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Abstract—In the smart card industry, the application acquisi-
tion process involves the card issuers and application providers.
During this process, the respective card issuer reveals the identity
of the smart card user to the individual application providers. In
certain application scenarios it might be necessary (e.g. banking
and identity applications). However, with introduction of the
Trusted Service Manager (TSM) architecture there might be valid
cases where revealing the card user’s identity is not necessary.
At the moment, the secure channel protocols for traditional
smart card architecture including the TSM does not preserve
the privacy of the card users. In this paper, we propose a secure
and trusted channel protocol that provide such feature along with
satisfying the requirements of an open and dynamic environment
referred as User Centric Smart Card Ownership Model (UCOM).
A comparison is provided between the proposed protocol and
selected smart card protocols. In addition, we provide an informal
analysis along with mechanical formal analysis using CasperFDR.
Finally, we provide the test implementation and performance
results.

Index Terms—User Centric Smart Card Ownership Model,
Application Installation Protocol, Privacy Preservation, Smart
Cards, CasperFDR.

I. INTRODUCTION

The introduction of the Near Field Communication (NFC)
[1] technology and commercial realities have reinvigorated the
multi-application smart card initiative [2]. In most of the trials
[3], either the traditional ownership model termed as Issuer
Centric Smart Card Ownership Model (ICOM) [4], or an
extension of it referred to as Trusted Service Manager (TSM)
[5] is deployed. In both of these architectures, the smart card
is stringently controlled by a centralised authority (e.g. card
issuer).

On contrary, the User Centric Smart Card Ownership Model
(UCOM) [6] delegates the smart card’s ownership to their
respective users (cardholders). The term ownership means
“freedom of choice” that the users only have the privilege to
request installation or deletion of an application from a Service
Provider (SP). Each SP has an Application Lease Policy (ALP)
[6], which if satisfied by a smart card the SP would lease the
respective application to it.

For leasing an application, the respective SP will establish
a secure channel protocol with a smart card along with
ascertaining its security and operation assurance. For this
purpose, we propose a Privacy Preserving Secure and Trusted
Channel Protocol (P-STCP) in this paper that satisfies the
listed UCOM requirements and provide privacy preservation
service to the card user. The P-STCP not only establishes a

secure communication channel but also provides assurance that
the participating smart card is secure and trustworthy; one
feature that most of the smart card protocols do not entertain.

We start the discussion with a brief description of the related
work and provide the rationale why we considered that most of
the existing smart card protocols fall short. The discussion is
then extended in section three to the smart card architecture in
the UCOM environment that provides dynamic and ubiquitous
security and reliability assurance. In section four, we propose
the P-STCP. Section five provides an informal and mechanical
formal (CasperFDR) analysis of the P-STCP and section six
details performance measurement. Finally, in section seven
future research directions and conclusion of the paper are
provided.

II. SECURE CHANNEL PROTOCOL

In this section, we explore the rationale behind the P-STCP
along with the related work that we use as a point of reference
for later discussions.

A. Motivation

A Secure Communication Protocol (SCP) by definition
provides either or both: entity authentication and key exchange
between communicating parties (end points). The SCP pre-
serves the confidentiality and integrity of the messages on
the channel but does not assure the same at the end points.
Nevertheless, there can be implicit assurance in the integrity
and security of the end points as articulated by ETSI TS 102
412 [7]. This states that the smart card is a secure end point
under the assumption that it is a tamper-resistant device (which
is under the control of a trustworthy entity: card issuer).

The implicit assumption is valid for the traditional smart
card environment (e.g. ICOM and TSM) because it is issued
by a “trusted” card issuer. This became the fundamental
assumption in most of the smart card based SCPs. For the
ICOM, this makes sense as the strict control of a smart
card will effectively restrict the SCP to only execute with an
entity that: (a) has prior authorisation from the card issuer, or
(b) is initiated by an authorised entity. As the card issuer has
the knowledge of the card user’s identity and all application
acquisition process is either initiated or sanctioned by it; there
is no privacy protection for the respective card users.

On contrary, in the UCOM, there is no such authority (i.e.
card issuer or centralised authority: TSM); hence, the assump-
tion of the implicit assurance is no longer valid as illustrated
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by the simulator problem described in [6]. A simulated smart
card on a computer can initiate a communication channel with
an SP in the UCOM; downloading its application, and then
trying to reverse engineer it.

A trusted channel is a secure channel that is cryptographi-
cally bounded to the current state of the communicating parties
[8]. This state can be a hardware and/or software configuration,
and ideally it will require a trustworthy component to validate
it to be same as claimed. Such a component in most of
the instances is a Trusted Platform Manager (TPM) [9] as
demonstrated by [10] and [11].

An SP does not have any prior trust relationship with a
smart card in the UCOM. Therefore, the traditional smart
card SCPs will fail to provide: (a) assurance that an SP
is communicating with a genuine smart card platform and
not a simulator, (b) the smart card security and operational
environment is certified by a reputed third party evaluation,
(c) the security and operational environment state is still valid
as it was at the time of evaluation, and (d) the smart card is
owned by the user who is requesting the application download.
These issues in the context of the UCOM are further discussed
in section II-C.

