New CBC-MAC forgery attacks

Karl Brincat* Chris J. Mitchell
Visa International EU Information Security Group,

PO Box 253 Royal Holloway, University of London,
London W8 5TE, UK Egham, Surrey TW20 0EX, UK
brincatk@visa.com c.mitchell@rhbnc.ac.uk

15th October 2000 (m5)

Abstract

This paper is concerned with a particular type of attack against CBC-MACs,
namely forgery attacks, i.e. attacks which enable an unauthorised party to
obtain a MAC on a data string. Existing forgery attacks against CBC-MACs
are briefly reviewed, together with the effectiveness of various countermea-
sures. This motivates the main part of the paper, where a family of new
forgery attacks are described, which raise serious questions about the effec-
tiveness of certain countermeasures.

Keywords: message authentication code, MAC, forgery, block cipher

1 Introduction

1.1 Use of MACs

MACs, i.e. Message Authentication Codes, are a widely used method for
protecting the integrity and guaranteeing the origin of transmitted messages
and stored files. To use a MAC it is necessary for the sender and recipient
of a message (or the creator and verifier of a stored file) to share a secret
key K, chosen from some (large) keyspace. The data string to be protected,
D say, is input to a MAC function f, along with the secret key K, and the
output is the MAC. We write MAC = fg(D). The MAC is then sent or

stored with the message.

*The views expressed in this paper are personal to the author and not necessarily those
of Visa International

https://core.ac.uk/display/28899939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.2 A model for CBC-MACs

MACs are most commonly computed using a block cipher in a scheme known
as a CBC-MAC (for Clipher Block Chaining MAC). This name derives from
the CBC ‘mode of operation’ for block ciphers, and a CBC-MAC is computed
using the same basic process. There are several variants of the CBC-MAC,
although the following general model (see [4, 9]) covers most of these.

The computation of a CBC-MAC on a bit string D using a block cipher
with block length n, uses the following six steps.

1. Padding. The data string D is subjected to a padding process, involv-
ing the addition of bits to D, the output of which (the padded string)
is a bit string of length an integer multiple of n (say ¢n).

2. Splitting. The padded string is divided (or ‘split’) into a series of n-bit
blocks, D1, D,, ..., D,.

3. Initial transformation. Initial transformation I, which may be key-
controlled, is applied to Dy to give the first chaining variable Hy, i.e.

Hy = I(Dy).

4. Iteration. Successive chaining variables are computed as
H;=ex(D;® Hi—1)

for ¢ := 2,3,...,q, where, as throughout, K is a block cipher key,
ex(X) and dg(X) denote block cipher encryption and decryption of
block X with key K, and @ denotes bit-wise exclusive-or of blocks.

5. Qutput transformation. The n-bit Quiput block G is computed as
G =g(H,)
where g is the output transformation (which may be key-controlled).

6. Truncation. The MAC is set equal to the leftmost m bits of G.

Most CBC-MACs adhere to this model, and such MACs will be the main
focus of this paper.

1.3 Types of CBC-MAC scheme

The latest version of the relevant international standard, namely ISO/IEC
9797-1, [4], contains six different CBC-MAC variants. These are based on
combinations of two Initial transformations and three Qutput transforma-
tions.

e Initial transformation 1 is defined as:
I(Dy) = ex(D1)

where K is the same key as used in the Iteration step. I.e. Initial
transformation 1 is the same as the Iteration step, and is the one used
in both the original CBC-MAC, as defined in ANSI X9.9, [3], and
CBC-MAC-Y (also known as the ANST Retail MAC), standardised in
ANSI X9.19, [2].

e Initial transformation 2 is defined as:
I(Dy) = egn(ex(Dy))

where K is the same key as used in the Tteration step, and K" is a
block cipher key distinct from K.

e Output transformation 1 is defined as:
g(HQ) = HQ7

i.e. Output transformation 1 is the identity transformation, and is the

one used in the original CBC-MAC, [3].

e Qutput transformation 2 is defined as:
9(H,) = exi(Hy),
where K’ is a block cipher key distinct from K.

e Output transformation 3 is defined as:
9(Hy) = ex(dr(Hy)),

where K’ is a block cipher key distinct from K. Output transformation

3 is the one used in CBC-MAC-Y, [2].

