v

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by Royal Holloway - Pure

Redundant integer representations and fast exponentiation

Dieter Gollmann, Yongfei Han, and Chris J. Mitchell

August 25, 1995

Abstract

In this paper two modifications to the standard square and multiply method for
exponentiation are discussed. The first, using a signed-digit representation of the
exponent, has been examined previously by a number of authors, and we present a
new precise and simple mathematical analysis of its performance. The second, a new
technique, uses a different redundant representation of the exponent, which we call
a string replacement representation; the performance of this new method is analysed
and compared with previously proposed methods. The techniques considered in this
paper have application in the implementation of cryptographic algorithms such as
RSA, where modular exponentiations of very large integers need to be calculated.

Index Terms: RSA, modular exponentiation, signed-digit representation.

1 Introduction

Exponentiation of large integers (modulo a large integer) is the basis of several well known
cryptographic algorithms such as RSA [16]. The calculations involved are complex, and
can be time-consuming especially when performed in software. As a result algorithms
which speed up implementations of modular exponentiation are of considerable practical
significance; see, for example, Selby and Mitchell [17]. Techniques for speeding up mod-
ular exponentiation and, more specifically, modular multiplication have a distinguished
history. Norris and Simmons have proposed an algorithm tailored to implementations on
fast multiplication devices, which can exploit the rounding inherent to floating point arith-
metics [12]. Similarly, Montgomery uses a special representation of modular equivalence
classes to reduce modular arithmetics to simple truncating operations [11]. A combina-
tion of these two techniques was recently presented in [13]. Other fast multiplication
algorithms are based on redundant integer representations. Signed-digit integers, which
will be the starting point of our paper, go back to the early days of computer arithmetics,
see e.g. [15]. The same holds for carry-save integers, which led to Brickell’s delayed-carry
algorithm [4].

The generally accepted method for performing modular exponentiation is the ‘square-
and-multiply’ technique; see, for example, Beker and Piper [2], or Knuth [8]. In brief, if
one is required to compute m® (mod N) and e has binary representation

€s_1€5_92...€Q

where e,_; is the most significant bit, then the ‘left-to-right’ version of the algorithm
works as follows:

https://core.ac.uk/display/28900743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

d:=1;
for 1:=s—1 downto 0 do
begin
d:=d* (mod N);
if (¢, =1) d:=d-m (mod N)

end

The result will be contained in d.

Note that the number of modular multiplications involved in performing the algorithm
is determined by the number of ones in the binary representation of e. The purpose of
this paper is to consider the use of alternative representations of e, which, when used
in combination with slight variants of the above algorithm, can considerably reduce the
number of multiplications involved. This type of approach is not new, and has been
previously considered by a number of authors, e.g. [5, 7, 9, 20].

This paper contains the following main parts. In Section 2, use of signed-digit repre-
sentations of the exponent is considered, and a precise analysis of the complexity of
exponentiation using such representations is given. Section 3 contains a description of a
new type of redundant integer representation, called a String Representation. A variant of
the square-and-multiply algorithm is also introduced, capable of taking advantage of such
representations to speed exponentiation. Finally, Section 4 contains an analysis of the
performance of the exponentiation algorithm introduced in Section 3, and a comparison
is given with other variants of the square-and-multiply method.

2 Signed-digit representations and exponentiation

2.1 Introduction

A signed-digit representation of an integer e, as introduced by Booth [3], is given by

s—1
e = Zeﬂi with e; € {—1,0,1}.

i=0

Henceforth, we will write 1 for -1. Signed-digit integers can be used in various ways
to speed up integer arithmetics. There are algorithms for carry-free addition of signed-
digit integers [19] and for modular addition [18]. Standard shift-and-add algorithms for
multiplication can be adapted for signed-digit integers [15]. The square-and-multiply
algorithm for exponentiation can be treated in a similar way [7, 20]. As an example,
consider the following exponentiation algorithm computing d = m*®.

d:=1;
for 1 = s—1 downto 0 do
begin
d:=d*;
d:=d-m;
end

The assignment d := d-m® can be implemented as a case statement. For e; = 1 we have
a multiplication by m, for e; = 1 we have a multiplication by m~* (division by m), and
for e, = 0 no action has to be taken.

