Enhancing the security of cookies

Vorapranee Khu-smith and Chris Mitchell

Information Security Group, Royal Holloway, University of London,
Egham, Surrey, TW20 0EX, United Kingdom
{V.Khu-Smith, C.Mitchell}@rhul.ac.uk

Abstract. Cookies are pieces of information generated by a Web server
to be stored in a user’s machine. The information in cookies can range
from selected items in a user’s shopping cart to authentication informa-
tion used for accessing restricted pages. While cookies are clearly very
useful, they can also be abused. In this paper, security threats that cook-
ies can pose to a user are identified, as are the security requirements
necessary to defeat them. Various options to meet the security require-
ments are then examined. Proposed user-controlled approaches and their
implementations are presented and compared with a server-controlled
approach, particularly the ‘Secure Cookies’ method, to illustrate the rel-
ative advantages and disadvantages of the two approaches.

Key Words: Cookies; Internet security; Web security

1 Introduction

Today, browsing and on-line shopping are becoming increasingly convenient. A
user can personalise a Web page, have his/her own shopping cart, and be au-
tomatically authenticated without repeatedly entering username and password.
However, the stateless nature of the HTTP protocol does not support such fea-
tures. Therefore, cookies were introduced to enable Web servers to maintain
current session state and recognise individual users.

Cookies are pieces of information generated by a Web server to be stored in a
user’s machine. The information in cookies can be, for example, selected items in
a user’s shopping cart, authentication information used for accessing restricted
pages, or account details. The first time a browser contacts a Web server, a cookie
is sent from the latter to the former. It is then stored in the user’s PC in a file
called either cookies.txt, Cookies, or MagicCookie in the Windows, UNIX, and
Macintosh operating systems respectively. The next time the browser requests a
Web page from the Web server, it sends the corresponding cookies.

A cookie consists of six elements, namely Name, Expiration Date, Domain
name, Path, Secure, and String Data. The first part is the name of the cookie.
The expiry date defines the cookie’s lifetime. Domain name and path are used
when a browser searches for a cookie corresponding to the host of the requested
URL. The path attribute specifies the subset of the URLs to which the cookie
belongs. The secure attribute indicates whether the cookie is transmitted in
secure mode such as TLS and HTTPS. The String Data field is where all other

https://core.ac.uk/display/28900014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

information of the server’s choice is stored. Detailed cookie specifications can be
found in [6] and [8].

While cookies are clearly very useful, they can also be abused to impersonate
a user, compromise user privacy and, in some cases, reveal confidential user
information. Although a number of papers, e.g. [2,3,7,11], point out potential
security threats, most of them focus on facts about cookies, such as what they
are and how they are used, and do not appear to provide a satisfactory security
analysis and solution.

In [9] the ‘Secure Cookies’ method is proposed, in which security measures
are applied to cookies by a Web server. Consequently, this approach allows Web
servers to control what, when and how the security procedures will be performed.
Whilst this may be appropriate for many applications, in some environments
users will wish to control the security of their own cookies. This paper, therefore,
examines possible user-controlled approaches to enhance cookie security.

In this paper, the threats that cookies can pose to a user are identified, as
are the security requirements necessary to defeat them. Various options available
to meet the security requirements are examined. A server-controlled approach
is then outlined followed by proposed user-controlled approaches and their im-
plementations. A comparison between the server-managed and user-managed
approaches is subsequently given. The final section summarises and concludes
the paper.

2 Cookie-Related Security Threats

In this section, security threats that cookies can pose to a user are identified.
The threats can be divided into three main categories namely confidentiality of
cookie contents, monitoring user behaviour using cookies, and malicious cookies.

2.1 Confidentiality of Cookie Contents

In order to allow users to browse among restricted pages without repeatedly iden-
tifying themselves, cookies are used to store authentication information such as
username and password. Consequently, it is important to ensure the confidential-
ity and authenticity of cookies storing such information. Otherwise, anyone who
can access such cookies can potentially impersonate the user. Although, in many
cases, authentication information stored in cookies is in a server-specific format,
and hence the contents are not immediately obvious to the reader, it is still pos-
sible for an attacker to simply replay an intercepted cookie and impersonate a
user.

