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Abstract

We put forward a methodological approach aimed at guiding ontologists in choosing which relations to reify. Our proposal
is based on the notions of aggregation, generalization and participation as used in conceptual modelling approaches for
database design in order to represent situations that, normally, would require non-binary relations or complex integrity
constraints. In order to justify our approach, we provide mathematical definitions of the constructs that we propose and
use them to analyse the extent to which they can be implemented in languages such as OWL. A number of results are
also proved that attest to the soundness of the methodological guidelines that we propose. The feedback received from
using the method in a real-word situation is that it offers a more controlled use of reification and a closer fit between
the resulting ontology and the application domain as perceived by an expert.
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1. Introduction

A well-known limitation of OWL 2 (Web Ontology
Language) is that only binary relations between classes can
be represented [1, 2, 3]. In practice, relations of arbitrary
arity are quite common and they have to be represented
in OWL in an indirect way by coding them as classes1.
In the literature on Description Logic (DL) [4], the class
codifying a relation ρ is called the reification of ρ 2.

As any codification, reification requires extra work in
addition to ‘simple’ modelling, which can make it quite im-
practical (and unintuitive), especially when performed by
people who are not ‘experts’: extra classes, predicates, in-
dividuals and axioms [5] need to be introduced and, as the
number of classes increases, ontologies can become very
difficult to read and understand, mainly because this addi-
tional information often masks the concepts and structures
that it encodes. That is, there is a mismatch between the
layer of abstraction at which domain modellers work and
that of the representation where information is encoded,
which is particularly harmful when we want to extend and

∗Corresponding author. E-mail jose@mcs.le.ac.uk
∗∗Main corresponding author. E-mail ps56@mcs.le.ac.uk
1Similarly for RDF (Resource Description Framework)
2The term reification can have several meanings and uses in Logic

in general, and the Semantic Web in particular. In this paper, we
use it as a synonym for encoding n-ary relations as classes. We do
not use it to refer to the usage of RDF as a metalanguage to describe
other logics, or in situations in which a statement can be assigned a
URI and treated as a resource, or the use of classes as individuals.

reuse ontologies. Ontologies that are simple and easy to
read are also more likely to be reused.

In this paper we detail and expand on a method of
Ontology Engineering that we introduced in [6] for simpli-
fying ontologies. Our method is inspired by notions pre-
viously proposed in database modelling and construction
for increasing the “understandibility of relational models
by the imposition of additional semantic structure” [7]: ag-
gregation and generalization [8] and dependencies between
relations [9]. Although, in ontologies, the technical prob-
lems that arise are not necessarily the same as those of
relational databases, the methodological issues are similar
in the sense that the solution to our problem lies first of
all in helping modellers to conceptualize the real world in
a way that can lead to a better representation, and then
offering them a mechanism for implementing these seman-
tic structures in ontologies. By ‘better’ we mean a more
controlled use of reification and a closer fit between the
resulting ontology and the real-world domain as perceived
by an expert. Our method also makes ontologies easier
to extend, in particular to reuse existing reifications when
adding new relations to an ontology, which is essential for
supporting an incremental process of ontology engineering.

Having this in mind, we start by motivating the prob-
lem using the case study that led us to investigate the rep-
resentation of n-ary relationships — an ontology of 16th-
century Italian altarpieces [10]. In Section 3, we discuss a
formal, set-theoretical notion of aggregation and the way
that it can be implemented in ontologies through reifica-
tion. Then, in Section 4, we show how aggregation as
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a modelling abstraction and a new notion of dependency
called participation allows us to reduce the arity of a re-
lation3. We also discuss how these concepts can be used
effectively in a number of situations that are recurrent in
domains such as that of altarpieces to decide which rela-
tions should be reified. Finally, in Section 5, we show how
further simplification can be achieved through a mecha-
nism of generalization.

2. Motivation

In order to illustrate some of the problems that may
arise from the limitations of having to encode n-ary rela-
tions through reification and the method that we propose
to minimize them, we use the Ontology of Altarpieces [12]
— a joint project between the Departments of Computer
Science and History of Art and Film at the University of
Leicester. This case study is a good example of a domain in
which n-ary relations arise quite naturally and frequently.
There are a fair number of 16th-century altarpieces in Italy
[10], each of which with a rich set of variations in the way
they depict the subject matters, which is precisely what
motivated this project as the typical tool of the art expert
— the spreadsheet — is not powerful enough to analyse
their properties 4.

Suppose that we want to express the following knowl-
edge as produced in natural language by an art expert:

Joseph is holding the flowering staff in the altarpiece
called “The Marriage of the Virgin” by Raphael

The natural representation of this domain property is
in terms of a relation holds of arity 3:

(raphael∗marriageofvirgin,
joseph,
floweringstaff) ∈ holds

where raphael∗marriageofvirgin is an identifier for the
altarpiece “The Marriage of Virgin” painted by Raphael.
In the ontology of altarpieces, we follow the traditional
practice of art historians (the domain experts) and use
identifiers of the form painter∗title for altarpieces where
painter is the name of the painter and title is the des-
ignation of the picture 5.

3Our notion of participation differs from the notion of participa-
tion used in the ER model which relates an entity with a relation
[11].

4One of the queries we are interested in is in finding out the
names and painters of the altarpieces that satisfy certain description.
For example, what are the altarpieces that have someone holding a
flowering staff?.

5If the painter is not known, we associate with it a special indi-
vidual anonymous1,anonymous2, etc. If a painter had two paintings
under the same title such as “Coronation of the Virgin” by Lorenzo
Monaco in the National Gallery, we enumerate the titles such as
coronationofvirgin1 and coronationofvirgin2.

Altarpieces holds Figures

Objects

Figure 1: ER diagram: holds as a relationship of arity 3

Figure 1 shows an entity-relationship (ER) diagram for
the relationship holds of which the triple above is an in-
stance. The corresponding relation cannot be represented
in OWL unless we code it as a class Reifholds of indi-
viduals that represent the tuples — the reification of the
relation [4]. For example, we can create an individual h1
that represents the tuple:

(raphael∗marriageofvirgin,
virgin,
floweringstaff)

This individual then needs to be connected to each compo-
nent of the tuple using the role names altarpiece, figure
and object as shown in Figure 2, which in OWL Manch-
ester syntax can be represented as follows:

Class: Reifholds

ObjectProperty: altarpiece

ObjectProperty: figure

ObjectProperty: object

Individual: h1

Types: Reifholds

Facts: altarpiece raphael*marriageofvirgin,

figure virgin,

object floweringstaff

However, reifying holds is not necessarily the right de-
cision that a modeller should make. In order to understand
why, consider that subsequent additions of triples leads to
the following extension of the relationship holds.

holds =
{(raphael∗marriageofvirgin, joseph, floweringstaff)
(raphael∗marriageofvirgin, joseph, ring)
(corregio∗foursaints, peter, keys),
(corregio∗foursaints, peter, book),
(roselli ∗ madonnaandsaints, catherine, palm),
(roselli ∗ madonnaandsaints, catherine, book),
(dabrescia ∗ madonnaandchild, catherine, sword),
(dabrescia ∗ madonnaandchild, catherine, palm)}
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raphael∗marriageofvirgin

h1

altarpiece

1
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object

1
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floweringstaff

Figure 2: Representation of a triplet through reification

Through reification, we end up with 8 individuals, each
coding one of the triples, and 24 assertions for establishing
the connections depicted in Figure 2. A simple inspection
of the triples suggests that a simpler representation could
be achieved by coding instead the pairs

(raphael∗marriageofvirgin, joseph),
(corregio∗foursaints, peter),
(roselli ∗ madonnaandsaints, catherine),
(dabrescia ∗ madonnaandchild, catherine)

say with individuals f1, f2, f3 and f4 respectively, and
then use a binary relation to represent holds:

ĥolds = {(f1, floweringstaff),
(f1, ring),
(f2, keys),
(f2, book),
(f3, palm),
(f3, book),
(f4, sword),
(f4, palm)}

The main simplification arises from the fact that we were
able to transform the ternary relation holds into a binary

relation ĥolds, which does not need to be reified: it can be
represented directly in OWL through a role.

In addition to saving on the number of individuals (4
instead of 8) and assertions (8 role assertions for the reifi-
cation instead of 24) 6, we argue that this simplification
can be justified in methodological terms as it brings the
representation closer to the domain. Indeed, a conceptual
model of the whole domain would reveal a richer semantic
structure that is not captured in the simple diagram given
in Figure 1. More precisely, a wider conceptual model of

6There are an additional 8 role assertions for representing the
relation itself but these are ‘natural’ in the sense they do not arise
from a reification. Still, this would mean a total of 16 assertions
instead of 24.

