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Abstract In critical infrastructure environments, we argue that both ad-
versaries and operators will utilize agents to manage dynamic attack/defence
interactions in future. Agent behavior and, in particular, agent interac-
tion require adequate modelling tools to reason over such situations in
distributed environments where the state (malicious or non-malicious) of
a channel or process can vary dynamically depending on the actions of
opposing sides in attack and defence. For this purpose, we propose an
extension to applied π-calculus to model agent behavior. We apply this
extended calculus to the formal analysis of a class of agent-based attacks
and its detection to demonstrate its utility..

1 Introduction

Critical infrastructure systems are key targets in cyber attacks [1]. But remote
attackers face problems in determining state due to limitations on communica-
tion [2,3]. At the same time, operators need to respond to sophisticated attacks
in real-time and may have to operate systems in a compromised state with only
partial knowledge of state. The outcome of such interactions may depend on
the state (or knowledge of state) of a single channel or process. Such situations
require the deployment of software agents by both sides.

We propose an extension to applied π-calculus [4] to enable us to reason
over agents, defining attack and defence categories. This extension augments
previous models of adversary (and operator) capability [2]. As an example ap-
plication, we provide a formal model of a co-ordinated attack using agents and
its detection by a set of observers, working on behalf of the operator.

Section 2 outlines related work. Section 3 describes the problem and our ap-
proach. Section 4 outlines our proposed extension to the π-calculus. Section 5
outlines the coordinated attack. Section 6 demonstrates its detection. We con-
clude and set out future research directions in section 7.
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2 Related Work

Software agents may act on autonomous decisions based on their perception
of the environment [5], possibly including learning. In recent years, malicious
code has exhibited increasingly agent-like behavior. This trend is likely to con-
tinue [6,7].

Software agency also permits the attacker to launch more sophisticated, in-
cluding coordinated, attacks. There are advantages in implementing such attacks
[8,9]. Dealing with such attacks also requires operators to make dynamic inter-
ventions in the face of changing adversary behavior. This requirement is under-
lined by the intrinsic nature of critical infrastructure systems [10,11] which need
to continue to operate in a compromised state. Finally, the scale and complex-
ity of SCADA systems makes dealing with a co-ordinated attack unfeasible by
human operators. The use of agents to respond autonomically[12] in relation
to a wide range of security tasks provides a distinct advantage in countering
agent-based attacks.

The pi-calculus provides a proof technique over process actions [2,13,14,4].
Algebraic techniques enable us to apply formal reasoning, including automat-
ing proofs [4]. We make use of IP Traceback algorithms in our example [15,14].

3 Motivation

Understanding agent-based attack and defence strategies will be a necessity in
the defence of critical infrastructure systems. Reasoning over such interactions
represents a complex set of problems, particularly where multiple co-operating
agents exist and such agents can “recruit” normally trusted processes to work
on their behalf [2].

We seek to show that, by extending the pi-calculus, we can enable reasoning
over such complex scenarios. We also extend the adversary capability model
presented in [ibid.] to allow us to consider a distinct class of attacks – not de-
pendent on direct adversary intervention, but on malicious software agents.

4 Agent Calculus

We describe the G{π}-calculus which is the goal transform π-calculus. The basic
π calculus is described in [4], while the applied version we use as a basis for
this extension was introduced in [2].
||G||AgentName is defined by a set of inter-related goals. If G is a goal then

G ::= 0|π.G|νzG|G.G|G+G|G⊕G|G|G′|!G|[L]G (1)

where the possible actions α of G are defined in Table 1.
where L is a first order logic with equivalence and ordered relations and π

is a capability of the π-calculus which we will define.
Goal actions are defined by the capabilities of the applied π- calculus.



