Pareto-inefficient). Similarly other puzzles of game 

theory, generally referred to as social dilemmas (including the Investment Game, the 

Centipede Game, etc.), all present a unique Pareto-inefficient subgame perfect equilibrium – 

with the exception of the Ultimatum Game. In effect, the Ultimatum Game is an example of a 

mixed-motive game where the only subgame perfect equilibrium (i.e.: the strategy pair in 

which the “Proposer” offers the smallest amount and the “Responder” accepts all offers) is 

not Pareto-inefficient: yet in evaluating economic allocations, other mechanisms (e.g.: other 

social norms, perhaps involving issues of welfare distribution) might arise; as a matter of 

fact, in the laboratory Proposers‟ offers average 40% of the money, while Responders reject 

offers of about 20% of the money half the time (Camerer [2003], Ch. 2). 
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In response to the shortcomings associated with the conventional 

economic model of rational self-centred agents, (relatively) recent 

developments in game theory improve the analysis of strategic interaction by 

allowing for diverse assumptions about players‟ beliefs, emotions, 

preferences, and rationality: most of these models have been designed to 

tackle experimental evidence, otherwise inexplicable, and address the 

positive facet of the problem.48 One line of research explains experimental 

regularities about “other-regarding” behaviour by suggesting adjusted utility 

functions, which allow the individual‟s welfare to reflect a range of motivations 

besides narrow self-interest. Some of the social preference theories, namely 

the so-called models of “reciprocal fairness”, seem to be most effective in 

accounting for other-regarding behaviour where intentions matter: think of 

Rabin [1993], Dufwenberg-Kirchsteiger [2004], Falk-Fischbacher [2006], 

Charness-Rabin [2002]; all such intention-based models – with the exception 

of Battigalli and Dufwenberg‟s [2007] framework – explicitly assume that 

players have a preference for a somehow specified equitable payoff (Rabin 

[1993], Dufwenberg-Kirchsteiger [2004]) or they are just (intention-based) 

inequity averse (Falk-Fischbacher [2006]49) or they have a taste for both 

                                  

48
 One exception being the body of literature rejecting the notion of individual rationality, 

which addresses the normative facet by hinging on alternative concepts of rationality (e.g.: 

collective rationality, rational commitment, etc.), thereby allowing groups of individuals to 

count as agents (Bacharach [1999]; Gold and Sugden [2007; 2008]; Sugden [2003]) or rely 

on moral arguments which prescribe a certain behaviour, even if it is not in one‟s self-interest 

to do so (Collard [1983]; Harsanyi [1980]; Laffont [1975]; Sugden [1984]). 

49
 Falk and Fischbacher [2006] do not define “kindness” in terms of the feasible payoffs of 

Player 𝑖 in relation to an equitable payoff, but directly in relation to the payoff that Player 𝑗 

gets: in this respect, their model can therefore be viewed as an intention-based inequity 
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fairness and efficiency (captured by quasi-maximin preferences in Charness-

Rabin [2002]). Thus, the aforementioned models may be interpreted as more 

or less implicitly assuming that players have internalized a (variously defined) 

“social norm of fairness or reciprocity”. 

In a different perspective, surveys from diverse disciplines – including 

cognitive psychology and neuroscience50 – support the view that human 

conduct is often guided by “conformist preferences”, which thrive on 

behavioural expectations within a society or group, with conformity being the 

act of changing one‟s behaviour to match the purported beliefs of others 

(Cialdini and Goldstein [2004]). To that end, the present essay takes the 

investigation of other-regarding motives in social dilemmas one step further: 

despite a growing body of literature considering preferences for a fair 

outcome allocation among players, most economic theories do not explain 

the underpinning conditions for a social norm to exist and to be in operation 

among players with conformist motivations. Therefore, inspired by Cristina 

Bicchieri‟s [2006] philosophical account of social norms,51 here I develop an 

original model of conformist preferences in mixed-motive games, building on 

the guilt aversion framework of Battigalli and Dufwenberg [2007]. 

In what follows, I will define what are the mechanics of those informal 

norms regulating social behaviour; I will further maintain that social norms are 

                                                                                              

aversion theory (as opposed to a simple inequity aversion theory à la Fehr and Schmidt 

[1999] or Bolton and Ockenfels [2000]). 

50
 See: Klucharev et al. [2009]; for a scientific review of studies that use experimental games 

in combination with either PET scans or functional magnetic resonance imaging (fMRI), refer 

to Montague and Lohrenz [2007]. 

51
 For another book-length philosophical treatment of norms, see Ullmann-Margalit [1977]. 
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brought about by a certain type of (conditionally) conformist preferences; I 

will finally claim that different social norms may be made salient in different 

environments (depending on the individuals‟ beliefs about the “currently-

normal” behaviour of other group-members). Two points naturally arise. 

(i) On psychological games: consistent with most sociological 

publications holding that social norms are necessarily sustained by 

expectations (Hechter and Opp [2001]), a psychological game 

framework à la Geanakoplos et al. [1989] (recently extended by 

Battigalli and Dufwenberg [2009]) appears to be most suitable to grasp 

situations where informal rules may play a major role; in this respect, 

the current study departs from López-Pérez‟s [2008] model of norm 

compliance while is in line with Li‟s [2008] (although the latter restricts 

attention to normal form games).52 

(ii) On inducing socially desirable outcomes: if social norms vary – 

according to the individuals‟ expectations – the aforementioned policy-

modelling problem could be resolved through some finely tuned 

process of belief manipulation. To that end, a full understanding of the 

mechanics of social norms is required, thereby allowing a neutral 

theoretical framework which can account for different (conjectures 

about) norms; in this regard, the current study leads to a 

generalization of the above theories of reciprocal fairness. 

That being said, other considerations are in order. First of all, a quick note on 

methodology: this essay aims at explaining in game-theoretic terms why 

                                  

52
 Both models are extensively reviewed in the appendix (section II.8.b. below). 
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social norms emerge, assuming that players are (fully) rational utility-

maximizers. This implies that social norms emerge because they yield 

“benefits” for the agents themselves; therefore, the study at hand departs 

both from those theories relaxing the assumption of common knowledge of 

rationality (e.g.: Kreps et al. [1982]; Fudenberg and Maskin [1986]53) and 

those rejecting the notion itself of individual rationality (see footnote 48).  

Another important issue concerns the evolution of norms. This essay 

aims at providing a framework for the analysis of social norms, without 

recourse to evolutionary arguments: under the hypothesis that, in the short 

run, one can treat the biological or cultural aspects of human nature as fixed 

(save for changes in the players‟ own beliefs, of which they are obviously 

fully aware and accordingly adjust their strategies), I will not consider the 

dynamics of evolutionary change.54 Instead, the present approach hinges on 

the idea that a social norm will be enforced if the actions prescribed by that 

norm do not allow, on the part of any player, a positive incentive to 

unilaterally deviate; in other words, a social norm will be enforced if the 

actions prescribed by that norm are supported by a refinement of the 

sequential equilibrium (allowing for belief-dependent conformist preferences). 

In shaping a theory of conformist preferences in mixed-motive games, 

I will draw on the widely maintained view (Sugden [2000]; Elster [1989], Ch. 

                                  

53
 Such theories explain behaviour in terms of reputation-building by assuming incomplete 

information about rationality, although they only account for experimental regularities specific 

to a narrow domain, i.e.: repeated games. 

54
 Notice that, conversely, evolutionary game theory often assumes that players have no 

control over the strategy they play, they do not need to know the structure of the game, and 

may not even realize they are playing a game at all. 
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6) that individuals may feel guilt at violating a social norm, and this painful 

emotion would generate conformity even in the absence of external 

sanctioning; therefore, Battigalli and Dufwenberg‟s [2007] model of guilt 

aversion naturally lends itself to depict players with (conditionally) conformist 

preferences. To sum up, in what follows: I define a “norm” as a rule that 

dictates a set of strategy profiles; I assume that players, conditional on each 

history of an extensive form game, hold a conjecture about the active player‟s 

norm-complying actions available at that history; I then model a norm-driven 

decision maker as a player with conformist preferences, whose utility function 

is a linear combination of her material payoff and a component representing 

the social cost of deviating, in the form of the sum of losses that other 

conformist players would suffer because of a norm violation. A “social norm” 

is said to exist and to be followed by a population if players have conditionally 

conformist preferences, they hold correct beliefs about the strategies in line 

with some “normally-expected behaviour”, and are sensitive enough to the 

potential social cost of deviating. 

The remainder of the essay is organized in this manner: II.2. reviews 

Bicchieri‟s [2006] account of norms; II.3. introduces some general notation on 

extensive form games, and conditional systems of beliefs; II.4. formally lays 

out the model; II.5. discusses an equilibrium solution; II.6. provides some 

illustrations, and II.7. concludes. 

 

II.2. Bicchieri’s account of norms 

This section reviews Bicchieri‟s [2006] philosophical account of norms, which 

lays the foundations for the model of conformity to be introduced later. 

Bicchieri‟s analysis starts by distinguishing “social norms” from “moral norms” 

and “descriptive norms”, where social norms (as well as descriptive norms) 
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are necessarily sustained by expectations about the others‟ compliance while 

moral norms are not; furthermore, while descriptive norms (involving fashions 

or fads) have no intrinsic value, may eventually evolve into standard 

“conventions” and are used to solve a (pre-existing) pure coordination game, 

social norms usually apply to mixed-motive games only. In a nutshell, an 

established social norm can be seen as an informal, non-binding rule for 

choosing in a mixed-motive game, (transforming this into a coordination 

game) so that members of a population prefer to follow such a norm 

depending on whether they expect sufficiently many in the population to 

follow it; the “conditions for a social norm to exist” are described as follows. 

Let 𝑅 be a behavioural rule for situations of type 𝑆, where 𝑆 is a strategic 

interaction that can be represented as a mixed-motive game. Then, 𝑅 is a 

social norm in a population 𝑃, if there exists a sufficiently large subset 

𝑃𝑐𝑓 ⊆ 𝑃 such that for each individual 𝑖 ∈ 𝑃𝑐𝑓  the below properties hold:55  

1. (contingency) 𝑖 knows that a rule 𝑅 exists and applies to situations of type 𝑆; 

2. (conditional preference) 𝑖 prefers to conform to 𝑅 in situations of type 𝑆, if 

2.1. (empirical expectations) 𝑖 believes that a sufficiently large subset of 𝑃 

conforms to 𝑅 in situations of type 𝑆; 

𝑎𝑛𝑑 𝑒𝑖𝑡𝑕𝑒𝑟 𝑜𝑓 𝑡𝑕𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 

2.2. a. (normative expectations) 𝑖 believes that a sufficiently large subset of 𝑃 

expects 𝑖 to conform to 𝑅 in situations of type 𝑆, 

                                  

55
 In Bicchieri‟s view, different individuals may have different beliefs about what “sufficiently 

large” means, yet what matters to conformity is that each individual believes that her 

threshold has (at least) been reached. 
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2.2. b. (normative expectations with sanctions) 𝑖 believes that a sufficiently 

large subset of 𝑃 expects 𝑖 to conform to 𝑅 in situations of type 𝑆, 

prefers 𝑖 to conform, and may sanction behaviour. 

A social norm 𝑅 (exists and) is followed by population 𝑃, if there exists a sufficiently 

large subset 𝑃𝑓 ⊆ 𝑃𝑐𝑓  such that for each individual 𝑖 ∈ 𝑃𝑓  conditions 2.1 and either 

2.2.a or 2.2.b are met for 𝑖 and, as a result, 𝑖 prefers to conform to 𝑅 in situations of 

type 𝑆. 

A few comments are in order. First, note that 𝑃𝑐𝑓  denotes the set of 

conditional followers of 𝑅 (i.e.: “individuals who know about 𝑅 and have a 

conditional preference for conforming to 𝑅”), while 𝑃𝑓  denotes the set of 

followers of 𝑅 (i.e.: “individuals who know about 𝑅 and have a preference for 

conforming to 𝑅”, because they believe that the conditions for their 

conditional preference are fulfilled). Hence, in Bicchieri‟s view, 𝑅 can be a 

social norm for a population 𝑃, even though it is not currently being followed 

by 𝑃: indeed, 𝑅 is a social norm if 𝑃𝑐𝑓  is sufficiently large; 𝑅 is also followed if 

𝑃𝑓  is sufficiently large.56 

In the appendix to Chapter 1 Bicchieri develops a general utility 

function based on norms. Considering an n-player normal form game, let 𝑆𝑖  

denote the strategy set of Player 𝑖 and 𝑆−𝑖 =  𝑆𝑗𝑗≠𝑖  be the set of strategy 

profiles of players other than 𝑖. A norm 𝑁𝑖  is defined as a (set-valued) 

function from one‟s expectation about the opponents‟ (norm-complying) 

                                  

56
 This implies that not every conditional follower of a norm 𝑅 eventually decides to conform 

to it, as some (conditional followers) might think that their expectations have not been 

fulfilled. 
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strategies to one‟s own strategies, that is, 𝑁𝑖 : 𝐿−𝑖 → 𝑆𝑖 , with 𝐿−𝑖 ⊆ 𝑆−𝑖.
57 A 

strategy profile 𝑠 =  𝑠1, … , 𝑠𝑛  is said to instantiate a norm for Player 𝑗 if 

𝑠−𝑗 ∈ 𝐿−𝑗  (i.e.: if 𝑁𝑗  is defined at 𝑠−𝑗 ), and to violate a norm if 𝑠𝑗 ≠ 𝑁𝑗  𝑠−𝑗  . 

Player 𝑖‟s utility function is a linear combination of 𝑖‟s material payoff 𝜋𝑖 𝑠  

and a component that depends on norm compliance: 

 

𝑈𝑖 𝑠 = 𝜋𝑖 𝑠 − 𝑘𝑖 max
𝑠−𝑗∈𝐿−𝑗

  max
𝑚≠𝑗

 𝜋𝑚  𝑠−𝑗 , 𝑁𝑗  𝑠−𝑗   − 𝜋𝑚  𝑠 , 0 , 

(2.2.1) 

 

where 𝑘𝑖 ≥ 0 shows 𝑖‟s sensitivity to the norm and 𝑗 refers to the norm 

violator. The norm-based component represents the maximum loss (suffered 

by players other than the norm violator 𝑗) resulting from all norm violations: 

the first maximum operator aims at taking care of the possibility that there 

might be multiple norm-complying strategy profiles (a situation which does 

not occur in the example below, where it degenerates); the second maximum 

operator ranges over all the players other than the norm violator 𝑗. To sum 

up, the player‟s utility equals her own material payoff, minus a quantity 

corresponding to the norm followers‟ maximum loss resulting from the norm 

violation, multiplied by the player‟s sensitivity parameter (notice that in braces 

is the difference between what the most negatively-affected norm follower 

                                  

57
 For example, in an n-player Prisoner‟s Dilemma a shared norm may be to cooperate: in 

that case, 𝐿−𝑖  includes the cooperate strategies of all players other than 𝑖. Note that in the 

case where – given the others‟ strategies – there is not a norm prescribing how Player 𝑖 

should behave, then 𝑁𝑖  is not defined at 𝐿−𝑖 . 
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would get in case of norm compliance and what she actually gets). In order to 

illustrate the above utility function, consider a 2-player Prisoner‟s Dilemma 

and suppose that a norm of reciprocal cooperation has been established: 

then, the norm dictating cooperation is defined at 𝐶 (cooperate) and 

undefined at 𝐷 (defect). Now, if Player 1 violates the norm by choosing 𝐷 – 

while Player 2 follows the norm – Player 1‟s utility will be 

 

𝑈1 𝐷, 𝐶 = 𝜋1 𝐷, 𝐶 − 𝑘1 𝜋2 𝐶, 𝐶 − 𝜋2 𝐷, 𝐶  . 

 

Notice that, according to Bicchieri‟s theory, Player 1 suffers even in the case 

in which she conforms to the norm but the opponent does not; in such a case 

Player 1‟s utility is in fact  

 

𝑈1 𝐶, 𝐷 = 𝜋1 𝐶, 𝐷 − 𝑘1 𝜋1 𝐶, 𝐶 − 𝜋1 𝐶, 𝐷  . 

 

To conclude, Bicchieri uses the above utility function to explain experimental 

results from a variety of social dilemmas, reading the differences in the 

observed rate of cooperation as changes in the players‟ sensitivity or in the 

players‟ beliefs about the opponents‟ sensitivity or changes in the relevant 

norm itself: this provides an insightful starting point for a dynamic model of 

norm compliance, which I am now to introduce. 

 

II.3. Preliminaries 

II.3.a. Notation on extensive form games 

An extensive form game (with perfect recall) is given by the structure 

 𝑁, 𝐻, 𝑃,  I𝑖 𝑖∈𝑁 , where: 𝑁 =  1, … , 𝑛  is the set of players, H is the finite set 
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of feasible histories, P is the player function, I𝑖  is the information partition of 

Player 𝑖.  

Each element of 𝐻 is a history, which is a (finite) sequence of actions 

taken by the players: let 𝑕 𝑎𝑙  denote a sequence  𝑎1, … , 𝑎𝑙 , with 𝑎𝑙  being 

the 𝑙-th action chosen along the game tree.58 Let the set of histories satisfy 

the usual properties, i.e.: (i) the empty sequence (of length 0) 𝑕0 is a member 

of 𝐻; (ii) if  𝑎𝑙 𝑙=1,…,𝐿 ∈ 𝐻 and 𝑀 < 𝐿, then  𝑎𝑙 𝑙=1,…,𝑀 ∈ 𝐻. Further, let 𝑍 

denote the set of terminal histories (leading to the leaves, or end-nodes, of 

the game tree), with 𝐻\𝑍 being the set of non-terminal histories; given that, 

let 𝐴𝑖 𝑕  denote the set of feasible actions for Player 𝑖 at history 𝑕 (𝐴𝑖 𝑕  is 

singleton if Player 𝑖 is not active at 𝑕, while 𝐴𝑖 𝑕  is empty if and only if 𝑕 is a 

terminal history). 

The player function 𝑃 is defined, in the usual way, as a function that 

assigns to each element of 𝐻\𝑍 an element of 𝑁, with 𝑃 𝑕  being the player 

choosing an action after the history 𝑕. Then, for each player 𝑖 ∈ 𝑁, I𝑖  denotes 

the information partition of Player 𝑖 – and 𝐼𝑖 ∈ I𝑖  is an information set of 

Player 𝑖 – where a partition I𝑖  of 𝐻𝑖 =  𝑕 ∈ 𝐻: 𝑃 𝑕 = 𝑖  has the property that 

𝐴 𝑕 = 𝐴 𝑕′  if 𝑕 and 𝑕′  are in the same cell of the partition (for some 𝐼𝑖 ∈ I𝑖 , 

one may denote by 𝐴 𝐼𝑖  the set 𝐴 𝑕 , and by 𝑃 𝐼𝑖  the player 𝑃 𝑕 , for any 

𝑕 ∈ 𝐼𝑖).  

The material payoffs of players‟ strategies are described by functions 

𝑚𝑖 : 𝑍 → ℝ for each player 𝑖 ∈ 𝑁. Further, for each player 𝑖 ∈ 𝑁 let 𝑆𝑖  denote 

                                  

58
 Note that, in what follows, a node of the game tree is identified with the history leading up 

to it (i.e.: a path in the game tree), as in Osborne and Rubinstein [1994]. 



 

- 90 - 

 

the set of pure strategies of Player 𝑖: hence, 𝑠𝑖 =  𝑠𝑖,𝑕 
𝑕∈𝐻\𝑍

 is a strategy for 

Player 𝑖, that is, a plan specifying the action chosen at every history after 

which Player 𝑖 moves (with 𝑠𝑖,𝑕  being the action implemented by 𝑠𝑖  if history 𝑕 

occurred). A strategy profile 𝑠 is a tuple of strategies, with one strategy for 

each player of the game: let 𝑆 =  𝑆𝑖𝑖∈𝑁  be the set of strategy profiles; 

similarly define 𝑆−𝑖 =  𝑆𝑗𝑗≠𝑖  for players 𝑗 other than 𝑖. Finally denote the set 

of Player 𝑖’s pure strategies allowing history 𝑕 (i.e.: strategies leading to – 

and succeeding – 𝑕) as 𝑆𝑖 𝑕 ; strategy profiles allowing history 𝑕 are defined 

as 𝑆 𝑕 =  𝑆𝑖 𝑕 𝑖∈𝑁 , and 𝑆−𝑖 𝑕 =  𝑆𝑗  𝑕 𝑗≠𝑖  for all players 𝑗 other than 𝑖. 

With a slight abuse of notation, let 𝑧 𝑠  indicate a terminal history induced by 

some strategy profile 𝑠 ∈ 𝑆.  

II.3.b. Conditional systems of beliefs 

Battigalli and Dufwenberg [2009] provide a framework for the analysis of 

dynamic psychological games, where conditional higher-order systems of 

beliefs influence the players‟ motivation. As in their model, here behavioural 

strategies are used to describe Player 𝑗‟s beliefs about Player 𝑖‟s actions at 

each history after which 𝑖 has to play: formally, a behavioural strategy of 

Player 𝑖 is a collection of independent probability measures 

𝜍𝑖 =  𝜍𝑖 ∙  𝑕  
𝑕∈𝐻\𝑍

∈  ∆ 𝐴𝑖 𝑕  𝑕∈𝐻\𝑍 , where 𝜍𝑖 𝑎 𝑕  is the probability of 

action 𝑎 at history 𝑕 and ∆ 𝐴𝑖 𝑕   denotes the set of probability measures 

over the set of Player 𝑖‟s feasible actions at history 𝑕. Then, Pr𝜍𝑖
 ∙  𝑕  ∈

∆  𝑆𝑖 𝑕    is the probability measure over Player 𝑖‟s strategies conditional on 

𝑕  derived from 𝜍𝑖  and, therefore, for some strategy 𝑠𝑖 ∈ 𝑆𝑖 𝑕   Pr𝜍𝑖
 𝑠𝑖 𝑕  

∶=  𝜍𝑖 𝑠𝑖,𝑕  𝑕 𝑕∈𝐻\𝑍: 𝑕≽𝑕  indicates the conditional probability of 𝑠𝑖 , given that 𝑕  

has occurred (note that 𝑕 ≽ 𝑕  is a history subsequent or equal to 𝑕 , and 𝑠𝑖,𝑕  is 

the action selected by 𝑠𝑖  if history 𝑕 took place). 
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Now, every player 𝑖 ∈ 𝑁 holds a system of first-order beliefs 𝛼𝑖 =

 𝛼𝑖 ∙  𝑕  
𝑕∈𝐻𝑖

 about the strategies of all the co-players, that is, at each 𝑕 ∈ 𝐻𝑖  

Player 𝑖 holds an updated (i.e.: revised) belief 𝛼𝑖 ∙  𝑕 ∈ ∆ 𝑆−𝑖 𝑕  . At each 

𝑕 ∈ 𝐻𝑖  Player 𝑖 further holds a second-order belief about the first-order belief 

system of each of the opponents: yet, for simplicity, here for some 𝑕 ∈ 𝐻𝑖 , 

𝛽𝑖 𝑕  merely indicates 𝑖‟s belief about an arbitrary 𝑗‟s first-order belief system 

(i.e.: 𝛽𝑖 𝑕  denotes 𝑖‟s belief about 𝛼−𝑖 ≡  𝛼𝑗  ∙  𝑕′  
𝑗 ≠𝑖, 𝑕 ′ ∈𝐻𝑗

); given that, let 

𝛽𝑖
𝑠𝑖 𝑕 ∈ ∆ 𝑆𝑖 𝑕   denote 𝑖‟s strategy-part of 𝛽𝑖 𝑕 , which represents 𝑖‟s belief 

about what every other player unanimously believes about 𝑖‟s strategies. 