These options are combined in the ways described in Table 1 to yield four of
the six different CBC-MAC schemes defined in ISO/IEC 9797-1, [4]. Note
that algorithms 5 and 6 do not fit the general MAC model given above; as
a result we do not consider these last two algorithms further in this paper.

Finally note that three Padding Methods are also defined in [4]. Padding
Method 1 simply involves adding between 0 and n — 1 zeros, as necessary,
to the end of the data string. Padding Method 2 involves the addition of a
single 1 bit at the end of the data string followed by between 0 and n — 1
zeros. Padding Method 3 involves prefixing the data string with an n-bit
block encoding the bit length of the data string, with the end of the data
string padded as in Padding Method 1.

Table 1: CBC-MAC schemes defined in ISO/IEC 9797-1

Algorithm | Input trans- | Qutput trans- | Notes
number formation formation
1 1 1 The ‘original’ CBC-MAC scheme.
2 1 2 K' may be derived from K.
3 1 3 CBC-MAC-Y. The values of K and K’
shall be chosen independently.
4 2 2 K" shall be derived from K’ in such a way
that K’ # K".

When using one of the six MAC algorithms it is necessary to choose one of

the three padding methods, and the degree of truncation to be employed.
All three Padding Methods can be deployed with all six MAC algorithms.

In the remainder of this paper the discussions primarily apply to MAC
algorithms 1-4 from ISO/TEC 9797-1, used with Padding Methods 1-3. We
also use the terminology of ISO/IEC 9797-1. In fact, these algorithms cover
almost all CBC-MAC variants in common use today.

2 Attacks on CBC-MACs

There are two main types of attack on MAC schemes.

o In a MAC forgery attack [6], an unauthorised party is able to obtain a
valid MAC on a message which has not been produced by the holders
of the secret key. Typically the attacker will need a number of valid
MACs and corresponding messages to use to obtain the forgery.

o A key recovery attack enables the attacker to obtain the secret key used
to generate one or more MACs. Note that a successful key recovery
attack enables the construction of arbitrary numbers of forgeries.

We introduce a simple way of quantifying the effectiveness of an attack.
Following the approach used in [4], we do this by means of a four-tuple
which specifies the size of the resources needed by the attacker. For each
attack we specify the tuple [a,b,c,d] where a denotes the number of off-
line block cipher encipherments (or decipherments), b denotes the number
of known data string/MAC pairs, ¢ denotes the number of chosen data
string/MAC pairs, and d denotes the number of on-line MAC verifications.
The reason for distinguishing between the numbers ¢ and d is that, in some
environments, it may be easier for the attacker to obtain MAC verifications
(i.e. to submit a data string/MAC pair and receive an answer indicating

whether or not the MAC is valid) than to obtain the genuine MAC value
for a chosen message.

3 Simple MAC forgeries

We start by considering three ‘simple’ types of MAC forgery. All these
forgery attacks apply regardless of the MAC algorithm in use.

o MAC guessing. The attacker selects a message and simply guesses the
correct MAC value. The probability that the guess will be correct is
27™_ Such attacks can be avoided by making m sufficiently large.

o Verificalion forgery. This is a simple development of the ‘MAC guess-
ing’ technique. The attacker chooses a message, and then works through
all possible MACs, submitting the chosen message combined with each
MAC value for verification. This attack has complexity [0,0,0,2™].
Thus, even if an attacker only has access to a MAC verification func-
tion, selective verifiable forgeries are possible unless m is sufficiently
large.

o Trailing zeros forgery. The third attack only applies when Padding
Method 1 from [4] is in use. The attack works because of the obser-
vation that, if a padded message has final block D, and the last ‘1’
bit appears at position 7 (out of n) in D,, then there are n + 1 — ¢
(unpadded) messages which, when padded, give the padded message.
This means that, unless a message contains a multiple of n bits and
ends in a ‘1’ bit, given any message and MAC it is possible to discover
other messages with the same MAC by deleting zeros from, or adding
zeros to, the end of the message.