We define the P-STCP in the context of the UCOM as
a protocol providing a secure and reliable communication
channel coupled with an assurance of security and integrity
concerning the communicating smart card platform along with
provisioning the privacy protection to the card user. The
P-STCP is used during: (a) application installation/deletion
process, and/or (b) communication between an installed ap-
plication and its respective SP.

A valid question arise is why we need the privacy protection
for the smart card user. In answer to this, we consider that in
certain instances respective SPs are only concerned with the
security assurance and validation of the smart card platform
and do not require user registration (i.e. anybody can download
and use their application).

Examples of applications that can be downloaded in this
scenario include pre-paid telecom applications, transport, hotel
room access applications, and rental car keys, etc. In such a
scenario, the SP is concerned with the (secure) application
download on to a smart card that supports its ALP. From
a customer’s point of view, they do not give their personal
details, and so they can preserve their privacy. Respective SPs
are concerned with the usage of their applications than who use
them. However, in certain countries even the pre-paid mobile
SIMs or transport applications are tied to individual users.

In a TSM based architecture, the respective TSM might
have relationship to companies that provide such services
as listed above. That in reality does not require an active
user registration before the lease of application. Therefore,
existing protocols (e.g. SCP81 [12]) does not provide privacy
protection. Furthermore, in the above discussed application
acquisition process the user is not required to be pre-registered
user of the respective SP. This gives the flexibility, increase
dynamism and avoid pre-registration (authorisation) of the user
that might involve offline process, which may take appreciable
time.

B. Related Work

In this section, we restrict to the discussion of the protocols
that are specifically proposed for the smart card environment
or being used as point of comparison in later discussions.

Since the possibility that two computing devices can com-
municate with each other, the work on the SCP is in research.
An early discussion on various proposed protocols and their
architecture can be found in [13]. A detailed comparison of
authentication protocols for mobile network environment is
presented in [14].

Early smart card protocols were based on the symmetric key
crypto-system like (deprecated) SCP01 of the GlobalPlatform
specification [15]. Other protocols specified by the GlobalPlat-
form specification are SCP02 (based on Triple-DES), SCP10
(based on asymmetric key crypto-system) [15], SCP81 (based
on SSL/TLS) [12], SCP03 (based on AES) [16], and SCP80
for mobile telecom industry [17]. One thing to note is that most
of the listed protocols either implicitly or explicitly provide the
user’s identity during the protocol execution [15], [18].

The concept of trusted channel protocols was put forward
by Gasmi et al. [8] along with the adaptation of TLS protocol
[19]. Later Armknecht et al. [11] proposed another adaptation
of OpenSSL to accommodate the concept of the trusted
channel, and also by Zhou and Zhang [10].

In section V-C, we will compare the proposed P-STCP with
the existing protocols. These protocols include the Station-
to-Station (STS) protocol proposed by Diffie et al. [20], the
Aziz-Diffie (AD) protocol [21], the ASPeCT protocol [22],
Just-Fast-Keying (JFK) [23], trusted TLS (T2LS) [8], Glob-
alPlatform SCP81 [12], Markantonakis-Mayes (MM) protocol
[24], and Sirett-Mayes (SM) protocol [25].

The selection of the protocols is intentionally kept broad
to include well-established protocols like STS, Aziz-Diffie
(AD) and JFK protocols. Also including the ASPeCT protocol,
which is designed specifically for the mobile network’s value-
added services. The T2LS is based on the concept of trusted
channels where SCP81, SM, and MM protocols are specific
to smart cards.

C. Requirements and Goals of the P-STCP

Proposed protocol that supports the UCOM architecture
should meet the following requirements and goals;

1) Mutual Entity Authentication: Both a smart card and an
SP authenticates to each other to avoid masquerading by
a malicious entity.

2) Exchange of certified public keys between the entities to
facilitate in the key generation and entity authentication
process.

3) Mutual Key Agreement: Communicating parties will
agree on the generation of a key during the protocol run.

4) Joint Key Control: Communicating parties will mutually
control the generation of new keys to avoid one party
choosing weak keys or predetermining any portion of the
session key.

5) Key Freshness: The generated key will be fresh to the
protocol session to protect replay attacks.
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6) Mutual Key Confirmation: Communicating parties will
provide implicit/explicit confirmation that they have gen-
erated the same keys during a protocol run.

7) Known-Key Security: If a malicious user is able to obtain
a session key of a particular protocol run, it should not
able him or her to retrieve the long-term secrets (private
keys,) or session keys (future and past).

8) Unknown Key Share Resilience: In the unknown key
share attack, an entity X believes that it has shared a
key with an Y , where the entity Y mistakenly believes
that it has shared the key with entity Z 6= X

9) Key Compromise Impersonation (KCI) Resilience: If a
malicious user retrieves the long-term key of an entity, it
will enable him or her to impersonate the entity. Never-
theless, it should not facilitate him or her to impersonate
other entities to it [26].

10) Perfect Forward Secrecy: In case, if the long-term keys
of communicating entities are compromised. It does not
enable a malicious user to compromise previously gener-
ated session keys.

11) Mutual Non-Repudiation: Communicating entities will
not be able to deny that they have executed the protocol
run with each other.