Finally it is assumed that players‟ beliefs at different information sets must 

satisfy Bayes‟ rule and common knowledge of Bayesian updating.59  

 

                                  

59
 Recalling that a behavioural strategy 𝜍𝑖  is used to describe the other players‟ beliefs about 

Player 𝑖‟s behaviour, the reader can anticipate that (as it will be imposed later on) in 

equilibrium 𝛼𝑖 𝑠−𝑖 𝑕  ≡  Pr𝜍𝑗
 𝑠𝑗  𝑕  𝑗≠𝑖 . Also, since in equilibrium 𝛼𝑖  will be derived from the 

behavioural strategy profile 𝜍 =  𝜍𝑖 𝑖∈𝑁, the beliefs of every player 𝑗 ≠ 𝑖 about Player 𝑖‟s 

strategies will be the same, which will render the above simplifying assumption about 𝛽𝑖 𝑕  

innocuous and (through an additional consistency requirement) will imply that, in equilibrium, 

𝛽𝑖 𝑕 = 𝛼−𝑖 ≡  𝛼𝑗  ∙  𝑕′  
𝑗≠𝑖, 𝑕 ′∈𝐻𝑗

. For a discussion of the consistency requirements in 

equilibrium, see section II.5. below. 
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II.4. A model of social norms 

II.4.a. Norms and perfectly norm-driven decision makers 

I can now turn to shape an original theory of conformity to social norms out of 

a dynamic game with belief-dependent motivations. In this sub-section a 

“norm” is defined as a rule that dictates a set of strategy profiles at each 

decision node of the game tree: thus, the dictated set of strategy profiles is 

intended as showing the behaviour most in accordance with a certain 

(exogenous) principle after a given history; this implies that if no player ever 

deviates from the prescripts dictated by a norm at the initial history, then the 

strategy profiles dictated by that very norm at all the successor nodes will be 

the same as those dictated at the root of the game tree. Further, it is 

assumed that all norms regulating human behaviour are contained in a 

universal set of norms, while each player is only aware of the norms 

contained in her personal subset of norms (as determined by a collection of 

attitudes, values, goals, and practices characterizing her group, organization 

or institution).  

 

Definition II.1. Given an extensive form game 𝐺, a norm is a set-valued 

function 𝑟 that assigns to every non-terminal history 𝑕 ∈ 𝐻\𝑍 one or more 

elements from the set 𝑆 𝑕  of strategy profiles allowing history 𝑕; that is, a 

norm 𝑟: 𝐻\𝑍 → 𝑆 is a rule dictating the strategy profile/s most “appropriate” – 

according to a certain principle – for each node of the given (mixed-motive) 

game.  

 

Hence, denote by 𝑅 the set of norms and for each 𝑖 ∈ 𝑁 let 𝑅𝑖  be the norm 

subset of Player 𝑖, with 𝑅𝑖 ⊆ 𝑅. The interpretation is as follows: given a 

universal set of norms (𝑅), the culture of each player 𝑖 marks out a subset 𝑅𝑖 , 
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stored in 𝑖‟s memory, which contains default rules of behaviour in accordance 

with set usage, procedure, discipline or principle (e.g.: Pareto optimality, 

“equitable” income distribution, etc.).60 It is assumed that each player‟s norm 

subset may contain all or just part of the rules of the other players‟ norm 

subsets (depending on the extent to which players share the same culture), 

or may even be empty. 

Now, given an extensive form game 𝐺 and a certain norm 𝑟 , with 𝑟 ∈

𝑅, let 𝑟  𝑕0  denote the set of strategy profiles completely consistent with 𝑟 , 

where the expression “completely consistent” refers to the fact that such a 

set contains the very strategy profiles the norm dictates at all subsequent 

histories (whenever no deviation occurs along the play). Further, let 𝑟  𝐻  

denote the set of strategy profiles (partly) consistent with 𝑟 , which depicts the 

set of all the strategy profiles dictated by the norm at each history 𝑕 ∈ 𝐻\𝑍 

(including histories that would be impossible to reach if 𝑟  𝑕0  was played); 

that is,  𝑟  𝐻  contains all the strategy profiles consistent with 𝑟  only from 

some history 𝑕 onwards (for all 𝑕 ∈ 𝐻\𝑍, with 𝑕 ≽ 𝑕0), i.e.: 𝑟  𝐻 =

 𝑠 ∈ 𝑆 𝑕 : ∃𝑕 ∈ 𝐻 ∖ 𝑍 s. t. 𝑠 = 𝑟  𝑕  . Similarly, given a norm subset 𝑅𝑖 ⊆ 𝑅 for 

each 𝑖 ∈ 𝑁, denote by 𝑅𝑖 𝐻  the set of strategy profiles (partly) consistent 

with any 𝑟 ∈ 𝑅𝑖 , i.e.: 𝑅𝑖 𝐻 =  𝑟 𝐻 𝑟∈𝑅𝑖 : 𝑅𝑖⊆𝑅 . For each 𝑕 ∈ 𝐻\𝑍 denote by 

𝑅𝑖 𝑕  the set of norm-complying strategy profiles allowing history 𝑕, which is 

defined as 𝑅𝑖 𝑕 =  𝑠 ∈ 𝑆 𝑕 : ∃𝑟 ∈ 𝑅𝑖  s. t. 𝑠 = 𝑟 𝑕  ; also, note that 𝑅𝑖 𝐻 ≡

 𝑅𝑖 𝑕 𝑕∈𝐻\𝑍 . Given that, let 𝐴𝑖,𝑕  𝑅𝑖 𝑕    denote the set of Player 𝑖’s norm-

complying actions at history 𝑕 (for any 𝑕 ≽ 𝑕 ), which depicts the set of actions 

                                  

60
 For some examples of norms, see section II.6. below. 
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prescribed to Player 𝑖 at history 𝑕, as dictated at 𝑕  by any norm in 𝑅𝑖 : so, if 

Player 𝑖 – once at history 𝑕 – takes an action being part of the norm-

complying strategy profiles allowing 𝑕 , then 𝑠𝑖,𝑕 ∈ 𝐴𝑖,𝑕  𝑅𝑖 𝑕   . Finally, denote 

the set of Player 𝑖’s norm-complying strategies allowing history 𝑕 as 

𝑆𝑖 𝑅𝑖 𝑕  , which represents 𝑖‟s strategy-component of the set of norm-

complying strategy profiles allowing 𝑕;61 notice that, in the event that 𝑅𝑖 ≠ 𝑅𝑗  

(for some 𝑖, 𝑗 ∈ 𝑁, with 𝑗 ≠ 𝑖) the set of Player 𝑖‟s norm-complying strategies 

allowing 𝑕 – according to 𝑖‟s norm subset 𝑅𝑖 ⊆ 𝑅 – may not be the same as 

the set of Player 𝑖‟s norm-complying strategies according to 𝑗‟s norm subset, 

in other terms it might well be that 𝑆𝑖  𝑅𝑖 𝑕   ≠ 𝑆𝑖  𝑅𝑗  𝑕    for some history 𝑕 . 

Given that, it is assumed that players, conditional on each history of an 

extensive form game, hold a conjecture about the active player‟s norm-

complying actions at that history. 

 

Definition II.2. Given an extensive form game 𝐺 and for each 𝑖 ∈ 𝑁 a norm 

subset 𝑅𝑖 ⊆ 𝑅, a norm-conjecture of Player 𝑖 is a collection of independent 

probability measures 𝜌𝑖 =  𝜌𝑖 ∙  𝑕  
𝑕∈𝐻∖𝑍

∈  ∆  𝐴𝑃 𝑕  𝑕  𝑕∈𝐻\𝑍 , with 𝜌𝑖 𝑎 𝑕  

being the probability of action 𝑎 at history 𝑕, such that: 

                                  

61
 Obviously the set of norm-complying strategy profiles allowing history 𝑕0 can be defined 

from actions as 𝑅𝑖 𝑕
0 ≡    𝐴𝑦,𝑕 𝑅𝑖 𝑕  𝑕∈𝐻∖𝑍  𝑦∈𝑁 , that is, the Cartesian product of all 

players‟ (sequences of) norm-complying actions at all histories or, in other words, the 

Cartesian product of all players‟ norm-complying strategies allowing 𝑕0. 
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supp 𝜌𝑖 = supp  𝜌𝑖 ∙  𝑕  
𝑕∈𝐻∖𝑍

∈  𝐴𝑃 𝑕 ,𝑕 𝑅𝑖 𝑕  
𝑕∈𝐻\𝑍

, 

where supp 𝜌𝑖  denotes the support of 𝜌𝑖 , and 𝐴𝑃 𝑕 ,𝑕 𝑅𝑖 𝑕   is the set of norm-

complying actions of the active player (e.g.: 𝑃 𝑕 = 𝑦) at history 𝑕.62 

 

Notice that the support of 𝜌𝑖  is the set of the active player‟s (norm-complying) 

actions which are assigned positive probability by 𝑖‟s norm-conjecture 𝜌𝑖  at 

each history. In plain words – in order for (the potentially conformist) Player 𝑖 

to identify the actions being part of a strategy profile appearing to best 

describe some “normally-expected behaviour” (according to the standards 

set in 𝑖‟s social group and reflected in 𝑅𝑖) – conditional on each 𝑕 ∈ 𝐻 ∖ 𝑍, 

she holds a conjecture 𝜌𝑖 ∙  𝑕  about the active player‟s norm-complying 

actions at history 𝑕.63 It should be stressed that (possibly depending on the 

size of the social group) it may not be obvious to the members of a group that 

one norm is more adequate than another, so they have to form beliefs about 

what is expected (from the group as a whole) to do. It follows that Player 𝑖’s 

belief about the strategy profiles consistent with some norm in 𝑅𝑖  is a 

probability measure over 𝑅𝑖 𝐻 ; therefore, Pr𝜌 𝑖
 ∙  𝑕  ∈ ∆  𝑅𝑖 𝑕    is the 

probability measure over norm-complying strategy profiles conditional on 𝑕  

                                  

62
 Recall that, for each player 𝑦 ∈ 𝑁 that takes an action after some history 𝑕, the value of 

the player function at 𝑕 is 𝑦, i.e.: 𝑃 𝑕 = 𝑦. 

63
 Notice that, while the above system of first-order beliefs 𝛼𝑖  is a probability measure over 

the strategies of all the co-players (i.e.: all players other than 𝑖), here 𝜌𝑖 =  𝜌𝑖 ∙  𝑕  
𝑕∈𝐻∖𝑍

 is a 

collection of independent probability measures over the actions the active player ought to 

take at each history 𝑕 ∈ 𝐻\𝑍. Also, note that it is assumed that 𝜌𝑖  is undefined if 𝑅𝑖 = ∅. 
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and so, for some 𝑠 ∈ 𝑅𝑖 𝑕  , the conditional probability of norm-complying 

strategy profile 𝑠 (given that 𝑕  has occurred) is computed by Pr𝜌 𝑖
 𝑠 𝑕  

=  𝜌𝑖 𝑠𝑃 𝑕 ,𝑕  𝑕 𝑕∈𝐻\𝑍: 𝑕≽𝑕 . 

Before proceeding, notice that the above definition of norm reminds us 

of the one suggested by López-Pérez [2008], where a norm is defined as a 

correspondence mapping 𝑕 into 𝐴 𝑕 .64 However, on a mere conceptual 

level, here it is assumed that defining a norm as a correspondence mapping 

non-terminal histories into strategy profiles allows to better capture the 

strategic complexity of such rules, in that a certain action of Player 𝑃 𝑕  

might be considered most appropriate for some decision node (i.e.: for some 

history 𝑕) only in light of what is expected from all players to do at the 

successor nodes. In substance, on the one hand, assuming a unique 

possible norm in the society, like the E-norm of López-Pérez, the value of 

that norm at the initial history (i.e.: 𝑠 = 𝑟  𝑕0  for some 𝑠 ∈ 𝑆) would induce the 

same leaves as López-Pérez‟s fairmax paths; on the other hand, in the event 

of a player‟s deviation from the initially-recommended path, López-Pérez‟s 

norm selects the whole set 𝐴 𝑕  whereas the present theory allows the norm 

𝑟  to determine the actions in accordance with a given principle also at 

histories that would be impossible to reach if 𝑟  𝑕0  was played. Also, 

disregarding the role of expectations in sustaining a social norm seems to be 

a conceptual drawback of López-Pérez‟s model, although that makes his 

framework a parsimonious one. 

                                  

64
 For a detailed review of López-Pérez‟s [2008] and Li‟s [2008] models of norm compliance, 

refer to the appendix (section II.8.b. below). 
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The present definition of norm appears more similar to Li‟s [2008] 

convention, where “the right thing to do” depends also on what the co-player 

is (believed to be) doing. Indeed, Li models a norm as belief-dependent 

rankings over one‟s strategy space and normalizes them to the unit interval; 

more precisely, given a strategic form game and denoting Player 𝑖‟s set of 

mixed strategies as Σ𝑖  and 𝑖‟s belief about 𝑗‟s strategy as 𝑏𝑗 ∈ Σ𝑗 , Li defines a 

convention as a mapping 𝜔: Σ𝑖 × Σ𝑗 →  0,1 2. Notice that, by applying her 

definition (which is given in the context of 2-player normal form games) to a 

2-player extensive form game with no proper subgames, in some cases one 

would get a collection of values corresponding to what is here referred to as 

“Player 𝑖‟s belief about the strategy profiles consistent with some norm in 𝑅𝑖” 

(i.e.: Pr𝜌 𝑖
 ∙  𝑕0 ∈ ∆ 𝑅𝑖 𝐻  ); however, the two notions do not generally 

coincide since Li‟s convention is not a probability measure and so in her 

model it may well be that  𝜔𝑖 𝜍𝑖 , 𝑏𝑗  ≠ 1 𝜍𝑖 ,𝑏𝑗  ∈Σ𝑖×Σ𝑗
. 

Now, I can move on to introduce a notion of “pure social response to a 

norm-conjecture” (which reminds of a moral choice, as intended in some 

philosophical literature), as follows. 

 

Definition II.3. A strategy 𝑠𝑖
∗∗ =  𝑠𝑖,𝑕 

𝑕∈𝐻\𝑍
 is a pure social response to norm-

conjecture 𝜌𝑖 =  𝜌𝑖 ∙  𝑕  
𝑕∈𝐻∖𝑍

 at history 𝑕  if the following condition holds for 

all 𝑠𝑖 ∈ 𝑆𝑖 𝑕  : 

Pr𝜌 𝑖
 𝑠𝑖

∗∗|𝑕  ≥ Pr𝜌 𝑖
 𝑠𝑖|𝑕  , 

where Pr𝜌 𝑖
 𝑠𝑖|𝑕   is the conditional probability of a pure strategy of Player 𝑖 at 

history 𝑕  – according to 𝑖‟s own norm-conjecture 𝜌𝑖  – and is computed by 

Pr𝜌 𝑖
 𝑠𝑖  𝑕  =  𝜌𝑖 𝑠𝑖,𝑕  𝑕 𝑕∈𝐻\𝑍: 𝑕≽𝑕 . 
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Notice that, by definition II.2, 𝜌𝑖 =  𝜌𝑖 ∙  𝑕  
𝑕∈𝐻∖𝑍

 assigns positive probability 

only to (some) norm-complying actions at history 𝑕, which trivially implies that 

a pure social response 𝑠𝑖
∗∗ to norm-conjecture 𝜌𝑖  at history 𝑕  must be a norm-

complying strategy, i.e.: 𝑠𝑖
∗∗ ∈ 𝑆𝑖  𝑅𝑖 𝑕   . Given that, one can define the set of 

pure social responses to 𝜌𝑖  at 𝑕  as 𝐶𝑖 𝜌𝑖 ∶= arg max
𝑠𝑖∈𝑆𝑖 𝑕  

Pr𝜌 𝑖
 𝑠𝑖|𝑕  . 

 

Definition II.4. A perfectly norm-driven decision maker is an agent 𝑖 such 

that – facing a decision problem defined by an extensive form game 𝐺 and 

given a non-empty norm subset 𝑅𝑖 ⊆ 𝑅 – 𝑖 plays a pure social response 

𝑠𝑖
∗ ∈ 𝑆𝑖 𝑅𝑖 𝑕

0   to norm-conjecture 𝜌𝑖 . 

  

To sum up, definition II.3 determines the set (𝐶𝑖) of Player 𝑖‟s social 

responses to 𝜌𝑖  at 𝑕  as a collection of pure strategies with the highest 

probability of adhering to some principle, as prescribed by some 𝑟 ∈ 𝑅𝑖 , from 

some history 𝑕  onwards. Definition II.4 suggests a notion of extremely 

socially-conscientious agent 𝑖 by which 𝑖 takes the actions selected by 

strategy 𝑠𝑖
∗ that, according to 𝜌𝑖 , are most appropriate for all histories after 

which she moves (regardless of the material payoff to 𝑖). In the next sub-

section the utility function of a perfectly norm-driven decision maker will be 

devised as a special case of that of another category of socially-

conscientious agents, namely the “fairly norm-driven decision makers”. 

II.4.b. Belief-dependent conformist preferences 

I model a (fairly) norm-driven decision maker 𝑖 as a player with conformist 

preferences, whose utility function is a linear combination of her material 

payoff and a component representing the social cost of deviating, in the form 
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of the sum of losses that other conformist players 𝑗 would suffer because of a 

norm violation. For that, one needs to define some player 𝑗‟s expectation 

about her material payoff, given her strategy 𝑠𝑗  and her initial belief 𝛼𝑗 =

 ∙  𝑕0  about the strategies of the co-players (as it will be soon clear, 𝑗‟s 

expectation affects 𝑖‟s utility function): so, drawing on Battigalli and 

Dufwenberg‟s [2007] concept of simple guilt, such an expectation is given by 

E𝑠𝑗 ,𝛼𝑗
 𝑚𝑗 |𝑕0 =  𝛼𝑗𝑠−𝑗

 𝑠−𝑗  𝑕
0 𝑚𝑗  𝑧 𝑠𝑗 , 𝑠−𝑗   . Here, if Player 𝑗 is a norm-

driven decision maker – and presumes that her co-players are norm-driven 

too – she can form her belief 𝛼𝑗  by assuming her co-players‟ behaviour to be 

consistent with some 𝑟, with 𝑟 ∈ 𝑅−𝑗 . 

Now, the present theory assumes that players are naïve in the 

following way: if Player 𝑗 presumes that her co-players are norm-driven, then 

she believes that they hold the same norm-conjecture as hers (i.e.: 𝜌𝑗 =

 𝜌𝑗  ∙  𝑕  
𝑕∈𝐻∖𝑍

); hence, Player 𝑗 forms her first-order belief 𝛼𝑗  by assuming 

her co-players‟ behaviour (at each history where they are active) to be 

consistent with her own norm-conjecture 𝜌𝑗 . Notice that, here, her initial belief 

𝛼𝑗 =  ∙  𝑕0  would still correspond to a probability measure over the strategies 

of all the opponents, but with the support of 𝛼𝑗  containing only opponents‟ 

norm-complying strategies – according to 𝑗‟s norm subset 𝑅𝑗  – therefore the 

probability of a certain strategy profile of all players other than 𝑗 is now given 

by:  

 

𝛼𝑗  𝑠−𝑗  𝑕
0 ≡ Pr𝜌𝑗

 𝑠−𝑗 |𝑕0 =  𝜌𝑗  𝑠−𝑗 ,𝑕 |𝑕 
𝑕∈𝐻\𝑍: 𝑕≽𝑕0

. 

(2.4.1) 
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Note that, for the sake of simplicity, the present theory assumes that 

players cannot randomize, yet randomized choices enter the analysis as an 

expression of the players‟ beliefs about the opponents‟ (norm-complying) 

strategies. Given that, a “fairly norm-driven decision maker” is defined as 

follows. 

 

Definition II.5. A fairly norm-driven decision maker has conditionally-

conformist preferences characterized by the following utility function 

 

𝑢𝑖
𝐶 𝑧, 𝑠−𝑖 , 𝛼𝑗  = 𝑚𝑖 𝑧 − 𝑘𝑖𝑑𝑖

𝐶𝑑𝑖
𝐸  𝑚𝑎𝑥  0, E𝜌 𝑖 ,𝑠𝑗 ,𝛼𝑗

 𝑚𝑗 |𝑕0 − 𝑚𝑗  𝑧  

𝑗≠𝑖

, 

 

with 𝑠−𝑖 ∈ 𝑆−𝑖 𝑧 , 𝑘𝑖 ∈  0,  ∞  , and where: 

 𝑘𝑖  is Player 𝑖‟s sensitivity to the norm, which measures the agent‟s 

degree of conformity, thereby the “marginal cost” of a norm violation; 

 𝑑𝑖
𝐶 is a dummy variable equal to one if agent 𝑖 is aware of one or more 

norms applicable to the given decision problem (i.e.: whenever 𝑅𝑖 ≠

∅), equal to zero otherwise; 

 𝑑𝑖
𝐸 is a dummy variable equal to one if agent 𝑖 believes that at least 

one 𝑗 ≠ 𝑖 will adhere to some 𝑟, with 𝑟 ∈ 𝑅𝑖 , depending on the leaf 𝑧𝑡−1 

reached in a previous instance of the same multi-person decision 

problem (whenever the game is repeated) as follows 
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      𝑑𝑖
𝐸 =  

1 :
1 :
0 :

     

in period 1,

in period 𝑡 ∈ 𝑇 𝑖𝑓 ∃𝑠 ∈ 𝑅𝑖 𝐻  s.t. 𝑧𝑡−1 = 𝑧 𝑠 ,

in period 𝑡 ∈ 𝑇 𝑖𝑓 ∄𝑠 ∈ 𝑅𝑖 𝐻  s.t. 𝑧𝑡−1 = 𝑧 𝑠 .

65  

 

It is now clear that the psychological loss comes from any positive difference 

between the presumed expected payoff to 𝑗 and the payoff 𝑗 would get in the 

event of a norm violation; notice that 𝑖 does not know what 𝛼𝑗  is, yet she can 

estimate it in the same fashion as in formula (2.4.1) by presuming that every 

𝑗 ≠ 𝑖 holds the same norm-conjecture as hers. Also notice that the dummy 

variable 𝑑𝑖
𝐸 contributes to conceiving of a motive of conditionally conformist 

behaviour in that – whenever the game is repeated – 𝑑𝑖
𝐸 takes on the value 1 

if there exists at least one strategy profile consistent with some 𝑟 ∈ 𝑅𝑖  (i.e.: 

𝑠 ∈ 𝑅𝑖 𝐻 ) such that it induces the terminal history realized in the previous 

period. To sum up, if 𝑑𝑖
𝐶 = 1, 𝑑𝑖

𝐸 = 1, and 𝑘𝑖 > 0 Player 𝑖 will exhibit 

conformist preferences;66 besides, the larger her sensitivity 𝑘𝑖 , the more will 

she experience some disutility from someone‟s not conforming to her 

(presumed) norm. In this respect, it should be stressed that the sensitivity 

parameter 𝑘𝑖  sets the size of a hypothetical feeling of uneasiness of member 

𝑖 of a social group in which (because of someone‟s norm violation) some 

other member‟s welfare gets unjustly, or unexpectedly, reduced. 