Term Semantic
0 Null action

π.G Exercise a π-calculus capability
νz G Declare a new goal and its names
G.G Execute goals sequentially

G+G Execute feasible goals in order
G⊕G Execute exclusive goals
G|G′ Execute two goals concurrently

!G Replicate goal action
[L]G Execute a goal, based on a first order logic condition

Table 1. G{π}-Calculus Syntax

π ::= x̄〈z〉c̃|x(z)c̃|λ|f(ṽc̃′) ⊃ ṽ′c̃|[L]π. (2)

The respective meaning given to these capabilities is defined in Table 2.

Term Semantic
x̄〈z〉c̃ Send a name with characteristics
x(z)c̃ Receive a name with characteristics

λ A silent function
f(ṽc̃′) ⊃ ṽ′c̃ A function over a set of names

[L]π Conditional execution of a capability
Table 2. π-calculus Terms

Constants, variable and function labels belong to the set of names which we
define. Goals execute themselves until they invoke another goal, at which point
they terminate.G0 is a reserved label which represents the null goal. z̃ indicates
a vector of names.

∐
indicates a set of concurrent goals or processes.

∑
indi-

cates a sum M over capabilities. A label which is an inaction represents a pro-
cess action which may not be directly observable. For example, let P := M + λ
be a process(where M is a sum) then λ, P ⊃ 0 is an inaction or silent func-
tionof P . A key characteristic in our model is that processes may be overwritten
by messages from another agent. Hence we need to define precisely the out-
come of those message. For example, let m be a message and P := M + Ω|Q
then Ω,m,P ⊃ P ′ where P ′ may be defined arbitrarily (though, in general,
P ′ behaves like P except under certain conditions where it executes a different
behavior useful to the adversary).

In this example, destination addresses are characteristics, so that 〈z〉Xj
is

assumed to route the name z to the process Xj . Routing is conditional on the
characteristic and is displayed as follows x̄i〈z〉[Xj ] rather than by a more con-
ventional [z.r = Xj ]x̄Xj

〈z〉Xj
to save ink, where z.r is a dotted name which in-

dicates the characteristic routing address of the name z. Hence any name with



the destination address z.r = Xj as one of its characteristics will be routed by
x̄i even where x̄i is not the final destination.

A proof reduction is indicated using dotted notation ||Goal.Subgoal.Action||Agent →
||Goal.Subgoal.NextAction||Agent where NextAction is any capability or a goal
invocation. Goals (hence agents) interact by communicating over names which
are channels. A proof reduction considers all possible reductions and any claim
– for example, regarding security properties – requires to be shown for all cases
in the reduction.

5 Coordinated Attack

We model a coordinated attack and its detection. Using six agents, the adver-
sary seeks to set three valves so as to cause a critical failure, while concealing
the result through data manipulation [3].

||Stage1.SendMalwareToNode4||Launch1 (i = 4)

||Stage2.SendMalwareToNode12||Launch2 (j = 12)

||X4.ReceiveMessage|X12.ReceiveMessage|X1 . . . |X15||System

→ Send malware to both nodes
||Stage1.PollSuccess||Launch1

||Stage2.PollSuccess||Launch2

||X4.BecomeMaliciousAgent|X12| . . . ||System

→ Check results
||Stage1.ReportSuccessToLaunch3||Launch1

||Stage2.SendMalware||Launch2 (j = 11)

→ First attack succeeds, next attempt

||X
′

4||Agent1

||X4|X12.ReceiveMessage|X1 . . . |X15||System

→ Await outcome and launch if successful
||Stage3.WaitForLaunch1and2 + [Success]LaunchFinalAttack||Launch3 (3)

We start by using English-like mnemonic goal labels for scenario planning 1

Three Launch agents, which we define, send malicious software as a name into
the system which overwrites various network nodes to transform them into
additional malicious agents working on behalf of the adversary.