Altarpieces hasFigure Figures

location

holds Objects

Figure 3: ER diagram: holds reduced to a binary relation through
an aggregation.

the domain of altarpieces as depicted in Figure 3 shows
that the entities Altarpieces, Figures and Objects are in-
volved in more complex relationships. On the one hand,
holds is actually a binary relationship between Objects
and the ‘aggregation’ of a relationship hasF igure between
Altarpieces and Figures (the aggregation is depicted by
a box surrounding the relationship subdiagram, which is
the notation usually adopted in conceptual modelling ap-
proaches). On the other hand, hasF igure has a ‘descrip-
tive attribute’ (functional relationship) that returns the
location of the figure in the altarpiece — one of right,
left, center, top, bottom, heaven or earth.

In summary, the simplification discussed above corre-
sponds, effectively, to reifying hasF igure and represent-
ing holds as a binary relation as depicted in Figure 3.
Our purpose in this paper is, precisely, to investigate how
far the reification of hasF igure can be taken to represent
the aggregation of the relation as understood in concep-
tual modelling and how this and other constructions (such
as descriptive attributes) that have been proposed by the
database community 30 years ago can be used for develop-
ing simpler and reusable ontologies from conceptual mod-
els. To state the obvious, one should not take a blind
approach to the representation of the domain and reify
relations as they come: the complexity of the ontologies
thus generated would be even beyond skilled computer sci-
entists, let alone domain experts. As in database design,
one should build a conceptual model of the domain be-
fore starting coding in OWL or any other language, and
follow a sound methodology, as outlined in this paper, to
generate or reuse code.
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3. Aggregation in Set Theory vs Reification in OWL

Aggregation, as defined in [7], refers to an abstrac-
tion in which a relationship between objects is regarded
as a higher-level object. The intention, as stated therein,
was to adapt cartesian product structures (as proposed by
T. Hoare for record structures in programming languages
[13]) to be used in the context of relational models. Al-
though a formal definition was not given therein as a se-
mantics for the abstraction, we found it useful to advance
one so that, on the one hand, we can be precise about our
usage of the term and, on the other hand, we can relate it
to the mechanism of reification.

3.1. Aggregation and Reification of Binary Relations

In this section, we propose a formalisation for the no-
tions of aggregation and reification of binary relations. It
may seem strange that we define these notions for binary
relations when the motivation for the paper is the repre-
sentation of non-binary ones. The reasons for doing so are
twofold. On the one hand, the case of binary relations
is simpler and easier to understand. On the other hand,
and more importantly, the method we propose shows that,
sometimes, it is convenient to reify binary relations as a
means of simplifying the representation of non-binary ones,
as illustrated in the previous section. Something similar
happens in [14] where, in some cases, a ternary relation is
not directly reified but represented indirectly by reifying a
binary relation.

We start by defining the concept of aggregation in the
context of Set Theory and then that of reification in the
context of OWL. We then analyse the extent to which
aggregations can be implemented in OWL as reifications.

Definition 1. Let ∆1,∆2 ⊆ ∆ be sets and ρ ⊆ ∆1 ×∆2

be a binary relation. An aggregation of ρ over ∆ is a
set ∆ρ ⊆ ∆ together with two (total) functions σ1 and σ2
(called attribute functions) from ∆ρ to ∆1 and ∆2, respec-
tively, such that the following conditions hold:

1. For all r ∈ ∆ρ, 〈σ1(r), σ2(r)〉 ∈ ρ — i.e., there is no
‘junk’ in ∆ρ.

2. For all 〈x1, x2〉 ∈ ρ, there exists r ∈ ∆ρ such that
σ1(r) = x1 and σ2(r) = x2 — i.e., the aggregation
covers the whole relation ρ.

3. For all r1, r2 ∈ ∆ρ, if σ1(r1) = σ1(r2) and σ2(r1) =
σ2(r2) then r1 = r2 — i.e., there is no ‘confusion’:
every tuple of the relation has a unique representa-
tion as an aggregate (see Figure 4).

Note that the aggregation is the set ∆ρ together with
the attribute functions σ1 and σ2, i.e. the whole structure
〈∆ρ, σ1, σ2〉.

Throughout the paper, we use the Greek alphabet for
metavariables ranging on sets and relations in Set The-
ory. Capital letters ∆,Γ... are used for sets and lower case
letters ρ, σ... for relations.

It is easy to see that aggregations are unique up to
isomorphism.

x1

r1

σ1

==||||||||

σ2
!!B

BB
BB

BB
B r2

σ1
aaBBBBBBBB

σ2
}}||

||
||

||

x2

Figure 4: Unicity of the representation

Example 1. Consider the following binary relation:

hasPainted = {(raphael, marriageofvirgin),
(corregio, foursaints)}

An aggregation of hasPainted is the set

Altarpieces =
{raphael∗marriageofvirgin,
corregio∗foursaints,
roselli ∗ madonnaandsaints,
dabrescia ∗ madonnaandchild}

together with the attribute functions painter and picturename
defined by:

painter(raphael∗marriageofvirgin) = raphael,
picturename(raphael∗marriageofvirgin) =
marriageofvirgin,

...

Note that we could have used a1, a2, a3 and a4 as
an alternative notation for the four altarpieces shown in
Altarpieces (or any another similar encoding), together
with the corresponding attribute functions, because ag-
gregations are unique up to isomorphism.

Example 2. Consider the following binary relation:

hasF igure =
{(raphael∗marriageofvirgin, joseph),
(corregio∗foursaints, peter),
(roselli ∗ madonnaandsaints, catherine),
(dabrescia ∗ madonnaandchild, catherine)}

An aggregation of hasF igure is the set

FiguresinAltarpieces =
{raphael∗marriageofvirgin∗joseph,
corregio∗foursaints∗peter,
roselli ∗ madonnaandsaints ∗ catherine,
dabrescia ∗ madonnaandchild ∗ catherine}

together with the attribute functions altarpiece and figure
defined by:

altarpiece(raphael∗marriageofvirgin∗joseph) =
raphael∗marriageofvirgin,

figure(raphael∗marriageofvirgin∗joseph) =
joseph,

...
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Example 3. In order to represent polyptych altarpieces
such as “The Birth of the Virgin” by Lorenzetti, we divide
the set Altarpieces of altarpieces in two disjoint subsets,
the set OAltarpieces of one-field altarpieces and the set
MAltarpieces of polyptych (many-field) altarpieces that
can have any number of panels (or fields). We follow the
convention of [10] and we enumerate the fields clockwise
from left to right, top to bottom. For example, the altar-
piece by Lorenzetti has three fields: field1, field2 and
field3. We associate fields with many-field altarpieces by
means of a relation hasF ield ⊆ MAltarpieces × Fields
which in the example would be:

hasF ield =
{(lorenzetti ∗ birthofvirgin, field1),
(lorenzetti ∗ birthofvirgin, field2),
(lorenzetti ∗ birthofvirgin, field3)}

The set FieldsinAltarpieces defined by

{lorenzetti ∗ birthofvirgin ∗ field1,
lorenzetti ∗ birthofvirgin ∗ field2,
lorenzetti ∗ birthofvirgin ∗ field3}

is an aggregation of hasF ield together with the attributes
maltarpiece and field defined in the obvious manner.

The following proposition says that an aggregation of
a relation is as expressive as the relation: it stores the
same information, which can be retrieved by the attribute
functions.

Proposition 1. Let ρ be a binary relation. Every ag-
gregation ∆ρ of ρ is isomorphic to ρ in the sense that
there exists a unique function Ψ:∆ρ→∆1 × ∆2 such that
πi ◦ Ψ = σi (i = 1, 2), where each πi is the ith-projection
of the Cartesian product ∆1 ×∆2.

It is trivial to prove that Ψ is a bijection. Its inverse
defines the encoding of the relation, i.e. it assigns to each
pair in the relation ρ a unique element (aggregate) of the
set ∆ρ.

Informally, the reification of a relation ρ in OWL is a
class Cρ representing the tuples of ρ [4, 15]. In order to
be able to analyse the relationship between reification and
aggregation, it is useful to provide a concrete definition of
how we use the notion of reification:

Definition 2. Let ∆1,∆2 ⊆ ∆ and ρ ⊆ ∆1 × ∆2 be a
binary relation. A reification of ρ in OWL is a concept Cρ
together with two roles S1 and S2 (called attribute roles),
a role R, two concepts D1 and D2, and the following col-

lection Tρ of axioms:

(func) > v≤ 1S1 u ≤ 1S2

(domain) ∃S1.> u ∃S2.> v Cρ
(range) > v ∀S1.D1 u ∀S2.D2

(totality) Cρ v ∃S1.D1 u ∃S2.D2

(contains) S2 ◦ (S1)−1 v R

(unique rep) Cρ hasKey(S1, S2)

Please note that the hasKey constructor of OWL-2 [16]
is used in the last axiom to ensure that any two named
individuals r and r′ in Cρ are equal if they satisfy S1(r, s1),
S2(r, s2), S1(r′, s1) and S2(r′, s2). The importance of this
axiom is discussed after the following example.