Implementation flaws, particularly in Web browsers, can also bring about
security risks to a user. For example, a vulnerability in Internet Explorer Version
4 and 5 for Windows 95, 98, NT, and 2000 allowed any sites to see the content
of other sites’ cookies [4]. This is because the browser confused a site having
a long URL ending with the domain name of another server with that other
server. Consequently, it was possible for a malicious web site to give itself a

long URL ending with a sequence of characters identical to the URL of another
site, and the malicious site was then able to access cookies stored by that other
site. If a cookie contains personal information, e.g. confidential data such as
account details, then the consequences of such a vulnerability can be significant.
Although the Web browser flaw has been fixed, it is possible that there are other
undiscovered vulnerabilities that can pose security threats to users.

Another example of an implementation flaw lies in the way that some users
include a Netscape Navigator folder in a publicly accessible directory. In an en-
vironment where there are not as many computers as users, it is not unusual to
provide public spaces for users to access their data from any computers within
the environment. Such spaces are accessible to any users with a valid username
and password. For example, a college can provide a drive for students to store
their home pages. In this drive, each student has his/her own directory. Any stu-
dents with a valid username and password can access the drive, and hence other
students’ directories. An empirical study [5] showed that a number of cookie files
could be found in this publicly accessible drive. This is because some users had
stored their Netscape Navigator folder in such a publicly accessible directory.
Since Netscape Navigator stores user cookie files in the user’s Netscape folder,
this means that user cookies will also be stored in a publicly accessible location,
i.e. accessible by any other users with a legitimate username and password. The
study showed that it was possible to use this weakness to obtain personal de-
tails, ranging from user names to full user details including contact addresses
and telephone numbers.

2.2 Monitoring User Behaviour Using Cookies

A particularly controversial issue concerning cookies is that they can be used as
tracking devices to follow user movements across the Internet. Web-advertising
agencies such as DoubleClick, Focalink, Globaltrack, and ADSmart run adver-
tisement banners on various sites. Their clients add an tag to the client
HTML page, pointing to a URL on the advertising agency’s server. When a
Web browser sees this tag, it contacts the advertising agency server
to retrieve the graphic. The first time the graphic is downloaded from the site,
the user browser will receive a cookie containing a random ID. From then on,
every time the browser connects to a site containing the agency’s advertisement
banners, it sends the cookie (the random ID) along with the URL of the page
that is being read [11].

After a period of time, the advertising agency will be able to generate a
user profile, revealing user browsing habits and interests. This might be used to
improve advertising campaigns, to target advertisements to user interests, and to
avoid repeatedly showing the same advertisements to a user. The ability to track
users is a potential violation of user privacy. It is also possible that advertising
servers might share such information without user consent although, at the time
of writing, there is no strong evidence of such behaviour.

Even though using cookies as a tracking device may not reveal the actual
identity of a user, the fact that an advertising agency server can maintain a

list of URLs that a user has viewed can lead to a possible leak of user personal
details. In particular, if a Web server uses the GET method to input data from an
HTML form to a CGI script, the information will be sent as a part of the URL.
Therefore, anyone who can read the URL will be able to obtain the information
in the form.

2.3 Malicious Cookies

It is often rather misleadingly stated that cookies are just text files, and hence are
harmless. Although cookies are application data files, cookies can include special
tags that can introduce executable code, just as Microsoft Office application files
can contain Macro viruses.

In HTML, in order to distinguish text from ‘markup’ symbols, a set of char-
acters such as ‘<’, which typically indicates the beginning of an HTML tag,
are defined as special. Tags can either affect the formatting of a Web page
or introduce a program that will be executed by Web browsers. For example,
a <SCRIPT> tag introduces code from a variety of scripting languages [10].
Many Web servers use information stored in cookies to create dynamic pages.
Therefore, if a cookie includes those special tags, when a page incorporating this
cookie is displayed, a malicious program can be called and executed. The secu-
rity effects of such a program can range from alterations of the submitted form
to bypassing an authentication process. However, what exactly can be done by
the called program depends on the language in which it is written as well as the
Web server’s security context configuration.