                                  

65
 Note that 𝑧𝑡−1 denotes the terminal history realized in the previous period (i.e.: period 𝑡 −

1), with the set of periods being 𝑇 =  1, … , 𝑞 . Recall that 𝑅𝑖 𝐻  is the set of strategy profiles 

consistent with any 𝑟 ∈ 𝑅𝑖 (as defined in section II.4.a. above). 

66
 Obviously if 𝑘𝑖 = 0 or 𝑑𝑖

𝐶 = 0 or 𝑑𝑖
𝐸 = 0 the utility function reduces to one of classical, non-

conformist motivation. 
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Further, it should be stressed that such a utility function differs from 

the one Bicchieri presents in the appendix to Chapter 1 (Bicchieri [2006], Ch. 

1) since, according to Bicchieri‟s motivation function, Player 𝑖 would suffer a 

psychological loss even in the case in which she conforms to the norm but 

Player 𝑗 does not and, by doing so, 𝑗 gets a material payoff larger than the 

one implied by the norm (see the Prisoner‟s Dilemma example in section II.2. 

above). However, even though Bicchieri‟s formulation seems plausible, here 

it is assumed that the most prominent cause of conformity in social dilemmas 

is some painful emotion which an individual 𝑖 may feel in the event that any 

other member of the social group gets an outcome inferior to the “normally-

expected” one (according to 𝜌𝑖), regardless of 𝑖’s direct responsibility: in this 

respect, notice that here an agent with preferences represented by a utility 

function 𝑢𝑖
𝐶, on the one hand, would not suffer a psychological loss in the 

case in which she conforms to her (presumed) norm but her only co-player 

does not and, as a consequence, 𝑖 gets a material payoff lower than the one 

implied by her norm; on the other hand, 𝑖 would suffer a psychological loss in 

the case in which she conforms to her presumed norm but Player 𝑔 does not 

and, because of 𝑔‟s strategy, a third player 𝑗 gets a material payoff lower 

than the one implied by 𝑖‟s norm.67 

                                  

67
 A justification of the present modelling of the psychological disutility (from someone‟s not 

conforming to a norm) comes from the following argument: if, on the one hand, it might seem 

more suitable to let Player 𝑖‟s psychological loss equal the opponents‟ “disappointment” due 

to 𝑖‟s behaviour only (and not due to someone else‟s strategy), on the other hand, it should 

be further stressed that such psychological loss has to be intended as the malaise of a 

member of a social group in which some peer‟s welfare gets unjustly reduced. Indeed, the 

current modelling accounts for Player 𝑖‟s suffering a psychological loss in the case in which 
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Before proceeding, in light of definition II.5, one further observation is 

necessary. 

 

Remark II.1. A perfectly norm-driven decision maker (see also definition II.4) 

has unconditionally-conformist preferences characterized by a utility function 

𝑢𝑖
𝐶, with: 

(i) 𝑑𝑖
𝐶 = 1 [𝑅𝑖 ≠ ∅]; 

(ii) 𝑑𝑖
𝐸 = 1 [𝑒𝑣𝑒𝑛 in period 𝑡 ∈ 𝑇 𝑖𝑓 ∄𝑠 ∈ 𝑅𝑖 𝐻  s.t. 𝑧𝑡−1 = 𝑧 𝑠 ]; 

(iii) 𝑘𝑖 → ∞. 

 

A perfectly norm-driven decision maker represents an agent 𝑖 who cares 

infinitely much about the social implications of her actions, even though – in 

previous occurrences (if any) of the same social dilemma – no other member 

of the population has complied with any of the norms contained in 𝑅𝑖 . In other 

words, a perfectly norm-driven decision maker has unconditional preferences 

for conformity to some norm 𝑟 ∈ 𝑅𝑖 ; that is, norm 𝑟 constitutes a moral norm 

for 𝑖 (in this respect, empirical expectations set the boundaries between 

moral, often referred to as “Kantian”, norms and social norms). 

                                                                                              

she conforms to her presumed norm but Player 𝑔 does not and, because of 𝑔‟s behaviour 

only, a third player 𝑗 gets a material payoff lower than expected (by 𝑖) whereas Player 𝑖, 

along with 𝑔, gets a material payoff higher than the one implied by 𝑖‟s norm. As a matter of 

fact, norm-enforcing instincts have been probed using neuroimaging: results show that 

humans have an automatic drive to react to social wrongs perpetrated on themselves as well 

as others (Montague and Lohrenz [2007]). 
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II.4.c. Social norms 

Given the above apparatus, I shall introduce a set of conditions for a social 

norm to exist or, more explicitly, conditions for a norm 𝑟 to constitute a “social 

norm for 𝑖”. Before stating such conditions it should be highlighted that, as 

mentioned above, the present theory of conformity draws on guilt aversion in 

that guilt is a driver for conformity in mixed-motive games; however, this is 

not a social preference model proper because, as it will be soon clear, social 

norms rather serve as an equilibrium selection device, which here means that 

– when beliefs are correct – the guilt component of the utility function is 

always null in equilibrium.68 In fact, the form of the current utility function 

incorporates a taste for conditional social preferences which characterize, for 

example, a scenario where people dislike vandalism or littering, although 

they are more likely to indulge in misbehaviour whenever evidence of 

vandalism or littering are present in the environment; more generally, the 

present theory well depicts the case of an agent having a preference for 

some principle – whatever the norm specifically prescribes to her – only on 

condition that others do not deviate from the precepts of that norm (which is 

in sharp contrast with the social preference models mentioned in the 

introduction).  

 

Definition II.6. Let 𝑟 ∈ 𝑅 be a norm applicable to a certain class ℂ of mixed-

motive games, where each game is a structure 𝐺 =  𝑁, 𝐻, 𝑃,  𝑢𝑖
𝐶 

𝑖∈𝑁
 . 𝑟 is a 

social norm for Player 𝑖 of game 𝐺, if the following conditions hold for 𝑖. 

                                  

68
 For a discussion of possible equilibrium scenarios, see section II.5. below. 
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1. (contingency) 𝑟 ∈ 𝑅𝑖 ⟹ 𝑑𝑖
𝐶 = 1. 

2. (conditional preference) ∃𝑠∗ ∈ 𝑟 𝑕0  s. t. 𝑢𝑖
𝐶 𝑧 𝑠𝑖

∗, 𝑠−𝑖
∗   ≥ 𝑢𝑖

𝐶 𝑧 𝑠𝑖 , 𝑠−𝑖
∗    

for ∀ 𝑠𝑖 ∈ 𝑆𝑖 , where 𝑟 𝑕0  is the set of strategy profiles completely 

consistent with 𝑟. That is, 𝑖 prefers to adhere to 𝑟 in a play of 𝐺 𝑖𝑓 

2.1. (empirical expectations) 

 
𝛼𝑖 𝑠−𝑖 𝑕

0 =  Pr𝜌 𝑖
 𝑠𝑗  𝑕

0 𝑗≠𝑖  𝑓𝑜𝑟 ∀ 𝑠−𝑖 ∈ 𝑆−𝑖 ,

𝑤𝑖𝑡𝑕  supp  𝜌𝑖 ∙  𝑕  
𝑕∈𝐻∖𝑍

∈  𝐴𝑃 𝑕 ,𝑕 𝑟 𝑕0  𝑕∈𝐻\𝑍
 ⟹ 𝑑𝑖

𝐸 = 1; 

𝑎𝑛𝑑 𝑒𝑖𝑡𝑕𝑒𝑟 2.2. 𝑎 𝑜𝑟 2.2. 𝑏 

2.2. a. (normative expectations) 𝛽𝑖
𝑠𝑖 𝑕0 =  Pr𝜌 𝑖

 𝑠𝑖 𝑕
0  

𝑠𝑖∈𝑆𝑖

, 

2.2. b. (normative expectations with “psychological sanctions”  

i. 𝛽𝑖
𝑠𝑖 𝑕0 =  Pr𝜌 𝑖

 𝑠𝑖 𝑕
0  

𝑠𝑖∈𝑆𝑖

, 𝑎𝑛𝑑 

ii. 𝐷𝑖
𝑗

= E𝜌 𝑖 ,𝛽𝑖 ,𝛼𝑖
 𝑚𝑗 |𝑕0 − 𝑚𝑗  𝑧 𝑠𝑖 , 𝑠−𝑖

∗   ≥ 0 for ∀ 𝑠𝑖 ∈ 𝑆𝑖 , 

∀ 𝑗 ∈ 𝑁 (𝑗 ≠ 𝑖, with 𝐷𝑖
𝑗

> 0 for at least one 𝑗), 𝑎𝑛𝑑 

iii. 𝑘𝑖 > 0 𝑎𝑛𝑑 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒. 

  

The above set of conditions for a social norm to exist introduces a 

mathematically-precise definition of social norm, which in part formulizes 

Bicchieri‟s [2006] verbalization.69 Besides, the overall interpretation is not 

                                  

69
 See section II.2. above, for Bicchieri‟s own conditions: in this regard note that Bicchieri‟s 

conditions for a social norm to exist differ from the conditions of the present theory (as stated 

in definition II.6), among the other issues, also in that such conditions are here defined from 
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dissimilar: indeed, for both theories, a social norm has to be intended as 

informal (it is not a legal rule) and not necessarily enforced (it is non-binding); 

yet, and most importantly, it is necessarily sustained by expectations in that it 

is not unconditional (it is not a moral norm). In this connection, a few 

comments are in order. Condition 1 (i.e.: 𝑟 ∈ 𝑅𝑖) states that 𝑖 is aware of norm 

𝑟 applicable to game 𝐺. Condition 2.1 (i.e.: (𝛼𝑖 𝑠−𝑖 𝑕
0 =  Pr𝜌 𝑖

 𝑠𝑗  𝑕
0 𝑗≠𝑖  for 

∀ 𝑠−𝑖 ∈ 𝑆−𝑖 , with supp  𝜌𝑖 ∙  𝑕  
𝑕∈𝐻∖𝑍

∈  𝐴𝑃 𝑕 ,𝑕 𝑟 𝑕0  𝑕∈𝐻\𝑍 ) states that 𝑖 

believes that every 𝑗 ≠ 𝑖 adheres to 𝑟 ∈ 𝑅𝑖 ∩ 𝑅𝑗 ; that is, 𝑖‟s first-order belief is 

derived from 𝑖‟s norm-conjecture 𝜌𝑖 , with the support of 𝜌𝑖  containing only 

norm-complying actions dictated by 𝑟.70 Conditions 2.2.a and 2.2.b apply to 

alternative situations, that is: the former refers to the case where 𝑖 believes 

that every 𝑗 ≠ 𝑖 expects her to behave according to 𝑖‟s norm-conjecture 𝜌𝑖  

(which means that 𝑖‟s second-order belief is derived from 𝜌𝑖), simply because 

𝑗 acknowledges the legitimacy of 𝑖‟s norm-conjecture; the latter refers to the 

case where 𝑖 believes that every 𝑗 ≠ 𝑖 expects her to behave according to 𝜌𝑖 , 

and 𝑗 also prefers 𝑖 to conform.71 More precisely, condition 2.2.b holds 

                                                                                              

the viewpoint of Player 𝑖, irrespective of the correctness of her beliefs; a discussion of 

additional points of difference is provided below. 

70
 Notice that 𝐴𝑃 𝑕 ,𝑕 𝑟 𝑕0   is the set of norm-complying actions of the active player at 

history 𝑕, as dictated at 𝑕0 by 𝑟.  

71
 Condition 2.2.a depicts a situation in which 𝑖 believes that every 𝑗 ≠ 𝑖 expects 𝑖 to conform 

to the norm, yet 𝑖 does not necessarily believe that 𝑗 prefers 𝑖 to conform: in other words, 

condition 2.2.a accounts for a situation where 𝑗 conforms because 𝑗‟s cost of a norm violation 

(i.e.: 𝑘𝑗 ) is high enough to make 𝑗‟s deviation from 𝑠𝑗
∗ unprofitable, although there could be a 

terminal history induced by some strategy profile  𝑠−𝑗 , 𝑠𝑗
∗  where 𝑗 would be better off. An 

example of a case where condition 2.2.a is fulfilled is discussed in section II.6.a. below (see 
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whenever its three components hold at once: (i) the first expression (i.e.: 

𝛽𝑖
𝑠𝑖 𝑕0 =  Pr𝜌 𝑖

 𝑠𝑖 𝑕
0  

𝑠𝑖∈𝑆𝑖

) states that 𝑖 believes that every 𝑗 ≠ 𝑖 expects her 

to behave according to 𝑖‟s norm-conjecture 𝜌𝑖  (that is, 𝑖‟s second-order belief 

is derived from 𝜌𝑖); (ii) the second expression (i.e.: 𝐷𝑖
𝑗

= E𝜌 𝑖 ,𝛽𝑖 ,𝛼𝑖
 𝑚𝑗 |𝑕0 −

𝑚𝑗  𝑧 𝑠𝑖 , 𝑠−𝑖
∗   ≥ 0 for ∀ 𝑠𝑖 ∈ 𝑆𝑖 , ∀ 𝑗 ∈ 𝑁) states that 𝑖 believes that every 𝑗 ≠ 𝑖 

prefers her to behave according to 𝑖‟s norm-conjecture 𝜌𝑖  (that is, 𝑖’s 

expectation of 𝑗’s disappointment 𝐷𝑖
𝑗
 in the event of a norm violation is non-

negative for each 𝑧 𝑠𝑖 , 𝑠−𝑖
∗  ≠ 𝑧 𝑠𝑖

∗, 𝑠−𝑖
∗  ); (iii) the final expression (i.e.: 𝑘𝑖 > 0 

and 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒) states that 𝑖‟s cost of a norm violation is 

psychologically hurting (whenever 𝑘𝑖 > 0) and is high enough to make 𝑖‟s 

deviation from 𝑠𝑖
∗ unprofitable. 

Before introducing the conditions for a social norm to (exist and) be 

followed by every 𝑖 ∈ 𝑁, I shall briefly illustrate how the above sufficiently-

large-𝑘𝑖  requirement operates in a simple decision problem. Hence, it is 

required that 𝑘𝑖 ≥ max   𝑘 𝑖
𝑠 𝑖 , … , 𝑘 𝑖

𝑠 𝑖 , where each 𝑘 𝑖
𝑠𝑖  is a sensitivity parameter 

such that 𝑢𝑖
𝐶 𝑧 𝑠𝑖 , 𝑠−𝑖

∗   = 𝑢𝑖
𝐶 𝑧 𝑠𝑖

∗, 𝑠−𝑖
∗    for some 𝑠𝑖 ∈ 𝑆𝑖 , with 𝑠∗ ∈ 𝑟 𝑕0 . 

Consider the following Discrete Dictator Game.72 

 

                                                                                              

second scenario in proposition II.2); note that Bicchieri‟s interpretation of condition 2.2.a is 

slightly different. 

72
 Notice that 𝐷𝐷𝐺, as represented in Figure II.1, is a peculiar case of Dictator Game in that it 

presents an inefficient option (i.e.: for 𝑠1 = 𝑐). 
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Figure II.1 - Discrete Dictator Game “DDG”  

 

Now, suppose that a social norm based on some equitable principle has 

been established (i.e.: an “equitable” social norm 𝑟∗ exists for Player 1),73 

then the set of strategy profiles completely consistent with 𝑟∗ is singleton, 

that is, 𝑟∗ 𝑕0 =  𝑎 . Therefore – given that in this case Player 1 believes that 

𝜌𝑖 𝑎 𝑕0 = 1 for 𝑖 = 1,2, and that 𝛽1 𝑠1 𝑕0 = Pr𝜌 𝑖
 𝑠1|𝑕0 = 1 for 𝑠1 = 𝑎 – it 

follows that Player 1‟s expectation of Player 2‟s (expected) material payoff at 

𝑕0 equals E𝜌 𝑖 ,𝛽1
 𝑚2|𝑕0 = 1 ∙ 3 = 3. Further, Player 1‟s expectation of Player 

                                  

73
 See section II.6. below for some precise definitions of norms based on equitable 

principles. 
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2‟s “disappointment” at  𝑏|𝑕0  is E𝜌 𝑖 ,𝛽1
 𝑚2|𝑕0 − 𝑚2 𝑧 𝑏  = 3 − 2 = 1; this 

implies that Player 1‟s utility at  𝑏|𝑕0  equals 𝑢1
𝐶 𝑧, 𝜌𝑖 , 𝛽1 = 𝑚1 𝑧 𝑏  −

𝑘 1
𝑏  E𝜌 𝑖 ,𝛽1

 𝑚2|𝑕0 − 𝑚2 𝑧 𝑏   = 4 − 𝑘 1
𝑏 ∙ 1. Similarly, Player 1‟s expectation of 

Player 2‟s “disappointment” at  𝑐|𝑕0  is E𝜌 𝑖 ,𝛽1
 𝑚2|𝑕0 − 𝑚2 𝑧 𝑐  = 3 − 0 = 3; 

this implies that Player 1‟s utility at  𝑐|𝑕0  equals 𝑢1
𝐶 𝑧, 𝜌𝑖 , 𝛽1 = 𝑚1 𝑧 𝑐  −

𝑘 1
𝑐 E𝜌 𝑖 ,𝛽1

 𝑚2|𝑕0 − 𝑚2 𝑧 𝑐   = 5 − 𝑘 1
𝑐 ∙ 3. On the other hand, Player 1‟s 

expected utility (=payoff) at  𝑎|𝑕0  is given by 𝑢1
𝐶 𝑧 𝑎 , 𝜌𝑖 , 𝛽1 = 𝑚1 𝑧 𝑎  =

1 ∙ 3 = 3. Finally, Player 1‟s conformist preferences against 𝑏 and 𝑐 can be 

expressed, respectively, as: 𝑢1
𝐶 𝑧 𝑏 , 𝜌𝑖 , 𝛽1 = 𝑚1 𝑧 𝑎  ⟹ 4 − 𝑘 1

𝑏 = 3 ⟹

𝑘 1
𝑏 = 1; 𝑢1

𝐶 𝑧 𝑐 , 𝜌𝑖 , 𝛽1 = 𝑚1 𝑧 𝑎  ⟹ 5 − 3𝑘 1
𝑐 = 3 ⟹ 𝑘 1

𝑐 = 2/3. 

Consequently, the sufficiently-large-𝑘𝑖  requirement (for social norm 𝑟∗ to exist 

for Player 1 of 𝐷𝐷𝐺) imposes that 𝑘1 ≥ max   𝑘 1
𝑏 , 𝑘 1

𝑐 = max   1,
2

3
 , that is, 

𝑘1 ≥ 1. 

Now, the above conditions for a social norm to exist are to be intended 

as those necessary for a norm 𝑟 to be held in place: if fulfilled for every 𝑖 ∈ 𝑁, 

at least one of the strategy profiles dictated by that norm 𝑟 is an equilibrium – 

provided that all beliefs are correct and that players maximize expected 

utilities – as implied by the remarks II.2-3 below. Hence, definition II.6 results 

in a social norm (existing and) being “followed by population 𝑁” if the 

conditions in remark II.2 simultaneously hold. 

 

Remark II.2. A social norm 𝑟∗ (exists and) is followed by population 𝑁, if: 

every player 𝑖 ∈ 𝑁 has conformist preferences represented by a utility 

function 𝑢𝑖
𝐶, with 𝑑𝑖

𝐶 = 1, 𝑑𝑖
𝐸 = 1, and 𝑘𝑖 > 0; every 𝑖 maximizes her 

expectation of 𝑢𝑖
𝐶; every 𝑖 holds correct beliefs about every 𝑗‟s (𝑗 ∈ 𝑁, with 

𝑗 ≠ 𝑖) first-order belief and behaviour; every player 𝑖‟s behaviour is consistent 
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with at least one of the end-nodes yielded by 𝑟∗ ∈ 𝑅𝑖 ∩ 𝑅𝑗  (according to norm-

conjectures 𝜌𝑗 = 𝜌𝑖 , for ∀ 𝑗 ∈ 𝑁); 𝑘𝑖  is sufficiently large for every 𝑖 ∈ 𝑁. 

 

Note that the expression “a social norm 𝑟∗ is followed by population 𝑁” (or 

“every player 𝑖 ∈ 𝑁 conforms to 𝑟∗”) implies that every player in the 

population plays her part of one of the strategy profiles contained in 𝑟∗ 𝐻 , 

which in turn implies that every player plays her part of one of the strategy 

profiles contained in 𝑟∗ 𝑕0 .  

 

II.5. Equilibrium concept 

In this section an equilibrium concept for mixed-motive games with belief-

dependent conformist preferences is discussed: by imposing the requirement 

that all beliefs (and norm-conjectures) are correct in equilibrium, I derive a 

“Social Sequential Equilibrium” as a special case of the sequential 

equilibrium notion of Kreps and Wilson [1982]. Kreps and Wilson‟s definition 

of equilibrium for generic extensive form games consists of sequentially 

rational, consistent assessments, where: (i) an assessment is a profile of 

behavioural strategies and conditional first-order beliefs (along with higher-

order beliefs in Battigalli and Dufwenberg‟s [2009] specification); (ii) an 

assessment is consistent if the profile of first-order beliefs 𝛼 =  𝛼𝑖 𝑖∈𝑁 is 

derived from the behavioural strategy profile 𝜍 =  𝜍𝑖 𝑖∈𝑁, that is, for ∀ 𝑖 ∈ 𝑁, 

∀ 𝑠−𝑖 ∈ 𝑆−𝑖 , ∀ 𝑕 ∈ 𝐻𝑖 , it must be that 𝛼𝑖 𝑠−𝑖 𝑕  =  Pr𝜍𝑗
 𝑠𝑗  𝑕  𝑗≠𝑖 ; notice that, 

since 𝛼𝑖  is derived from 𝜍 =  𝜍𝑖 𝑖∈𝑁, the beliefs of every player 𝑗 ≠ 𝑖 about 

Player 𝑖‟s strategies must be the same; given that, Battigalli and 

Dufwenberg‟s [2009] specification of sequential equilibria for psychological 

games extends the consistency requirement by demanding that higher-order 

beliefs at each information set are correct for ∀ 𝑖 ∈ 𝑁, ∀ 𝑕 ∈ 𝐻𝑖 , that is, 



 

- 111 - 

 

𝛽𝑖 𝑕 = 𝛼−𝑖 ; (iii) finally, an assessment is sequentially rational if, for every 

player 𝑖 and every information set 𝑕 ∈ 𝐻𝑖 , the strategy of 𝑖 is a best response 

to the other players‟ strategies given 𝑖‟s beliefs at 𝑕. 

