
Redundant integer representations and fast exponentiationDieter Gollmann, Yongfei Han, and Chris J. MitchellAugust 25, 1995AbstractIn this paper two modi�cations to the standard square and multiply method forexponentiation are discussed. The �rst, using a signed-digit representation of theexponent, has been examined previously by a number of authors, and we present anew precise and simple mathematical analysis of its performance. The second, a newtechnique, uses a di�erent redundant representation of the exponent, which we calla string replacement representation; the performance of this new method is analysedand compared with previously proposed methods. The techniques considered in thispaper have application in the implementation of cryptographic algorithms such asRSA, where modular exponentiations of very large integers need to be calculated.Index Terms: RSA, modular exponentiation, signed-digit representation.1 IntroductionExponentiation of large integers (modulo a large integer) is the basis of several well knowncryptographic algorithms such as RSA [16]. The calculations involved are complex, andcan be time-consuming especially when performed in software. As a result algorithmswhich speed up implementations of modular exponentiation are of considerable practicalsigni�cance; see, for example, Selby and Mitchell [17]. Techniques for speeding up mod-ular exponentiation and, more speci�cally, modular multiplication have a distinguishedhistory. Norris and Simmons have proposed an algorithm tailored to implementations onfast multiplication devices, which can exploit the rounding inherent to oating point arith-metics [12]. Similarly, Montgomery uses a special representation of modular equivalenceclasses to reduce modular arithmetics to simple truncating operations [11]. A combina-tion of these two techniques was recently presented in [13]. Other fast multiplicationalgorithms are based on redundant integer representations. Signed-digit integers, whichwill be the starting point of our paper, go back to the early days of computer arithmetics,see e.g. [15]. The same holds for carry-save integers, which led to Brickell's delayed-carryalgorithm [4].The generally accepted method for performing modular exponentiation is the `square-and-multiply' technique; see, for example, Beker and Piper [2], or Knuth [8]. In brief, ifone is required to compute me (mod N) and e has binary representationes�1es�2 : : : e0where es�1 is the most signi�cant bit, then the `left-to-right' version of the algorithmworks as follows: 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28900743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


d := 1;for i := s� 1 downto 0 dobegin d := d2 (mod N);if (ei = 1) d := d �m (mod N)endThe result will be contained in d.Note that the number of modular multiplications involved in performing the algorithmis determined by the number of ones in the binary representation of e. The purpose ofthis paper is to consider the use of alternative representations of e, which, when usedin combination with slight variants of the above algorithm, can considerably reduce thenumber of multiplications involved. This type of approach is not new, and has beenpreviously considered by a number of authors, e.g. [5, 7, 9, 20].This paper contains the following main parts. In Section 2, use of signed-digit repre-sentations of the exponent is considered, and a precise analysis of the complexity ofexponentiation using such representations is given. Section 3 contains a description of anew type of redundant integer representation, called a String Representation. A variant ofthe square-and-multiply algorithm is also introduced, capable of taking advantage of suchrepresentations to speed exponentiation. Finally, Section 4 contains an analysis of theperformance of the exponentiation algorithm introduced in Section 3, and a comparisonis given with other variants of the square-and-multiply method.2 Signed-digit representations and exponentiation2.1 IntroductionA signed-digit representation of an integer e, as introduced by Booth [3], is given bye = s�1Xi=0 ei2i with ei 2 f�1; 0; 1g:Henceforth, we will write �1 for -1. Signed-digit integers can be used in various waysto speed up integer arithmetics. There are algorithms for carry-free addition of signed-digit integers [19] and for modular addition [18]. Standard shift-and-add algorithms formultiplication can be adapted for signed-digit integers [15]. The square-and-multiplyalgorithm for exponentiation can be treated in a similar way [7, 20]. As an example,consider the following exponentiation algorithm computing d = me.d := 1;for i = s � 1 downto 0 dobegind := d2;d := d �mei;endThe assignment d := d �mei can be implemented as a case statement. For ei = 1 we havea multiplication by m, for ei = �1 we have a multiplication by m�1 (division by m), andfor ei = 0 no action has to be taken. 2