3 Security Requirements

In this section, a number of security requirements are identified to deal with the
security threats discussed earlier. Note that these security requirements do not
address the threat of cookies being used to monitor user behaviour. Such threats
are typically tackled by using tools specially designed to monitor the activity of
cookies.

3.1 Cookie Confidentiality

As stated in section 2.1, cookies can be used to store authentication data and
personal details such as mailing addresses and credit card numbers. Therefore,
it is important to provide confidentiality for such information. Information in
cookies might be revealed in two major ways. Firstly, a cookie can be intercepted
while it is transmitted, and, secondly, a cookie can be disclosed when it is stored
in a user’s machine. In general, it is a good practice to provide confidentiality
for both scenarios.

3.2 Cookie Integrity

In order to prevent attacks such as cross-site scripting, i.e. where special tags
are inserted into cookies as described in Section 2.3, maintaining the integrity
of cookie data is vital. Moreover, if a cookie is used for user authentication and
the content of the cookie is changed, then the authorisation process will fail. An
attacker could modify such a cookie, and hence prevent a legitimate user from
accessing a service. Domain name and Path in cookies are also important. If it
is possible to make changes to these elements, cookies can be sent to an entity
who is not a legitimate owner.

3.3 Cookie Authentication

Although the content of a cookie may be encrypted and protected from unautho-
rised modifications, there remains the possibility of an attack where one entity
‘presents’ a user authentication cookie copied from another party. Consequently,
it is important to be able to verify if the entity that is supplying a cookie is the
owner of that cookie.

4 Meeting the Security Requirements

There are various ways of meeting the security requirements stated above. This
section examines the possible options in more detail, and considers their advan-
tages and disadvantages.

4.1 Secure Channels

The first approach is to protect the cookie transmission channel, i.e. the link
between a Web browser and a Web server, by using secure protocols such as TLS
and HTTPS. This provides confidentiality and integrity by use of an encrypted
channel and MACs respectively. However, a secure channel only protects the
information against eavesdropping and modifications en route. Once the cookie
reaches its destination it is stored in clear text, and hence this option provides
only partial protection. Anyone who has access to the stored cookie file will be
able to read, change, or replay it.

An advantage of this option is that it is transparent to a user. Moreover, it
makes use of existing capabilities, and therefore does not require modifications to
Web browsers. However, in order to send a cookie securely, the cookie’s ‘Secure’
attribute must be set. Since cookies are generated by servers, it is completely in
the server’s hands whether the ‘Secure’ attribute is set. Given that most users
are not aware whether or not cookies are sent via a secure channel, many Web
servers send them in clear.

Secure channels can provide user authentication; however this does not guar-
antee the origin of a cookie. In order to provide cookie authentication, there
should exist some means to link the user authentication used in the secure chan-
nel establishment process with the cookie itself.

4.2 Access Control for User PCs

Another way of providing security for cookies is to protect user PCs against
unauthorised access. A user authentication technique, e.g. using passwords, can
restrict access to a PC, thereby protecting stored cookies against unauthorised
reading and modification. The main advantage of such an approach is its sim-
plicity. It is relatively easy to implement since most users are accustomed to
using passwords. There is also no need to modify Web browsers.

A disadvantage of this mechanism is that it only protects cookies while they
are in a PC. Therefore, it may have to be employed with other mechanisms to
enhance security. Furthermore, it does not provide cookie authentication, since
a malicious user can still reuse a stolen cookie. The use of passwords may also
require additional management, such as password tests to prevent dictionary
attacks.

4.3 Cryptographic Protection within Cookie Files

A combination of cryptographic techniques can be used to meet all three secu-
rity requirements. Cookie encryption can be used for confidentiality. Both cookie
integrity and cookie authentication can be provided by a MAC or digital signa-
ture. As part of cookie authentication, cookie replay protection can be achieved
by incorporating cookie transfer into an authentication protocol (e.g. using a
time stamp).

Cookie encryption and integrity protection can protect a cookie both when
it is stored and when it is transmitted, as opposed to the use of secure channels,
which do not protect stored cookies (see Section 4.1). There is thus no need for
additional access control to user PCs. However, a disadvantage of using cryp-
tographic techniques is that keys are required. Key management issues, such as
how to securely exchange the keys, where they should be stored, and who should
keep them, have to be taken into account. Additionally, there is a possibility that
Web browser modifications or additional software will be required.

