
A Formal Model for Service-Oriented Interactions

José Fiadeiroa, Antónia Lopesb, João Abreuc

aDepartment of Computer Science, University of Leicester, UK
bDepartment of Informatics, Faculty of Sciences, University of Lisbon, Portugal

cAltitude Software, Portugal

Abstract

In this paper, we provide a mathematical semantics for a fragment of a lan-
guage — SRML— that we have defined in the IST-FET-GC2 Integrated
Project SENSORIA for modelling service-oriented systems. The main goal
of this research is to make available a foundational basis for the development
of practical modelling languages and tools that designers can use to model
complex services at a level of abstraction that captures business function-
ality independently of the languages in which services are implemented and
the platforms in which they execute. The basic artefact of the language is
the service module, which provides a model for a complex service in terms
of a number of components that jointly orchestrate a business function and
may dynamically discover and bind to external parties that can deliver re-
quired functionalities. We define a mathematical model of computation and
an associated logic for service-oriented systems based on the typical busi-
ness conversations that occur between the parties that deliver a service. We
then define the semantics of SRML service modules over this model and
logic, and formulate a property of correctness that guarantees that services
programmed and assembled as specified in a module provide the business
functionality advertised by that module. Finally, we define an algebraic op-
eration of composition of service modules that preserves correctness. To the
best of our knowledge, there is no other formal approach that has been de-
fined from first principles with the aim of capturing the business nature of
service conversations and support service assembly based on the business
logic that is required, not as it is programmed.

Keywords: conversational protocols, formal methods, labelled transition
systems, orchestration, service-oriented computing, temporal logic

Preprint submitted to Science of Computer Programming November 7, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28900855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Service-oriented computing (SOC) is a paradigm for creating and pro-
viding business services via computer-based systems1. In SOC, services are
computational entities that can be published together with a description of
business functionality, discovered automatically and used by independent or-
ganisations to compose and provide new services (or for the internal use of
that organisation). For example, a financial institution may provide a ser-
vice for making secure electronic payments that can potentially be used by
an insurance company to allow its clients to pay for car insurance or by an
airline as part of its service for booking flights; a service for booking flights
can in turn be used by a travel agency whose business is to arrange complete
trips (i.e., transportation, accommodation, and so on).

Several technologies have been introduced by different stakeholders —
e.g., OASIS (www.oasis-open.org) and W3C (www.w3.org) — with the goal
of exploring this paradigm, for example in the form of Web services (e.g.,
[11, 61]) or Grid computing (e.g., [38]). A number of research initiatives
have been proposing foundational theories, methods and formal techniques
that address different aspects of SOC. Among them, the EU-funded research
project SENSORIA [37] developed a number of well-founded analytical meth-
ods and tools for engineering service-oriented software. In this paper, we
present the computational and coordination model, and associated logic,
that support SRML [37] — the language that, in SENSORIA, was devel-
oped to support the design and analysis of services at a ‘technology-agnostic’
business level. We focus on the mechanisms that SRML offers, on the one
hand, for service assembly — i.e., for specifying, at design time, how new
services can be created by combining software components and interfaces to
(external) services to be procured at run time — and, on the other hand,
service composition — i.e., for composing a service specification that requires
an external service with the specification of another service that matches the
required interface. Although the term composition has been used fairly lib-
erally in the literature, often in the sense of assembly as above, we will use
it in this more restricted sense throughout the paper.

In the literature, two different approaches to service assembly have emerged:
orchestration and choreography. In a nutshell, choreography (e.g., [62]) is

1The relationship between SOC and component-based software development or archi-
tecture description languages is discussed in [31, 33, 34]

2

concerned with the specification and realizability of a ‘conversation’ among
a (fixed) number of peers that communicate with each other to deliver a
service, whereas orchestration (e.g., [9]) is concerned with the definition of a
(possibly distributed) business process (or workflow) that may use external
services discovered and bound to the process at run time in order to deliver
a service (accomplish a certain business goal). The two de facto standards
for orchestration and choreography are WS-BPEL [2] (henceforth abbrevi-
ated as BPEL) and WS-CDL [58], respectively. BPEL is an OASIS standard
that originated in a joint effort by IBM and Microsoft to define an XML-
based language for programming business processes. BPEL addresses the
orchestration of web services that are accessible through WSDL interfaces.
WS-CDL is a standardisation candidate of W3C that can be used to specify
a choreography of peers using WSDL (or XML schema) typed messages.

SRML is orchestration oriented, i.e., it addresses the notion of assembly
that is supported by BPEL (a formal relationship between the two languages
can be found in [17]). This also means that we adopt the two-party interac-
tion model that is typical of the asynchronous, message-oriented middleware
that supports SOC [9]: in SRML, all interactions involve only two parties and
can be one-way (directed) or two-way (conversational), in which case they
define a set of correlated messages exchanged by the two parties. Service-
oriented systems can exhibit multi-party interactions but, in an orchestration
model, these result from simpler, peer-to-peer connections. This is reflected
in the mathematical model that we propose in Section 3, which offers a layer
of abstraction in which these forms of interaction are ‘native’.

Several calculi have been developed in the last few years that provide
a mathematical semantics for the mechanisms that support choreography
or orchestration — sessions, message/event correlation, compensation, inter
alia (see [19] for a review on process calculi for SOC that provides an initial
attempt to clarify the scope of existing proposals). Whereas such calculi ad-
dress the need for specialised language primitives for programming in SOC,
they are not abstract enough to understand the engineering foundations of
SOC, i.e., those aspects (both technical and methodological) that concern
the way applications can be developed to provide business solutions, inde-
pendently of the languages in which services are programmed.

SRML was developed precisely to address that more abstract level of
modelling — what we call ‘business level’, i.e., a level of modelling in which
one can rely on the availability of the basic mechanisms mentioned above and
address only those aspects that pertain to the application domain. Moreover,

3

our aim was not to compete with industrial standards but to put forward
a simple modelling language with a clean mathematical semantics and asso-
ciated logic that could serve as a proof-of-concept for formal modelling and
analysis of service-oriented systems. Simplicity of the language is essential
for a non-convoluted and workable mathematical semantics, but also for el-
egance. This is why we developed SRML from first principles rather than
adopt or adapt an industry-strong language. The modelling language was
validated over a number of case studies developed in the context of SENSO-
RIA project and, for some of these case studies, realisations of the SRML
models in BPEL and Java were developed in MSc projects. Details on the
software engineering ‘vision’ that underlies our approach can be found in [37].

An overview of SRML is given in Section 2. In Section 3 we define a model
of computation for service-oriented systems that is based on the typical busi-
ness conversations that occur between the constituents of these systems. This
model, which constitutes the semantic domain of SRML, is based on a notion
of configuration of the global computers in which applications execute and
get bound to other applications that offer required services. In Section 4 we
give a logical characterisation of our model of computation using the logic
UCTL [63, 64], i.e., we capture the properties that characterise computation
in service-oriented systems and the requester and provider conversation pro-
tocols using temporal formulas. In Section 5 we provide a formal semantics
for the specification languages used in SRML for the orchestration of ser-
vices over our model of computation. In Section 6 we formalise the notion of
service module, which in SRML is the mechanism for service assembly, and
define an operation of composition of service modules. A notion of correct-
ness is defined, which we show to be preserved by composition. In Section 7
we mention related work that can be found in the literature and discuss how
it relates to the approach proposed herein.

Some aspects of this work, at earlier stages of development, have ap-
peared in a number of papers (e.g., [5, 6]) and the PhD thesis [3], which also
expands on a number of other aspects, notably the way model-checking tech-
niques can be use for proving the correctness of service modules. This paper
revises that earlier work to provide a formal model of service-oriented com-
putation, interaction and orchestration. In particular, the notion of service
composition and associated results as developed in Section 6 are presented
here for the first time. A generic semantic model was developed in [36] for
service discovery and binding, which can be instantiated to the particular
computation model that we propose herein to produce a full model of ser-

4

vice orchestration, discovery and binding. An overview of SRML and the
underlying approach to service-oriented modelling is given in [37].

2. Modelling services in SRML

The Sensoria Reference Modelling Language (SRML) started to be de-
veloped within the Sensoria project as a prototype domain-specific lan-
guage for modelling services at a level of abstraction that is closer to business
concerns. SRML is inspired by the Service Component Architecture (SCA)
assembly model under which “[. . .] relatively coarse-grained business com-
ponents can be exposed as services, with well-defined interfaces and contracts
[. . .] removing or abstracting middleware programming model dependencies
from business logic” [52]. While both SCA and SRML aim to support the
middleware-independent layer that is concerned with the business logic of
composite services, these two approaches have different practical goals:

• The main interest of SCA is to provide an open specification that allows
the integration of several existing technologies (like JAVA, C++, WS-
BPEL or PHP) for implementing the middleware-independent layer,
i.e.,, the business logic;

• SRML focuses on providing a formal framework with a mathematical
semantics for modelling and analysing the business logic of services
independently of the hosting middleware, but also independently of
the languages in which the business logic is programmed.

In this sense, SRML addresses a level of modelling that is more abstract
than the one provided by the class of languages that have been developed
for web services, e.g., WS-BPEL. The main novelty of SRML in addressing
the business logic of services is that it adopts a set of primitives tailored
specifically for modelling the business conversations that occur in SOC. In
the world of SOC, service providers and their clients continuously engage in
conversations — i.e., an exchange of correlated messages — with the goal of
negotiating business deals. For example, a service requester may ask for a
quote from a flight booking service on the basis of which it will decide either
to go ahead with the deal and book the flight or cancel it. In SRML, services
are characterised by the conversations that they support and the properties
of those conversations. In particular, in SRML:

5

• the messages that are exchanged within a system are typed by their
business function (requests, commitments, cancelations, and so on);

• the service interface behaviour is specified using message correlation
patterns that are typical of business conversations; and

• the parties engaged in business applications need to follow pre-defined
conversation protocols — requester and provider protocols.

The difference between SRML and more generic modelling languages is pre-
cisely in the fact that the mechanisms that support these conversation pro-
tocols, like message correlation, do not need to be modelled explicitly: they
are assumed to be provided by the underlying SOA middleware. This is why
SRML can be considered to be a domain-specific language: it frees the mod-
eller from the need to specify aspects that should be left to lower levels of
abstraction and concentrate instead on the business logic.

The conversation protocols supported by SRML also capture the role that
time has in the outcome of the negotiations. For example, a flight agent may
provide a quote for a given flight that is valid for two-minutes, after which
seats may no longer be available or price may have changed.

Overall, SRML adopts a declarative style of modelling that promotes the
development and maintenance of services based on business requirements,
while abstracting from the way those services execute (see [65] for a discussion
about the benefits of declarative specifications). The formal semantics of
SRML, of which a part is defined in this paper, supports the design process
with analytical techniques and tools [6, 13].

In this section we give a brief outline of the SRML language. We put
the emphasis on the parts of the language that concern the business logic of
service assembly and composition, which is the main focus of this paper.

2.1. Service assembly

The design of composite services in SRML adopts the SCA assembly
model according to which new services can be created by interconnecting a
set of elementary components to a set of external services [52]; the new ser-
vice is provided through an interface to the resulting system. The business
logic of such a service involves a number of interactions among these compo-
nents and external services, but is independent of the internal configurations
of the external services — the external services need only be described by
their interfaces. The actual external services are discovered at run time by

6

matching these interfaces with those that are advertised by service providers
(and optimising the satisfaction of service level agreement constraints).

The elementary unit for specifying service assembly and composition
in SRML is the service module (or just module for short), which is the
SRML equivalent to the SCA notion of “composite”. A module specifies
how a set of internal components and external required services interact to
provide the behaviour of a new service. Figure C.5 shows the structure of the
module TravelBooking, which models a service that manages the booking
of a flight, a hotel and the associated payment. The service is assembled
by connecting an internal component BA (that orchestrates the service) to
three external services (for booking a flight, booking a hotel and process-
ing the payment) and the persistent component DB (a database of users).
The difference between the three kinds of entities — internal components,
external services and persistent components — is intrinsic to SOC: internal
components are created each time the service is invoked and killed when the
service terminates; external services are procured and bound to the other par-
ties at run time; persistent components are part of the business environment
in which the service operates — they are not created nor destroyed by the
service, and they are not discovered but directly invoked as in component-
based systems [31]. By TA we denote the interface through which service
requesters interact with TravelBooking. In SRML, interactions are peer-to-
peer between pairs of entities connected through wires. BP, BH, BF and BD
are the wires in TravelBooking.

2.2. Specifications

Each party (component or external service) is specified by declaring the
interactions the party can be involved in and the properties that can be
observed of these interactions during a session of the service. Wires are
specified by the way they coordinate the interactions between the parties.

If the party is an internal component of the service (like BA in Figure
C.5), its specification is an orchestration given in terms of state transitions —
using the language of business roles, which we define in Section 5.1. An or-
chestration is defined independently of the language in which the component
is programmed and the platform in which it is deployed; the actual compo-
nent may be a BPEL process, a C++ or a Java program or a wrapped up
legacy system, inter alia. An orchestration is also independent of the parties
that are interconnected with the component at run time; this is because the
orchestration does not define invocations of operations provided by specific

7

co-parties (components or external services); it simply defines the properties
of the interactions in which the component can participate.

If the party is an external service, the specification is what we call a
requires-interface and consists of a set of temporal properties that correlate
the interactions in which the service can engage with its client. The language
of business protocols, which we define in Section 5.2, is used for specifying the
behaviour required of external services not in terms of their internal workflow
but of the properties that characterise the interactions in which the service
can engage with its client, i.e their interface behaviour. Figure C.6 shows the
specification of the business protocol that the HotelAgent service is expected
to follow. The specification of the interactions provided by the module (at
its interface level) is what we call the provides-interface, which also uses the
language of business protocols. Figure C.7 shows the specification of the
business protocol that the composite service is expected to follow, i.e the
service that is offered by the service module TravelBooking.

Persistent components can interact with the other parties synchronously,
i.e., they can block while waiting for a reply. The properties of synchronous
interactions are in the style of pre/post condition specification of methods.
Because interactions of this kind have been well studied in the literature, e.g.,
in the context of component-based systems, we omit them from the paper
and concentrate instead on the aspects that are intrinsic to SOC.

The specification of each wire consists of a set of connectors that are
responsible for binding and coordinating, through interaction protocols as
defined in Section 5.3, the interactions that are declared locally in the spec-
ifications of the two parties that the wire connects. Interactions are named
differently in the two parties because composite services are put together
at run time without a-priori knowledge of the parties that will be involved.
Therefore, we need to rely on the interaction protocols of the wires to estab-
lish how these interactions are correlated.

The aspects that concern discovery and binding are addressed in SRML by
a particular fragment of the language that is outside the scope of this paper.
This fragment allows the specification of policies that define how the exter-
nal services required by a module are selected and when they are bound. A
formal semantics of such dynamic aspects is given in [36] in a way that is
independent of the logic and languages that we use in this paper to specify
the functional behaviour of services.

8

3. The semantic domain

In this section we present the semantic domain that underlies our mod-
elling language. We model the execution of services using transition systems
in which the transitions represent the exchange and processing of messages
(events) by the parties involved in the delivery of the service.

3.1. Configurations of global computers

Our overall aim of SRML is to provide a modelling framework for service-
oriented systems, by which we mean highly-distributed loosely-coupled ap-
plications that can bind to other applications discovered at run time and
interact with them according to well-defined business protocols. In such a
setting, there is no structure or ‘architecture’ that one can fix at design-time
for a service-oriented system; rather, we can only rely on an underlying con-
figuration of a global computer in which applications execute and get bound
to other applications that offer required services. By global computers we
mean “computational infrastructures available globally and able to provide
uniform services with variable guarantees for communication, cooperation
and mobility, resource usage, security policies and mechanisms” [1].

Given this, the semantic domain that we chose for SRML is not directed
to individual applications. Instead, it addresses a more ‘global’ scenario
in which (smaller) applications execute and respond to business needs by
interacting with services and resources that are globally available. In this
kind of domain, business processes can be viewed globally as emerging from
a varying collection of loosely-coupled applications that can take advantage
of the availability of services procured on the fly when they are needed.

Following on this motivation, the semantic domain that we put forward
is based on the notion of global configuration, which we define as a simple
graph whose nodes represent the various parties that are involved in given
business processes and the edges (wires) represent the interconnections that
exist between those parties and allow them to interact with each other. This
implies that any given interaction involves only two parties, which is how
service-oriented systems typically operate: they can exhibit multi-party in-
teractions, but these result from simpler, peer-to-peer connections. The fact
that the graph is simple — undirected, without self-loops or multiple edges
— also means that all interactions between two parties are supported by a
single wire and that no party can interact with itself. The graph is undi-
rected because typical service-oriented interactions are conversational, i.e.,

9

the wires need to be able to transmit messages both ways.

Definition 3.1 (Global configuration). A global configuration consists
of a simple graph 〈Parties,Wires〉 where Parties is the set of nodes and
Wires is the set of edges (the wires that connect the nodes). Note that each
edge w is an unordered pair {n, m} of nodes.