Example 4. Consider the relation hasPainted introduced
in Example 1. Since we identify altarpieces precisely through
the name of the painter and the designation of the picture,
the class Altarpieces correspond in a natural way to the
reification of hasPainted. In order to declare the concept
Altarpieces to be the reification of hasPainted in OWL,
we need a role hasPainted, two attributes roles painter

and picturename, the attribute role inversepainter in-
verse of painter, two concepts Painters and PictureNames,
and the axioms of Definition 2. The axioms are written in
a user’s friendly syntax (OWL Manchester Syntax) below.
Note that we swapped the roles in the composition.

ObjectProperty: painter

Characteristics: Functional

Domain: Altarpieces

Range: Painters

InverseOf: inversepainter

ObjectProperty: picturename

Characteristics: Functional

Domain: Altarpieces

Range: PictureNames

ObjectProperty: hasPainted

Domain: Painters

Range: PictureNames

SubPropertyChain: inversepainter o picturename

Class: Painters

Class: PictureNames

Class: Altarpieces

SubClassOf: painter some Painters and

picturename some PictureNames

HasKey: (painter,picturename)

Figure 5 shows a diagram illustrating all the compo-
nents involved in the reification of the relation hasPainted.
The reification itself is the concept or class Altarpieces

and the two attribute roles painter and picturename.
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Painters

hasPainted

��

painter−1

��

Altarpieces = ChasPainted

painter

1jjUUUUUUUUUUUUUUUUU

picturename1
ttiiiiiiiiiiiiiiiii

PictureNames

Figure 5: Altarpieces as the reification of hasPainted

We first discuss the importance of the axiom (contains)
which is expressed above as a property chain. Using this
axiom, we only have to introduce in OWL that the in-
dividual raphael∗marriageofvirgin belongs to the class
Altarpieces and the values for the projections:

Individual: raphael*marriageofvirgin

Types: Altarpieces

Facts: painter raphael,

picturename marriageofvirgin

Then, OWL will be able to infer that raphael painted
marriageofvirgin, i.e.

Individual: raphael

Fact: hasPainted marriageofvirgin

This inference is denoted by dotted arrow in Figure 5.
It is worth discussing in more detail the importance

of including the last axiom — unique rep. If we do not
ensure uniqueness of representation, a modeller (or differ-
ent people working over the same ontology) can perfectly
well introduce two individuals representing the same tu-
ple without the reasoner being able to infer that they are
equal. In simple terms, this means that, in the absence of
the axiom, a query to retrieve the original table may have
repeated rows. This implies, in particular, that queries
may return the wrong answers. For instance, if we want
to query the number of altarpieces that have no signature,
we may count the same tuple more than once.

To illustrate the problem, suppose that we want to
express two relationships — paintmedia and height —
on the class Altarpieces. As depicted in Figure 6, it is
possible that two representations

raphael∗marriageofvirgin and
raphaelmarriageofvirgin

of the same tuple of hasPainted have been accidentally
introduced. The individual raphael∗marriageofvirgin
got connected by the predicate paintmedia to oil — rep-
resenting the fact that, Raphael’s Marriage of Virgin has
been painted in oil — and raphaelmarriageofvirgin by
the predicate height to 170 — representing the fact that,
the same painting is 170cm high. A query can go awfully
wrong if it does not take into account the fact that the
tuples can be duplicated. To clarify this point, consider

raphael∗marriageofvirgin
paintmedia

//

painter

1||xxxxxxxxxxxxx
picturename

1
""F

FF
FF

FF
FF

FF
FF

F oil

raphael sistinemadonna

raphaelmarriageofvirgin height
//

painter

1bbFFFFFFFFFFFFF

picturename

1

<<xxxxxxxxxxxxxx
170

Figure 6: Two properties connected to two different representations
of the same tuple

the query “Is there an altarpiece painted in oil and 170cm
high?”. The intuitive formulation of the query

wrongq(x1, x2)← paintmedia(r, oil)u
height(r, 170)u
painter(r, x1)u
picturename(r, x2)

will incorrectly return NO answers because of the dupli-
cated representation. The following alternative formula-
tion would take into account that tuples can be duplicated:

rightq(x1, x2)← paintmedia(r1, oil)u
height(r2, 170)u
painter(r1, x1)u
picturename(r1, x2)u
painter(r2, x1)u
picturename(r2, x2)

And it will correctly return one answer which is x1 =
raphael and x2 = sistinemadonna.

However, this formulation is no longer very intuitive,
i.e. it needs to anticipate the existence of multiple repre-
sentations, which is a problem of the representation that
does not arise from the domain of discourse. In summary,
the inclusion of unique rep is essential to ensure that we
have a faithful representation of the domain.

Example 5. Consider the relation hasF igure defined in
Example 2. The corresponding representation in OWL is
achieved through the reification of the relation hasF igure.
We introduce the concept FiguresinAltarpieces to rep-
resent this reification and add all the corresponding ax-
ioms (see Definition 2). These axioms are written in OWL
Manchester syntax as follows:

ObjectProperty: altarpiece

Characteristics: Functional

Domain: FiguresinAltarpieces

Range: Altarpieces

InverseOf: inversealtarpieces

6



Altarpieces

hasFigure

��

altarpiece−1

��

FiguresinAltarpieces

altarpiece

1jjTTTTTTTTTTTTTTT

figure1
uujjjjjjjjjjjjjjj

Figures

Figure 7: FiguresinAltarpieces: the reification of hasF igure

ObjectProperty: figure

Characteristics: Functional

Domain: FiguresinAltarpieces

Range: Figures

ObjectProperty: hasFigure

Domain: Altarpieces

Range: Figures

SubPropertyChain: inversealtarpieces o figure

Class: Figures

Class: FiguresinAltarpieces

SubClassOf: altarpieces some Altarpieces and

figure some Figures

HasKey: (altarpiece, figure)

Figure 7 shows a diagram illustrating all the components
involved in the reification of hasF igure.

We follow the convention mentioned in Example 2 and
the tuple (raphael∗marriageofvirgin, joseph) is repre-
sented by the individual

raphael∗marriageofvirgin∗joseph

We also have to associate values with the attribute roles
altarpiece and figure:

Individual: raphael*marriageofvirgin*joseph

Types: FiguresinAltarpieces

Facts: altarpiece raphael*marriageofvirgin,

figure joseph

Example 6. Consider the relation hasF ield introducedin
Example 3. For the reification of the relation hasF ield, we
introduce the concept FieldsinAltarpieces and add all
the corresponding axioms (see Definition 2). These axioms
are written in OWL Manchester syntax as follows:

ObjectProperty: maltarpiece

Characteristics: Functional

Domain: FieldsinAltarpieces

Range: MFieldAltarpieces

InverseOf: inversemaltarpieces

ObjectProperty: field

MAltarpieces

hasField

��

maltarpiece−1

��

FieldsinAltarpieces

maltarpiece

1jjTTTTTTTTTTTTTTT

field1
ttjjjjjjjjjjjjjjjj

Fields

Figure 8: FieldsinAltarpieces: the reification of hasF ield

Characteristics: Functional

Domain: FieldsinAltarpieces

Range: Fields

ObjectProperty: hasField

Domain: MFieldAltarpieces

Range: Fields

SubPropertyChain: inversemaltarpieces o field

Class: Fields

Class: FieldsinAltarpieces

SubClassOf: maltarpiece

some MFieldAltarpieces

and field some Fields

HasKey: (maltarpiece, field)

Figure 8 shows a diagram illustrating all the components
involved in the reification of hasF ield.

We follow the same convention mentioned before and
the tuple (lorenzetti ∗ birthofvirgin, field2) is rep-
resented by the individual lorenzetti ∗ birthofvirgin ∗
field2. We also have to associate values with the at-
tribute roles maltarpiece and field:

Individual: lorenzetti*birthofvirgin*field2

Types: FieldsinAltarpieces

Facts: maltarpiece lorezetti*birthofvirgin,

field field2

We can now define more precisely how a reification
relates to the relation. Throughout the remainder of the
paper, we use capital letters C,D... for metavariables rang-
ing over concepts or classes and we use R,S, ... for roles or
properties.

Definition 3. Let ρ ⊆ ∆1 × ∆2 be a binary relation.
Given an interpretation I, we say that the reification
〈Cρ, R,D1, D2, S1, S2〉 is faithful to ρ in relation to I iff
RI = ρ, DI

1 = ∆1, DI
2 = ∆2, and 〈CIρ , SI1 , SI2 〉 is an aggre-

gation of ρ.

Unfortunately, the axioms that are part of the reifica-
tion (Definition 2) are not sufficient to guarantee that the
reification is faithful to ρ in relation to every interpreta-
tion:
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• The first three axioms state that the role names S1

and S2 are total functions from Cρ to D1 and D2,
respectively. However, a limitation of OWL is that
the reasoner does not show any inconsistency if we
forget to define S1 or S2 for some element of Cρ (see
[17]).

• The converse of R-contains, which would correspond
to the second condition of Definition 1, is as follows

(R-inclusion) R v S2 ◦ (S1)−1

However, this axiom cannot be expressed in OWL in
that way because the right-hand side of the inclusion
is not a role name (see [3]).