In the present framework I further extend the consistency requirement 

by imposing that every player 𝑖 holds correct beliefs about every 𝑗‟s first-order 

belief, which is derived from norm-conjectures 𝜌𝑗 = 𝜌𝑖  (for ∀ 𝑗 ∈ 𝑁, with 𝑗 ≠ 𝑖). 

It follows the definition of a “socially consistent assessment”. 

 

Definition II.7. A socially consistent assessment is a profile  𝜍, 𝜌, 𝛼, 𝛽 =

 𝜍𝑖 , 𝜌𝑖 , 𝛼𝑖 , 𝛽𝑖 𝑖∈𝑁 that specifies behavioural strategies, norm-conjectures, first- 

and second-order beliefs, such that for ∀ 𝑖 ∈ 𝑁, ∀ 𝑠−𝑖 ∈ 𝑆−𝑖, ∀ 𝑕 ∈ 𝐻𝑖 : 

(i) 𝛼𝑖 𝑠−𝑖 𝑕  =  Pr𝜍𝑗
 𝑠𝑗  𝑕  𝑗≠𝑖 ; 

(ii) 𝛽𝑖 𝑕  = 𝛼−𝑖 ; 

(iii) 𝛽𝑖
𝑠𝑖 𝑕  =  Pr𝜌 𝑖

 𝑠𝑖  𝑕   
𝑠𝑖∈𝑆𝑖

 and  𝜌𝑗  ∙  𝑕  
𝑗≠𝑖, 𝑕∈𝐻∖𝑍

=  𝜌𝑖 ∙  𝑕  
𝑕∈𝐻∖𝑍

. 

  

Notice that condition (iii) in definition II.7 is the distinguishing feature of a 

socially consistent assessment in that it implies that (not only are beliefs 

derived from a behavioural strategy profile but also) a behavioural strategy 

profile 𝜍 =  𝜍𝑖 𝑖∈𝑁 contains probability measures which equal those 

contained in norm-conjecture 𝜌𝑖 , with 𝜌𝑗 = 𝜌𝑖  for every 𝑗 ≠ 𝑖.  

The core equilibrium concept for mixed-motive games with belief-

dependent conformist preferences can now be presented. 

  

Definition II.8. Given an extensive form game 𝐺 and a norm subset 𝑅𝑖 ⊆ 𝑅, 

for each 𝑖 ∈ 𝑁, where 𝐺 =  𝑁, 𝐻, 𝑃,  𝑢𝑖
𝐶 

𝑖∈𝑁
 , a Social Sequential Equilibrium 
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(“SSE”) of 𝐺 is a socially consistent assessment, such that for ∀ 𝑖 ∈ 𝑁, 

∀ 𝑕 ∈ 𝐻𝑖 , ∀ 𝑠𝑖
∗ ∈ 𝑆𝑖 𝑕 : 

Pr𝜍𝑖
 𝑠𝑖

∗ 𝑕 > 0 ⟹ 𝑠𝑖
∗ ∈ 𝑆𝑖 𝑅𝑖 𝑕  ⟹ 𝑠𝑖

∗ ∈ arg max
𝑠𝑖∈𝑆𝑖 𝑕 

E𝑠𝑖 ,𝛼𝑖 ,𝛽𝑖 ,𝜌𝑖
 𝑢𝑖

𝐶|𝑕 . 

 

In plain words, a socially consistent assessment is a social sequential 

equilibrium if each probability measure Pr𝜍𝑖
 ∙  𝑕  assigns positive conditional 

probability only to conditional expected-payoff maximizing norm-complying 

strategies; that is, all players hold the same belief about the strategy profiles 

consistent with some norm in 𝑅𝑖  and maximize the expectation of the utility 

function (given their correct beliefs). Note that, here, it is assumed common 

knowledge of the utility functions 𝑢𝑖
𝐶, implying that the sensitivity parameters 

𝑘𝑖  are commonly known (and are, in effect, sufficiently large) as well as the 

fact that each player 𝑖 knows that every 𝑗 ≠ 𝑖 adheres to some 𝑟 ∈ 𝑅𝑖 ∩ 𝑅𝑗  

(i.e.: resulting in 𝑑𝑖
𝐸 = 1), given that each player‟s norm-subset is non-empty 

(i.e.: resulting in 𝑑𝑖
𝐶 = 1).  

Further, note that (if 𝑑𝑖
𝐶 = 1 and 𝑑𝑖

𝐸 = 1) one could define a sequential 

equilibrium à la Battigalli and Dufwenberg [2007] by specifying a consistent 

assessment  𝜍, 𝛼, 𝛽  dropping condition (iii) of definition II.7 above: given 

that, their equilibrium notion can be obtained by dropping the requirement 

that each probability measure Pr𝜍𝑖
 ∙  𝑕  assigns positive conditional 

probability only to norm-complying strategies in definition II.8 above; this 

implies that every game with simple guilt has a psychological sequential 

equilibrium à la Battigalli and Dufwenberg, irrespective of the magnitude of 

the sensitivity parameter  𝑘𝑖 𝑖∈𝑁. Conversely, here, a fairly norm-driven 

decision maker with utility function 𝑢𝑖
𝐶 (as in definition II.5) has conditionally-

conformist preferences such that if – for some player 𝑔 ≠ 𝑖 – 𝑔‟s cost of a 

norm violation is not high enough to make 𝑔‟s deviation from 𝑠𝑔
∗ unprofitable 
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(i.e.: 𝑘𝑔  is not sufficiently large), then condition 2.1 of definition II.6 will not 

hold for 𝑖 (i.e.: resulting in 𝑑𝑖
𝐸 = 0) and so the utility function 𝑢𝑖

𝐶 will reduce to 

one of classical (“non-psychological”) motivation, thereby implying a standard 

notion of equilibrium.74 

On the other hand, it should be stressed that the present theory 

considers the possibility that players may deviate from the precepts of a norm 

in the case where norm 𝑟 constitutes a social norm only for some player 𝑗 of 

game 𝐺, as due to the fact that 𝑗 may hold incorrect beliefs about others‟ 

belief and behaviour and, as a consequence, 𝑟 might not be followed by all 

members of 𝑁: this is due to the definition of social norm being based on 

expectations and conditional preferences. Instead, if condition 1 of definition 

II.6 holds for every player 𝑖, 𝑗 ∈ 𝑁 and every 𝑖, 𝑗 ∈ 𝑁 holds correct norm-

conjectures 𝜌𝑗 = 𝜌𝑖  (as well as first- and second-order beliefs), then the 

following equilibrium scenarios are possible: 

(i) conditions 2.1-2.2 of definition II.6 hold for every player 𝑖, 𝑗 ∈ 𝑁 ⟹ 

social norm 𝑟∗ exists (for ∀ 𝑖, 𝑗 ∈ 𝑁) and is followed by population 𝑁 ⟹ 

a social sequential equilibrium of 𝐺 occurs; 𝑜𝑟 𝑒𝑙𝑠𝑒 

(ii) conditions 2.1-2.2 of definition II.6 do not hold ⟹ social norm 𝑟 does 

not exist for any player 𝑖, 𝑗 ∈ 𝑁 (and it is not followed by population 𝑁) 

⟹ a social sequential equilibrium of 𝐺 does not occur (yet a subgame 

perfect equilibrium occurs if 𝐺 is a game with observable actions and 

                                  

74
 That is justified by the classical interpretation of equilibrium beliefs as the result of a 

transparent reasoning process. 
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no chance moves; a standard sequential equilibrium à la Kreps and 

Wilson occurs otherwise). 

Note that in scenario (ii) the utility function reduces to one of classical, non-

conformist motivation, which justifies the standard notions of equilibrium 

adopted. It should be stressed that – for a given extensive form game 𝐺, and 

a norm subset 𝑅𝑖 ⊆ 𝑅 for each 𝑖 ∈ 𝑁 – a social sequential equilibrium does 

not always exist: this perfectly captures the fragility of social norms in actual 

society. 

Finally, the following result is a direct consequence of definition II.8. 

 

Remark II.3. Given an extensive form game 𝐺, and a norm subset 𝑅𝑖 ⊆ 𝑅 for 

each 𝑖 ∈ 𝑁, if a social norm 𝑟∗ ∈ 𝑅𝑖  (exists and) is followed by population 𝑁, 

then some social sequential equilibrium of 𝐺 occurs. 

 

Notice that the converse is not necessarily true, as a certain socially 

consistent, sequentially rational assessment (i.e.: a social sequential 

equilibrium) might be induced by multiple norms in 𝑅, some of which may not 

even belong to 𝑅𝑖  for some 𝑖 ∈ 𝑁. For example, consider a 2-player game 

and let each player‟s norm subset be defined as 𝑅𝑖 =  𝑟𝐸 , 𝑟𝑀  for ∀ 𝑖 ∈ 𝑁. 

Then, assume that at the initial node of the game, the norm 𝑟𝐸 dictates the 

strategy profiles 𝑟𝐸 𝑕0 =   𝑏, 𝑐 ,  𝑎, 𝑐   whereas the norm 𝑟𝑀 dictates the 

strategy profiles 𝑟𝑀 𝑕0 =   𝑎, 𝑐 ,  𝑎, 𝑑  , with each pair of lower-case letters 

denoting a strategy profile. Further, assume that both players are fairly norm-

driven decision makers with utility functions  𝑢𝑖
𝐶 

𝑖∈𝑁
 and that, while holding 

correct beliefs, they play the strategy profile  𝑎, 𝑐 . Now, while  𝑎, 𝑐  is a 

social sequential equilibrium of the game, this does not necessarily imply 

that, say, 𝑟𝐸 (rather than 𝑟𝑀) constitutes a social norm and is being followed 
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by the players of the game.75 Interestingly, this well captures the case of a 

traveller who, once in a foreign country, observes some locals interacting 

(without taking part in the actual game herself): while the outcome of the 

interaction may turn out to be compatible with some of the norms stored in 

the observer‟s mind, she may not be able to tell which one has been held in 

place, especially if the foreign country is particularly culturally-different from 

hers; on a smaller case, a similar problem occurs the first time we happen to 

interact with members of a group, organization or institution whose social 

norms we do not yet know.  

 

II.6. Illustrations 

In this section I turn to analyse some specific dynamic interactions 

accounting for belief-dependent conformist preferences. Recalling that a 

norm (definition II.1 above) is a set-valued function 𝑟 ∈ 𝑅 that assigns to 

every non-terminal history 𝑕 ∈ 𝐻\𝑍 one or more elements from the set 𝑆 𝑕  

of strategy profiles allowing history 𝑕 – and following my discussion about a 

pattern of belief formation relative to a presumed social norm – here I move 

on to define an illustrative set of norms, comprising the following principles, 

which are assumed to regulate behaviour in social dilemmas: 

 

 

𝑅 =  𝑟𝐸 , 𝑟𝐹 , 𝑟𝑀 , 𝑟𝑊 , where each norm is defined as below. 

                                  

75
 Obviously the players of the game know which social norm they are following. 
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 Equity principle:  

𝑟𝐸 𝐻 =  𝑠 ∈ 𝑆 𝑕 : 𝑕 ∈ 𝐻 ∖ 𝑍; 𝑧 𝑠  s.t. 𝑚1 𝑧 =. . . = 𝑚𝑛 𝑧  . 

 Inequity reducing principle: 

𝑟𝐹 𝐻 =  𝑠 ∈ 𝑆 𝑕 : 𝑕 ∈ 𝐻 ∖ 𝑍; 𝑧 𝑠  s.t. 𝑧 ∈ arg min
𝑧∈𝑍

 
1

𝑛
  𝑚𝑖 𝑧 −𝑖∈𝑁

𝑚  𝑧  2  .76 

 Classical-utilitarian welfare maximization principle: 

𝑟𝑀 𝐻 =  𝑠 ∈ 𝑆 𝑕 : 𝑕 ∈ 𝐻 ∖ 𝑍; 𝑧 𝑠  s.t. 𝑧 ∈ arg max
𝑧∈𝑍

  𝑚𝑖 𝑧 𝑖∈𝑁   .77 

 Rawlsian (minimax) welfare maximization principle: 

𝑟𝑊 𝐻 =  𝑠 ∈ 𝑆 𝑕 : 𝑕 ∈ 𝐻 ∖ 𝑍; 𝑧 𝑠  s.t. 𝑧 ∈ arg max
𝑧∈𝑍

𝑊 𝒎 𝑧   , 

where 𝑊 𝒎 𝑧    denotes a Rawlsian social welfare function and is 

defined as 𝑊 𝑚1 𝑧  , … , 𝑚𝑛 𝑧   = min
𝑖∈𝑁

  𝑚1 𝑧  , … , 𝑚𝑛 𝑧   . 

 

It should be stressed that the above set does not aim at representing the 

whole range of social norms that may emerge in strategic interactions but is 

only meant to provide a useful (yet simple) illustration of the conditions under 

which conformity sets in, in mixed-motive games. 

                                  

76
 Note that 𝑚  𝑧  denotes the mean value of the players‟ material payoffs, for a given 

terminal node 𝑧. 

77
 Obviously any allocation consistent with the classical-utilitarian welfare maximization 

principle is a Pareto-efficient solution. 
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II.6.a. Trust Games 

Consider the following trust game: at the initial node 𝑕0, Player 1 (the 

“trustor”) chooses either “a” or “b” – when opting for “b”, the game terminates 

and material outcomes are allocated as shown in the vector of payoffs at the 

end-node 𝑧 𝑏  (with the number on top referring to Player 1‟s payoff); on the 

other hand, if Player 1 opts for “a”, the choice passes to Player 2 (the 

“trustee”), who in turn can decide on “c” or “d”, the consequences of which 

are shown in the vector of payoffs at the end-nodes 𝑧 𝑐  and 𝑧 𝑑 , 

respectively. 

 

 

Figure II.2 - Trust Game “TG” 

 

Now, assume that players believe that there may exist some social norm 

𝑟 ∈ 𝑅𝑖  for ∀ 𝑖 ∈ 𝑁: more precisely, assume that a norm dictating a strategy 

profile yielding an equal (material) payoff among players is the presumed 

social norm; thus, given the above set of norms, one may let 𝑅1 = 𝑅2 =  𝑟𝐸 . 

It is clear that, at the initial node, the norm 𝑟𝐸 dictates the following strategy 

profiles: 𝑟𝐸 𝑕0 =   𝑏, 𝑐 ,  𝑎, 𝑐  , i.e.: 𝑟𝐸 𝑕0  is the set of strategy profiles 
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completely consistent with 𝑟𝐸. Recalling that a norm-conjecture of player 𝑖 

(definition II.2 above) is a collection of independent probability measures 

𝜌𝑖 =  𝜌𝑖 ∙  𝑕  
𝑕∈𝐻∖𝑍

∈  ∆  𝐴𝑃 𝑕  𝑕  𝑕∈𝐻\𝑍  – with 𝜌𝑖 𝑎 𝑕  being the probability 

of 𝑎 at 𝑕, such that supp 𝜌𝑖 = supp  𝜌𝑖 ∙  𝑕  
𝑕∈𝐻∖𝑍

∈  𝐴𝑃 𝑕 ,𝑕 𝑅𝑖 𝑕  𝑕∈𝐻\𝑍  – the 

norm-conjecture induced by 𝑟𝐸, for ∀ 𝑖 ∈ 𝑁, can be represented by the 

following matrix:  

 

𝜌𝑖 =  
𝜌𝑖 𝑎|𝑕0 𝜌𝑖 𝑏|𝑕0 

𝜌𝑖 𝑐|𝑕 𝑎  𝜌𝑖 𝑑|𝑕 𝑎  
 =  

𝜌 1 − 𝜌 
1 0

 , 

 

where 𝜌 ∈  0,1 ; that is, if 𝜌 = 0 then strategy profile  𝑏, 𝑐  is implemented, 

whereas if 𝜌 = 1 then  𝑎, 𝑐  is implemented.78 Thus, recall that (if player 𝑖 is a 

norm-driven decision maker and presumes that her co-player is norm-driven 

too) player 𝑖 can form her belief 𝛼𝑖  by assuming her co-player‟s behaviour to 

be consistent with her norm-conjecture 𝜌𝑖 : 𝑖‟s initial belief 𝛼𝑖 =  ∙  𝑕0  

corresponds to a probability measure over the strategies of the opponent, 

with the support of 𝛼𝑖  containing only the opponent‟s norm-complying 

strategies; for instance, here, the probability of a certain strategy of Player 2 

is given by 𝛼1 𝑠2 𝑕
0 ≡ Pr𝜌1

 𝑠2|𝑕0 = 𝜌1  𝑠2,𝑕 𝑎  𝑕 𝑎  . 

Then, Player 1 can calculate her expected payoff as well as the 

opponent‟s expected payoff and potential disutility from 1‟s not conforming to 

                                  

78
 It is assumed that players cannot randomize, as per section II.4.b. above. 
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the norm (again assuming that 𝜌1 = 𝜌2). In brief, Player 1‟s expectation of 

Player 2‟s (expected) material payoff at 𝑕0 equals E𝜌 𝑖 ,𝛼1 ,𝛽1
 𝑚2|𝑕0 = 3𝜌 +

1 1 − 𝜌  = 2𝜌 + 1, for 𝑖 = 1,2. Further, Player 1‟s expectation of Player 2‟s 

disappointment at  𝑏|𝑕0  is E𝜌 𝑖 ,𝛼1 ,𝛽1
 𝑚2|𝑕0 − 𝑚2 𝑧 𝑏  =  2𝜌 + 1 − 1 = 2𝜌 ; 

this implies that Player 1‟s utility at  𝑏|𝑕0  equals 𝑢1
𝐶 𝑧, 𝜌𝑖 , 𝛼1, 𝛽1 =

𝑚1 𝑧 𝑏  − 𝑘1 E𝜌𝑖 ,𝛼1 ,𝛽1
 𝑚2|𝑕0 − 𝑚2 𝑧 𝑏   = 1 − 𝑘1 2𝜌  . On the other hand, 

Player 1‟s expected utility (=expected payoff) at 𝑕 𝑎  is given by 

𝑢1
𝐶 𝑧, 𝜌𝑖 , 𝛼1, 𝛽1 = E𝜌 𝑖 ,𝛼1

 𝑚1|𝑎 = 1 ∙ 3 = 3. Then, Player 1‟s conformist 

preferences can be expressed as 𝑢1
𝐶 𝑧 𝑏 , 𝜌𝑖 , 𝛼1, 𝛽1 ≤ E𝜌 𝑖 ,𝛼1

 𝑚1|𝑎 ⟹ 1 −

𝑘1 2𝜌  ≤ 3 ⟹ 𝑘1 𝜌  ≥ −1, which is always satisfied. Similarly, Player 2‟s 

expected utility at  𝑑|𝑕 𝑎   equals 𝑢2
𝐶 𝑧, 𝜌𝑖 , 𝛼2, 𝛽2 = 𝑚2 𝑧 𝑎, 𝑑  −

𝑘2 E𝜌 𝑖 ,𝛼2 ,𝛽2
 𝑚1|𝑎 − 𝑚1 𝑧 𝑎, 𝑑   = 6 − 3𝑘2, whereas Player 2‟s expected 

utility (=payoff) at  𝑐|𝑕 𝑎   is given by 𝑢2
𝐶 𝑧, 𝜌𝑖 , 𝛼2, 𝛽2 = 𝑚2 𝑧 𝑎, 𝑐  = 1 ∙ 3 =

3. Then, Player 2‟s conformist preferences can be expressed as 

𝑢2
𝐶 𝑧 𝑎, 𝑑 , 𝜌𝑖 , 𝛼2, 𝛽2 ≤ 𝑢2

𝐶 𝑧 𝑎, 𝑐 , 𝜌𝑖 , 𝛼2, 𝛽2 ⟹ 6 − 3𝑘2 ≤ 3 ⟹ 𝑘2 ≥ 1. To 

conclude – recalling that a socially consistent assessment is a social 

sequential equilibrium (definition II.8 above) if each probability measure 

Pr𝜍𝑖
 ∙  𝑕  assigns positive conditional probability only to conditional expected-

payoff maximizing norm-complying strategies – it follows that the only norm-

conjecture induced by 𝑟𝐸 that yields an SSE is given by the matrix:  

 

𝜌𝑖 =  
𝜌𝑖 𝑎|𝑕0 𝜌𝑖 𝑏|𝑕0 

𝜌𝑖 𝑐|𝑕 𝑎  𝜌𝑖 𝑑|𝑕 𝑎  
 =  

1 0
1 0

 , 

 

in which case  𝑎, 𝑐  is an SSE for 𝑘2 ≥ 1; instead, if 𝑘2 < 1, norm 𝑟𝐸 is (not a 

social norm and is) not followed by population 𝑁 (by remark II.2 above). It 
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should be further stressed that – given the norm subset 𝑅𝑖 =  𝑟𝐸  for ∀ 𝑖 ∈ 𝑁 

– in the case where 𝑘2 < 1 no social sequential equilibrium of 𝑇𝐺 occurs (by 

remark II.3 above). Yet, for 𝑘2 < 1, 𝑇𝐺 (with conformist preferences) has the 

same solution as the standard subgame perfect equilibrium, i.e.:  𝑏, 𝑑 . 

I shall now generalize the analysis by means of the following 

Standardized Trust Game, with parameters 𝑥 and 𝑣 such that 𝑥 > 0 and 

𝑣 > 1. 

 

 

Figure II.3 - Standardized Trust Game “STG” 

 

Proposition II.1. Given the norm subset 𝑅𝑖 =  𝑟𝐸 , 𝑟𝐹  for ∀ 𝑖 ∈ 𝑁, the only 

SSE of 𝑆𝑇𝐺 is  𝑎, 𝑐 , whenever 𝑘2 ≥ 1. 

Proof: the proof is analogous to that for 𝑇𝐺 (where 𝑥 = 1, 𝑣 = 3), and is 

therefore omitted. 

 

The following results refer to alternative specifications of the norm 

subsets. 
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Proposition II.2. Given the norm subset 𝑅𝑖 =  𝑟𝑀  for ∀ 𝑖 ∈ 𝑁, the following 

SSE of 𝑆𝑇𝐺 may occur: 

 for 𝜌𝑖 𝑎|𝑕0 = 1, 𝜌𝑖 𝑐|𝑕 𝑎  = 1;  𝑎, 𝑐 , whenever 𝑘2 ≥ 1, 

 for 𝜌𝑖 𝑎|𝑕0 = 1, 𝜌𝑖 𝑐|𝑕 𝑎  = 0;  𝑎, 𝑑 , whenever 𝑘1 ≥
1

2𝑣−1
. 

Proof: see Appendix. 

 

Proposition II.3. Given the norm subset 𝑅𝑖 =  𝑟𝑊  for ∀ 𝑖 ∈ 𝑁, the only SSE 

of 𝑆𝑇𝐺 is  𝑎, 𝑐 , whenever 𝑘2 ≥ 1. 

Proof: see Appendix. 