The same general type of attack would apply to any scheme using a
padding method where the mapping from messages to padded mes-
sages is not injective. Fortunately, Padding Methods 2 and 3 do not
suffer from this problem — indeed, the main motivation for the design
of Padding Method 2 was to avoid this problem.

4 More sophisticated forgeries

We now consider further attacks which apply only to particular variants of

the CBC-MAC.

4.1 Simple cut and paste attack

Suppose that the MAC function in use is the ‘original’ MAC scheme, i.e.
ISO/IEC 9797-1 MAC algorithm 1. Then, given two messages with valid
MACs (computed using the same secret key K), we can compute a third
‘composite’ message with a valid MAC without knowing the key. For further
details see, for example, [4]

4.2 Birthday attack

For this attack we suppose that Padding Method 3 is not being used. We
also suppose that no truncation is employed, i.e. so that m = n. Sup-
pose, by some means, an attacker discovers two messages with the same
MAC. That is, suppose the attacker has found that the two messages with
padded data strings Dy, D,,..., D, and Fq, Fs,. .., F, have the same MAC.
Then it follows immediately that any pair of padded messages of the form
Dl, DQ, ey Dq,Xl,XQ, e .,Xt and El, EQ, e .7E7-,_X17‘X2, e .,Xt will also
have the same MAC, regardless of the choice of X1, X5, ..., X;.

By elementary probability theory relating to the so called ‘Birthday Paradox’
(see, for example, [9]), given a set of 2*/2 messages there is a good chance
that two of them will have the same MAC. Thus, to find such a collision
requires only approximately 2/2 known message/ MAC pairs. Armed with
such a pair, the attacker now needs only persuade the user to generate
a MAC on one more message to obtain a MAC forgery. Thus the total
complexity of this attack is [0,2"/2,1,0].

Finally note that this attack applies to all of ISO/TEC MAC algorithms
1-4, as long as Padding Method 3 is not used. Unfortunately, Padding
Method 3 does not prevent another, slightly more sophisticated, forgery
attack, described immediately below.

4.3 van Oorschot-Preneel attack

This attack is based on an observation of Preneel and van Oorschot, also in-
dependently made by Kaliski and Robshaw, which is summarised as Lemma
1 in [9]. The attack relies on finding an ‘internal collision’ for a pair of
padded messages. That is, suppose Dy, Ds,..., D, and Ey, Es,..., E, are
two sequences of n-bit blocks obtained as a result of applying the padding
and splitting processes to a pair of messages D and E. Suppose also that
the chaining variables for the MAC computations for D and F are H;,
(1 <i<gq),and J;, (1 <i<r), respectively. Then an internal collision is
where:

Hs:Jt

for some pair (s, t), where s < ¢ and ¢ < r.

Given knowledge of an internal collision (by some means), the attacker im-
mediately knows that the padded messages

D17D27'"7D57F17F27"'7Fu

and

E17E27'"7Et7F17F27"'7Fu
will have the same MAC, regardless of Fy, Fs,..., F,. That is, given a

known internal collision, a forgery requires only one chosen MAC. Note
that, if Padding method 3 is used, then the above attack will work if and
only if the values s, t and u satisfy u =g —s=r — 1.

The problem remains of finding the internal collision. If Padding Method 3
is not in use then the attack works if we set s = ¢ and ¢t = r and look for
MAC collisions amongst a large set of messages, i.e. the attack is the same
as the Birthday Attack (see Section 4.2). However, when Padding Method
3 is in use, finding a ‘useful’ internal collision, i.e. one for which s < ¢, is a
little more difficult albeit not impossible, as we now describe.

Suppose, that the attacker obtains the MACs for a set of 27/2 messages,
all of which agree in their final « n-bit blocks for some u > 0. As before,
suppose also that m = n. Then, there is a good chance that two of these
messages will have the same MAC. Since these two messages have their final
u blocks the same, then we know that there will be an internal collision.

Specifically, suppose we know that the MACs for the sequences of blocks
Dy,D,,...,D, and Fy, Ey,. .., E, are the same, and suppose we also have
D;=Fip_qglorq—u+1<1<gq. If H; and J; denote chaining variables
(as above), then we must have H; = J; where s = ¢—wand t = r — u.