• The axiom unique rep is weaker than the third con-
dition of Definition 1 in the sense that the unicity
of the representation is not enforced for all individ-
uals but only on those that are explicitly named in
the ontology. This is because the hasKey construc-
tor of OWL-2 is a weak form of key representation
(so-called “EasyKey constraints”) that is valid only
for individuals belonging to the Herbrand Universe
[16].

Summarising, reification is not only hard work (in the
sense that it requires the modeller to introduce a number
of roles and axioms that are ‘technical’, i.e. more related
to the limitations of the formalism and less specific to the
domain of application) but also prone to errors. Essen-
tially, errors may arise if the modeller forgets to enforce
the properties that cannot be expressed in OWL.

3.2. Aggregation and Reification of n-ary Relations

Definition 1 can be generalised to relations of arbitrary
arity and to relations with ‘key attributes’ as originally
introduced in [7]:

Definition 4. Let ∆1, . . . ,∆n ⊆ ∆ and ρ ⊆ ∆1×. . .×∆n

be a relation. Let i1, . . . , ik ∈ {1, . . . , n}. An aggregation
of ρ with keys {i1, . . . , ik} over a universe ∆ is a set ∆ρ ⊆
∆ together with n (total) functions σ1, . . . , σn from ∆ρ to
∆1, . . . ,∆n, respectively, such that:

1. For all r ∈ ∆ρ, we have that 〈σ1(r), . . . , σn(r)〉 ∈ ρ.

2. For all 〈x1, . . . , xn〉 ∈ ρ, there exists r ∈ ∆ρ such
that σ1(r) = x1, . . . , σn(r) = xn.

3. For all r1, r2 ∈ ∆ρ, if σi1(r1) = σi1(r2), . . . , σik(r1) =
σik(r2) then r1 = r2 — i.e., every tuple of the rela-
tion is uniquely identified by its key attributes.

The functions σi1 , . . . , σik are called key attributes func-
tions and the remaining ones are called non-key attribute
functions.

Proposition 1 has a trivial generalisation to the n-ary
case:

Proposition 2. Let ρ ⊆ ∆1 × . . .×∆n be a relation and
i1, . . . , ik ∈ {1, . . . , n}. Then, every aggregation ∆ρ of ρ
with keys {i1, . . . , ik} is isomorphic to ρ in the sense that
there exists a unique function Ψ:∆ρ→∆1 × . . .×∆n such
that πi ◦Ψ = σi(i = 1, . . . , n).

The existence of an aggregation with given keys cannot
always be guaranteed:

Proposition 3. An aggregation exists for a relation ρ ⊆
∆1 × . . .×∆n with keys {i1, . . . , ik} iff

• ρ is a partial function from ∆i1 × . . . × ∆ik into
∆j1 × . . .∆jn−k

, where the set {j1, . . . , jn−k} is the
complement of {i1, . . . ik};

• there is an embedding (injective function) of the do-
main of ρ in ∆, i.e. the universe is large enough to
represent the relation.

Note that, in the conditions of this proposition, if the
universe ∆ contains the Cartesian product ∆1× . . .×∆n,
then ρ is an aggregation of itself where the attribute func-
tions are the Cartesian projections πi. The reason we de-
fine the concept of aggregation is that the Cartesian prod-
uct is not a construct of OWL (or, indeed, DL) and, there-
fore, one needs to resort to mechanisms like reification to
encode relations.

Example 7. We consider the example of holds given in
Section 2. An aggregation of holds is the set

∆holds = {h1, h2, h3, h4, h5, h6, h7, h8}

together with the attribute functions altarpiece, figure
and object defined by:

altarpiece(h1) = raphael∗marriageofvirgin,
figure(h1) = joseph,
object(h1) = floweringstaff
...

Example 8. As an example of a relation where only a
subset of the attributes are key is isLocated the key at-
tributes being altarpiece and figure. Consider the follow-
ing definition of isLocated:
isLocated =
{(raphael∗marriageofvirgin, joseph, right),
(corregio∗foursaints, peter, left),
(roselli ∗ madonnaandsaints, catherine, left),
(dabrescia ∗ madonnaandchild, catherine, right)}

.

Note that the third component is functional on the
first two ones. The set FiguresinAltarpieces defined in
Example 2 is an aggregation of isLocated. The non-key
attribute location is defined in the obvious manner.

We now generalize Definition 2 to relations of arbitrary
arity. The main difference is that, for non-binary relations,
we cannot use an atomic role R for representing the rela-
tion. For this reason, the axiom R-contains has to be
dropped.
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Figure 9: Representation of holds as a relation of arity 3

Definition 5. Let ∆1, . . . ,∆n ⊆ ∆ and ρ ⊆ ∆1×. . .×∆n

be a relation. Let i1, . . . , ik ∈ {1, . . . , n}. A reification
of ρ in OWL with keys {i1, . . . , ik} is a concept Cρ to-
gether with roles S1, . . . , Sn (called attribute roles), do-
mains D1, . . . , Dn, and the following collection Tρ of ax-
ioms:

(func) > v≤ 1S1 u . . .u ≤ 1Sn

(domain) ∃S1.> u . . . u ∃Sn.> v Cρ
(range) > v ∀S1.D1 u . . . u ∀Sn.Dn

(totality) CR v ∃S1.D1 u . . . u ∃Sn.Dn

(unique rep) Cρ hasKey(Si1 , . . . , Sik)

We call Si1 , . . . , Sik the key attribute roles of the reification
and the rest are the non-key attribute roles.

Example 9. For the reification of holds, we introduce the
concept Reifholds, three roles altarpiece, figure and
object and the axioms of Definition 5 (see also Figure 9).
These axioms are written in OWL Manchester Syntax as
follows:

ObjectProperty: altarpiece

Characteristics: Functional

Domain: Reifholds

Range: Altarpieces

ObjectProperty: figure

Characteristics: Functional

Domain: Reifholds

Range: Figures

ObjectProperty: object

Characteristics: Functional

Domain: Reifholds

Range: Objects

Class: Objects

Class: Reifholds

SubClassOf: altarpiece some Altarpieces and

figure some Figures and

object some Objects

HasKey: (altarpiece, figure, object)

ReifisLocated

altarpiece

1uulllllllllllll
figure

1��

location

1
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Altarpieces Figures Locations

Figure 10: Reification of isLocated as a relation of arity 3

Example 10. For the reification of the relation isLocated
from Example 8, we introduce the concept ReifisLocated,
the key attribute roles altarpiece, figure, and the non-
key attribute role location (see also Figure 10). The
axioms of Definition 5 are written in OWL Manchester
Syntax as follows:

ObjectProperty: altarpiece

Characteristics: Functional

Domain: ReifisLocated

Range: Altarpieces

ObjectProperty: figure

Characteristics: Functional

Domain: ReifisLocated

Range: Figures

DataProperty: location

Characteristics: Functional

Domain: ReifisLocated

Range: Locations

Class: Locations

Class: ReifisLocated

SubClassOf: altarpiece some Altarpieces and

figure some Figures and

location some Locations

HasKey: (altarpiece,figure)

Notice that, in this example, we used the same role
names altarpiece and figure as in Examples 5 and 9.
Strictly speaking, this is an abuse of notation and we
should use different role names if the concepts ChasFigure,
Cholds and CisLocated are all different. We will discuss this
example again in the next section.

4. Participation Dependency

In this section, we put forward a methodological ap-
proach aimed at guiding the modeller in the use of reifi-
cation based on the concepts formalised in the previous
section. The method is based on the usage of the seman-
tic primitive of aggregation as used in conceptual mod-
elling precisely for representing situations that, normally,
would require non-binary relations or complex integrity
constraints [11].

The notion of aggregation allows us to reduce the ar-
ity of a relation. This reduction can be performed without
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losing information if the relations satisfy certain dependen-
cies. The notion of inclusion dependency, which is typical
in databases [9], is too weak to ensure that arity reduc-
tion preserves information. Because of this, we introduce
a new notion of dependency called participation. We illus-
trate the approach with some examples that are represen-
tative of the situations that we have encountered in the
altarpieces project.

4.1. Relationships amongst Relationships

A recurrent situation in database modelling is the use
of aggregation in order to reduce certain ternary relation-
ships to binary ones [11]. Using ER diagrams, the method
can be explained in terms of evolving situations such as
the one depicted in Figure 1 to the one depicted in Figure
3. More specifically, the method consists in identifying a
binary relationship — hasF igure in the case at hand —
such that the ternary relationship — holds — can be ex-
pressed as a binary relationship between the aggregation
of the former and the remaining domain — Objects (see
Figure 3).

Following this methodological principle, instead of reify-
ing holds, we reify hasF igure. Because hasF igure is
a binary relation, we represent it by a role hasFigure

and consider the reification of hasF igure as in Example
5, which we name FiguresinAltarpieces. The relation
holds is represented as an object property whose domain
is FiguresinAltarpieces and whose range is Objects.
This can be expressed in OWL Manchester syntax as fol-
lows:

ObjectProperty: holds

Domain: FiguresinAltarpieces

Range: Objects

The result is depicted through the following diagram:

FiguresinAltarpieces
holds // Objects

At the level of individuals, we add assertions such as:

Individual: raphael*marriageofvirgin*joseph

Facts: holds floweringstaff

The methodological question is, then: What is the
property that allows us to reduce the arity of a relation?
The answer that we provide to this question is based on
the key concept of ‘participation’. Intuitively, a relation ρ′

participates in another relation ρ if the projection of ρ on
some of its components is included in ρ′.