Throughout the rest of this section, we assume a fixed global configuration
CONF = 〈Parties,Wires〉.

3.2. Interactions and events

In SOC, we are interested in systems that, in the context of a global
configuration as defined above, consist of parties that interact by exchanging
messages whose types are meaningful from the point of view of a business
domain and which follow a conversational protocol that captures a business
negotiation. This is is captured by the notion of service execution config-
uration — an extension of global configurations with information on the
interactions that can take place between the parties during the execution of
a service-oriented system.

Our approach focuses on patterns of message exchange that are typical in
SOC, not so much on the data that is actually exchanged between the parties
involved. Therefore, we abstract from any modelling aspects that relate to
data and consider a fixed data signature Σ = 〈D, F 〉 where D is a set of data
sorts (such as int, currency, and so on) and F is a D∗×D-indexed family of
sets of operations over the sorts. We also assume a fixed partial algebra U for
interpreting Σ. As motivated further on, partiality arises from the fact that
interactions may have parameters whose values become defined only when
certain events occur. We use ⊥ to represent the undefined value and work
with strong equality, i.e., two terms need to be defined in order to be equal.
We further assume that time, boolean∈D are sorts that represent the usual
concepts of time and truth values, and that the usual operations over time
and truth values are available in F .

Definition 3.2 (Service execution configuration). A service execution
configuration for CONF consists of a tuple 〈INT ,REPLY ,USEBY 〉 where:

• INT is a Parties×Parties-indexed family of mutually disjoint sets
(of interactions) partioned into two families 2WAY (of two-way inter-
actions) and 1WAY (of one-way interactions) . We require that, for
every n, n′∈Parties, if {n, n′}/∈Wires then INT〈n,n′〉=∅.

10

• REPLY assigns to every a∈2WAY , a boolean constant a.reply.

• USEBY assigns to every a∈2WAY , a time-valued constant a.useBy.

Interactions are indexed by ordered pairs of parties, which means that
they are directional: an interaction a belonging to INT〈n,n′〉 is said to be
initiated by the party n. Messages are transmitted through wires and, hence,
the definition requires that there are no interactions between parties that are
not connected by a wire.

We distinguish between one-way and two-way interactions. Two-way in-
teractions are conversational: they involve a durative asynchronous exchange
of correlated events (messages) that capture a pattern of dialogue that is
prevalent in business applications: a party sends a request to a co-party that
replies either positively and pledges to ensure a given property, or negatively,
in which case the interaction ends. Given a two-way interaction a, we denote
the reply by a.reply. If the reply is positive, the requester can commit to
the deal or cancel the request. If (and after) the requester commits, a revoke
action may be available to the requester whose effects are to compensate for
the consequences of the commit action. The commit action can be performed
from the moment a positive reply is given by the co-party until a deadline
that we denote by a.useBy, after which the pledge expires. For example, a
flight agent could state a price for every requested flight that is guaranteed
to hold if the customer commits before 24 hours.

We use a particular notation to distinguish between the different types
of events that can occur during interactions. The following table shows the
events associated with a two-way interaction a:

a
 The initiation-event of a.
aB The reply-event of a.
a� The commit-event of a.
a7 The cancel-event of a.
a> The revoke-event of a.

One-way interactions capture situations in which a party sends a single
message and does not expect a reply from the co-party. Therefore, there is
one and only one event – a
– associated with every one-way interaction a.
The possible patterns of two-way interaction are depicted in Figure 1 for the
case in which the reply is positive. For instance, using the example in Figure
C.7, the service offered through TravelAgent accepts a request for booking

11

a a a

a a a

a a

a

n n' n nn' n'

a.useBy

Figure 1: The patterns of two-way interactions that involve a positive reply. In the case
on the left, the initiator commits to the deal; a revoke may occur later on, compensating
the effects of the commit-event. In the middle, there is a cancellation; in this situation, a
revoke is not available. In the case on the right, the deadline expires without a commit or
cancel having occurred. Please note that the bell symbol appears in the text as
.

a trip after a successful login has been communicated to the customer and
the request arrives before the deadline offered to the customer; on receiving
the reply to the request, the customer can either commit or cancel the deal;
if the customer commits, the service notifies the customer when payment has
been received, after which the customer can still revoke the deal until the
day of departure (and receive a refund).

Because interactions are directional, the events associated with them have
a sender and a receiver: for every a ∈2WAY 〈n,n′〉, the events a
, a�, a7 and
a> are sent by n and received by n′, while the event aB is sent by n′ and
received by n. More precisely:

Definition 3.3 (Events). For every a∈INT and party n∈Parties, the set
En(a) of events associated with a that can be received by n is as follows:

• If a∈2WAY 〈n,n′〉 then

– En(a) = {aB}
– En′(a) = {a
, a�, a7, a>}
– En′′(a) = ∅ for any other n′′∈Parties

• If a∈1WAY 〈n,n′〉 then

– En(a) = ∅

12

– En′(a) = {a
}
– En′′(a) = ∅ for any other n′′∈Parties

We also define the following sets:

• En =
⋃

a∈INT En(a) is the set of all the events that can be received by
the party n.

• For every a∈INT〈n,n′〉, E(a) = En(a) ∪ En′(a) = {a
, aB, a�, a7, a>}
is the set of events associated with the interaction a.

• E =
⋃

a∈INT E(a) is the set of all events that can occur in the execution
configuration.

• For every wire {n,m}, E{n,m} =
⋃

a∈INT〈n,n′〉∪INT〈n′,n〉
E(a) is the set of

all the events that are carried by that wire.

We see E as a Wires-indexed or a Parties-indexed family of sets when
convenient.

Throughout this section we consider a fixed service execution configuration
XCONF=〈INT ,REPLY ,USEBY 〉 for CONF .

3.3. Execution states, steps and models

In this subsection we define a model of computation for service execution
configurations. In this model, each party publishes2 or processes events. We
take parties to be independent units of computation executing in parallel,
which therefore can publish and process events simultaneously. As already
stated, events are transmitted asynchronously by the wires. Once an event
is delivered to the party to which it was sent, it is buffered until the party is
ready to process it.

While it executes, every configuration generates a sequence of states, each
of which is characterised by the events that are pending in wires, the events
that are buffered by the parties, the current time, the history of event prop-
agation, and an assignment of values to the parameters of the interactions
(useBy and reply).

2We use the term “publish” to refer to the action of handing over an event to a wire
— this is because in our model the routing of events is done entirely by the wires, i.e., the
nodes are unaware of the destination of the events that they send.

13

Definition 3.4 (Execution state). An execution state for XCONF is a tu-
ple 〈PND , INV ,TIME ,HST , Π〉 where:

• PND ⊆ E is the set of events pending in that state, i.e., the events that
are waiting to be delivered by the wires.

• INV ⊆ E is the set of events invoked in that state, i.e the events that
have been delivered and are waiting to be processed.

• TIME∈timeU is the time at that state.

• HST is a family of four sets of events — HST !, HST¡, HST? and
HST¿ — which contain the events that have been published, delivered,
executed and discarded, respectively.

• Π assigns to every interaction a ∈2WAY :

– an instant of time a.useByΠ∈timeU ;

– a boolean a.replyΠ∈boolU .

We use PNDs, INV s, TIME s, HST s and Πs to refer to the different
components of an execution state s.

We introduce time in our model in order to be able to formalize the
notion of deadline that is associated with two-way interactions and the fact
that there is a transmission delay associated with wires. In [13], we go
beyond this simple usage of time and present an approach to modelling and
analysing real-time aspects of service-oriented systems based on our model,
which addresses time-related aspects of quality of service.

State changes are performed during execution steps. More precisely, dur-
ing each step, events can be published (i.e., handed over to the wires by the
parties), delivered (i.e., handed over by the wires to the parties, which buffer
them) or processed (i.e., taken from the buffers by the parties) in which case
the life cycle of the event finishes. When processed, events can be either
executed (which, typically, has effects on the state) or simply discarded (with
no effects on the state in addition to the INV component of the state).

Definition 3.5 (Execution step). An execution step for XCONF is a tuple
〈SRC ,TRG ,DLS ,DLV ,PRC ,EXC ,PUB〉 where:

• SRC and TRG are the source and target execution states.

14

• DLS ⊆ PNDSRC consists of events selected for delivery during the step.

• DLV ⊆ DLS is the set of events effectively delivered during the step.

• PRC selects, for each party n, a subset of INV SRC
n — the events that,

having been invoked, are processed during the step (possibly none).

• EXC ⊆ PRC is the set of events that are executed during the step; we
denote by DSC the set of events that are discarded (processed but not
executed), i.e., DSC = PRC \ EXC.

• PUB ⊆ E is the set of events that are published during the step. We
require that PUB and HST SRC be disjoint, i.e., the events chosen for
publication must not have been published before.

• TIME SRC < TIMETRG , i.e., time moves forwards.

• SRC and TRG are such that:

– INV TRG
n = (INV SRC

n \ PRC (n)) ∪ DLV n i.e., the events that are
processed during the step will no longer be waiting in the target
state and the events that are actually delivered to a party will
have to wait until they are processed.

– PNDTRG = (PNDSRC \ DLS) ∪ PUB, i.e., the events that are
selected for delivery will no longer be pending in the target state;
the new events that become pending in the target state are those
that are published during the step.

– HST !TRG = HST !SRC ∪ PUB

– HST¡TRG = HST¡SRC ∪ DLV

– HST?TRG = HST?SRC ∪ EXC

– HST¿TRG = HST¿SRC ∪ DSC

– For every a∈INT,

∗ Π(a.reply)TRG =

{
⊥ if aB /∈ HST !TRG

Π(a.reply)SRC if aB ∈ HST !SRC

∗ Π(a.useBy)TRG =

{
⊥ if aB /∈ HST !TRG

Π(a.useBy)SRC if aB ∈ HST !SRC

15

i.e., the values of a.reply and a.useBy remain undefined until
set by the publication of the reply event, after which they remain
unchanged.

That is to say, the set of events that are pending in wires is updated
during a step by adding the events that each party publishes — PUB —
and removing the events that the wire selects to deliver — DLS — during
that step. The set of events that are waiting to be processed by each party is
updated in each step by adding the events that are actually delivered — DLV
— to that party and removing the events that have been processed — PRC .
The history of events is updated at each step by adding to the corresponding
subsets of HST the events that have been published, delivered, executed and
discarded. Figure 2 illustrates the event flow during an execution step.

Three points in this definition need to be highlighted:

• The requirement that PUB and HST SRC be disjoint (i.e., that events
can not be published more than once) is justified by the fact that we
model individual sessions. This stems from the fact that, as already
discussed, our purpose is to provide support for the higher levels of ab-
straction of service modelling, which is based on a number of assump-
tions on the middleware over which services execute. Event correlation
is one such mechanism that we rely on SOA middleware to provide,
thus freeing the modeller from the need to handle event correlation
across sessions explicitly (e.g., through parameters).

• The distinction between DLS — the events selected for delivery — and
DLV — the events effectively delivered —allows us to model wires that
are not reliable, i.e., not all events selected for delivery may actually
reach the target parties. This is important if one wishes to provide
analysis techniques over the reliability of interactions.

• The condition on time progression (TIME SRC < TIMETRG) does not
mean that the step takes (TIMETRG−TIME SRC) to be executed. As a
matter of fact, we consider that transitions are atomic and are recorded
to occur at TIMETRG .

The notion of model for an execution configuration can now be defined in
terms of transition systems involving execution states and execution steps.
Every such transition system captures the execution of the service during one

16

PARTY A PARTY B

INVA INVBPNDw

WIRE
We e'

TRG

PARTY A PARTY B

INVA INVBPNDw

WIRE
W

SRC

PUBA PUBB

PRC(B)
DLVBDLVA

PRC(A)

Figure 2: A graphical representation of the event flow during an execution step from the
point of view of a reliable wire w between two parties A and B. The step makes a transition
between states SRC and TRG . The set of events that are published by the two parties
during the step is given by PUBA and PUBB ; these events become pending in the wire in
the target state. The subset of pending events that is selected for delivery during the step
is shown in light grey; some of these events are delivered to A and enter the set INV A

while others are delivered to B and enter INV B . Events e∈INV A and e′∈INV B that are
waiting to be processed in the source state are processed during the step (e∈PRC (A) and
e′∈PRC (B)) and therefore are not present in the target state.

17

session and defines the different choices that the service can make during that
session. Each path in the transition system represents a possible execution
in terms of the order and time at which events are published, delivered and
processed. Notice that, because time is required to progress, these transition
systems are actually directed acyclic graphs (DAGs).

We restrict ourselves to models that are fair in the sense that the events
that are pending in the wires are eventually selected for delivery and that
those that have been invoked and buffered are eventually processed. In order
to define this notion of fairness more formally, it is convenient to agree on
the following notational conventions.

Definition 3.6 (Path). Let 〈S,→, s0〉 be a transition system and s∈S. A
path σ starting in s is:

• s — the empty path starting in s, or

• a possibly infinite sequence of transitions (s → s1)(s1 → s2) . . . (si−1 →
si). . . such that, if it is finite, its final state has no →-successor states.

We use σ(i, i + 1) to refer to the i-th transition in the sequence and σ(i) to
refer to the source state of this transition.

Definition 3.7 (Execution model). A model Θ for XCONF consists of a
transition system 〈S,→, s0〉Θ where S is a set of execution states, s0∈S is the
initial state, and every transition s → s′ is an execution step whose source
and target are s and s′, respectively. The transition system is required to be
fair in the sense that, for every state s∈S and event e∈E:

• If e∈PNDs then, in every path starting in s, there is a transition r such
that e∈DLS r, i.e., every event that is pending in a wire is eventually
selected for delivery;

• If e∈INV s then, in every path starting in s, there is a transition r such
e∈PRC r, i.e., every event that is invoked (i.e., buffered by a party) is
eventually processed (executed or discarded).

3.4. The conversation protocols

As discussed at the beginning of this section, a configuration defines which
interactions can take place between which parties; in particular it defines
which events each party can publish and which events it can receive. In the

18

case of a two-way interaction, one of the parties is defined in the configuration
as the requester, meaning that it is able to publish the request, commit,
cancel and commit-events and receive the reply, or as the provider, in which
case it can publish the reply event and receive all the other events.

The notion of model given in Def. 3.7 captures the way a service executes
during a session. We can now formalise the conversational protocol that we
assume the SOA middleware to implement at each endpoint (requester and
provider), as explained in Section 3.2 and illustrated in Figure 1.

In the following, we consider a fixed execution model Θ for XCONF .

Definition 3.8 (Requester). A party n∈Parties is said to behave as a
requester in an interaction a∈2WAY 〈n,n′〉 iff for every transition r = s → s′

the following properties hold:

1. If a�∈PUB r then aB∈HST?s′ and a.replyΘs′
= true, i.e., the commit-

event can only be published with or after a positive reply.
2. If a�∈PUB r then a7/∈HST !s

′
, i.e., the commit-event can only be pub-

lished if the cancel-event has not been published before (nor with the
commit-event).

3. If a7∈PUB r then aB∈HST?s′ and a.replyΘs′
= true, i.e., the cancel-

event can only be published with or after a positive reply.
4. If a7∈PUB r then a�/∈HST !s

′
, i.e., the cancel-event can only be pub-

lished if the commit-event has not been published before.
5. If a>∈PUB r then a�∈HST !s, i.e., the revoke-event can only be pub-

lished after the commit-event has been published.

To summarize, a requester can cancel or commit to the deal offered by
the provider only after a deal has been offered — this is captured by clauses
1 and 3 — but it cannot both commit and cancel during the same session —
this is captured by clauses 2 and 4. Finally, a requester cannot revoke a deal
to which it did not previously commit — this is captured by clause 5.

The provider protocol is defined as follows:

Definition 3.9 (Provider). A party n∈Parties is said to behave as a
provider in an interaction a ∈2WAY 〈n′,n〉 iff for every transition r = s → s′

the following properties hold:

1. If a
∈EXC r then either aB∈PUB r or, in every path starting in s′,
there is a transition r′ such that aB∈PUB r′, i.e., a reply-event will be
published when or after the initiation-event is executed.

19

2. If aB∈PUB r then a
∈HST?s′, i.e., the reply-event can only be pub-
lished after (or when) the initiation-event is executed.

3. If a�∈DLV r and TIME s′ < a.useByΘs
then, in every path starting in

s′, there is a transition r′ such that a�∈EXC r′, i.e., the commit-event
will be executed if invoked before the deadline expires.

4. If a7∈DLV r and TIME s′ < a.useByΘs
then, in every path starting in

s′, there is a transition r′ such that a7∈EXC r′, i.e., the cancel-event
will be executed if invoked before the deadline expires.

5. If a>∈PRC r, then a�∈HST?s′, i.e., the revoke-event can only be pro-
cessed after or with the execution of the commit-event.