12) Partial Chosen Key (PCK) Attack: Protocols that claim
to provide joint key control are susceptible to this attack
[27]. In this attack, if two entities provide separate values
to the key generation function then one entity has to com-
municate its contribution value to the other. The second
entity can then compute the value of its contribution in
such a way that it can dictate its strength (able to generate
a partially weak key). However, this attack depends upon
the computational capabilities of the second entity.

13) Trust Assurance (Trustworthiness): The communicating
parties not only provide security and operation assurance
but also validation proofs that are dynamically generated
during the protocol execution [6].

14) Memory-DoS and Computation-DoS Prevention: The
protocol should not require the server (in our case SP’s
servers) to allocate the resources before authenticating
and validating the state of the requesting entity (a smart
card) or verifying the credentials of the authorised user.

15) Privacy: A third party should not be able to know the
identities of the user or her smart card, either over the
Internet or Over-the-Air (OTA). In addition, during the
trust validation and assurance process; the requesting SP
should not be able to gain any additional information
about the platform (e.g. applications installed on a smart
card).

16) Simulator Attack: This attack discussed in [6] allows a
malicious user to masquerade a smart card platform on a
computer (as a simulation). Such a possibility will enable
the malicious user to download an application onto a
simulated platform and then perform reverse engineering
on the downloaded application: revealing proprietary and
sensitive data of the application. Therefore, any proposed
protocol for the UCOM architecture should integrate the
platform attestation in its specification that verifies the
current state of the platform to be trustworthy.

For formal definition of the terms (italicised) used in the
above list, readers are advised to refer to [13]. The stated goals
in this section are later used as point of reference to compare
(see table IV) the proposed P-STCP with listed protocols (see
section II-B).

III. SMART CARD ASSURANCE AND VALIDATION
MECHANISM

In this section, we describe the UCOM smart card architec-
ture with emphasis on trust assurance mechanism.

A. Smart Card Architecture

In the ICOM, both the card issuer and the application
provider have an offline relationship. That may translate into
having business and legally-binding contracts that define the
terms and conditions for both parties to co-exist, and abide
by each other’s security requirements/policies on a smart
card. However, such an assumption is impossible to make in
the UCOM where smart cards are not under any centralised
authority. This absence of the prior and offline trust in the
UCOM is the major cause why most of the existing protocols
fail the UCOM requirements (section II-C).

Smart Card Runtime Environment (SCRT)

Smart Card Firewall

Platform Space Application Space

Native Code

Smart Card Hardware

Trusted Environment & Execution Manager (TEM)

Figure 1. Overview of the simplified (UCOM) smart card architecture.

An essential architectural change is required to the smart
card architecture that can facilitate the establishment of the
trustworthiness of both the smart card platform and (installed)
application(s) that is referred as Trusted Environment & Ex-
ecution Manager (TEM) and illustrated in overly simplified
figure 1.

1) Trusted Environment & Execution Manager: The TEM
is used to provide a remote, dynamic, and ubiquitous security
assurance and validation that the platform’s state is as it was
at the time of a third party evaluation. For security assurance,
the third party evaluator issues an Product Evaluation Cer-
tificate (PEC), which is a cryptographically signed certificate
that details the security and operational functionality of the
evaluated product. The evaluation certificate will also certify a
unique signature key pair of the card manufacturer. During the
manufacturing process, individual smart cards will generate a
unique signature key pair [13] that will be certified by the
respective card manufacturer. The certificate hierarchy in the
UCOM architecture is shown in figure 2. One thing to note
is that at present Common Criteria (CC) [28] or any other
evaluation scheme for that matter does not provide the PEC
but proposals presented in [6] and [29] can be utilised.

For security validation, the TEM implements a validation
mechanism that is divided into two parts: tamper-evidence and
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Table I
COMPARISON OF DIFFERENT PROPOSALS FOR VALIDATION MECHANISM.

Features Active-Shield KAT Keyed-HMAC PRNG PUF
Robustness Yes Yes Yes Yes Yes
Independence No No No Yes Yes
Pseudo-randomness No No Yes Yes Yes
Tamper-evidence Yes No – - Yes
Unforgeable No No Yes Yes* Yes
Assurance Yes No No No Yes*

Note: “Yes” means that the mechanism supports the feature. Similarly, “No” indicates that the mechanism does not support the required feature. The entry
“Yes*” means that it can support this feature if adequately considered during the design.

reliability assurance. Smart cards are required to be a tamper-
resistant device [30] and for this purpose card manufacturers
implement hardware based tamper protections. The tamper-
evidence process verifies whether the implemented tamper-
resistant mechanisms are still in place and effective. The
reliability assurance process on the other hand verify the
software part of the smart card platform that is crucial for
its security and reliability is not been tampered.

A TEM tamper-evidence process should provide properties
that are listed as below:

1) Robustness: On input of a certain data, it always produces
the associated output.

2) Independence: When the same data is input to two self-
test mechanism on different devices, it outputs different
values.

3) Pseudo-randomness: The generated output should be
computationally difficult to distinguish from a pseudo-
random function.

4) Tamper-evidence: An invasive attack to access the func-
tion should have irreversible changes, which render the
device dead.

5) Unforgeable: It should be computationally difficult to
simulate the validation mechanism to mimic the actual
deployed function on a device.

6) Assurance: The function can provide assurance (either
implicitly or explicitly) to independent (non-related) ver-
ifiers. It should not require an active connection with the
device manufacturer to provide the assurance.