4.4 Summary

The three techniques discussed above can be effective, and, in practice, a system
can combine some or all of these methods to enhance security. However, the last
technique, i.e. applying cryptographic protection to the cookie file itself, appears
to offer the widest range of security services. For this reason, this approach is
the focus of the remainder of the paper.

Applying cryptographic measures to cookie files can be performed by Web
servers or Web browsers. Whoever does so will have control over what, when and
how the measures are performed. In the remainder of this paper, we examine
the two approaches, and consider their respective merits.

5 Server-Managed Cookie Encryption

Server-controlled cookie encryption has the major benefit of user transparency.
If implemented appropriately, no changes to Web browsers will be required. A
disadvantage of this approach is obviously that users will have little control
over the protection of their own cookies. An example of this approach is the
Microsoft Passport scheme [1] which was introduced to provide an online user-
authentication service. It employs encrypted cookies as a means for exchanging
user-authentication information between a Microsoft Passport server and par-
ticipating web sites.

Another example of server-managed cookie encryption is the ‘Secure Cookie’
scheme proposed by Park and Sandhu [9]. Although these two schemes are similar
in the way that they both use encrypted cookies, the latter is more general, in
that it is a means of protecting all user cookies, and not just those cookies
generated by a single application. As a result, we use the Park and Sandhu
‘Secure Cookie’ scheme as the basis for a comparison with the new cookie security
scheme proposed in Section 6. In the remainder of this section, we provide a brief
overview of the Park and Sandhu scheme.

In this approach, Web servers are required to use ‘Secure Cookies’ of specific
kinds, each with predefined types of content and protection. Examples include
Name Cookies, Life Cookies, Key Cookies, and Seal Cookies. A Name Cookie,
for example, contains a user name that can be used for user authentication. A
Key Cookie contains an encryption key. The integrity of all cookies is protected
by a Seal Cookie that holds either a MAC or a signed hash of the other cookies.

In order to have a set of Secure Cookies, a Web browser needs to contact
another server called the Cookie Issuer, which generates the Secure Cookies.
The Web browser then sends the cookies to the Web server, which will verify or
decrypt them as appropriate. Examples of Secure Cookies are listed in Table 1.

Table 1. Secure Cookie Components

Domain|Flag/Path|Cookie_Name|Cookie_Value|Secure| Date

acme.com | True / Name_cookie Alice False |12/31/2000

acme.com | True / Life_cookie 12/31/99 False [12/31/2000

acme.com | True / Pswd_cookie Hashed password| False |12/31/2000

acme.com | True / Key_cookie Encrypted key False |12/31/2000

acme.com | True / Seal_cookie Signed Message | False [12/31/2000
Digest of MAC

This approach satisfies the security requirements of confidentiality, integrity,
and user authentication by using encryption, a signed message digest or MAC,
and a digital signature respectively. However, it does not provide protection

against replay attacks. A stolen Secure Cookie can be submitted to the Web
server.

The Key Cookie, as stated earlier, stores a session key that is used to encrypt
and decrypt other cookies. The session key can be encrypted using either a server
public key or a server secret key. In either case, Web servers are responsible for
key management.

While this approach may be appropriate in many applications, in some cir-
cumstances users may wish to read their own cookies and control their security.
Consequently, in the next section we examine possible approaches that give users
more control.

6 User-Managed Cookie Encryption

With the user-managed approach, users obviously have the benefit of control
over what, when and how the security mechanisms should be applied. However, a
special Web browser or additional software is required in order to enable users to
perform the security procedures. The client may also have to store cryptographic
keys, which could be a security threat in some circumstances. As a result, there
is a need for a key management system to support the use of cryptography.

In this section, two possible approaches, using symmetric and asymmetric
cryptography, are described. In order to provide cookie confidentiality, integrity
and authentication, the schemes use encryption, MACs, signatures, and time
stamps. The security mechanisms described below will be applied only to the
cookie value, to minimise the complexity of the protocols.

