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Abstract

Conformal predictors are set predictors that are automatically valid
in the sense of having coverage probability equal to or exceeding a given
confidence level. Inductive conformal predictors are a computationally
efficient version of conformal predictors satisfying the same property of
validity. However, inductive conformal predictors have been only known
to control unconditional coverage probability. This paper explores various
versions of conditional validity and various ways to achieve them using
inductive conformal predictors and their modifications.

1 Introduction

This paper continues study of the method of conformal prediction, introduced
in Vovk et al. (1999) and Saunders et al. (1999) and further developed in Vovk
et al. (2005). An advantage of the method is that its predictions (which are
set rather than point predictions) automatically satisfy a finite-sample property
of validity. Its disadvantage is its relative computational inefficiency in many
situations. A modification of conformal predictors, called inductive conformal
predictors, was proposed in Papadopoulos et al. (2002b,a) with the purpose of
improving on the computational efficiency of conformal predictors.

Most of the literature on conformal prediction studies the behavior of set
predictors in the online mode of prediction, perhaps because the property of
validity can be stated in an especially strong form in the on-line mode (as
first shown in Vovk 2002). The online mode, however, is much less popular in
applications of machine learning than the batch mode of prediction. This paper
follows the recent papers by Lei et al. (2011), Lei and Wasserman (2012), and
Lei et al. (2012) studying properties of conformal prediction in the batch mode;
we, however, concentrate on inductive conformal prediction (also considered
in Lei et al. 2012). The paper also illustrates the performance of inductive
conformal predictors in the batch mode using the well-known Spambase data
set; for earlier empirical studies of conformal prediction in the batch mode see,
e.g., Vanderlooy et al. (2007).
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Figure 1: Eight notions of conditional validity. The visible vertices of the cube
are U (unconditional), T (training conditional), O (object conditional), L (label
conditional), OL (example conditional), TL (training and label conditional), TO
(training and object conditional). The invisible vertex is TOL (and corresponds
to conditioning on everything).

We will usually be making the assumption of randomness, which is stan-
dard in machine learning and nonparametric statistics: the available data is a
sequence of examples generated independently from the same probability distri-
bution P . (In some cases we will make the weaker assumption of exchangeability;
for some of our results even weaker assumptions, such as conditional random-
ness or exchangeability, would have been sufficient.) Each example consists of
two components: an object and a label. We are given a training set of examples
and a new object, and our goal is to predict the label of the new object. (If we
have a whole test set of new objects, we can apply the procedure for predicting
one new object to each of the objects in the test set.)

The two desiderata for inductive conformal predictors are their validity and
efficiency: validity requires that the coverage probability of the prediction sets
should be at least equal to a preset confidence level, and efficiency requires that
the prediction sets should be as small as possible. However, there is a wide
variety of notions of validity, since the “coverage probability” is, in general,
conditional probability. The simplest case is where we condition on the trivial
σ-algebra, i.e., the probability is in fact unconditional probability, but several
other notions of conditional validity are depicted in Figure 1, where T refers to
conditioning on the training set, O to conditioning on the test object, and L
to conditioning on the test label. The arrows in Figure 1 lead from stronger to
weaker notions of conditional validity; U is the sink and TOL is the source (the
latter is not shown).

Inductive conformal predictors will be defined in Section 2. They are au-
tomatically valid, in the sense of unconditional validity. It should be said
that, in general, the unconditional error probability is easier to deal with than
conditional error probabilities; e.g., the standard statistical methods of cross-
validation and bootstrap provide decent estimates of the unconditional error
probability but poor estimates for the training conditional error probability:
see Hastie et al. (2009), Section 7.12.
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In Section 3 we explore training conditional validity of inductive conformal
predictors. Our simple result (Propositions 2a and 2b) is of the PAC type,
involving two parameters: the target training conditional coverage probability
1 − ε and the probability 1 − δ with which 1 − ε is attained. It shows that
inductive conformal predictors achieve training conditional validity automati-
cally (whereas for other notions of conditional validity the method has to be
modified).

In the following section, Section 4, we introduce a conditional version of
inductive conformal predictors and explain, in particular, how it achieves label
conditional validity. Label conditional validity is important as it allows the
learner to control the set-prediction analogues of false positive and false negative
rates. Section 5 is about object conditional validity and its main result (a
version of a lemma in Lei and Wasserman 2012) is negative: precise object
conditional validity cannot be achieved in a useful way unless the test object has
a positive probability. Whereas precise object conditional validity is usually not
achievable, we should aim for approximate and asymptotic object conditional
validity when given enough data (cf. Lei and Wasserman 2012).

Section 6 reports on the results of empirical studies for the standard
Spambase data set (see, e.g., Hastie et al. 2009, Chapter 1, Example 1, and
Section 9.1.2). Section 7 discusses close connections between an important class
of ICPs and ROC curves. Section 8 concludes.

2 Inductive conformal predictors

The example space will be denoted Z; it is the Cartesian product X × Y of
two measurable spaces, the object space and the label space. In other words,
each example z ∈ Z consists of two components: z = (x, y), where x ∈ X is
its object and y ∈ Y is its label. Two important special cases are the problem
of classification, where Y is a finite set (equipped with the discrete σ-algebra),
and the problem of regression, where Y = R.

Let (z1, . . . , zl) be the training set, zi = (xi, yi) ∈ Z. We split it into two
parts, the proper training set (z1, . . . , zm) of size m < l and the calibration set
of size l − m. An inductive conformity m-measure is a measurable function
A : Zm×Z→ R; the idea behind the conformity score A((z1, . . . , zm), z) is that
it should measure how well z conforms to the proper training set. A standard
choice is

A((z1, . . . , zm), (x, y)) := ∆(y, f(x)), (1)

where f : X→ Y′ is a prediction rule found from (z1, . . . , zm) as the training set
and ∆ : Y×Y′ → R is a measure of similarity between a label and a prediction.
Allowing Y′ to be different from Y (often Y′ ⊃ Y) may be useful when the
underlying prediction method gives additional information to the predicted la-
bel; e.g., the MART procedure used in Section 6 gives the logit of the predicted
probability that the label is 1.