For the TEM tamper-evidence process there can be several
candidates including using active (intelligent) shield/mesh
[30], Known Answer Test (KAT) [31], hard-wired HMAC
key, attestation based on Pseudorandom Number Generator
(PRNG) [32] and Physically Unclonable Function (PUF) [33],
etc. Based on the above listed features and table I, we can
safely assume that PUFs are better candidate for the validation
mechanism. Appendix B, details the TEM validation process
based on both the PRNG and PUF based mechanisms.

Nevertheless, for this paper we assume that such a mech-
anism is in place that can provide tamper-evidence to a
requesting entity as part of the P-STCP. The software state
of a platform can be validated by measuring its hash value
and if it matches with the one that is listed in the evaluation
certificate then we can consider with reasonable assurance that
the state of the platform is as it was at the time of evaluation.

After a cardholder acquires a smart card; the respective
TEM will generate and certify a signature key pair for the
user (figure 2). The certificate includes user’s information (e.g.

Common Criteria 

Certification Authority

Card Manufacturer

PEC

Smart Card Signature 

Key Pair Certificate

Smart Card Encryption 

Key Pair Certificate

Smart Card User Signature 

Key Pair Certificate

Figure 2. Certificate hierarchy in the UCOM architecture.

cardholder’s name, and date of birth, etc.) that will provide
the proof of ownership; assuring an SP that the smart card is
registered to a particular user.

IV. PRIVACY PRESERVING SECURE AND TRUSTED
CHANNEL PROTOCOL

In this section, we start the discussion with the notation
used followed by the description of the proposed P-STCP.

A. Protocol Notation

The notation used in the protocol description is listed in
table II;

Table II
NOTATION USED IN PROTOCOL DESCRIPTION.

SP : Denotes a Service Provider.
SC : Denotes a smart card.
Xi : Represents the identity of an entity X .
grX : Diffie-Hellman exponential generated by an entity X .
CertX : Signature key certificate of an entity X .
XSup : List of Diffie-Hellman groups and protocol parameters

(e.g. cryptographic algorithms) supported by an entity
X.

XSel : List of Diffie-Hellman groups and protocol parameters
selected by an entity X.

Nx : Random number generated by an entity x.
A→ B : Message sent by an entity A to an entity B.
X||Y : Concatenation of the data items X, Y.
[M ]Ke

Ka
: Message M encrypted by the session encryption key Ke

and then MAC is computed using the session MAC key
Ka.

Sigx(Z) : Signature generated on data Z by the entity x using a
signature algorithm [34].

H(Z) : Is the result of generating a hash of data Z.
Hk(Z) : Result of generating a keyed hash of data Z using key

k.

B. The P-STCP Protocol

Protocol messages are listed in table III and described as
below;
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Table III
PRIVACY PRESERVING SECURE AND TRUSTED CHANNEL PROTOCOL (P-STCP).

1. SC → SP : HNSC
(grSC )||SCSup

2. SP → SC : V R||grSP ||NSP ||HSPk
(grSP ||NSP ||HNSC

(grSC )||SCIP )

3. SC → SP : NSC ||grSC ||[SigSC(H(SCPlatform)||SCi||grSP ||grSC ||NSP ||NSC)||CertSC ]Ke
Ka
||SCookie

4. SP → SC : [SigSP (SPi||SCi||grSP ||grSC ||NSP ||NSC ||ALP )||CertSP ]Ke
Ka
||SCookie

a) Message 1: A smart card generates a random number
(NSC) and Diffie-Hellman exponential (grSC ). Then it gener-
ates the MAC of the grSC using the NSC as the MAC key.
The reason for generating the MAC and sending it instead
of the random number and Diffie-Hellman exponential is to
avoid partial chosen key attack. As an SP is computational
superior to a smart card instead of sending the values, which
can enable a malicious user to adjust the generation of Diffie-
Hellman exponential to generate a week key. Therefore, the
smart card sends a commitment (i.e. generated MAC).

On receipt of the first message, the SP will verify the
features listed in the SCSup. If they satisfy the SP’s ALP
requirements then it will proceed with the protocol.

b) Message 2: The SP can either generate or opt
for a pre-computed buffer with values of random numbers
and Diffie-Hellman exponentials. A third possibility can be
that an SP might generate a grSP and use it for limited
time (i.e. 30 seconds). On each request, the SP will only
generate a new random number or select a random num-
ber from a pre-computed buffer. All three of these sce-
narios are possible in both versions of the protocol and
they can be opted to reduce computation load on the SP’s
server and possibly assist in prevention of resource exhaus-
tion DoS attacks. Finally, it will calculate the SCookie =
HSPk

(grSP ||NSP ||HNSC
(grSC )||SCIP ). The entire message

is then appended with the platform validation request message.
The smart card will initiate the generation of the session

keys Ke and Ka on the receipt of the second message. It
can be calculated as “kDH = (grSP )rSC mod n” which
will be the shared secret from which the rest of keys will
be generated. The encryption key is generated as Ke =
HkDH

(NSP ||NSC ||‘1’) and MAC key as Ka = HkDH
(NSP ||

NSC ||‘2’). We can further generate (session) keys in the
similar manner for application download protocol or for the
application that requested it.

c) Message 3: The smart card will generate the platform
assurance and validation proof, append it with the random
numbers of the SP and smart card. The message is then signed
by the smart card and appended by the smart card certificate.
Finally, the whole message is encrypted by Ke and MACed
by Ka. The encrypted and MACed message is then appended
with the session cookie generated by the SP.