If we regard the set of 2/? messages as chosen texts, then the attack has
complexity [0,0,2"/2,0], which, although large, is still more effective than the
‘simple’ MAC forgeries. However, it may be easier than this to obtain the
desired MACs, bearing in mind that many messages are highly formatted.
Thus it may be true ‘by accident’ that large numbers of messages for which
a MAC is computed all end in the same way. If this is the case then the
attack complexity might more reasonably be described as [0,27/2,1,0], i.e.
the same as the Birthday forgery attack.

In any event it should be clear that Padding Method 3 does not protect
against forgery attacks using internal or external collisions. This point is
also made in Section IIL.B of [9]. Thus, to prevent such attacks, further
countermeasures are needed. This is the subject of the remainder of this
paper.

59 Countermeasures

Over the past few years a number of countermeasures to various forgery
attacks have been proposed. Of course, there are certain forgery attacks
which cannot be avoided, and serve as a baseline against which other attacks
can be measured. We now review some of the proposed countermeasures.

e Truncation. Perhaps the most obvious countermeasure to the attacks
described in Sections 4.2 and 4.3, is to choose the MAC length m such
that m < n, i.e. to truncate the MAC. However, Knudsen, [5], has
shown that, even when truncation is employed, the same attacks can
still be made at the cost of a modest amount of additional effort. More-
over, if m is made smaller, then the MAC guessing and Verification
forgery attacks (described in Section 3) become easier to mount.

o Padding Methods 2 and 3. Padding Method 2 was introduced specifi-
cally to deal with the Trailing zeros forgery (see Section 3). Padding
Method 3 was introduced to counter certain key recovery attacks, and
was also originally believed to counter Birthday forgeries (for further
details see [9]). However, as we have seen, neither Padding Method is
able, on its own, to prevent the attack described in Section 4.3.

o Serial numbers. A further countermeasure is briefly described in [4].
The idea is to prepend a unique serial number to data prior to com-
puting & MAC. That is, every time a MAC is generated, the data to
be MACed is prepended with a number which has never previously
been used for this purpose (within the lifetime of the key).

Although it is not stated explicitly in [4], it would seem that it is
intended that the serial number should be prepended to the message
prior to padding. Note also that it will be necessary to send the serial
number with the message, so that the intended recipient can use it to
help recompute the MAC (as is necessary to verify it).

It is fairly simple to see why this approach foils the attacks of Sec-
tions 4.2 and 4.3. Both attacks require the forger to obtain the MAC
for a chosen data string. However, because of the insertion of a serial
number, the attacker is now no longer in a position to choose the data
string. Thus it was believed that this countermeasure was effective
against the non-trivial forgery attacks.

However, as we will show below, serial numbers do not protect against
‘shortcut’ forgery attacks, even when combined with Padding Method
3. It is believed that this is the first time a forgery attack more efficient
than the verification attack has been demonstrated against the serial
number enhancement to CBC-MACs.

6 A new forgery attack

We now describe a new type of forgery attack. To simplify the presentation
we start by describing the attack as applied to MAC algorithms 1, 2 or
3 with Padding Method 1 or 2 and no Serial Number prefix. Later we
consider the scenario where Serial Numbers are used and lastly we consider
the implications of this attack in the case where both Padding Method 3
and Serial Numbers are used.

6.1 The basic attack

We first consider the case where one of MAC algorithms 1, 2 or 3 is used
together with Padding Method 1 or 2 and where the data is not prefixed
with a Serial Number. As previously, we consider the case where there is
no truncation and the size of the chaining variable is equal to the size of
the final output, this common value being denoted by n. Assume that the
attacker somehow obtains the corresponding MACs for approximately 2n/2
(padded) (r + ¢ + 1)-block messages E{, Ey, ..., E}, X, Fy, Fy,..., F, where
E{,Ey, ..., B} are arbitrary n-bit blocks, Fi, Fy,..., F, are arbitrary but
fixed n-bit blocks, and X is an n-bit block that is different for each message.
The attacker also obtains the corresponding MACs for approximately 27/2
padded (7 + 1)-block messages of the form Y, Fy, F, ..., F,, with the same
fixed blocks F;, 1 < ¢ < r, and a different n-bit block Y for each message.