Remark. The idea behind the term “calibration set” is that it allows us to
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calibrate the conformity scores for test examples by translating them into a
probability-type scale.

The inductive conformal predictor (ICP) corresponding to A is defined as
the set predictor

Γε(z1, . . . , zl, x) := {y | py > ε}, (2)

where ε ∈ [0, 1] is the chosen significance level (1− ε is known as the confidence
level), the p-values py, y ∈ Y, are defined by

py :=
|{i = m+ 1, . . . , l | αi ≤ αy}|+ 1

l −m+ 1
, (3)

and

αi := A((z1, . . . , zm), zi), i = m+ 1, . . . , l, αy := A((z1, . . . , zm), (x, y))
(4)

are the conformity scores. Given the training set and a new object x the ICP
predicts its label y; it makes an error if y /∈ Γε(z1, . . . , zl, x).

The random variables whose realizations are xi, yi, zi, z will be denoted by
the corresponding upper case letters (Xi, Yi, Zi, Z, respectively). The following
proposition of validity is almost obvious.

Proposition 1 (Vovk et al., 2005, Proposition 4.1). If random exam-
ples Zm+1, . . . , Zl, Zl+1 = (Xl+1, Yl+1) are exchangeable (i.e., their dis-
tribution is invariant under permutations), the probability of error Yl+1 /∈
Γε(Z1, . . . , Zl, Xl+1) does not exceed ε for any ε and any inductive conformal
predictor Γ.

In practice the probability of error is usually close to ε (as we will see in
Section 6).

3 Training conditional validity

As discussed in Section 1, the property of validity of inductive conformal pre-
dictors is unconditional. The property of conditional validity can be formalized
using a PAC-type 2-parameter definition. It will be convenient to represent
the ICP (2) in a slightly different form downplaying the structure (xi, yi) of zi.
Define Γε(z1, . . . , zl) := {(x, y) | py > ε}, where py is defined, as before, by (3)
and (4) (therefore, py depends implicitly on x). Proposition 1 can be restated
by saying that the probability of error Zl+1 /∈ Γε(Z1, . . . , Zl) does not exceed ε
provided Z1, . . . , Zl+1 are exchangeable.

We consider a canonical probability space in which Zi = (Xi, Yi), i =
1, . . . , l + 1, are i.i.d. random examples. A set predictor Γ (outputting a subset
of Z given l examples and measurable in a suitable sense) is (ε, δ)-valid if, for
any probability distribution P on Z,

P l (P (Γ(Z1, . . . , Zl)) ≥ 1− ε) ≥ 1− δ.

It is easy to see that ICPs satisfy this property for suitable ε and δ.
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Proposition 2a. Suppose ε, δ ∈ [0, 1],

E ≥ ε+

√
− ln δ

2n
, (5)

where n := l−m is the size of the calibration set, and Γ is an inductive conformal
predictor. The set predictor Γε is then (E, δ)-valid. Moreover, for any probability
distribution P on Z and any proper training set (z1, . . . , zm) ∈ Zm,

Pn (P (Γ(z1, . . . , zm, Zm+1, . . . , Zl)) ≥ 1− ε) ≥ 1− δ.

This proposition gives the following recipe for constructing (ε, δ)-valid set
predictors. The recipe only works if the training set is sufficiently large; in
particular, its size l should significantly exceed N := (− ln δ)/(2ε2). Choose an
ICP Γ with the size n of the calibration set exceeding N . Then the set predictor

Γε−
√

(− ln δ)/(2n) will be (ε, δ)-valid.

Proof of Proposition 2a. Let E ∈ (ε, 1) (not necessarily satisfying (5)). Fix the
proper training set (z1, . . . , zm). By (2) and (3), the set predictor Γε makes an
error, zl+1 /∈ Γε(z1, . . . , zl), if and only if the number of i = m + 1, . . . , l such
that αi ≤ αy is at most bε(n+ 1)− 1c; in other words, if and only if αy < α(k),
where α(k) is the kth smallest αi and k := bε(n+ 1)− 1c+ 1. Therefore, the P -
probability of the complement of Γε(z1, . . . , zl) is P (A((z1, . . . , zm), Z) < α(k)),
where A is the inductive conformity m-measure. Set

α∗ := inf{α | P (A((z1, . . . , zm), Z) < α) > E} and

{
E′ := P (A((z1, . . . , zm), Z) < α∗)

E′′ := P (A((z1, . . . , zm), Z) ≤ α∗).

The σ-additivity of measures implies that E′ ≤ E ≤ E′′, and E′ = E = E′′

unless α∗ is an atom of A((z1, . . . , zm), Z). Both when E′ = E and when
E′ < E, the probability of error will exceed E if an only if α(k) > α∗. In other
words, if only if we have at most k − 1 of the αi below or equal to α∗. The
probability that at most k − 1 = bε(n + 1) − 1c values of the αi are below or
equal to α∗ equals P(B′′n ≤ bε(n + 1) − 1c) ≤ P(Bn ≤ bε(n + 1) − 1c), where
B′′n ∼ binn,E′′ , Bn ∼ binn,E , and binn,p stands for the binomial distribution with
n trials and probability of success p. (For the inequality, see Lemma 1 below.)
By Hoeffding’s inequality (see, e.g., Vovk et al. 2005, p. 287), the probability of
error will exceed E with probability at most

P(Bn ≤ bε(n+ 1)− 1c) ≤ P(Bn ≤ εn)

= P(Bn/n− E ≤ ε− E) ≤ exp

(
− (ε− E)2n2

2n/4

)
= e−2(E−ε)

2n. (6)

Solving e−2(E−ε)
2n = δ we obtain that Γε is (E, δ)-valid whenever (5) is satisfied.

In the proof of Proposition 2a we used the following lemma.
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Lemma 1. Fix the number of trials n. The distribution function binn,p(K) of
the binomial distribution is decreasing in the probability of success p for a fixed
K ∈ {0, . . . , n}.

Proof. It suffices to check that

dbinn,p(K)

dp
=

d

dp

K∑
k=0

(
n

k

)
pk(1− p)n−k =

K∑
k=0

k − np
p(1− p)

(
n

k

)
pk(1− p)n−k

is nonpositive. The last sum has the same sign as the mean of the function
f(k) := k−np

p(1−p) over the set k ∈ {0, . . . ,K} with respect to the binomial distri-

bution, and so it remains to notice that the overall mean of f is 0 and that the
function f is increasing.