Definition 6. Let ∆1,∆2,∆3 ⊆ ∆, ρ′ ⊆ ∆1 × ∆2 be a
binary relation and ρ ⊆ ∆1 ×∆2 ×∆3 a ternary relation.
We say that ρ′ participates in ρ if the following condition
(called participation constraint) is satisfied:

• For all x ∈ ∆1, y ∈ ∆2, z ∈ ∆3, if (x, y, z) ∈ ρ then
(x, y) ∈ ρ′.

Similarly, we can define when ρ′ ⊆ ∆2 × ∆3 or ⊆
∆1 × ∆3 participates in ρ. The relation ρ′ is called the
participating relation. We also say that there is a partic-
ipation dependency between ρ′ and ρ when ρ′ participates
in ρ.

Notice that our notion of participation differs from the
one used in the ER model [11], which refers to the par-
ticipation of an entity set in a relation, not of a relation
in another relation. Furthermore, in the ER model, the
participation constraint usually refers to the ‘total partic-
ipation’ of an entity ∆1 in a relation ρ , i.e. for all x ∈ ∆1

there exist y, z such that (x, y, z) ∈ ρ.

Example 11. The relation hasF igure participates in the
relation holds because the participation constraint holds:

if(x, y, z) ∈ holds then (x, y) ∈ hasF igure (1)

for all x, y, z.

From the point of view of the database relational model,
the notion of participation is a restricted form of inclu-
sion dependency between relations [9]. More precisely,
if ρ′ participates in ρ then there is an inclusion depen-
dency between ρ′ and ρ. However, the converse is not true:
not all inclusion dependencies are participation dependen-
cies. The stronger concept of participation dependency is
needed to ensure that the arity of a relation can be re-
duced without losing information as we show in the next
proposition.

Proposition 4. Let ρ′ participate in ρ and let ∆ρ′ be an
aggregation of ρ′ with attributes σ1 and σ2. Then, the
ternary relation ρ is isomorphic to a binary relation be-
tween the aggregation ∆ρ′ and ∆3, which we call the re-
duction of ρ by ∆ρ′ .

Proof. The reduction of ρ by ∆ρ′ is the relation ρ̂ ⊆
∆ρ′ ×∆3 defined by:

ρ̂ = {(r, z) | (σ1(r), σ2(r), z) ∈ ρ}

It follows from the fact that ρ′ participates in ρ and Propo-
sition 1 that ρ and ρ̂ are isomorphic.

As discussed in Section 3, aggregation can be (par-
tially) implemented in OWL through the mechanism of
reification. Taking this forward to participation, if ρ′ par-
ticipates in ρ, we can reify ρ′ and represent the reduction
ρ̂ as a role R whose domain is Cρ′ .

Cρ′
R // ∆3

For example, in order to represent the relation holds in

OWL, we represent its reduction ĥolds using the reification
of hasF igure.

In summary, the method that we propose for guiding
reification consists in analysing which relations participate
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in other relations: if ρ′ participates in ρ then, instead of
reifying the whole relation ρ, we should consider reifying
the participating relation ρ′ and represent ρ as a role whose
domain is Cρ′ . If ρ′ participates in yet another relation,
say ρ′′, that relation does not need to be reified either and
we can reuse instead the reification Cρ′ of ρ′.

For example, hasF igure participates in many relations
other than holds — e.g. wears. All the corresponding
relations can be represented in OWL as object proper-
ties whose domain is FiguresinAltarpieces. That is,
wears can be represented as a role wears whose domain
is FiguresinAltarpieces and whose range is Objects,
which can be written in OWL Manchester syntax as fol-
lows:

ObjectProperty: wears

Domain: FiguresinAltarpieces

Range: Objects

The corresponding diagrammatic representation is:

FiguresinAltarpieces
wears // Objects

The advantage of reusing reifications is clear. The axioms
for expressing that FiguresinAltarpieces is the reifica-
tion of hasFigure (see Example 5) have to be introduced
only once, thus avoiding the replication that a blind ap-
proach to representation would entail. By choosing to reify
the participating relation, we do not only reduce the num-
ber of reifications but we also reduce the number of cod-
ifications for individuals. This is because we are coding
only the components that are shared by several tuples as
we showed in Section 2. These components are not only
shared in one relation but also amongst several relations.
For example, in order to express that Catherine is wearing
a crown in “The Madonna and Saints” by Roselli, we can
reuse the individual roselli ∗ madonnaandsaints w1hich
was already introduced to express that Catherine is hold-
ing the palm and a book.

Individual: roselli*madonnaandsaints*catherine

Facts: wears crown

Another important aspect of this representation (which
is another reason why it is better than the reified ternary
relation) is that we now have the relation holds represented
as a property holds and not as a class Reifholds as in
Example 9. Reifications represent properties but they can-
not be used in the syntax as properties because they are
actually classes. For instance, we cannot use constructors
for roles (e.g. composition, quantification or transitive clo-
sure) on Cholds, which may restrict the ability of the mod-
eller to capture important aspects of the domain. Instead,
the representation of holds as a property allows us to use
the role name holds in quantifications or in compositions.
Below, we will see an example where holds is used in a
composition.

Yet, one of the most important aspect of our method
is that, by reifying the participating relations, we are re-
flecting and enforcing the participation constraint within

FiguresinAltarpieces
holds //

altarpiece

1

��

figure

1
!!C

CC
CC

CC
CC

CC
CC

CC
CC Objects

Altarpieces

altarpiece−1

HH

hasFigure
// Figures

Figure 11: Capturing the participation constraint between
hasF igure and holds

the logic. Figure 11 illustrates the case for the relation
holds. The participation constraint shown in Example 11
can be deduced. In particular, OWL will be able to infer
the following assertion:

Individual: raphael*marriageofvirgin

Facts: hasFigure joseph

using the domain of holds, the attribute roles and the
axiom (contains) of Example 5.

However, not all relevant participation constraints re-
sult in reification and have to be explicitly stated. For ex-
ample, there is another participation constraint for holds
that has not been enforced yet:

if(x, y, z) ∈ holds then (x, z) ∈ hasObject (2)

for all x, y, z.
An easy way to enforce this constraint without chang-

ing the representation in Figure 11 is to add the following
axiom:

holds ◦ altarpiece−1 v hasObject

which in OWL Manchester syntax is:

ObjectProperty: hasObject

Domain: Altarpieces

Range: Objects

SubPropertyChain: inversealtarpiece o holds

Figure 12 illustrates the case of overlapping constraints by
making the two small triangles commute.

There are other ways of representing the relation holds
and reflect the overlapping constraints. We prefer the so-
lution already presented because it looks more readable
and intuitive.

1. We could have reified hasObject and represented
the relation holds as a role holds whose domain is
Figures and range is the reificaton of hasObject.
We can see that the pairs

(raphael∗marriageofvirgin∗joseph, book)

and

(joseph, raphael∗marriageofvirgin ∗ book)

11



FiguresinAltarpieces
holds //

altarpiece

1

��

figure

1
!!C

CC
CC

CC
CC

CC
CC

CC
CC Objects

Altarpieces

altarpiece−1

HH

hasFigure
//

hasObject

  

Figures

Figure 12: Capturing the overlapping constraints: hasF igure and
hasObject participate in holds

codify the same triplet, i.e.

(raphael∗marriageofvirgin, joseph, book).

There is no mathematical difference between these
solutions since both reductions of holds are isomor-
phic by Proposition 4. The diagram of the OWL
representation obtained by reifying hasObject will
look symmetric to Figure 12.

2. We could also have reified both participating rela-
tions hasF igure and hasObject. This solution has
some intuition behind it. The individual joseph is
representing the figure of Joseph in an abstract way
but the individual

raphael∗marriageofvirgin∗joseph

is representing the particular figure of Joseph on the
altarpiece raphael∗marriageofvirgin. Hence, we
could consider the pair

(raphael∗marriageofvirgin∗joseph,
raphael∗marriageofvirgin ∗ book)

to represent the triplet. This solution looks as if
it is storing redundant information since the altar-
piece is coded twice. However, this solution is also
mathematically equivalent to the first one and it is
possible to use the axioms of the logic to state that
both components of the above pair have the same
altarpiece.

Example 12. We show an interesting example that in-
volves polyptych altarpieces. Suppose that we want to
express the following fact about a triptych altarpiece:

St Anne is a figure that appears in the central panel of
the altarpiece called “The Birth of the Virgin” by Lorenzetti

The natural representation of this domain property is
in terms of a relation hasF igure of arity 3:

(lorenzetti ∗ birthofvirgin, field2, anne)
∈ hasF igure

MAltarpieces hasField Fields

hasFigure Figures

Figure 13: ER diagram: hasF igure for Many Field Altarpieces re-
duced to a binary relation through an aggregation.