Note that e may have more than one signed-digit representation. For example, the dec-
imal number 15 can be represented as 1111 or as 10001. If we can find a signed-digit
representation of e with the minimal number of non-zeros, then the amount of multiplica-
tions will be minimal. In general, we will need less multiplications than with the standard
binary representation of e.

Definition 2.1 The weight of a signed-digit integer e,_1e,_o . ..ey is the number of non-
zero coefficients e;. The signed-digit integer e,_1€,_o...¢€q is called a minimal representa-
tion of the integer e, if there is no other signed-digit representation of e of lesser weight.

Definition 2.2 A signed-digit integer is called sparse if it has no adjacent non-zero co-
efficients.

Lemma 2.3 [7] Sparse signed-digit integers are minimal. A sparse signed-digit represen-
tation of e is unique.

Various investigations on the average weight of signed-digit representations have been con-
ducted. In [9], non-minimal representations are examined, which are derived by treating
all 1-runs individually, replacing strings 01...1 by strings 10...01 (of the same length).
This algorithm does not make use of the fact that such a replacement may create a new 1-
run. The authors use the enumeration of all 1-runs in the binary numbers of a given length
n to deduce the precise average weight of these representations which is approximately
3y,

In [10], Markov chains are employed to show that the average weight of the minimal signed-
digit representation of binary numbers of length n is approximately %. The same result is
obtained in [20], using enumeration to bound the average weight of minimal signed-digit
representations. Neither of the two papers gives a precise value for the average weight.
Minimal signed digit representations with radix r have been examined in [1], where a
Markov chain argument shows that a minimal signed digit representation of an n-digit

on

radix r integer has approximately =% zeros.

The precise average weight of minimal signed-digit integers of length n, as opposed to the
average weight of minimal signed-digit representations of binary numbers of length n, is
given in [5]. This result is derived from a recursive representation of the formal language
of all minimal signed-digit numbers. In this paper, we will again use recursion to derive
explicitly the average weight of the minimal signed-digit representation of binary numbers
of length n.

2.2 Minimisation Algorithms

Algorithms for finding minimal signed-digit representations have been suggested by several
authors [7, 15, 20]. We will give a short sketch of the algorithm given in [7], which generates
the unique (minimal) sparse signed-digit representation of an integer. Starting from an n-
bit binary integer e,_; ...eg, the algorithm starts at the least significant bit and searches
for the next string 01...1 of length k41, k& > 2, and replaces this string by 10...1. This
step is then repeated until no such string can be found. This algorithm may convert the
n-bit binary integer into a signed-digit integer of length n 4+ 1. As an example, the binary
integer 11011 is converted successively into 11101 and then 100101. In the remainder of
this section we will always use sparse signed-digit representations.

2.3 Main Result

Let T'(n) be the conversion table for binary integers of length n to sparse signed-digit
representations. Let s(n) be the total number of bits ‘saved’ by converting to a signed-
digit representation. These savings can be computed recursively. We will consider the
upper and lower half of the table T'(n + 1) separately.

o The entries in the upper half give the representation of n-bit integers so the savings
are the same as in T'(n).

e The entries in the lower half are the representations of integers 2” + x, where z is
an n-bit integer.

Consider now the savings in the lower half. Let 2 denote a binary integer and y a signed-
digit integer of length n. By writing © — 0y (or @ — ly) we indicate that the binary
number z has the minimal signed-digit representation Oy (or ly).

o For z — Oy and y,,_; = 0, we have 2" + x — 1y and the savings are the same as in

T(n).

o For z — Oy and y,,_, = 1, we have 2" + 2 — 101y,_» ...y, and the savings are the
same as in T'(n).

o For z — 1y, we have 2" + 2 — 10y and the savings are one more than the savings

in T(n).

To determine the exact number of bits saved we have to count the number of instances
z — lyin T(n).