The inequality (5) in Proposition 2a is simple but somewhat crude as its
derivation uses Hoeffding’s inequality. The following proposition is the more
precise version of Proposition 2a that stops short of that last step.

Proposition 2b. Let ε, δ, E ∈ [0, 1]. If Γ is an inductive conformal predictor,
the set predictor Γε is (E, δ)-valid provided

δ ≥ binn,E (bε(n+ 1)− 1c) , (7)

where n := l −m is the size of the calibration set and binn,E is the cumulative
binomial distribution function with n trials and probability of success E. If the
random variable A((z1, . . . , zm), Z) is continuous, Γε is (E, δ)-valid if and only
if (7) holds.

Proof. See the left-most expression in (3) and remember that E′′ = E unless
α∗ is an atom of A((z1, . . . , zm), Z).

4 Conditional inductive conformal predictors

The motivation behind conditional inductive conformal predictors is that
ICPs do not always achieve the required probability ε of error Yl+1 /∈
Γε(Z1, . . . , Zl, Xl+1) conditional on (Xl+1, Yl+1) ∈ E for important sets E ⊆ Z.
This is often undesirable. If, e.g., our set predictor is valid at the significance
level 5% but makes an error with probability 10% for men and 0% for women,
both men and women can be unhappy with calling 5% the probability of error.
Moreover, in many problems we might want different significance levels for
different regions of the example space: e.g., in the problem of spam detection
(considered in Section 6) classifying spam as email usually makes much less
harm than classifying email as spam.

An inductive m-taxonomy is a measurable function K : Zm×Z→ K, where
K is a measurable space. Usually the category K((z1, . . . , zm), z) of an example
z is a kind of classification of z, which may depend on the proper training set
(z1, . . . , zm).
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The conditional inductive conformal predictor (conditional ICP) correspond-
ing toK and an inductive conformitym-measure A is defined as the set predictor
(2), where the p-values py are now defined by

py :=
|{i = m+ 1, . . . , l | κi = κy & αi ≤ αy}|+ 1

|{i = m+ 1, . . . , l | κi = κy}|+ 1
, (8)

the categories κ are defined by

κi := K((z1, . . . , zm), zi), i = m+ 1, . . . , l, κy := K((z1, . . . , zm), (x, y)),

and the conformity scores α are defined as before by (4). A label conditional
ICP is a conditional ICP with the inductive m-taxonomy K(·, (x, y)) := y.

The following proposition is the conditional analogue of Proposition 1; in
particular, it shows that in classification problems label conditional ICPs achieve
label conditional validity.

Proposition 3. If random examples Zm+1, . . . , Zl, Zl+1 = (Xl+1, Yl+1) are ex-
changeable, the probability of error Yl+1 /∈ Γε(Z1, . . . , Zl, Xl+1) given the cate-
gory K((Z1, . . . , Zm), Zl+1) of Zl+1 does not exceed ε for any ε and any condi-
tional inductive conformal predictor Γ corresponding to K.

5 Object conditional validity

In this section we prove a negative result (a version of Lemma 1 in Lei and
Wasserman 2012) which says that the requirement of precise object conditional
validity cannot be satisfied in a non-trivial way for rich object spaces (such as
R). If P is a probability distribution on Z, we let PX stand for its marginal
distribution on X: PX(A) := P (A × Y). Let us say that a set predictor Γ
has 1 − ε object conditional validity, where ε ∈ (0, 1), if, for all probability
distributions P on Z and PX-almost all x ∈ X,

P l+1 (Yl+1 ∈ Γ(Z1, . . . , Zl, Xl+1) | Xl+1 = x) ≥ 1− ε. (9)

The Lebesgue measure on R will be denoted Λ. If Q is a probability distribution,
we say that a property F holds for Q-almost all elements of a set E if Q(E\F ) =
0; a Q-non-atom is an element x such that Q({x}) = 0.

Proposition 4. Suppose X is a separable metric space equipped with the Borel
σ-algebra. Let ε ∈ (0, 1). Suppose that a set predictor Γ has 1− ε object condi-
tional validity. In the case of regression, we have, for all P and for PX-almost
all PX-non-atoms x ∈ X,

P l (Λ(Γ(Z1, . . . , Zl, x)) =∞) ≥ 1− ε. (10)

In the case of classification, we have, for all P , all y ∈ Y, and PX-almost all
PX-non-atoms x,

P l (y ∈ Γ(Z1, . . . , Zl, x)) ≥ 1− ε. (11)
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We are mainly interested in the case of a small ε (corresponding to high
confidence), and in this case (10) implies that, in the case of regression, predic-
tion intervals (i.e., the convex hulls of prediction sets) can be expected to be
infinitely long unless the new object is an atom. In the case of classification,
(11) says that each particular y ∈ Y is likely to be included in the prediction
set, and so the prediction set is likely to be large. In particular, (11) implies
that the expected size of the prediction set is a least (1− ε) |Y|.

Of course, the condition that x be a non-atom is essential: if PX({x}) > 0,
an inductive conformal predictor that ignores all examples with objects different
from x will have 1−ε object conditional validity and can give narrow predictions
if the training set is big enough to contain many examples with x as their object.

Remark. Nontrivial set predictors having 1− ε object conditional validity are
constructed by McCullagh et al. (2009) assuming the Gauss linear model.

Proof of Proposition 4. The proof will be based on the ideas of Lei and Wasser-
man (2012, the proof of Lemma 1).