Note that e may have more than one signed-digit representation. For example, the dec-imal number 15 can be represented as 1111 or as 1000�1. If we can �nd a signed-digitrepresentation of e with the minimal number of non-zeros, then the amount of multiplica-tions will be minimal. In general, we will need less multiplications than with the standardbinary representation of e.De�nition 2.1 The weight of a signed-digit integer es�1es�2 : : :e0 is the number of non-zero coe�cients ei. The signed-digit integer es�1es�2 : : : e0 is called a minimal representa-tion of the integer e, if there is no other signed-digit representation of e of lesser weight.De�nition 2.2 A signed-digit integer is called sparse if it has no adjacent non-zero co-e�cients.Lemma 2.3 [7] Sparse signed-digit integers are minimal. A sparse signed-digit represen-tation of e is unique.Various investigations on the average weight of signed-digit representations have been con-ducted. In [9], non-minimal representations are examined, which are derived by treatingall 1-runs individually, replacing strings 01 : : :1 by strings 10 : : :0�1 (of the same length).This algorithm does not make use of the fact that such a replacement may create a new 1-run. The authors use the enumeration of all 1-runs in the binary numbers of a given lengthn to deduce the precise average weight of these representations which is approximately38n.In [10], Markov chains are employed to show that the average weight of the minimal signed-digit representation of binary numbers of length n is approximately n3 . The same result isobtained in [20], using enumeration to bound the average weight of minimal signed-digitrepresentations. Neither of the two papers gives a precise value for the average weight.Minimal signed digit representations with radix r have been examined in [1], where aMarkov chain argument shows that a minimal signed digit representation of an n-digitradix r integer has approximately 2nr+1 zeros.The precise average weight of minimal signed-digit integers of length n, as opposed to theaverage weight of minimal signed-digit representations of binary numbers of length n, isgiven in [5]. This result is derived from a recursive representation of the formal languageof all minimal signed-digit numbers. In this paper, we will again use recursion to deriveexplicitly the average weight of the minimal signed-digit representation of binary numbersof length n.2.2 Minimisation AlgorithmsAlgorithms for �nding minimal signed-digit representations have been suggested by severalauthors [7, 15, 20]. We will give a short sketch of the algorithm given in [7], which generatesthe unique (minimal) sparse signed-digit representation of an integer. Starting from an n-bit binary integer en�1 : : : e0, the algorithm starts at the least signi�cant bit and searchesfor the next string 01 : : :1 of length k+1, k � 2, and replaces this string by 10 : : :�1. Thisstep is then repeated until no such string can be found. This algorithm may convert then-bit binary integer into a signed-digit integer of length n+1. As an example, the binaryinteger 11011 is converted successively into 1110�1 and then 100�10�1. In the remainder ofthis section we will always use sparse signed-digit representations.3



2.3 Main ResultLet T (n) be the conversion table for binary integers of length n to sparse signed-digitrepresentations. Let s(n) be the total number of bits `saved' by converting to a signed-digit representation. These savings can be computed recursively. We will consider theupper and lower half of the table T (n+ 1) separately.� The entries in the upper half give the representation of n-bit integers so the savingsare the same as in T (n).� The entries in the lower half are the representations of integers 2n + x, where x isan n-bit integer.Consider now the savings in the lower half. Let x denote a binary integer and y a signed-digit integer of length n. By writing x ! 0y (or x ! 1y) we indicate that the binarynumber x has the minimal signed-digit representation 0y (or 1y).� For x! 0y and yn�1 = 0, we have 2n + x! 1y and the savings are the same as inT (n).� For x! 0y and yn�1 = 1, we have 2n + x! 10�1yn�2 : : :y0 and the savings are thesame as in T (n).� For x ! 1y, we have 2n + x ! 10y and the savings are one more than the savingsin T (n).To determine the exact number of bits saved we have to count the number of instancesx! 1y in T (n).Lemma 2.4 The largest integer xn with x! 0y is c3 � (4bn+12 c � 1) where c = 1 for n oddand c = 2 for n even. The smallest integer with x! 1y is xn + 1.Proof As we use sparse representations, the largest integer xn with x ! 0y has the(n+ 1)-digit representation 0101 : : :01(0). Thusxn = c � b n�12 cXi=0 4i = c3 � (4bn+12 c � 1):The smallest integer with x ! 1y has the representation 10�10 : : :�10(�1) and the valuexn + 1. 2We now haveTheorem 2.5 The savings s(n + 1) are given bys(n + 1) = 2 � s(n) + 2n � (xn + 1)= 2 � s(n) + 2n � 1� c3 � (4bn+12 c � 1):where c = 1 for n odd and c = 2 for n even.4