6.1 Using Symmetric Cryptography

In this approach, a user selects cookie encryption by sending a request for cookie
encryption to the Web server. This will trigger a key establishment protocol.
If a user chooses to encrypt cookies, he/she will be required to authenticate
him/herself to prevent unauthorised users, who may have access to the user’s PC,
from activating the security procedure and using cookies. This can be achieved
by using simple schemes such as passwords. Key establishment can be performed
by sending the key via a secure channel or using other key distribution techniques
such as those involving a trusted third party. After successful key establishment,
the user and the server then share a symmetric cookie key and the server will
encrypt cookies with the key and send them to the user. The encrypted cookies
are then stored locally in the user’s PC.

The next time the Web browser requests a Web page from the site, it looks for
corresponding encrypted cookies. A time stamp is generated and concatenated
with the cookies, and a MAC is computed on this data. A page request, the
time stamp, the encrypted cookies and the MAC are then sent to the server. On
receipt of the request, the server verifies the MAC and checks whether the time
stamp is within the acceptance window. The server can change information in

the cookies whenever the user requests a page, and the new encrypted cookie
will be sent back to the user with the requested page.

A time stamp and a MAC are included in order to prevent an intercepted
cookie from being replayed. Without knowing the secret cookie key, an adversary
will not be able to create a valid MAC. There are no cryptographic requirements
for time stamp generation — the time stamp only needs to be within the accep-
tance window.

Given that symmetric cryptographic operations are typically simple to com-
pute, the encryption operation will not significantly increase the server workload.
Users only need to decrypt a received cookie if they want to see the content.
However, this approach needs a secure mean to distribute the symmetric key the
first time the user and server communicate. Moreover, users and servers need
to maintain the shared secret key. As the number of users (n) grows, the num-
ber of keys increases approximately to n?, and the task of key management will
therefore become increasingly complicated over time.

Since the security of this approach depends on the secrecy of the shared key,
it is vital to store the key securely. A user can store the keys in a smart card or
in his/her PC (password protected).

6.2 Using Asymmetric Cryptography

In this approach, users are required to have a certificate and an asymmetric key
pair. If a user wishes to have his/her cookies encrypted, the first time the user
requests a Web page his/her certificate and the page message will be signed
and sent. The server then generates a secret key, encrypts the cookies with this
secret key, encrypts the secret key with the user’s public key, and sends the
encrypted secret key with the encrypted cookies and the requested page. There
is no need for the user to decrypt the cookie unless he/she wants to know the
cookie content. The next time the user contacts the server, the encrypted cookie,
a time stamp, and a MAC is sent with a Web page request.

As for the symmetric technique, this approach allows users to decide if they
want to encrypt the cookie or not. If the user sends a certificate, the server will
know that the cookie must be sent encrypted. The user will also be required
to enter a password for user authentication, since his/her private key may be
stored locally in the PC. However, if it is stored in another more secure way, e.g.
on a smart card, user authenticity verification may not be required. As for the
symmetric cryptography approach, the time stamp is used to prevent replay of
an intercepted cookie.

A drawback of this technique is that certificates and key pairs are required
for the client. A Public Key Infrastructure (PKI) will also be needed to create
and manage public key certificates.

7 Protocols for User-Managed Cookie Protection

In this section, two protocols for user-managed cookie security are described in
detail, building on the general approaches described in the previous section.

7.1 Cookie Encryption Using Symmetric Cryptography

In this approach, a secure channel is employed to distribute a cookie key. How
this secure channel is established is outside the scope of this paper, but it could,
for example, be provided using protocols such as TLS and HTTPS.

The main advantage of this method is convenience. It makes use of existing
security protocols to distribute the cookie key. However, doing so requires the
establishment of a secure channel. Another drawback is that key management
is relatively complicated, since there will be a large number of cookie keys for
users to manage and store securely.

The protocol is specified in Figure 1. In this figure:

Client Server

1.Establish a Secure Channel
and send Request for a page

2. - Generate cookie

key (K)

— Generate a cookie

— Encrypt and send
the cookie

— Store Key ID with
K

3. Key ID, ex(Cookie), K

4. — Store encrypted
cookie with Key 1ID,
and the Key ID with K

The next time the client requests a page from the Web site:

5. - Generate a time stamp T.
- Concatenate it with the
encrypted cookie
— Compute a MAC on the result

6. Request for a page, Key ID,
T, ex(Cookie), MACk(ex(Cookie) || T)

7. - Verify the MAC
Check if the time
stamp T is within
the acceptance
window. If so,
send requested
page; otherwise,
decline the
request

8. Requested page, ex(Cookie)

Fig. 1. Cookie encryption using symmetric cryptography.