Suppose (10) does not hold on a measurable set E of PX-non-atoms x ∈ X
such that PX(E) > 0. Shrink E in such a way that PX(E) > 0 still holds but
there exists δ > 0 and C > 0 such that, for each x ∈ E,

P l (Λ(Γ(Z1, . . . , Zl, x)) ≤ C) ≥ ε+ δ. (12)

Let V be the total variation distance between probability measures, V (P,Q) :=
supA |P (A)−Q(A)|; we then have

V (P l, Ql) ≤
√

2
√

1− (1− V (P,Q))l

(this follows from the connection of V with the Hellinger distance: see, e.g.,
Tsybakov 2010, Section 2.4). Shrink E further so that PX(E) > 0 still holds
but √

2
√

1− (1− PX(E))l ≤ δ/2. (13)

(This can be done under our assumption that X is a separable metric space:
see Lemma 2 below.) Define another probability distribution Q on Z by the
requirements that Q(A × B) = P (A × B) for all measurable A ⊆ (X \ E),
B ⊆ R and Q(A × B) = PX(A) × U(B) for all measurable A ⊆ E, B ⊆ R,
where U is the uniform probability distribution on the interval [−DC,DC] and
D > 0 will be chosen below. Since V (P,Q) ≤ PX(E), we have V (P l, Ql) ≤ δ/2;
therefore, by (12),

Ql (Λ(Γ(Z1, . . . , Zl, x)) ≤ C) ≥ ε+ δ/2

for each x ∈ E. The last inequality implies, by Fubini’s theorem,

Ql+1 (Λ(Γ(Z1, . . . , Zl, Xl+1)) ≤ C & Xl+1 ∈ E) ≥ (ε+ δ/2)QX(E),
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where QX(E) = PX(E) > 0 is the marginal Q-probability of E. When D =
D(δQX(E), C) is sufficiently large this in turn implies

Ql+1 (Yl+1 /∈ Γ(Z1, . . . , Zl, Xl+1) & Xl+1 ∈ E) ≥ (ε+ δ/4)QX(E).

However, the last inequality contradicts

Ql+1 (Yl+1 /∈ Γ(Z1, . . . , Zl, Xl+1) & Xl+1 ∈ E)

QX(E)
≤ ε,

which follows from Γ having 1− ε object conditional validity and the definition
of conditional probability.

It remains to consider the case of classification. Suppose (11) does not hold
on a measurable set E of PX-non-atoms x ∈ X such that PX(E) > 0. Shrink E
in such a way that PX(E) > 0 still holds but there exists δ > 0 such that, for
each x ∈ E,

P l (y ∈ Γ(Z1, . . . , Zl, x)) ≤ 1− ε− δ.

Without loss of generality we further assume that (13) also holds. Define a
probability distribution Q on Z by the requirements that Q(A×B) = P (A×B)
for all measurable A ⊆ (X \ E) and all B ⊆ Y and that Q(A × {y}) = PX(A)
for all measurable A ⊆ E (i.e., modify P setting the conditional distribution of
Y given X ∈ E to the unit mass concentrated at y). Then for each x ∈ E we
have

Ql (y ∈ Γ(Z1, . . . , Zl, x)) ≤ 1− ε− δ/2,

which implies

Ql+1 (Yl+1 ∈ Γ(Z1, . . . , Zl, Xl+1) & Xl+1 ∈ E) ≤ (1− ε− δ/2)QX(E).

The last inequality contradicts Γ having 1− ε object conditional validity.

In the proof of Proposition 4 we used the following lemma.

Lemma 2. If Q is a probability measure on X, which a separable metric space,
E is a set of Q-non-atoms such that Q(E) > 0, and δ > 0 is an arbitrarily small
number, then there is E′ ⊆ E such that Q(E′) < δ.

Proof. We can take the intersection of E and an open ball centered at any
element of X for which all such intersections have a positive Q-probability. Let
us prove that such elements exist. Suppose they do not.

Fix a countable dense subset A1 of X. Let A2 be the union of all open balls
B with rational radii centered at points in A1 such that Q(B ∩ E) = 0. On
one hand, the σ-additivity of measures implies Q(A2 ∩ E) = 0. On the other
hand, A2 = X: indeed, for each x ∈ X there is an open ball B of some radius
δ > 0 centered at x that satisfies Q(B ∩ E) = 0; since x belongs to the radius
δ/2 open ball centered at a point in A1 at a distance of less than δ/2 from x,
we have x ∈ A2. This contradicts Q(E) > 0.
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Proposition 4 can be extended to randomized set predictors Γ (in which
case P l and P l+1 in expressions such as (9) and (10) should be replaced by the
probability distribution comprising both P and the internal coin tossing of Γ).
This clarifies the provenance of ε in (10) and (11): ε cannot be replaced by a
smaller constant since the set predictor predicting Y with probability 1− ε and
∅ with probability ε has 1− ε object conditional validity.

Proposition 4 does not prevent the existence of efficient set predictors
that are conditionally valid in an asymptotic sense; indeed, the paper by Lei
and Wasserman (2012) is devoted to constructing asymptotically efficient and
asymptotically conditionally valid set predictors in the case of regression.

6 Experiments

This section describes some simple experiments on the well-known Spambase

data set contributed by George Forman to the UCI Machine Learning Repository
(Frank and Asuncion, 2010). Its overall size is 4601 examples and it contains
examples of two classes: email (also written as 0) and spam (also written as
1). Hastie et al. (2009) report results of several machine-learning algorithms on
this data set split randomly into a training set of size 3065 and test set of size
1536. The best result is achieved by MART (multiple additive regression tree;
4.5% error rate according to the second edition of Hastie et al. 2009).

We randomly permute the data set and divide it into 2602 examples for
the proper training set, 999 for the calibration set, and 1000 for the test set.
Our split between the proper training, calibration, and test sets, approximately
4:1:1, is inspired by the standard recommendation for the allocation of data into
training, validation, and test sets (see, e.g., Hastie et al. 2009, Section 7.2). We
consider the ICP whose conformity measure is defined by (1) where f is output
by MART and

∆(y, f(x)) :=

{
f(x) if y = 1

−f(x) if y = 0.
(14)

MART’s output f(x) models the log-odds of spam vs email,

f(x) = log
P (1 | x)

P (0 | x)
,

which makes the interpretation of (14) as conformity score very natural.
The R programs used in the experiments described in this section are avail-

able from the web site http://alrw.net/; the programs use the gbm package
with virtually all parameters set to the default values (given in the description
provided in response to help("gbm")).