Proof As observed above, the savings in T (n) are certain to be repeated both in theupper and lower half of T (n + 1). In addition, we will save one further digit in the top2n � (xn + 1) rows of T (n + 1), where xn is de�ned as in the proof of Lemma 2.4. Wethus get s(n + 1) = 2 � s(n) + 2n � (xn + 1);and the Theorem follows with Lemma 2.4. 2Corollary 2.6 For n � 1, s(n) is given explicitly bys(n) = n3 � 2n�1 � 49 � 2n + 49 for n even,s(n) = n3 � 2n�1 � 49 � 2n + 59 for n odd.Proof The theorem holds for n = 1. For n > 1, we can proceed by induction using theequality from Theorem 2.5. 2The relative savings are s(n)=(n � 2n�1) and we have, as in [9, 20],limn!1 s(n)n � 2n�1 = 13 :3 The SR algorithmAs we have seen, use of a signed-digit representation of the exponent can signi�cantlyreduce the number of multiplications involved in computing a modular exponentiation.However, one important limitation of this approach is that it requires the precomputationof m�1, which in some environments can be relatively time-consuming.We now present a new type of alternative exponent representation which can also help toreduce the number of multiplications required to compute a modular exponentiation. Thisapproach has certain practical advantages, including the fact that it does not require thepre-computation of m�1. We �rst present the method and then provide a mathematicalanalysis of its performance using techniques analogous to those used above. Finally, acomparison of previously proposed schemes for alternative exponent representations withthe scheme presented in this paper can be found in Section 4.4.3.1 A string replacement representationThe modi�ed algorithm �rst requires the selection of a small positive integer k, the choiceof which is considered below. Now suppose that, in a binary representation of a number,entries of 2i � 1 are allowed for every i (2 � i � k) (in addition to 0 and 1). Numbersrepresented in this alternative form have the same positional interpretation as in a normalbinary representation.This alternative representation has the e�ect of allowing the replacement of any stringof i consecutive ones in the binary representation of a number by a string of i � 1 zerosfollowed by the value 2i � 1 (for any i satisfying 2 � i � k). Hence we call such arepresentation a k-ary String Replacement representation (or a k{SR representation).5



A number may have many such representations. For example, the number 7 has uniquebinary representation 111but has two other 2{SR representations, namely:103 and 031:Finally observe that a 1{SR representation is the same as a binary representation.3.2 The SR algorithm itselfNow suppose that e has a k{SR representationfr�1fr�2 : : : f0where fr�1 6= 0 is the most signi�cant coe�cient, and hencee = r�1Xi=0 fi2i:De�nition 3.1 The weight of a k{SR representation fr�1fr�2 : : : f0 is the number ofnon-zero coe�cients fi.A modi�ed `left-to-right' version of the square-and-multiply algorithm, which we call theSR algorithm, works as follows:pre-compute m3; m7; : : : ; m2k�1 (modulo N);d := mfr�1 (mod N);for i := r � 2 downto 0 dobegin d := d2 (mod N);d := d �mfi (mod N);endNote that we assume that if fi = 0 then no multiplication is performed.Checking the validity of the modi�ed algorithm is straightforward. It should now beclear that the number of modular multiplications in the revised algorithm depends onthe number of non-zero entries in the k{SR representation of e which we are using, i.e.on the weight of the representation of e. This number can be signi�cantly smaller thanthe weight of the standard binary representation of e, o�ering considerable performanceadvantages, provided that the pre-computation of m3; m7; : : : ; m2k�1 can be performede�ciently.4 Algorithm performance4.1 Preliminary remarksFirst note that the algorithm requires r�1 modular squaring operations and w�1 modularmultiplication operations, where w is the weight of the k{SR representation in use. Hence6