Lemma 2.4 The largest integer x,, with ¥ — 0y is £ - (ZLLnTJrlJ — 1) where ¢ = 1 for n odd
and ¢ = 2 for n even. The smallest integer with + — 1y is x, + 1.

Proof As we use sparse representations, the largest integer z, with x — Oy has the
(n 4 1)-digit representation 0101 ...01(0). Thus

n;lJ

T, =C- E 4 =
i=0

The smallest integer with # — 1y has the representation 1010...10(1) and the value
x, + 1. a

LAl .

Wl o

We now have

Theorem 2.5 The savings s(n + 1) are given by

sin+1) = 2-s(n)+2"— (2, +1)
- Q-S(n)+2"—1—§-(4l"7“J—1).

where ¢ = 1 for n odd and ¢ = 2 for n even.

Proof As observed above, the savings in T'(n) are certain to be repeated both in the
upper and lower half of T'(n 4 1). In addition, we will save one further digit in the top
2" — (2, + 1) rows of T'(n 4 1), where z,, is defined as in the proof of Lemma 2.4. We
thus get

sin+1)=2-s(n)+2" - (2, + 1),

and the Theorem follows with Lemma 2.4. O

Corollary 2.6 Forn > 1, s(n) is given explicitly by

4 4
s(n):g-Q”_l—g-Q"—l—g for n even,

4
s(n):g-Q”_l—g-Q"—l—g forn odd.

Proof The theorem holds for n = 1. For n > 1, we can proceed by induction using the
equality from Theorem 2.5. a

The relative savings are s(n)/(n-2"~') and we have, as in [9, 20],

1
T) B O
n—oc g - 201 3

3 The SR algorithm

As we have seen, use of a signed-digit representation of the exponent can significantly
reduce the number of multiplications involved in computing a modular exponentiation.
However, one important limitation of this approach is that it requires the precomputation
of m~!, which in some environments can be relatively time-consuming.

We now present a new type of alternative exponent representation which can also help to
reduce the number of multiplications required to compute a modular exponentiation. This
approach has certain practical advantages, including the fact that it does not require the
pre-computation of m~!. We first present the method and then provide a mathematical
analysis of its performance using techniques analogous to those used above. Finally, a
comparison of previously proposed schemes for alternative exponent representations with
the scheme presented in this paper can be found in Section 4.4.

3.1 A string replacement representation

The modified algorithm first requires the selection of a small positive integer k, the choice
of which is considered below. Now suppose that, in a binary representation of a number,
entries of 2/ — 1 are allowed for every ¢ (2 < ¢ < k) (in addition to 0 and 1). Numbers
represented in this alternative form have the same positional interpretation as in a normal
binary representation.

This alternative representation has the effect of allowing the replacement of any string
of ¢ consecutive ones in the binary representation of a number by a string of ¢« — 1 zeros
followed by the value 2° — 1 (for any i satisfying 2 < ¢ < k). Hence we call such a
representation a k-ary String Replacement representation (or a k—SR representation).

A number may have many such representations. For example, the number 7 has unique
binary representation
111

but has two other 2-SR representations, namely:
103 and 031.

Finally observe that a 1-SR representation is the same as a binary representation.

3.2 The SR algorithm itself

Now suppose that e has a k—SR representation

fr—lfr—Z .. 'fO

where f,_; # 0 is the most significant coefficient, and hence
r—1)
€ = Z fZQZ
i=0

Definition 3.1 The weight of a k—SR representation f._if,_o...fo is the number of
non-zero coefficients f;.

A modified ‘left-to-right’ version of the square-and-multiply algorithm, which we call the
SR algorithm, works as follows:

pre-compute m3, m7,...,m? ~! (modulo N);
d:=m/=* (mod N);
for 2:=r —2 downto 0 do
begin
d:=d* (mod N);
d:=d-m/ (mod N);

end

Note that we assume that if f; = 0 then no multiplication is performed.