The upper left plot in Figure 2 is the scatter plot of the pairs (pemail, pspam)
produced by the ICP for all examples in the test set. Email is shown as green
noughts and spam as red crosses (and it is noticeable that the noughts were
drawn after the crosses). The other two plots in the upper row are for email and
spam separately. Ideally, email should be close to the horizontal axis and spam

10

http://alrw.net/


0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Email and spam

email p−value

sp
am

 p
−

va
lu

e

●●● ● ●● ●● ●● ● ●●●●

●

●●●
● ● ● ●●●● ● ●●●

●●●●

●

●●●
● ●●

●
●● ●● ● ●● ●● ●●● ●● ●●●

●
●●● ● ●●● ●

●
●

●
● ●●●●● ● ●● ●

●

●● ●
● ●

●
● ●● ●● ● ●● ● ●● ●● ● ●● ●●●●

●

● ●● ● ●●●●●
● ● ● ●

●

● ●

●

●
●

●●● ● ●●●●
●● ●

●

●●● ●● ●●● ●●●
●

●

●

●● ●● ●

●
●● ● ●●● ●

●

●

●● ● ●● ●● ●● ● ●● ●

●

● ● ● ●● ●● ● ● ●● ●● ●● ●● ● ●● ● ●●●● ●●
●

● ● ●● ●● ●● ●● ●●
●

● ● ●
●

●● ● ● ●● ●●● ●●● ● ●●● ● ●● ●●● ● ● ●● ●●●●
●

●

●

● ●
●

●● ●●● ●● ●●●
●●●

●

● ●● ●●
●

●

●

●● ●●
●

● ●● ●● ● ●●●
● ●●

●●● ●●● ●●● ●●
● ● ●●● ●● ●●

●
●●● ●● ●● ●●● ●● ● ●● ●●●● ●●● ● ●

●

●● ● ●● ●● ●● ● ●● ● ●●● ●● ●● ●

●

●
●

●●●● ●●

●

● ●●●
●

●● ●● ●● ●● ●
●

●● ●●● ● ●● ● ●●●● ●● ●● ● ● ●● ●●● ● ●● ● ●● ●●●●● ● ●
●

● ●●

●

● ●● ●

●

●●● ●● ●● ●●● ●● ●●
●

● ● ●●● ●● ●●● ● ●●●● ● ●● ●●● ●● ●● ●● ● ●● ● ●

●

● ● ●●●●
●

● ●● ●●●●
● ●● ●

●

●●● ●●
●

●
●

●

● ●●●● ●● ●● ●●● ●●
●

●

● ● ●● ● ● ●●●

●

●

●
●

● ●●● ●●● ● ● ● ●●● ●●● ●● ● ●● ●● ●●● ● ●● ●● ●●

●

● ●● ●●● ●●
●

●● ●● ● ●● ●● ● ●●● ●●● ●

●

●● ●

●

●● ●● ●●● ● ●● ●● ●● ● ●●●●

●

●●●
● ● ● ●●●● ● ●●●

●●●●

●

●●●
● ●●

●
●● ●● ● ●● ●● ●●● ●● ●●●

●
●●● ● ●●● ●

●
●

●
● ●●●●● ● ●● ●

●

●● ●
● ●

●
● ●● ●● ● ●● ● ●● ●● ● ●● ●●●●

●

● ●● ● ●●●●●
● ● ● ●

●

● ●

●

●
●

●●● ● ●●●●
●● ●

●

●●● ●● ●●● ●●●
●

●

●

●● ●● ●

●
●● ● ●●● ●

●

●

●● ● ●● ●● ●● ● ●● ●

●

● ● ● ●● ●● ● ● ●● ●● ●● ●● ● ●● ● ●●●● ●●
●

● ● ●● ●● ●● ●● ●●
●

● ● ●
●

●● ● ● ●● ●●● ●●● ● ●●● ● ●● ●●● ● ● ●● ●●●●
●

●

●

● ●
●

●● ●●● ●● ●●●
●●●

●

● ●● ●●
●

●

●

●● ●●
●

● ●● ●● ● ●●●
● ●●

●●● ●●● ●●● ●●
● ● ●●● ●● ●●

●
●●● ●● ●● ●●● ●● ● ●● ●●●● ●●● ● ●

●

●● ● ●● ●● ●● ● ●● ● ●●● ●● ●● ●

●

●
●

●●●● ●●

●

● ●●●
●

●● ●● ●● ●● ●
●

●● ●●● ● ●● ● ●●●● ●● ●● ● ● ●● ●●● ● ●● ● ●● ●●●●● ● ●
●

● ●●

●

● ●● ●

●

●●● ●● ●● ●●● ●● ●●
●

● ● ●●● ●● ●●● ● ●●●● ● ●● ●●● ●● ●● ●● ● ●● ● ●

●

● ● ●●●●
●

● ●● ●●●●
● ●● ●

●

●●● ●●
●

●
●

●

● ●●●● ●● ●● ●●● ●●
●

●

● ● ●● ● ● ●●●

●

●

●
●

● ●●● ●●● ● ● ● ●●● ●●● ●● ● ●● ●● ●●● ● ●● ●● ●●

●

● ●● ●●● ●●
●

●● ●● ● ●● ●● ● ●●● ●●● ●

●

●● ●

●

●● ●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Email only

email p−value

sp
am

 p
−

va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spam only

email p−value

sp
am

 p
−

va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Email and spam

email p−value

sp
am

 p
−

va
lu

e

●●
●

● ●● ●● ●● ● ●●●●

●

●●●

●
● ● ●●●

● ●
●●

●
●●●

●

●

●●
●

● ●●
●

●● ●
● ● ●● ●● ●●● ●● ●●●

●

●●● ● ●●● ●

●

●

●

● ●●●●● ● ●● ●

●

●
●

●
●

●

●

●
●● ●

● ● ●● ● ●
●

●● ● ●● ●●●●

●

● ●● ● ●●●●●
● ● ● ●

●

● ●

●

●

●

●●
●

● ●●
●

●

●
●

●

●

●●● ●●
●●● ●●●

●

●

●

●● ●
●

●

●

●●
● ●●● ●

●

●

●● ● ●● ●
● ●● ● ●● ●

●

●
● ● ●● ●

● ● ● ●● ●● ●● ●● ● ●● ● ●●
●●

●●

●
● ●

●● ●● ●● ●● ●●

●
●

● ●

●

●● ● ● ●
●

●●● ●●● ● ●●● ● ●● ●●● ● ● ●● ●●●●
●

●

●

● ●

●

●● ●●●
●

● ●●
●

●●●

●

● ●● ●●

●

●

●

●● ●●

●

● ●● ●
● ● ●●●

●
●●

●●● ●●● ●●● ●●

●
●

●●
●

●● ●●

●

●●●
●● ●● ●●● ●● ● ●● ●●●● ●●

●
● ●

●

●● ● ●● ●
●

●● ● ●
● ● ●●● ●● ●● ●

●

●

●

●●●● ●●

●

● ●●●

●

●
● ●●

●
●

●● ●

●

●● ●●● ● ●
● ● ●●●● ●

●
●● ● ● ●● ●●

● ● ●
●

● ●● ●●●●
●

● ●

●

● ●●

●

● ●● ●

●

●●
●

●● ●● ●●● ●● ●●
●

● ● ●●● ●● ●●
●

● ●●●
● ● ●

●
●●●

●● ●
●

●● ● ●● ● ●

●

● ● ●●●●

●

● ●
●

●●
●

●

● ●● ●

●

●●● ●●

●

●
●

●

● ●●●● ●● ●● ●●
●

●●

●

●

● ● ●● ● ● ●●●

●

●

●

●

● ●●● ●●
●

● ● ● ●●● ●●● ●
●