to evaluate the performance of the SR algorithm we need to consider the weights of k{SRrepresentations, with the objective of calculating the expected value of w.Clearly, if we are to minimise the number of modular multiplications required to computeme, then we need to minimise the weight of the k{SR representation that we are using.We therefore now present a simple method for generating k{SR representations whichappears to produce representations of near-minimal weight. The following algorithmtakes as input an n-bit binary representation of an integer.

7



for i := k to 2 step �1 dostarting from the most signi�cant digit replace every string of iconsecutive ones with a string of i � 1 zeros in the (i � 1) mostsigni�cant positions and 2i � 1 in the least signi�cant position;We call the k{SR representation generated by the above algorithm the Canonical k{SRrepresentation of an integer.Note that, in general, minimal weight k{SR representations are not unique, as shown bythe example above of the two minimum weight 2{SR representations of the number 7.Moreover, the following example shows that canonical k{SR representations do not alwayshave the minimum possible weight. Providing an algorithm for generating minimumweight k{SR representations for every integer and every k > 1 remains an area for futureresearch.Example 4.1 The integer 21 has canonical k{SR representation 10101 (of weight 3)for every k � 1. However it has a 2{SR representation as 333 (weight 3) and a 3{SRrepresentation as 77 (weight 2).4.2 Expected weight of canonical k{SR representationsWe �rst need the following notation. If n and k are positive integers then let w(n; k) bethe sum of the weights of the canonical k{SR representations of all the integers with n-bitbinary representations, i.e. of all non-negative integers less than or equal to 2n � 1. If sis a string of i bits (i � n) then ws(n; k) denotes the sum of the weights of the canonicalk{SR representations of all the integers with n-bit binary representations for which the�rst i bits are equal to s .Example 4.2 The following table gives the canonical i{SR representation for i = 2; 3; 4for every 4-bit integer. Note that F is used to denote the value 24 � 1.Binary 2{SR 3{SR 4{SR Binary 2{SR 3{SR 4{SR0000 0000 0000 0000 1000 1000 1000 10000001 0001 0001 0001 1001 1001 1001 10010010 0010 0010 0010 1010 1010 1010 10100011 0003 0003 0003 1011 1003 1003 10030100 0100 0100 0100 1100 0300 0300 03000101 0101 0101 0101 1101 0301 0301 03010110 0030 0030 0030 1110 0310 0070 00700111 0031 0007 0007 1111 0303 0071 000FTable 1: String representations for 4-bit integersBy summing the weights of the entries in various columns of the table it should, forexample, be clear that w(4; 2) = 23, w(4; 3) = 21, w(4; 4) = 20, w0(4; 2) = 9, w0(4; 3) =w0(4; 4) = 8, w11(4; 2) = 7, w11(4; 3) = 6 and w11(4; 4) = 5.We now have: 8



Lemma 4.3 If n � 1 and k � 1 thenw(n; k) = kXi=1 w(n� i; k) + w(n� k; k) + 2n�1where, as throughout, w(i; k) = 0 for i � 0.Proof First observe thatw(n; k) = w0(n; k) + w10(n; k) + w110(n; k) + � � �+ w1k�10(n; k) + w1k(n; k) (1)where 1t denotes a string of t ones. It should be clear thatw0(n; k) = w(n� 1; k): (2)Next observe that, if 2 � i � k, thenw1i�10(n; k) = w(n� i; k) + 2n�i: (3)This follows since the canonical k{SR representation of the binary string 1i�10u (whereu is an (n� i)-bit string) has weight one more than the canonical k{SR representation ofthe binary string u . In a similar way observe thatw1k(n; k) = w(n� k; k) + 2n�k: (4)Hence, combining equations 1, 2, 3 and 4, we havew(n; k) = w(n� 1; k) + kXi=2(w(n� i; k) + 2n�i) + w(n� k; k) + 2n�k= kXi=1 w(n� i; k) + w(n� k; k) + kXi=2 2n�i + 2n�kand the result follows. 2This immediately leads to the following:Lemma 4.4 If n � 1 and k � 1 thenk�1Xi=0 w(n� i; k) = n2n�1:Proof First let S(n; k) = k�1Xi=0 w(n� i; k):We prove the lemma by induction on n. First note thatS(1; k) = w(1; k) = 1for every k � 1, and hence the lemma is true for n = 1. Now suppose the lemma holdsfor every n < N , for some N > 1. By de�nitionS(N; k)� 2S(N � 1; k) = w(N; k)� kXi=1 w(N � i; k)� w(N � k; k)= 2N�1 (by Lemma 4.3):9