— ‘Client’ can represent additional software, a modified Web browser, a plug-in,
or an applet which performs security procedures for users,

— ‘Server’ represents a Web server,

— X||Y denotes the concatenation of data items X and Y,

— K denotes a secret key used to encrypt cookies (the ‘cookie key’),

— ex (M) denotes message M encrypted (using symmetric encryption) with
key K,

— ‘Key ID’ identifies the cookie key K used to encrypt the cookie,

— T denotes a time stamp, and

— MACK(M) denotes a MAC on message M using a variant of key K (note
that it is important that the key used to compute the MAC is not precisely
the same as the key used for encryption, particularly if the MAC is a CBC-
MAC based on the same block cipher used to perform cookie encryption).

7.2 Cookie Encryption Using Asymmetric Cryptography

The public key based scheme is presented in Figure 2. In Figure 2, the following
notation is employed (in addition to that used in Figure 1):

— Ep(X) denotes data X encrypted (using asymmetric encryption) with public
key P,

— Sc(M) denotes the signature of the client on message M (computed using
the client private key), and

— P¢ denotes the public key of the client.

An advantage of this approach is that cookie keys are stored encrypted. The
only key a user has to keep secret is the private key with which cookie keys are
decrypted. Therefore, the key management task is not so complicated. There is
also less difficulty in key distribution than in the system based on symmetric
cryptography.

In order to allow servers to detect an attack where a malicious user deletes
the request for cookie encryption (the user certificate), a signature is required on
the request message indicating whether cookie encryption is enabled. Otherwise,
an attacker can just delete the certificate. If an attack is detected, the server
can send a message to inform the user and ask if the user wants to try again.
This, however, introduces a risk of denial of service where a malicious user keeps
modifying the message causing the page request to fail. Moreover, the additional
computation of signing process can increase the user machine’s workload and
possibly slow the page request process.

8 Secure Cookies Versus User-Managed Cookie Security

In this section, a detailed comparison between the server-controlled and user-
controlled approaches is provided.

5. -

Client

1. Page Request,
Sc (Page Request

User Certificate,

Certificate)

3. Requested page,
ek (Cookie),

Cookie 1ID,
Epc (K)

Store ek (Cookie)
the Key ID and
Store Epc (K)
with Key ID

Generate a time

with

stamp T.

Concatenate it with the
encrypted cookie
Compute a MAC on the result

T,

ex (Cookie),

6.

Request for a page,
MACk (ex (Cookie)

Key ID,

T

8. Requested page

ex (Cookie)

7.

Server

Verify the
signature
Generate a
cookie key (K)
Encrypt K with
client public
key (Pc)
Generate and
encrypt
cookie with K
Store Key ID
with K

The next time the client requests a page from the Web site:

Verify the MAC
Check if the
time stamp T
is within the
acceptance
window. If so,
send requested
page;otherwise
decline the
request

Fig. 2. Cookie encryption using asymmetric cryptography.

8.1 User Authentication

The Secure Cookies method [9] offers three choices for user authentication
namely by IP address, by signature, and by password. The first alternative is
not always appropriate since in some environments IP addresses are assigned
dynamically. Moreover, it is prone to an IP spoofing attack.

The second user authentication mechanism is signature-based, and requires
users to have a public key pair in order to sign a time stamp in a cookie. However,
the signing process can increase the user workload, and hence possibly slow the
web-browsing process.

Both Secure cookies and user-managed cookies employ user passwords. How-
ever, in the Secure Cookies technique the password must be sent via a secure
channel to a Web server for verification. Therefore, in addition to the cookie se-
curity process, a secure channel may be needed. In the user-managed methods,
on the other hand, the password is verified locally, which lessens its exposure
and avoids the need for secure channel establishment.