● ●● ●● ●●● ● ●●
●

●
●●

●

● ●
●

●●● ●●
●

●● ●●
● ●

●
●

●
● ●●

●
●

●●
●

●

●
● ●

●

●● ●
●

●●
●

● ●● ●● ●● ● ●●●●

●

●●●

●
● ● ●●●

● ●
●●

●
●●●

●

●

●●
●

● ●●
●

●● ●
● ● ●● ●● ●●● ●● ●●●

●

●●● ● ●●● ●

●

●

●

● ●●●●● ● ●● ●

●

●
●

●
●

●

●

●
●● ●

● ● ●● ● ●
●

●● ● ●● ●●●●

●

● ●● ● ●●●●●
● ● ● ●

●

● ●

●

●

●

●●
●

● ●●
●

●

●
●

●

●

●●● ●●
●●● ●●●

●

●

●

●● ●
●

●

●

●●
● ●●● ●

●

●

●● ● ●● ●
● ●● ● ●● ●

●

●
● ● ●● ●

● ● ● ●● ●● ●● ●● ● ●● ● ●●
●●

●●

●
● ●

●● ●● ●● ●● ●●

●
●

● ●

●

●● ● ● ●
●

●●● ●●● ● ●●● ● ●● ●●● ● ● ●● ●●●●
●

●

●

● ●

●

●● ●●●
●

● ●●
●

●●●

●

● ●● ●●

●

●

●

●● ●●

●

● ●● ●
● ● ●●●

●
●●

●●● ●●● ●●● ●●

●
●

●●
●

●● ●●

●

●●●
●● ●● ●●● ●● ● ●● ●●●● ●●

●
● ●

●

●● ● ●● ●
●

●● ● ●
● ● ●●● ●● ●● ●

●

●

●

●●●● ●●

●

● ●●●

●

●
● ●●

●
●

●● ●

●

●● ●●● ● ●
● ● ●●●● ●

●
●● ● ● ●● ●●

● ● ●
●

● ●● ●●●●
●

● ●

●

● ●●

●

● ●● ●

●

●●
●

●● ●● ●●● ●● ●●
●

● ● ●●● ●● ●●
●

● ●●●
● ● ●

●
●●●

●● ●
●

●● ● ●● ● ●

●

● ● ●●●●

●

● ●
●

●●
●

●

● ●● ●

●

●●● ●●

●

●
●

●

● ●●●● ●● ●● ●●
●

●●

●

●

● ● ●● ● ● ●●●

●

●

●

●

● ●●● ●●
●

● ● ● ●●● ●●● ●
●

● ●● ●● ●●● ● ●●
●

●
●●

●

● ●
●

●●● ●●
●

●● ●●
● ●

●
●

●
● ●●

●
●

●●
●

●

●
● ●

●

●● ●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Email only

email p−value

sp
am

 p
−

va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spam only

email p−value
sp

am
 p

−
va

lu
e

Figure 2: Scatter plots of the pairs (pemail, pspam) for all examples in the test set
(left plots), for email only (middle), and for spam only (right). The three upper
plots are for the ICP and the three lower ones are for the label conditional ICP.

to the vertical axis; we can see that this is often true, with a few exceptions. The
picture for the label conditional ICP looks almost identical: see the lower row
of Figure 2. However, on the log scale the difference becomes more noticeable:
see Figure 3.

Table 1 gives some statistics for the numbers of errors, multiple, and empty
set predictions in the case of the (unconditional) ICP Γ5% at significance level 5%
(we obtain different numbers not only because of different splits but also because
MART is randomized; the columns of the table correspond to the pseudorandom
number generator seeds 0, 1, 2, etc.). The table demonstrates the validity, (lack
of) conditional validity, and efficiency of the algorithm (the latter is of course
inherited from the efficiency of MART). We give two kinds of conditional figures:
the percentages of errors, multiple, and empty predictions for different labels
and for two different kinds of objects. The two kinds of objects are obtained
by splitting the object space X by the value of an attribute that we denote
$: it shows the percentage of the character $ in the text of the message. The
condition $ < 5.55% was the root of the decision tree chosen both by Hastie
et al. (2009, Section 9.2.5), who use all attributes in their analysis, and by
Maindonald and Braun (2007, Chapter 11), who use 6 attributes chosen by
them manually. (Both books use the rpart R package for decision trees.)

Notice that the numbers of errors, multiple predictions, and empty predic-
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Figure 3: The analogue of Figure 2 on the log scale.

tions tend to be greater for spam than for email. Somewhat counter-intuitively,
they also tend to be greater for “email-like” objects containing few $ characters
than for “spam-like” objects. The percentage of multiple and empty predictions
is relatively small since the error rate of the underlying predictor happens to be
close to our significance level of 5%.

In practice, using a fixed significance level (such as the standard 5%) is not
a good idea; we should at least pay attention to what happens at several signifi-
cance levels. However, experimenting with prediction sets at a fixed significance
level facilitates a comparison with theoretical results.