But S(N � 1; k) = (N � 1)2N�2 by the inductive hypothesis, and henceS(N; k) = 2N�1 + 2(N � 1)2N�2= N2N�1and the result follows. 2This then gives us:Lemma 4.5 Suppose n � 1, k � 1 andt = �n� 1k � ;where bxc denotes the largest integer less than or equal to x. Thenw(n; k) = tXi=0(n+ 1� ki)2n�2�ki:Proof We again prove this result by induction on n. If 1 � n � k then t = 0, and now,by Lemma 4.3, w(n; k) = kXi=1 w(n� i; k) + w(n� k; k) + 2n�1= kXi=1 w(n� i; k) + 2n�1 (since k � n)= (n� 1)2n�2 + 2n�1 (by Lemma 4.4)= tXi=0(n+ 1� ki)2n�2�ki (since t = 0);and the result holds. Now suppose the lemma holds for every n < N , for some N > k.Then w(N; k)� w(N � k; k) = k�1Xi=0 w(N � 1� i; k) + 2N�1 (by Lemma 4.3)= (N � 1)2N�2 + 2N�1 (by Lemma 4.4)= (N + 1)2N�2:Now, by the inductive hypothesis (noting that 1 � N � k),w(N � k; k) = tXi=1(N + 1� ki)2N�2�kiand hence w(N; k) = (N + 1)2N�2 + tXi=1(N + 1� ki)2N�2�ki= tXi=0(N + 1� ki)2N�2�kias required. 2We can now state the main result of this part of the paper.10



Theorem 4.6 Suppose n � 1, k � 1 and s is de�ned by s � n (mod k) and 1 � s � k.Thenw(n; k) = n2n+k�2(2k � 1) + (2k � k � 1)2n+k�2(2k � 1)2 + �(k � s� 1)2k+s�2+ (s+ 1)2s�2�(2k � 1)2 :Proof We �rst state the following well known identity (which can easily be proved byinduction). If x 6= 1 then mXi=0 ixi = x ((mx�m� 1)xm + 1)(x� 1)2 : (5)As before let t = �n� 1k � ;and we now havew(n; k) = tXi=0(n+ 1� ki)2n�2�ki (by Lemma 4.5)= 2n�2 (n+ 1) tXi=0(2�k)i � k tXi=0 i(2�k)i!= 2n�2 (n+ 1)(1� 2�k(t+1))(1� 2�k) � k2�k �(t2�k � t � 1)2�kt + 1�(2�k � 1)2 ! (by (5))= 2n�kt�2 (n+ 1)(2k(t+1)� 1)(2k � 1) � k �(t� 2k(t + 1)) + 2k(t+1)�(2k � 1)2 ! :>From the de�nitions of s and t it should be clear that t = (n� s)=k, i.e. kt = n� s. Thetheorem then follows fromw(n; k) = 2s�2 (n+ 1)(2n�s+k � 1)(2k � 1) � k �(n�sk � 2k(n�sk + 1)) + 2n�s+k�(2k � 1)2 != 2s�2 n2n�s+k + 2n�s+k � n � 1(2k � 1) � �n � s � n2k + s2k � k2k + k2n�s+k�(2k � 1)2 != n2n+k�2(2k � 1) + (2k � k � 1)2n+k�2(2k � 1)2 + (k � s � 1)2k+s�2+ (s+ 1)2s�2(2k � 1)2 ; 24.3 Overall algorithm complexityWe next consider the precise computational complexity of the SR algorithm when usingcanonical k{SR representations. First observe that, in the description of the SR algorithmgiven in Section 3.2 above, we assumed that e (the exponent) has a k{SR representationfr�1fr�2 : : : f0where fr�1 is the most signi�cant value, and fr�1 6= 0. We call r the length of the k{SRrepresentation. The number of modular squaring operations involved in performing thealgorithm is then one less than the length of the k{SR representation in use (as noted11