Checking the validity of the modified algorithm is straightforward. It should now be
clear that the number of modular multiplications in the revised algorithm depends on
the number of non-zero entries in the £~SR representation of e which we are using, i.e.
on the weight of the representation of e. This number can be significantly smaller than
the weight of the standard binary representation of e, offering considerable performance
advantages, provided that the pre-computation of m?> m”,.. .,mzk_1 can be performed
efficiently.

4 Algorithm performance

4.1 Preliminary remarks

First note that the algorithm requires r—1 modular squaring operations and w—1 modular
multiplication operations, where w is the weight of the k—SR representation in use. Hence

to evaluate the performance of the SR algorithm we need to consider the weights of k-SR
representations, with the objective of calculating the expected value of w.

Clearly, if we are to minimise the number of modular multiplications required to compute
m®, then we need to minimise the weight of the k—SR representation that we are using.
We therefore now present a simple method for generating k—SR representations which
appears to produce representations of near-minimal weight. The following algorithm
takes as input an n-bit binary representation of an integer.

for i := k to 2 step —1 do

starting from the most significant digit replace every string of ¢
consecutive ones with a string of ¢ — 1 zeros in the (i — 1) most
significant positions and 2’ — 1 in the least significant position;

We call the k—SR representation generated by the above algorithm the Canonical k-SR
representation of an integer.

Note that, in general, minimal weight k~SR representations are not unique, as shown by
the example above of the two minimum weight 2-SR representations of the number 7.
Moreover, the following example shows that canonical k~SR representations do not always
have the minimum possible weight. Providing an algorithm for generating minimum
weight k—SR representations for every integer and every k > 1 remains an area for future
research.

Example 4.1 The integer 21 has canonical k-SR representation 10101 (of weight 3)
for every k > 1. However it has a 2-SR representation as 333 (weight 3) and a 3-SR
representation as 77 (weight 2).

4.2 Expected weight of canonical k—SR representations

We first need the following notation. If n and k are positive integers then let w(n, k) be
the sum of the weights of the canonical k—SR representations of all the integers with n-bit
binary representations, i.e. of all non-negative integers less than or equal to 2" — 1. If s
is a string of ¢ bits (¢ < n) then wy(n, k) denotes the sum of the weights of the canonical
k—SR representations of all the integers with n-bit binary representations for which the
first ¢ bits are equal to s.

Example 4.2 The following table gives the canonical i-SR representation for 1 = 2,3,4
for every 4-bit integer. Note that F is used to denote the value 2* — 1.

Binary | 2-SR 3-SR 4-SR || Binary | 2-SR 3-SR /-SSR
0000 | 0000 0000 0000 1000 | 1000 1000 1000
0001 | 0001 0001 0001 1001 | 1001 1001 1001
0010 | 0010 0010 0010 1010 | 1010 1010 1010
0011 | 0003 0003 0003 1011 | 1003 1003 1003
0100 | 0100 0100 0100 1100 | 0300 0300 0300
g101 | 0101 0101 0101 1101 | 0301 0301 0301
0110 | 0030 0030 0030 1110 | 0310 0070 0070
0111 | 0031 0007 0007 1111 | 0303 0071 000F

Table 1: String representations for 4-bit integers
By summing the weights of the entries in various columns of the table it should, for

example, be clear that w(4,2) = 23, w(4,3) = 21, w(4,4) = 20, we(4,2) = 9, we(4,3) =
w0(4,4) = 8, w11(4,2) = 7, w11(4,3) =6 and w11(4,4) = 5.

We now have:

Lemma 4.3 Ifn> 1 and k > 1 then
k
Zw (n—1i,k)+wn—Fkk)4+2"" 1
i=1

where, as throughout, w(i, k) =0 for i <0.