In summary, a provider always replies to a request, but it does so only if
a request was made — this is captured by clauses 1 and 2 of the definition.
A provider will be ready to execute a commit or a cancel (only one of the
two) if invoked before the deadline expires — this is captured by clauses 3
and 4. Finally, a provider does not process a revoke-event before executing
the associated commit — this is captured by clause 5.

Clause 5 is necessary to model long running transactions, in particular to
guarantee that no request to revoke is unintentionally lost. The underlying
assumption made by a provider is that if a revoke-event was received before
the commit-event, it is probably because the wire delivered the events in the
wrong order and not because the co-party made an unreasonable request —
therefore a provider buffers every request to revoke until it has processed the
associated commit. It is also important to notice that a provider may not
necessarily accept a revoke; this is why no guarantee is given that the revoke
will be executed when processed.

Definition 3.10 (Conversation-compliant model). An execution model
Θ is conversation compliant for a party n∈Parties iff, for every n′∈Parties,
n behaves as a provider in every interaction a ∈2WAY 〈n′,n〉 and as a requester
in every interaction a ∈2WAY 〈n,n′〉.

4. A logic of service interactions

In this section, we discuss how the logic UCTL [63, 64] can be used to
specify and reason about properties of parties engaged in service execution
models as defined in Section 3.

20

Several logics have been introduced in the past few years [25, 46, 49, 57]
that capture both action-based and state-based properties, thus making it
easier to formulate properties that, in pure action-based or pure state-based
logics, can be quite cumbersome to write down. This is especially useful
when logics are to be used in conjunction with languages and notations that
— like the UML — allow both action and state changes to be expressed. In
such cases, the use of combined action and state operators has the additional
advantage of often leading to model checkers (e.g., UMC) that operate over a
reduced state space and smaller memory, and spend less time during verifica-
tion. UCTL subsumes both the branching-time action-based logic ACTL [27]
and the branching-time state-based logic CTL [26]. This logic has been de-
veloped by ISTI-CNR in Pisa (our partners in the Sensoria project) and
used in conjunction with the UMC model checker to support the analysis of
qualitative properties of services as reported in [3, 6].

Throughout this section, we assume a fixed global configuration CONF =
〈Parties,Wires〉, an execution configuration XCONF for CONF , and an
execution model Θ=〈S,→, s0〉 for XCONF .

4.1. Interaction signatures

An interaction signature defines a set of interaction names that are used
in the logic to identify actions that can occur during service execution (in
particular, those that a specific party can perform). Interaction names are
typed. For instance, Figure 3 depicts the interaction signature of the party
FA, which declares three interaction names — lockFlight of type r&s; and
payAck of type rcv; and payRefund of type snd — and a number of param-
eters (discussed below). The types s&r and r&s are used for identifying
two-way interactions from the point of view of the requester and provider,
respectively, and snd and rcv for one-way interactions from the point of the
sender and the receiver, respectively (see [17] for the way they correspond to
the types of operations available in WSDL). For example, lockFlight identifies
a two-way interaction in which FA acts as a provider.

We use TYPE to designate the set {s&r, r&s, snd, rcv}.

Definition 4.1 (Interaction Signature). An interaction signature is a pair
〈NAME ,PARAM 〉 where:

• NAME is a TYPE-indexed family of finite and mutually-disjoint sets
of interaction names;

21

– 4 –

BUSINESS PROTOCOL FlightAgent is

 INTERACTIONS
 r&s lockFlight

 from,to:airport,
 out,in:date,

 traveller:usrData
 fconf:fcode,

 amount:moneyValue,
 payee:accountNumber,
 payService:serviceId
 rcv payAck
 proof:pcode,
 status:bool
 snd payRefund
 amount:moneyValue

 BEHAVIOUR
 initiallyEnabled lockFlight?

 lockFlight! ∧ lockFlight.reply enables payAck?

 payAck? ∧ payAck.status enables
 lockFlight? until date(time)≥lockFlight.out

 lockFlight? ensures payRefund!

Figure 3: The interaction signature of party FA.

• PARAM consists of five functions PARAM
, PARAMB, PARAM�,
PARAM 7 and PARAM > such that:

– PARAM
 assigns to each name in NAME a D-indexed family of
mutually disjoint sets of
-parameters (associated with the initiation-
event);

– PARAMB, PARAM�, PARAM 7 and PARAM > assign to each
name a ∈ NAME s&r ∪NAME r&s a D-indexed family of mutually
disjoint sets of B-parameters, �-parameters, 7-parameters and >-
parameters, respectively.

Throughout the remainder of this section, we consider a fixed interaction
signature sig = 〈NAME ,PARAM 〉.

As already mentioned, the types associated with the interaction names
define the role the party plays, at execution time, in those interactions and,
therefore, determine the actions that the party may execute. For example,
BA, which is involved in the interaction bookF light of type r&s, can perform
the action of publishing the reply-event of that interaction — denoted by
bookFlightB! — and the actions of receiving (i.e being delivered), executing
and discarding the other events — denoted by bookF light
¡, bookF light
?,
bookF light
¿, and so on. Note that executing the reply-event of bookFlight
is not an action of BA but of its co-party in the global configuration.

Definition 4.2 (Event names). The NAME-indexed families EnPUB and
EnRCV of sets of names of events that can be published and received, respec-
tively, is defined as follows:

22

If a∈NAME s&r then EnPUB
a = {a
, a�, a7, a>} and EnRCV

a = {aB}

If a∈NAME r&s then EnPUB
a = {aB} and EnRCV

a = {a
, a�, a7, a>}

If a∈NAME snd then EnPUB
a = {a
} and EnRCV

a = ∅

If a∈NAME rcv then EnPUB
a = ∅ and EnRCV

a = {a
}

We define En = EnRCV ∪ ENPUB as the NAME-indexed family of sets of
all event names associated with the signature sig.

Definition 4.3 (Action Names). The NAME-indexed families of sets of
publication, delivery, execution and discard action names are defined as fol-
lows, where a∈NAME:

ActPUB
a = {e! : e∈EnPUB

a }

ActDLV
a = {e¡ : e∈EnRCV

a }

ActEXC
a = {e? : e∈EnRCV

a }

ActDSC
a = {e¿ : e∈EnRCV

a }

We define Act = ActPUB ∪ActDLV ∪ActEXC ∪ActDSC as the NAME-indexed
family of sets of all action names associated with the signature sig.

Signatures are interpreted over service execution configurations as follows:

Definition 4.4 (Signature interpretation). An interpretation I for sig
over XCONF is an injective function from NAME to INT such that:

• for every a∈NAME s&r∪NAME r&s, I(a)∈2WAY , i.e., interaction names
with type s&r or r&s denote two-way interactions;

• for every a∈NAME snd∪NAME rcv, I(a)∈1WAY , i.e., interaction names
with type snd or rcv denote one-way interactions;

The interpretation extends to event names in the obvious way, i.e., for every
a∈NAME and event of the form a#, #∈{
,B,�,7,>}, I(a#) = I(a)#.

23

It results that the types s&r and r&s are associated with the roles of
requester and provider in two-way interactions, respectively. This is because
the action names associated with s&r interactions denote the actions of a
requester and the action names associated with r&s interactions denote the
actions of a provider. Types snd and rcv are associated with the roles of
sender and receiver in one-way interactions, respectively.

Signatures provide us with a way of specifying and reasoning about a
particular view of the behaviour of a global configuration via the chosen in-
teraction names. For specification purposes, we are particularly interested in
signatures that are associated with specific parties, i.e., that define a com-
plete view of the behaviour of a party. In order for an interaction signature
to be associated with one party only, it is necessary that the interpretation
names all and only the interactions involving that party.

Definition 4.5 (Local interaction interpretation). An interaction inter-
pretation I is said to be local to a party n∈Parties iff:

• For every a∈NAME s&r∪NAME snd, I(a)∈INT 〈n,n′〉 for some party n′,
i.e., all interaction names with types s&r or snd denote interactions
initiated by n;

• For every a∈NAME r&s∪NAME rcv, I(a)∈INT 〈n′,n〉 for some party n′,
i.e., all interaction names with types r&s or rcv denote interactions
initiated by some other party;

• For every n′∈Parties, INT 〈n,n′〉⊆I(NAME s&r∪NAME snd) and
INT 〈n′,n〉⊆I(NAME r&s∪NAME rcv).

4.2. Doubly-labelled transition systems

UCTL is interpreted over doubly-labelled transition systems (L2TS), which
are transition systems in which both the states and the transitions between
states are labelled [28]. The L2TSs used by UCTL differ from the classical
notion of transition system in that they use sets of actions as labels rather
than single actions. This allows systems to be modelled where several actions
can take place simultaneously or a sequence of actions to be abstracted as a
single state transition. For example, the reply-event of a two-way interaction
may be published in the same transition during which the associated request-
event is executed, as an effect of that execution.

24

Definition 4.6 (Doubly-labelled transition system). A doubly-labelled
transition system is a tuple 〈S, s0, A,R, P, L〉 where:

• S is a set of states.

• s0∈S is the initial state.

• A is a finite set of observable actions;

• R ⊆ S × 2A × S is the transition relation. We write s
α−→ s′ to denote

a transition (s, α, s′) ∈ R;

• P is a set of atomic propositions;

• L : S → 2P is a labelling function that associates with every state the
set of all atomic propositions that are true in that state.

In order to use UCTL for reasoning about services, we need to be able to
extract a L2TS from an execution model. The extracted L2TS has the same
structure as the model, i.e., they are defined over the same set of states and
states are connected in the same way. In addition:

• The actions that label the L2TS correspond to the different stages of
event propagation as discussed in Section 3.

• Each state of the L2TS contains information about the actions that
have happened before the system reached that state, i.e., the history of
event propagation. We need to make this information available directly
because UCTL does not contain past operators (and the full expressive
power of a logic with past operators such as [47] is not really necessary).

Definition 4.7 (L2TS defined by a model). The L2TS defined by an ex-
ecution model Θ is the tuple 〈SΘ, sΘ

0 , A,R, P, L〉 where:

• A = Act (cf. Definition 4.3);

• For every s, s′∈S, (s, α, s′)∈R iff

– s→Θs′

– α = {e! : e∈PUB s→s′} ∪ {e¡ : e∈DLV s→s′} ∪ {e? : e∈EXCs→s′} ∪
{e¿ : e∈DSCs→s′}

25

i.e., the transitions of the L2TS are those of the execution model and
are labelled with the publication (!), delivery (¡), execution (?) and dis-
carding of events (¿);

• P = {e! : e∈E} ∪ {e¡ : e∈E} ∪ {e? : e∈E} ∪ {e¿ : e∈E};

• L : S → 2P is such that:

L(s) = {e! : e∈HST !s}∪{e¡ : e∈HST¡s}∪{e? : e∈HST?s}∪{e¿ :
e∈HST¿s}

i.e., states are labelled by the history of event propagation.

From the definition of execution step (cf. Def. 3.5) it follows that actions
cannot occur more than once:

Proposition 4.8 (Non-repetition). Let 〈S, , , R, , L〉 be the L2TS de-
fined by an execution model, s, s′∈S and (s, α, s′)∈R. For every a∈α, a/∈L(s).

4.3. The language of service properties

The language of the logic that we use for specifying and reasoning about
service properties extends UCTL with terms through which we can refer to
the data that is transmitted between parties through interaction parame-
ters. Throughout this section we consider a fixed signature sig and a fixed
interaction interpretation I for sig.

Definition 4.9 (Terms). The D-indexed family of sets TERM is defined
inductively as follows:

• For every d∈D and c∈Fd, c∈TERM d.

• For every d1, ..., dn, dn+1∈D, f∈F<d1,...,dn,dn+1> and
→
p∈TERM <d1,...,dn>,

f(
→
p)∈TERM dn+1.

• For every d∈D, a∈NAME and p∈PARAM (a)d, a.p∈TERM d.

• For every a∈NAME, a.useBy∈TERM time and a.reply∈TERM bool.

• time∈TERM time.

• For every act∈Act, actt∈TERM time.

26

By actt we denote the time at which the action act was executed, i.e., when
the corresponding event was published, delivered, executed, or discarded.

In order to be able to define the values that terms take over states, we
need an interpretation function for interaction parameters:

Definition 4.10 (Parameter interpretation). A parameter interpretation
for a signature sig at a state s∈S is an extension of the function Πs that as-
signs a value a.pΠs∈dU to every d∈D, a∈NAME and p∈PARAM (a)d. Fur-
thermore, for every a∈NAME and p∈PARAM # for some #∈{
,B,�,7,>}
and transition (s, α, s′)∈R:

a.pΠs′
=

{
⊥ if a# /∈ L(s′)
a.pΠs

if a# ∈ L(s)

i.e., the values of the parameters remain undefined until set by the publication
of the corresponding events, after which they remain unchanged.

We consider a fixed parameter interpretation that extends Π as above.

Definition 4.11 (Interpretation of terms). The interpretation JtKs of a
term t∈TERM in a state s∈S of the L2TS is defined as follows:

• JcKs = cU

• Jf(t1, ..., tn)Ks = fU(Jt1Ks, ..., JtnKs)

• Ja.pKs = a.pΠs

• Ja.useByKs = I(a).useByΠs

• Ja.replyKs = I(a).replyΠs

• JtimeKs = TIMEs

• JacttKs =

⊥ if s = s0

TIME s if s′
α−→ s and act ∈ α

JacttKs′ if s′
α−→ s and act /∈ α

Note that actt is undefined in all states where act does not belong to their
history.

27

Definition 4.12 (Action formulae). The language of action formulae is
defined as follows:

χ ::= true | t1 = t2 | act | τ | ¬χ | χ ∧ χ′

with act∈Act and t1, t2∈TERM d for some d∈D. The satisfaction relation for
action formulae is defined over the state transitions of the L2TS as follows:

• s
α−→ s′ |= true

• s
α−→ s′ |= t1 = t2 iff Jt1Ks′ = Jt2Ks′;

• s
α−→ s′ |= act iff I(act)∈α;

• s
α−→ s′ |= τ iff α = ∅

• s
α−→ s′ |= ¬χ iff not s

α−→ s′ |= χ

• s
α−→ s′ |= χ ∧ χ′ iff s

α−→ s′ |= χ and s
α−→ s′ |= χ′

Definition 4.13 (UCTL formulae). The syntax of UCTL formulae is de-
fined as follows:

φ ::= true | act | t1 = t2 | ¬φ | φ ∧ φ′ | Aπ | Eπ

π ::= Xχφ | φ χU φ′ | φ χUχ′ φ′ | φχWφ′ | φχWχ′φ′

with act∈Act, t1, t2∈TERM d for some d∈D and χ, χ′ action formulae. We
refer to φ as state formulae and to π as path formulae.

UCTL formulae can be state formulae, meaning they are interpreted over
states, or path formulae, meaning they are interpreted over paths. Note
that action names are also used as state formulae, in which case they have
a different meaning from their use as action formulae: a state satisfies an
action name if the action that the name denotes has happened in the past.

A and E are path quantifiers and X, U and W are indexed next , until
and weak until operators. The semantics of these operators is defined next.
Their intuitive semantics is summarised in Appendix A.

Definition 4.14 (Satisfaction of UCTL formulae). The satisfaction re-
lation for UCTL formulae is defined as follows, where s is an arbitrary state
and σ is an arbitrary path:

28

• s |= true;

• s |= act iff I(act)∈L(s);

• s |= t1 = t2 iff Jt1Ks = Jt2Ks;

• s |= ¬φ iff not s |= φ;

• s |= φ ∧ φ′ iff s |= φ and s |= φ′;

• s |= Aπ iff σ |= π for all paths σ starting in s;

• s |= Eπ iff there exists a path σ starting in s such that σ |= π;

• σ |= Xχφ iff σ(0, 1) |= χ and σ(1) |= φ;

• σ |= φχUφ′ iff there exists 0 ≤ j such that σ(j) |= φ′ and for all
0 ≤ i < j, σ(i) |= φ and σ(i, i + 1) |= χ;

• σ |= φχUχ′φ′ iff there exists 1 ≤ j such that σ(j) |= φ′, σ(j−1) |= φ and
σ(j− 1, j) |= χ′ and for all 0 < i < j, σ(i− 1) |= φ and σ(i− 1, i) |= χ.

• σ |= φχWφ′ iff either

– σ |= φχUφ′; or

– for all 0 ≤ i, σ(i) |= φ ∧ ¬φ′ and σ(i, i + 1) |= χ;

• σ |= φχWχ′φ′ iff either

– σ |= φχUχ′φ′; or

– for all 0 ≤ i, σ(i) |= φ, σ(i, i + 1) |= χ, and either σ(i) |= ¬φ′ or
σ(i, i + 1) |= ¬χ′;

We also say that the pair 〈Θ, I〉 satisfies a state formula φ iff s0 |= φ,
where s0 is the initial state of Θ.

A number of derived operators that we use in the paper are collected in
Appendix A. Examples of typical properties that are of interest for service-
oriented systems are those that characterise the computational model itself
and the requester and provider protocols, which can also be found in Ap-
pendix A.