There are four outcomes – success for both agents, failure for one or other
or failure for both. A full proof requires us to define the mechanics of attack

1 In fact, without interference in channels and processes, this goal calculus would be
sufficient to prove the outcome of any interactions, provided the goals were defined
precisely.



and we show (in part) how we may refine the reduction in equation 4 where
Xi represents a system node, g2 is a message which infects the system and s is
a boolean variable. Here we see the launch agents L1 and L2 send malicious
names by two channels X9 and X10 into the system. In turn, these are routed
to target nodes i and j and the success or failure of subversion. Once this initial
subversion succeeds, the newly formed agents flag their success to agent L3
which launches the final part of the attack. However, the messages regarding
success or failure may arrive in any order.

||Stage1.x̄9〈g2〉Xi
||L1 (i = 4)

||Stage2.x̄10〈g3〉Xj
||L2 (j = 12)

||X9.x9(z)||System

||X10.x10(z)||System

→ Send malicious messages to the system
||Stage1.xS1(s)||L1

||Stage2.xS2(s)||L2

||X9.(x̄i〈m2〉Xi
.x̄S1〈>〉 ⊕ φ.x̄S1〈⊥〉S1)||Agent0

||X10.((x̄j〈m2〉Xj
.x̄S2〈>〉 ⊕ φ.x̄S2〈⊥〉S2)||Agent00

||Xi.xi(z)||System

|Xj .xj(z)||System

→ Case 1 ∗ Both attempts succeed
||Stage1.xS1(s)||L1

||Stage2.xS2(s)||L2

||X9.x̄S1〈>〉S1)||Agent0

|X10.x̄S2〈>〉S2)||Agent00

||Xi
′|G||Agent2

||Xj
′|G||Agent3

→ Case 2.1 Xi succeeds, while Xj fails and is re - attempted (4)

We need to show this does not affect a planned outcome and that the third
launch agentL3 will respond appropriately (by starting the final attack or abort-
ing it) whatever the message order. In equation 5, we show that the messages
update a boolean predicate a and the final attack only launched when it holds
TRUE. The order in which it is updated is not relevant to the outcome. The
end result of case 1 is that the final part of the attack is launched by L3. at this
point, L3 will sets its target valve to Steady and signal the other two agents in
turn to set their target values to Open and Closed, while concealing the attack
by manipulating the signal from the controllers - equation 6 again shows this
in part.



||InitialSuccess.xAd(u)||L3 (k = 0)

→ (1) Both attacks succeed
||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = m2, a = m2 ∧ ¬m3, k = 1)

||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = m3, a = m2 ∧m3, k = 2)

||Stage3||L3

or → (2) L3 sends a negative flag though Agent2 succeeds
||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = m2, a = m2 ∧ ¬m3, k = 1)

||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = ¬g3, a = m2 ∧ ¬m3, k = 2)

||G0||L3

→ (3) L2 and L3 send negative flags
||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = ¬g2, a = ¬m2 ∧ ¬m3, k = 1)

||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = ¬g3, a = ¬m2 ∧ ¬m3, k = 2)

||G0||L3

→ (4)Agent3 succeeds and L2 fails
||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = ¬g2, a = ¬m2 ∧ ¬m3, k = 1)

||InitialSuccess.UpdateAttack.Update(u, a) ⊃ a′.(k + +) ||L3

. . .→ (u = m3, a = ¬m2 ∧m3, k = 2)

||G0||L3

→ (∗) We can swap the order of arrival to get the same result (5)