On receipt, the SP will first verify the commitment sent
by the smart card in the first message. The SP then verify the
session cookie and after successful conclusion, it will calculate
the session keys Ke and Ka. Once the keys are generated, the
SP will verify the MAC and decrypt the received message.
It will then verify the signed data and check whether the
state reported by the TEM is same as listed in the evaluation
certificate.

d) Message 4: The SP will then signs the SP’s and
SC’s random number; append them with the ALP. The signed
message is appended with the SP’s and SC’s identities. Then
the whole message is encrypted and MACed.

On receipt of this message, the smart card verifies the ALP.
If the smart card can accommodate the requirements then it
will proceed to next step by providing the key material to the
application download process or the application that requested
P-STCP.

C. Post-Protocol Process

On its successful completion, not only the P-STCP will
provide an SP the assurance that the requesting smart card is
suitable for its application but also generates the key material
for the application download process. For completeness, an
SP and a smart card can use a symmetric key application
download protocol from the GlobalPlatform specification [15].

V. PROTOCOL ANALYSIS

In this section, we analytically discuss the proposed P-STCP
in terms of informal, and formal mechanical analysis along
with performance results.

A. Brief Informal Analysis of the Protocol

In this section, we discuss the listed requirements for the
P-STCP from section II-C.

1) Requirements One to Twelve: In this section, we con-
stantly refer to the protocol requirements and goals in section
II-C with their respective numbers (Gn, where n can be 1 to
16) as listed in the same section. Therefore, here onward in
this section any reference to a goal or requirement number
refers to the listed item in section II-C.

During the P-STCP protocol, in message three and four the
communicating entities authenticate to each other satisfying
the G1. Similarly, for G2, all communicating entities exchange
cryptographic certificates to facilitate in authentication and
ownership proof (in case of user signature key certificate).

The proposed P-STCP satisfies the requirement G3, G4, G5
and G12 by first requiring the SP to reveal the generated Diffie-
Hellman exponentials as it is computationally (more) powerful
than the smart card. If the smart card reveals the generated
exponential in the first message then the SP can choose a weak
key. Whereas, as smart cards are computationally restricted
device they cannot perform such a task.

In the P-STCP, session keys generated in one session has
no link with the session keys generated in other session, even
when the session is established between the same entities. This
enables the protocol to provide resilience against the known-
key security (G7). This unlinkability of session key is based
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on the fact that each entity not only generate a new Diffie-
Hellman exponential but also a random number which are used
during the P-STCP. Therefore, even if an adversary “A” finds
out about the exponential and random numbers of a particular
session; it would not enable him to generate past or future
session keys.

Furthermore, to provide unknown key share resilience (G8)
that P-STCP includes the Diffie-Hellman exponentials along
with generated random numbers and each communicating
entity then signs them. Therefore, the receiving entity can then
ascertain the identity of the entity with whom it has shared the
key.

The P-STCP can be considered to be a KCI resilient (G9)
protocol, as protection against the KCI is based on the digital
signatures. In addition, the cryptographic certificates of each
signature key also include its association with a particular SP
or a smart card. Therefore, if A has the knowledge of the
signature key of a smart card (or an SP) then it can only
masquerade the smart card to other entities but not other
entities to the smart card.

The P-STCP also meet the perfect forward secrecy (G10)
by making the key generation process independent of any long
term keys. The session keys are generated using fresh values of
Diffie-Hellman exponentials and random numbers, regardless
of the long term keys like smart card, user and SP’s signature
keys. Therefore, even if A finds out the signature key of any
entity it will not enable him to find out past session keys.
This independence of long term secrets from the session key
generation process also enabled the P-STCP to satisfy the G7.

Communicating entities in the P-STCP share signed mes-
sages with each other that includes the session information;
thus, providing mutual non-repudiation (G11).

2) Trust Assurance (Trustworthiness): In the proposed P-
STCP, only smart cards provide the assurance of their current
state to be secure and trustworthy to respective SPs; not the
other way around. The reason behind this is the deployment
environment of the P-STCP where smart cards are inherently
not trustworthy and the UCOM not requiring the trustwor-
thiness of an SP. The UCOM assumes that an SP can be
malicious but it will translate into the lease of a malicious
application(s). Therefore, security and reliability analysis (e.g.
bytecode verification [35]) of the downloaded application and
not the respective SP is required. Details of which are omitted
in this paper as they fall beyond the scope of the P-STCP.

A trusted channel establishment between a smart card and
an SP is based on the security and trustworthiness of the TEM.
The argument for the trust goes as; the respective smart card
manufacturer gets a particular batch of smart cards certified
from a third party evaluator. As discussed in section III-A1,
the evaluation facility will issue a certificate for the evaluated
product to the respective manufacturer. That in return will
mass-produce the smart cards that comply with the evaluation
certificate. The TEM security validation mechanism is also
evaluated, and during the P-STCP, the SP will validate the
hardware and software (e.g Smart Card Operating System:
SCOS).

If and only if the validation mechanism is successful that
the TEM will generate the signature on the test results.