Using an extension to the Birthday Paradox, [7, 8], given the number of
MACs obtained there is a high probability that a MAC from the set of
(r + ¢ + 1)-block messages is equal to a MAC from the set of (r 4+ 1)-
block messages. In other words, MAC(FEy, Es,. .., Eq, Xo, F1, F2, ..., F,) =
MAC(Yy, Fy, Fy, ..., F}) for some particular known values of Ey, ..., E,, X
and Yp. Since the n-bit blocks Fi, ..., F, are the same for the two messages,
it is the case that MAC*(FEy, Ey, ..., E,, Xo) = MAC*(Yy), where MAC*(Z)
denotes the computation of the MAC on the message Z without the Output
Transformation. This final relation is equivalent to

MAC*(Ey, By, ..., E)) = Xo & Y.

As a result of this, if the attacker knows that the MAC for some (padded)
message Z, Py, Py, ..., P, (t > 1) is equal to M, then the attacker knows that
the MAC for the message Fq, Eq,..., Ey, Xo @ Yo @ Z, P, P, ..., P is also
equal to M. This means that the complexity of this MAC forgery attack on
a MAC algorithm with an n-bit output with no truncation is approximately
[0,1,2%/2%1 0]. In the case of DES with no truncation, this is a forgery
attack of complexity [0, 1,233, 0].

6.2 A forgery attack for the Serial Number case

Now consider the case where Serial Numbers are used with MAC algorithm
1, 2 or 3 and Padding Method 1 or 2. Note that serial numbers are meant
to be prefixed to the messages to be MACed, that is, if Py, Py,..., P;is a
padded t-block message, then the MAC is calculated on the (¢ 4+ 1)-block
message 5, P1, Py, ..., P, where S is the serial number associated with the
message. With this observation we point out that the above attack described
for MAC algorithms not using Serial Numbers works unchanged for MAC
algorithms using Serial Numbers. Only the interpretation of the first block
of the various chosen texts used in the attack is different.

Note that for the (r + ¢+ 1)-block messages E{, B, ..., E}, X, Fy, Fy, ..., I}
described above, the E’s, 1 < i < ¢ were arbitrary and not necessarily fixed.
In the case of use of serial numbers, an attacker could submit (r 4+ ¢)-block

messages E{, E), ..., E!_ X, F1, Fy,...,F, to be MACed. The MAC algo-

-1
rithm returns the MACq for the string S{, B, B, ..., E,_, X, F1, Fy, ..., F,
where 51 is the (unique) serial number selected by the MAC algorithm for
the particular message. For verification of the MAC, the value of S| has to
be transmitted with the MAC of the message — if 57 is encrypted then this
attack will not work. Hence the attacker is assumed to know the value of 5]
for each of the 2%/2 (r4¢)-block messages E!, E}, . . B X P By
Similarly, the attacker can submit the r-block message Fi, F3,..., F, on/2
times, each time obtaining a (different) MAC for the string 5%, Iy, Fy, ..., F},

for a known but different serial number 5.

As above, there is a non-trivial probability that an (r + ¢)-block message of
the first type and one of the r-block submissions of the second type yield
the same MAC, that is,

MAC(Sy, Er, Ea, ..., Ey_1, Xo, 1, Fy, ..., F)) = MAC(Sy, Iy, Fy, . .., F),

for some known particular values of 5, 59, F, ..., F;_; and Xy. This means

that MAC*(S1, E1, Es, ..., Eq_1,X0) = MAC*(52) and therefore

MAC*(S51, Er, B, ..., Eq_1) = Xo ® 52.

If the attacker knows that the MAC for a padded message Py,..., P, (t > 1)
using serial number S35 is equal to M, he also knows that the MAC for the
padded message Fq, Fs, ..., Eq_1,X0 @ S2 @ 53, P1, Py, ..., P; using serial
number 57 is also equal to M. The complexity of this MAC forgery attack
is the same as before, i.e. [0,1,2%/21 0]. The constructed block Xo@ S ® 53
is the reason why the attack does not work if the serial numbers are not in
the clear, since in this case the attacker does not know S5 and 5s.