 

Notice that the second scenario in proposition II.2 (i.e.: SSE  𝑎, 𝑑 ) provides 

an example of an interaction where condition 2.2.a of definition II.6 above is 

fulfilled: in fact, Player 1 conforms to 𝑟𝑀 because her cost of a norm violation 

is high enough to make 1‟s deviation from 𝑠1
∗ = 𝑎 unprofitable (i.e.: if 𝑘1 ≥

1

2𝑣−1
), although there is one terminal history induced by a strategy profile 

 𝑠2, 𝑠1
∗ =  𝑐, 𝑎  – other than that implied by norm conjecture 𝜌𝑖 𝑎|𝑕0 = 1, 

𝜌𝑖 𝑐|𝑕 𝑎  = 0 – where Player 1 would be better off.79 So from the viewpoint 

of Player 2, in the second scenario (i.e.: SSE  𝑎, 𝑑 ), Player 2 believes that 

Player 1 expects him to behave according to 𝜌2, simply because Player 2 

                                  

79
 This implies that condition 2.2.b of definition II.6 above is not fulfilled in this case, because 

the second expression of condition 2.2.b, from the viewpoint of Player 2, does not hold here. 
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believes that Player 1 acknowledges the legitimacy of 2‟s norm-conjecture 

(i.e.: 𝜌2 𝑎|𝑕0 = 1, 𝜌2 𝑐|𝑕 𝑎  = 0). Now, even though an equilibrium 

consisting of the strategy profile  𝑎, 𝑑  may seem a controversial solution, this 

well captures many situations characterized by what I shall call “rationally-

(mis)placed” trust: an example is given by a set of circumstances where a 

woman (marries and) brings a dowry to a man of dubious reputation; in 

effect, she (Player 1) may lucidly expect the man (Player 2) to use and invest 

the dowry, keeping all the proceeds for himself, and still, she may prefer to 

marry him if the local culture pushes women to get a husband; thus, if the 

cost of deviating is high (i.e.: if 𝑘1 =
1

2𝑣−1
), the influence of culture (and its 

norms) is such that the woman is indifferent between remaining unmarried 

(i.e.:  𝑠2, 𝑠1 =  ⋅, 𝑏 ) and getting married-but-losing-everything (i.e.:  𝑠2, 𝑠1 =

 𝑑, 𝑎 ). 

To sum up, the above exercise has shown that the range of equilibria 

obtained could possibly explain much of the experimental results (collected in 

Camerer [2003], pp. 83-100), based on the norm-conjectures induced by a 

variety of culture-dependent principles; indeed, different cultures may give 

prominence to different norms and, in turn, different conjectures about norms. 

The intuition is confirmed by a large cross-cultural experimental study 

undertaken in fifteen small-scale societies (Henrich et al. [2001]): the 

investigation directly addressed the question of whether the individual‟s 

social environments shape behaviour by implementing a study of behaviour 

in a set of social dilemma games; a number of field researchers, working in 

twelve countries on five continents, recruited subjects from small-scale 
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societies presenting a wide variety of economic and cultural conditions.80 

Their results show that group-level differences in the structure and 

organization of everyday economic activity explain a substantial part of the 

experimental variation observed across societies (the higher the degree of 

market integration and the higher the payoffs to cooperation of everyday life, 

the greater the level of cooperation in experimental games); moreover, and 

quite interestingly, individual-level economic and demographic variables do 

not explain observed behaviour either within or across groups. 

 

II.7. Closing Remarks 

This essay has presented an original theory of conformist preferences in 

mixed-motive games, building on Battigalli and Dufwenberg‟s [2007] model of 

guilt aversion; a notion of Social Sequential Equilibrium allowing for belief-

dependent conformist motivations has been proposed by refining Battigalli 

and Dufwenberg‟s [2009] specification of the sequential equilibrium concept 

of Kreps and Wilson [1982]. Such a theory departs from the existing game-

theoretic literature, since it explicitly defines (social) norms as rules that 

dictate a set of strategy profiles, where the norms considered here are 

informal, not necessarily enforced, and necessarily sustained by 

expectations. Although the motivational factors considered here are related 

to the much-investigated concepts of fairness and reciprocity, I shall stress 

                                  

80
 Their sample comprised three foraging societies, six that practice slash-and-burn 

horticulture, four nomadic herding groups, and three (sedentary) small-scale agriculturalist 

societies. 
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that the focus of this study has been on a “mere” conformity motivation in 

social dilemmas, implying that the (presumed) behaviour of other members of 

a social group – be it fair or not – serves the individual as a means to guiding 

her own actions. 

Further, the focus of this study has been on why people follow rules 

rather than on the specifics of what the rules are. This implies that the 

present theory can account for the reasons that have led to the establishment 

of a given norm, but not for the reasons that have led to the evolution of an 

individual‟s norm subset (which is exogenously determined) and consequent 

norm-conjectures; notice that this is also due to the fact that the model partly 

relies on past compliance to explain future uniform behaviour.81 A justification 

for the present modelling approach comes from the assumption that – in the 

short run – one can treat the biological or cultural aspects of human nature 

as fixed; it also seems reasonable to assume that it is the players‟ culture to 

mark out each player‟s norm subset, with the norm subset containing rules of 

behaviour in accordance with set usage. Therefore, this theory implies a 

tendency for all agents (with conformist motivations) to conform to the 

“currently-normal” behaviour, which leads to the absence of evolution in the 

present setting. 

The above considerations seem to undermine the predictive power of 

such a theory since it relies on an exogenous (culture-dependent) definition 

                                  

81
 In fact, the empirical expectations component of social norms is related to past compliance 

in that 𝑑𝑖
𝐸 equals one if the agent believes that at least one other agent will adhere to some 

norm in her norm subset, depending on the terminal history reached in a previous instance 

of the same multi-person decision problem. 
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of the norm subsets, implying that the system will not evolve away from its 

current position, provided that no exogenous variation in the beliefs about 

peers‟ behaviour occurs. On the other hand, the model suggests that – if 

social norms are based on beliefs and beliefs are, in effect, exogenously 

manipulated – it may be possible to induce pro-social behaviour at low cost. 

Indeed, a finely-tuned process of belief transmission could possibly favour 

the occurrence of the desired equilibrium. 

For instance, social psychology research conducted at several U.S. 

universities shows that students hold exaggerated beliefs about the alcohol 

consumption habits of their peers (Berkowitz and Perkins [1986]). Such 

studies have concluded that students consume greater quantities of alcohol 

in order to fit in with their (biased) perceptions of acceptable social behaviour, 

that is, in order to comply with their presumed drinking norm in operation on 

campus. Research further shows that students that participate in a peer-

oriented discussion focusing on correcting such inflated perceptions report 

drinking significantly less: in particular, a study from the National Institute on 

Alcohol Abuse and Alcoholism, an agency of the United States Department 

of Health and Human Services, reports that several educational institutions 

that persistently communicated actual student norms have experienced 

reductions of up to twenty percent in high-risk drinking over a relatively short 

period of time (NIAAA [2002]). 

To conclude, future research should delve into the study of alternative 

systems of belief elicitation and transmission: only through a full 

understanding of the mechanics of social norms, an institution or policy-

maker will be able to predict how external signals may alter beliefs and drive 

behaviour towards more socially desirable outcomes. 
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II.8. Appendix II 

II.8.a. Proofs 

Proof of Proposition II.2. 

Given the norm subset 𝑅𝑖 =  𝑟𝑀  for ∀ 𝑖 ∈ 𝑁, at the initial node the norm 𝑟𝑀 

dictates the following strategy profiles: 𝑟𝑀 𝑕0 =   𝑎, 𝑐 ,  𝑎, 𝑑  . Hence, the 

norm-conjecture induced by 𝑟𝑀, for ∀ 𝑖 ∈ 𝑁, can be represented by the 

following matrix:  

 

𝜌𝑖 =  
𝜌𝑖 𝑎|𝑕0 𝜌𝑖 𝑏|𝑕0 

𝜌𝑖 𝑐|𝑕 𝑎  𝜌𝑖 𝑑|𝑕 𝑎  
 =  

1 0
𝜌 1 − 𝜌 

 , 

 

where 𝜌 ∈  0,1 ; that is, if 𝜌 = 0 then strategy profile  𝑎, 𝑑  is implemented, 

whereas if 𝜌 = 1 then  𝑎, 𝑐  is implemented. Then, Player 1‟s expectation of 

Player 2‟s (expected) material payoff at 𝑕0 equals E𝜌 𝑖 ,𝛼1 ,𝛽1
 𝑚2|𝑕0 = 𝑣𝑥𝜌 +

2𝑣𝑥 1 − 𝜌  = 2𝑣𝑥 − 𝑣𝑥𝜌 , for 𝑖 = 1,2. Further, Player 1‟s expectation of Player 

2‟s disappointment at  𝑏|𝑕0  is E𝜌 𝑖 ,𝛼1 ,𝛽1
 𝑚2|𝑕0 − 𝑚2 𝑧 𝑏  =  2𝑣𝑥 − 𝑣𝑥𝜌  −

𝑥; this implies that Player 1‟s utility at  𝑏|𝑕0  equals 𝑢1
𝐶 𝑧, 𝜌𝑖 , 𝛼1, 𝛽1 =

𝑚1 𝑧 𝑏  − 𝑘1 E𝜌𝑖 ,𝛼1 ,𝛽1
 𝑚2|𝑕0 − 𝑚2 𝑧 𝑏   = 𝑥 − 𝑘1 2𝑣𝑥 − 𝑣𝑥𝜌 − 𝑥 . On the 

other hand, Player 1‟s expected utility (=expected payoff) at 𝑕 𝑎  is given by 

𝑢1
𝐶 𝑧, 𝜌𝑖 , 𝛼1, 𝛽1 = E𝜌 𝑖 ,𝛼1

 𝑚1|𝑎 = 𝑣𝑥𝜌 . Then, Player 1‟s conformist preferences 

can be expressed as 𝑢1
𝐶 𝑧 𝑏 , 𝜌𝑖 , 𝛼1, 𝛽1 ≤ E𝜌𝑖 ,𝛼1

 𝑚1|𝑎 ⟹ 𝑥 − 𝑘1 2𝑣𝑥 − 𝑣𝑥𝜌 −

𝑥 ≤ 𝑣𝑥𝜌 ⟹  
𝑘1 ≥ −1 𝑖𝑓 𝜌 = 1

𝑘1 ≥ 1/ 2𝑣 − 1 𝑖𝑓 𝜌 = 0
 , where the first case is always 

satisfied. Similarly, Player 2‟s expected utility at  𝑑|𝑕 𝑎   equals 

𝑢2
𝐶 𝑧, 𝜌𝑖 , 𝛼2, 𝛽2 = 𝑚2 𝑧 𝑎, 𝑑  − 𝑘2 E𝜌𝑖 ,𝛼2 ,𝛽2

 𝑚1|𝑎 − 𝑚1 𝑧 𝑎, 𝑑   = 2𝑣𝑥 −
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𝑘2𝑣𝑥𝜌 , whereas Player 2‟s expected utility (=payoff) at  𝑐|𝑕 𝑎   is given by 

𝑢2
𝐶 𝑧, 𝜌𝑖 , 𝛼2, 𝛽2 = 𝑚2 𝑧 𝑎, 𝑐  = 𝑣𝑥. Then, Player 2‟s conformist preferences 

can be expressed as 𝑢2
𝐶 𝑧 𝑎, 𝑑 , 𝜌𝑖 , 𝛼2, 𝛽2 ≤ 𝑢2

𝐶 𝑧 𝑎, 𝑐 , 𝜌𝑖 , 𝛼2, 𝛽2 ⟹ 2𝑣𝑥 −

𝑘2𝑣𝑥𝜌 ≤ 𝑣𝑥 ⟹  
𝑘2 ≥ 1 𝑖𝑓 𝜌 = 1

𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑓 𝜌 = 0
 . Therefore, the following SSE of 𝑆𝑇𝐺 

may occur:  𝑎, 𝑐 , whenever 𝑘2 ≥ 1, for 𝜌 = 1;  𝑎, 𝑑 , whenever 𝑘1 ≥
1

2𝑣−1
, for 

𝜌 = 0.∎ 

 

Proof of Proposition II.3. 

A Rawlsian social welfare function is defined as 𝑊 𝑚1 𝑧  , … , 𝑚𝑛 𝑧   =

min
𝑖∈𝑁

  𝑚1 𝑧  , … , 𝑚𝑛 𝑧   . Such a function has to be evaluated at each of the 

three leaves of the game tree, i.e.: 𝑊  𝑚1 𝑧 𝑏  , 𝑚2 𝑧 𝑏   = min
𝑖∈𝑁

  𝑥, 𝑥 = 𝑥; 

𝑊  𝑚1 𝑧 𝑎, 𝑑  , 𝑚2 𝑧 𝑎, 𝑑   = min
𝑖∈𝑁

  0,2𝑣𝑥 = 0; 

𝑊  𝑚1 𝑧 𝑎, 𝑐  , 𝑚2 𝑧 𝑎, 𝑐   = min
𝑖∈𝑁

  𝑣𝑥, 𝑣𝑥 = 𝑣𝑥. It follows that here the set 

of maximizers of 𝑊 is singleton: hence, given the norm subset 𝑅𝑖 =  𝑟𝑊  for 

∀ 𝑖 ∈ 𝑁, at the initial node the norm 𝑟𝑊 dictates the strategy profile 𝑟𝑊 𝑕0 =

  𝑎, 𝑐   only; then, the norm-conjecture induced by 𝑟𝑊, for ∀ 𝑖 ∈ 𝑁, can be 

represented by the following matrix:  

 

𝜌𝑖 =  
𝜌𝑖 𝑎|𝑕0 𝜌𝑖 𝑏|𝑕0 

𝜌𝑖 𝑐|𝑕 𝑎  𝜌𝑖 𝑑|𝑕 𝑎  
 =  

1 0
1 0

 . 

 

The rest of the proof is trivial.∎ 
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II.8.b. A review of alternative theories of norm compliance 

López-Pérez [2008] proposes a model of norm compliance which builds on 

Charness and Rabin‟s [2002] in that it assumes players to have a taste for 

fairness and efficiency, and to be influenced by previous history as well. In 

brief, López-Pérez‟s model applies to any extensive form game of perfect 

recall, where 𝑁 =  1, … , 𝑛  is the set of players, 𝑢 𝑧  is a vector of the 

players‟ utility at terminal node 𝑧, and 𝑥 𝑧  is a vector of the players‟ 

(material) payoffs at 𝑧. The main feature here is the explicit introduction of a 

norm, defined as a non-empty correspondence 𝜓: 𝑕 → 𝐴 𝑕  that applies to 

any information set 𝑕: thus, 𝑎 ∈ 𝐴 𝑕  is said to be consistent with norm  𝜓 if 

𝑎 ∈ 𝜓 𝑕 , otherwise 𝑎 is a deviation from  𝜓; the interpretation is that a norm 

is a prescription indicating how a player should move at a decision node. 

Given that, López-Pérez examines a specific norm, namely the “Efficiency 

and equity norm” (E-norm), on the assumption that the E-norm is the only 

norm in the society; he further assumes that there exist two types of agents, 

that is, “selfish” and “principled”, where the former ignore the E-norm while 

the latter have internalized the E-norm (and suffer from violating it). The size 

of the emotional cost of a deviation is assumed to depend directly on the 

number of norm followers, so a principled player‟s utility function takes the 

form: 

 

𝑢𝑖 𝑧 =  
𝑥𝑖 𝑧 𝑖𝑓 𝑖 ∈ 𝑅 𝑧 

𝑥𝑖 𝑧 − 𝛾 ∙ 𝑟 𝑧 𝑖𝑓 𝑖 ∉ 𝑅 𝑧 
,  

(2.8.1) 
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where 𝑅 𝑧  is the set of players that complied with the norm in the history 

leading to 𝑧,82 𝑟 𝑧  denotes the cardinality of 𝑅 𝑧 , and 𝛾 is a positive 

parameter indicating how intensely principled types have internalized the 

norm. Given (an) initial decision node 𝑡0, and denoting by 𝑋 𝑡0  the set of all 

𝑥 𝑧  succeeding 𝑡0,83 López-Pérez defines a “fairmax distribution”  𝜀, 𝛿  as an 

allocation 𝑥 =  𝑥1, … , 𝑥𝑛 ∈ 𝑋 𝑡0  that maximizes the function: 

 

𝐹𝜀𝛿 = 𝜀 ∙  𝑥𝑖 − 𝛿  max
𝑖∈𝑁

 𝑥𝑖 − min
𝑖∈𝑁

 𝑥𝑖 

𝑖∈𝑁

, 

(2.8.2) 

 

over 𝑋 𝑡0 ; a path connecting 𝑡0 and one of its fairmax distributions  𝜀, 𝛿  is 

said to be a “fairmax path”. It is assumed that if information set 𝑕 has at least 

one node on a fairmax path, then the E-norm selects all actions of 𝐴 𝑕  that 

belong to a fairmax path; otherwise, any action becomes commendable, that 

is, the E-norm selects the whole set 𝐴 𝑕 . The author then normalizes the 

efficiency parameter 𝜀 to one and keeps 𝛿 strictly positive but smaller than 

one, in order to show that social efficiency (captured by the sum of material 

payoffs) is relatively more important than equality. Finally, López-Pérez 

                                  

82
 More specifically, 𝑅 𝑧  includes all the players who acted consistently with the E-norm or 

made no choice at all in the history of 𝑧. 

83
 In the event of an initial chance move, 𝑡0 denotes any node immediately succeeding any 

such move. 
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assumes that each player‟s type (i.e.: selfish or principled) is private 

knowledge, while the objective probability 𝜇 of being a principled agent is 

common knowledge; he thus applies a standard perfect Bayesian equilibrium 

concept to explain experimental evidence coming from a variety of games. 

To conclude, the main advantage of this model is its tractability, in addition to 

having the merit of defining a norm explicitly; on the other hand, disregarding 

the role of expectations in sustaining a social norm seems to be its major 

drawback. 

In the same line of research Li [2008] develops a more complex model 

of norm compliance, building on the psychological game framework of 

Geanakoplos et al. [1989]. The model is designed for 2-player normal form 

games only, where 𝑆𝑖  and Σ𝑖  are Player 𝑖‟s sets of pure strategies and mixed 

strategies, respectively; 𝜋𝑖 𝜍  indicates Player 𝑖‟s material payoff when 

strategy profile 𝜍 =  𝜍1, 𝜍2 ∈ Σ1 × Σ2 is played. Letting 𝑏𝑖 ∈ Σ𝑖  and 𝑐𝑖 ∈ Σ𝑖  

denote 𝑗‟s first-order belief and 𝑖‟s second-order belief, respectively, Li 

models a norm (or “convention” in her terminology) as belief-dependent 

rankings over the players‟ strategy space, normalizing them to the interval 

 0,1 . In formulae, a norm is a mapping 𝜔: Σ1 × Σ2 →  0,1 2 such that, for 

𝑖, 𝑗 = 1,2: 

 

(i) 𝑓𝑜𝑟 𝑒𝑎𝑐𝑕 𝑏𝑗 ∈ 𝑆𝑗 , 𝑒𝑖𝑡𝑕𝑒𝑟 𝜔𝑖 𝑠𝑖 , 𝑏𝑗  = 1 𝑓𝑜𝑟 ∀ 𝑠𝑖 ∈ 𝑆𝑖 , 

𝑜𝑟 max
𝑠𝑖∈𝑆𝑖

 𝜔𝑖 𝑠𝑖 , 𝑏𝑗  = 1 𝑎𝑛𝑑 min
𝑠𝑖∈𝑆𝑖

 𝜔𝑖 𝑠𝑖 , 𝑏𝑗  = 0; 

(ii) 𝑓𝑜𝑟 ∀ 𝜍𝑖 ∈ Σ𝑖 , ∀ 𝑏𝑗 ∈ Σ𝑗 , 𝜔𝑖 𝜍𝑖 , 𝑏𝑗  =   𝜍𝑖 𝑠𝑖 𝑠𝑗𝑠𝑖
𝑏𝑗  𝑠𝑗  𝜔𝑖 𝑠𝑖 , 𝑠𝑗  .   

(2.8.3) 
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The author refers to the number 𝜔𝑖 𝑠𝑖 , 𝑏𝑗   as the “social index” of 𝑖 taking 

action 𝑠𝑖  given belief 𝑏𝑗 , and interprets it as a measure of the adequateness 

of 𝑖‟s action: condition (i) says that the function 𝜔𝑖  ranks Player 𝑖‟s pure 

actions given 𝑖‟s belief of 𝑗‟s action (with the first line depicting the case of a 

“trivial convention” where all the pure actions are equally adequate and 

assigned 𝜔𝑖 𝑠𝑖 , 𝑏𝑗  = 1); condition (ii) simply generalizes the norm 

specification to account for mixed strategies. Furthermore, given common 

knowledge of the norm, “𝑖‟s belief of the social index of 𝑗‟s action” is denoted 

by 𝜔𝑗  𝑏𝑗 , 𝑐𝑖 , whereas 𝑓𝑖 𝜍𝑖 , 𝑏𝑗 , 𝑐𝑖 = 𝑚𝑎𝑥 0, 𝜔𝑖 𝜍𝑖 , 𝑏𝑗  − 𝜔𝑗  𝑏𝑗 , 𝑐𝑖   indicates 

“𝑖‟s belief about how much more her own action conforms to the convention 

compared to her opponent‟s”. Player 𝑖‟s utility function takes the form: 

 

𝑢𝑖 𝜍𝑖 , 𝑏𝑗 , 𝑐𝑖 , 𝜔 = 𝜋𝑖 𝜍𝑖 , 𝑏𝑗  + 𝜃𝑖  𝑔𝑖  𝜔𝑖 𝜍𝑖 , 𝑏𝑗   + 𝑕𝑖  𝑓𝑖 𝜍𝑖 , 𝑏𝑗 , 𝑐𝑖   , 

(2.8.4) 

 

where – 𝑔𝑖 , 𝑕𝑖 :  0,1 → ℝ are continuous and have the following properties – 

𝑔𝑖  is increasing in 𝜔𝑖  (“conformity effects”), 𝑕𝑖  is decreasing in 𝑓𝑖  (“interaction 

effects”),84 𝑔𝑖 + 𝑕𝑖  is concave in 𝜔𝑖 . Hence, players‟ utility depends both on 

material payoffs and social implications of their strategies (as captured by the 

expression in square brackets), with 𝜃𝑖 ∈  0,  ∞   indicating how salient the 

convention is to Player 𝑖 (𝜃 = 0 representing the traditional agent). Li adapts 

                                  

84
 The interaction effects of conventions capture the fact that a player prefers the opponent 

to comply with the norm. 
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the psychological-Nash equilibrium concept of Geanakoplos et al. [1989] to 

define a “social equilibrium”, that is, a Nash equilibrium satisfying an 

additional consistency condition that all beliefs correspond to actual 

strategies; the author then turns to examine a norm embodying both a 

principle of efficiency and fairness,85 thereby applying it to some symmetric 

and public goods games. To sum up, Li‟s theory proves to be an insightful 

model for the analysis of conformity in mixed-motive games: her approach 

draws on Geanakoplos et al.‟s [1989] framework as well as on Charness and 

Rabin‟s [2002] theory of quasi-maximin preferences, the result being a model 

more complicated than López-Pérez‟s [2008] but also more realistic (as it 

crucially captures the conformity and interaction effects of conventions); on 

the other hand, its main drawback is to be designed for 2-player normal form 

games only.  