in Section 4.1 above). Hence, in order to derive the precise algorithm complexity forcanonical representations, we �rst need to examine the expected value of the length of acanonical k{SR representation.Let v(n; k) denote the sum of the lengths of canonical k{SR representations of all possiblen-bit integers (i.e. all integers in the range [0; 2n� 1]). We then have:Lemma 4.7 Suppose n � 1. Then:(i) v(n; 1) = (n� 1)2n + 1, and(ii) v(n; k+ 1) = v(n; k)� 2n�k + 1, for every k satisfying 1 � k < n.Proof We prove (i) by induction on n. First note that v(1; 1) = 1, and hence (i) holdsfor n = 1. Next suppose that (i) holds for every n < N for some N > 1. Now it isstraightforward to observe thatv(N; 1) = 2N�1N + v(N � 1; 1)= 2N�1N + (N � 2)2N�1 + 1 (by the inductive hypothesis)= (N � 1)2N + 1and (i) follows.To establish (ii) we consider which n-bit integers will have di�erent lengths for canonicalk{SR representations and canonical (k + 1){SR representations. It should be clear thatthere will be a di�erence in the lengths if and only if the n-bit integer has a binaryrepresentation starting with an arbitrary number of zeros followed by a string of k + 1ones. Moreover, for every such integer the di�erence in lengths will be precisely one.Hence v(n; k)�v(n; k+1) will be equal to the number of n-bit integers of the above form.It is not hard to see that there are exactly2n�(k+1) + 2n�(k+2) + � � �+ 21 + 20 = 2n�k � 1such integers, and (ii) follows. 2This then immediately leads to:Theorem 4.8 Suppose n � k � 1. Thenv(n; k) = (n� 2)2n+ (2n�k+1+ k):Proof We prove this theorem by induction on k. Choose some n � 1 and �rst note that,by Lemma 4.7(i), v(n; 1) = (n� 2)2n + (2n + 1), and hence the theorem holds for k = 1.Next suppose that the theorem holds for every k < K for some K satisfying n � K > 1.Now, by Lemma 4.7(ii), it follows immediately thatv(n;K) = v(n;K � 1)� 2n�K+1 + 1= (n� 2)2n + (2n�K+2 +K � 1)� 2n�K+1 + 1 (by the inductive hypothesis)= (n� 2)2n + (2n�K+1 +K)and the result follows. 2We now have all the information we need to compute the complexity of a single modularexponentiation using the SR algorithm (assuming the use of a canonical k{SR represen-tation). 12