10

6.3 Combining Serial Numbers with Padding Method 3

The attack can be generalised to cover the case where Padding Method 3
and Serial Numbers are used in combination; there are two ways to combine
these two features, and we describe attacks for both combinations.

Firstly, suppose they are combined as implied in [4], i.e. the serial number is
prefixed before the message is padded, i.e. the length of the unpadded mes-
sage is prefixed to the padded and serial numbered message. The attacker
submits the 7-block message Fy, Fy, ..., F, 2"/% times, each time obtaining
a (different) MAC for the string Lo, 5%, F1, Fy, ..., F,, for a varying serial
number S5. Note that L is the ‘length-encoding block’ for the message (it
will be the same every time), as inserted by Padding Method 3.

The attacker also submits 2*/2 messages E, E}, .. N SN YD, OF L N DR

to be MACed, where L, is as above and X is different for each message.
MACs are computed for strings L1, S1, E1, Ey, ..., E} 4, La, X, 1, F, ..., I,
where 57 is the varying serial number, and L; is the length encoding block.
As before we suppose that the attacker knows the values of 57 and 5% for
each of the messages.

There is a good chance that an r-block message of the first type and an
r + g-block message of the second type yield the same MAC, that is,

MAC(L].;S].;E].;EZ)"'7Eq—27L2;X07F1)F2)"')FT) = MAC(L2;527F1;F2;"'7F7‘)7

for some particular values of 51,5, F1, E, ..., Ey_9 and Xo. This means
that MAC*(Ll, Sla El, EQ, ey Eq_g, L2,)&70) = MAC*(LQ, 52) and therefore

MAC*(Ly, 51, E1, By, ..., B9, Ly) = e (L2) © Xo @ Sa.

Thus if an attacker knows the MAC for padded message (L, 53, P1, Pa, ..., P,)
is equal to M, (where S5 is any serial number), he knows that the MAC for
the padded message L1, 51, E1, Eo, ..., Eq_2, L, Xo® S2® 53, P, P, ..., P,
is also equal to M. The complexity of this MAC forgery attack is the same
as before, i.e. [0, 1,27/2+1 0].

Secondly we consider the alternative way of combining serial numbers with
Padding Method 3, i.e. where we first pad the message, then prefix the
length of the unpadded message, and finally prefix the resulting string with
the selected serial number. That is, for a (padded) message Py, Py, ..., P,
the MAC algorithm is applied to the string S, L, Py, Py, ..., P;, where § is
the serial number block and L is the length block of the unpadded message.
We describe yet another attack variant for this case.

Briefly, the attacker submits 27/2 (7 + ¢q)-block padded messages of the form
By, By,,E;_3,X,Ly, 1, Fy, ..., F, where Ey, Ey, ..., E,_y are arbitrary
n-bit blocks, Fi, F5,..., F, are arbitrary but fixed n-bit blocks, Ly is an

11

n-bit block representing the length of the unpadded string Fy, Fy, ..., F, (as
required by Padding Method 3), and X is an n-bit block that is different
for each message. The attacker obtains the corresponding MACs and the
particular serial number S{ used with each message. The attacker also
submits the r-block padded string Fy, Fy,..., F, 2*/? times for MACing,
obtaining the corresponding MACs and the different serial number 5% used
for each MAC obtained. There is a non-trivial probability that a MAC for
one of the (r+ ¢)-block messages is equal to a MAC for the r-block message
for some serial numbers 51 and 53, that is,

MAC(Sy, Ly, Ey, ..., Eq3,Xo, L2, F1, ..., F,) = MAC(Sy, Ly, I, .. ., Fy).

This means that MAC*(Sl,Ll,El,EQ, .. .,Eq_g) = X() @) SQ.

Suppose also that the attacker knows that the MAC for an r-block message
Py, Py, ..., P., with unpadded length equal to Ly and serial number 53, is
equal to M. Then he knows that the MAC for the (r 4+ ¢)-block message
Ei,Ey,...,Eq_ 9, Xo® S2® 53, Lo, P, P, ..., P, of unpadded length Ly and

with serial number 57 is also equal to M, or

MAC(517L17E17E27 . '7Eq—27‘X0 D 52 @ 537L27P17P27 . '7P7‘) =
MAC(S3, La, Pr, Pa, ..., Py).