  

                                  

85
 Measures for efficiency and fairness are defined in a way relatively similar to the 

distributional preferences of Charness and Rabin [2002]. 



 

- 133 - 

 

III. A Test for Conformist Motivations in 

Experimental Games 
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III.1. Introduction 

The first tests for conformity were conducted by Solomon E. Asch [1955, 

1956], a pioneer in social psychology who undertook a series of small-group 

studies on the social pressures to conform: his experimental subjects were 

asked to answer a basic puzzle on the length of lines, while others provided 

an obviously incorrect answer – all but one of the participants in each session 

were confederates of the experimenter and had beforehand been instructed 

to give wrong answers in unanimity at certain points – as a result, many 

subjects (approximately 35%) felt under pressure to give the same incorrect 

answer as the misleading majority. The social psychology literature defines 

conformity as the act of changing one‟s behaviour to match the purported 

beliefs of others (Cialdini and Goldstein [2004]); yet, while the psychology 

literature offers plenty of experimental evidence of conformist behaviour, very 

few of their insights have been adopted by economists to describe the social 

pressures to conform in problems of strategic interdependence. In this 

respect, the present investigation sheds some light on conformity as a 

strategically-relevant motivation in social dilemmas: a motivation which 

implies that the peers‟ presumed behaviour serves the individual as a means 

of forming beliefs and taking actions (in games where one another‟s actions 

and beliefs enter one another‟s utility functions). 

Hence, unlike the classical social psychology experiments, here 

conformity is put to test in a problem of strategic interdependence: what is 

being hypothesized is that a conformist player will behave as she thinks that 

other (conformist) players in the same role behave, in a social dilemma. 

Thus, the first hypothesis to test is that the experimenter can predict a 

conformist‟s behaviour from the conformist‟s guess about the behaviour of 

other players in the same role. Now, it should be noted that a false 

consensus effect hypothesis will predict an analogous correlation between 
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beliefs and behaviour, although with an inverse causal relationship: in fact, 

false consensus is usually referred to as an egocentric bias that occurs when 

people estimate consensus for their own behaviour (Ross et al. [1977]); so, in 

the case of false consensus effects, when forming a belief about the others‟ 

behaviour, a player will estimate the others‟ decisions based on her own 

decision.  

In a nutshell, in order to disentangle consensus from conformity, one 

of the experimental treatments introduces an exogenous variation in beliefs 

by showing subjects some aggregate information about the others‟ beliefs. 

Indeed, if the experimenter can predict a subject‟s choice from the subject‟s 

guess (about the behaviour of other participants in the same role) in 

conjunction with the subsequently transmitted information about others‟ 

guesses, then one has effectively disentangled consensus from conformity 

and provided evidence in support of a conformity hypothesis. In fact, if false 

consensus is present, then there will be a causal relationship from behaviour 

to beliefs, and thus there will not be an effect of providing exogenous 

information; but if, on the other hand, conformity is present (in which case the 

causality runs from beliefs to behaviour), one will find that exogenously 

varying beliefs has an impact on behaviour. 

More specifically, the experiment measures the impact of the beliefs of 

players in the same role, on behaviour, in a discrete Trust Game. Note that – 

in order to introduce an exogenous variation in beliefs, and to ensure that 

some subjects received information about an average belief of low 

cooperation and some others received information about an average belief of 

high cooperation – each subject was shown the average guess made by a 

specifically selected sample of participants: more precisely, the samples 

were selected in such a way that the beliefs transmitted to each participant 

were in the vicinity of either 25% or 75% (with 100% indicating the belief that 

all subjects in the same role will cooperate). Notice that the design does not 
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involve deception because the transmitted information about the others‟ 

guesses explicitly stated that such information referred to a sample of other 

participants. 

In brief, the data show that the transmitted information can indeed 

influence one‟s behaviour, with the strength of the impact depending on one‟s 

prior (i.e.: stated) beliefs. By regressing a subject‟s choice on the stated 

belief, the transmitted information and their interaction, the probit model 

predicts a probability of cooperating equal to 0.55 for Trustees who received 

a low transmitted belief and 0.72 for those who received a high transmitted 

belief. 

The remainder of the essay is organized in this manner: III.2. briefly 

reviews the “conventional” economic account of conformity, before exploring 

some related belief-dependent motivations (with a special focus on Trust 

Game experiments); III.3. discusses the implications of consensus and 

conformity in more detail, hence presents the experimental design, procedure 

and hypotheses; III.4. discusses the experimental results, and III.5. 

concludes. 

 

III.2. Tests for conformity and related belief-dependent 

motivations 

Conformity implies that the peers‟ presumed behaviour serves the individual 

as a means of forming beliefs and taking actions; hence, “conformist 

preferences” thrive on behavioural expectations within a society or group. 

Now, just as much of the social psychology literature revolves around 

variations of Asch‟s [1955, 1956] experiments, so have many economic 

studies on conformity drawn on the theory of informational cascades. An 

informational cascade (otherwise referred to as “herding behaviour”) occurs 
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when individuals observe the predecessors‟ actions and then make the same 

choice that others have made, irrespective of their own private information 

signals: the idea, which is based on observational learning theory, was 

formally developed by Banerjee [1992] and Bikhchandani et al. [1992], and 

has been experimentally investigated in several studies since the seminal 

Anderson and Holt [1997]. Yet, while such studies are primarily focused on 

the effects of the transmission of information on conformist behaviour – in a 

“non-strategic” setting – the present essay follows a different approach in 

that, unlike informational cascade models, here an individual‟s payoff directly 

depends on what all preceding or subsequent players do (in other words, not 

only does an individual‟s action influence the others‟ choice of action, but 

also co-determines one another‟s payoff).86   

In this connection, substantial pieces of research have been delving 

into the effects of a different belief-dependent motivation, which nevertheless 

turns out to be related to conformity in mixed-motive games, that is, guilt 

aversion. In effect, Charness and Dufwenberg‟s [2006] investigation is fairly 

connected to the present test: the guilt aversion hypothesis implies that 

players may feel guilty if their behaviour falls short of the others‟ expectation; 

hence, in order to seek evidence of such a motivation, the experimenter asks 

subjects what they believe their opponents expect (thereby collecting 

                                  

86
 The payoff structure of informational cascade models involves everyone who chooses the 

right option getting the same reward, irrespective of how many others have chosen that 

option before and after them. (An alternative specification of the payoff structure may allow 

for the total reward to be fixed or may grant extra rewards for being first or second to choose 

the correct option.) 
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second-order beliefs).87 More specifically, after collecting the strategic 

choices of both the Trustor and the Trustee,88 Charness and Dufwenberg 

have subjects make guesses about the choices of players in a different role 

(and offer to reward good guessers): Trustors are asked to guess the 

“proportion of Trustees who choose to cooperate”, while Trustees are asked 

to guess the “average guess made by Trustors who choose to cooperate”; 

notice that such guesses represent the experimenter‟s measurement of the 

Trustor‟s first-order beliefs and the Trustee‟s second-order beliefs, 

respectively. To sum up their findings, the guilt aversion hypothesis is 

confirmed by a strong correlation between beliefs and behaviour: the 

Trustees who cooperated made significantly higher guesses about the 

Trustors‟ guesses than did the Trustees who chose not to cooperate (i.e.: the 

Trustees who cooperated held significantly higher second-order beliefs 

regarding their choice to cooperate).  

                                  

87
 Note that, while Charness and Dufwenberg‟s study is primarily conceived to examine the 

role of pre-play communication (in the form of nonbinding promises, transmitted through 

written free-form messages) in shaping beliefs and enhancing cooperative behaviour, it does 

nevertheless disclose an interesting relationship between beliefs and choices; indeed, their 

results reveal significant correlations between second-order beliefs and actions, even in the 

treatments without pre-play communication (note that Dufwenberg and Gneezy [2000] 

provide an analogous test in a similar experimental game setting without pre-play 

communication). 

88
 They examine one-shot non-simultaneous Trust Games with hidden action (i.e.: if the 

Trustee chooses to fulfil trust and cooperates, a chance move will determine whether the 

Trustor gets some material payoff with probability 5/6; the Trustor gets a payoff of zero 

otherwise); note that they use the strategy method. 
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Given that, of particular interest is Ellingsen et al.‟s [2010] design: 

again, their aim is to test for guilt aversion but in a way that reduces the 

scope for consensus effects which, in their view, may have driven such a 

strong correlation between beliefs and behaviour. According to their 

argument, Charness and Dufwenberg‟s [2006] test is weak as the observed 

correlation does not prove that second-order beliefs affected behaviour (as 

postulated by guilt aversion); instead, Ellingsen et al.‟s hypothesis is that 

those Trustees who made large back transfers would hold higher second-

order beliefs (regarding their choice to cooperate), just because they thought 

that everyone would (expect to) behave like them.89 Hence, in order to rule 

out that eventuality, Ellingsen et al. provide each Trustee with straightforward 

information about the co-paired Trustor‟s first-order belief.90 (Notice that, from 

the viewpoint of the Trustee, this represents her induced second-order belief; 

also note that the experimenter omits to tell Trustors that Trustees will have 

access to their beliefs so as to avoid some strategic, untruthful reporting of 

beliefs.) More specifically, in Ellingsen et al.‟s design, first each Trustor 

chooses whether to continue or to withdraw, then she guesses what fraction 

of the Trustees will choose to cooperate; after that, each Trustee is informed 

about the guess of the respective Trustor, and therefore decides whether to 

cooperate or not. In brief, their results are interesting, because – in contrast 

to Charness and Dufwenberg [2006] – Ellingsen et al. do not find a 

                                  

89
 I shall return to Ellingsen et al.‟s interpretation of Charness and Dufwenberg‟s results in 

the next section. 

90
 Similarly, in their Dictator Game treatment, the Recipients‟ first-order beliefs are 

communicated to the respective Dictators. 
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correlation between (induced) second-order beliefs and behaviour, which 

seems to deny a guilt aversion motivation. 

I conclude this section with studies testing for a related motivation, 

namely trust responsiveness, which is defined as a «tendency to fulfil trust 

because you believe it has been placed in you» (Bacharach et al. [2007], p. 

350). Thus, in the treatments of Bacharach et al. [2007] and Guerra and 

Zizzo [2004], first beliefs from Trustors are elicited, and then the 

experimenter informs Trustees about the mean prediction made by the 

Trustors with whom they are not matched (i.e.: each Trustee receives a 

report about the mean value of the first-order beliefs of her non co-paired 

players). More specifically, in Bacharach et al.‟s [2007] design, each Trustee 

is shown the mean value of the first-order beliefs of the Trustors with whom 

she is not matched, before the experimenter elicits each Trustee‟s second-

order belief about her co-paired player. (Notice that, while this could provide 

an interesting exogenous variation in beliefs – since each Trustee may use 

the information about her non co-players‟ first-order beliefs, in order to 

update her second-order belief about the co-paired player – the authors do 

not investigate such an issue: in fact, to that end, each Trustee‟s second-

order belief should rather be elicited before she is informed about the non co-

players‟ guesses.) Lastly, Bacharach et al.‟s results show that Trustees‟ 

cooperative behaviour varies with Trustees‟ second-order beliefs, in two of 

their experimental game variants, but unfortunately they do not further 

explore the relationship between Trustees‟ behaviour and the transmitted 

information, which could have given a good insight into the conformity 

motivation. 

In the next section I shall further discuss how the above belief-

dependent motivations relate to conformity: the discussion of the conformity 

hypothesis will lead the way to a novel experimental design. 
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III.3. Experimental design 

III.3.a. False consensus effects vs. conformity to social norms 

This study aims at disentangling conformity from consensus effects. In the 

theory of conformity to social norms that I have previously formalized, I 

assume that some subjects have conditional preferences for conformity to a 

norm, with the norm dictating a set of strategy profiles which depict the 

“currently-normal” or “appropriate” behaviour within a certain social group. 

Hence, in order for a potentially conformist player to identify the strategy 

profile/s that best describe(s) some normal behaviour, she forms a conjecture 

about the norm-complying actions at each history. To sum up, in such a 

theory, a conformist player is motivated by her beliefs about others‟ beliefs 

and behaviour, and consequently adapts to her presumed social norm. Now, 

the present experiment does not provide a direct test for such a theory of 

conformity, because for that – before treating the subjects – one needs to 

isolate those with conformist preferences from those with classical, non-

conformist motivations. However, the present experiment does shed some 

light on conformity as a motivation, which implies that the peers‟ presumed 

behaviour serves the individual as a means of forming beliefs and taking 

actions. 

A conformist player, in a social dilemma, would do her part of what is 

presumed to be the norm-complying strategy profile. It should be recalled 

that in the aforementioned theory, for a social norm to be in operation a 

certain set of conditions must hold, where such conditions involve empirical 

as well as normative expectations of conformity to the norm (see also 

Bicchieri [2006], Ch. 1). Now, in this study I shall focus on the empirical 

expectations, that is, a player‟s beliefs about the others conforming to a given 

rule of behaviour; more specifically, the experiment will assess the 



 

- 142 - 

 

importance of the expectations regarding the behaviour of other participants 

in the same role.91  

Thus, what is being hypothesized here is that a conformist player will 

behave as she thinks that other (conformist) players in the same role behave. 

Hence, the key hypothesis is that the experimenter should be able to predict 

a conformist‟s behaviour from the conformist‟s beliefs about the behaviour of 

other players in the same role: to that end, the first two treatments (i.e.: “T0” 

and “T1”) are designed to test for any such relationship by asking subjects to 

guess how many of the other participants in the same role will choose one of 

two actions of a discrete Trust Game. 

Now, it should be noted that a false consensus effect hypothesis will 

predict an analogous relation (although an inverse one). False consensus is 

usually referred to as an egocentric bias that occurs when people estimate 

consensus for their own behaviour: in that case, when forming a belief about 

the others‟ behaviour, a player will estimate the others‟ decisions based on 

her own decision (i.e.: according to the traditional definition of false 

consensus, a player who chooses a certain action – with a higher probability 

than some other player 𝑔 does – will give a higher estimate of a third player 𝑗 

choosing that action than the estimate given by player 𝑔);92 or else – if  some 

player 𝑔‟s decision is observable – false consensus implies that an individual 

                                  

91
 Note that normative expectations are distinct from second-order empirical expectations in 

that the former embody an ought-to-do statement. See Bicchieri and Xiao [2009] for a test of 

both empirical and normative expectations of conformity to a norm, in a Dictator Game. 

92
 Dawes [1990] notes that the traditional definition does not justify the label “false”: for this 

reason, Engelmann and Strobel [2000] provide the above alternative definition.  
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𝑖, when forming a belief about the behaviour of a third player 𝑗, will estimate it 

by attaching more weight to her own decision than to that of 𝑔 (Engelmann 

and Strobel [2000]). Given that, empirically conformity and consensus are 

related in that both imply that a subject‟s guess regarding the number of 

other people choosing a certain strategy is higher, if the guess is made by 

subjects choosing that very strategy (compared with the guess made by 

subjects choosing some other strategy). Therefore, on consideration the 

aforementioned results of Charness and Dufwenberg [2006] might have been 

driven by a conformity motivation rather than consensus (the latter being 

argued by Ellingsen et al. [2010]).93  

To sum up, both conformity and consensus imply that in a discrete 

Trust Game, say, a second-mover‟s guess regarding the fraction of other 

second-movers choosing a certain action is higher, if the guess is made by 

second-movers choosing that very action (compared with the guess made by 

second-movers choosing another action). Therefore, in order to disentangle 

consensus from conformity, a third treatment (i.e.: “T2”) introduces an 

exogenous variation in beliefs by showing subjects some aggregate 

                                  

93
 In this connection, it should be stressed that guilt aversion and conformity in mixed-motive 

games are related since – in the aforementioned theory of social norms – guilt is the feeling 

that generates conformity, but only if a certain set of conditions holds: in fact, a conformist 

player is usually motivated by conditional social preferences. Note that, according to such a 

theory, the expectations regarding the behaviour of all other participants in the experiment 

matter, whatever role they are assigned; instead, to a purely guilt-averse individual (in the 

sense of Battigalli and Dufwenberg [2007]) only the expectations of the (other-role) subject 

with which one is matched matter. In order to rule out any confounding element, the present 

experiment focuses on the (empirical) expectations regarding the behaviour of other 

participants in the same role. 
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information about the others‟ guesses (i.e.: the average guess made by a 

sample of other participants in the same role).94 In a nutshell, if the 

experimenter can predict a subject‟s choice from the subject‟s guess (about 

the behaviour of other participants in the same role) in conjunction with the 

transmitted information about others‟ guesses, then one has effectively 

disentangled the two effects. More precisely, in a player affected by 

consensus one should find a relationship between her behaviour (and, 

underweighted, the observed behaviour of others) and her beliefs about 

some others‟ behaviour; yet, in a player affected by consensus, one should 

not find a relationship between her behaviour and some others‟ beliefs about 

others‟ behaviour. Again, in the case of conformity, the causal relationship 

runs from beliefs to behaviour; instead, in the case of consensus, one‟s 

action influences one‟s beliefs about some others‟ actions. It is therefore 

clear that if, in the lab, a subject‟s guess about some others‟ actions is 

elicited before the very subject is shown the average guess made by other 

players, then only the conformity hypothesis can be consistent with that 

subject using (also) the transmitted information to decide on the action to 

take.95 

                                  

94
 Notice that such an exogenous variation in beliefs – to a potentially conformist player – 

represents an exogenous variation in empirical expectations of conformity to a norm. 

95
 In this respect, it should be noted that Ellingsen et al.‟s design (while ruling out consensus) 

would not be apt to investigate how conformity works in social dilemmas because, in their 

Trust Game experiment, Ellingsen et al. transmit the sole information about each co-paired 

player‟s guess. Instead, social psychologists describe conformity as the act of matching 

beliefs, attitudes and behaviours to what individuals perceive is normal of their group or 

society, as opposed to what one other individual expects. 
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III.3.b. Game specification and treatments structure 

Here I shall focus on the below discrete version of the Trust Game since a 

substantial amount of the prior evidence on suspected conformist behaviour 

comes from this family of games and it is therefore easier to compare results.  

 

 

Figure III.1 - Trust Game “TG” 

 

Note that in each experimental session players were referred to as 

“Participant A” or “Participant B”: at the initial node 𝑕0 Player 1 (i.e.: 

Participant A, in the lab) chooses either 𝑎 or 𝑏 – when opting for 𝑏, the game 

terminates and material outcomes are allocated as shown in the vector of 

payoffs at the end-node 𝑧 𝑏  (with the number on top referring to Player 1‟s 

payoff); on the other hand, if Player 1 opts for 𝑎, the choice passes to Player 

2 (i.e.: Participant B, in the lab), who in turn can decide on 𝑐 or 𝑑, the 

consequences of which are shown in the vector of payoffs at the end-nodes 

𝑧 𝑐  and 𝑧 𝑑 , respectively. Given that, each experimental session was 

comprised of one of three treatments: I shall refer to the treatments as “T0”, 

“T1”, and “T2”.  
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T0. Each instance of T0 is divided into three stages, as follows (i.e.: 

Introduction Stage; Play Stage I-II; Payment Stage). 

Introduction Stage – subjects were randomly allocated to terminals and given 

the paper instructions; there, they were told that (in Part I) they would be 

assigned one of two roles (hence, randomly matched with a participant in a 

different role), and explained the decisions involved in each role; each 

subject was then asked to answer a set of control questions; a summary of 

the instructions was finally read aloud by the experimenter.  

Play Stage, Part I – all plays were conducted using the “strategy method”. 

The order of subsequent tasks was as reported below: 

(i) subjects were assigned the role of Participant B;96 

(ii) each subject was asked to guess how many of the other Participants 

B (in the same session) would choose either 𝑐 or 𝑑 (labelled as 

“share” and “keep”, respectively); subjects entered their guess by 

positioning a slider to the desired percentage;97 

(iii) each subject was invited to wait until all participants had entered their 

guesses; 

(iv) each subject was asked to choose either 𝑐 or 𝑑 (i.e.: “share” and 

“keep”, respectively). 

                                  

96
 Given that each subject was privately assigned a role, each subject did not know that 

every other person in Part I was assigned the role of Participant B. 

97
 The slider was initially positioned at a value of 50%: subjects had to enter a guess by 

moving it towards a higher 𝑠𝑕𝑎𝑟𝑒 rate (i.e.: towards a value of 100%) or towards a higher 

𝑘𝑒𝑒𝑝 rate (i.e.: towards a value of 0%). Note that subjects could not leave the slider in the 

initial position. 
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Play Stage, Part II – subjects were told that Part II involved exactly the same 

steps as in Part I, although they would be assigned a different role and 

matched with a different participant; after they had been given a brief 

reminder of the instructions (both on-screen and orally), subjects were 

assigned the role of Participant A. Steps (i)-(iv) of Part II had the same 

structure as above, although each subject‟s decision and guess were about 𝑎 

or 𝑏 (labelled as “in” and “out”, respectively). 

Payment Stage – the payment mechanism consists of two parts: 

 each subject received a £3 show-up fee; 

 each subject was paid according to the outcome, as shown in the 

vector of payoffs, at the end-node realized in Part I as well as the end-

node realized in Part II (payoffs were in pound sterling). 

A few comments are now due. First, it should be noticed that the above order 

of the decisions (which is reversed with respect to the natural sequence 

Player 1, Player 2) is made possible by the adoption of the strategy method; 

also, it should be stressed that in Part II each subject was randomly matched 

with a participant other than that she was matched with in Part I; besides, 

subjects did not know about the tasks to be undertaken in Part II until the end 

of Part I. Obviously, notice that subjects did not know how much they had 

earned in Part I until the end of Part II (because every subject in each part is 

assigned the same role). 

T1. Given that an important element of conformist preferences 

involves expectations regarding the behaviour of other subjects in the same 

role – in order to induce participants to state their true beliefs – a few 

sessions (i.e.: treatment T1) presented an incentivizing scheme as follows. 

As in Part I of T0, before entering their decision as Participant B, each 

subject was asked to guess how many of the other Participants B (in the 

same session) would choose to transfer half the money back: yet, in Part I of 



 

- 148 - 

 

T1 subjects were also told that they would receive an additional payment of 

£2 if their guess differed by no more than 5 percentage points from the 

realized value. Moreover, as in Part II of T0, before entering their decision as 

Participant A, each subject was asked to guess how many of the other 

Participants A (in the same session) would opt in: yet, in Part II of T1 subjects 

were also told that they would receive an additional payment of £2 if their 

guess differed by no more than 5 percentage points from the realized value. 

To sum up, each instance of T1 has exactly the same structure as T0, except 

for the incentivizing scheme for the elicitation of beliefs.98 

T2. Each instance of T2 has exactly the same structure as T0, except 

for step (iii) of Play Stage I-II, which in T2 was as follows: 

(iii) each subject was invited to wait until all participants had entered their 

guesses, after which each subject was given feedback about other 

Participant B‟s guesses (about other Participant A’s guesses in Part 

II). 