Table 2 gives similar statistics in the case of the label conditional ICP. The
error rates are now about equal for email and spam, as expected. We refrain from
giving similar predictable results for “object conditional” ICP with $ < 5.55%
and $ > 5.55% as categories.

Figure 4 gives the calibration plots of the ICP for the test set. It shows
approximate validity even for email and spam separately, except for the all-
important lower-left corners. The latter are shown separately in Figure 5, where
the lack of conditional validity becomes evident; cf. Figure 6 for the label con-
ditional ICP.

From the numbers given in the “errors overall” row of Table 1 we can extract
the corresponding confidence intervals for the probability of error conditional on
the training set and MART’s internal coin tosses; these are shown in Figure 7.
It can be seen that training conditional validity is not grossly violated. (No-
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RNG seed 0 1 2 3 4 5 6 7 Average

errors overall 4.1% 6.9% 4.6% 5.4% 5.3% 6.1% 7.7% 5.9% 5.75%
for email 2.44% 4.61% 2.26% 3.10% 4.49% 3.98% 5.02% 3.22% 3.64%
for spam 6.77% 10.43% 8.42% 9.02% 6.53% 9.32% 11.69% 10.29% 9.06%
for $ < 5.55% 4.36% 7.91% 5.15% 6.21% 6.27% 7.89% 8.79% 7.04% 6.70%
for $ > 5.55% 3.29% 4.12% 2.69% 2.64% 2.40% 1.13% 4.42% 2.15% 2.86%

multiple overall 2.7% 0% 0.1% 0% 0% 0.5% 0% 0% 0.41%
for email 2.11% 0% 0.16% 0% 0% 0.33% 0% 0% 0.33%
for spam 3.65% 0% 0% 0% 0% 0.76% 0% 0% 0.55%
for $ < 5.55% 3.04% 0% 0.13% 0% 0% 0.68% 0% 0% 0.48%
for $ > 5.55% 1.65% 0% 0% 0% 0% 0% 0% 0% 0.21%

empty overall 0% 2.7% 0% 1.2% 0.8% 0% 2.5% 0.4% 0.95%
for email 0% 1.48% 0% 0.65% 0.83% 0% 1.51% 0.64% 0.64%
for spam 0% 4.58% 0% 2.06% 0.75% 0% 3.98% 0% 1.42%
for $ < 5.55% 0% 3.14% 0% 1.55% 0.80% 0% 3.06% 0.52% 1.13%
for $ > 5.55% 0% 1.50% 0% 0% 0.80% 0% 0.80% 0% 0.39%

Table 1: Percentage of errors, multiple predictions, and empty predictions on
the full test set and separately on email and spam. The results are given for
various values of the seed for the R (pseudo)random number generator (RNG);
column “Average” gives the average values for all 8 seeds 0–7.

tice that the 8 training sets used for producing this figure are not completely
independent. Besides, the assumption of randomness might not be completely
satisfied: permuting the data set ensures exchangeability but not necessarily
randomness.) It is instructive to compare Figure 7 with the “theoretical” Fig-
ure 8 obtained from Propositions 2b (the thick blue line) and 2a (the thin
red line). The dotted green line corresponds to the significance level 5%, and
the black dot roughly corresponds to the maximal expected probability of error
among 8 randomly chosen training sets. (It might appear that there is a dis-
crepancy between Figures 7 and 8, but choosing different seeds usually leads to
smaller numbers of errors than in Figure 7.)

RNG seed 0 1 2 3 4 5 6 7 Average

errors overall 3.4% 6.0% 3.8% 4.8% 5.7% 5.3% 6.5% 5.4% 5.11%
for email 3.73% 6.92% 3.87% 4.90% 6.64% 4.98% 5.85% 3.86% 5.10%
for spam 2.86% 4.58% 3.68% 4.64% 4.27% 5.79% 7.46% 7.92% 5.15%

multiple overall 4.2% 0% 4.0% 0% 0% 0.5% 0% 0.5% 1.15%
for email 3.90% 0% 5.48% 0% 0% 0.66% 0% 0.48% 1.32%
for spam 4.69% 0% 1.58% 0% 0% 0.25% 0% 0.53% 0.88%

empty overall 0% 1.0% 0% 0% 0.6% 0% 1.0% 0% 0.33%
for email 0% 1.48% 0% 0% 0.83% 0% 0.67% 0% 0.37%
for spam 0% 0.25% 0% 0% 0.25% 0% 1.49% 0% 0.25%

Table 2: The analogue of a subset of Table 1 in the case of the label conditional
ICP.

13



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overall calibration plot

significance level

er
ro

r 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Calibration plot for email

significance level

er
ro

r 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Calibration plot for spam

significance level

er
ro

r 
ra

te

Figure 4: The calibration plot for the test set overall, the email in the test set,
and the spam in the test set (for the first 8 seeds, 0–7).
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Figure 5: The lower left corners of the plots in Figure 4.

7 ICPs and ROC curves

This section will discuss a close connection between an important class of ICPs
(“probability-type” label conditional ICPs) and ROC curves. (For a previous
study of connection between conformal prediction and ROC curves, see Van-
derlooy and Sprinkhuizen-Kuyper 2007.) Let us say that an ICP or a label
conditional ICP is probability-type if its inductive conformity measure is defined
by (1) where f takes values in R and ∆ is defined by (14).

The reader might have noticed that the two leftmost plots in Figure 2 look
similar to a ROC curve. The following proposition will show that this is not
coincidental in the case of the lower left one. However, before we state it, we
need a few definitions. We will now consider a general binary classification
problem and will denote the labels as 0 and 1. For a threshold c ∈ R, the type
I error on the calibration set is

α(c) :=
{i = m+ 1, . . . , l | f(xi) ≥ c & yi = 0}

{i = m+ 1, . . . , l | yi = 0}
(15)
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Figure 6: The analogue of Figure 5 for the label conditional ICP.
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Figure 7: Confidence intervals for training conditional error probabilities: 95%
in black (thin lines) and 80% in blue (thick lines). The 5% significance level is
shown as the horizontal red line.

and the type II error on the calibration set is

β(c) :=
{i = m+ 1, . . . , l | f(xi) ≤ c & yi = 1}

{i = m+ 1, . . . , l | yi = 1}
(16)

(with 0/0 set, e.g., to 1/2). Intuitively, these are the error rates for the classifier
that predicts 1 when f(x) > c and predicts 0 when f(x) < c; our definition is
conservative in that it counts the prediction as error whenever f(x) = c. The
ROC curve is the parametric curve

{(α(c), β(c)) | c ∈ R} ⊆ [0, 1]2. (17)

(Our version of ROC curves is the original version reflected in the line y = 1/2;
in our sloppy terminology we follow Hastie et al. 2009, whose version is the
original one reflected in the line x = 1/2, and many other books and papers;
see, e.g., Bengio et al. 2005, Figure 1.)