29

5. The specification domains

In Section 3 we defined a semantic domain for the execution of (complex)
services in terms of configurations of a number of parties that interact with
each other by publishing and processing events according to a conversational
protocol that is typical of business transactions. In this section, we define a
language for modelling complex services over that semantic domain. More
precisely, we provide a formal definition of the notion of service module that
was introduced in Section 2 and of its semantics.

Throughout this section we consider:

• A global configuration CONF = 〈Parties,Wires〉;

• An execution configuration XCONF=〈INT ,REPLY ,USEBY 〉 for CONF ;

• An execution model Θ=〈S,→, s0〉 for XCONF ;

• An interaction signature sig = 〈NAME ,PARAM 〉 where Act is the set
of associated actions;

• An interaction interpretation I for sig extended to PARAM as defined
in 4.10.

As in previous sections, we consider a fixed data signature Σ=〈D, F 〉 and a
fixed algebra U for Σ.

5.1. Business Roles: specifying components

Components are computational units that, together with the wires that
connect them, execute a business workflow and orchestrate a (possibly empty)
set of external services in order to offer a new service. Each component
declared in a service module is typed by a (possibly underspecified) state
machine — what we call a business role. A business role declares a set of
state variables that model the state of the component and specifies a set of
transitions that model the way state can change. A transition specification
includes: (1) the trigger of the transition, which can be the execution of
an event or an internal state change; (2) a guard, which defines a condition
that must be satisfied for the trigger to cause the transition; (3) the effects
that the transition has on the state of the component and the events that
the component publishes during the transition. Transition specifications are

30

defined using a declarative textual language that permits underspecification,
thus supporting an incremental design process.

An excerpt of the business role that specifies a BookingAgent is shown in
Figure C.8. This business role contains the following state-variable declara-
tion:

– 6 –

BUSINESS ROLE BookingAgent is

INTERACTIONS
 r&s login
 usr:usrName,
 pwd:password
 r&s bookTrip
 from,to:airport,
 out,in:date
 fconf:fcode,
 hconf:hcode,
 amount:moneyValue
 s&r bookFlight
 from,to:airport,
 out,in:date,
 traveller:usrData

 fconf:fcode,
 amount:moneyValue,

 payee:accountNumber,
 payService:serviceId

 s&r payment
 amount:moneyValue,
 payee:accountNumber,
 originator:usrData,
 cardNo:payData
 proof:pcode

 s&r bookHotel
 checkin:date,
 checkout:date,
 traveller:usrData

 hconf:hcode
 snd payAck

 proof:pcode,
 status:bool

 snd payNotify
 status:bool
 rcv ackRefundRcv
 amount:moneyValue
 snd refund
 amount:moneyValue

 s&r log
 usr:usrName,
 pwd:password
 s&r getData
 usr:usrName

 traveller:usrData,
 cardNo:payData

 ORCHESTRATION
local s:[START, AUTHENTICATING, LOGGED, QUERIED, FLIGHT_OK,
 QUERIED, DATA_OK, FLIGHT_OK, HOTEL_OK, CONFIRMED,

END_PAYED, END_UNBOOKED, COMPENSATING, END_COMPENSATED]

 transition Login
triggeredBy login
guardedBy s=START
effects s’=AUTHENTICATING
sends log ∧ log.usr=login.usr ∧ log.pwd=login.pwd

 transition AuthenticationAnswer
triggeredBy log
guardedBy s=AUTHENTICATING
effects log.Reply ⊃ s’=LOGGED
 ∧ ¬log.Reply ⊃ s’=END_UNBOOKED
sends login ∧ login.reply=log.reply

 transition Request
triggeredBy bookTrip
guardedBy s=LOGGED ∧ ¬(time ≥ login.useBy)
effects ¬(date(time) ≥ bookTrip.out) ⊃ s’=QUERIED
 ∧ (date(time) ≥ bookTrip.out) ⊃ s’=END_UNBOOKED
sends ¬(date(time) ≥ bookTrip.out) ⊃ getData
 ∧ getData.usr=login.usr
 ∧ (date(time) ≥ bookTrip.out) ⊃ bookTrip
 ∧ ¬bookTrip.reply

 transition DataAnswer
triggeredBy getData
guardedBy s=QUERIED
effects s’=DATA_OK
sends bookFlight ∧ bookFlight.from=bookTrip.from
 ∧ bookFlight.to=bookTrip.to
 ∧ bookFlight.out=bookTrip.out
 ∧ bookFlight.in=bookTrip.in
 ∧ bookFlight.traveller=getData.traveller

The state variable s ranges over a finite set of values (start, logged,
etc.) and is used in BookingAgent to model control flow. The other state
variables are used for storing data that is needed at different stages of the
orchestration. Formally:

Definition 5.1 (State variables). A state-variable declaration VAR is a
D-indexed family of disjoint sets. A state-variable interpretation ∆ for VAR
assigns to every state s∈S and every state variable v∈VARd an element
v∆(s)∈dU (the value of the state variable on that state).

Throughout this section we fix a state-variable declaration VAR and a
state-variable interpretation ∆ for VAR.

We now define the language of business roles over sig and VAR. First, we
define the sub-language of states for specifying the state of the component.
Then, we define the sub-language of effects for specifying the effects of state
transitions. Finally, we define the notion of transition specification using the
sub-languages of states and effects.

The sub-language of states is used for specifying the values of parameters,
time and state variables in a state. It extends the notion of term given in
Definition 4.9 with state variables:

Definition 5.2 (Language of States). The D-indexed family STERM of
sets of state terms is defined inductively through the rules used in Definition
4.9 and the additional formation rule: For every v∈VARd, v∈STERM d.

The interpretation JtKs of a state term t∈STERM in s∈S is defined as
in Definition 4.11 extended with: JvKs = v∆(s).

The sub-language of states LS is defined as follows:

φ ::= true | t1 = t2 | φ ∧ φ′ | ¬φ

with t1, t2∈STERM d for some d∈D. The satisfaction relation is standard.

31

In order to specify the effects of transitions, , namely how the state vari-
ables are updated and which events are published by the component, we need
to extend this language with terms of the form v′ where v is a state variable;
as usual v′ is used to denote the value that v has after the transition.

Definition 5.3 (Language of Effects). The D-indexed family ETERM of
sets of effect terms is defined inductively as in 5.2 with the following addi-
tional rules:

• time′∈ETERM time

• For every v∈VARd, v′∈ETERM d

Effect terms are interpreted over transitions as in:

• Ja.pKs1→s2 = I(a).pΠs2

• JvKs1→s2 = v∆(s1), Jv′Ks1→s2 = v∆(s2)

The sub-language of effects LE is defined as follows:

• φ ::= true | t1 = t2 | pub | φ ∧ φ′ | ¬φ

where t1, t2∈ETERM d for some d∈D and pub∈EnPUB . The satisfaction re-
lation is defined over transitions as in:

• r |= pub iff I(pub)∈PUB r

Definition 5.4 (Transition specification). A transition specification is a
triple 〈trigger, guard, effects〉 where trigger∈ActEXC

a ∪LS, guard∈LS, and
effects∈LE. The triple 〈Θ, I, ∆〉 satisfies the transition specification iff, for
every transition r = s1→s2:

• In the case where trigger∈ActEXC
a and I(trigger)∈PRC r, if s1|=guard

then I(trigger)∈EXC r and r|=effects, otherwise I(trigger)∈DSC r.

• In the case where trigger∈LS, for every s2→s3, if not (s1|=trigger),
s2|=trigger and s2|=guard then s2→s3|=effects.

That is to say:

32

• In the case where the trigger is an event e, the event e is executed (i.e.,
not discarded) in every transition from a state in which the guard is
true and during which e is processed, and its effects are observed in the
target state.

• In the case where the trigger is not an event but a state condition,
every transition that follows a transition that leads to a state in which
the guard is true and during which the trigger condition becomes true
(i.e., the condition is false in the source state, but true in the target
state) satisfies the specified effects.

As an example, consider the following transition of the business role
BookingAgent(see Figure C.8):

– 7 –

 transition FlightAnswer
triggeredBy bookFlight
guardedBy s=DATA_OK
effects bookFlight.reply ⊃ s’=FLIGHT_OK
 ∧ ¬bookFlight.reply ⊃ s’=END_UNBOOKED
sends bookFlight.reply ⊃ bookHotel
 ∧ bookHotel.checkin=bookTrip.out
 ∧ bookHotel.checkout=bookTrip.in
 ∧ bookHotel.traveller=getData.traveller
 ∧ ¬bookFlight.reply ⊃ bookTrip
 ∧ ¬bookTrip.reply

 transition HotelAnswer
triggeredBy bookHotel
guardedBy s=FLIGHT_OK
effects bookHotel.reply ⊃ s’=HOTEL_OK
 ∧ ¬bookHotel.reply ⊃ s’=END_UNBOOKED
sends bookHotel.reply ⊃ bookTrip
 ∧ bookTrip.fconf=bookFlight.fconf
 ∧ bookTrip.amount=bookFlight.amount
 ∧ bookTrip.hconf=bookHotel.hconf
 ∧ bookTrip.reply
 ∧ ¬bookHotel.reply ⊃ bookFlight ∧ bookTrip
 ∧ ¬bookTrip.reply

 transition TripCommit
triggeredBy bookTrip
guardedBy s=HOTEL_OK
effects s’=CONFIRMED
sends bookFlight ∧ bookHotel
 ∧ payment
 ∧ payment.amount=bookFlight.amount
 ∧ payment.payee=bookFlight.payee
 ∧ payment.originator=getData.traveller
 ∧ payment.cardNo=getData.cardNo

 transition PaymentAnswer
triggeredBy payment
guardedBy s=CONFIRMED
effects payment.reply ⊃ s’=END_PAYED
 ∧ ¬payment.reply ⊃ s’=END_UNBOOKED
sends payAck
 ∧ payAck.proof=payment.proof
 ∧ payAck.status=payment.reply
 ∧ payNotify
 ∧ payNotify.status=payment.reply

 transition TripCancel
triggeredBy bookTrip
guardedBy s=HOTEL_OK
effects s’=END_UNBOOKED
sends bookFlight ∧ bookHotel

 transition TripCompensate
triggeredBy bookTrip
guardedBy s=END_PAYED ∧ ¬(date(time) ≥ bookTrip.out)
effects s’=COMPENSATING
sends bookFlight ∧ bookHotel

 transition TripRefund
triggeredBy ackRefundRcv
guardedBy s=COMPENSATING
effects s’=END_COMPENSATED
sends refund

This transition is triggered when the component processes the event
bookTrip�; if the component is in a state in which s has the value hotel ok,
then the transition is executed and, as a result, the events bookFlight�,
bookHotel� and payment
 are published, their parameters being set according
to the stated constraints.

As discussed, a business role specifies a component by declaring the set
of interactions in which that component can be involved, the set of state
variables that characterise the internal state of the component and a set of
transition specifications.

Definition 5.5 (Business role). A business role is a triple 〈sig,VAR,ORCH 〉
where sig is an interaction signature, VAR is a state-variable declaration and
ORCH is a set of transition specifications for sig and VAR.

The triple 〈Θ, I, ∆〉 satisfies the business role iff it satisfies every transi-
tion specification in ORCH .

33

5.2. Business Protocols: specifying service interfaces

Service modules declare, through requires-interfaces, the types of exter-
nal services that may need to be discovered and bound to the components
that orchestrate the service provision. Each requires-interface is typed by a
specification of the properties that the corresponding external service needs
to satisfy regarding the way it interacts with the components declared in the
module. Likewise, the provides-interface of the module is typed by a speci-
fication of the properties that the module offers at its interface. In SRML,
these specifications are called business protocols.

A business protocol is an abstract description of a service that specifies
the interactions in which the service can engage with its client and a number
of properties of those interactions. Figure C.9 shows the business protocol of
a FlightAgent. A business protocol is abstract in the sense that it does not
specify the workflow of the service (as in business roles), but only a tempo-
ral correlation between the actions that the service performs. Throughout
this section we consider 〈S, s0, Act′, R, AP, L〉 to be the L2TS defined by the
service execution model Θ (in the sense of Def. 4.7).

In principle, business protocols could be any set of state formulae. How-
ever, in order to facilitate the specification of service interface behaviour and
the use of model-checking techniques, we followed [65, 66] and defined a set
of behaviour patterns that capture requirements that are typical of service-
oriented interactions — conditions under which events are executed or dis-
carded (if processed) and conditions under which events are published. Each
of the patterns is defined as an abbreviation of an UCTL formula. These pat-
terns were validated over a number of case studies developed in the project
SENSORIA, including telecommunications [4], financial [37], automotive [15]
and procurement [35] scenarios.

In order to define these patterns, we make use of the subset of state
formulae (cf. 4.13) that do not use temporal operators:

Definition 5.6 (State predicates). The syntax of state predicates is de-
fined as follows:

φ ::= true | act | t1 = t2 | ¬φ | φ ∧ φ′

with act∈Act and t1, t2∈TERM d for some d∈D.

The basic patterns are defined below. A set of derived patterns (used
in the examples) and a diagrammatic explanation of their semantics can be
found in Appendix B.

34

Definition 5.7 (Basic behaviour patterns). Let e!, e?∈Act, s, w be state
predicates and a an action formula. The basic behaviour patterns are:

• “s after a” stands for AG[a]s — a always leads to a state in which s
holds.

• “s enables e? when g until w” stands for

A(¬s¬e?Ws)

∧
AG((¬e? ∧ ¬s ∧ ¬w):

AX((s ∧ ¬w):A(((g:〈e¿〉false) ∧ ¬w)trueWw))))

∧
AG((¬e? ∧ ¬s ∧ ¬w):AX(w:AG(〈e?〉false)))

∧
¬e? ∧ ((s ∧ ¬w):A(((g:〈e¿〉false) ∧ ¬w)trueWw))

∧
(w:AG(〈e?〉false))

— e can only be executed during an interval defined by a state in which
w is false and s becomes true and the first state before w becomes true.
During this interval, e cannot be discarded if g is true. If there is no
such interval, e will never be executed.

• “s ensures e! before w” stands for

A(¬s¬e!Ws)

∧
AG((¬e! ∧ ¬s ∧ ¬w):AX((s ∧ ¬w):A(¬wtrueUe!true)))

∧
AG((¬e! ∧ ¬s ∧ ¬w):AX(w:AG(〈e!〉false)))

∧
¬e! ∧ ((s ∧ ¬w):A(¬wtrueUe!true)) ∧ (w:AG(〈e!〉false))

— after (and only after) s first becomes true, and provided w has been
false, e will be published before w becomes true.

35

Definition 5.8 (Business Protocol). A business protocol consists of a
pair 〈sig,BHV 〉 where sig is an interaction signature and BHV is a set
of behaviour patterns defined over sig.

In order for a service execution model and signature interpretation to sat-
isfy a business protocol, they must satisfy not only the specified patterns but
also the set of UCTL formulae that characterise the behaviour of requesters
or providers for each interaction declared to be of type s&r or r&s, respec-
tively, as discussed in Section 3.4. For example, a service of type FlightAgent
(shown in Figure C.9) is requested to behave as a provider in the interac-
tion lockFlight, i.e., it should always reply to a request, wait for a commit or
cancel, and so on.

Definition 5.9 (Satisfaction of Business Protocols). The pair 〈Θ, I〉 sat-
isfies a business protocol 〈〈NAME ,PARAM 〉,BHV 〉 iff:

• For each a∈NAME s&r, 〈Θ, I〉 satisfies the requester protocol (cf. 3.8);

• For each a∈NAME r&s, 〈Θ, I〉 satisfies the provider protocol (cf. 3.9);

• For each b∈BHV , 〈Θ, I〉 satisfies the formula defined by b (cf. 5.7).

5.3. Interaction Protocols: specifying wires

We have seen in the previous sections that the specification of the in-
teractions a party is involved in is done locally for each party using local
names and a local set of parameters for each interaction name. It is the re-
sponsibility of wire specifications to pair the interaction names that are used
by two different wired parties to refer to the same (peer-to-peer) interaction
and to correlate the parameters that are observed by each of the two parties
for those interactions. In this section, we define a language for specifying
wires, which includes the notion of interaction protocol — the specification
primitive that we use for correlating pairs of interaction signatures.

Interaction protocols are similar to connector types in the sense of [8].
They consist of two roles (signatures) that provide abstract representations of
the parties that can be connected, and a glue that specifies the protocol itself.
Throughout this section we consider a fixed pair of interaction signatures sigA

and sigB where NAMEA and NAMEB are disjoint.

36

Definition 5.10 (Interaction Protocol). An interaction protocol consists
of a triple 〈sigA, sigB, coord〉 where coord is a set of state formulae (cf. 4.13)
for the union sigA ∪ sigB, i.e., we consider terms and formulae that involve
interactions from both signatures. We also consider a new kind of atomic
state formulae that allow us to establish that two interaction names specify
the same interaction:

a = b

where a∈NAMEA and b∈NAMEB. We refer to sigA and sigB as the roles
of the interaction protocol — Role A and Role B, respectively.