Proof First observe that
w(n, k) = wo(n, k) + wio(n, k) + wio(n, k) + - - - + w1, _,0(n, k) + wa, (n, k) (1)
where 1; denotes a string of ¢ ones. It should be clear that
wo(n, k) = w(n — 1,k). (2)
Next observe that, if 2 < <k, then
wy,_,o(n, k) = w(n —i k) +2"" (3)

This follows since the canonical k-SR representation of the binary string 1;_; 0u (where
w is an (n —7)-bit string) has weight one more than the canonical k~SR representation of
the binary string . In a similar way observe that

wy, (n, k) = w(n —k, k) +2"F. (4)

Hence, combining equations 1, 2, 3 and 4, we have

w(n, k) = wn-1,k)+ Zk:(w(n — i, k) 4+ 2" dw(n — k k) +20F

i=2
k
i=1

and the result follows. O

This immediately leads to the following:

Lemma 4.4 Ifn>1 and k > 1 then

k

|
—

w(n —1,k)=n2""".

=0

Proof First let -

S(n, k) = Zw(n -1, k).

i=

We prove the lemma by induction on n. First note that
S(1,k)=w(l,k)=

for every k£ > 1, and hence the lemma is true for n = 1. Now suppose the lemma holds
for every n < N, for some N > 1. By definition
k
S(N,k)=28(N—1,k) = w(N,k)=> w(N—ik)—w(N—kk)
i=1

= 27! (by Lemma 4.3).

But S(N — 1,k) = (N — 1)2"=2 by the inductive hypothesis, and hence

S(N,k)y = 2814 2(N —1)282
= N2V

and the result follows. O

This then gives us:

Lemma 4.5 Suppose n > 1, k> 1 and

=15

where |x| denotes the largest integer less than or equal to x. Then

t

w(n, k)= Z(n + 1 — ki)2n R,

i=0

Proof We again prove this result by induction on n. If 1 < n < k then ¢t = 0, and now,
by Lemma 4.3,

w(n, k) = w(n — i, k) + w(n -k, k)+ 2!

-

s
1
-

w(n — i, k)+2""" (since k > n)
—1)2"7? 42" (by Lemma 4.4)

(n+1—ki)2"?7% (since t = 0),

[l
M- i

-
I
=)

and the result holds. Now suppose the lemma holds for every n < N, for some N > k.
Then

e
|
—

w(N,k)—w(N -k k) = w(N —1—i,k)+ 2V (by Lemma 4.3)
:0

(N —1)2%72 1 281 (by Lemma 4.4)
(N 4 1)282,

Now, by the inductive hypothesis (noting that 1 < N — k),
3

w(N —k,k)=> (N +1—ki)2V=>""

i=1

and hence

13
w(N, k) = (N4+1)2V72 4> (N +1 - ki)2V77
i=1
t .
DN + 1= ki)2N-2k

i=0

as required. a

We can now state the main result of this part of the paper.

10

Theorem 4.6 Suppose n > 1, k> 1 and s is defined by s =n (mod k) and 1 < s < k.
Then

n2 k2 (2F ko D)2 (R = s = 1) 4 (s 4 1)207Y)
(26 =1) (2F —1)? (2F —1)? '

w(n, k)=

Proof We first state the following well known identity (which can easily be proved by
induction). If 2 # 1 then

ot = M (5

As before let

and we now have

t
w(n, k) = Z(n + 1= ki)2"" 7% (by Lemma 4.5)

i=0

= 22 ((n + 1)2(2—’“)2' — kZi(z—k)i)

_gneo (D1 =27 ek (g2 —t 127k 4 1)
= 9 ((1-2F) - 1)) (by (5))

)
S ((" HDEMY 1) k(=24 1) + 2’““*”))
- 1) |

(26 -1) (2¢

;From the definitions of s and ¢ it should be clear that ¢t = (n—s)/k, i.e. kt = n—s. The
theorem then follows from

win,k) = 2072 ((n+ D20tk — 1) k(2 - 2k(2e 4 1))+2n_s+k))

(28— 1) (28 —1)2
B 25—2 (nQ”_s+k + 2n—s+k —-n-1 (n — 5= an + 82k _ ka + k2n—s+k)
- (2= 1) 2 1)y
_ n2n+k—2 N (2k — k- 1)2n+k—2 N (k — 5= 1)2k+s—2 + (8 1+ 1)25_2
(2F —1) (2F —1)? (28 — 1))
a