8.2 Integrity and Confidentiality

The Secure Cookies scheme uses a signed message digest of cookies and MACs.
The user-managed cookie security schemes also use either a signature or a MAC.
In both cases, an additional computation for encryption process is required.

Both techniques offer a choice between symmetric and asymmetric encryption
to provide cookie content confidentiality. However, one disadvantage of the user-
managed scheme is that the required cryptographic keys will have to be stored
by the clients.

8.3 Cookie Authentication

In the Secure Cookies approach, there is no mechanism for replay protection.
The user-managed cookie security schemes, however, use a time stamp to provide
protection against replay attacks. However, a MAC must be included in order to
prevent a malicious user from replaying a stolen cookie with a new time stamp,
potentially increasing the user’s workload.

8.4 Other Issues

The main advantage of the user-managed approach over Secure Cookies is prob-
ably the fact that it allows users to have more control over the security of their
own cookies. By contrast, with Secure Cookies, Web servers have full control over
cookie encryption. Although this may be appropriate for many applications, in
some environments users may wish to have more control over their security —
indeed, if users wish to read their own cookies, e.g. to deal with the threat of
user tracking, then a user-controlled approach is essential. Moreover, the Secure
Cookies method may be more complex since a set of cookies is required for each
Web site. There is also a need for an Issuing Cookie server to generate the Secure
Cookies.

9 Summary and Conclusions

Although cookies are a very useful mechanism for maintaining session state, as
discussed earlier they can pose a number of security threats. As a result, three
cookie security requirements, namely confidentiality, integrity, and authentica-
tion, can be identified.

Secure Cookies [9] is a server-controlled approach for cookie protection that
satisfies some of these security requirements. However, in some environments
users may want to control their own cookie security, especially if the user track-
ing threat is to be effectively combated. In this paper, two user-controlled ap-
proaches, using symmetric and asymmetric encryption of cookies, are proposed.
The main differences between how security services are provided in the server-
managed ‘Secure Cookies’ and the user-managed approaches are summarised in
Table 2.

Table 2. Comparisons

Security Requirements| User-Managed Server-Managed
Cookie Encryption Secure Cookies
User Authentication Password-based IP Address, Password, Signature
Integrity Signature, MAC Signed hash, MAC
Confidentiality Encryption Encryption
Replay Protection Time Stamp N/A

The ‘Secure Cookies’ approach is potentially more flexible since it offers vari-
ous options to provide each security requirement. It can also be made transparent
to the user’s Web browser. However, it is relatively complex because it requires
an additional server to generate Secure Cookies. Moreover, in most cases, it re-
quires a number of cookies, while in the user-managed approaches a variety of
information can be stored in a single cookie. Finally, the Secure Cookies scheme
has the potentially major disadvantage that it prevents users examining the
contents of cookies stored in their own machine.

If a password scheme is used, the Secure Cookies method requires it to be
sent via a secure channel. On the other hand, the user-managed techniques
verify a password locally, and hence minimise its exposure. The user-managed
approaches also provide additional protection against replay, while the Secure
Cookies scheme does not.

References

1. Microsoft Passport scheme. Available at http://www.passport.com/.

2. S. Garfinkel, and G. Spafford. Web Security & Commerce. O'Reilly, 1997.

3. B. Hancock. Security views: some cookies are not tasty. Computers € Security,
17(5):374-376, 1998.

o

10.

11.

. B. Haselton and J. McCarthy. Internet Explorer open cookie jar. http://www.

peacefire.org/security /iecookies/, May 2000.

V. Khu-smith. An implementation flaw concerning Netscape Navigator and cook-
ies. January 2001.

D. Kristol and L. Montulli. HTTP State Management Mechanism — RFC2109.
IETF, 1997.

S. Laurent. Cookies. McGraw Hill, 1998.

Netscape. Persistent Client State HTTP Cookies, 1996.

J. Park and R. Sandhu. Secure cookies on the web, IEFE Internet Computing,
4(4):36-44, 2000.

D. Ross, I. Brugiolo, J. Coates, and M. Roe. Cross-site scripting overview.
http://www.microsoft.com/technet /security/, Febuary 2000.

D. Stein. Web Security. Addison Wesley, 1998.