Theorem 4.9 Suppose e is randomly chosen from the range [0; 2n� 1] from some n � 1.Then the expected number of computations required to compute me mod N using the SRalgorithm with a canonical k{SR representation isn2k�2(2k � 1) + (2k � k � 1)2k�2(2k � 1)2 + (k� s� 1)2k+s�n�2+ (s+ 1)2s�n�2(2k � 1)2 + k � 2multiplication operations (modulo N), where s � n (mod k), andn + k � 4 + 21�k + k2�nsquaring operations (modulo N).Proof To compute the complexity of the SR algorithm we �rst need to examine thework involved in pre-computing m3; m7; : : : ; m2k�1 (all modulo N). These values can besuccessively computed by a single squaring operation followed by a single multiplicationby m (both mod N). Hence the pre-computation for the SR algorithm amounts to k� 1modular squaring operations together with k � 1 modular multiplication operations.As observed at the beginning of Section 3, the expected number of modular multiplicationoperations is one less than the expected weight of a canonical k{SR representation, addedto the pre-computation overhead. This immediately implies that the expected number ofmodular multiplications is equal to w(n; k)2n + k � 2and the desired result follows from Theorem 4.6.The expected number of modular squaring operations can also be simply calculated asone less than the expected length of the k{SR representation in use, added to the pre-computation overhead. Since we assume the use of the canonical k{SR representation,this means that the expected number of modular squaring operations is given byv(n; k)2n + k � 2and the desired result follows from Theorem 4.8. 2Since n is always likely to be fairly large (for RSA n is likely to be between 512 and 1024),the following simple corollary is useful.Corollary 4.10 Suppose e is randomly chosen from the range [0; 2n� 1] for some largen � 1. Then the expected number of computations required to compute me mod N usingthe SR algorithm with a canonical k{SR representation approximates ton2k�2(2k � 1) + (2k � k � 1)2k�2(2k � 1)2 + k � 2multiplication operations (modulo N) andn + k � 4 + 21�ksquaring operations (modulo N).We now tabulate the overall complexity of the SR algorithm for small values of k and forthree `typical' values of n using the above results. The complexity is quoted as the sum oftwo numbers, the �rst representing the expected number of modular squaring operationsrequired and the second the number of modular multiplications required. Note that,for comparison purposes, the values in the table for k = 1 correspond precisely to thecomplexity of the conventional square-and-multiply algorithm presented in Section 1.13



n k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 10512 510+255 511+171 511+147 512+139 513+135 514+134 515+134 518+136768 766+383 767+256 767+221 768+207 769+201 770+199 771+199 774+2001024 1022+511 1023+341 1023+294 1024+275 1025+267 1026+264 1027+263 1030+264Table 2: Complexity of SR algorithm4.4 Comparison with other techniquesWe now compare the SR algorithm with other variants of the square-and-multiply expo-nentiation algorithm as given by Jedwab and Mitchell, [17], Ko�c, [9], E~gecio~glu and Ko�c,[5] and Zhang, [20]. Note �rst that the SR algorithm has the potential to reduce thenumber of modular multiplications in exponentiation with an n-bit exponent from n=2to a little over n=4, whilst leaving the number of modular squaring operations essentiallyunchanged at n. Note also that, using techniques such as those described by Knuth, [8],modular squaring can be made to run perhaps twice as fast as general modular multipli-cation, making the reduction more signi�cant than it would otherwise appear.Probably the most simple of these other methods is to use a signed-digit representation ofthe exponent, as described in Section 2 above. As discussed there, this has the potentialto reduce the number of modular multiplications to n=3 (again leaving the number ofmodular squaring operations unchanged), at the cost of pre-computing m�1. Given thatn=3 is signi�cantly greater than n=4, and also observing that pre-computing m�1 can bea non-trivial operation, the SR algorithm presented above o�ers clear advantages.Hui and Lam [6] avoid pre-computing m�1 and use instead all the 2k�1 odd numbers oflength k or less. In a binary integer representation, all strings corresponding to a pre-computed odd number are then replaced by a single digit. The average weight of such arepresentation converges to nk+1 for large n.Ko�c [9], and E~gecio~glu and Ko�c [5], also describe several other square-and-multiply vari-ants involving processing the exponent more than one bit at a time. Certain of thesealgorithms o�er the possibility of reducing the expected number of modular multiplica-tions a little below n=4, although they still require approximately n modular squaringoperations. However, as we see in the next section, although more powerful in theory,they do not �t well with other possible improvements in the exponentiation calculations.4.5 Combination with other algorithmsWe conclude this paper by considering how the SR algorithm might be used in conjunctionwith certain other types of fast exponentiation techniques, and in particular the schemesof Quisquater and Couvreur [14] and Selby and Mitchell [17]. Both these papers describemethods which take advantage of the fact that the basic left-to-right version of the square-and-multiply algorithm (as given in Section 1 above) involves repeated multiplication bym (mod N). It is therefore worth investing a certain amount of time before commencingthe square-and-multiply procedure in calculating tables which can speed up modularmultiplication by m.However, if the modi�ed version of square-and-multiply to be used involves multiplyingby a large range of di�erent powers of m (as with the algorithms of Ko�c and E~gecio~glu)14