4.3 Overall algorithm complexity

We next consider the precise computational complexity of the SR algorithm when using
canonical k—SR representations. First observe that, in the description of the SR algorithm
given in Section 3.2 above, we assumed that e (the exponent) has a k-SR representation

fr—lfr—Z .. 'fO

where f._; is the most significant value, and f,_; # 0. We call r the length of the k-SR
representation. The number of modular squaring operations involved in performing the
algorithm is then one less than the length of the k-SR representation in use (as noted

11

in Section 4.1 above). Hence, in order to derive the precise algorithm complexity for
canonical representations, we first need to examine the expected value of the length of a
canonical k—SR representation.

Let v(n, k) denote the sum of the lengths of canonical k-SR representations of all possible
n-bit integers (i.e. all integers in the range [0,2" — 1]). We then have:

Lemma 4.7 Suppose n > 1. Then:
(i) v(n,1)=(n—-1)2"+1, and

(it) v(n,k+1)=v(n,k)—2""% + 1, for every k satisfying 1 < k < n.

Proof We prove (i) by induction on n. First note that »(1,1) = 1, and hence (i) holds
for n = 1. Next suppose that (i) holds for every n < N for some N > 1. Now it is
straightforward to observe that

o(N,1) = 2Y7'N 4 o(N —1,1)
= 2YIN 4 (N - 228t + 1 (by the inductive hypothesis)
= (N-12Y+1

and (i) follows.

To establish (ii) we consider which n-bit integers will have different lengths for canonical
k—SR representations and canonical (k + 1)-SR representations. It should be clear that
there will be a difference in the lengths if and only if the n-bit integer has a binary
representation starting with an arbitrary number of zeros followed by a string of & + 1
ones. Moreover, for every such integer the difference in lengths will be precisely one.
Hence v(n, k) —v(n,k+1) will be equal to the number of n-bit integers of the above form.
It is not hard to see that there are exactly

2n—(k-|—1) _I_ 2n—(k-|—2) _I_ . _I_ 21 _I_ 20 — 2n—k -1

such integers, and (ii) follows.]

This then immediately leads to:

Theorem 4.8 Suppose n > k> 1. Then

v(n, k) = (n—2)2" 4+ (2" 7" 1 k).

Proof We prove this theorem by induction on k. Choose some n > 1 and first note that,
by Lemma 4.7(i), v(n,1) = (n — 2)2" + (2" + 1), and hence the theorem holds for k£ = 1.
Next suppose that the theorem holds for every k < K for some K satisfying n > K > 1.
Now, by Lemma 4.7(ii), it follows immediately that

v(n, K) = on,K—1)—2""5+ 11
= (n—=2)2"+ (2" F2 L K —1)—2""%* 1 1 (by the inductive hypothesis)
= (n—2)2" + (2" 5 LK)

and the result follows. O

We now have all the information we need to compute the complexity of a single modular
exponentiation using the SR algorithm (assuming the use of a canonical k~SR represen-
tation).

12

Theorem 4.9 Suppose e is randomly chosen from the range [0,2" — 1] from some n > 1.
Then the expected number of computations required to compute m® mod N using the SR
algorithm with a canonical k-SR representation is

n2E (2 k127 (ks = DRI (o 1920
(28 — 1) (2F — 1) (2F —1)2
multiplication operations (modulo N), where s = n (mod k), and

nt+k—4427F 4 k2

+k-2

squaring operations (modulo N).

Proof To compute the complexity of the SR algorithm we first need to examine the
work involved in pre-computing m?>, m”,.. .,mzk_1 (all modulo N). These values can be
successively computed by a single squaring operation followed by a single multiplication
by m (both mod N). Hence the pre-computation for the SR algorithm amounts to k£ — 1
modular squaring operations together with £ — 1 modular multiplication operations.

As observed at the beginning of Section 3, the expected number of modular multiplication
operations is one less than the expected weight of a canonical kSR representation, added
to the pre-computation overhead. This immediately implies that the expected number of
modular multiplications is equal to
w(n, k)
2n
and the desired result follows from Theorem 4.6.