Proposition 5. In the case of a probability-type label conditional ICP, for any
object x ∈ X, the distance between the pair (p0, p1) (see (8)) and the ROC curve

15
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Figure 8: The probability of error E vs δ from Propositions 2b (the thick blue
line) and 2a (the thin red line), where ε = 0.05 and n = 999.

is at most √
1

(n0 + 1)2
+

1

(n1 + 1)2
, (18)

where ny is the number of examples in the calibration set labelled as y.

Proof. Let c := f(x). Then we have

(p0, p1) =

(
n0≥ + 1

n0 + 1
,
n1≤ + 1

n1 + 1

)
(19)

where n0≥ is the number of examples (xi, yi) in the calibration set such that yi =

0 and f(xi) ≥ c and n1≤ is the number of examples in the calibration set such

that yi = 1 and f(xi) ≤ c. It remains to notice that the point
(
n0≥/n

0, n1≤/n
1
)

belongs to the ROC curve: the horizontal (resp. vertical) distance between this
point and (19) does not exceed 1/(n0 + 1) (resp. 1/(n1 + 1)), and the overall
Euclidean distance does not exceed (18).

So far we have discussed the empirical ROC curve: (15) and (16) are the
empirical probabilities of errors of the two types on the calibration set. It
corresponds to the estimate k/n of the parameter of the binomial distribution
based on observing k successes out of n. The minimax estimate is (k+1/2)/(n+
1), and the corresponding ROC curve (17) where α(c) and β(c) are defined
by (15) and (16) with the numerators increased by 1

2 and the denominators
increased by 1 will be called the minimax ROC curve. Notice that for the
minimax ROC curve we can put a coefficient of 1

2 in front of (18). Similarly,
when using the Laplace estimate (k + 1)/(n + 2), we obtain the Laplace ROC
curve. See Figure 9 for the lower left corner of the lower left plot of Figure 2
with different ROC curves added to it.

In conclusion of our study of the Spambase data set, we will discuss the
asymmetry of the two kinds of error in spam detection: classifying email as spam
is much more harmful than letting occasional spam in. A reasonable approach
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Figure 9: The lower left corner of the lower left plot of Figure 2 with the
empirical (solid blue), minimax (dashed blue), and Laplace (dotted blue) ROC
curves.

is to start from a small number ε > 0, the maximum tolerable percentage of
email classified as spam, and then to try to minimize the percentage of spam
classified as email under this constraint. The standard way of doing this is to
classify a message x as spam if and only if f(x) ≥ c, where c is the point on
the ROC curve corresponding to the type I error ε. It is not clear what this
means precisely, since we only have access to an estimate of the true ROC curve
(and even on the true ROC curve such a point might not exist). But roughly,
this means classifying x as spam if f(x) exceeds the kth largest value in the set
{αi | i ∈ {m + 1, . . . , l} & yi = email}, where k is close to εn0 and n0 is the
size of this set (i.e., the number of email in the calibration, or validation, set).
To make this more precise, we can use the “one-sided label conditional ICP”
classifying x as spam if and only if1 p0 ≤ ε for x. According to (19), this means
that we classify x as spam if and only if f(x) exceeds the kth largest value in
the set {αi | i ∈ {m + 1, . . . , l} & yi = email}, where k := bε(n0 + 1)c. The
advantage of this version of the standard method is that it guarantees that the
probability of mistaking email for spam is at most ε (see Proposition 3) and also
enjoys the training conditional version of this property given by Proposition 2a
(more accurately, its version for label conditional ICPs).

8 Conclusion

The goal of this paper has been to explore various versions of the requirement
of conditional validity. With a small training set, we have to content ourselves
with unconditional validity (or abandon any formal requirement of validity alto-
gether). For bigger training sets training conditional validity will be approached

1In practice, we might want to improve the predictor by adding another step and changing
the classification from spam to email if p1 is also small, in which case x looks neither like spam
nor email. In view of Proposition 5, however, this step can be disregarded for probability-type
ICP unless ε is very lax.
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by ICPs automatically, and we can approach example conditional validity by
using conditional ICPs but making sure that the size of a typical category does
not become too small (say, less than 100). In problems of binary classification,
we can control false positive and false negative rates by using label conditional
ICPs.

The known property of validity of inductive conformal predictors (Proposi-
tion 1) can be stated in the traditional statistical language (see, e.g., Fraser 1957
and Guttman 1970) by saying that they are 1− ε expectation tolerance regions,
where ε is the significance level. In classical statistics, however, there are two
kinds of tolerance regions: 1−ε expectation tolerance regions and PAC-type 1−δ
tolerance regions for a proportion 1−ε, in the terminology of Fraser (1957). One
of this paper’s results (Proposition 2a) says that inductive conformal predictors
are tolerance regions in the second sense as well.

A disadvantage of inductive conformal predictors is their potential predictive
inefficiency: indeed, the calibration set is wasted as far as the development of the
prediction rule f in (1) is concerned, and the proper training set is wasted as far
as the calibration (3) of conformity scores into p-values is concerned. Conformal
predictors use the full training set for both purposes, and so can be expected
to be significantly more efficient. (There have been reports of comparable and
even better predictive efficiency of ICPs as compared to conformal predictors
but they may be unusual artefacts of the methods used and particular data
sets.) It is an open question whether we can guarantee training conditional
validity under (5) or a similar condition for conformal predictors. Perhaps no
universal results of this kind exist, and different families of conformal predictors
will require different methods.
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