Note that such feedback consisted of the average guess made by a sample 

of other participants in the same role (in the same session); also, when 

entering their guesses (at step (ii)), subjects did not know that those guesses 

would be pooled and transmitted to other participants (at step (iii)). Further, 

notice that such feedback was shown in the lower part of the same screen in 

which subjects were asked to enter their guesses: the message was phrased 

in such a way as to look like the outcome of an opinion survey; the font style 

                                  

98
 If a subject‟s guess differed by more than 5 percentage points from the realized value, that 

subject would receive no additional belief-payment; note that each subject was not informed 

about the correctness of her guesses until the end of Part II. 
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and size were the same as those of the other messages, in order not to make 

the information too prominent. In Part I the message read: «A sample of 

other participants B in this session expects on average that <x>% will 

transfer half the money, whereas <100-x>% will keep all the money»; 

similarly, in Part II the message read: «A sample of other participants A in 

this session expects on average that <x>% will OPT IN, whereas <100-x>% 

will OPT OUT» (see Appendix III for a transcript of all the on-screen 

messages). 

Lastly, given that (in Part I of T2) each subject was provided with an 

aggregate measure of the guesses made by other subjects in the role of 

Participant B, there might be interaction effects between Part I and Part II of 

T2: in effect, (in Part II of T2) some Participant A‟s choice might be affected 

by the fact that that very subject got some information in Part I. For this 

reason – and also because of the small difference in payoff between  𝑏,⋅  

and  𝑎, 𝑑 , which encourages Participants A to choose 𝑎 – as in other studies 

(e.g.: Ellingsen et al. [2010]) the focus of this treatment will be on Trustees‟ 

rather than on Trustors‟ behaviour. 

III.3.c. Hypotheses 

Before stating the key hypotheses of the experiment, I shall recall that the 

conformity motivation implies that a conformist player will behave as other 

(conformist) players are thought to be behaving. To this end, T0 provides a 

preliminary measure of conformity: there, conformity predicts a positive 

correlation between one‟s behaviour and one‟s guesses about the behaviour 

of other participants in the same role. Then, given that an important element 

of conformist preferences involves expectations, in order to induce subjects 

to state their true beliefs, T1 presents an incentivizing scheme for the 

elicitation of beliefs. Further, T2 is motivated by the acknowledgment that 

consensus and conformity may concause the aforementioned correlation; for 
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this reason, T2 provides the definitive test since – by transmitting information 

about the others‟ guesses – the experimenter should be able to disentangle 

consensus from conformity by regressing a subject‟s choice on the stated 

and transmitted beliefs (or their interaction). In fact, if a subject‟s guess about 

some others‟ actions is elicited before the very subject is shown the average 

guess made by others, then only the conformity hypothesis is consistent with 

that subject using (also) the transmitted information to decide on the action to 

take.  

In summary, of particular interest are the following hypotheses: 

H1 – positive correlation between behaviour and beliefs about the behaviour 

of other participants in the same role; 

H2 – neither the rate of cooperative behaviour nor the beliefs about the 

others‟ behaviour vary when beliefs are incentivized; 

H3 – behaviour is influenced by the transmitted information about the others‟ 

beliefs. 

 The account of conformity outlined before leads one to expect to find 

support for H1 and H3, and to have open minds about H2.99 In particular 

                                  

99
 It should be noticed that T2 does not present an incentivizing scheme for the elicitation of 

beliefs, in order to avoid rewarding subjects based on the manipulated, transmitted 

information. In effect, the design of T2 was finalized after observing the results supporting 

both H1 and H2, in T0 and T1. As a consequence, if neither offering (in T1) nor not-offering 

(in T0) to pay for beliefs changes behaviour – when subjects are not shown an aggregate 

measure of the others‟ beliefs – then one can reasonably assume that offering or not-offering 

to pay for beliefs will not change behaviour even when subjects are shown an aggregate 
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notice that, while H1 is consistent with both conformity and consensus, H3 is 

consistent with conformity only. 

III.3.d. Procedure 

The experiment was run with zTree (Fischbacher [2007]) in the Experimental 

Economics Lab at Royal Holloway, between February and May 2012; 

subjects were recruited via emails forwarded across all faculties at Royal 

Holloway. A total of 209 subjects participated in the experiment; each session 

consisted of one of the three treatments (no subject could participate in more 

than one session). Each session took around 45 minutes and average 

earnings were £8 (including a £3 show-up fee), with minimum and maximum 

payments being £4 and £14, respectively.  

A crucial element of the current conformity test involves introducing an 

exogenous variation in conjectures about group norms, as expressed by 

beliefs about other players‟ behaviour in treatment T2. In order to collect 

enough data so as to conveniently test for the key hypothesis H3, a 

computerized sampling method was used for selecting the guesses (made at 

step (ii)) to be pooled and passed on to participants in the same session, at 

step (iii) of each part of T2. Before describing such a sampling method, first, 

let 𝛾𝑖 𝑐  and 𝛾𝑖 𝑑 = 1 − 𝛾𝑖 𝑐  denote Participant B’s stated guess about the 

fraction of the other Participants B (in the same session) that will choose 𝑐 

and 𝑑 (labelled as “share” and “keep”, in the lab), respectively; similarly, let 

𝛾𝑖 𝑎  and 𝛾𝑖 𝑏 = 1 − 𝛾𝑖 𝑎  denote Participant A’s stated guess about the 

                                                                                              

measure of the others‟ beliefs (besides, in Part I of T2 subjects did not know that, after 

stating their guesses, these would be pooled and transmitted to other participants). 
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fraction of the other Participants A (in the same session) that will choose 𝑎 

and 𝑏 (labelled as “in” and “out”, in the lab), respectively. Then, let 𝛾 𝑖 𝑐  and 

𝛾 𝑖 𝑎  denote the average guess (made by a sample of other participants in 

the same role, in the same session) transmitted to subject 𝑖.  

Now, in order to introduce an exogenous variation in beliefs, and to 

ensure that – in Part I of T2 – some subjects received information about an 

average belief of low cooperation (i.e.: 𝛾 𝑖 𝑐 < 0.5) and some others received 

information about an average belief of high cooperation (i.e.: 𝛾 𝑖 𝑐 > 0.5), 

each subject 𝑖 was in fact shown the average guess made by a specifically 

selected sample of participants: more precisely, the guesses were selected in 

a way such that all 𝛾 𝑖 𝑐  converged to the values of 0.25 and 0.75. Similarly, 

in Part II of T2 the guesses were selected in a way such that all 𝛾 𝑖 𝑎  

converged to the values of 0.25 and 0.75. It should be noted that, for a given 

subject 𝑖, the pieces of information transmitted in Part I and II formed one of 

the following combinations: 𝛾 𝑖 𝑐 ~𝛾 𝑖 𝑎 ~0.25, or 𝛾 𝑖 𝑐 ~𝛾 𝑖 𝑎 ~0.75, or 

𝛾 𝑖 𝑐 ~0.25 𝑎𝑛𝑑 𝛾 𝑖 𝑎 ~0.75, or  𝛾 𝑖 𝑐 ~0.75 𝑎𝑛𝑑 𝛾 𝑖 𝑎 ~0.25; that is, some 

subjects received information about an average belief of low (or high) 

cooperation in both Part I and Part II, whereas some subjects received 

information about an average belief of low cooperation in Part I and high 

cooperation in Part II (or vice versa).    

Before proceeding to the commentary on the data, a few observations 

are in order. First, the reason why the sampling algorithm has been devised 

in a way to select samples of subjects (i.e.: guesses) such that all 𝛾 𝑖 ⋅  

converge to 0.25 and 0.75 is just to obtain two distributions of transmitted 

beliefs per each part of a session, that is, the “low transmitted belief” and the 

“high transmitted belief” distributions. In this respect, it should be noticed that 

one could have chosen any other value; on the other hand, 0.25 and 0.75 

have been preferred for the only reason that they are unique in that each is 

the central value of a range of beliefs about low cooperation and high 
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cooperation, respectively. Finally, it should be stressed that the current 

design does not involve deception because – as mentioned above – the 

message shown on screen explicitly stated that the reported information 

referred to a sample of other participants.   

 

III.4. Results 

III.4.a. Analysis of treatments T0-T1 

The analysis of treatments without belief manipulation, that is, the treatments 

with non-incentivized (T0) and incentivized (T1) elicitation of beliefs shows 

that there is a relationship between behaviour and expectations regarding the 

behaviour of other participants in the same role. To begin with, Table III-1 

and Table III-2 summarize the data for the decision to cooperate and the 

stated belief (for each part) with reference to T0 and T1, respectively. Note 

that the decision to cooperate is dichotomous, taking on value 1 when a 

subject chooses 𝑐 (i.e.: “shares” in Part I) or 𝑎 (i.e.: “opts in” in Part II), and 

taking on value 0 otherwise; also note that the stated beliefs 𝛾𝑖 ⋅  are 

expressed as percentages. 
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Variable  Obs. Mean  Std. Dev. m M 

        

share   53 .509434 .5046949 0 1 

𝛾𝑖 𝑠𝑕𝑎𝑟𝑒   53 38.62264 25.97945 0 99 

in   53 .6415094 .4841463 0 1 

𝛾𝑖 𝑖𝑛    53 50.41509 30.91765 0 100 

Table III-1 - T0 summary statistics (m and M indicate the minimum and 

maximum values, respectively); 𝛾𝑖 ⋅  indicate stated beliefs 

 

Variable  Obs. Mean  Std. Dev. m M 

        

share   46 .5869565 .4978213 0 1 

𝛾𝑖 𝑠𝑕𝑎𝑟𝑒   46 45.69565 25.48888 0 100 

in   46 .6086957 .4934352 0 1 

𝛾𝑖 𝑖𝑛    46 62.54348 25.84458 5 100 

Table III-2 - T1 summary statistics (m and M indicate the minimum and 

maximum values, respectively); 𝛾𝑖 ⋅  indicate stated beliefs 

 

One can perform formal tests of the null hypothesis that there is no 

correlation between behaviour and expectations regarding the behaviour of 

other participants in the same role; the alternative hypothesis is that decision 

and belief are not independent. By using the data for T0, one gets a positive 

Spearman correlation coefficient of 0.5022 (𝑝 = 0.0001) for Part I, and a 

positive Spearman correlation coefficient of 0.6028 (𝑝 = 0.0000) for Part II; 

similarly, using the data for T1, one gets a positive Spearman correlation 

coefficient of 0.4994 (𝑝 = 0.0004) for Part I, and a positive Spearman 
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correlation coefficient of 0.4953 (𝑝 = 0.0005) for Part II.100 Hence, in both 

cases there is strong evidence against the null hypothesis. Additionally, one 

could compare the difference in beliefs between those who chose to 

cooperate and those who chose not to: the following table presents the mean 

values of the beliefs for both cooperators and non-cooperators in each part, 

along with Z Statistics for the Wilcoxon rank-sum (Mann-Whitney) tests of the 

null hypotheses 

𝛾𝑖 𝑠𝑕𝑎𝑟𝑒   𝑖𝑓 𝑠𝑕𝑎𝑟𝑒 ≡ 0 = 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒   𝑖𝑓 𝑠𝑕𝑎𝑟𝑒 ≡ 1 , 

𝛾𝑖 𝑖𝑛   𝑖𝑓 𝑖𝑛 ≡ 0 = 𝛾𝑖 𝑖𝑛   𝑖𝑓 𝑖𝑛 ≡ 1 . 

 

Trea~t Obs. 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒  𝛾𝑖 𝑠𝑕𝑎𝑟𝑒  Z Stat 𝛾𝑖 𝑖𝑛  𝛾𝑖 𝑖𝑛  Z Stat 

 

 
 if 𝑠𝑕𝑎𝑟𝑒 ≡ 0 if 𝑠𝑕𝑎𝑟𝑒 ≡ 1  if 𝑖𝑛 ≡ 0 if 𝑖𝑛 ≡ 1  

T0 53 25.88462 50.88889 -3.621 26.36842 63.85294 -4.347 

    (***)   (***) 

T1 46 30.68421 56.25926 -3.350 46 73.17857 -3.323 

    (***)   (***) 

Table III-3 - Mean values of belief variables; the Z Statistic reflects the 

Wilcoxon-Mann-Whitney test for the two populations compared (in brackets 

are significance levels for the tests above, with *** indicating 𝑝 < 0.01); 𝛾𝑖 ⋅  

indicate stated beliefs 

                                  

100
 By using aggregate data for T0 and T1 (no. of obs.=99), one gets a Spearman correlation 

coefficient of 0.5064 (𝑝 = 0.0000) for Part I, whereas a Spearman correlation coefficient of 

0.5440 (𝑝 = 0.0000) for Part II. 
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Again, there is strong evidence against the null hypothesis in all cases, 

thereby highlighting a relationship between behaviour and expectations 

regarding the behaviour of other participants in the same role. In other words, 

the tests fully support H1 as stated in section III.3.c. above, that is, there is 

strong evidence of a positive correlation between behaviour and expectations 

regarding the behaviour of other participants in the same role, across both 

treatments T0 and T1. 

Given that, I shall move on to run a probit regression for each part of 

the above treatments so as to start presuming a causal hypothesis (in which 

beliefs determine a conformist‟s behaviour) that will be explored fully with the 

analysis of T2 in the next subsection. So, for now I will simply present the 

coefficients of probit regressions: (i) with 𝑠𝑕𝑎𝑟𝑒 as the dependent variable 

and 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒  as the predictor, for Part I of each treatment; (ii) with 𝑖𝑛 as the 

dependent variable and 𝛾𝑖 𝑖𝑛  as the predictor for Part II of each treatment. 

 

  share in 

Trea~t Obs. 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒  constant 𝛾𝑖 𝑖𝑛  constant 
      

T0 53 .0273249*** -1.007842*** .0290061*** -.984093*** 

  (.008943) (.3702524) (.0069194) (.3742122) 

T1 46 .0292078*** -1.060547** .0293176*** -1.542668*** 

  (.0099164) (.4369656) (.0094252) (.5710146) 

Table III-4 - T0 and T1 Probit regression coefficients; in brackets are robust 

standard errors (** and *** indicate 𝑝 < 0.05 and 𝑝 < 0.01, respectively, for 

the relevant Z Statistic); 𝛾𝑖 ⋅  indicate stated beliefs 
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Clearly, a positive coefficient means that an increase in the explanatory 

variable will lead to an increase in the predicted probability of the rate of 

cooperative behaviour; hence, Table III-4 shows that (in Part I of each 

treatment) an increase in 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒  leads to an increase in the predicted 

probability of 𝑠𝑕𝑎𝑟𝑒, whereas (in Part II of each treatment) an increase in 

𝛾𝑖 𝑖𝑛  leads to an increase in the predicted probability of 𝑖𝑛. Again, notice 

that such results may admit a reverse causality interpretation (in line with a 

false consensus effect hypothesis); for this reason, the analysis of T2 will 

shed more light on our conformity motivation. 

On a different note – given that T2 does not present an incentivizing 

scheme for the elicitation of beliefs – it is important to check whether the rate 

of cooperative behaviour or the beliefs about the others‟ behaviour vary when 

beliefs are incentivized. I shall consider beliefs first: for Part I, the null 

hypothesis is that the mean for 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒  is the same for T0 and T1; for Part 

II, the null hypothesis is that the mean for 𝛾𝑖 𝑖𝑛  is the same for T0 and T1. 

Thus, as for Part I, the Wilcoxon rank-sum (Mann-Whitney) test suggests that 

there is not a statistically significant difference between the underlying 

distributions of 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒  for T0 and T1 (𝑧 = −1.296, 𝑝 = 0.1950). As regards 

Part II, the Wilcoxon rank-sum (Mann-Whitney) test suggests that there is 

mild evidence against the null hypothesis (𝑧 = −1.827, 𝑝 = 0.0677): in light of 

this result, the analysis of the decision to cooperate (i.e.: a test of whether 

offering to pay for beliefs affected behaviour or not) becomes critical. In brief: 

for Part I, the null hypothesis is that the mean for 𝑠𝑕𝑎𝑟𝑒 is the same for T0 

and T1; for Part II, the null hypothesis is that the mean for 𝑖𝑛 is the same for 

T0 and T1. Thus, as for Part I, the Wilcoxon-Mann-Whitney test suggests that 

there is not a statistically significant difference between the underlying 

distributions of 𝑠𝑕𝑎𝑟𝑒 for T0 and T1 (𝑧 = −0.769, 𝑝 = 0.4421): this is not 

surprising, given the above analysis of beliefs, and the established 

correlation between beliefs and behaviour. More interestingly, as regards 
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Part II, the Wilcoxon-Mann-Whitney test suggests that there is no evidence 

against the null hypothesis (𝑧 = 0.335, 𝑝 = 0.7377). Hence, one can conclude 

that the tests almost fully support H2 as stated in section III.3.c. above, that 

is, offering or not-offering to pay for beliefs is very unlikely to affect behaviour 

or beliefs (incentivizing beliefs may, at most, induce players to overestimate 

the fraction of the other participants that will choose to opt in, in Part II). 

Before proceeding to the analysis of T2, it should be highlighted that 

subjects‟ beliefs were very unequally distributed across the range  0,  0.5  ∪

 0.5,  1  , with a stated belief below 50% being most frequent in Part I of both 

T0 and T1 (and with a stated belief above 50% being most frequent in Part II 

of both T0 and T1):101 more specifically, in Part I of T0 about 68% of subjects 

stated a belief such that 𝛾𝑖 𝑐 < 0.5 whereas in Part II of T0 about 45% of 

subjects stated a belief such that 𝛾𝑖 𝑎 < 0.5; similarly, in Part I of T1 about 

59% of subjects stated a belief such that 𝛾𝑖 𝑐 < 0.5 whereas in Part II of T1 

about 33% of subjects stated a belief such that 𝛾𝑖 𝑎 < 0.5. Given that, one 

should interpret the above findings bearing in mind that (the slope of) any 

relationship between behaviour and beliefs may vary when analyzing 

subjects who stated a belief below 50% (i.e.: subjects with an expectation of 

predominant defection) and those who stated a belief above 50% (i.e.: 

subjects with an expectation of predominant cooperation): I shall return to 

this issue in the next subsection. 

                                  

101
 Recall that it was not possible for subjects to enter a stated belief of 50% (see footnote 97 

above). 
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III.4.b. Analysis of treatment T2 

I will now proceed to the analysis of the treatment with belief manipulation. 

Table III-5 summarizes the data for the decision to cooperate and the stated 

belief (for each part) with reference to T2. 

 

Variable  Obs. Mean  Std. Dev. m M 

        

share   110 .5818182 .4955179 0 1 

𝛾𝑖 𝑠𝑕𝑎𝑟𝑒   110 44.43636 24.91104 0 99 

in   110 .6818182 .4679022 0 1 

𝛾𝑖 𝑖𝑛    110 59.3  27.35078 0 100 

Table III-5 - T2 summary statistics (m and M indicate the minimum and 

maximum values, respectively); 𝛾𝑖 ⋅  indicate stated beliefs 

 

Again, one can perform formal tests of the null hypothesis that there is no 

correlation between behaviour and expectations regarding the behaviour of 

other participants in the same role: by using the data for T2, one gets a 

positive Spearman correlation coefficient of 0.4060 (𝑝 = 0.0000) for Part I, 

and a positive Spearman correlation coefficient of 0.5176 (𝑝 = 0.0000) for 

Part II. In light of these results, one can conclude that the tests fully support 

H1 as stated in section III.3.c. above, that is, there is strong evidence of a 

positive correlation between behaviour and expectations regarding the 

behaviour of other participants in the same role, across all treatments. Yet, 

as discussed in section III.3.a. above, such a strong correlation might be due 

to consensus effects (which imply an inverse causal relationship): further 
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tests are therefore needed to establish whether beliefs affect behaviour, a 

point which would support the conformity hypothesis. 

It should now be recalled that the defining element of treatment T2 

involves introducing an exogenous variation in beliefs: to this end, T2 was 

implemented with a sampling algorithm such that subjects received 

information about an average belief of low or high cooperation; as explained 

before, for a given subject 𝑖, the pieces of information transmitted in Part I 

and II formed one of the following combinations: 𝛾 𝑖 𝑐 ~𝛾 𝑖 𝑎 ~0.25, or 

𝛾 𝑖 𝑐 ~𝛾 𝑖 𝑎 ~0.75, or 𝛾 𝑖 𝑐 ~0.25 𝑎𝑛𝑑 𝛾 𝑖 𝑎 ~0.75, or  

𝛾 𝑖 𝑐 ~0.75 𝑎𝑛𝑑 𝛾 𝑖 𝑎 ~0.25. (More specifically, after collecting the beliefs 

stated by participants, the programme computed and transmitted the beliefs 

as summarized in Table III-8 and Table III-9: see Appendix III.) In this 

respect, as discussed above, it should be recalled that (in Part II of T2) some 

Participant A‟s choice might be affected by the fact that that very subject got 

some information in Part I. For this reason – and also because of the small 

difference in payoff between  𝑏,⋅  and  𝑎, 𝑑 , which encourages Participants 

A to choose 𝑎 – as in other studies (e.g.: Ellingsen et al. [2010]) the focus of 

this treatment will be on Trustees‟ rather than on Trustors‟ behaviour. 

Now, as noted during the analysis of treatments T0-T1, also in T2 

subjects‟ stated beliefs were very unequally distributed across the range 

 0,  0.5  ∪  0.5,  1  , with a stated belief below 50% being most frequent in Part I 

and with a stated belief above 50% being most frequent in Part II: more 

specifically, in Part I of T2 almost 60% of subjects stated a belief such that 

𝛾𝑖 𝑐 < 0.5 whereas in Part II of T2 about 36% of subjects stated a belief 

such that 𝛾𝑖 𝑎 < 0.5. Conversely, as just mentioned, the information 

transmitted was a percentage in the vicinity of 0.25 or in the vicinity of 0.75, 

and it was assigned randomly to each subject regardless of the belief she 

stated at step (ii): in particular, the ratio of subjects assigned a transmitted 

belief of low cooperation (that is, 𝛾 𝑖 ⋅ < 0.5, i.e.: 𝛾 𝑖 ⋅ ~0.25) to those 
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assigned a transmitted belief of high cooperation (that is, 𝛾 𝑖 ⋅ > 0.5, i.e.: 

𝛾 𝑖 ⋅ ~0.75) was of about 1:1, in each part. Given that – and also in light of 

possible interaction effects between low/high stated beliefs and low/high 

transmitted beliefs – I shall now proceed to analyze first subjects who stated 

a belief below 50%, and then those who stated a belief above 50%: in this 

way one can reasonably assume that each group being treated is indeed 

homogeneous. 

Hence, I will start by running a probit regression for each group of 

stated beliefs (i.e.: below/above 50%) using the data from treatment T2, in 

order to check whether a model with stated belief as the only explanatory 

variable is significant.102 That is, I will simply present the coefficients of probit 

regressions: (i) with 𝑠𝑕𝑎𝑟𝑒 as the dependent variable and 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒  as the 

predictor, for Part I of each group of stated beliefs (and for the whole 

sample); (ii) with 𝑖𝑛 as the dependent variable and 𝛾𝑖 𝑖𝑛  as the predictor for 

Part II of each group of stated beliefs (and for the whole sample). 