The central panel is identified by field2. This case
is interesting because while hasF igure has arity 2 for one
field altarpieces, it has double arity (arity 2 and arity 3)
for many field altarpieces! Formally, this is possible in Set
Theory using unions:

hasF igure ⊆
Altarpieces× Figures ∪
MAltarpieces× Fields× Figures

where

Altarpieces = OAltarpieces ∪
MAltarpieces

In spite of the fact that this relation can have double arity
and different domains, we will represent this relation in
OWL using only one role name hasFigure. This will be
possible through the use of the union construct and by
choosing an appropiate participation relation for reifying.
We have two participation dependencies:

1. hasF ield participates in hasF igure, i.e.

if (x, y, z) ∈ hasF igure then (x, y) ∈ hasF ield
for all x ∈ MAltarpieces, y ∈ Fields and z ∈
Figures.

2. hasF igure participates in itself, i.e.

if (x, y, z) ∈ hasF igure then (x, z) ∈ hasF igure
for all x ∈ MAltarpieces, y ∈ Fields and z ∈
Figures.

The natural and simplest choice for reifying is the first
participation relation. Figure 13 shows the ER diagram
obtained by aggregating the first participation relation.
Following the same pattern as in the example of holds,
we represent the ternary subrelation of hasF igure as an
object property whose domain is FieldsinAltarpieces

and range is Figures (see Figure 14.
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FieldsinAltarpieces
hasFigure

//

maltarpiece

1

��

field

1
!!C

CC
CC

CC
CC

CC
CC

CC
CC Figures

MAltarpieces

maltarpiece−1

HH

hasField
//

hasFigure

  

Figures

Figure 14: Capturing overlapping constraints: hasF ield and
hasF igure participate in hasF igure.

ObjectProperty: hasFigure

Domain: FieldsinAltarpieces

Range: Figures

Since adding domains in OWL is equivalent to taking the
union of them, the domain of hasFigure is the union of
Altarpieces and FieldsinAltarpieces (see Example 5).

The first participation constraint of hasF ield is en-
forced because the domain of hasFigure is the reifica-
tion of hasF ield. To enforce the second participation
constraint, we follow the same pattern as we did for the
overlapping constraints of holds and we add the following
axiom:

hasFigure ◦ maltarpiece−1 v hasFigure

which in OWL Manchester syntax is:

ObjectProperty: hasFigure

SubPropertyChain: inversemaltarpiece o

hasFigure

4.2. Descriptive Attributes

Another related methodological guideline for the use
of reification arises from what in [11] are called descrip-
tive attributes. Descriptive attributes are used to record
information about a relationship rather than about one
of the participating entities, again using an aggregation.
From a conceptual modelling point of view, they allow us
to capture typical situations in which a functional depen-
dency exists in a ternary relation as an attribute of the
aggregation of a binary relation. For example, it would be
intuitive to represent location in Figure 15 as a descriptive
attribute associated with the relationship hasF igure.

Definition 7. Let ρ ⊆ ∆1 ×∆2 and ρ′ ⊆ ∆1 ×∆2 ×∆3.
We say that ρ′ is a descriptive attribute of ρ if the following
conditions hold:

1. ρ′ is a function from ∆1 ×∆2 to ∆3.

2. ρ participates in ρ′.

Altarpieces hasFigure Figures

location

Figure 15: ER diagram: a descriptive attribute

It is evident from this definition that the notion of de-
scriptive attribute is a particular case of the notion of
participation as introduced in Definition 6. Given that
descriptive attributes involve a participating relation, the
methodological guidelines that we discussed in 4.1 suggest
that descriptive attributes be represented as (functional)
roles of the reification of the participating relation.

For example, location is a descriptive attribute of has-
Figure because the following properties hold in the domain:

1. There is a functional dependency between the loca-
tion and pair given by the altarpiece and the figure.
In other words, the ternary relation isLocated is ac-
tually a function

isLocated ∈ Altarpieces× Figures→ Locations

2. There exists a participation dependency between the
relations hasF igure and isLocated. In other words,
hasF igure participates in isLocated, i.e. for all x, y
and z, we have that:

if (x, y, z) ∈ isLocated then (x, y) ∈ hasF igure.

We can represent the descriptive attribute location in
OWL as follows:

1. We reuse the class FiguresinAltarpieces as the
reification of hasF igure (see Example 5).

2. We define a role isLocated representing the descrip-
tive attribute as a function whose domain is

FiguresinAltarpieces.

This is written in OWL Manchester syntax as fol-
lows:

DateProperty: isLocated

Characteristics: Functional

Domain: FiguresinAltarpieces

Range: Locations

The OWL-representation of the descriptive attribute
isLocated can be depicted as follows:

FiguresinAltarpieces
isLocated 1 //

Locations
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Notice that descriptive attributes are a particular case
of non-key attributes (see Definition 4) where we have the
additional involvement of a participating relation. At first
sight it might look as if reifying isLocated as a relation of
arity 3 whose key attributes are the first and second com-
ponents (Example 10) would be the same as first reifying
hasF igure and later adding isLocated as a descriptive
attribute. However, there are some important differences
between these two processes. Example 10 does not take
into account that hasF igure is a participating relation.
From the point of view of the axioms, this is reflected in
the fact that the axiom (contains) was not present in Ex-
ample 10, whilst this axiom is an important component of
the reification of hasF igure.

There is also a methodological difference between the
two processes. On the one hand, we want to leave the
system open to the addition of any number of descriptive
attributes (such as size). On the other hand, we also want
to add the right amount of axioms and have a systematic
way for doing so. In order to achieve this, it should be clear
which is the participating relation and how the relations
interact with each other. That is, descriptive attributes
play an important methodological role in the representa-
tion of the domain knowledge.

4.3. Relations of Arbitrary Arity

In this section, we generalise the notion of participation
to relations of arbitrary arity and show how the notion of
participation can be used to reduce any n-ary relation to
a relation of a smaller arity. We also show an example of a
relation of arity 4 with several participating relations and
how the choice of a participating relation can affect our
representation of the relation.

Definition 8. Let i1, . . . , ik ∈ {1, . . . , n} be all different,
ρ ⊆ ∆1 × . . . × ∆n and ρ′ ⊆ ∆i1 × . . . × ∆ik . We say
that ρ′ participates in ρ iff the following constraint (also
called the participation constraint) is satisfied for all x1 ∈
∆1, . . . , xn ∈ ∆n:

(x1, . . . , xn) ∈ ρ implies (xi1 , . . . , xik) ∈ ρ′

The relation ρ′ is called the participating relation. We
also say that there is a participation dependency between
ρ′ and ρ when ρ′ participates in ρ.

The notion of participation allows us to reduce the arity
of a relation:

Proposition 5. If ρ′ participates in ρ then ρ is isomor-
phic to a relation of arity n−k+ 1 whose domains are the
aggregation ∆ρ′ and the remaining sets ∆j1 , . . .∆jn−k+1

where {j1, . . . , jn−k+1} is {1, . . . n} − {i1, . . . , ik}.

Proof. For simplicity, and in order to use examples from
our case study, we show how the corresponding reduction
is performed on a relation ρ ⊆ ∆1×∆2×∆3×∆4 of arity 4.
Suppose that there is a ternary relation ρ′ ⊆ ∆1×∆2×∆3

participating in ρ, i.e. for all x1 ∈ ∆1, . . . , x4 ∈ ∆4,

MAltarpieces hasField Fields

hasFigure Figures

liesOn Objects

Figure 16: ER diagram: liesOn reduced to a binary relation

(x1, x2, x3, x4) ∈ ρ implies (x1, x2, x3) ∈ ρ′.

Let ∆ρ′ be an aggregation of ρ′ with attributes σ1, σ2 and
σ3. We can reduce the relation ρ to a binary relation ρ̂
between the aggregations ∆ρ′ and ∆4 as follows:

ρ̂ = {(r, x4) | (σ1(r), σ2(r), σ3(r), x4) ∈ ρ}

As a corollary of Proposition 1, the relations ρ and ρ̂
are isomorphic.

As an example, suppose that we want to express the
following fact about a triptych altarpiece:

St Anne is lying in bed in the central panel of the al-
tarpiece called “The Birth of the Virgin” by Lorenzetti
The natural representation of this domain property is in
terms of a relation liesOn of arity 4:

(lorenzetti ∗ birthofvirgin, field2, anne, bed)
∈ liesOn

The central panel is identified by field2. The altar-
piece lorenzetti∗birthofvirgin belongs to the subclass
MAltarpieces of Altarpieces (see Examples 3, 6 and 12).