On receipt of these results; an SP can also verify the test
results and validate the certificate chain (i.e. to check the
evaluation authority of the smart card). In case it trusts the
evaluation authority and current state validates that the smart
card complies with the evaluation, then it will continue the
protocol, otherwise it is terminated.

Therefore, the trust in the established protocol session
comes from assurance that the smart card is still in compliance
with the evaluated state. That is certified to be secure and
trustworthy by a third party evaluation. In which the respective
SP has implicit or explicit trust.

3) Denial-of-Service Protection: The aim of the DoS pro-
tection is to provide a level of assurance that the proposed
protocol might not be used to mount a DoS attack against the
SP. This is achieved by (a) adding a session cookie to the
protocol messages that serves as the session identifier (e.g.
HSPk

(grSP |NSP |SCIP )), which includes the smart card’s IP
address, and (b) by not requiring the SP to perform any
public key operations unless it receives user or platform
authentication.

The session cookie is generated by the respective SP and
it is smart card’s responsibility to include the cookie in every
message that it sends to the SP. On receiving a message from a
smart card, the SP verifies the session cookie and if it belongs
to an active session, then it can ascertain that the message came
from a genuine host and not from an entity that is trying to
mount the DoS attack.

The second feature, which does not require the SP to
perform any heavy computations until the smart card does not
provide a signed message either by the user’s or platform’s
signature key. This is necessary to avoid the SP to commit
memory and computational resources; unless the communi-
cating smart card is authenticated to the SP’s.

4) Privacy: The privacy preservation goal of the P-STCP
requires that the privacy of the user should be protected. This
requirement does not include the privacy for the SP as part
of their business model is to advertise their presence and
identity (i.e. web servers). Therefore, the privacy requirement
is restricted to the preservation of the user’s and her smart
cards identity. The smart card’s identity is protected to avoid
traceability. With traceability, we mean that if a user acquires
an application from a malicious SP then it knows the smart
card’s identity. In the future, if the user tries to acquire an
application from another SP using the same smart card, the
malicious SP eavesdropping on the communication channel
might trace it back to the user. In the proposed protocol, we
do not send any information that can be uniquely attached to a
particular user or a smart card in plaintext. All communications
that include the identities and cryptographic certificates are
encrypted.

However, if a user always gets online through a permanent
connection (i.e. fixed Internet Protocol address) then a mali-
cious user can trace the communication to a user. Only if the
malicious user has previously recorded the association of the
IP address with the respective user. In such a scenario, privacy
preservation is difficult to maintain in a restricted framework
of the secure channel protocols; therefore, the proposed P-
STCP does not provide the protection against traceability



7

Table IV
PROTOCOL COMPARISON ON THE BASIS OF THE STATED GOALS (SEE SECTION II-C.)

Goals Protocols
STS AD ASPeCT JFK T2LS SCP81 MM SM P-STCP

1. Mutual Entity Authentication ∗ ∗ ∗ ∗ ∗ ∗ −∗ −∗ ∗
2. Exchange Certificates ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
3. Mutual Key Agreement ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
4. Joint Key Control ∗ ∗ ∗ ∗ ∗ ∗ ∗
5. Key Freshness ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
6. Mutual Key Confirmation ∗ ∗ ∗ ∗ −∗ ∗
7. Known-Key Security ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
8. Unknown Key Share Resilience ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
9. KCI Resilience ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

10. Perfect Forward Secrecy ∗ ∗ ∗ ∗ ∗ ∗
11. Mutual Non-Repudiation ∗ (∗) +∗ ∗ ∗ ∗ +∗ +∗ ∗
12. PCK Attack Resilience (∗) (∗) (∗) (∗) (∗) ∗
13. Trust Assurance ∗ −∗ ∗
14. DoS Prevention ∗ ∗
15. Privacy (∗) ∗ ∗ ∗
16. Simulator Attack Resilience −∗ ∗

Note: ∗ means that the protocol meets the stated goal, (∗) shows that the protocol can be modified to satisfy the requirement, +∗ shows that
protocol can meet the stated goal but requires an additional pass or extra signature generation, and −∗ means that the protocol (implicitly)

meets the requirement not because of the protocol messages but because of the prior relationship between the communicating entities.

under fixed uniquely associated IP addresses to users.
5) Simulator Protection: The proposed P-STCP provides

protection in relation to the simulator attack: relying on
the TEM’s operations, trustworthiness, and effectiveness of
the evaluation laboratory. The certification assures that the
smart card is tamper-resistant, and it is highly unlikely that
a malicious user can retrieve the signature key pair of the
smart card. In addition, it also assures that the TEM validation
mechanism is effective and reliable.

This will in theory give the assurance to the respective SP
that the smart card with whom it is communicating is not
a simulator, and the current state of the smart card is as it
was at the time of evaluation. It does not mean that it can
still be secure or a malicious user is not able to simulate
the environment with a genuine TEM signature key pair. It
only gives the assurance that the smart card is secure against
the attacks it was evaluated by the third party as stated in
the issued certificate [6] and is state-of-the-art tamper-resistant
device at the time of evaluation. Therefore, if the evaluation
certificate does not meet SPs requirements or it out-dates
the current attacker capability then the respective SP should
decline the application lease. As stated earlier, granting an
application lease is on the sole discretion of the respective SP,
so if they are not satisfied with the requesting smart card, they
should not lease the application.