+k-2

The expected number of modular squaring operations can also be simply calculated as
one less than the expected length of the k—SR representation in use, added to the pre-
computation overhead. Since we assume the use of the canonical k-SR representation,
this means that the expected number of modular squaring operations is given by

v(n, k)
— <+ k-2
AL +
and the desired result follows from Theorem 4.8. a
Since n is always likely to be fairly large (for RSA n is likely to be between 512 and 1024),

the following simple corollary is useful.

Corollary 4.10 Suppose e is randomly chosen from the range [0,2" — 1] for some large
n > 1. Then the expected number of computations required to compute m® mod N using
the SR algorithm with a canonical k-SR representation approzimates to
n2k-2 . (2F — k —1)2F=2
-0t @oy

multiplication operations (modulo N) and

+k-2

nt+k—4427F

squaring operations (modulo N).

We now tabulate the overall complexity of the SR algorithm for small values of £ and for
three ‘typical’ values of n using the above results. The complexity is quoted as the sum of
two numbers, the first representing the expected number of modular squaring operations
required and the second the number of modular multiplications required. Note that,
for comparison purposes, the values in the table for £ = 1 correspond precisely to the
complexity of the conventional square-and-multiply algorithm presented in Section 1.

13

n k=1 k=2 k=3 k=4 k=5 k=6 k=17 k=10

512 | 5104255 5114171 5114147 5124139 5134135 5144134 515+134 5184136
768 | 7664383 T674256 7674221 7684207 7694201 7704199 TTI4+199 7744200
1024 | 10224511 10234341 10234294 10244275 10254267 10264264 10274263 10304264

Table 2: Complexity of SR algorithm

4.4 Comparison with other techniques

We now compare the SR algorithm with other variants of the square-and-multiply expo-
nentiation algorithm as given by Jedwab and Mitchell, [17], Kog, [9], Egecioglu and Kog,
[5] and Zhang, [20]. Note first that the SR algorithm has the potential to reduce the
number of modular multiplications in exponentiation with an n-bit exponent from n/2
to a little over n/4, whilst leaving the number of modular squaring operations essentially
unchanged at n. Note also that, using techniques such as those described by Knuth, [8],
modular squaring can be made to run perhaps twice as fast as general modular multipli-
cation, making the reduction more significant than it would otherwise appear.

Probably the most simple of these other methods is to use a signed-digit representation of
the exponent, as described in Section 2 above. As discussed there, this has the potential
to reduce the number of modular multiplications to n/3 (again leaving the number of
modular squaring operations unchanged), at the cost of pre-computing m~'. Given that
n/3 is significantly greater than n/4, and also observing that pre-computing m~=! can be
a non-trivial operation, the SR algorithm presented above offers clear advantages.

1 and use instead all the 2*~! odd numbers of

Hui and Lam [6] avoid pre-computing m~
length k& or less. In a binary integer representation, all strings corresponding to a pre-
computed odd number are then replaced by a single digit. The average weight of such a

M n
representation converges to 41 for large n.

Kog [9], and Egecioglu and Kog [5], also describe several other square-and-multiply vari-
ants involving processing the exponent more than one bit at a time. Certain of these
algorithms offer the possibility of reducing the expected number of modular multiplica-
tions a little below n/4, although they still require approximately n modular squaring
operations. However, as we see in the next section, although more powerful in theory,
they do not fit well with other possible improvements in the exponentiation calculations.

4.5 Combination with other algorithms

We conclude this paper by considering how the SR algorithm might be used in conjunction
with certain other types of fast exponentiation techniques, and in particular the schemes
of Quisquater and Couvreur [14] and Selby and Mitchell [17]. Both these papers describe
methods which take advantage of the fact that the basic left-to-right version of the square-
and-multiply algorithm (as given in Section 1 above) involves repeated multiplication by
m (mod N). It is therefore worth investing a certain amount of time before commencing
the square-and-multiply procedure in calculating tables which can speed up modular
multiplication by m.