We have three participation dependencies: the three
relations hasF ield, hasF igure and hasObject participate
in liesOn. We will choose to reify hasF igure and reduce
the relation liesOn to a binary relation between the ag-
gregation of hasF igure and the set Objects. However,
it is more advantageous to reuse instead the reduction̂hasF igure discussed in Example 12. The corresponding
ER diagram is shown in Figure 16. The advantage is that,

because ̂hasF igure is a binary relation obtained from the
aggregation of the binary relation hasF ield, we do not
only enforce the dependency constaint of hasF igure but
also the one of of hasF ield. This is illustrated in Figure
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FiguresinMAltarpieces

figure

1

''NNNNNNNNNNNNNNNNNNNNNN

fieldinaltarpiece

1
��

liesOn // Objects

FieldsinAltarpieces

fieldinaltarpiece−1

XX

maltarpiece

1
��

field

1

''NNNNNNNNNNNNNNNNNNNNNNN hasFigure
// Figures

MAltarpieces

maltarpiece−1

XX

hasField
//
Fields

Figure 17: Representation of liesOn

17 by the fact that we stack one representation on top of
the other. The third dependency illustrated in Figure 18
will be enforced by adding an axiom similar to the one for
hasObject and holds as follows:

liesOn ◦ fieldinaltarpiece−1 v hasObject

The corresponding representation in OWL is achieved

through the reification of the relation ̂hasF igure. We in-
troduce the concept FiguresinMAltarpieces to represent
this reification and add all the corresponding axioms (see
Definition 2). These axioms are written in OWL Manch-
ester syntax as follows:

ObjectProperty: fieldinaltarpiece

Characteristics: Functional

Domain: FiguresinMAltarpieces

Range: FieldsinAltarpieces

InverseOf: inversefieldinaltarpiece

ObjectProperty: figure

Characteristics: Functional

Domain: FiguresinMAltarpieces

Range: Figures

ObjectProperty: hasFigure

SubPropertyChain: inversefielsinaltarpiece o

figure

Class: FiguresinMAltarpieces

SubClassOf: fieldinaltarpiece

some FieldinAltarpieces and

figure some Figures

HasKey: (fieldinaltarpieces, figure)

Finally, the relation liesOn is represented in OWL as
a role liesOn whose domain is FiguresinMAltarpieces

and whose range is Objects. This is written in OWL
Manchester syntax as follows (see also Figure 17):

ObjectProperty: liesOn

FiguresinMAltarpieces
liesOn //

fieldinaltarpiece

1

��

figure

1
!!C

CC
CC

CC
CC

CC
CC

CC
CC Objects

FieldsinAltarpieces

fieldinaltarpiece−1

HH

hasFigure
//

hasObject

  

Figures

Figure 18: Capturing overlapping constraints: hasF igure and
hasObject participate in liesOn

Domain: FiguresinMAltarpieces

Range: Objects

The class FiguresinMAltarpieces and its correspond-
ing axioms, can be reused for representing other relations
of arity 4 apart from liesOn. This is because the rela-
tionship hasF igure participates in many other relations
that describe the elements or figures on the field of an al-
tarpiece. For example, consider the sentence The midser-
vants are washing the newborn Maria in the central panel
of the altarpiece “The Birth of the Virgin ” by Lorenzetti.
To represent the above property, we need a relation wash
of arity 4. Because the relation hasF igure participates in
wash, we can represent wash in OWL similarly to liesOn
as a role wash whose domain is FiguresinMAltarpieces

and whose range is Figures.

ObjectProperty: wash

Domain: FiguresinMAltarpieces

Range: Figures

In summary, ontologies obtained by applying our method
are easier to extend to include new relations without hav-
ing to add any reification but reusing existing ones. More-
over, our method leads to enforce the participation con-
straints.

5. The Generalization Construct

In this section, we extend our methodological approach
with a construction that is inspired by the mechanism of
generalization introduced in [8] for database design. For
simplicity, we consider only binary relations and define
generalization over their ranges. Extending the definition
to include domains (not just ranges) and to relations of
arbitrary arity is straightforward.

In order to motivate this construct, consider again the
relation hasF igure introduced in Section 4.1 whose range
is Figures. Although figures are, understandably, of ma-
jor interest in altarpieces, there are a number of other el-
ements that play an important role and need to be rep-
resented in the ontology — the flowering shaft, tiaras, ar-
chitectural elements, and so on. For example, we have
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introduced in Section 4.3 the domain Objects, which is
used as the range of holds. We can then consider a rela-
tion hasObject similar to hasF igure but with Objects as
range to represent the fact that given objects are depicted
in given altarpieces.

However, in certain circumstances, it is more conve-
nient to establish relationships over a more general class
Elements that consists of Figures and Objects. For in-
stance, we are interested in representing the fact that

The Papal tiara rests on top of the balustrade in the
altarpiece Sistine Madonna by Raphael

For this purpose, it is convenient to define the relation

restson ⊆ Altarpieces× Elements× Elements

According to the method that we have been proposing, we
should seek to establish a participating relation hasElement
⊆ Altarpieces× Elements that we would reify. However,
given that we already have hasF igure and hasObject,
we should not introduce hasElement as an independent
relation. Intuitively, hasElement is a ‘generalization’ of
hasF igure and hasObject and, indeed, we would expect
the same to hold between their reifications.

In [8], a generalization abstraction is introduced as
“an adaptation of Hoare’s discriminated union structure
[13]”. This kind of structure, which supports program-
ming language constructs such as Pascal’s variants, can
be explained in terms of the notion of disjoint union. In
Set Theory, the disjoint union of two sets ∆1 and ∆2 is a
triple 〈∆1 ] ∆2, ι1, ι2〉 where each ιi is an injective func-
tion ιi : ∆i → ∆1 ] ∆2 such that, for any other triple
〈∆′, ι′1, ι′2〉 with ι′i : ∆i → ∆′, there is a unique function
φ : ∆1 ]∆2 → ∆′ such that φ ◦ ιi = ι′i (i = 1, 2). That is,
∆1]∆2 is the smallest set that ‘contains’ both ∆1 and ∆2

while distinguishing between the elements that they have
in common. The functions ιi provide the ‘tag fields’ that,
in discriminated unions in the sense of [13], indicate which
of the particular constituent sets, ∆1 or ∆2, each element
of ∆1 ]∆2 originates from.

Naturally, if ∆1 and ∆2 are disjoint, their union, to-
gether with the corresponding inclusions, is also a disjoint
union. In [8], the concept of generalization applies pre-
cisely to disjoint classes to define a superclass. However,
for generality, we work with the original definition, which
also has the advantage of providing a mathematical struc-
ture closer to that of aggregation given in Definition 1.

Definition 9. Let ρ1 ⊆ Γ × ∆1 and ρ2 ⊆ Γ × ∆2 be
binary relations. A generalization of ρ1 and ρ2 is a triple
〈ρ3, ι1, ι2〉 where:

• 〈∆1 ]∆2, ι1, ι2〉 is a disjoint union of ∆1 and ∆2

• ρ3 ⊆ Γ× (∆1 ]∆2) is defined by

ρ3 = {(z, ι1(x)) | (z, x) ∈ ρ1}∪{(z, ι2(y)) | (z, y) ∈ ρ2}

We normally use the notation ρ1 ] ρ2 to refer to a gener-
alization of ρ1 and ρ2.

Going back to our example, how can we represent the
relation hasElement as a generalization of hasF igure and
hasObject? Consider first the problem of representing
Elements as a disjoint union of Figures and Objects. In
OWL, the disjoint union of concepts is not available as a
primitive construct: it is an abbreviation for a union of
two classes with an extra axiom requiring that the classes
are disjoint. For example, in the case at hand, we would
define:

Class: Elements

DisjointUnionOf: Figures, Objects

The system generates an inconsistency whenever the
extensions of Figures and Objects are not disjoint. Un-
fortunately, OWL does not extend this mechanism to roles
(in fact, it does not support the union of roles). Therefore,
we cannot express that hasElement is the disjoint union
of hasF igure and hasObject.

However, our main interest is not so much hasElement,
but its aggregation and, ultimately, its reification, as a re-
lation participating in restson. Intuitively, given

hasElement ⊆ Altarpieces× Elements,
hasF igure ⊆ Altarpieces× Figures
hasObject ⊆ Altarpieces×Objects

where Altarpieces = ∆hasPainted, if

hasElement = hasF igure ] hasObject

then we should also have that

∆hasElement = ∆hasFigure ]∆hasObject

This is what we prove next:

Proposition 6. Let ρ1 ⊆ Γ × ∆1 and ρ2 ⊆ Γ × ∆2 be
binary relations. Let 〈∆ρ1 , γ1, σ1〉 and 〈∆ρ2 , γ2, σ2〉 be ag-
gregations of ρ1 and ρ2, respectively. Let 〈ρ3, ι1, ι2〉 be a
generalization of ρ1 and ρ2. Finally, let 〈∆ρ1 ]∆ρ2 , δ1, δ2〉
be a disjoint union. Then, 〈∆ρ1 ]∆ρ2 , γ, σ〉 define an ag-
gregation of ρ3 where

• γ is the unique function ∆ρ1 ]∆ρ2 → Γ s.t. γ ◦ δi =
γi (i = 1, 2)

• σ is the unique function ∆ρ1 ]∆ρ2 → ∆1 ]∆2 s.t.
σ ◦ δi = ιi ◦ σi (i = 1, 2)

The above conditions are depicted in Figure 19.