We can also use this language to specify properties required of the wires.
One such property is reliable delivery of published events. Another interest-
ing class of properties concerns the bounds imposed on the delay with which
wires transmit events. More complex properties may also be specified, for
example data conversion between parameters, encryption mechanisms, and
so on. In order to facilitate the specification of the two types of properties
of wires mentioned above, we define the following two patterns:

Definition 5.11 (Wire patterns). Let 〈sigA, sigB, coord〉 be an interac-
tion protocol, a∈NAMEA ∪ NAMEB and v a term of sort time.

• “reliableOn a” stands for ∧
e∈EnPUB

a

AG[e!]AFe¡true

— every event associated with a is eventually delivered after being pub-
lished.

• “a noLatterThan delay” stands for∧
e∈EnPUB

a

AG[e!]AFe¡(time < e!t + delay)

— after being published, every event associated with a is delivered within
the specified delay.

Figure C.10 shows an interaction protocol that connects an s&r interac-
tion with a r&s interaction, where the initiation event (
) has three param-
eters and the reply event (B) has just one. According to this protocol the

37

parameters of the two interactions are pairwise identical. Moreover, reliabil-
ity in the delivery of events associated with the two interactions is required.
The delay introduced by the wire in the transmission of these events is bound
by the value v, which is a time value left undefined until the protocol is ap-
plied. Similarly, d1, d2, d3 and d4, which are the data sorts of the parame-
ters, are also left undefined until the interaction protocol is applied. That
is, RStraight.I(d1, d2, d3)O(d4)D(v : time) stands for a family of interaction
protocols.

Because we wish interaction protocols to be reusable, we define them
independently of the names that are used for specifying the parties that
they connect. In order to attach the roles of the interaction protocol to
the interaction signatures of the two parties that we wish to connect we
use signature morphisms (see Def. 5.12). A signature morphism µ from a
signature s to a signature s′ preserves the structure of interaction signatures:
it maps each interaction name of s to an interaction name of s′ with the
same type, and each parameter of every interaction a to a parameter of µ(a)
— choosing always a parameter that is associated with the same event, i.e.,

-parameters are mapped to
-parameters, B-parameters are mapped to B-
parameters, and so on. It is important to notice that not every interaction of
the target signature needs to be in the image of a signature morphism. This
allows for the coordination to address only part of the interactions as each
party may interact with more than one co-party.

Definition 5.12 (Signature morphism). A signature morphism µ from
an interaction signature 〈NAME ,PARAM 〉 to another interaction signature
〈NAME ′,PARAM ′〉 is a function that:

• assigns to each interaction name a∈NAME t and t∈TYPE an interac-
tion name a′∈NAME ′

t;

• assigns to each parameter p∈PARAM #(a)d, where # ∈ {
,B, �, 7, >},
a parameter p′∈PARAM ′

#(µ(a))d.

Interactions protocols are established between two parties using what we
call connectors. A connector maps each of the roles of an interaction pro-
tocol to the signature of one of the two parties using a morphism (what is
often called an ‘attachment’). In that way, a connector defines which interac-
tions are actually being coordinated by the interaction protocol. Figure C.11
shows the connector that binds the BookingAgent to the HotelAgent using
the RStraight interaction protocol shown in Figure C.10.

38

Definition 5.13 (Connector). A connector for two interaction signatures
partyA and partyB is a triple 〈µA, ip, µB〉 where ip = 〈sigA, sigB, coord〉
is an interaction protocol, and µA:sigA→partyA and µB:sigB→partyB are
injective signature morphisms.

In order to define the semantics of connectors, we need to consider two
interpretations IA and IB for partyA and partyB, respectively. In order
to interpret the interaction protocol, we compose the morphisms with the
interpretations, i.e., we use (µA; IA) ∪ (µB; IB) to interpret the interaction
protocol. Notice that, because the signature morphisms are injective, the
compositions with the interpretations are also injective and, therefore, so is
the union, thus defining an interpretation (cf. 4.4).

Definition 5.14 (Satisfaction of Connectors). Let 〈µA, ip, µB〉 be a con-
nector for two interaction signatures partyA and partyB and IA and IB

interpretations for partyA and partyB, respectively. The tuple 〈Θ, IA, IB〉
satisfies the connector iff 〈Θ, (µA; IA) ∪ (µB; IB)〉 satisfies the set coord.

Notice that atomic state formulae of the form a = b where a∈NAMEA

and b∈NAMEB are satisfied by 〈Θ, IA, IB〉 iff

IA(µA(a)) = IB(µB(b))

i.e., the equation establishes that µA(a) of partyA and µB(b) of partyB name
the same interaction.

Finally, we extend the notion of local interaction interpretation (cf. 4.5)
to take into account the wires that connect two parties. Essentially, we want
to be able to express that all interactions between two given parties are
coordinated by a given connector:

Definition 5.15 (Local connector interpretation). Let 〈µA, ip, µB〉 be a
connector for two interaction signatures partyA and partyB. Let IA and
IB be interpretations for partyA and partyB that are local to two par-
ties pA,pB∈Parties, respectively. We say that the pair 〈IA, IB〉 is local to
〈pA, pB〉 relative to 〈µA, ip, µB〉 iff {pA, pB}∈Wires and, for every a∈NAMEA

and b∈NAMEB, IA(µA(a)) and IB(µB(b)) belong to INT 〈pA,pB〉∪INT 〈pB ,pA〉.

6. Service Modules

We can now give a formal definition of service modules as motivated in
Section 2 and of their semantics. We also define a notion of composition of
modules through which complex services can be defined from simpler ones.

39

6.1. Specifying services

A service module defines a local configuration labelled with specifications
— business roles, business protocols, and connectors — and a ‘provides-
interface’ (a business protocol) for the clients that wish to use the service.

Definition 6.1 (Service module). A service module L consists of:

• A local configuration LOCAL=〈PartiesL,WiresL〉 where:

– 〈PartiesL,WiresL〉 is a simple graph (as in 3.1)

– The set of nodes is partitioned into two disjoint sets — a set
COMPSL of ‘component-interfaces’ and a set REQSL of ‘requires-
interfaces’. The former correspond to the components that orches-
trate the delivery of the service and the latter to the external ser-
vices that may be required.

• MAIN L∈COMPSL is a distinguished component responsible for the in-
teractions with customers of the service.

• A labelling function specL that assigns:

– A business role to each c∈COMPSL;

– A business protocol to each r∈REQSL;

– A connector to each w={p, p′}∈WiresL such that spec(w) is a
connector for sign(p) and sign(p’), where by sign(n) we denote
the signature of spec(n);

• A business protocol providesL=〈sig,BHV 〉 (called the provides-interface)
together with an inclusion morphism sig→sign(MAIN L), i.e., sig is a
sub-signature of MAIN L.

We further require that

• for every r∈REQSL and a∈NAME sign(r), there is n∈COMPSL such
that {n, r}∈WiresL and a=µi(b) for some b∈NAME sigi

(i=1,2), where
spec({n, r})=〈µ1, ip, µ2〉 and ip=〈sig1, sig2, coord〉.

• for every c∈COMPSL and a∈NAME sign(c), either a∈NAME sig or (ex-
clusively) there is n∈PartiesL such that {n, c}∈WiresL and a=µi(b)
for some b∈NAME sigi

(i=1,2), where spec({n, c})=〈µ1, ip, µ2〉 and ip
= 〈sig1, sig2, coord〉.

40

The two conditions mean that, on the one hand, every interaction of every
requires-interface needs to be connected, through a wire, to a component-
interface of the module and, on the other hand, all interactions of component-
interfaces except those of the provides-interface need to be connected to a
party, i.e., all interactions must be internal to the module except those on
the provides-interface. This is because we want all interactions with the envi-
ronment to go through either the provides- or one of the requires-interfaces.

An example of a module is depicted in Figure C.5. Notice that, for
simplicity, the interface DB to the persistent database is treated here as a
requires-interface. In [37] we distinguish between requires-interfaces (for dis-
coverable services) and uses-interfaces (for local resources). The distinction
between the two is only relevant for the semantics of discovery and binding
as explained in [36] — upon instantiation of a service module, new nodes
and edges are added to the global-configuration graph for the component-
interfaces and the wires that connect them, but not for uses-interfaces, which
need to be identified among the parties already present in the global configu-
ration (see below). The local configuration of this module contains only one
component-interface — BA. Note that, although the figure suggests it, the
provides-interface is not a party of the local configuration and its connection
to MAIN is not a wire: they are depicted in that way in order to remain
closer to the notation adopted in SCA [52].

Definition 6.2 (Interpretation structure). An interpretation structure
for a service module consists of:

• A global configuration CONF=〈Parties,Wires〉 (cf. 3.1) and a ho-
momorphism of graphs homL:LOCAL→CONF that is injective on both
nodes and edges.

• An execution configuration XCONF for CONF (cf. 3.2).

• An execution model Θ for XCONF (cf. 3.7).

• For every party p∈PartiesL, an interaction interpretation Ip for the
signature sign(p) such that:

– Every interaction interpretation Ip is local to p (cf. 4.4 and 4.5)

– Every pair 〈IpA
, IpB

〉 is local to 〈pA,pB〉 relative to spec({pA,pB})
(cf. 5.15)

41

• For every party p∈PartiesL, a parameter interpretation that extends
the states of Θ as defined in 4.10.

• For every component c∈COMPSL, a state-variable interpretation ∆c

(cf. 5.1).

Notice that the homomorphism homL identifies the sub-configuration of
the global configuration that corresponds to the execution of the service,
which reflects the fact that we adopt an ‘open’ semantics, i.e., we consider
the service as it executes in the context of a wider environment (global com-
puter). For simplicity, we will take the homomorphism to be an inclusion
whenever possible, in which case we refer just to CONF . As explained in
[33, 36], this homomorphism plays an essential role in the process of dynamic
reconfiguration that is induced by discovery and binding.

Definition 6.3 (Model of a service module). An interpretation structure
sem = 〈CONF , XCONF , Θ, I, ∆〉 is said to be a model for a module m, writ-
ten sem |= m, iff:

1. For every party c∈COMPSL, 〈Θ, Ic, ∆〉 satisfies the business role spec(c)
(cf. 5.5);

2. For every party r∈REQSL, 〈Θ, Ir〉 satisfies the business protocol spec(r)
(cf. 5.9);

3. For every w={p, p′}∈WiresL, 〈Θ, Ip, Ip′〉 satisfies the connector spec(w)
(cf. 5.14);

4. Θ is conversation compliant for all parties (cf. 3.10)

That is, a model is an interpretation structure that satisfies the specifi-
cations of all the parties and wires. Notice that, because parties and wires
of LOCAL are labelled with specifications, no properties are required of the
behaviour of other parties (customers) that may interact with the service,
except that they must behave as either a requester or a provider in all their
interactions (which is captured by the fourth condition).

It remains to relate the provides-interface with the models of the module:

Definition 6.4 (Module correctness). A service module m is said to be
correct iff every model 〈Θ, I〉 of m satisfies the provides-interface of m, i.e.,
〈Θ, I〉 |= provides(m).

42

Once again, notice that correctness establishes that any customer can
rely on the properties offered through provides. This is because, in order for
the module to be correct, all possible models (and, hence, all possible cus-
tomers that are conversational compliant) need to be checked to satisfy those
properties. In [6], we outlined an approach for establishing the correctness of
service modules based on the use of the model-checker UMC [41]. UMC has
been developed for the logic UCTL and UML statecharts. Our approach,
which is fully detailed in [3], works for service modules whose business roles
and interaction protocols are fully specified (in the sense that all underspec-
ification has been removed), in which case they can be modelled as UML
statecharts and, therefore, used by UMC. Naturally, the approach can only
be applied to specifications that use the data types supported by UMC.

When the business roles and interaction protocols are coded using UML
statecharts, the existence of a model satisfying 1–3 in Definition 6.3 is guar-
anteed. In that case, to establish the consistency of a module (i.e., the
existence of a model) one only has to prove that these implementations are
conversation compliant for all parties. For this purpose, we can resort to
a number of analysis techniques that have been investigated and developed
for service-oriented programming, most notably in the form of type systems
for process calculi (e.g., [18, 51, 67]). Given the large amount of work that
is now available for ensuring that interactions between distributed partic-
ipants follow well-defined protocols, we decided to concentrate instead on
higher-level properties, closest to the business-level, and rely on formal rela-
tionships with process calculi to perform that kind of analysis as discussed in
[14] for the calculus COWS [51]. A similar mapping [13] was developed for
the stochastic process algebra used by PEPA [40], which allows us to analyse
timing properties of services.

Another interesting problem related to consistency is the existence of
realisations of the specifications in a specific language (or multiple languages
as in SCA [52]). In addition to UML statecharts, we have defined an encoding
of WS-BPEL [17]. As discussed in Section 7, the advantage of the declarative
language and the computational model that we chose for SRML is that they
are simple and general enough to support realisations in different languages.

6.2. Composing modules

One of the key ideas of service-oriented computing is to modularise soft-
ware applications by allowing them to procure external services and bind
to them when they need them. The methodological and technical aspects

43

related to service discovery in our approach are presented in [36]. In this
section, we show how our formal model supports an algebraic operation of
module composition, i.e., the process of binding together a client service mod-
ule with a provider one in order to create a new service module. Please notice
that this is different from the process of creating a service module from busi-
ness roles, business protocols and interaction protocols, which corresponds
to service assembly.

Composition is based on matching the properties required by the client
module with those offered by the provider module. Matching is based on the
notion of logical consequence:

Definition 6.5 (Logical consequence). Let specr and specp be sets of state
formulae of UCTL over the same set A of observable actions and set P of
atomic propositions. We say that specr is entailed by (or is a logical conse-
quence of) specp iff, for every L2TS 〈S, s0, A,R, P, L〉, if s0 |= φ for every
φ ∈specp then, for every φ ∈specr, s0 |= φ. That is, the properties of specr

are satisfied by every L2TS that satisfies all the formulae of specp.

Checking that a specification is entailed by another can be done using
the proof techniques available for the logic concerned. In the specific case
of business protocols, one of the motivations for the use of behaviour pat-
terns was precisely to simplify this process of matching by standardising
the specifications of required and provided behaviour, which should facili-
tate checking that required properties are matched by those provided. At
present, the model-checking approach that we presented in [3, 6] can support
matching by model-checking the patterns required by the client against the
orchestration model of the provider. Research is still going onto to check
pattern-based entailment based on theorem-proving techniques.

Consider then the situation in which we have two service modules

client = 〈LOCALc,MAIN c, semc, providesc〉

provider = 〈LOCALp,MAIN p, semp, providesp〉

where providesp = 〈sigp,BHV p〉:

Definition 6.6 (Match). A match for a requires-interface rc of client with
specc(rc)=〈sigc,BHV c〉 consists of an injective morphism η:sigc→sigp such
that η(BHV c) is entailed by BHV p.

44

Notice that by η(BHV c) we denote the translation of UCTL formulas
induced by the morphism η. This translation is obtained by applying the
mappings on interaction names and parameters that define the morphism to
the constituents of the formulae.

The following lemma will be used later on:

Lemma 6.7. Consider a signature morphism µ:sigc→sigp, an execution model
Θ and a signature interpretation I for sigp. Then, for every state formula φ
in the language of sigc, 〈I, s0〉 |= µ(φ) iff 〈µ; I, s0〉 |= φ.
Proof The result is easily proved by induction on the structure of φ. 2

Definition 6.8 (Composed module). Given a match η for a requires-interface
rc of client, the composition of provider and client, which we denote by
(client ⊕rc,η provider) is defined as follows:

• Its configuration LOCAL is such that:

– PartiesL = COMPSL ∪ REQSL is such that:

∗ COMPSL = COMPS c ⊕ COMPSp

∗ REQSL = REQS p ⊕ REQS c\{rc}
– WiresL = Wiresp

⊕ {{nc,MAIN p}: {nc, rc}∈Wiresc}
⊕ {{nc, n

′
c}: {nc, n

′
c}∈Wiresc and nc,n

′
c 6=rc}

• MAINL = MAINc

• Its labelling function specL is such that:

– For every n∈Partiesp, specL(n)=specp(n)

– For every n∈Partiesc\{rc}, specL(n)=specc(n)

– For every w∈Wiresp, specL(w)=specp(w)

– For every w={nc, n
′
c}∈Wiresc s.t. nc,n

′
c 6=rc, specL(w)=specc(w)

– For every w={nc, rc}∈Wiresc, specL(w)=〈µ1, ip, µ2;η〉 where
specc(w) = 〈µ1, ip, µ2〉

• Its provides-interface providesL is providesc.