Note that the complexity of the attack is as before, i.e. it is [0, 1,27/ 0.

6.4 Implications

The published version of ISO/TEC 9797-1, [4], indicates that forgery attacks
can be avoided by using a combination of Padding Method 3 and Serial
Numbers. However, the attacks described in Section 6.3 cast serious doubt

on the value of serial numbers as a remedy to forgery attacks even when
combined with Padding Method 3.

7 Summary and conclusions

In this paper we have surveyed some forgery attacks to which MAC al-
gorithms may be subjected, including new attacks which can defeat some
proposed countermeasures not successfully attacked before. In particular we
have shown that combining Padding Method 3 and Serial Numbers is not as
effective as was previously believed in defeating ‘shortcut’ forgery attacks.

Of course, in practice, other security features may prevent some or all of the
described attacks from being a real threat. For example, in certain banking
environments the security deployed in the access to a MAC algorithm is such
that it is extremely difficult for an unauthorised user to obtain the MAC

12

corresponding to even one chosen text, let alone several. Also, if the MAC
scheme is used in such a way that no key is used to compute more than a
small number of MACs then certain attacks become impossible.

The use of Padding Method 1 is not automatically excluded because of the
attack described in section 3. It is possible that in certain environments
messages are highly formatted to the extent that the length of a message
to be MACed is fixed or known from the context, and therefore a trailing
zeroes forgery is not applicable.

In general it is important for users to carefully assess the significance of the
various MAC attacksin the context of the environment in which the resulting
MAC algorithm is to be used. There may be no benefit from using certain
sophisticated MAC systems in an environment which has other security
features in operation which make attacks against simpler MAC schemes
impossible to carry out. On the other hand, care should be taken not to
assume that a MAC which is secure in a certain environment is automatically
secure in others. For example, a 32-bit MAC which may be safely used in a
banking environment without any serious threat from a verification forgery,
is possibly not safe if used on the Internet or any other environment where
large numbers of verifications may be obtained in a short time.

The introduction and use of the AES algorithm [1], with a minimum 128-
bit cipher block length, as the encryption function to be used in block-
cipher based MACs means that all the attacks described here would become
practically infeasible. However, this may not be the case if heavy truncation
is used since, in this case, some of the attacks described in section 3 may
still be possible.

In this paper we concentrated on block-cipher based MAC algorithms as
described in [4]. Tt is possible that generalisations of the attacks described
here may be also applicable to other (dedicated, hash function-based or
proprietary) MAC algorithms which are based on iterated functions. Note
that all practical MAC algorithms are iterated in construction.

Acknowledgements

The authors would like to thank anonymous referees who suggested the first
attack variant described in Section 6.3.

References

[1] AES, a crypto algorithm for the twenty-first century, Ad-
vanced Encryption Standard (AES) development effort, 2000.

13

http://csrc.nist.gov/encryption/aes.

American Bankers Association, Washington, DC. ANSI X9.19, Finan-
cial institution retail message authentication, August 1986.

American Bankers Association, Washington, DC. ANST X9.9-1986 (re-
vised), Financial institution message authentication (wholesale), April
1986.

International Organization for Standardization, Genéve, Switzerland.
ISO/IEC 9797-1, Information technology — Security techniques — Mes-
sage Authentication Codes (MACs) — Part 1: Mechanisms using a block
ctpher, 1999.

L.R. Knudsen. Chosen-text attack on CBC-MAC. Flectronics Lelters,
33:48-49, 1997.

A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Ap-
plied Cryptography. CRC Press, Boca Raton, 1997.

K. Nishimura and M. Sibuya. Occupancy with two types of balls. Ann.
Inst. Statist. Math., 40:77-91, 1988.

K. Nishimura and M. Sibuya. Probability to meet in the middle. .J.
Cryptology, 2:13-22, 1990.

B. Preneel and P.C. van Oorschot. On the security of iterated Mes-
sage Authentication Codes. IEFFFE Transactions on Information Theory,
45:188-199, 1999.

14