Proof. The existence of the functions σ and γ results
from the universal properties of 〈∆ρ1 ] ∆ρ2 , δ1, δ2〉 as a
disjoint union. The three conditions of Definition 1 are
also easy to prove.
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Figure 19: Disjoint union of aggregations

That is to say, the disjoint union of the aggregations of
two relations is an aggregation of the generalization of the
relations.

In OWL, taking the concept FiguresinAltarpieces

for the reification of hasF igure as defined in Example 5,
and similarly ObjectsinAltarpieces for the reification of
hasObject, we would introduce a concept

ElementsinAltarpieces

for the reification of hasElement as follows:

ObjectProperty: altarpiece

Characteristics: Functional

Domain: ElementsinAltarpieces

Range: Altarpieces

InverseOf: inversealtarpieces

ObjectProperty: element

Characteristics: Functional

Domain: ElementsinAltarpieces

Range: Elements

ObjectProperty: hasElement

Domain: Altarpieces

Range: Elements

SubPropertyChain:inversealtarpieces o element

Class: ElementsinAltarpieces

SubClassOf: altarpieces some Altarpieces and

element some Elements

HasKey: (altarpiece, element)

Class: ElementswithAltarpieces

DisjointUnionOf: FiguresinAltarpieces,

ObjectsinAltarpieces

Notice that, relative to Definition 2, we add that the
reification of hasElement is the disjoint union of the reifi-
cations of hasF igure and hasObject. A diagram con-
necting the reifications of the three relations hasElement,
hasF igure and hasObject is shown in Figure 20.

Note that the attribute altarpiece is shared by the
three classes. It is enough to declare that the domain
of the attribute altarpiece is the biggest class which is

Figures t Objects = Elements

ChasFigure t

figure

OO

altarpiece

''PPPPPPPPPPPP ChasObject =

object

OO

altarpiece

��

ChasElement

element

OO

altarpiece

vvnnnnnnnnnnnn

Altarpieces

Figure 20: Generalization

the reification of hasElement 7. Because the attributes
figure, object and element are actually functions, we
can deduce in OWL that the non-common attributes are
related by

figure, object v element

Furthermore, given that the domains and ranges of figure
and object are disjoint, OWL can infer that these prop-
erties are disjoint too. However, note that, as already
mentioned, we cannot express in OWL that the property
element is the union of figure and object.

Finally, we investigate how generalization can work to-
gether with the notion of participation and discuss the
representation of restson.

Definition 10. Let 〈∆1]∆2, ι1, ι2〉 be a disjoint union of
∆1 and ∆2, and ρ ⊆ Γ × (∆1 ] ∆2) × Θ. We define the
restrictions ρ |ι1⊆ Γ ×∆1 × Θ and ρ |ι2⊆ Γ ×∆2 × Θ as
follows:

ρ |ι1= {(x, y1, z) | (x, ι1(y1), z) ∈ ρ ∧ y1 ∈ ∆1}

ρ |ι2= {(x, y2, z) | (x, ι2(y2), z) ∈ ρ ∧ y2 ∈ ∆2}

That is, a restriction extracts from a relation involving
a disjoint union those triples that involve only the elements
of one of the sets. Notice that, in the case in which the sets
are disjoint, the functions ιi are inclusions, which leads
to a simpler formulation of the restrictions. As already
explained, this is case that interests us in OWL.

It is easy to see that if a relation participates in an-
other relation ρ, it also participates in any relation that
contains ρ. The following proposition is a refinement of
this observation for the case of generalizations:

Proposition 7. Let ρ1 ⊆ Γ × ∆1, ρ2 ⊆ Γ × ∆2 and
〈ρ3, ι1, ι2〉 be a generalization of ρ1 and ρ2. Let ρ ⊆ Γ ×
(∆1 ] ∆2) × Θ. The relation ρ3 participates in ρ iff ρ1
participates in ρ |ι1 and ρ2 participates in ρ |ι2 .

That is, the participation of a generalization in another
relation can be reduced to the participation of the com-
ponents of the generalization in the corresponding restric-
tions. For example, hasElement participates in restson iff

7Actually, we should also remove it from the axioms in the reifi-
cation of hasF igure (see Section 4.3) otherwise OWL takes the in-
tersection.
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hasF igure and hasObject participate in the correspond-
ing restrictions of restson.

Following the methodology that we have introduced in
Section 4, we can represent the relation restson in OWL
as a role restson whose range is Elements and whose
domain is ElementsinAltarpieces(= ChasElement).

ElementsinAltarpieces
restson // Elements

ObjectProperty: restson

Domain: ElementsinAltarpieces

Range: Elements

The generalization hasElement is the right conceptu-
alization because most of the relations used for describ-
ing altarpieces are between elements. Using this gener-
alization, the ontology can be easily extended to include
new properties with the same characteristics in the sense
that the representation of those properties does not re-
quire any further reification. More precisely, we can re-use
the reification ChasElement and represent any new rela-
tion involving elements of an altarpiece as a role R whose
domain is ElementsinAltarpieces(= ChasElement) and
whose range is Elements.

ElementsinAltarpieces
R // Elements

The reification ChasElement can be used to represent even
more relations, indeed any relation in which hasElement
participates. For example, if we take the inscription of
a book on a certain altarpiece to be represented by a
string, we can define a relation hasInscription in which
hasElement participates but whose range is the set of
strings.

ElementsinAltarpieces
hasInscription

// String

DataProperty: hasInscription

Domain: ElementsinAltarpieces

Range: String

6. Related Work and Concluding Remarks

In this paper, we proposed a methodological approach
for Ontology Engineering aimed at guiding the use of reifi-
cation as a way of representing n-ary relations. Our method
simplifies ontologies in the sense that it not only reduces
the number of codifications but, more importantly, ratio-
nalises the choice of which relations to reify based on de-
pendencies between relations that can be derived from a
conceptual analysis of the application domain. This ap-
proach promotes reuse through the sharing of reifications
of relations that participate in several other relations.

In a nutshell, we advocate that:

• Domain experts should start by building a concep-
tual model in which they can identify relationships
between relations and descriptive attributes.

• Participation dependencies should be identified in
those models with a view to reifying the participat-
ing relation (as in Section 4.1 and Section 4.2).

• A common domain that generalizes the domains of
several participating relations should also be iden-
tified. This would induce a common participating
relation generalizing all of them that should be rei-
fied (as in Section 5).

In order to justify our approach, we provided mathe-
matical definitions of the aggregation and generalization
constructs as used for database design [11, 7, 8], which we
used to analyse the extent to which they can be imple-
mented in languages such as OWL. A number of results
were proved that attest to the soundness of the method-
ological guidelines that we put forward.

The use of conceptual modelling primitives in the con-
text of ontologies is not new. For instance, [18] and [19]
show how to transform ER diagrams into Description Logic.
However, this transformation does not include relation-
ships involving relationships or descriptive attributes as
illustrated in Section 4, nor does it address aggregation as
a modelling abstraction.

A paper that focuses specifically on aggregation is [20].
However, the author represents aggregations using union
of classes, which does not correspond in any way to their
original meaning [7]. Our use of aggregation (based on
cartesian products) adheres to its use in databases and ex-
plores its methodological advantages for conceptual mod-
elling [11].

Other proposals can be found in the literature that,
like [14], put forward patterns for representing relations
ρ ⊆ A × B × C. The third case of Pattern 1 in that
note reifies the whole relation and, in the remaining cases,
reifies B × C and represent ρ as a property whose range
is the reification CB×C . Our method is based on semantic
abstractions and, therefore, goes beyond simple patterns.
In fact, it adds depth and mathematical rigour to the study
of these patterns in the sense that it guides the application
of reification by the identification of relations that, like
hasPainted, participate in other relations.

Extensions of description logics with n-ary relations
can also be found in the literature [4, 15, 21]. However,
the Web Ontology Language (OWL 2), which is based on
the Description Logic of [3], does not provide this capa-
bility. OWL 2 provides the possibility of defining n-ary
datatype predicates F , albeit in a restricted way [22]. We
can use an n-ary predicate F in expressions of the form
∀P1 . . . Pn.F or ∃P1 . . . Pn.F where P1 . . . Pn are binary
data type predicates. The n-ary predicate F is actually
a functional proposition defined implicitly by a formula of
the form λ(x1 . . . xn).comp(p, q) where comp ∈ {≤,=,≥, <
,>, 6=} and p and q are linear polynomials on x1, . . . , xn.
However, OWL does not support the definition of n-ary
predicates by listing the tuples as for object and datatype
properties.
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The feedback received from using the method in the
construction of the Ontology of Altarpieces is that if offers
a more controlled use of reification and a closer fit between
the resulting ontology and the application domain as per-
ceived by an expert. Our plans for future work include
developing tools for helping ontologist follow the proposed
methodology and assist them in the representation of re-
lations of arity n.
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