45

providesc

MAINc

nc rc

ip
µ2µ1

providesp

MAINp

η n'p r'p

ip'

µ2;η

client
provider

Figure 4: Composition of two modules

Proof We need to check that the condition on the interactions of the requires-
interfaces holds for the composition. This is straightforward because no new
requires-interfaces are created and the connectors remain essentially the same
(modulo the renaming through η). 2

That is to say, the configuration of the new module is obtained by amalga-
mating the configurations of client and provider identifying rc with MAIN p.
The the main orchestration node of the new module is that of client. The
nodes of the new module keep their labels (specifications) and so do the
wires except for those that connect rc in client. For those wires, we combine
the attachment of the interaction protocol to rc with η, i.e., by the signature
morphism that defines the match, so that the attachment extends to MAIN p.
Notice that η actually maps to sigp but sigp is included in sign(MAIN p).
This is depicted in Figure 4.

We will now prove a fundamental result: composition preserves correct-
ness. In order to do so, we need to define a few auxiliary concepts and
lemmas that allow us to generate models (reducts) for the client and the
provider from a model of a composed module. We start with reducts for
interpretations structures, first for the client:

Definition 6.9 (Client-reduct). For every interpretation structure sem =
〈hom:LOCAL→CONF, XCONF , Θ, I, ∆〉 of (client ⊕rc,η provider) we de-
fine its client-reduct semclient as follows:

• homc:LOCALc→CONF is such that:

– For every nc∈Partiesc\{rc}, homc(nc) = hom(nc)

– homc(rc) = hom(MAINp)

46

– For every wc={nc, n
′
c}∈Wiresc s.t. nc,n

′
c 6=rc, homc(wc) = hom(wc)

– For every {nc, rc}∈Wiresc, homc({nc, rc}) = hom({nc, MAINp})

• The service execution configuration XCONFc is XCONF .

• The execution model Θc for XCONFc is Θ.

• The signature interpretation Ic is defined as follow:

– For every n∈Partiesc\{rc}, Icn = In

– Icrc
=η;IMAINp

• The parameter interpretation is defined in the same way.

• For every n∈COMPSc, ∆cn=∆c.

Lemma 6.10. The client-reduct semclient is an interpretation structure for
the service module client.
Proof The proof is relatively straightforward. Essentially, we take the same
elements as in the interpretation structure for the composition except in the
case of elements involving the requires-interface, rc, in which case we take
corresponding elements that involve MAINp. Notice that, in the case of
the interpretation of the interaction names and parameters of rc, we need to
map them to MAINp through the signature morphism η. This corresponds to
the intuition that the composition replaces the requires-interface of the client
module with the provider module using η to translate the interaction names
and parameters.

The only point that is somewhat more subtle is the fact that Icrc
is local

to rc. Consider then an interaction name a∈sign(rc).

1. From the definition of reduct, Icrc
(a)=IMAINp(η(a)).

2. From the definition of service module, we know that there is n∈Partiesc

such that {n, rc}∈Wiresc and a=µi(b) for some b∈NAME sigi
(i=1,2),

where specc({n, rc})=〈µ1, ip, µ2〉 and ip=〈sig1, sig2, coord〉. Let us take
i=2 for the sake of argument.

3. From the definition of composition, {n,MAINp}∈WiresL follows.

4. Because 〈In, IMAINp〉 is local to 〈n,MAINp〉 relative to spec({n, MAINp})
and spec({n, MAINp})=〈µ1, ip, µ2; η〉, we know that
IMAINp(η(µ2(b)))∈INT 〈n,MAINp〉∪INT 〈MAINp,n〉.

47

5. Hence, Icrc
(a)∈INTc〈n,rc〉

∪INTc〈rc,n〉

The proof of locality for connectors follows the same line of reasoning. 2

Now for the provider:

Definition 6.11 (Provider-reduct). For every interpretation structure sem
= 〈hom:LOCAL→CONF, XCONF , Θ, I, ∆〉 of (client ⊕rc,η provider) we de-
fine its provider-reduct semprovider as follows:

• homp:LOCALp→CONF coincides with hom on Partiesp and Wiresp.

• The service execution configuration XCONFp is XCONF .

• The execution model Θp is Θ.

• The signature interpretation Ip is the same as I restricted to the sig-
natures of provider:

• The parameter interpretation is defined in the same way.

• The state-variable interpretation ∆p is the same as ∆ on COMPSp.

Lemma 6.12. The provider-reduct semprovider is an interpretation structure
for the service module provider.
Proof The result is immediate because sem and semprovider are essentially
the same. 2

We now turn to models, starting with the provider:

Lemma 6.13. Let sem be a model for (client ⊕rc,η provider). The provider-
reduct semprovider is a model for provider.
Proof The result is immediate because sem and semprovider are essentially
the same and so are specL and specp. 2

For the client-reduct to be a model, we need the provider to be correct:

48

Lemma 6.14. Let sem be a model for (client ⊕rc,η provider). If provider
is correct then semclient is a model for client.
Proof The only property that is not immediately verified is the requirement
that semclient satisfies BHVc where specc(rc) = 〈sigc, BHVc〉. Given that
provider is correct and, by lemma 6.13, semprovider is a model for provider,
semprovider satisfies the provides interface BHVp of provider. Because η is a
match, semprovider satisfies η(BHVc). From lemma 6.7 and the fact that both
semprovider and semprovider share the same execution model, we can conclude
that semclient satisfies BHVc. 2

Finally, we can prove our main theorem:

Theorem 6.15 (Preservation of correctness). Let η be a match for the
requires-interface rc of client. The composition (client ⊕rc,η provider) is
correct if client and provider are correct.
Proof Let sem be a model for (client ⊕rc,η provider). By lemma 6.14,
semclient is a model for client. Because client is correct, semclient satis-
fies providesc, which is the same as providesL. Because sem and semclient

coincide in the way they interpret MAINL, which is the same as MAINc, it
follows that sem satisfies providesL. 2

7. Related work

Different formalisms and techniques have been brought to bear in order to
meet the challenges raised by SOC. Among the approaches that address the
modelling of service composition and assembly some focus directly on sup-
porting the use of existing technological standards, while others (like SRML)
remain largely ‘technology agnostic’. The most popular formalisms that are
being used for service assembly are those based on process algebras, Petri
nets or automata and associated analysis techniques such as model-checking
with temporal logic or bisimulation (in the case of process algebras). In this
section we situate the work that is presented in this paper by discussing some
of these formalisms.

7.1. Process algebras

Most of the applications of process algebras to SOC consist of extensions
of well-established calculi (typically the π-calculus [55]) with primitives that

49

handle the mechanisms that are typical of SOA middleware. Because such
calculi rely only on very few syntactic primitives, formal techniques have
been defined that can be used very effectively for manipulating and reasoning
about processes using techniques such as bisimulation. The disadvantage of
having a very reduced syntax is that domain specific phenomena like the
complex conversations that characterise SOC need to be encoded, making it
harder to model applications at the level of the business logic.

For example, COWS (Calculus for Orchestration of Web Services) is a
process algebra that provides operators inspired by BPEL [51]. In partic-
ular, COWS has a mechanism for correlating messages through the use of
indexes. Verification techniques for COWS have been defined over an exten-
sion of UCTL and its associated model checker [32]. Model-checking COWS
specifications requires an additional specification of the business semantics
of the operations that are used in that COWS specification. This is because
notions such as request, response, etc — which are native to SRML — are
not part of COWS.

Boreale et al. propose SCC (Service Centered Calculus) [18], which is
essentially an extension of the π-calculus with the same primitives for defining
orchestrations that have been adopted by the ORC programming language for
defining orchestrations [56]. ORC itself was originally a calculus for modelling
orchestrations, but has evolved into a full-fledged programming language for
implementing orchestrations [50]. SCC adopts a notion of service session
for modelling client-server relationships. Session types [45] are also being
brought forward to the realm of SOC (for example to track the types of
the values exchanged in each session [7, 21]), and extended to capture the
multi-party sessions that are typical of choreography [20, 24].

Vieira et al. [67] propose a variant of SCC that resorts to a generic
notion of context for correlating messages that would otherwise be seen as
independent. In SRML, two-way interactions define a much more complex
notion of context, which is characterised by the events associated with them
and the temporal correlation between those events.

Essentially, the difference between these formalisms and SRML is at the
level of abstraction at which they operate. The aforementioned calculi pro-
vide a mathematical semantics for the mechanisms that support choreogra-
phy or orchestration — sessions, message/event correlation, compensation,
inter alia — but, just like any Java programmer does not need to program
the dynamic allocation, referencing and de-referencing of names, a designer
of a complex service should not need to be concerned with mechanisms that

50

are part of the abstract operating system that is offered by the SOA middle-
ware. All that should be required from designers is that they identify and
model the high-level business activities and the dependencies that they have
on external services to fulfil their goals. Indeed, the main driver for the def-
inition of SRML was not the lack of expressive power of existing calculi but
the level of abstraction that they support. See [14] for a discussion on how
these two levels of abstraction can be formally related.

7.2. Petri nets

Petri nets are a very well established formalism that lends itself to mod-
elling a class of workflows — referred to as synchronisation workflows [48] —
that contain the branching and synchronisation syntactic primitives found
in BPEL [60], which has led to a number of semantics for BPEL (e.g.,
[60, 43, 54]). However, Petri nets have also been used in SOC independently
of BPEL. Narayaman et al. [59] have implemented a tool for encoding OWL-
S process descriptions into Petri nets so that analysis can be made using their
simulation and modelling environment. The authors describe the composite
behaviour of a service using a Petri net and discuss the conditions under
which such behaviour can emerge by combining a set of web services. In
our work, the problem is placed the other way around; we are interested in
verifying if a fixed assembly of services behaves globally as intended.

Yi and Kochut propose an approach in which service interface conversa-
tions are modelled by WSDL-tailored Petri nets [68]. More precisely, each
service interface is modelled by a Petri net where the inputs model WSDL op-
erations and the connections between those inputs define a control flow that
models the conversation. A set of such service interfaces can be composed by
defining a Petri net that orchestrates them. The associated tools support the
generation of BPEL code from composition specifications. It is also possi-
ble to generate from a composition specification a simplified WSDL tailored
Petri net that models the interface conversation of the composite service —
that Petri net can then be used in the assembly of other services.

Approaches that combine Petri nets with other formalisms also exist.
For example, Hamadi et al. use Petri nets to model service behaviour and
introduce a Petri net based algebra to model service assembly; the traditional
algebraic techniques like bisimulation and structural equivalence can then be
used to analyse service assemblies [42].

The main differences with respect to SRML are twofold. On the one
hand, SRML offers a declarative style of specification that, in particular,

51

supports underspecification, i.e., modellers do not need to start from com-
plete orchestrations but, instead, high-level designs that can be refined into
more ‘executable’ specifications. On the other hand, and more importantly,
SRML adopts an ‘open systems’ approach in that, in a module, the orches-
tration is not defined for a fixed collection of parties: the client is not fixed,
and neither are the external services that may need to be discovered. The
latter are represented by specifications of the behaviour that they are re-
quired to provide. This is reflected on the computational and coordination
model that we have defined, and the way it supports the composition of mod-
ules by matching the requires-interface of a client with the provides-interface
of a provider. In this sense, SRML goes beyond the scope of the usage of
Petri-Nets for orchestrating a fixed collection of parties.

7.3. Automata and Temporal logic

Fu, Bultan et al. have investigated several aspects of service compo-
sition using guarded state machines with asynchronous communication to
model the peers involved in a composite service. The authors analyse the
problem of implementing a desired choreography, which they call a global
conversation [23], with a system of such machines [22]. They also analyse
the problem of verifying the correctness of an orchestration of a system of
such guarded state machines [39] — in particular, the authors propose a
tool-supported method for verifying the correctness of BPEL assemblies that
involves translating BPEL processes into guarded state machines, translat-
ing those state machines into PROMELA (the input language of SPIN) and
using the SPIN model-checker to verify the correctness of the composition
(using Linear Temporal Logic) [44].

State machines were also adopted [11] to describe business protocols of
services at an abstraction level similar to that we have in SRML. They extend
state machines in order to include the specification of transition triggers
(which might involve temporal and time constraints) and also the effects of
transitions from the point of view of requesters (e.g., whether the transition is
“compensatable” or is “definitive”). However, in contrast with SRML, data
values exchanged during conversations are abstracted away. These business
protocols are then used to generate skeletons of service implementations in
BPEL [10]. Also based on state machines is the formalism proposed in [12] to
specify web-service interfaces. In this case, it is possible to specify constraints
over the exchanged data and to express temporal constraints on the ordering

52

of exchanged messages but time and features such as compensations and
permanent effects are not covered.

Typically, temporal logic has been used within model-checking approaches
to service-oriented system analysis for expressing the properties that a com-
posite service is expected to satisfy, while the service itself is usually modelled
using process algebras (e.g., [51]), Petri nets or automata (e.g., [63]). Some
approaches focus on analysing real time properties of BPEL. For example,
Diaz et al. model-check choreographies written with WS-CDL by translating
them into timed-automata (i.e., timed state machines) — the authors advo-
cate that the resulting (model-checked) automata can then be used for the
automatic generation of correct BPEL orchestrations [29].

In SRML, we use temporal logic not only to express the properties that
can be expected of a service (through the provides-interface of a module),
but also to model the external services that are required to deliver those
properties. This is essential for supporting dynamic discovery, selection and
binding as detailed in [33, 36]. The applications of temporal logic mentioned
above are essentially static in the sense that they are concerned with the way
a fixed choreography can be realised by state machines. As defined in Section
6, SRML supports a notion of composition that is algebraic, i.e., we define
an algebra of service modules in which temporal specifications are used for
defining the conditions of composability.

As discussed in Section 4, SRML makes use of a set of patterns of temporal
logic that capture commonly occurring requirements in business interactions.
The use of patterns of logic for modelling system requirements has been
addressed in the past (e.g., [53, 30]). Van der Aalst and Pesic have applied
that idea and proposed DecSerFlow, a language for modelling services with
patterns of Linear Temporal Logic (expressed graphically) that constrain
the processes that the services follow, without the need to fully define these
processes [65, 66]. The main difference between the patterns of logic used in
SRML and those used in DecSerFlow derives from the fact that SRML is a
domain-specific language; because of this, the abbreviations offered by SRML
are tailored specifically for modelling business interactions, while those of
DecSerFlow model generic processes.

8. Concluding remarks

A multitude of formal languages have been proposed for supporting the
development of functionally correct services. A fundamental difference be-

53

tween those languages and our approach in general, and SRML in particular,
derives from the fact that SRML is based on a set of constructs that cap-
ture what we believe are paradigmatic aspects of the business conversations
that occur in SOC. More specifically, SRML offers, and our mathematical
semantics addresses:

• messages that are typed by their business function;

• typical abstract message-correlation patterns;

• pre-defined conversation protocols.

Other approaches, some of which have been discussed in this paper, support
the modelling of business conversations in a less specific way, adapting lan-
guages and formalisms that were developed for other purposes. For example,
some calculi support conversations only in the sense that the set of messages
can be partitioned into conversations (e.g., [51, 67]). Other approaches use
generic workflow descriptions to model conversational protocols of services
(e.g., [68]). As a result, modellers have to encode the specific mechanisms
that SOC relies on — sessions, message/event correlation, compensation, in-
ter alia — which should be left to the underlying SOA middleware to provide.
To the best of our knowledge, there is no other formal approach that has been
defined from first principles with the aim of capturing the business nature of
service conversations and support service composition based on the business
logic that is required not as it is programmed.

More precisely, SRML offers a higher level of abstraction in which com-
plex services can be modelled independently of the specific languages that
organisations such as OASIS (www.oasis-open.org) and W3C (www.w3.org)
are making available for Web services (e.g., [11, 61]) or Grid computing (e.g.,
[38]). Our aim was to develop models and mechanisms that support the de-
sign of complex services from business requirements, and analysis techniques
through which designers can verify or validate properties of composite ser-
vices that can then be put together from (heterogeneous) service components
using assembly and binding techniques such as the ones provided by SCA.

Towards this aim, SRML adopts a declarative style through which one
can specify ‘what’ the components of a service do, while abstracting from
‘how’ they do it. Most other approaches focus on aspects of computation
that are closely related to the way service composition is implemented, while
SRML focuses on the logic of business integration and allows the executional

54

aspects to be left unspecified. This shift from procedural to declarative spec-
ifications for modelling services has been advocated, for example, by van der
Aalst and Pesic [65] — who, nonetheless, have focused their efforts on moni-
toring the workflow of services at run time and have not addressed the issue
of service design. For SRML, we have adopted the same principles but put
forward a solution in which the business logic of composite services can be
designed and analysed without forcing designers to make premature decisions
about the way business logic is implemented.

The computational and coordination model that we proposed was used
for supporting model-checking techniques that support qualitative analysis
[6] and stochastic analysis techniques for timing properties of services [13].
Abstraction mappings from workflow languages (such as BPEL [17]), policy
languages (such as StPowla [16]), and calculi (such as COWS [14]) have also
been defined. Other essential aspects of SOC that SRML supports concern
dynamic discovery, selection and binding of services, for which we developed
an algebraic semantics that overlays the model proposed herein [33, 36].