 

 

 

 

 

 

                                  

102
 I did not perform a similar regression using the data from treatments T0-T1, because the 

number of observations of each group of stated beliefs (i.e.: below/above 50%) for each of 

those treatments was too small to produce meaningful estimations. 
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 share in 
Stated 

beliefs 
Obs. 

Part I 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒  constant 
Obs. 

Part II 𝛾𝑖 𝑖𝑛  constant 

       

0 ≤ 𝛾𝑖 ⋅ < 0.5 65 .0298773* -.9243365** 40 .0253571 -1.024315** 

  (.0153424) (.4434949)  (.0164127) (.4905198) 

       

0.5 < 𝛾𝑖 ⋅ ≤ 1 45 .0315747 -1.417182 70 .034035** -1.483769 

  (.0208432) (1.422782)  (.016576) (1.24247) 

       

all 110 .0230871*** -.7770586*** 110 .0294296*** -1.142494*** 

  (.0056345) (.2652993)  (.0052826) (.3148897) 

Table III-6 - T2 Probit regression coefficients; in brackets are robust standard 

errors (*, ** and *** indicate 𝑝 < 0.10, 𝑝 < 0.05 and 𝑝 < 0.01, respectively, 

for the relevant Z Statistic); 𝛾𝑖 ⋅  indicate stated beliefs 

 

Table III-6 shows that (in Part I of T2) an increase in 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒  leads to an 

increase in the predicted probability of 𝑠𝑕𝑎𝑟𝑒, whereas (in Part II of T2) an 

increase in 𝛾𝑖 𝑖𝑛  leads to an increase in the predicted probability of 𝑖𝑛. 

However, it should be noted that – while the coefficients for the stated beliefs 

are strongly significant when considering the whole sample (as shown in the 

last row of the table) – the significance of the coefficients considerably 

decreases (with many cases of insignificance being present) when analyzing 

each group of stated beliefs in turn (i.e.: below/above 50%). Although that 

may be due to a variety of factors, it is reasonable to suspect that adding 

another explanatory variable may increase the significance of the model, at 

least for one of the groups of stated beliefs if interaction effects between 

low/high stated beliefs and low/high transmitted beliefs are present.  
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Thus, I shall turn to run a probit regression for each group of stated 

beliefs (i.e.: below/above 50%) so as to check whether a model with both 

stated belief and transmitted belief as explanatory variables is significant. (As 

explained before I shall focus on Part I, though I will return to Part II later on.) 

The following table presents the coefficients of probit regressions: (i) with 

𝑠𝑕𝑎𝑟𝑒 as the dependent variable and with 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒 , 𝛾 𝑖 𝑠𝑕𝑎𝑟𝑒  as predictors, 

for Part I of each group of stated beliefs (and for the whole sample). 

 

 share 

Stated beliefs 
Obs. 

Part I 
𝛾𝑖 𝑠𝑕𝑎𝑟𝑒  𝛾 𝑖 𝑠𝑕𝑎𝑟𝑒  constant 

     

0 ≤ 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒 < 0.5 65 .0298451* .0005991 -.9550853* 

  (.0153815) (.0066462) (.5712344) 

     

0.5 < 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒 ≤ 1 45 .0496499* .0190708** -3.494586* 

  (.0257273) (.0088884) (1.904342) 

     

all 110 .0240949*** .005425 -1.092166*** 

  (.005691) (.0052484) (.4135265) 

Table III-7 - T2 Part I Probit regression coefficients; in brackets are robust 

standard errors (*, ** and *** indicate 𝑝 < 0.10, 𝑝 < 0.05 and 𝑝 < 0.01, 

respectively, for the relevant Z Statistic); 𝛾𝑖 ⋅  indicate stated beliefs, 𝛾 𝑖 ⋅  

indicate transmitted beliefs 

 

Interestingly, Table III-7 shows that – while the coefficient for the transmitted 

belief 𝛾 𝑖 𝑠𝑕𝑎𝑟𝑒  is not significant when considering the whole sample (as 

shown in the last row of the table) – an increase in the transmitted belief has 

a significant, positive effect on the group of subjects who stated a belief 
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above 50%: hence, for that group of subjects, an increase in the transmitted 

belief 𝛾 𝑖 𝑠𝑕𝑎𝑟𝑒  leads to an increase in the predicted probability of 𝑠𝑕𝑎𝑟𝑒. 

The above results would seem to support the suspicion that interaction 

effects between stated beliefs and transmitted beliefs are present: as a 

matter of fact, that is easily confirmed (using the data from the whole sample, 

i.e.: 110 observations) by regressing the decision to cooperate on: the stated 

belief (𝛾𝑖 𝑠𝑕𝑎𝑟𝑒 ), a dummy for low/high transmitted belief (𝑑𝛾 𝑖 𝑠𝑕𝑎𝑟𝑒 ), and 

an interaction term between stated belief and low/high transmitted belief; not 

surprisingly, performing such a regression shows that the interaction is 

significant.103 For Part I, the probit regression in question gives:  

Φ −.5867 + .016 ∗ 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒 − .8305 ∗ 𝑑𝛾 𝑖 𝑠𝑕𝑎𝑟𝑒 + .0290 ∗ 𝛾𝑖 𝑠𝑕𝑎𝑟𝑒 ∗ 𝑑𝛾 𝑖 𝑠𝑕𝑎𝑟𝑒  ,

    . 3613  . 0066     . 5578  . 0130 
  

with robust standard errors being shown in brackets below each coefficient. 

The regression shows that, while the dummy for low/high transmitted belief is 

not significant (𝑝 = 0.137), the interaction term between stated belief and 

low/high transmitted belief is significant (𝑝 = 0.026), thereby confirming that 

the transmitted information has an effect on Trustees‟ behaviour, depending 

on the level of their stated beliefs.104 Now, it is well known that – when using 

                                  

103
 By using the actual transmitted belief (𝛾 𝑖 𝑠𝑕𝑎𝑟𝑒 ) in place of the dummy for low/high 

transmitted belief (𝑑𝛾 𝑖 𝑠𝑕𝑎𝑟𝑒 ) one obtains similar results, confirming a significant 

interaction between stated beliefs and transmitted beliefs. 

104
 For Part II, running a similar regression, one obtains relatively similar results. The probit 

regression in this case gives: 

Φ −1.8211 + .0398 ∗ 𝛾𝑖 𝑖𝑛 + 1.2573 ∗ 𝑑𝛾 𝑖 𝑖𝑛 − .0193 ∗ 𝛾𝑖 𝑖𝑛 ∗ 𝑑𝛾 𝑖 𝑖𝑛  ,

    . 5145  . 0083             . 6725  . 011 
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a non-linear model – one cannot infer that the probability (of cooperating) 

increases or decreases from the sign of the coefficients, if the model has an 

interaction term. Hence, to give an idea of the extent of the impact of the 

transmitted beliefs, I shall compute the predicted probability that Participant B 

cooperates (i.e.: 𝑠𝑕𝑎𝑟𝑒 = 1), when the stated belief is held at its mean value 

(i.e.: 44.44) and the transmitted belief is either low or high (i.e.: ~0.25 or 

~0.75, respectively): in brief, the predicted probability of cooperating is 0.55 

for those who get a low transmitted belief and 0.72 for those who get a high 

transmitted belief. (Notice that the impact of the transmitted beliefs is 

mitigated by the fact that subjects who stated a low belief are most frequent 

in the sample.) 

In light of these findings, one can conclude that the tests provide 

support for H3 as stated in section III.3.c. above or, more precisely, the tests 

show that the transmitted information about the others‟ belief influence one‟s 

behaviour, depending on one‟s stated beliefs. It should now be recalled that, 

in the case of conformity, the causal relationship runs from beliefs to 

behaviour – whereas in the case of consensus one‟s action influences one‟s 

                                                                                              

with robust standard errors being shown in brackets below each coefficient. Unlike Part I, 

here the regression shows that both the dummy for low/high transmitted belief and the 

interaction term are mild significant (with 𝑝 being 0.062 and 0.079, respectively), thereby 

confirming that the transmitted information may have an effect also on Trustors‟ behaviour, 

depending on the level of their stated beliefs. Now, as conjectured before, this difference in 

results (between Part I and Part II) could be due to interaction effects between Part I and 

Part II of T2: in effect, in Part II of T2 some Participant A‟s choice might be affected by the 

fact that that very subject got some information in Part I; running the above regression (for 

Part II) with the addition of a dummy for low/high transmitted belief in Part I (i.e.: 𝑑𝛾 𝑖 𝑠𝑕𝑎𝑟𝑒 ) 

confirms that 𝑑𝛾 𝑖 𝑠𝑕𝑎𝑟𝑒 ) is indeed significant in Part II. 
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beliefs about some others‟ actions – it is therefore clear that only conformity 

is consistent with a subject using (also) the transmitted information to decide 

on the action to take; hence, there is evidence of conformity being present in 

our data.  

 

III.5. Concluding remarks 

This essay has presented a test for conformist motivations in mixed-motive 

games. The data show that the conformity motivation is indeed present: in T2 

an effect of (exogenously varying) beliefs on behaviour suggests that 

conformity is at least part of what has driven the correlation between beliefs 

and behaviour in T0-T1 (and, possibly, in previous Trust Game experiments). 

Interestingly, the results show that an increase in the transmitted belief has a 

significant, positive effect on the group of subjects who stated a higher belief 

(i.e.: subjects with an expectation of predominant cooperation), but not on 

those who stated a lower belief (i.e.: subjects with an expectation of 

predominant defection). 

Now, it should be recalled that in the theory of social norms that I have 

previously formalized, a conformist player in a social dilemma would do her 

part of what is presumed to be the norm-complying strategy profile, provided 

that a certain set of conditions holds, where such conditions involve both 

empirical and normative expectations of conformity to the norm. Just for 

argument‟s sake, here is a very simplified version of such conditions (see 

also Bicchieri [2006], Ch. 1): (i) subjects must be aware of the existence of a 

norm; (ii) they must believe that the others will conform to the norm 

(“empirical expectations condition”); (iii) they must believe that the others 

expect them to conform to the norm (“normative expectations condition”). 

Given that, it should be noted that transmitting information regarding the 
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others‟ beliefs about some others‟ behaviour – to a potentially conformist 

player – constitutes an exogenous variation in empirical expectations of 

conformity to a norm of cooperation; hence, it should be stressed once again 

that in this experimental study I have focused on the empirical expectation 

side (i.e.: a player‟s belief about the others conforming to a given rule of 

behaviour), while disregarding the normative expectation side (i.e.: a player‟s 

belief about the others expecting her to conform to a given rule of behaviour). 

Then, given that the transmitted information had a significant impact 

only on players who stated a higher belief, the data seem to suggest that only 

those players were conformist. What does it mean? That may suggest that 

those who stated a higher belief are exactly those who had a normative 

expectation such that they believed that the others would expect them to 

cooperate. Hence, while an exogenous variation in empirical expectations of 

conformity to a norm (i.e.: the transmitted information) may have an effect on 

the group of subjects for whom the normative expectations condition is 

fulfilled, it may not have an effect on the group of subjects for whom the 

normative expectations condition is not fulfilled (where the latter group may 

possibly comprise those subjects who stated a lower belief). To conclude, 

future research should delve into the empirical/normative expectation 

distinction which is crucial to conformity to social norms. 
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III.6. Appendix III 

III.6.a. Additional data 

𝛾 𝑖 𝑠𝑕𝑎𝑟𝑒  high belief Total     

[Part I]          no      yes       

 

22       5        0       5  

23           3        0        3  

24           7        0        7  

25          21     0        21  

26          12       0       12  

27           5        0         5  

72           0        1         1  

73           0        8         8  

74           0       26       26  

75           0       19       19  

76           0        1        1  

78           0        2        2  

Total       53       57     110 

Table III-8 - Beliefs transmitted in Part I of T2 (the last column shows the 

number of subjects being shown each belief) 
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𝛾 𝑖 𝑖𝑛   high belief Total     

[Part II]          no  yes       

 

0           1        0       1
105

  

20           2         0        2  

21           3        0        3  

23           7        0        7  

24          10       0       10  

25          13       0       13  

26           7         0        7  

27           6         0        6  

28           2         0        2  

29           5         0        5  

39           1         0        1  

72           0         1        1  

73           0        5        5  

74           0        12       12  

75          0       24       24  

76           0        7        7  

77           0        4        4  

Total          57       53      110 

Table III-9 - Beliefs transmitted in Part II of T2 (the last column shows the 

number of subjects being shown each belief) 

 

                                  

105
 One subject received a belief of 0, because no other belief lower than 50 had been stated 

by participants in that session. 
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III.6.b. Experimental instructions and screenshots 

Paper instructions and transcripts of zTree screenshots are shown below. 

 

General instructions for participants 

 

 

Thank you for participating in this study. 

Please note that it is prohibited to communicate with other participants during 

the experiment. If you have a question once the experiment has begun, please 

raise your hand and an assistant will come to your desk to answer it. Violation of 

this rule leads to immediate exclusion from the study and from all payments. 

You will never learn the identity of the other participants, neither before nor after 

the study; and not one of the other participants will learn anything about your 

identity. Also, no other participant will learn what you earn during the 

experiment: upon completion of the session, the amount of money you will have 

earned will be paid out individually and privately. Hence, no other participant 

will know your choices and how much money you earn in this experiment. 

You will receive £3 for participating in this session; additionally you also receive 

money depending on the decisions made (as described in the next paragraphs). 

The experiment consists of two parts (“Part I” and “Part II”), each involving one 

simple decision task; your payment at the end of the session will be calculated 

as follows. 

 

Your payment 

= £3 (show-up fee) + any amount earned in Part I + any amount earned in Part II 

 

 

In what follows we describe the procedure for Part I. 
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Part I 

There are two types of participants, participants “A” and participants “B”. 

You will be assigned a type and paired with one other participant who was 

assigned another type than you. 

 

This part consists of two steps, which you will perform with the particular 

participant you are paired with. 

 

Step 1: Participant A must choose between the following two options. 

The first option (“OUT”) gives a payout of £1 to both participants. 

The second option (“IN”) is to instead transfer both pounds (i.e. £2 in 

total) to participant B and leave further decisions to him/her. If 

participant A transfers the 2 pounds to participant B, they will be 

tripled and participant B will receive 3 x 2 = 6 pounds. 

 

Step 2: Only if participant A chooses the second option (“IN”), participant B 

will then decide if he/she transfers £3 back to participant A and 

keeps £3 for himself/herself OR if participant B keeps all the £6 for 

himself/herself. 
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Procedure for the two steps 

Step one: Decision of participant A 

It is up to participant A to choose one of the 2 options (OUT or IN): EITHER both 

participants receive £1 each OR the money and further decisions are transferred 

to participant B. 

If participant A chooses the option OUT, both of you will receive £1. In this case 

participant B cannot change the payout allocation and the first part ends. 

As a result 

At the end of step one, there are two possible situations. 

 If participant A has transferred the £2 to participant B (option IN), 

participant B has £6 and participant A has nothing. 

 If participant A has chosen the option OUT, both of you have £1. 

 

Step two: Decision of participant B 

If participant A has transferred the money to participant B (option IN), then B 

receives £6 and it is now up to participant B to decide about the distribution of 

the £6 between the two participants. Participant B can EITHER: 

- transfer £3 back to participant A and keep £3 for himself/herself 

OR 

- keep all the £6 for himself/herself and leave nothing to participant A. 

After participant B’s decision this part is completed and the earnings for both 

participants will be determined according to B’s decision. 

The above information is summarised in the following table: 

 A’s income B’s income 

A chose OUT £1 £1 

A chose IN  B keeps all £0 £6 

   B transfers half £3 £3 
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Specific procedure and on-screen instructions for Part I 

 

You are assigned the role of participant B 

 

Note that you will complete the above-described two steps only once. 

 

Step 1: Participant A decides by entering his/her choice on the screen shown 

below. 
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Step 2: We will ask you (participant B) how you would like to divide the £6 

between participant A and yourself. Note that your answer will have an effect 

only if participant A does choose to transfer the money to you (option IN). 

Participant A will not know your decision when he/she submits his/her own 

decision. 

As explained above, you decide on whether to transfer half the money to 

participant A or keep all the £6 for yourself. 

You will enter your choice on the following screen: 
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Control questions 

Please answer the following control questions. Please contact the study 

organizer if you have any questions. 

 

1. Participant A has chosen IN. You then choose to transfer half the money 

back to participant A. 

What is the income of participant A? ……………. 

What is the income of participant B (yourself)?……………. 

 

2. Participant A has chosen IN. You then choose to keep all the money for 

yourself. 

What is the income of participant A? ……………. 

What is the income of participant B (yourself)?……………. 

 

3. Participant A has chosen OUT. 

What is the income of participant A? ……………. 

What is the income of participant B (yourself)?……………. 

 

Please feel free to ask questions at any point if you feel you need some 

clarification. Please do so by raising your hand. 

We will start with Part I once the instructions are clear to everyone. Are there any 

questions? 
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Part II 

 

We are now ready to undergo the last part of the study. This part has exactly the 

same two-step procedure as in Part I. 

The payouts are the same as before and are summarised in the following table: 

 

 A’s income B’s income 

A chose OUT £1 £1 

A chose IN  B keeps all £0 £6 

   B transfers half £3 £3 

 

The only difference is that you are assigned a different type in this part than in 

the previous part. 

 

You are now assigned the role of participant A. 

Again, you will be paired with one other participant. This other participant will be 

a different person than the one you were paired with in Part I.  

 

Please refer to your paper handout or ask an assistant if you need reminding of 

the procedure. 
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[Transcript of on-screen messages] 

Treatments T0-T1 

 

Screen 1 (Part I) 

 

You are assigned the role of participant B 

 

 

Prior to entering your decision as participant B, we would like to know what you 

think of the other participants who have been assigned the same type as you 

(i.e. participants B).  

In other words, we ask you to guess how many of today’s participants B 

(excluding yourself) will choose to transfer half the money back, and how many 

of today’s participants B will keep all the money for themselves. 

 

Please enter your guess by positioning the below slider to the desired 

percentage. 

[The below line is only for treatment T1.] 

Note: You can earn some additional income if your guess is correct. If your guess 

differs by no more than 5 percentage points from the realized value, at the end 

of the study you will receive an additional payment of £2. Otherwise, you do not 

receive an additional income. 

 

 

Screen 2 (Part I) 

 

Enter 2nd mover decision. 

 

 

Screen 3 (Part II) 

 

Insert instructions for Part II here. 
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Screen 4 (Part II) 

 

You are assigned the role of participant A 

 

Prior to entering your decision as participant A, we would like to know what you 

think of the other participants who have been assigned the same type as you 

(i.e. participants A).  

In other words, we ask you to guess how many of today’s participants A 

(excluding yourself) will choose IN, and how many of today’s participants A will 

choose OUT. 

 

Please enter your guess by positioning the below slider to the desired 

percentage. 

[The below line is only for treatment T1.] 

Note: You can earn some additional income if your guess is correct. If your guess 

differs by no more than 5 percentage points from the realized value, at the end 

of the study you will receive an additional payment of £2. Otherwise, you do not 

receive an additional income. 

 

 

Screen 5 (Part II) 

 

Enter 1st mover decision. 

 

 

Screen 6 

 

Outcome. 
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Treatment T2 

 

Screen 1 (Part I) 

You are assigned the role of participant B 

 

Prior to entering your decision as participant B, we would like to know what you 

think of the other participants who have been assigned the same type as you 

(i.e. participants B). 

In other words, we ask you to guess how many of today’s participants B 

(excluding yourself) will choose to transfer half the money back, and how many 

of today’s participants B will keep all the money for themselves. 

 

************first lower part of screen 1***** 

Please enter your guess by positioning the below slider to the desired 

percentage. 

 

************second lower part of screen 1 [to appear after subjects have entered 

their guesses]***** 

A sample of other participants B in this session expects on average that <x>% will 

transfer half the money, whereas <100-x>% will keep all the money. 

TRANSFER HALF: x% 

KEEP: (100-x)% 

 

 

Screen 2 (Part I) 

 

Enter 2nd mover decision. 

 

 

Screen 3 (Part II) 

 

Insert instructions for part II here. 
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Screen 4 (Part II) 

 

You are assigned the role of participant A 

 

Prior to entering your decision as participant A, we would like to know what you 

think of the other participants who have been assigned the same type as you 

(i.e. participants A).  

 

In other words, we ask you to guess how many of today’s participants A 

(excluding yourself) will choose IN, and how many of today’s participants A will 

choose OUT. 

 

************first lower part of screen 4***** 

Please enter your guess by positioning the below slider to the desired 

percentage. 

 

************second lower part of screen 4[to appear after subjects have entered 

their guesses]***** 

A sample of other participants A in this session expects on average that <x>% will 

OPT IN, whereas <100-x>% will OPT OUT. 

IN: x% 

OUT: (100-x)% 

 

 

Screen 5 (Part II) 

 

Enter 1st mover decision. 

 

 

Screen 6 

 

Outcome. 
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Conclusions 

The present thesis contributes to our understanding of some of the informal 

norms regulating human behaviour, namely conventions and social norms. It 

should be stressed that, although the present definitions of conventions and 

social norms differ from one another, in both cases they imply belief-based 

solutions to problems of strategic interdependence. Given the role played by 

such norms in concerting expectations, it is evident that here – when a 

convention or a social norm is in operation – it is the case that players are 

“reasoning together”. Now, unlike other models of conventions or social 

norms, the theories presented here aim at capturing the way people reason 

together by means of neutral frameworks, which can account for a wide 

range of belief-based solutions: more explicitly, in the case of coordination 

games, a salience relation is devised in such a way that need not reflect 

payoff or risk dominance, but may well be based on aesthetics, precedent, 

geometry, and so on; similarly, in the case of mixed-motive games, a social 

norm need not necessarily be egalitarian or Pareto-efficient (in effect, all is 

needed for a social norm to be followed is that players have conditionally 

conformist preferences, hold correct beliefs, and are sensitive enough to the 

social cost of deviating). Indeed, only by making use of a neutral framework 

the analyst can allow for these equilibrium selection devices to adequately 

reflect the mechanisms of a very wide range of economically-relevant rule-

based phenomena, such as fashions, bargains and contracts.    

 This thesis has further developed the idea that informal norms vary 

because of changes in objective circumstances as well as because of 

subjective changes in perceptions or expectations. In this connection, the 

experiment has provided evidence of conformist motivations being present in 
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mixed-motive games, showing that exogenously varying expectations has an 

impact on behaviour. In this respect – given that here perceptions and 

expectations play such a crucial role – it is important to stress that in order for 

a game-theoretic account of norms to provide meaningful insights, one 

necessarily needs to combine deduction with empirical observation. In effect, 

only thanks to the empirical approach one may be able to observe and 

formalize which strategic principles players are likely to use: as observed by 

Camerer [2003], «[i]t is unlikely that a purely mathematical theory of rational 

play will ever fully identify which of many equilibria are likely to emerge 

because history, shared background, and the way strategies are described or 

made psychologically prominent surely matter. As a result, experiments and 

observation of the sort that naturalists do in biology can potentially do what 

mathematical analysis cannot – predict what will happen» (Camerer [2003], 

p. 337). 
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