B. Protocol Verification by CasperFDR
The CasperFDR approach was adopted to test the sound-

ness of the proposed protocol under the defined security
properties. In this approach, the Casper compiler [36] takes
a high-level description of the protocol, together with its
security requirements. It then translates the description into
the process algebra of Communicating Sequential Processes
(CSP) [37]. The CSP description of the protocol can be
machine-verified using the Failures-Divergence Refinement
(FDR) model checker [38]. The intruder’s capability modelled
in the Casper script (appendix A) for the proposed protocol
is:

1) an intruder can masquerade any entity in the network.
2) intruder can read the messages transmitted in the network.
3) an intruder cannot influence the internal process of an

entity in the network.
The security specification for which the CasperFDR evalu-

ates the network is as shown below. The listed specifications
are defined in the #Specification section of appendix A:

1) the protocol run is fresh and both applications were alive.
2) the key generated by the server application is known only

to the client application.
3) entities mutually authenticate each other and have mutual

key assurance at the conclusion of the protocol.
4) long terms keys of communicating entities are not com-

promised.
5) intruder is unable to deduce the identities of the user or

the smart card from observing the protocol messages.
The protocol description defined in the Casper script (ap-

pendix A) is a simplified representation of the proposed
protocol. The CasperFDR tool evaluated the protocol and did
not find any feasible attack(s).

C. Revisiting the Requirements and Goals

Table IV provides the comparison between the listed pro-
tocols in section II-B with the proposed protocol in terms of
the required goals (see section II-C).

As shown in the table IV, the STS protocol meets the first
eleven goals. The main issue with the STS protocol is that
it does not provide adequate protection against partial chosen
key attack (G12). The remaining goals are not met by the
STS because of the design architecture and deployment envi-
ronment, which did not require these goals. Similarly, the AD
protocol does not meet G6, and G10-G16. In the AD protocol,
the user reveals her identity by sending the user certificate in
clear along with non-existence of key confirmation.

The most promising results were from the ASPeCT and JFK
protocols that meet a large set of goals. Both of these protocols
can be easily modified to provide the trust assurance (requiring
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Table V
PROTOCOL PERFORMANCE MEASURES (MILLISECONDS).

Measures SSL TLS Kerberos P-STCP
Card One Card Two

Card Specification 32bit 32bit 32bit 16bit 16bit
Average 4200 4300 4240 2998.71 3091.38
Best Run NA NA NA 2906 3031

Worse Run NA NA NA 3922 4344
Standard Deviation NA NA NA 117.71 96.32

Note: Above mentioned measurement values for SSL are taken from [39], TLS from [40], [41] and Kerberos from [42].

additional signature). Furthermore, both of these protocols are
vulnerable to the partial chosen key attacks. However, in the
table IV we opt for the possibility that the JFK can be modified
to meet this goal. The reason behind this is based on the entity
that takes the initiators role and if in the JFK we opt for the
assumption that an SP will always take the initiators role then
this goal is met by the JKF.

The T2LS protocol meets the trust assurance goal by default
but because it is based on the TLS protocol, which does not
meet most of the requirements of the P-STCP, so the T2LS
also does not meet them. A note in favour of the SCP10,
SCP81, MM, and SM protocol is that they were designed with
the assumption that an application provider has a prior trusted
relationship with the card issuer; thus, implicitly trusting the
respective smart card. Most of these protocols to some extent
have the similar architecture in which a server generates the
key and then communicates that key to the client (i.e. read
smart card). There is no non-repudiation as they do not use
signatures in the protocol run.

As apparent from the table IV, the proposed P-STCP
satisfies all goals that were described in section II-C. The
protocols that are proposed specifically for the smart card
environment only meet half of the stated goals. However,
the security requirements for the UCOM are more stringent
than the ICOM. Nevertheless, we still consider that the pro-
posed P-STCP should be deployed even in the ICOM and
especially with any future ownership model that will support
multi-applications on a smart card under the Trusted Service
Manager (TSM) architecture.

VI. PRACTICAL IMPLEMENTATION

The proposed protocol in section IV do not specify actual
details of the cryptographic algorithms, which are left to the
respective SPs and smart cards. However, in our implemen-
tation we use AES (128-bit key) in Cipher Block Chaining
(CBC) mode without padding [43] for both encryption and
generating MACs. The signature algorithm was chosen to be
RSA with 512-bit key. For generating hash values, we use
SHA-256 [44]. For Diffie-Hellman key generation, we chose
the 2058-bit MODP group specified in the RFC-5114 [45].

Our implementation model has two entities; a smart card,
and an SP, implemented on a Java Card and 1.83GHz with
2GB RAM laptop, respectively. We have implemented two
applets on 16bit Java Cards; one takes the role of the TEM
and second as the protocol handler. At the time of writing the
paper, we did not have access to the smart card platform that
will enable us to implement the TEM close to the hardware

level (see figure 1). We suffice our implementation at the ap-
plication level and consider that similar or better performance
can be attained if TEM is implemented as part of the platform
(which we plan to do in future). At the application level,
implementation of the TEM cannot have memory access to
measure the hash value of the SCOS. Therefore, we generated
the hash values on a fixed set of values stored in an array of
size 256 bytes to represent an SCOS.