Acknowledgements

We would like to thank our colleagues in the SENSORIA project for many
useful discussions and feedback, especially Laura Bocchi, Stefania Gnesi and
Franco Mazzanti who contributed directly to the work presented here. We
would also like to thank the reviewers for having read the paper to such great
depth and made so many helpful and challenging comments and suggestions.

References

[1] Global computing initiative. http://cordis.europa.eu/ist/fet/gc.htm.

[2] A. Alves et al. Web Services Business Process Execution Language
Version 2.0, 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.html.

[3] J. Abreu. Modelling Business Conversations in Service Component Ar-
chitectures. PhD thesis. University of Leicester, 2009.

[4] J. Abreu, L. Bocchi, J. L. Fiadeiro, and A. Lopes. Specifying and Com-
posing Interaction Protocols for Service-Oriented System Modelling. In
Proceedings of the 27th IFIP WG 6.1 International Conference on For-
mal Techniques for Networked and Distributed Systems (FORTE), vol-
ume 4574 of LNCS, pages 358–373. Springer, 2007.

55

[5] J. Abreu and J. L. Fiadeiro. A Coordination Model for Service-Oriented
Interactions. In Proceedings of the 10th International Conference on
Coordination Models and Languages (COORDINATION), volume 5052
of LNCS, pages 1–16. Springer, 2008.

[6] J. Abreu, F. Mazzanti, J. L. Fiadeiro, and S. Gnesi. A Model-Checking
Approach for Service Component Architectures. In Formal Techniques
for Distributed Systems (FMOODS/FORTE), volume 5522 of LNCS,
pages 219–224. Springer, 2009.

[7] L. Acciai and M. Boreale. A Type System for Client Progress in a
Service-Oriented Calculus. In Concurrency, Graphs and Models, volume
5065 of LNCS, pages 642–658. Springer, 2008.

[8] R. Allen and D. Garlan. A formal basis for architectural connection.
ACM Transactions on Software Engineering and Methodology, 6(3):213–
249, 1997.

[9] G. Alonso, F. Casati, H. A. Kuno, and V. Machiraju. Web Services -
Concepts, Architectures and Applications. Springer, 2004.

[10] K. Bäına, B. Benatallah, F. Casati, and F. Toumani. Model-driven web
service development. In Proceedings of the 16th International Conference
on Advanced Information Systems Engineering (CAiSE), volume 3084
of LNCS, pages 290–306. Springer, 2004.

[11] B. Benatallah, F. Casati, and F. Toumani. Web services conversation
modeling: A cornerstone for e-business automation. IEEE Internet
Computing, 8(1):46–54, 2004.

[12] D. Beyer, A. Chakrabarti, and T. A. Henzinger. Web service interfaces.
In Proceedings of the 14th International Conference on World Wide Web
(WWW), pages 148–159. ACM, 2005.

[13] L. Bocchi, J. L. Fiadeiro, S. Gilmore, J. Abreu, M. Solanki, and
V. Vankayala. A formal approach to modelling time properties of service
oriented systems. In Handbook of Research on Non-Functional Properties
for Service-Oriented Systems: Future Directions, Advances in Knowl-
edge Management Book Series, pages 36–60. IGI Global, in print.

56

[14] L. Bocchi, J. L. Fiadeiro, A. Lapadula, R. Pugliese, and F. Tiezzi.
From architectural to behavioural specification of services. Electr. Notes
Theor. Comput. Sci., 253(1):3–21, 2009.

[15] L. Bocchi, J. L. Fiadeiro, and A. Lopes. Service-oriented modelling of
automotive systems. In Proceedings of the 32nd Annual IEEE Inter-
national on Computer Software and Applications (COMPSAC), pages
1059–1064. IEEE, 2008.

[16] L. Bocchi, S. Gorton, and S. Reiff-Marganiec. Engineering service-
oriented applications: From StPowla processes to SRML models. In
Proceedings of the 11th International Conference on Fundamental As-
pects of Software Engineering (FASE), volume 4961 of LNCS, pages
163–178, 2008.

[17] L. Bocchi, Y. Hong, A. Lopes, and J. L. Fiadeiro. From BPEL to
SRML: a formal transformational approach. In Proceedings of the 6th
International Workshop on Web Services and Formal Methods (WS-
FM), volume 4937 of LNCS, pages 92–107. Springer, 2008.

[18] M. Boreale, R. Bruni, L. Caires, R. D. Nicola, I. Lanese, M. Loreti,
F. Martins, U. Montanari, A. Ravara, D. Sangiorgi, V. T. Vasconcelos,
and G. Zavattaro. Scc: A service centered calculus. In Web Services and
Formal Methods, volume 4184 of LNCS, pages 38–57. Springer, 2006.

[19] R. Bruni. Calculi for service-oriented computing. In Proceedings of
the 9th International School on Formal Methods for the Design of Com-
puter, Communication, and Software Systems: Formal Methods for Web
Services, pages 1–41, 2009.

[20] R. Bruni, I. Lanese, H. Melgratti, and E. Tuosto. Multiparty Sessions
in SOC. In Proceedings of the 10th International Conference on Co-
ordination Models and Languages (COORDINATION), volume 5052 of
LNCS, pages 67–82. Springer, 2008.

[21] R. Bruni and L. G. Mezzina. Types and deadlock freedom in a calculus
of services, sessions and pipelines. In 12th International Conference on
Algebraic Methodology and Software Technology (AMAST), volume 5140
of LNCS, pages 100–115. Springer, 2008.

57

[22] T. Bultan and X. Fu. Specification of realizable service conversations
using collaboration diagrams. Service Oriented Computing and Appli-
cations, 2(1):27–39, 2008.

[23] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: a new
approach to design and analysis of e-service composition. In Proceedings
of the 12th International Conference on World Wide Web (WWW),
pages 403–410. ACM, 2003.

[24] M. Carbone, K. Honda, and N. Yoshida. A calculus of global interac-
tion based on session types. Electronic Notes in Theoretical Computer
Science, 171(3):127–151, 2007.

[25] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. Con-
current software verification with states, events, and deadlocks. Formal
Aspects of Computing, 17(4):461–483, 2005.

[26] E. Clarke, E. Emerson, and A. P. Sistla. Automatic Verification of Finite
State Concurrent Systems using Temporal Logic Specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244–263,
1986.

[27] R. De Nicola and F. W. Vaandrager. Action versus state based logics for
transition systems. In Semantics of Systems of Concurrent Processes,
pages 407–419, 1990.

[28] R. De Nicola and F. W. Vaandrager. Three logics for branching bisim-
ulation. J. ACM, 42(2):458–487, 1995.

[29] G. Diaz, J. Pardo, M. Cambronero, V. Valero, and F. Cuartero. Au-
tomatic Translation of WS-CDL Choreographies to Timed Automata.
In Formal Techniques for Computer Systems and Business Processes,
volume 3670 of LNCS, pages 230–242. Springer, 2005.

[30] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In Proceedings of the 21st In-
ternational Conference on Software Engineering (ICSE), pages 411–420.
ACM, 1999.

[31] A. Elfatatry. Dealing with change: components versus services. Com-
munications of the ACM, 50(8):35–39, 2007.

58

[32] A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, and
F. Tiezzi. A model checking approach for verifying cows specifications.
In Proceedings of the 11th International Conference on Fundamental
Aspects of Software Engineering (FASE), volume 4961 of LNCS, pages
230–245. Springer, 2008.

[33] J. L. Fiadeiro and A. Lopes. A model for dynamic reconfiguration in
service-oriented architectures. In Proceedings of 4th European Confer-
ence on Software Architecture (ECSA), pages 70–85, 2010.

[34] J. L. Fiadeiro and A. Lopes. An interface theory for service-oriented
design. In Proceedings of the 14th International Conference on Funda-
mental Aspects of Software Engineering (FASE), volume 6603 of LNCS,
pages 18–33. Springer, 2011.

[35] J. L. Fiadeiro, A. Lopes, and L. Bocchi. A Formal Approach to Service
Component Architecture. In Proceedings of the 4th International Work-
shop on Web Services and Formal Methods (WS-FM), volume 4184 of
LNCS, pages 193–213. Springer, 2006.

[36] J. L. Fiadeiro, A. Lopes, and L. Bocchi. An abstract model of service
discovery and binding. Formal Aspects of Computing, 23(4):433–463,
2011.

[37] J. L. Fiadeiro, A. Lopes, L. Bocchi, and J. Abreu. The Sensoria refer-
ence modelling language. In M. Wirsing and M. M. Hölzl, editors, Rig-
orous Software Engineering for Service-Oriented Systems, volume 6582
of LNCS, pages 61–114. Springer, 2011.

[38] I. Foster and C. Kesselman (Eds). The Grid 2: Blueprint for a new
computing infrastructure, 2004.

[39] X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services.
In Proceedings of the 13th International Conference on World Wide Web
(WWW), pages 621–630. ACM, 2004.

[40] S. Gilmore and J. Hillston. The PEPA workbench: A tool to support a
process algebra-based approach to performance modelling. In Proceed-
ings of the 7th International Conference Modelling Techniques and Tools
for Computer Performance Evaluation, volume 794 of LNCS, pages 353–
368. Springer, 1994.

59

[41] S. Gnesi and F. Mazzanti. A model checking verification environment
for UML statecharts. In Proceedings of XLIII Congresso Annuale AICA,
2005.

[42] R. Hamadi and B. Benatallah. A petri net-based model for web service
composition. In Proceedings of the 14th Australasian Database Confer-
ence - Volume 17, volume 143 of ACM International Conference Pro-
ceeding Series, pages 191–200. Australian Computer Society, 2003.

[43] S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to petri nets.
In Proceedings of the 3rd International Conference on Business Process
Management (BPM), volume 3649 of LNCS, pages 220–235. Springer,
2005.

[44] G. J. Holzmann. The model checker spin. IEEE Transactions on Soft-
ware Engineering, 23:279–295, May 1997.

[45] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and
type disciplines for structured communication-based programming. In
Proceedings of the 7th European Symposium on Programming Languages
and Systems (ESOP), volume 1381 of LNCS, pages 22–138. Springer,
1998.

[46] M. Huth, J. Agadeesan, and D. Schmidt. Modal transition systems : A
foundation for three-valued program analysis. In Proceedings of the 10th
European Symposium on Programming Languages and Systems (ESOP),
volume 2028 of LNCS, pages 155–169. Springer-Verlag, 2001.

[47] M. Kaminski. A branching time logic with past operators. J. Comput.
Syst. Sci., 49(2):223–246, 1994.

[48] B. Kiepuszewski, A. H. M. ter Hofstede, and W. M. P. van der Aalst.
Fundamentals of control flow in workflows. Acta Informatica, 39(3):143–
209, 2003.

[49] E. Kindler and T. Vesper. Estl: A temporal logic for events and states.
In Proceedings of the 19th International Conference on Application and
Theory of Petri Nets, volume 1420 of LNCS, pages 365–383. Springer-
Verlag, 1998.

60

[50] D. Kitchin, A. Quark, W. R. Cook, and J. Misra. The Orc Pro-
gramming Language. In Formal Techniques for Distributed Systems
(FMOODS/FORTE), volume 5522 of LNCS, pages 1–25. Springer, 2009.

[51] A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration
of Web Services. In Proceedings of the 16th European Symposium on
Programming Languages and Systems (ESOP), volume 4421 of LNCS,
pages 33–47. Springer, 2007.

[52] M. Beisiegel et al. Service Component Architecture Specifications, 2007.
http://www.osoa.org.

[53] Z. Manna and A. Pnueli. Tools and rules for the practicing verifier.
Technical Report CS-TR-90-1321, Stanford University, 1990.

[54] A. Martens. Analyzing web service based business processes. In Proceed-
ings of the 8th International Conference on Fundamental Approaches
to Software Engineering (FASE), volume 3442 of LNCS, pages 19–33.
Springer, 2005.

[55] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press, June 1999.

[56] J. Misra. Computation orchestration: A basis for wide-area computing.
In Engineering Theories of Software Intensive Systems, volume 195 of
NATO Science Series II: Mathematics, Physics and Chemistry, pages
285–330. Springer, 2005.

[57] M. Müller-Olm, D. A. Schmidt, and B. Steffen. Model-checking: A
tutorial introduction. In Proceedings of the 6th International Symposium
on Static Analysis, pages 330–354. Springer-Verlag, 1999.

[58] N. Kavantzas et al. Web Services Choreography Description Language
Version 1.0, 2005. http://www.w3.org/2002/ws/chor/.

[59] S. Narayanan and S. A. McIlraith. Simulation, verification and auto-
mated composition of web services. In Proceedings of the 11th Inter-
national Conference on World Wide Web (WWW), pages 77–88. ACM,
2002.

61

[60] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel, M. Dumas,
and A. H. M. ter Hofstede. Formal semantics and analysis of control
flow in ws-bpel. Science of Computer Programming, 67(2-3):162–198,
2007.

[61] C. Peltz. Web services orchestration and choreography. IEEE Computer,
36(10):46–52, 2003.

[62] J. Su, T. Bultan, X. Fu, and X. Zhao. Towards a theory of web service
choreographies. In Proceedings of the 4th International Workshop on
Web Services and Formal Methods (WS-FM), volume 4937 of LNCS,
pages 1–16. Springer, 2007.

[63] M. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. An action/state-
based model-checking approach for the analysis of communication proto-
cols for Service-Oriented Applications. In Proceedings of the 12th Inter-
national Workshop on Formal Methods for Industrial Critical Systems
(FMICS), volume 4916 of LNCS. Springer, 2007.

[64] M. ter Beek, S. Gnesi, F. Mazzanti, and C. Moiso. Formal Modelling
and Verification of an Asynchronous Extension of SOAP. In Proceedings
of the Fourth IEEE European Conference on Web Services (ECOWS),
pages 287–296. IEEE Computer Society, 2006.

[65] W. van der Aalst and M. Pesic. DecSerFlow: Towards a truly declar-
ative service flow language. In Proceedings of the Third International
Workshop Web Services and Formal Methods (WS-FM), volume 4184 of
LNCS, pages 1–23. Springer, 2006.

[66] W. van der Aalst and M. Pesic. Specifying and Monitoring Service Flows:
Making Web Services Process-Aware. Springer, 2007.

[67] H. T. Vieira, L. Caires, and J. C. Seco. The Conversation Calculus:
A Model of Service-Oriented Computation. In Proceedings of the 17th
European Symposium on Programming on Programming Languages and
Systems (ESOP), volume 4960 of LNCS, pages 269–283. Springer, 2008.

[68] X. Yi and K. Kochut. A cp-nets-based design and verification framework
for web services composition. In Proceedings of the IEEE International
Conference on Web Services (ICSW), pages 756–760. IEEE Computer
Society, 2004.

62

Appendix A. Temporal operators

Intuitive semantics of the temporal operators

The operators A and E are interpreted over a state, while the remaining
operators are interpreted over a path.

Aπ All states of all paths from the current state satisfy π.
Eπ There exists a path from the current state and state on

that path that satisfies π.

Xχφ φ holds in the next state on the current path, which is
reached by a transition that satisfies χ.

φχUφ′ Eventually, a state on the current path will be reached
in which φ′ holds and, until then, φ and χ will hold in
every state and transition, respectively.

φχUχ′φ′ Eventually, a transition on the current path will be
reached that satisfies χ′ and leads to a state in which
φ′ holds; until then φ and χ will hold in every state and
transition on the path, respectively.

φχWφ′ Either φχUφ′ holds in the current path or φ and χ will
hold in every state and transition of the path, respec-
tively.

φχWχ′φ′ Either φχUχ′φ′ holds in the current path or φ and χ will
hold in every state and transition of the path, respec-
tively.

Derived temporal operators

• 〈χ〉φ stands for E(Xχφ)

• [χ]φ stands for ¬〈χ〉¬φ

• EFφ stands for E(truetrueUφ)

• AFφ stands for A(truetrueUφ)

• AFχφ stands for A(truetrueUχφ)

• EGφ stands for E(φtrueWfalse)

• AGφ stands for A(φtrueWfalse)

63

It is easy to conclude that:

s |= AGφ iff in every path σ from s and every 0 ≤ i, σ(i) |= φ

s |= [χ]φ iff in every path σ from s such that |σ| ≥ 1, if σ(0, 1) |= χ
then σ(1) |= φ

The intuitive semantics of the derived operators is captured in the fol-
lowing table:

〈χ〉φ There is a transition from the current state that satisfies
χ and ends in a state in which φ holds.

[χ]φ Every transition from the current state satisfies χ and
ends in a state in which φ holds.

EFφ There is a path from the current state that leads to a
state in which φ holds.

AFφ Every path from the current state leads to a state in
which φ holds.

EGφ There is a path from the current state throughout which
φ holds in every state.