||Xk
′|SetSteady.set(u, Steady) ⊃ u′||Agent1

||Xi|Waitfor1||Agent2

||Xj |Waitfor2||Agent3

→ Define the desired ‘steady’ value for the valve
||Xk

′|SetSteady.Send.x̄s〈u′〉C2||Agent1

||Xi|Waitfor1||Agent2

||Xj |Waitfor2||Agent3

→ Send the instruction to the Contoller
||Xk

′||FlagSteady||Agent1

||Xi|Waitfor1||Agent2

||Xj |Waitfor2||Agent3

→ Receive messages
||Xk

′|FlagSteady.xs(u)||Agent1

||Xi|Waitfor1||Agent2

||Xj |Waitfor2||Agent3

→ Detect whether the value has changed.
||Xk

′|FlagSteady.[u = Steady]x̄s〈s〉X5 .G0||Agent1

||Xi|Waitfor1||Agent2

||Xj |Waitfor2||Agent3

→ Once the valve is set, signal the next agent to act
||Xk

′.Send(u)|Conceal||Agent1

||Xi|Waitfor1.xs(s)||Agent2

||Xj |Waitfor2||Agent3

→ Note, fake signals conceal the true server state
||Xi|OpenV alve||Agent2

||Xj |Waitfor2||Agent3

→ Next agent opens the valve and signals the third agent
||Xj |CloseV alve||Agent3

Attack completes (6)

6 Distributed Detection

The operator employs observer agents to make a state determination over trusted
routes, alerting on critical conditions. As described elswhere [13,15,14], each
network node (including adversary agent nodes) through which a message
passes will mark the route followed with its address. Each node may also prob-
abilistically forward a message copy to observer agents for comparison.



Our other contribution is this paper is provide a formal definition of an
algorithm for observer agents who use this information to make a determination
over state 2. We show how the observer algorithm uses messages and copies to
determine a trusted set of paths. State determination is subsequently restricted
to considering messages on trusted paths. An observer is defined in equation 7.
We show the initial reduction of the Observer in equations 10 and 8.

Observerj ::

Observe := xObj (z) + [z ∈M ]UpdateState + [z ∈ C]UpdatePath

UpdateState := ν p (Store(z, STORE) ⊃ STORE′

+
∑
i

[z ∈ Ci ∧ ¬(Marked(z.path)]Store(z, STATE) ⊃ STATE′

+ ([p 6 rand()]EvaluateState⊕Observe)
EvaluateState := (Evaluate(STATE, c̃) ⊃ CRITICAL′

+ [CRITICAL]Alert) +Observe

UpdatePath := Compare(u, z, k̃, STORE) ⊃ w.∑
i

[¬w]MarkPath(u, z, CiTREE) ⊃ CiTREE
′

+
∑
i

[w ∧Marked(z.path)]UnMarkPath(u, z, CiTREE) ⊃ CiTREE
′

+Observe

Alert := ν f(⊥) (x̄Op〈f〉Op)

ν k̃c̃, STORE, STATE,CRITICAL,CiTREE || •Observe|| (7)

The first case is a copied message used to determine route trustworthiness.
The observer receives a message which it evaluates to be a copy and invokes
the goals UpdatePath which compares the message with the original. If no dis-
crepancy is found, it moves to the next message. If a discrepancy is found then
it notes the route and marks the forward neighbouring node in order of com-
munication as untrusted. It can also remove marks where a node is returned
to a trusted state. We can represent marked messages using a graph, defined
algebraically for the purposes of the proof. For example, equation 9 shows that
X8 is no longer a trusted node by placing a bar over the node.

2 In [14], the IP Traceback algorithms were used for detecting the location of malicious
agents which is a different goal from the one set out in this paper.



|Xi.Send|| (i = 1, 2, 3)

||Observe.xobj (z)||Observerj (z ∈ C)

→
||UpdatePath.Compare(u, z, k̃, STORE) ⊃ w||Observerj

→ No discrepancy, message on unmarked path
||Observe||Observerj

→ No discrepancy, message on previously marked path
||UpdatePath.UnMarkPath(u, z, CiTREE) ⊃ CiTREE

′||Observerj

{w = TRUE ∧Marked(z.path)}
or → Discrepancy found
||UpdatePath.MarkPath(u, z, CiTREE) ⊃ CiTREE

′||Observerj (w 6= TRUE)
(8)

The proof that the path marking algorithm will respond correctly depend-
ing on whether the message is marked before or after being manipulated fol-
lows. If the message is copied before it is manipulated, then the malicious agent
node will appear to deliver trustworthy messages, but any subsequent node it
sends the message to will appear to be untrustworthy. Hence we always mark
the next node up in order of communication to the node transmitting the copy.
Alternatively, any previous node will appear to deliver a trustworthy copy and
we will bar the agent node. So either any node the agent node sends to will be
marked as untrustworthy or the agent node will be marked as untrustworthy.
In either case, any message travelling by the agent node will not be trusted for
state determination.