The performance of the raw implementation without any
pre-computation, measured on two different Java Cards is
listed in the table V. The implementation of the protocol on
Java Cards takes 9799 bytes. The values in the table V were
taken from the data set that was collected by executing each
protocol on individual cards for 1000 times and recording
the time it takes to complete each iteration. We choose
performance measures of the SSL, TLS, and public key based
Kerberos [42] to provide a comparison with our proposal.
The rationale for this choice is based on the GlobalPlatform’s
SCP81 for the TSM architecture (based on the SSL/TLS) and
Multos [46] application installation architecture [18] that can
adopt the public key based Kerberos.

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we have proposed a protocol that provides
a secure and trusted communication channel to the communi-
cating parties. The proposed protocol was compared with nine
other protocols against the stated goals and requirements, and
it performed better then the selected protocols. We provide the
mechanical formal analysis of the P-STCP that did not find any
feasible attacks, and then finally we showed that it performs
better then other protocols that are proposed for the TSM
architecture. We consider that the proposed protocol is not
only suitable for the UCOM architecture but we recommend
it for the ICOM or TSM architectures.

As part of future research, the TEM architecture has to be
formalised by defining how a PUF or another mechanism can
provide assurance of hardware protection. Furthermore, we
will look into how the UCOM architecture can be expanded
into the other computing domains like mobile phones, tablets,
and personal computers through a portable, cross-platform,
fault-tolerant, and tamper-resistant generic device that is in
a user’s control.
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APPENDIX A
CASPERFDR SCRIPT

#Free variables
datatype Field = Gen | Exp(Field, Num)
unwinding 2
halfkeySP,iMsg, rMsg, halfkeySC, EnMaKey :
Field
SC, SP: Agent
gSC, gSP: Num
nSC:SessionKey
nSP, SCOShash: Nonnce
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VKey: Agent->PublicKey
SKey: Agent->SecretKey
InverseKeys = (VKey, SKey), (EnMaKey,
EnMaKey), (Gen, Gen), (Exp, Exp),(nSC, nSC)

#Protocol description
0. -> SC : SP
[SC!=SP]
1. SC -> SP : {Exp(Gen,gSC)}{nSC}%saveMsg
[SC!=SP]
2. SP -> SC : Exp(Gen,gSP)%halfkeySP, nSP
[SC!=SP]
<EnMaKey := Exp(halfkeySP,gSC)>
3. SC -> SP : Exp(Gen, gSC)%halfkeySC, nSC
[decryptable(saveMsg, nSC) and
nth(decrypt(saveMsg, nSC), 1)==halfkeySC]
<EnMaKey := Exp(halfkeySC, gSP)>
4. SP->SC:nSC,nSP
5. SC -> SP : {{Exp(Gen, gSC)%iMsg, SCOShash,
SC, SP, nSC, nSP}{SKey(SC)}}{EnMaKey}
[iMsg==halfkeySC]
6. SP -> SC : {{Exp(Gen, gSP)%rMsg, SP,
SC,nSP,nSC}\
{SKey(SP)}}{EnMaKey}
[rMsg==halfkeySP]

#Actual variables
SCard, SProvider, MaliciousEntity: Agent
GSC, GSP, GMalicious: Num
NSC: SessionKey
NSP, SmartCardOShash, NMalicious: Nonce
InverseKeys=(NSC, NSC)

#Processes
INITIATOR(SP,SC, gSP, nSP)knows SKey(SP), VKey
RESPONDER(SC,SP,SCOShash, gSC, nSC) knows
SKey(SC), VKey

#System
INITIATOR(SProvider, SCard, GSP, NSP)
RESPONDER(SCard, SProvider, SmartCardOShash,
GSC, NSC)

#Functions
symbolic VKey, SKey

#Intruder Information
Intruder = MaliciousEntity
IntruderKnowledge = {SProvider, SCard,
MaliciousEntity, \
GMalicious, NMalicious, SKey(MaliciousEntity),
VKey}

#Specification
Aliveness(SP,SC)
Aliveness(SC, SP)
Agreement(SP, SC, [EnMaKey])
Secret(SP, EnMaKey, [SC])
Secret(SC, EnMaKey, [SP])

#Equivalences
forall x, y : Num . Exp(Exp(Gen, x), y) =
Exp(Exp(Gen, y), x)

APPENDIX B
TEM VALIDATION PROCESS

Algorithm 1: Algorithm for the TEM validation mecha-
nism.

Input :
l: list of selected memory addresses.
hK: hard-wired key.

Output: S: signature key of the SC.

Data:
seed: temporary input value for the PUF set to zero.
n: number of memory addresses in the list l.
i: counter set to zero.
a: memory address.
prKey; PRNG secret key unique to each smart card.
k: secret key used to encrypt the signature key.
Se: encrypted signature key S.

AttestationHandler (l, hK) begin
while i < n do

a←− Read (i, l)
seed ←− GenHash (ReadMemoryContents
(a), hK,seed)
i ←− i+1

if seed 6= ∅ then
if Attestation == PUF then

k ←− PUF (seed)

if Attestation == PRNG then
k ←− PRNG (seed, prKey)

else
return testfailed

S ←− DecryptionFunction (k, Se)
return S
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