AGφ φ holds in every state of every path from the current
state

The axioms of service-oriented computation

In Section 3 we have presented our model of computation for service-
oriented systems. We have defined which events can occur when a given
configuration computes and how those events are transmitted between the
nodes of the configuration. These properties can be expressed using formulae
of UCTL, which are axioms in the sense that they hold in every execution
model.

For every execution model Θ, signature interpretation I, and e∈En,
〈Θ, I〉 satisfies:

Axioms of event propagation –

1. A(true¬e¡We!true)
(Events can only be delivered after they are published)

2. A(true(¬e?∧¬e¿)We¡true)
(Events can only be processed after they are delivered)

64

3. AG¬(e? ∧ e¿)
(An event cannot be both executed and discarded)

Axiom of fairness –

1. AG[e¡]AF(e?∨e¿)true
(After an event is delivered, it will eventually be processed, i.e., it
will be executed or discarded)

Axioms of sessions –

1. AG[e!]A(true¬e!Wfalse)
(An event can only be published once)

2. AG[e¡]A(true¬e¡Wfalse)
(An event can only be delivered once)

3. AG[e?]A(true¬e?Wfalse)
(An event can only be executed once)

4. AG[e¿]A(true¬e¿Wfalse)
(An event can only be discarded once)

In addition to these axioms, which characterise the execution model, we
can also define the axioms that characterise the conversational protocols, i.e.,
the behaviour of requesters and providers. The advantages of having a set of
formulae that characterise these protocols is that it enables us to classify the
nodes of a configuration by checking if they behave as requesters or providers
for the two-way interactions in which they are involved.

For every execution model Θ and interpretation I:

Axioms of requesters – A party n∈Parties behaves as a requester in
a∈NAME s&r, iff I(a)∈INT 〈n,n′〉 for some n′∈Parties and 〈Θ, I〉 sat-
isfies the following formulae:

1. A(true¬a�!
W(aB?∧a.reply)true)

i.e., the commit-event will only be published after a positive reply
was executed;

2. AG[a�!]¬a7!
i.e., the commit-event will only be published if the cancel-event
has not been published before;

3. A(true¬a7!W(aB?∧a.reply)true)
i.e., the cancel-event will only be published after a positive reply
was executed;

65

4. AG[a7!]¬a�!
i.e., the cancel-event will only be published if the commit-event
has not been published before;

5. AG[a>!]a�!
i.e., the revoke-event will only be published after the commit-event
was published;

6. AG[a>! ∧ a�!]false
i.e., the revoke-event and the commit-event cannot be published
simultaneously.

Axioms of providers – A party n∈Parties behaves as a provider in a∈NAME r&s,
iff I(a)∈INT 〈n′,n〉 for some n′∈Parties and 〈Θ, I〉 satisfies:

1. AG[a
?]AFaB!true
i.e., after the initiation-event is executed a reply-event will be
published;

2. A(true¬aB!Wa
?)
i.e., the reply-event will only be published after (or when) the
initiation-event is executed;

3. AG[a�¡ ∧ time < a.useBy]AF
a�!

true
i.e., a commit-event will be executed if delivered before the dead-
line expires;

4. AG[a7¡ ∧ time < a.useBy]AFa7!true
i.e., a cancel-event will be executed if delivered before the deadline
expires;

5. AG[a>? ∨ a>¿]a�?
i.e, the revoke-event will not be processed before executing the
commit-event.

66

Appendix B. Derived behaviour patterns

The following patterns are particular instances of the basic ones defined
in Section 5.2 and are used in the examples:

• “s enables e? until w” abbreviates “s enables e? when true until w”
— e can only be executed, and cannot be discarded, after s (first)
becomes true but only while w has never been true. After w (first)
becomes true e cannot be executed anymore.

¬ e? ∧ ¬s ∧ ¬w

s

¬ e¿ ∧ ¬w

w

¬ e?

s enables e? until w

¬ e? ∧ ¬s ∧ ¬w

s

¬ e¿ ∧ ¬w

¬ e? ∧ ¬s

• “s enables e?” abbreviates “s enables e? until false” — once s (first)
becomes true e cannot be discarded ever again and before s becomes
true e cannot be executed.

¬ e? ∧ ¬s

s

¬ e¿

¬ e? ∧ ¬s

s enables e?

• “initiallyEnabled e?” abbreviates “true enables e?” — the event e
will never be discarded.

67

• “s ensures e!” abbreviates “s ensures e! before false” — after s (first)
becomes true, but not before, e will be published.

¬ e! ∧ ¬s

s e!
¬ e! ∧ ¬s

s ensures e!

68

Appendix C. Specifications of elements of the case study

TRAVELBOOKING

 TA:
 TravelAgent BA:

BookingAgent

PA:
PayAgent

BH:
a3,w3,b3

BP:
a2,w2,b2

DB:
UsrDB

BD:
a5,w5,b5

HA:
HotelAgent

FA:
FlightAgent

BF:
a4,w4,b4

Figure C.5: The structure of the module TravelBooking. The service is assembled by
connecting a component BA of type BookingAgent to three external service instances PA,
HA and FA with interface types PayAgent, HotelAgent and FlightAgent (respectively)
and the persistent component (a database of users) DB of type UsrDB. BP, BH, BF, and
BD are the wires that interconnect the several parties and TA of type TravelAgent is the
interface through which service requesters interact with the TravelBooking service.

69

– 5 –

BUSINESS PROTOCOL HotelAgent is

 INTERACTIONS
 r&s lockHotel

 checkin,checkout:date,
 name:usrData
 hconf:hcode
 BEHAVIOUR
 initiallyEnabled lockHotel?

 lockHotel? enables
 lockHotel? until date(time)≥lockHotel.checkin

BUSINESS PROTOCOL PayAgent is

 INTERACTIONS
 r&s payment
 amount:moneyValue,
 payee:accountNumber,
 originator:usrData,
 cardNo:payData

 proof:pcode
 BEHAVIOUR

 initiallyEnabled payment?

LAYER PROTOCOL UsrDB is

 INTERACTIONS
 s&r log
 usr:usrName,
 pwd:password
 s&r getData
 usr:usrName

 traveller:usrData,
 cardNo:payData

 BEHAVIOUR
 initiallyEnabled log?

 log! ∧ log.reply enables getData?

 getData.reply after getData!

Figure C.6: The specification of the service interface of a HotelAgent written in the lan-
guage of business protocols. A HotelAgent can be involved in one interaction named
lockHotel that models the booking of a room in a hotel. The interaction is declared to be
of type r&s, which means that it is initiated by the co-party (the component BA) which
expects a reply from the party (the application that binds to the interface). Parameters
are declared for the event that starts the interaction (indicated under
) and the reply
(indicated under B). Some properties of this interaction are specified: a booking request
will be accepted once the service is instantiated (first formula under behaviour) and a
booking can be revoked after a commit and up until the check-in date (second formula).

70

– 3 –

s&r getData
 usr
 traveller,
 carNo

S1

 RStraight.I(usrName)
O(usrData,payData)

R1

r&s getData
 usr
 traveller
 carNo

END MODULE

SPECIFICATIONS

BUSINESS PROTOCOL TravelAgent is

 INTERACTIONS
 r&s login

 usr:usrName, pwd:password
 r&s bookTrip

 from,to:airport,
 out,in:date
 fconf:fcode,
 hconf:hcode,
 amount:moneyValue
 snd payNotify
 status:bool
 snd refund
 amount:moneyValue
 BEHAVIOUR

 initiallyEnabled login?

 login! ∧ login.reply enables
 bookTrip? until time≥login.useBy

 bookTrip? ensures payNotify!

 payNotify! ∧ payNotify.status enables
 bookTrip? until date(time)≥dayBefore(bookTrip.out)

 bookTrip? ensures refund!

Figure C.7: The specification of the provides-interface of the service module TravelBook-
ing written in the language of business protocols. The service can be involved in four
interactions (login, bookTrip, payNotify and refund) that model the login into the system,
the booking of a trip, the sending of a receipt and refunding the client of the service (in
case a booking is returned). Five properties are specified for these interactions: a login
request will be accepted upon instantiation of the service; a request for booking a trip will
be accepted after a positive reply to the login request until the period for submitting the
request expires; a notification of payment will be sent after the booking is accepted; the
booking can be revoked after the notification of payment until the day before departure;
revoking the booking will lead to a refund.

71

– 6 –

BUSINESS ROLE BookingAgent is

INTERACTIONS
 r&s login
 usr:usrName,
 pwd:password
 r&s bookTrip
 from,to:airport,
 out,in:date
 fconf:fcode,
 hconf:hcode,
 amount:moneyValue
 s&r bookFlight
 from,to:airport,
 out,in:date,
 traveller:usrData

 fconf:fcode,
 amount:moneyValue,

 payee:accountNumber,
 payService:serviceId

 s&r payment
 amount:moneyValue,
 payee:accountNumber,
 originator:usrData,
 cardNo:payData
 proof:pcode

 s&r bookHotel
 checkin:date,
 checkout:date,
 traveller:usrData

 hconf:hcode
 snd payAck

 proof:pcode,
 status:bool

 snd payNotify
 status:bool
 rcv ackRefundRcv
 amount:moneyValue
 snd refund
 amount:moneyValue

 s&r log
 usr:usrName,
 pwd:password
 s&r getData
 usr:usrName

 traveller:usrData,
 cardNo:payData

 ORCHESTRATION
local s:[START, AUTHENTICATING, LOGGED, QUERIED, FLIGHT_OK,
 QUERIED, DATA_OK, FLIGHT_OK, HOTEL_OK, CONFIRMED,

END_PAYED, END_UNBOOKED, COMPENSATING, END_COMPENSATED]

 transition Login
triggeredBy login
guardedBy s=START
effects s’=AUTHENTICATING
sends log ∧ log.usr=login.usr ∧ log.pwd=login.pwd

 transition AuthenticationAnswer
triggeredBy log
guardedBy s=AUTHENTICATING
effects log.Reply ⊃ s’=LOGGED
 ∧ ¬log.Reply ⊃ s’=END_UNBOOKED
sends login ∧ login.reply=log.reply

 transition Request
triggeredBy bookTrip
guardedBy s=LOGGED ∧ ¬(time ≥ login.useBy)
effects ¬(date(time) ≥ bookTrip.out) ⊃ s’=QUERIED
 ∧ (date(time) ≥ bookTrip.out) ⊃ s’=END_UNBOOKED
sends ¬(date(time) ≥ bookTrip.out) ⊃ getData
 ∧ getData.usr=login.usr
 ∧ (date(time) ≥ bookTrip.out) ⊃ bookTrip
 ∧ ¬bookTrip.reply

 transition DataAnswer
triggeredBy getData
guardedBy s=QUERIED
effects s’=DATA_OK
sends bookFlight ∧ bookFlight.from=bookTrip.from
 ∧ bookFlight.to=bookTrip.to
 ∧ bookFlight.out=bookTrip.out
 ∧ bookFlight.in=bookTrip.in
 ∧ bookFlight.traveller=getData.traveller

Figure C.8: Part of the specification of a BookingAgent using the language of business
roles.

72

– 4 –

BUSINESS PROTOCOL FlightAgent is

 INTERACTIONS
 r&s lockFlight

 from,to:airport,
 out,in:date,

 traveller:usrData
 fconf:fcode,

 amount:moneyValue,
 payee:accountNumber,
 payService:serviceId
 rcv payAck
 proof:pcode,
 status:bool
 snd payRefund
 amount:moneyValue

 BEHAVIOUR
 initiallyEnabled lockFlight?

 lockFlight! ∧ lockFlight.reply enables payAck?

 payAck? ∧ payAck.status enables
 lockFlight? until date(time)≥lockFlight.out

 lockFlight? ensures payRefund!

Figure C.9: The business protocol followed by a FlightAgent. A FlightAgent can engage in
three interactions (lockFlight, payAck and payRefund) and offers the following properties:
a request for a flight will be accepted upon instantiation of the service; an acknowledgment
of payment will be processed after (and only after) the request for the flight is accepted;
once the pay acknowledgment is received, the flight booking can be revoked until the date
of departure; revoked bookings will be refunded.

73

– 9 –

INTERACTION PROTOCOL RStraight.I(d1,d2,d3)O(d4)D(v:time) is

 ROLE A
 s&r S1

 i1:d1, i2:d2, i3:d3
 o1:d4

 ROLE B
 r&s R1

 i1:d1, i2:d2, i3:d3
 o1:d4

 COORDINATION
 S1 = R1
 S1.i1=R1.i1

 S1.i2=R1.i2

 S1.i3=R1.i3
 S1.o1=R1.o1

 reliableOn S1

 reliableOn R1
 S1 noLaterThan v
 R1 noLaterThan v

INTERACTION PROTOCOL RStraight.I(d1,d2,d3,d4)O(d5) is

 ROLE A
 s&r S1

 i1:d1, i2:d2, i3:d3, i4:d4
 o1:d5

 ROLE B
 r&s R1

 i1:d1, i2:d2, i3:d3, i4:d4
 o1:d5

 COORDINATION
 S1 = R1
 S1.i1=R1.i1

 S1.i2=R1.i2

 S1.i3=R1.i3

 S1.i4=R1.i4
 S1.o1=R1.o1

 reliableOn S1

 reliableOn R1

INTERACTION PROTOCOL RStraight.I(d1,d2,d3,d4)O(d5,d6,d7) is

 ROLE A
 s&r S1

 i1:d1, i2:d2, i3:d3, i4:d4
 o1:d5, o2:d6, o3:d7

 ROLE B
 r&s R1

 i1:d1, i2:d2, i3:d3, i4:d4
 o1:d5, o2:d6, o3:d7

 COORDINATION
 S1 = R1
 S1.i1=R1.i1

 S1.i2=R1.i2

 S1.i3=R1.i3

 S1.i4=R1.i4
 S1.o1=R1.o1

Figure C.10: An interaction protocol that connects an s&r interaction with a r&s interac-
tion where the initiation-event (
) has three parameters and the reply-event (B) has just
one. According to this interaction protocol the two interactions are equivalent and their
parameters are observed in the same way from the point of view of the two parties involved
in the interaction. Moreover, reliability in the delivery of events associated with the two
interactions is required. The delay introduced by the wire in the transmission of these
events is bounded to the value v, which is a time value left undefined until the protocol is
applied. Similarly, d1, d2, d3 and d4, which are the data sorts of the parameters, are also
left undefined until the interaction protocol is applied.

– 2 –

i3

o1

o2

i3

o1

o2

 out
 in
 fconf
 hconf
 amount

R1

i1 RStraight.I(moneyValue)
S1

i1
snd refund
 amount

R1

i1 RStraight.I(boolean)
S1

i1
snd payNotify
 status

BA

BookingAgent a2 BP b2
PA
PayAgent

s&r payment
 amount
 payee
 originator
 cardNo
 proof

S1

i1

i2
i3
i4

o1

RStraight.I(moneyValu
e,accountNumber,usrDa
ta,payData)O(pcode)

R1

i1

i2
i3
i4

o1

r&s payment
 amount
 payee
 originator
 cardNo
 proof

BA

BookingAgent
a3 BH b3

HA
HotelAgent

s&r bookHotel
 checkin
 checkout
 traveller
 hconf

S1

i1
i2
i3
o1

RStraight.
I(date,date,usrData)

O(hcode)D(60)

R1

i1
i2

i3
o1

r&s lockHotel
 checkin
 checkout
 name
 hconf

BA

BookingAgent a4 BF b4
FA
FlightAgent

s&r bookFlight
 from
 to
 out
 in
 traveller
 fconf
 amount
 payee
 payService

S1

i1
i2
i3

i4
i5
o1

o2

o3

o4

RStraight.
I(airport,airport,

date,date)
O(fcode,moneyValue,
usrData,serviceId)

D(60)

R1

i1
i2
i3

i4

i5
o1

o2

o3

o4

r&s lockFlight
 from
 to
 out
 in
 traveller
 fconf
 amount
 payee
 payService

snd payAck
 proof
 status

S1

i1

i2

RStraight.
I(pcode,bool)

R1

i1

i2

rcv payAck
 proof
 status

rcv ackRefundRcv
 amount

R

i1
RStraight.

I(moneyValue)
S

i1
snd payRefund
 amount

BA

BookingAgent
a5 BD b5

DB
UsrBD

s&r log
 usr
 pwd

S1 RStraight.I(usrName,
password)

R1 r&s log
 usr
 pwd

Figure C.11: The connector that binds the BookingAgent to the HotelAgent using a
RStraight interaction protocol. Variables S, S.i1 S.i2, S.i3 and S.o1 are associated with
the interaction name bookHotel and parameters checkin, checkout, traveller and hconf, re-
spectively, in order to define a morphism from the Role A of the protocol into the signature
of the BookingAgent. Variables R, R.i1 R.i2, R.i3 and R.o1 define a morphism from the
Role B into the signature of HotelAgent. The datatypes of parameters checkin, checkout,
traveller and hconf (date, date, usrData and hcode, respectively) and the time value 60
are used to instantiate the formal parameters of the interaction protocol.

74