then pre-computing tables is no longer worthwhile. But this is not the case with the SRalgorithm, at least when small values of k are employed. For example, if k = 2 then the SRversion of the exponentiation algorithm requires repeated multiplication by either m orm3 and it will almost certainly still be worth pre-computing tables (one for multiplicationby m and one for m3). As should be clear from Table 2, small values of k realise a largepart of the potential gains of the SR algorithm, and hence we have the basis for a fruitfulcombination of techniques which have the potential to o�er signi�cant advantages overother methods for modular exponentiation.AcknowledgementWe have to thank an anonymous referee for considerably simplifying the derivation ofTheorem 2.5.References[1] S. Arno and F.S. Wheeler. Signed digit representations of minimal Hamming weight.IEEE Transactions on Computers, 42:1007{1010, 1993.[2] H.J. Beker and F.C. Piper. Cipher Systems. Van Nostrand Reinhold, 1982.[3] A.D. Booth. A signed binary multiplication technique. Quarterly Journal of Me-chanics and Applied Mathematics, 4:236{240, 1951.[4] E.F.Brickell. A fast modular multiplication algorithm with application to two keycryptography. In Advances in Cryptology, Proceedings of Crypto'82: 51{60, 1982[5] O. E~gecio~glu and C.K. Ko�c. Fast modular exponentiation. In Proceedings of 1990Bilkent International Conference on New Trends in Communication, Control, andSignal Processing, pages 188{194, Ankara Turkey, July 1990. Elsevier Science Pub-lishing Co.[6] L.C.K. Hui and K.Y. Lam. Fast Square-and-Multiply Exponentiation for RSA. Elec-tronics Letters, 30:1396{1397, 1994.[7] J. Jedwab and C.J. Mitchell. Minimum weight modi�ed signed-digit representationsand fast exponentiation. Electronics Letters, 25:1171{1172, 1989.[8] D.E. Knuth. The art of computer programming, Volume 2: seminumerical algo-rithms. Addison-Wesley, Reading, Mass., 2nd edition, 1981.[9] C.K. Ko�c. High-radix and bit recoding techniques for modular exponentiation. In-ternational Journal of Computer Mathematics, 40:139{156, 1991.[10] C.K. Ko�c and C.-Y. Hung. Adaptive m-ary segmentation and canonical recodingalgorithms for multiplication of large binary numbers. Computers Math. Applic.,24:3{12, 1992.[11] P.L. Montgomery. Modular Multiplication Without Trial Division. Mathematics ofComputation, 44: 519{521, 1985. 15



[12] M.J. Norris and G.J. Simmons. Algorithms for high-speed modular arithmetics.Congressus Numerantium, 31:151{163, 1981.[13] K.C. Posch and R. Posch. Modulo Reduction in Residue Number Systems. IEEETransactions on Parallel and Distributed Systems, 6:449{454, 1995.[14] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-keycryptosystem. Electronics Letters, 18:905{907, 1982.[15] G.W. Reitwiesner. Binary arithmetic. In F.L. Alt, editor, Advances in Computers 1,pages 232{308. Academic, New York, 1960.[16] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signaturesand public-key cryptosystems. Communications of the ACM, 21:120{126, 1978.[17] A. Selby and C.J. Mitchell. Algorithms for software implementations of RSA. Pro-ceedings of the IEE, Part E, 136:166{170, 1989.[18] N. Takagi and S. Yajima. Modular multiplication hardware algorithms with a redun-dant representation and their application to RSA cryptosystem. IEEE Transactionson Computers, 41:887{891, 1992.[19] N. Takagi, H. Yasuura, and S. Yajima. High-speed VLSI multiplication algorithmwith a redundant binary addition tree. IEEE Transactions on Computers, C-34:789{796, 1985.[20] C.N. Zhang. An improved binary algorithm for RSA. Computers Math. Applic.,25:15{24, 1993.

16