However, if the modified version of square-and-multiply to be used involves multiplying
by a large range of different powers of m (as with the algorithms of Kog and Egecioglu)

14

then pre-computing tables is no longer worthwhile. But this is not the case with the SR
algorithm, at least when small values of k are employed. For example, if & = 2 then the SR
version of the exponentiation algorithm requires repeated multiplication by either m or
m? and it will almost certainly still be worth pre-computing tables (one for multiplication
by m and one for m?). As should be clear from Table 2, small values of k realise a large
part of the potential gains of the SR algorithm, and hence we have the basis for a fruitful
combination of techniques which have the potential to offer significant advantages over
other methods for modular exponentiation.

Acknowledgement

We have to thank an anonymous referee for considerably simplifying the derivation of
Theorem 2.5.

References

[1] S. Arno and F.S. Wheeler. Signed digit representations of minimal Hamming weight.
IEFEFE Transactions on Computers, 42:1007-1010, 1993.

[2] H.J. Beker and F.C. Piper. Cipher Systems. Van Nostrand Reinhold, 1982.

[3] A.D. Booth. A signed binary multiplication technique. Quarterly Journal of Me-
chanics and Applied Mathematics, 4:236-240, 1951.

[4] E.F.Brickell. A fast modular multiplication algorithm with application to two key
cryptography. In Advances in Cryptology, Proceedings of Crypto’82: 51-60, 1982

[5] O. Egecioglu and C.K. Kog. Fast modular exponentiation. In Proceedings of 1990
Bilkent International Conference on New Trends in Communication, Control, and
Signal Processing, pages 188-194, Ankara Turkey, July 1990. Elsevier Science Pub-
lishing Co.

[6] L.C.K. Hui and K.Y. Lam. Fast Square-and-Multiply Exponentiation for RSA. Flec-
tronics Letters, 30:1396-1397, 1994.

[7] J. Jedwab and C.J. Mitchell. Minimum weight modified signed-digit representations
and fast exponentiation. FElectronics Letters, 25:1171-1172, 1989.

[8] D.E. Knuth. The art of computer programming, Volume 2: seminumerical algo-
rithms. Addison-Wesley, Reading, Mass., 2nd edition, 1981.

[9] C.K. Kog. High-radix and bit recoding techniques for modular exponentiation. In-
ternational Journal of Computer Mathematics, 40:139-156, 1991.

[10] C.K. Kog¢ and C.-Y. Hung. Adaptive m-ary segmentation and canonical recoding
algorithms for multiplication of large binary numbers. Computers Math. Applic.,
24:3-12, 1992.

[11] P.L. Montgomery. Modular Multiplication Without Trial Division. Mathematics of
Computation, 44: 519-521, 1985.

15

[12] M.J. Norris and G.J. Simmons. Algorithms for high-speed modular arithmetics.
Congressus Numerantium, 31:151-163, 1981.

[13] K.C. Posch and R. Posch. Modulo Reduction in Residue Number Systems. [EEFE
Transactions on Parallel and Distributed Systems, 6:449-454, 1995.

[14] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-key
cryptosystem. Flectronics Letters, 18:905-907, 1982.

[15] G.W. Reitwiesner. Binary arithmetic. In F.L. Alt, editor, Advances in Computers 1,
pages 232-308. Academic, New York, 1960.

[16] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21:120-126, 1978.

[17] A. Selby and C.J. Mitchell. Algorithms for software implementations of RSA. Pro-
ceedings of the IEFE, Part F, 136:166-170, 1989.

[18] N. Takagi and S. Yajima. Modular multiplication hardware algorithms with a redun-
dant representation and their application to RSA cryptosystem. IFEFE Transactions
on Computers, 41:887-891, 1992.

[19] N. Takagi, H. Yasuura, and S. Yajima. High-speed VLSI multiplication algorithm
with a redundant binary addition tree. IFEE Transactions on Computers, C-34:789—
796, 1985.

[20] C.N. Zhang. An improved binary algorithm for RSA. Computers Math. Applic.,
25:15-24, 1993.

16