C1TREE = Op+ (X1 + (X4.X9.X12.C1)

+ (X5 + (X̄8 +X10).X13.C1))

+ (X2 + (X5 + (X̄8 +X10).X13.C1)

+ (X6.X9.X12.C1))

+ (X3 + (X6.X9.X12.C1)

+ (X7.X10.X13.C1)))

(9)

The second case is a normal message and, depending on probability, a snap-
shot of state. The observer receives a message which is not a copy. It stores the
message in STORE which is use to log all messages. But only if the message
arrives on a trusted path does it store the message in STATE which is the set
of messages used to make a determination over the state of the system. Finally,
if the state is detected to be critical (as in our attack) the operator is signalled by
the Alert goal.



|Xi.Send|| (i = 1, 2, 3)

||Observe.xobj (z)||Observerj (z ∈M)

→
||UpdateState.Store(z, STORE) ⊃ STORE′||Observerj

→ Only if message is trusted
||Store(z, STATE)||Observerj

→ (p > rand())

||Observe||Observerj

→ (p 6 rand())

||EvaluateState.Evaluate(STATE, c̃) ⊃ CRITICAL′||Observerj

→ Not in a critical state
||Observe||Observerj

→ State is critical
||Alert||Observerj (10)

||X10.Mark.x̄〈y〉Op|X10.x10(z)|C1.x̄12〈z〉Op|X12.x12(z)||System

→
||X10.Mark.x̄8〈y〉Op|X12.Mark.x̄9〈y〉Op|
X9.Mark.x9(z)|C1.x̄13〈y〉Op|X13.x13(z)||System

||X8
′.x8(z)||Agent2

→
||X8

′.Mark.x̄5〈y〉Op||Agent2

||X13.Mark.x̄10〈y〉Op|X9.Mark.Observe(y)|
C1.x̄12〈z〉Op|X12.x12(z)|X10.x10(z)|X5.x5(z)||System

→
||X10.Mark.x̄7〈y〉Op|X5.Mark.x̄2〈y〉Op|
X12.Mark.x̄9〈y〉Op|X9.Mark.x̄6〈y〉Op|
C1.x̄13〈y〉||System

→ Case (1) X8 and X6 are marked∐
i

||UpdatePath.MarkPath(c, y, C1TREE)||Obi

→ Case (2) Neither node is marked
→ Case (3) X6 is marked but not X8 (11)

Finally, we should demonstrate that dynamic behavior such as agents mi-
grating can be accommodated, say if X8 and X6 change status - see equation



11. This ability to track and demonstrate the possible range of dynamic sys-
tem behavior is a key aspect of this proof technique. For example, considering
the probable outcomes of any state determination during a changeover in node
state.

7 Conclusion and Future Work

In this paper we have discussed an extension to the adversary capability model
– based on the π-calculus – proposed in [2] using a goal-based syntax and se-
mantics to capture the operation of software agents explicitly in SCADA and
critical infrastructure environments. We argue that both attackers and operators
have well-founded motivations for employing software agents in such environ-
ments. This extension enables us to model a greater range of attack and defence
capabilities compared with our previous approach [ibid.], in particular, coordi-
nated attacks and defences, and to reason about complex attacker/defender in-
teractions based on the use of software agents at a granular level. We illustrated
our approach by providing a formal proof of a novel algorithm for state deter-
mination using trusted paths in a SCADA system under co-ordinated attack.
Future work will concentrate on more complex analysis and research of opera-
tor/adversary interactions in critical infrastructure environments by competing
coalitions of agents. For example, considering how observers may interact with
each other. We will also seek to extend the approach to incorporate learning
behaviors and timing considerations.
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